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Abstract

Magnetisation precessional dynamics have a great role in ferromagnetic thin-

films and nanostructures, where the underlying mechanisms of intrinsic and extrin-

sic damping are crucial for spintronic and magnonic devices. This important role

drives the research activity with a goal of acquiring a better understanding and the

ability to tune magnetic damping properties as desired. Research has tackled these

issues through many routes linked with the ferromagnetic material type or thick-

ness, while others have tried different aspects by including other nonmagnetic or

ferromagnetic elements as dopants or adjacent layers.

The effect of the additional nonmagnetic materials on the magnetic damping in

ferromagnetic system is the focus in this thesis, where a range of implementations of

the nonmagnetic material was studied. The role of nonmagnetic layer on damping

is shown in this study as the evolution of damping as the thickness of this capping

layer developed gradually from none to a partial and to a full covering layer. The

effect of nonmagnetic elements was also shown when the changes of the interface

takes place, the magnetic damping depends on the development of the interface

and the reduction of the NM capping layer is also demonstrated. These routes helps

to establish an understanding of damping and the underlying mechanisms.

Linking magnetic damping with other dynamic magnetisation phenomena gives

an insight into the reversal behaviour mediated by domain walls in ferromagnetic

systems. Studying jointly the contributions of damping and interfacial Dzyaloshinskii-

Moriya Interaction gives a better insight into the factor effecting the magnetisation

dynamics. As the understanding of the magnetic damping became clearer and the

underlying mechanism and effects, linking between two-magnon scattering, spin-

pumping and spin-mixing conductance with the crystal structure give more infor-

mation. This understanding and theory initiated a study to test the theory with a

new route to control magnetic damping through modifying the contributions to the

total magnetic damping that come from the individual atomic layers that make up

a ferromagnetic thin-film. This showed outstanding results consistent with theory

and demonstrating very low damping in a new synthetic ferromagnet.
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Chapter 1

Introduction and Thesis Structure

1.1 Background

Magnetic damping and ferromagnetic resonance are important fundamental phe-

nomena in ferromagnetic materials and thin-film systems. The role of the magneti-

sation precession in magnetic data storage and sensors has been the focus of many

studies in the field of spintronics and magnonics research, which arose from the

need to control magnetic properties of thin-films and nano-structures. Achieving

high magnetic damping in a ferromagnetic system is one of the desirable features in

application technologies. Increasing the damping rate of the precessional magneti-

sation in data storage and memory devices lowers the time of magnetic precession,

which is a key factor for speeding up the data writing and transformation process.

On the other hand, decreasing magnetic damping in ferromagnetic material is in

favour in cutting-edge technologies such as spin-transfer torque magnetic random

access memory (STT-MRAM or STT-RAM) and magnonic devices, where low damp-

ing in such applications leads to reduce write-current and improves the spin wave

propagation respectively [1, 2].

These issues were tackled by different studies, where this has been done through

the investigation of magnetic damping and ferromagnetic resonance through exper-

imental observations and theory calculation. The role of the underlying phenomena

that give rise to the magnetic damping behaviour, such as spin-orbit interaction, ex-

change interaction and density of states were investigated in relation with magnetic

damping. In the theoretical understanding, spin-orbit coupling is considered with
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the d orbital electron contribution to the energetic states at the Fermi energy level as

the main contribution to the behaviour of any given FM system. These studies con-

tributed to the general understanding of magnetic damping and the rise of several

phenomena together offer a clear image of the magnetic spin precessional dynamics

in ferromagnetic systems. These phenomena can be seen as fundamental intrinsic ef-

fects within the ferromagnetic material essence such as spin-pumping, spin-mixing

conductance and spin-diffusion length or as extrinsic additional factors such as two-

magnon scattering. All of these are related with the spin-orbit coupling of the ma-

terial being investigated and its electronic and energetic behaviour, as a stand-alone

element or in combination with other elements. The spin-wave and spin-current

interaction, mobility and transformation are the focus point of many studies.

In experimental research, damping was investigated in a range of systems with

different levels of complexity starting from the simple bulk system, where damp-

ing was investigated as a function of the ferromagnetic material type, thickness and

crystal structure. Raising the level of complexity to more than one layer and shape

including not only ferromagnets, but also non-magnetic materials, gave more under-

standing of damping and the underlying phenomena. In such studies understand-

ing and modifying magnetic damping has been achieved through different methods,

some of them linked with nano-shapes such as nano-wires [3] and structures [4];

others are linked with additional effects. These effects are linked to the addition of

dopants or adjacent material layer [5]. This opens research for investigations regard-

ing the dependence of damping enhancement on the non-magnetic layer material

type, thickness, concentration and number of layers. Electron beam lithography is

one of the research techniques used to control the shape of ferromagnetic systems,

while sputtering and ion-beam irradiation are used to build nano-structures from the

simple to complicated systems. The findings of theory and experimental contributes

to the understanding and the application of magnetisation precession in devices. In

spite of the big effort and the number of studies in the field of magnetic damping in

terms of understanding and controlling damping for application, there is a need for

further research.

The research in this thesis aims to contribute to the understanding of magnetic
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damping phenomenon through experimental research with the aid of theory, to un-

derstand the role of damping in general and the modifications that can be imple-

mented for both increasing and decreasing it. The focus was to investigate damping

variation as a function of interface change, the non-magnetic layer type and thick-

ness, and varying the contribution of each mono-layer to the total damping by syn-

thetically engineering it with a dopant. The results of this thesis give a better un-

derstanding on magnetic damping and show interesting results on some underly-

ing phenomena, which, linked with damping, also links to other effects such as the

Dzyaloshinskii-Moriya interaction.

1.2 Aims of the Thesis

The aim of this thesis is to provide insight into the understanding of magnetisation

damping in thin-films and nano-structures. Techniques including sputter deposi-

tion, co-sputtering and ion-beam irradiation were used to structure layered thin-

films and control the concentration of the materials. The study focuses on damping

in Co and Ni81Fe19 as ferromagnetic materials and Pt, Au, Ag, Cr and Cu as non-

magnetic materials. Bi-layer samples were produced as thin-films, micro-structured

dots and nano-wires, with co-sputtering used to synthesise doped ferromagnetic

films of layers within some of the thin-films.

Measurements have been carried out in terms of investigating the precessional

magnetisation in the time domain by the time-resolved magneto-optical Kerr effect

and wave excited ferromagnetic resonance. Furthermore, thin-film thickness, inter-

face roughness and crystal structure were investigated using x-ray reflectivity and

diffraction to link and aid the explanation of the magnetic behaviour with structural

changes. A range of other measurements, such as using a superconducting quantum

interference device and the magneto-optical Kerr effect magnetometry were done in

order to investigate other magnetic properties.

A better understanding of magnetic damping and the underlying effect, a deeper

insight into the relation between damping and other relative interfacial phenomena

such as Dzyaloshinskii-Moriya interaction with the new concept of damping are
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presented. The results are important in relation to application in cutting-edge tech-

nologies in terms of optimising the speed of data writing and transformation.

1.2.1 Thesis Outline

This thesis starts with a general introduction to the magnetic damping role in re-

search and application fields, the role of damping in modern technologies as re-

quired to improve their performance. The theory to understand these phenomena

and enhance the microscopic view of the underlying mechanisms is followed by the

experimental aspects investigating the origin and the modification of the magnetic

precession and damping in different systems.

In Chapt. 2, the physical basis of magnetism and magnetic behaviour is presented

as an introduction. Starting with the origin of magnetism at the atomic level, the

magnetic moment is followed by a further description that leads to many phenom-

ena and fundamentals which affect the magnetic behaviour in any given ferromag-

netic system. Other effects or phenomena are included as a result of the magnetic

moment or as effects that can shape the final magnetic behaviour of the material

such as shape anisotropy. Damping in the simplest terms of energy dissipation is

introduced with some of the effects that can be detected in ferromagnetic systems.

A detailed explanation is presented in Chapt. 3, which covers the theory and

the underlying physics of the experimental implementation of each technique. This

chapter is divided into three sections which represent different types of measure-

ments. Firstly, the structural investigation, including x-ray reflectivity and diffrac-

tion, is presented as a part of the crystal structure and thin-film thickness and inter-

face width investigation. Secondly is the quasi-static measurements that investigate

the magnetic states without including time variations. These measurements repre-

sented by superconducting quantum interference device and magneto-optical Kerr

effect magnetometry. The final part is the dynamic measurements which are more

related with magnetisation precession in two main techniques the time-resolved

magneto-optical Kerr effect and ferromagnetic resonance. The data analysis and
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experimental setup are discussed in detail to gain a better understanding regarding

the measurement results.

In Chapt. 4 the background theory and the practical implementation of all the

sample fabrication is explained. Starting from the stages before deposition, the

cleaning and cutting in relation to the sample size and the experimental require-

ments are explained. This is followed by the background of the material deposition

with a focus on the main deposition system and its main features and the growth

conditions. Growth modes are explained in order to give insight and link the results

with any structural changes that may take place through the deposition process. The

main system used is explained with examples of some of the fabricated samples. In

another section, ion-beam irradiation is presented with the theory and the exper-

imental results from the literature showing the main effects that take place in the

range of ion beam doses used here. The investigations of the ion irradiation are dis-

cussed as it brings structural effects and changing the thin-film layers intermixing

and finally this impacts on the magnetic behaviour.

Since magnetic damping is the main focus of this thesis, it seems a better idea to

dedicate a full chapter to review this phenomenon, which is Chapt. 5. This chapter

is based on published review study of damping and used to produce an extended

background on magnetic damping phenomenon in thin-films and nano-structures.

It starts with the mechanisms that define the nature of damping and then extends

the explanation further to cover many related effects, using the theory to develop an

understanding of damping. In the second section experimental studies are reviewed,

their findings are presented as linked results, with the dependence of damping on

ferromagnetic and non-magnetic and the thickness and number of layers in more

complicated systems. The damping variation is also shown as a function of dopant

and doping concentration. Finally, the current status of the general understanding

of magnetic damping is discussed. This chapter is limited to the topics related to the

subject of this thesis.

The results of the work in this thesis starts in Chapt. 6. This chapter is one of

the published works in which the evolution of magnetic damping is investigated

as a function of Pt and Au capping layer thickness in bi-layer thin-films. The main
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techniques that are used to produce and investigate the samples are explained with

examples of some of selected data. The work is presented as a comparison with a

recent theoretical study by Barati et al [6]. In the chapter a background on the subject

is presented and an analysis of the experimental results with an explanation of the

different effects. The damping results in this chapter are supported by structural

analysis and with the aid of the theory and other magnetic measurements.

In Chapt. 7 a study of the damping dependent on interface modification of bi-

layer micro-structures fabricated with electron beam lithography is reported. Pt was

used as capping layer and the interface structure was changed by focused ion-beam

irradiation induced intermixing. The chapter includes the related theory and a com-

parison with results from earlier studies. The magnetic damping behaviour is ex-

plained with the aid of a structural investigation of a similar system due to the same

irradiation process. Time-resolved magneto-optical Kerr effect observations were

used and explained along with the method of extracting the damping parameter.

The study of Chapt. 8 is based on the results of Chapt. 6. The influence of en-

hanced damping obtained from the experimental study was combined with the in-

terfacial Dzyaloshinskii-Moriya interaction, taken from the literature and used in

micromagnetic simulations on the magnetisation reversal of domain wall propaga-

tion in nano-wires. Switching nano-wires was also studied experimentally, the fabri-

cation of the samples as nano-wires with different-sided shape features is explained

with examples of the wires, microscopic images, where the electron beam lithogra-

phy technique was used to produce the nano-wires. Experimental and simulation

details about the measurements such as magneto-optical Kerr effect magnetometry

and Mumax3 code are explained. The results and the analysis are discussed with the

contribution of damping enhancements and interfacial Dzyaloshinskii-Moriya in-

teraction on the domain wall magnetisation reversal. The reversal field and Walker

breakdown and domain wall velocity behaviour are also included. This was done

for different ranges of damping and interfacial Dzyaloshinskii-Moriya interaction.

Then in the final section, the conclusion and the summary show the findings of this

study.

In Chapt. 9, a study is reported on a new route to damping control, through the
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synthetic engineering of specific mono-layers in ferromagnetic material via doping

with non-magnetic material. The study was built upon the results from a theoreti-

cal study and previous well-known experimental observations in order to came up

with a new proposition which can be executed in terms of thin-film fabrication and

measured in terms of magnetic damping. The results are presented in this chapter

of two main damping measurements in order to verify the results. Furthermore,

theory calculations were carried out with calibration to compare the results, which

show good agreement. Structural analysis and other quasi-static measurements are

included in order to provide a full understanding of the findings of the study. In this

chapter this is the final study, which represents a significant achievement, showing

controlling of damping in synthetic ferromagnetic thin-films.

The final Chapter is the conclusion of the thesis, which summarises the main

results in the experimental chapters with the interpretation and the most significant

findings and their role in the research and the application field. This is followed

by a discussion of the featured work as new ideas and measurements which can be

considered as a step toward new futuristic studies in the research and technology

field. The results of this thesis may have a remarkable influence on the cutting-edge

technologies such as spintronic and magnonic devices.
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Chapter 2

The Physical Basis of Magnetic

Properties in Thin-Films

2.1 Introduction

The aim of this chapter is to give an insight of the underlying physical phenomena

and the basic concepts in thin-film magnetism. We start by discussing the origin

of atomic magnetic moments before considering the distribution of electrons in sin-

gle and multiple atoms given by Hund’s rules, that links with a material’s magnetic

properties. The next topic of consideration is the spin-orbit interaction (SOI) or spin-

orbit coupling (SOC), regarded as an important physical concept for behaviour of

ferromagnetic (FM) systems. The magnetic interactions in multiple atom systems

can be explained by the band theory, which helps to explain the more complicated

magnetic behaviour in crystal systems. The electronic ordering in a system, which is

explained by this theory, gives rise to interactions such as exchange and crystal field

interactions. These interactions can work together to give the final magnetic state

of the material. This can be seen in Dzyaloshinskii-Moriya interaction and magne-

tocrystalline anisotropy that are based on the exchange and crystal field interactions.

As a main part of this thesis, ferromagnetic resonance and magnetic damping

are explained here in terms of energy origin, transformation and dissipation mech-

anisms. These mechanisms give a general understanding on the energy transfor-

mation, dissipation and magnetisation precession in ferromagnetic (FM) materials.

The underlying effects for these mechanisms are discussed more in depth in a later



10 Chapter 2. The Physical Basis of Magnetic Properties in Thin-Films

chapter. The final part of this chapter describes the interaction between a magnetised

sample and polarised light, which provides a useful probe into the quasi static and

dynamic magnetic properties of a system. The Faraday and Cotton-Mouton effects,

which are linked to the basis of magneto-optical Kerr effect (MOKE) are explained.

The magneto-optical Kerr effect is used dynamically to measure magnetic damping,

which is called the time-resolved magneto-optical Kerr effect (TR-MOKE). Having

these basics gives a starting point to show the focus of this thesis and to provide a

suitable explanation to these effects and phenomena, so that in the following chap-

ters they can aide the understanding of the work in this thesis.

2.2 Atomic Magnetic Moment Origin

In an atom, the atomic magnetic moment (µ) is related with the total angular mo-

mentum (J) by the gyromagnetic ratio (γ) or the Landé g-factor (g0) [7]. The total

angular momentum is the sum of the spin (S) and orbital (L) angular momentum,

Fig. 2.1 shows an image for spin and orbit momentum in simple schematic atom

configuration where the total angular moment for both S and L is:

S =
∑

ms (2.1)

and

L =
∑

ml (2.2)

The interaction between the intrinsic spin moment (ms) and the orbital moment

(ml) of each electronic level is the origin of the total angular momentum hence the

atomic magnetic moment. Atoms with partially filled shells have a higher magnetic

moment and for the metallic ferromagnets Co and Ni having the highest magnetic

moment while Fe magnetic moment is less [8–10].

The atomic magnetic moment is the source of the magnetic properties and it is

the key of many magnetic behaviours. The different magnetic properties of materials

are related the electron distribution that are determined using Hund’s rules, which

are discussed more in detail in the following section [8, 9, 11].
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FIGURE 2.1: Illustration of (a) the atomic magnetic moment configuration with (b) and
(c) the spin up, spin down and the origin of the atomic magnetic moment and (d) the

total magnetic momentum.

2.2.1 Hund’s Rules

The distribution of the electrons in an atom obey empirical rules known as Hund’s

rules that aim to explain the energy properties of the atoms and thus the physical and

chemical interactions between them. The rules take into account the arrangement of

the electrons due to their spin and all angular momentum and the spin-orbit inter-

action strength. The three Hund’s rules give the arrangement for the electrons in

the main and sub shells of an atom that achieve a minimum energy configuration.

Taking into consideration Pauli’s exclusion principle and the application of these

three rules sequentially explains a lot of ferromagnetic properties, interactions and

the different magnetic moment within materials, even when they have very similar

numbers of electrons [9, 12].

The sequence of these rules are; firstly the total atomic spin S from Eq. 2.1 is

maximised, which will reduces the spin-spin exchange energy. Secondly, the total

orbital momentum L is maximised without violating the first rule. Finally if the shell

is less than half full J = |L − S|, if the shell is more than half full then J = |L + S|

[9, 12]. The application of these rules can be seen in Fig. 2.2, which illustrates the

arrangement of the electrons in an atom in the ground state.
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FIGURE 2.2: Electron distribution according to Hund’s rules for Fe atom with increasing
energy by fulling the higher levels with electrons.

2.2.2 Spin-Orbit Interaction (Coupling)

The Spin-orbit interaction (SOI), also known as the spin-orbit coupling , is an inter-

action associated with the magnetic moment of the spinning electron on its axis with

associated orbital angular momentum. The SOI formula was first derived from the

relativistic principle in term of the interaction energy, Erel, between an electron in

an atom with a positively charged nucleus [7]. The interaction energy between the

magnetic moment of the electron spin moment and the magnetic flux density (B)

which rise from the orbital motion can be written as:

Erel = −µe.B (2.3)

The ratio of the spin electron magnetic moment (µe) in Bohr magneton units (µB) to

the angular momentum is g0 [7]. The final equation for the SOI can be written as:

Erel = g0µB~
Ze

8πε0mc2r3
l.s (2.4)

It can be seen from equation 2.4 that the interaction between the spin and the

orbital momentum is dependent on the spin (s) and the orbital (l) quantum num-

bers. Fig. 2.1 shows the spin and orbital momentum and the total momentum that

results from their interaction. The Landé g-factor, g0, is linked to the gyromagnetic
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ratio (γ = g0|e|/2mc) and both are related to J and µ. These two terms have been

used interchangeably, but with different descriptions such as the “magnetomechani-

cal g-factor” due to the dynamic relation [13–15] or the “spectroscopic g-factor” due

to the separation of the energy eigenvalue under excitation [13, 16]. Both magne-

tomechanical and spectroscopic g-factor should have the same value when the total

magnetic momentum is equal to the total spin momentum S only where L=0. This

is happened when the orbital angular momentum is quenched by the crystal field as

it is explained in Sec. 2.6.

2.3 Exchange Interaction and Exchange Energy

The exchange interaction is the combination of the Pauli exclusion principle, which

explains the quantum mechanical interactions between neighbouring spins, and the

Coulomb repulsion between charges [17]. Electrons obeying Pauli exclusion prin-

ciple leads to the result that some electrons occupy the ground state energy while

other electrons occupy higher energy states. With this occupation of a higher state

of energy the system exchange energy will also increase.

Calculating the exchange energy (Eex) of a magnetic system is the summation

of the spin over all pairs of magnetic moments in the system. This energy is de-

pendent on the exchange interaction, which is a very short range effect. Increasing

the separation means that the interaction quickly becomes negligible. The exchange

interaction is limited to nearest neighbouring moments, which implies that the sum-

mation is only over nearest neighbouring atoms. With adjacent spins Si and Sj near-

est neighbours, the exchange energy Eex is given by:

Eex = −2JexSi.Sj (2.5)

The term (Jex) refer to the exchange interaction. The angle (φ) between the spins

changes the energy, Eq. 2.5 thus can be expressed as

Eex = −2Jex

∑
ij

si.sj cosφ. (2.6)
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If Jex is positive, Eex is a minimum when the spins are parallel (cosφ = 1) and a

maximum when they are anti-parallel (cosφ = −1). If Jex is negative, the lowest en-

ergy state results from anti-parallel spins. A positive value of the exchange integral

is necessary for ferromagnetism [18].

Fig. 2.3 shows that the value of the exchange interaction as a function of the

interatomic distance between any two neighbouring atoms. This is the Bethe–Slater

curve, it can be seen that the ratio r/rnd, where r is the interatomic distance and rnd

the radius of its nd shell, is important for the spin alignment.

FIGURE 2.3: Schematic of the Bethe-Slater curve, illustrating the importance of the ratio
of interatomic separation, r, to the radius of the d band, rnd, on the sign and magnitude
of the exchange interaction and sketches to illustrate to spatial overlap of the electronic
wave functions. The n here represent the number of the d shell in different metals which

is either 3, 4 or 5.

The exchange energy can be simplified by introducing some assumptions. The

first assumption is related to the crystal field and it leads to the quenching of the

orbital angular momentum, as described in Sec. 2.7.1. It states that the exchange for

all the electrons in the material is the same. The second assumption is that the spins

of the electrons in the same atom are not quenched, which mean that the exchange

of these electrons is constant. This simplifies the exchange energy calculation. SOI

along with the exchange interaction and the band theory of magnetism are work-

ing together to give this type of interaction, specially with heavy and transition FM

metals. In transition FM materials, Exchange interaction take place when the asym-

metry broken in FM material or/and by adding NM adjacent layer with strong SOC.
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Both ways can lead to introduced new interactions based on the exchange interac-

tion known as Dzyaloshinskii-Moriya Interaction [19, 20].

2.4 Band Theory of Magnetism

The band theory, or as it is also known the collective-electron [21] theory, is used

widely to explain physical properties in metals, semiconductors and insulators. The

principle of band theory is based on the electronic structure in these material in order

to explain many of the physical properties which magnetism. This theory was first

derived between 1933-1936 by E.C. Stoner and J.C. Slater [22–24] to explain many

materials properties and behaviours beside magnetism, such as; cohesiveness, elas-

ticity, thermal and electrical conductivity, which are out of the scope of this thesis.

The origin of the non-integer effective Bohr magneton µB values of transition metals

ferromagnets is one of the aims of the band theory. The effective number of Bohr

magnetons (neff ), is the equivalent moment per atom. This number differs according

to the material and it can be found according to:

neff =
MS(0)

nµB
(2.7)

Where (MS(0)) is the saturation magnetisation at T= 0 K, and (n) is the number of

atoms per unit volume.

Before further explanation of neff , it is important to explain the electronic struc-

ture of free atoms. According to the Pauli exclusion principle, any two electrons

in the atom can have the same energy level; “shell”, sub-level and finally the spin

(spin-up ↑ or spin-down ↓). Noticing that some of energy levels can have more than

two electrons such as 3p shell which mean they split in to more sub-levels in order

to preserve Pauli exclusion principle. The application of Pauli exclusion principle

is simple up to when the 3p shell is filled and reaching to heavier elements. Heavy

transition metals have electrons that extend to 3d and 4s shells and because these

two levels overlap with each other, this will increases the complexity of the appli-

cation of this principle when forming a solid due to the extensive splitting and the
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overlapping of the sub-levels of the atoms.

Fig. 2.4 (a) shows the overlapping of 3d and 4s orbit levels and (b) the Fermi level

for different materials according the their occupation states in each shells. The final

distance between any approaching atoms will define the overlap in energy levels.

This effect is more common with 3d and 4s because the lower energy levels such as

1s and 2s are nearer to the nucleus and thus the distance need to be reduced much

more. For example in 1 mg of Iron 1019 energy levels will be created, which forming

bands rather than separate atomic levels, as the solid state is formed. By creating that

many sub energy levels, it is better to be describe a density of levels N(E) as a band,

which is continuous energy band of allowed levels. This term describes the density

of states between two different energy levels, also it is considered as a function of the

energy it self, which explains the term density of levels, N(E)dE, instead of number

of levels. The separation of the energy between each level in the energy band is the

reciprocal of the density of levels 1/N(E) [25].

FIGURE 2.4: A schematic view of broadening of electron energy levels when the inter-
atomic distance decreases. (b) Density of levels in the 3d and 4s bands.

The concept of 3d and 4s level overlapping is a key factor for defining the avail-

able states at the Fermi level. This may show contributions of both 3d and 4s elec-

trons to the physical properties in general, but only the 3d levels are responsible for

the magnetic features of FM transition metal [8]. Even though the 4s levels have

broader spherical shape but, 3d level have the advantage to reaches nearer to Fermi

energy level. This may explain the strong magnetic behaviour in FM elements which
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have higher number of electrons in their 3d shell [25].

Fig. 2.4 (b) also shows the different density of states for transition metals and the

contribution of 3d and 4s shells in different non-magnetic (NM) and FM metals. The

total number of electrons that occupy (3d+4s) will determined the Fermi level.

FIGURE 2.5: Schematic to show the electronic band structure and density level of states
for (a) anti-ferromagnetic transition metals, (b) non-magnetic transition metals, (c) weak
ferromagnetic transition metals and (d) shows 3d band splitting in spin-up and spin-

down states in ferromagnet with exchange energy effect.

Going back to use the effective number of Bohr magnetons, neff , to explain the

ferromagnetic properties in material, neff is dependent on the extent to which these

levels are occupied and also depends on the total number of (3d+4s) electrons, in

the atoms. Considering n is the number of (3d+4s) electrons per atom, which is

10 electrons in a single Ni atom, if (x) is the number of 4s electrons per atom then

3d electrons per atom is represented by (n-x). The relation between the number of

unpaired spins per atom (neff ) for Ni is given by:

neff = [10− (n− x)]µB (2.8)

Due to the overlap between 3d and 4s bands, the valence electrons partially oc-

cupy each of these bands. When the electronic structure of Ni is considered, the
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exchange interaction displacement is very strong such that one 3d sub-band is com-

pletely filled with 5 spin-up electrons and (n-x-5) electrons have spin-down. Using

the experimental value of neff =0.60 µB and the n value into Eq. 2.8 gives an x value

of 0.6. This is proportional to number of 4s electrons below the Fermi level, which

indicates that 9.4 electrons are in the 3d band, and 0.6 electrons in the 4s band. The

calculation for a free atom is 8 electrons in 3d band and 2 electrons in 4s band. Doing

the same for Fe, Co, the spin imbalance is found to be, 2.6 µB and 1.6 µB, respectively.

This almost explains the ferromagnetic moment of Fe,Co and Ni.

For lighter transition metals, such as Mn, the weak exchange interaction is play-

ing an important role, while the band energy is larger, hence ferromagnetism is not

observed because these metals do not meet the Stoner criterion. The existence of

ferromagnetism is governed by the Stoner criterion; I N(EF) > 1 where (I) is the ex-

change parameter and (N(EF)) is density of states at the Fermi energy [23]. Fig. 2.5

illustrates Fermi energy level in different materials, also compares the density of

electrons occupancy according to their magnetic tendency. The effect of the exchange

biased of the applied field is also illustrated for FM materials.

Using the band theory further to explain the origin of Pauli paramagnetism is

straightforward. As any systems, all levels up to the Fermi level are full and all

higher levels completely empty. There is an absence of a net moment without an

applied field, however, the external field will create a spin imbalance, which is the

reason for of weak spin paramagnetism [25].

The effect on magnetic properties of combining a lighter materials such as Cr or

heavy metals; Pt and Au as dopant or adjacent layers, with FM thin-film materials

such as Co and Ni81Fe19, is discussed in the Chapt. 6, 7, 8 and 9. The use of such

NM elements with FM transition metals gives the ability to control the magnetic

properties.

2.5 Dzyaloshinskii-Moriya Interaction (DMI)

Dzyaloshinskii-Moriya interactions (DMI) are considered as one of the important

mechanisms, fundamental in systems where strong SOC and exchange interaction
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occur. This kind of interaction can take place directly when the range between the

magnetic spins is very short. It is always linked to the exchange of the ferromagnetic

and anti-ferromagnetic interaction. The combination of DMI and magnetic field can

work together to effect magnetic structure, for example to create very stable micro-

magnetic textures know as skyrmions [26].

DMI creates a chirality between neighbouring atoms at an interface which has

strong Spin-Orbit Coupling. SOC is essential to canting the magnetisation in the

system [27–29]. The DMI interaction can be described by the equation [19, 28–31]:

HDM = −D12(Si × Sj) (2.9)

Where Dij is the Dzyaloshinskii-Moriya vector, Si and Sj are adjacent atomic spins

in the interface layer. Similar spin textures also can be result from the long ranged

magnetic dipolar interaction which is based on the magneto-static interaction of two

layers of thin-films with the existence of bias applied field [19]. The SOI plays an

important role between the ions of NM adjacent layer and the interaction with the

FM atoms [32].

Interfacial DMI occurs, when a ferromagnet is coupled with non-magnetic heavy

metals. This has been found in Pt/Co multilayers [20, 33]. In such systems, the

addition of the heavy metal, such as Pt, is crucial to obtain DMI, as shown in Fig. 2.6.

Systems where the preferential direction of the magnetisation is out-of-the-plane are

well know to have Néel domain walls, which is one of the results due to the existence

of the DMI in such systems. DMI induces a chirality to the domain wall that is

dependent on the sign of Dij [20, 34] and this also can be a vital important factor for

creating skyrmions. Interfacial DMI my also affect other phenomena such as domain

wall dynamics. This is discussed in more details in Chapt. 8.
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FIGURE 2.6: Schematic of interfacial DMI showing thin-film magnetisation orientation,
where it raise when a FM material coupled with adjacent NM layer with strong SOC.

2.6 The Interaction of Crystal Field and The Magnetic Mo-

ment

The origin of the magnetic moment and the distribution of the elections in the bands

shells give an insight to the magnetic behaviour of FM materials. These are not the

only factors in any ordinary FM material, where the electrons in the d shell play an

important role in the magnetic state of a ferromagnet [13]. Forming solid material

will shape the energy level density, by creating a field known as crystal field, which

strongly affects the 3d shell electrons. The expectation value of the orbital moment

in a crystal averages to zero [13, 35], an effect known as orbital quenching. The

forming of solid material will raise the d shell role, with the overlapping of these

shells an imbalance with the spin states will take place, as it is explained in Sec. 2.4.

In ferromagnetic materials the electrons states are already unbalanced, unlike the

NM materials, emphasising the importance of the d state and the quenching process.

The quenching from the crystal field will pronounce the spin of the electrons but

the spin changing will also bring the change again to the orbital moment through

the SOI. Thus this leads to the change of the SOI energy and will change the total

momentum. The crystal field and the changing of the SOI energy effectiveness, with

regards to the quenching, is strong when the material has partially filled 3d shell and

becomes stronger for the heavier transition 4d and 5d metals [12].

The orbital quenching, can be described as follows: when a crystal structure
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formed, with well known crystal structure the orbital moment is coupled to the crys-

tal lattice, hence it is not stationary any more, where it is precess around the crystal

field, however the term J = L + S is remains unchanged. Thus the constant mag-

nitude of the total moment means that the change will occurs to the spin magnetic

moment, implying the interaction between L and S to maintain the total magnetic

moment value. This can be seen latter in the experimental chapters, where some of

the magnetic properties of the same material are altered substantially, while the total

magnetic moment does not change with large magnitude.

2.7 Magnetocrystalline Anisotropy

FM material has a specific crystallographic orientation along which the magnetisa-

tion preferentially aligns, which is the result of the interaction of spin and orbital

momentum with the crystal field. The atomic moments in a ferromagnet have an

energetic preference for the magnetisation to be orientated along preferred crystal-

lographic axes, the lowest energy orientation of magnetisation is known as the easy

axis. Logically this will create another axis along which a large applied magnetic

field is required to rotate the magnetisation i.e. the hard axis. The energy state of a

ferromagnet depends on the alignment of the magnetisation along the specific crys-

tallographic axis, known as magnetocrystalline anisotropy [25].

The magnetocrystalline anisotropy results from coupling the electron spins via

their orbits to the lattice [36]. FM crystals can have easy, medium and hard axes,

which are defined by the coupling between the spin and the orbital magnetic mo-

ment to the lattice. Material for example, have uniaxial anisotropy, or cubic anisotropy.

The direction of the magnetisation is determined by the anisotropy, but the exchange

interaction also plays a role in the alignment of the magnetic moments regardless of

their direction.

This anisotropy can be seen in ferromagnets such as Co, Fe and Ni where the

magnetisation curves with applied field along the easy and hard axes [37], for exam-

ple, Fig. 2.7 show the easy , the medium and the hard axes , for body-centred cubic

(bcc) iron; Fe, face-centred cubic (fcc) nickel; Ni and the hexagonal closed-packed
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(hcp) cobalt, note Co has no medium axis. It can be seen from Fig. 2.7 that Fe reaches

the magnetisation saturation easier when the external field is applied on 〈100〉 axes,

compared to the 〈111〉 directions. 〈100〉 directions in iron are the easy axes and the

〈111〉 directions corresponds to hard axes of magnetisation. Nickel, on the other

hand saturates easily when the external magnetic field is applied on the 〈111〉 direc-

tions and the 〈100〉 directions represents the hard axes of magnetisation. For cubic

crystals (such as iron and nickel), the magnetocrystalline anisotropy energy (Emc) is

expressed as:

Emc = K1(α2
1α

2
2 + α2

3α
2
3 + α2

1α
2
1) +K2(α2

1α
2
2α

2
3) (2.10)

where, K1 and K2 are first and second order magnetocrystalline anisotropy con-

stants for any given material and α1,2,3 are the direction cosines relative to the cube

edges. It has been found that the values of K1 and K2, for Fe, are 4.8 ×104 J/m3 and

-1.0 ×104 J/m3 respectively. The measured K1 and K2 are -4.5 ×103 J/m3 and -2.5

×103 J/m3 respectively for Ni [37].

In hexagonal crystals the c-axis is the easy axis of magnetisation as shown in

Fig. 2.7 (c). It is very difficult to rotate the magnetisation away from the c-axis. The

magnetocrystalline anisotropy energy required to rotate the magnetic moments in

hcp Co from the easy axis of magnetisation to the hard axis is higher than the one

required in the case of Fe and Ni [25]. For uniaxial hcp Co crystals, the magnetocrys-

talline anisotropy energy is given by:

Emc = K1 sin2 θ +K2 sin4 θ (2.11)

Where K1 = 4.5×105 J/m3 and K2 = 1.5×105 J/m3 [25] are first and second order

uniaxial anisotropy constants in the case of hcp Co, and θ is the angle between the

easy axis and the magnetisation.
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FIGURE 2.7: Magnetisation curve along different crystallographic axes for single crystal
of (a) bcc Fe, (b) fcc Ni and (c) hcp Co where the easy, medium and the hard axis showing

the preferential alignment due to magnetocrystalline anisotropy.
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2.7.1 Crystal Structure Changing in FM/NM and FM-NM Thin-Films

The elemental ferromagnets Co, Fe and Ni have hcp, bcc and fcc crystal structure

respectively see Fig. 2.7. Each crystal structure produces a different value for the

total anisotropy. However, it is worth noting that some elements can have other

crystal phase when they are combined with other elements or special conditions or

thicknesses e.g. Co crystal structure changes to fcc when it is sputtered as very thin

layer (sub 3nm) on fcc structure such as platinum (Pt) [38].

Thus, substrate type, doping, alloying or changing the thickness of the FM ma-

terial can all change the crystal structure of the studied system. Changing thin-film

thickness has a more general effect, and can work in two ways. First, for ultrathin-

films on the order of a few Angstroms, the material can be forced to follow the un-

derlayer crystal structure. Secondly, after a number of mono-layers this effect will

be weakened, which allows the FM material to form its usual crystal structure.

2.8 Magnetostatic Shape Anisotropy

Shape or magnetostatic anisotropy also has an effect on the magnetisation on the

sample in each direction. The importance of this effect can be seen when a sam-

ple which has non-spherical shape and can dominate when there is only very weak

magnetocrystalline anisotropy. The free poles on different surfaces of a sample cause

this effect by the stray fields which originate from these free poles. If the shape is

non-uniform then magnetisation will be much easier along the longer axes. The

longest axis can be considered as the magnetostatic easy axis of a sample. This dif-

ference can be computed by using the permanent magneto-static energy (Ems). This

energy is related to the the demagnetisation field Hd at zero applied field and to the

magnetisation M , along a given geometrical axes:

Ems =
1

2
HdM (2.12)
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where Hd = NdM , so it can be written as:

Ems =
1

2
NdM

2 (2.13)

where Nd is the demagnetizing coefficient along a given axis, which is relates in-

versely with demagnetising field Hd, such that it is represents the reciprocal slope

of Hd. As it can be seen in Fig. 2.8, in two dimensional thin-film structures, the

axis perpendicular to the thin-film gives a high demagnetisation factor, N⊥ ≈ 1, in

comparison to the in-plane axis with N‖ ≈ 0. The lower demagnetisation field for

in-plane magnetisation has a lower magnetostatic energy and is therefore usually

the ground state configuration.

FIGURE 2.8: Schematic illustration of demagnetisation field shows a material magneti-
sation in thin-film along the X, Y and Z direction, where the shape governs the magnetic

alignment.

Eq. 2.13 can be written as the difference between the demagnetizing coefficient

for any giving axis ∆N :

Ems =
1

2
∆NM2 (2.14)

Experimentally ∆N correlates the ratio of the ⊥ and the ‖ axes; for example c/a for

Co. Eq. 2.14 is the same as the magnetocrystalline anisotropy and also has angular

dependence thus Eq. 2.11 can be same as below but with only K1

Ems = Ks sin2 θ (2.15)

Where Ks is the shape anisotropy constant. N ‖ to the long axis remains very



26 Chapter 2. The Physical Basis of Magnetic Properties in Thin-Films

small whilst for both of the orthogonal axes N⊥ can be changed. Using the shape

anisotropy effect with thin-film and nanowires gives control over the preferential

alignment of the magnetisation. Using the shape to control magnetisation, and

switching is developed in Chapt. 8.

2.9 Magnetisation Precession and Magnetic Damping

Damping is the mechanism which is used to define the magnetisation energy loss

in ferromagnetic materials by transfer of precessional energy to microscopic thermal

motion of the lattice [13, 39, 40].

The total energy in any given FM system is the summation of external field en-

ergy (Eex), demagnetisation energy (Ed), exchange energy (Eex) and anisotropy en-

ergy (Emc) [39, 41–46]. The changing of the magnetic field magnitude or direction,

leads to the dissipation of the energy through the system dissipation channels that

represent damping [13].

The dissipation of energy is always related to the quantized spin waves; magnons

and their interaction. These magnons may have the same or different wave number

k, which transfer the energy from one state to another. In terms of magnons k here

describes the precessional mode for the magnons in which k=0 when all moments

(m) precess with the same frequency in the same phase [12, 13, 40, 47, 48]. This is

also known as the ”uniform relaxation mode”.

The annihilation of such magnons to create another with k 6= 0 will violate the

momentum conservation, thus this ”non-uniform relaxation mode” can take place

when the system perfection and ordering is broken by mechanical effects of foreign

atoms [13, 47]. Different magnons dissipate the magnetic energy, all of them are

based on the annihilation of the uniform mode magnon and creation of other non-

uniform modes also known as ”two-magnon scattering”. In this frame work there

are other possibilities for the magnons created to have the same wave number, k, and

opposite wave vector, or they will have different k such as thermal [13, 47]. Fig. 2.9

shows different modes of energy dissipation with the final energy lost to the lattice.
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FIGURE 2.9: Shows a different types of precession modes with the final decay into lattice
vibration and the transformation of the energy between modes.

The next relaxation processes to consider is one where energy can dissipate through

magnon-phonon scattering. In ferromagnets, phonons and magnons can have the

same energy and wave vector. Thus magnon-phonon scattering, which has several

scattering probabilities, will lead to energy loss through the lattice vibration such as

one-magnon one-phonon scattering and others.

2.10 Polarised Light Interaction with Ferromagnetic Materi-

als

The interaction of light with a FM material either from surface reflection or by trans-

mission, is an important phenomenon for magnetic research. This phenomenon

gives an investigative tool to probe FM systems. The interaction of linearly polarised

light, will change the transmitted/reflected properties of the light polarisation or in-

tensity. The magneto-optical Kerr effect (MOKE) is based on the changing of polari-

sation state of reflected light from a FM. It is based on group of phenomena related

to the optical magnetisation anisotropy at the surface of FM materials [49]. MOKE
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is a well-known phenomenon and provides the capability to determine the mag-

netisation in a quantitative way [50]. The effect of magnatisation on light was first

discovered by Michael Faraday (1854), as a rotation in the polarisation axis of light

when it pass through a piece of glass which was placed in a magnetic field. A similar

effect was observed in 1877 by John Kerr [51] on reflection of the light from a pol-

ished metallic pole of an electromagnet. It has been found that the angle of rotation

is a function of the magnetic field strength and thickness of the sample.

The underlying mechanisms of this effect is the interaction of electric field of light

with Lorentz force inside the FM material as results to the effect of the magnetic in-

duction. The incident light is interacting with a ferromagnet or a ferrimagnet, a large

change in the light polarisation will be indicated [52], this is because such material

are, even without applied external field, magnetically ordered. For other cases, such

as when an external field is applied on the medium the same effect will take place.

In general for both cases the magnetic effect will appear as changing in the optical

anisotropy. The role of the applied magnetic field is to split the energy levels of the

material which is know as the Zeeman effect [49]. There are three main geometries

for magneto-optical Kerr effect: Polar, longitudinal and transverse. The difference

between these geometries are related to the sample, the applied field and light prop-

agation direction. Each geometry has a different effect on the reflective light polari-

sation status, however, all of them are related with the Faraday and Cotton-Mouton

or Voigt effect [50, 51]. More details regarding the Kerr effect geometries used here

are explained in depth in Chapt. 3

The effects and phenomena, which have been explained in this chapter, give in-

sight regarding the physical basics in FM thin-film systems. In the follow chapters

these phenomena aid the measurements and explanations as a discussion tool for

the magnetic behaviour in the samples investigated.
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Chapter 3

Methods of Investigation: Physical

Basis and Practical

Implementation

3.1 Introduction: Structural Analysis and Functional Mag-

netic Measurements

In this chapter, all the used experimental techniques in this study are explained in

detail, where they cover the structural investigation and the functional magnetic

measurements. The structural analysis is represented in this chapter by x-ray scat-

tering, which offers two main methods that give insight regarding the sample thick-

nesses, interface width and the crystal structure. The functional magnetic measure-

ments are represented by both quasi-static measurements and dynamic measure-

ments. The first type of measurement is more related with the magnetisation state

of the samples investigated and the dynamic measurements are related with the

rapid changes of the magnetisation in time domain. Magneto-optical Kerr effect

(MOKE) magnetometry and superconducting quantum interface device (SQUID)

measurements represent the first type, while, time-resolved magneto-optical effect

(TR-MOKE) magnetometry and ferromagnetic resonance (FMR) spectroscopy rep-

resent the second type. For each of theses techniques a background regarding the

basic principles is first presented, followed by the experimental system setup and
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finally the data representation. This provides the fundamental physics that aids un-

derstanding of the results of the samples investigated in Chapt. 6, 7, 8 and 9.

3.2 X-Ray Scattering

Earlier, in Sec. 2.10, the interaction of coherent light waves with the magnetisation

excitation was discussed in the scope of the material’s magnetic properties inves-

tigation. The interaction of x-ray photons with a material can provide other infor-

mation beyond the magnetic properties such as; the crystallography of the system

investigated [53]. It is important to investigate the material structural and the crys-

talline characteristics, which give an understanding to the atomic arrangement and

the inter-atomic spacing. Knowing these factors can aid the explanation of different

magnetic behaviour. X-rays are extensively used in this work for their capability of

determining material crystallography and thickness.

X-rays are electromagnetic waves and obey the scattering phenomena, by which

the electron cloud of an atom will cause scattering of the x-ray waves as they ex-

cite the electrons to oscillate when they absorb the incident photons. The oscillation

of the excited electrons then acts as a re-radiating source of photons with the same

frequency as the incident x-ray waves. This energetic transition process is the elas-

tic scattering process; non-resonant scattering. This is the classical description of

scattering, which is the main process in x-ray reflectivity and x-ray diffraction. This

simplifies the relation between the incident and the reflected x-ray beams as:

Q = k − k′ (3.1)

From Eq. 3.1, it can be seen that the difference between the initial and the final mo-

menta is related to the difference of the wavevectors k and k′ with the scattering

vector, Q [53].

Elastic scattering, or Thomson scattering as it is known occur when the energy

of the scattered beams are equal to the incident beam energy. In the case of match-

ing between the incident photon energy and an atomic energy level transition, a
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resonant enhancement of the scattering occurs, due to excitation and spontaneous

emission [54]. Thomson scattering assumes that the atoms are perfectly aligned in

the system and the angle of the re-radiated photons are all in the same angle. It also

neglects the re-scattered beams that occur along the beam travel which means that

while the photons are travelling in the medium they may have interacted with dif-

ferent atom locations that will change the direction and the energy of the re-scattered

photons. In situations with more complicated geometry and non-elastic scattering a

dynamic theory is need in order to get a better approximation to the system charac-

teristics. The main phenomena that are the focus of this study are the reflection and

diffraction of x-rays to investigate the thin-film structural properties.

3.2.1 X-Ray Reflectivity: Refraction and Reflection

For a medium containing many atoms, many x-ray scattering and absorption events

will take place. As waves, the incident x-ray photons will refract and reflect as they

travel through media with different electron densities. In the case of refraction in

thin-films, this can be due to different materials and when the x-rays propagate

through the surface from the surrounding air. The incident x-rays will interact with

the atoms of each layer. The atoms radiate spherical wavefronts that propagate out

in all directions. This is the best explanation which can describe the atoms as a

source of these waves. When the waves frequency, ω, of the incident x-ray photons

corresponds with the electronic transitions resonance will occur. By this process the

refractive index, n, increases with ω, so the excitation and the spontaneous emission

will repeat rapidly. Above the resonance frequency n decreases a fewer electronic

transitions take place. For x-rays the frequencies are very high and this will result in

small n for x-rays propagating into a material with speed v and wavevector k. Thus,

the refractive index of the material will be

n =
c

v
(3.2)

The refractive index is related to the scattering property, the dispersion coeffi-

cient, δ, which relates to the wavevector of the incident beam k and the electron
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density of the material, ρ. A second factor is the absorption coefficient, β, that is

responsible for the attenuation of the propagating photon beam. When the beam

travels through the material it will suffer from attenuation in its intensity and am-

plitude. The refractive index equation can be written as:

n = 1− δ + iβ (3.3)

It is known that the value of δ and β are very small, which are in the order 10−6 and

10−8 respectively. Thus the value of n will be in the order of 10−5. Fig. 3.1 shows the

specular x-ray scattering geometry for a layer with refractive index as described. The

combination of Eq. 3.3 and 3.2 implies that n is very small and thus v in the material

is bigger than the speed of light, c, which cannot be true unless v is representing the

phase velocity not the group velocity [53].

The total incident beam amplitude equals the sum of the refracted and the re-

flected amplitudes. The critical angle determines the occurrence of reflection and

FIGURE 3.1: Schematic illustration of the x-ray scattering from medium, showing re-
fraction and reflection with respect to the refractive index.

refraction. Snell’s law can be used to find this critical angle, at which total external

reflection occurs. This law relates the incidence and the refraction angles via the

refractive indexes by:

n0 cos θi = n1 cos θt (3.4)
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The condition that allows the total external reflection to take place is θt = 0 and θi is

very small, thus Eq. 3.4 can be written as:

θi = θc =
√

2(1− n1) =
√

2δ (3.5)

The critical angle θc for the total reflection is very small, of the order of 10−2 radian,

10−1 degree or 10−2 Å−1 for the scattering vector. The refraction and the reflection

are the main processes that occur when the x-ray beam propagates into a medium

[53]. Complications can be added to the equation by increasing the number of mate-

rial layers in the medium. The interfaces add another part that can impact the final

result, as a lot of events can take place, such as multiple reflections from the upper

and the lower interfaces within the medium. Changing the material will change

the refractive index, also adding new material to the existing material will change

the material electron density thus, its atomic arrangements. This can be done by

intermixing of layers or co-sputtering of materials, as it is discussed in the follow-

ing chapters, where the doping of a material will change the electron density. This

change will affect the reflectivity profile that describes the structural properties.

3.2.2 Reflection from a Thin-Film

So far the simplest scenario of an x-ray propagating into a medium is explained by

single refraction and reflection events. In the case of thin-films these processes can

be repeated in each layer, where each layer has its own refractive index, n. The

refractive index for the vacuum surrounding the thin-film is n0 followed by the first

layer of the thin-film with refractive index n1 and the substrate with ns, for one layer

thin-film. Beyond the substrate layer there is no contribution to the sum intensity of

the reflecting beams.

When the x-rays enter a thin-film at a finite incidence angle a series of reflections

occur from both the top and bottom of each layer at the interfaces within the thin-

film. Fig. 3.2 shows reflectivity from simple thin-film and the final resultant beam,

which combines the reflected and transmitted beams. From the schematic figure, the

total reflected x-ray intensity (rtot) can be calculated, starting from the incident x-ray
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beam to the final reflected, r, and transmitted, t, beams:

rtot = r10 + t01t10r12p
2
∞∑
m=0

(r10r12p
2)m (3.6)

In this equation the film-layer density is considered homogeneous as this makes the

calculation much simpler. Moreover, the reflectivity is related to the phase factor,

p, and where there is a phase difference it can be determined by p2 = exp(idq). The

thickness of the layer d and the wave number, q, are related to the wavevector, k1, of

the incident beam by the equation

q = 2k1 sin θi (3.7)

The calculation of the total reflectivity of the x-ray from thin-film can be done

by using Snell’s law. The latter is used to calculate the amplitude of both reflectivity

and transmittivity. This equation leads to a relation between the reflected amplitude,

αR, the transmitted amplitude, αT , and the incident amplitude, αI

αT = αI + αR (3.8)

From this equation, with small incidence and transmission angles θi and θt, r and t

found as follow:

r ≡ αR
αI

=
θi − θt

θi + θt
, and t ≡ αT

αI
=

2θi

θi + θt
(3.9)

Using Fresnel’s equations, the total reflectivity can be summed and then simplified,

with the same assumptions of layer homogeneity and the phase difference between

the reflections and the transmitted x-ray beams in each layer of a thin-film. Thus the

total reflectivity amplitude rtot can be written as below:

rtot =
r01 + r12p

2

1 + r01r2
12p

2
(3.10)
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FIGURE 3.2: Schematic illustration of the x-ray scattering from simple thin-film with
single layer over substrate with the calculation of the total reflection from incident x-
ray beam. This beam will be divided into reflected, rnm, and transmitted, tnm, beams
from the top or the bottom interface of the first layer. If the reflection or the transmis-
sion direction is toward thin-film surface then n > m, while if the direction toward the

substrates then n < m, where n and m = 0,1 or 2 only.

Effect of Thin-Film Thickness

The intensity of x-rays reflected from a thin-film is due to many factors such as;

numbers of layers, thickness and interfaces between layers. When the thin-film has

more than one layer Eq. 3.10 will describe only the reflection intensity from the layer

adjacent to the substrate. Considering N layers will add more to the equation as

rN−1,N =
rN−1,N + rN,∞p

2
N

1 + rN−1,NrN,∞p2
N

(3.11)

Parratt’s recursion equation 3.11 [55] can be used to find the total reflected intensity

of the x-ray waves from a thin-film system. As mentioned earlier, when the x-ray

travels through a thin-film the x-ray intensity will be attenuated in relation to the

thin-film thickness d. This attenuation of the intensity is by the factor of e−µd, while

the amplitude attenuation will be by the factor e−µd/2. Increasing the incident angle

beyond the critical angle will increase the distance travelled through the thin-film,

thus, x-ray intensity will decrease rapidly in relation to the incident angle [53].

Beyond that, it has been found that the intensity also changes as a function of

the phase factor between the reflected beams from the top and bottom interfaces.
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This effect will leads to interference creating intensity oscillations known as Kies-

sig fringes. These fringes were found by Kiessig as experimental observations for

the x-ray intensity due to reflection from thin-films. The fringes have a maximum

and a minimum, the maximum or the peak of these fringes is a result of in-phase

interference of the reflected x-ray waves from the top and the bottom of the layer in-

terfaces. The dips or the minimum are due to out-of-phase interference [56]. In more

detail, the peak should take place when the phase p2 = exp(idq) and q = 2k1 sin(θ).

This gives the condition at which high intensity specular reflection with respect to

thin-film thickness d as follow:

d sin(θ) = mλ (3.12)

Where m is an integer that refers to the fringe number of the peak. This equation

can be used to find the relation between successive fringes and the thickness of the

thin-film:

qm+1 − qm =
2

d
(3.13)

This can be seen in Fig. 3.3, which show XRR for two thin-films with different thick-

nesses, superimposed with the general trend decay regarding the thin-film thick-

ness. The intensity of the reflected x-ray is plotted as a function of the scattering

wavevector, qz , as this is more useful than the angular variables θ.

Effect of Thin-Film Interfaces

The estimation of thickness explained earlier is done by calculating the summation

of the reflectivity using Parratt’s recursion method. The assumption of this method

considers the interface between each layer in the thin-film as perfectly flat or smooth

and that there is no intermixing at the interface. In this ideal case, the interface looks

like a sharp line between adjacent layers. This not typically the real case for thin-

films, at which the interface will have a certain amount of roughness. The interface

width can be seen as topological roughness and/or chemical graded intermixing.

The specular reflectivity is affected by the structure of the interface. Fig. 3.4 shows
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FIGURE 3.3: Specular reflectivity for 7 nm and 20 nm Ni81Fe19 thin-films on an infinite
SiO2 substrate as function of the wavevector qz. The blue line shows the general decay

of the intensity where the critical wavevector of the order 10−2

x-ray reflectivity (XRR) for the same thin-film with changing the capping layer thick-

ness within Å order, which modifies the surface roughness.

The depth of Kiessig fringe minimum are gradually reduced with the increasing

of the capping of the thin-films. It can be seen in Fig. 3.5 two schematic images

of thin-films where (a) represents the topological roughness and (b) the intermixing.

The equation used for the ideal reflectivity of the flat interface (rsmooth) multiplied by

the integral of the interface width (σ2), regarding the changes of the electron density

with the changes of the material distribution through the interface [53], which gives

an equation after simplification as:

rtrue = rsmoothexp(−q2σ2) (3.14)

where (rtrue) is the true calculated specular intensity including the interface rough-

ness effect. This equation gives the interface width, which is composed of both topo-

logical roughness, σr, and intermixing, σi, contributions, which can be calculated [57]
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FIGURE 3.4: Shows the effect of the interface width on the intensity reflectivity and the
dips of Kiessig fringes, where three thin-films used with 4 nm of Ni81Fe19 and capped
with Pt from 0.2-1 nm. The roughness show a larger amplitude of Kiessig fringes when

the Pt capping layer is less thickness regarding the non-continues capping layer.

as

σtot =
√
σ2

r + σ2
i (3.15)

It is hard to calculate any of σr and σi effects separately along the z axis. But, using

non-specular x-ray reflectivity the diffuse scattered x-rays in the in-plane can give

more insight regarding the interface structure. This is shown in the Fig. 3.5, where

the change of both types of interface as a function of (c) width Z and (d) diffuse

angle (θ).

Yoneda Wings and Determining Interface Nature

Diffuse scattered x-rays have a vital role in detecting the in-plane component of the

scattering vector. This gives the capability of non-specular x-rays to detect structural

variations. If there is an intermixed interface the reduction in the specular reflectivity

is due to the changing electron density over its constituent layer. This is regarding

the out-of-phase destructive scattering of each x-ray reflected beam from different

levels through the interface. Electron density variations cannot be detected in-plane



3.2. X-Ray Scattering 39

FIGURE 3.5: Schematic figures showing (a) Topological roughness, (b) Chemical grad-
ing or intermixing. Also showing Graphical representation of total interface width σtot,
the contribution of the topological σr and the intermixing σi with the changing of the
electron density as a function of (c) interface width Z and (d) the diffuse scattering angle

θ.

because, the x-ray scattering beam will averaged over the density along the total

incident area.

Fig. 3.5 show two types of interface width (a) and (b) and the changing of the

electron density as function of the (c) interface width and (d) detector angle. For

topologically rough interfaces, the electron density variation in-plane can be found.

This can be done by small angle scans of the diffuse scatter, with a central specular

angle at the first dip of Kiessig fringes. This range will extend from the critical an-

gle to the central angle, where the specular condition is met, while the detector of

the x-ray reflected beams is set at the specular reflection angle 2θ. By the resultant

shape the effect of the in-plane topological roughness variation can be indicated due

to the reduction of the intensity. A sample with an ideal sharp interface would be

expected to give the highest intensity at the angle of specular reflection, with a dra-

matic reduction away from θ = 2θ/2 . The difference from this ideal situation in a

real sample is shown in Fig. 3.6. The two cases have a sharp reflection at the spec-

ular condition, superimposed on a broad diffuse scattered background. The diffuse

scatter in the real case also shows features called Yoneda wings where diffuse scatter
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FIGURE 3.6: Schematic figures showing (a) ideal perfect sharp interface , (b) rough inter-
face with topological roughness and the diffuse non-specular x-ray with Yoneda wings
of rough interface, where the incident angle θ changing to the critical angle θc while the

reflection angle is fixed at 2θ.

is enhanced at the critical incidence and exit angles due to electric field at the surface

[58].

It can be seen that even though the roughness and intermixing affect the spec-

ular reflectivity in the same way, the diffuse scatter is sensitive to the nature of the

interface structure. Identifying the interface structure is possible by combining the

specular and the non-specular models, however the analysis will need an intensive

calculation which can be only executed by super computers. Finally there are an-

other way, based on the correlation between the diffuse, Id, and specular, Is, x-ray

intensity. The relation is that the scattered intensities are related to a first approxi-

mation by the equation [57]:

Id

Is
= exp(q2

zσ
2
t )− 1 (3.16)

The equation links exponential of the topological roughness, σt, with the relative

diffuse and the specular intensities. The wavevector qz is assumed to be large in
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order to measure all of the diffuse scatter and is related to the wavelength, λ, and the

reflection angle, 2θ, as defined by Eq. 3.7. Finding qz and calculating the transverse

diffuse curve and the specular reflected component make it easer then to find the

topological roughness. Eq 3.15 can then be used to calculate the chemical grading or

the intermixing of the interface.

3.2.3 X-Ray Diffraction

For information regarding the material crystal structure, x-ray diffraction is an im-

portant method. X-ray diffraction produces high intensity x-ray peak when inter-

ference of scattered x-rays take place coherently from the electrons of periodically

arranged groups of atoms. As mentioned earlier an incident wave interacting with

an atom in a crystal lattice will act as an x-ray spherical wave source, when the x-

ray wavelength corresponds to the electron transition wavelength. This has been

described mathematically by Bragg [59]. It is explained in Chapt. 2 that each mate-

rial has a certain crystal arrangement, where the crystal arrangement repeats paral-

lel planes of ions separated by the inter-planar distance, d. Fig. 3.7 shows the Bragg

condition for the constructive interference of x-ray beams scattering from atoms sep-

arated by d with the relation between the incident and reflection angles and the path

difference [60].

FIGURE 3.7: Schematic figure showing Bragg’s law of diffraction, the condition of the
constructive interface between the incident and the reflective x-ray beams.
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When the x-rays diffract from different planes in the lattice, constructive inter-

ference occurs for a path difference

nλ = 2dhkl sin θ (3.17)

where λ is the wavelength of the incident x-ray, n is a positive integer, dhkl is the

inter-planar spacing and θ is the angle between the incident x-ray and the relevant

lattice planes. hkl are the Miller indices, which are related to the reciprocal lattice

parameters [53]. In cubic materials they are related with the inter-planar spacing

giving by

dhkl =
a0√

h2 + k2 + l2
(3.18)

In order to satisfy Bragg’s law, where the scattered x-rays interfere constructively,

the difference between the path lengths of the two waves should be equal to nλ. The

diffraction pattern refers to peaks which can be obtained by measuring the intensity

of scattered x-rays as a function of the incident and the detector angle. Thus each

peak is related to certain planes where the atoms are arranged.

3.2.4 X-Ray Reflectivity and Diffraction; System Setup and Data Collec-

tion.

The XRR and XRD techniques used for the measurements of all the thin-films through

out this work were done by using a Bede D1 x-ray reflectometer. The x-ray system

generates Cu-Kα and Cu-Kβ x-rays with a 40 kV voltage to accelerate electrons from

a filament a Cu target. Through this process the electrons will lose some of their

kinetic energy, thus they will radiate two distinctive photons, with the characteristic

of Cu-Kα and Cu-Kβ , as emissions, along with Bremsstrahlung background to con-

serve the energy law. This process will generate heat so the Cu target is cooled by

water. By passing the x-ray beam through a primary source slits it will contain the

only two distinctive emissions from the Cu k shell α and β.

In order to produce high quality monochromated x-ray beam, a channel cut

Si crystal was used. By the application of Bragg’s law only the reflection of the
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diffracted x-ray beams from the (111) plane in the Si crystal will be selected. Beyond

the monochromator a fine filtered beam will be produced, but with broadening, by

passing through the second slit the width of the beam will adjusted according to the

slit aperture in use. The final x-ray beam is directed to the sample mounted on a

stage, which has three angular and three cartesian coordinate degrees of freedom.

The cartesian coordinates X, Y, and Z can be changed to make sure that the sam-

ple is in the right place for the incidence x-rays. The angle θ is used in the relation

qz = (4π/λ) sin θ, where varying the incidence angle θ will change the specular re-

flected angle 2θ. The two other angles φ and χ are related with diffraction, where

changing these angles will change the XRD intensity by changing the orientation of

the sample thus the incident lattice planes [57].

As explained before, regarding the interface structure and the inhomogeneities

of a given material, the reflected x-ray beam will have some diffuse scatter. A detec-

tor slit is aligned to the reflection angle 2θ to reduces the width of the detected x-ray

beam and allows only the specular beam. Measuring XRR, the incidence angle, θ,

and the reflected angle, 2θ, are changed over a small grazing range of angle. The

intensity variation of the specular reflection as a function the angle range changing

will give the final XRR. However, there is some non-specular diffuse background.

This can be eliminated by executing another scan; an off-specular scan that is sub-

tracted from the raw specular XRR to obtain the true-specular reflectivity. The final

shape is a general decay superimposed with Kiessig fringes with a range of com-

plexity regarding structural properties, number of layers, interface nature and the

thickness of the film. Using suitable codes best fitting simulation can be calculated

to interpret the structure of thin-films and multilayers [61].

X-Ray Simulations and Fitting of Experimental Data

From simulating the x-ray reflectivity shape information regarding any sample struc-

ture, thickness and the nature of the layering interface can be obtained. GenX,

a freely available [61] simulation code, was used for the modelling of reflectivity

curves. This software uses Parratt’s recursion formalism [55] in order to find the
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best fit to the specular and non-specular x-ray reflectivity. There is a wide range

of data that can be simulated using a set of parameters including each layer thick-

nesses, densities and each interface width. All the samples investigated are stacks

with a wide range of thickness of ferromagnets including; Co and Ni81Fe19, capped

with a wide range of nonmagnets; Pt, Au, Cr, Ag and Cu with different thicknesses.

All of these stacks are deposited on Si/SiO2 substrate. The density of each used ele-

ment in formula units per Å3 should be input in the simulation model. This unit can

be transformed from kg/m3 unit,

ρ[u/Å3] =
ρ[kg/m3]

1.66054× 103
(3.19)

By estimating the initial thickness(es) for the layer(s) in the thin-film the simula-

tion can be started by inserting these parameters into the model. The roughness of

some known material, such as Si/SiO2 which is about 3-6 Å from the literature [62],

can be inserted to the model also as a primary figure. The simulation can reach to ac-

curate results with an error of 10−2 order or even better. As mentioned in Sec. 3.2.1,

the electron density of a given material is the key to its refractive index. Thus it is

most useful to distinguish between layers in a thin-film by their densities. The den-

sity of the alloyed materials, which contained different concentration of more than

one pure element, can also be obtained with the same equation when the ratio of

the compositions are considered. This can be seen in Table 3.1 where it shows some

examples for calculated densities for pure and alloyed materials used in spintronic

thin-films. The resultant specular reflectivity is put into the GenX modelling code

TABLE 3.1: Density ρ of different pure and alloyed material in kg/m3 and u/Å3

Material Density ρ in kg/m3 Density ρ in u/Å3

Co 8.9 0.090
Ni 6.7 0.068
Fe 7.874 0.084

Ni81Fe19 8.711 0.045
Pt 21.09 0.065
Au 19.3 0.059
Si 2.33 0.049

SiO2 2.533 0.025



3.3. Quasi-Static Magnetisation Measurements 45

with the initial figures regarding each layer. The initial values need to be sufficiently

close to the best fit values to allow the model to get the best fit from the input shape.

the next step is to execute the code computationally with the suitable logical adjust-

ments in order to get the best fit. Only the parameters such as the layer thickness

and interfacial roughness are allowed to vary. The best fit can more accurately rep-

resent the experimental data by adding more parameters and such as more layers.

Although this can be done it is time consuming and computationally extensive and

adds complexity to the interpretation.

3.3 Quasi-Static Magnetisation Measurements

In this section measurement regarding the static magnetisation of the investigated

samples is described. In these types of measurement there is no investigation to the

magnetic behaviour changing as a function of time, where the final magnetic status

is the final result. In this type of measurements magnetic behaviour can change suf-

ficiently slowly with time, where the system can be taken to be in equilibrium at all

times. Such measurements are Magneto-optical Kerr effect (MOKE) and Supercon-

ducting quantum interference device (SQUID) magnetometers.

3.3.1 Magneto-Optical Kerr Effect Geometries

There are three geometries which can be used to detect magneto-optical Kerr effect,

longitudinal, polar and transverse. The difference in Kerr effect, regarding these ge-

ometries, is due to the orientation of magnetisation vector with respect to the sample

surface and direction of the interacting light; plane of incidence of light [63]. The lon-

gitudinal geometry is that the vector of M is parallel to both the sample surface and

the plane of incidence, as shown in Fig. 3.8.

In the polar geometry the vector of magnetisation, M , of the applied field is per-

pendicular to the sample surface and parallel to the plane of incidence as it shows

in Fig. 3.9 (a). Similar effect with the longitudinal geometry, can be seen in the polar

geometry with one difference that the maximum effect can be indicated when the in-

cidence is normal to the sample surface. The transverse MOKE geometry is whenM
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FIGURE 3.8: MOKE geometry with different light incident where it shows (a) and (b)
longitudinal setting with S- and P-polarized incident light respectively, where it shows

Kerr rotation.

vector is in the plane of the sample, but perpendicular to the plane of the incidence

of light as it is shown in Fig. 3.9 (b). The only allowed light beam polarization, in

order to detect this effect is P-polarization. This is due to the cross product, which is

either zero or point along the vector propagation direction. Thus the reflected beam

remains linearly polarized and the magnetisation changes sign from +M to -M.

FIGURE 3.9: MOKE geometry with different light incident where it shows (a) and (b)
Polar with Kerr rotation and transverse setting with Kerr amplitude respectively, where

the incident light is P-polarized.
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3.3.2 Longitudinal Magneto-Optical Kerr Effect

Here we discuss in more depth the polarisation change specific to longitudinal MOKE.

This effect is related to the interaction of the incident light with the orbital motion of

the electrons in the material and the Zeeman splitting effect. The equation which de-

scribes the magneto-optic interaction of the material with the incident light relates

the polarization P with the dielectric displacement (D), through the electric field

[64], by:

P = χE, and D = εE (3.20)

Using the Fresnel reflection matrix R will leads to the longitudinal complex Kerr

angle for the S-polarized light by:

Θs
K,long =

(
rps

rss

)
long

=
cos θ0

cos(θ1 − θ2)
.
sin2 θ1

sin θ2
.Γ (3.21)

and and P-polarized light by:

Θp
K,long =

(
rsp

rpp

)
long

=
cos θ0

cos(θ1 + θ2)
.
sin2 θ1

sin θ2
.Γ (3.22)

Where θ0, θ1 and θ2 are the incident angle of the beam from the air to medium, the

refracted angle of the beam in side the medium and the refracted angle of the beam

when it transmits to the air again respectively. Θs,p
K,long are the Kerr rotation angle for

s- and p-polarized light in the longitudinal geometry. Γ is a factor that depends on

the medium thickness d [65], where:

Γ =
4πn0n

2
1Qd

λ(n2
2 − n2

0)
(3.23)

The quantum mechanical explanation of this effect is due to the optical transition

of electrons from the initial state to the final state which should be in the FM materi-

als in the same range of the incident beam wavevector [66]. This allows the transition

between the states where the difference in the absorption will give rise to the Kerr

effect. The focus of this work is on the longitudinal MOKE geometry, with in-plane
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magnetisation. The measurements shows changes in the magnetisation behaviour

regarding the type NM material added as an adjacent layer, doping, interface and

synthetic mono-layers, and domain wall switching in nanowires of these materials.

Longitudinal MOKE Experimental Setup

Longitudinal MOKE is the technique that is used to investigates all the samples in

this work. Co and Ni81Fe19 based thin-films with range of NM material type (Pt, Au,

Cr, Ag, Cu) as capping and synthetic dopant show different magnetic behaviour. In

the longitudinal MOKE geometry a diode laser is used as source of light where the

wavelength is 658 nm. The laser beam passes through a beam expander. The light

polarization was set using a Glan-Taylor polarising prism (with an extinction ratio

< 10−5) before focusing it to a typical spot size of 5 µm with focusing lens on the

sample. Fig 3.10 present a schematic illustration of the MOKE magnetometer system

geometry.

FIGURE 3.10: Schematic of the longitudinal magneto-optical Kerr effect magnetometry
system with all the principle components showing the light path through the optical

enhancement and focusing.
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The sample is mounted on a motorized stage for X,Y and θ movement, so the

magnetic measurement can be repeated at different positions on the sample and at

different angles. Magnetic fields were typically swept at 23 Hz with an adjustable

amplitude up to 400 Oe. The magnetic fields were generated in-plane of the sample

by a small electromagnet powered by Kepco BOP 20-5M dipolar amplifier, driven

by a function generator. The figure shows the optical path with the optical compo-

nents plus the necessary components. An attenuator is placed between the expander

and the polarizing prism to reduce the laser intensity, when focusing the laser spot,

and locating the laser spot on the sample using the camera. The final polarized fo-

cused laser is projected onto the sample as an ellipse spot. The relative positions

and direction of the incident plane, the sample and applied magnetic field give the

longitudinal Kerr geometry.

The position of the objective lens was adjusted until the focused spot had a suffi-

ciently high central intensity without significant higher order modes being present.

Incident laser was linearly polarised and by the reflection from a magnetic sample

it emerged elliptically polarised. A mirror is placed to direct the reflected beam to-

ward the detector. The beam passes through a quarter-wave retardation plate, in

order to restore polarisation linearity of the reflected beam, and the final step before

detection is a Glan-Taylor polarizing analyser where it can be optimized to achieve

the best extinction of the laser signal.

Extinction is achieved by rotating both the quarter-wave plate and analyser rela-

tively. Then for measurements, the analyser is rotated by an appropriate angle away

from extinction. This allows detection of the polarisation changes with positive and

negative variations of magnetisation. A silicon photo-diode is used to detect light

intensity. A CCD camera is used with an in/out mirror with a source of white light,

to reflect the beam toward the camera and monitor the laser spot focusing and loca-

tion on the sample surface. The longitudinal Kerr rotation leads to change of light

intensity detected at the diode. The field and diode measurements use a digital os-

cilloscope, which is controlled and automated by computer in order to synchronized

the full process. The data is saved as text file with information showing the changing

of the Kerr voltage as a function of magnetic field.
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3.3.3 Superconducting Quantum Interference Device (SQUID)

Some of magnetic measurements have been explained in this chapter where these

measurement techniques can give some information about the FM measured materi-

als. The information can show the magnetisation but, either relative to the saturation

magnetisation such as MOKE or the magnetisation is calculated in an indirect way

like FMR or TR-MOKE. The saturation magnetisation measurement is an important

factor, where it can be implemented in the fitting of the measurements mentioned

above, regarding the accuracy of the results. SQUID (Superconducting quantum

interference device) magnetometer measurements were carried out using the Quan-

tum Design Magnetic property Measurement System (MPMS) XL-7. The high sensi-

tivity is the factor which made SQUID measurement technique ideal for monitoring

very small changes in magnetic flux in a thin-films. The magnetometer is capable of

measuring magnetic properties of samples as a function of temperature (1.9 K-400 K)

and magnetic field up to (7× 104 Oe) however, all SQUID measurements in this the-

sis were made at room temperature. The SQUID technique is an application of the

Josephson junction [67–69]. The final magnetic flux will be converted to an electrical

voltage, by coupling the superconducting ring to external circuits which can convert

the changing in the current to measured voltage. Thus, an indication of the longi-

tudinal magnetic moment will lead to extracting the saturation magnetisation [67,

70].

Experimental Condition and Setup

The experimental equipment for the magnetic measurements consists of a load-lock

chamber and a main chamber, both of which can be evacuated. The magnetic sam-

ple is mounted on a sample holder with a long rod, the sample size is about 5×5

mm. To maintain the stability of the sample, two short pieces of drinking straws are

used to get the sample to stick in the right position when the sample holder moves.

The load-lock chamber is pumped-out before moving the sample into main cham-

ber, because the device is working in vacuum in order to control the temperature.

After reaching the required pressure, the sample travels to the main chamber, which
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contain the two superconducting detection coils. The magnetic flux of the sample in-

duces an electric current and this current interacts with the detection coils. The latter

current will be converted into a voltage, and this voltage varies in relation with the

changing position of the magnetic sample with respect to the detection coils. The

final result is a measurement of the magnetic moment as a function of the external

applied field [71]. Fig 3.11 shows the main movement of the sample through the

FIGURE 3.11: A schematic figure for the SQUID , showing the sample position and the
main detecting coils with the voltage changing with the sample movement through the

device.

coils with four turns shown in the detection coil. Two of them are in the centre of

the system and counter-wound ones at the top and the bottom. The top and bottom

turns a second-derivative flux gradiometer used to cancel any noise due to fluctua-

tions in the magnet. Such noise can be due to the sample holder which is usually the

largest source of background signal, the plastic straw is weakly diamagnetic. Using

the software with the SQUID system gives the central point for the sample starting

position. The full measurement can then be automatically programmed to execute

high resolution magnetisation measurement with applied magnetic field.
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SQUID Results and Interpretation

Magnetic hysteresis loops are the typical data extracted from the SQUID magnetom-

etry in this work, where the maximum applied field was ± 1 × 104 Oe. Fig. 3.12

(a) shows an example of the raw acquired data for a Co film sample, The satura-

tion magnetisation is easily saturated below ± 4 × 103 Oe magnetic field, the raw

data have a diamagnetic contribution which may come from the silicon substrate, as

shown in the figure (a). This diamagnetic effect can be eliminated by subtracting the

diamagnetic slope from the general hysteresis trend. This measurement is sample-

volume dependent, which required that the sample area is measurable. Calculation

of the sample volume was done by using the image processing program; imageJ to

calculate the surface area of the sample [72]. The thickness was obtained by the de-

position time and sputtering rate or from XRR measurements. The maximum and

the minimum values of the hysteresis loop, are used to obtained the saturation mag-

netisation. Adding these values and dividing their average on the sample volume

will give the final magnetisation of the magnetic material as it is shown by the same

figure (b).

FIGURE 3.12: Shows (a) typical raw data from SQUID measurements, where the dia-
magnetic effect and (b) the final shape of the hysteresis loop with the analysis of the

saturation magnetisation.
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3.4 Dynamic Magnetisation Measurements

In this section magnetisation dynamics are the main concern, where two techniques

were used for studying magnetisation dynamics. This type of measurement is more

concerned by indication the spin, magnetisation direction variation as a function of

time evolution, which indicates the precession rate of the magnetisation in the sys-

tem investigated. The first technique is time-resolved magneto-optical Kerr effect,

TR-MOKE, the second methodology is ferromagnetic resonance, FMR.

3.4.1 Time-Resolved Magneto-Optical Kerr Effect (TR-MOKE)

Timed-resolved magneto-optical Kerr effect (TR-MOKE) magnetometry uses a mag-

netic pulsed field to excite the sample and measure the dynamic magnetisation pre-

cessional in the time domain. As any other technique, TR-MOKE has it own down

sides where its signal is exactly proportional to the magnetisation directly. This is

because there three MOKE geometries, thus only longitudinal and polar geometries

contributed and only if the polarization is s-polarized [73]. The spin and the gen-

eral decay, of the the Kerr voltage with the time domain, is linked by the relation of

Eq. 3.24. As spin relaxation time, T , can be determined by fitting the detected polar

Kerr rotation, using the measured time-dependent field,H(t). By using the equation

below, noting that T depends on the field varying as function of time [74]:

M(t) = χ
e−t/T

T

∫ 1

0
H(t′)et

′/Tdt′ (3.24)

In a similar way a single frequency damped oscillatory behavior was obtained from

any measuring samples and the time domain data were fitted with a damped sine

curve as it is shown below:

M(t) = M(0)e−t/T sin(2πft− φ) (3.25)

TR-MOKE and FMR are different methods of measurement regarding the time and

the frequency domain. However, techniques are giving a good agreement in the

damping value for measuring a ‘uniform’ layers of Ni. and the same was for the
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damping of Pt/Co/Pt thin-films as function of Co thickness, measured by TR-MOKE

and x-band cavity FMR [75]. Furthermore, it can be seen in the results presented in

this thesis Chapt. 6 and 9 that FMR and TR-MOKE can give similar results when

the total damping is composed from both mechanisms intrinsic and extrinsic, where

TR-MOKE measurements were made at the S.N. Bose Institute for Basic Sciences,

Kolkata, as two publications have been made using this technique [4, 5].

Experimental Condition and Setup

Optical time-resolved Kerr effect measurement is based on a two-colour collinear

pump–probe technique. This allows measurement of the picosecond magnetisation

precessional dynamics in a ferromagnet. A linearly polarized high intensity pulsed

laser (400 nm, pulse width 100 fs) is used as the excitation for the magnetisation in

the thin-film [76]. This will cause a demagnetisation in the system with ultrafast or-

der. Furthermore, a creation of an internal anisotropy field pulse in the system will

alter the magnetisation toward the orientation of the field. Thus a dynamical pre-

cession will result to return to the equilibrium state. The micromagnetic precession

is detected by using another MOKE laser pulse, weaker that the first one, of 800nm

wavelength and polarized linearly. The key factor in this measurement is the time

delay to the probe with respect to the pumped beam, which allows the magnetisa-

tion dynamics to be detected by the polar magneto-optical Kerr effect.

Fig. 3.13 shows the experimental setup with main parts and equipment regarding

the laser generating, time delay and the final Kerr rotation measurement. It is shown

that the laser beam is first split then modulated using a chopper with 2kHz allowing

a phase-sensitive detection controlled by a lock-in amplifier. At the other end the

probe laser beam is reflected and through time counter to control a delay stage in

ordered to accurately synchronizes the pump and probe beams. The probe beam

is focused through lenses, and passes through a polarizer before both beams are

combined into a microscope objective (MO) and focused to less than 1 µm diameter

spot.

For the reflected journey, the pump and probe beams a 50:50 beam splitter is used
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FIGURE 3.13: Schematic of the longitudinal magneto-optical Kerr effect magnetometry
system with all the principle components showing the light path through the optical

enhancement and focusing producers.

to collect them before they are sent toward the detector. A CCD camera for moni-

toring with a source of white light is supported to illuminate the sample for better

viewing. Because the measurement interests is in the changing of the polarization of

the probe beam, a filter is used to eliminate the pump beam from entering into the

detector. An optical bridge detector (OBD) is used in order to achieve better spatial

resolution and sensitivity [77, 78]. The OBD splits the final beam in two orthogonal

component, each one goes to a separate photodiode. These two photodiodes with

signals each have different proportional relation to the Kerr rotation [63]. The final

result shows as electronic signal at the output of the optical bridge detector. The

OBD is used to measure both Kerr rotation and Kerr ellipticity, where this is very

useful with some of the FM materials where they have a much larger ellipticity than

Kerr rotation. The ellipticity in such cases can be converted into rotation by intro-

ducing a λ/4 plate before the analyser.

TR-MOKE Data Representation and Interpretation

The results of the TR-MOKE shows the Kerr rotation as a function of the time as

shown for example in Fig. 3.14 for a Co 10/Pt 0.6 nm sample. The figure shows
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two time precession regions, T1 which is representing ultrafast demagnetisation and

T2 a slower precessional relaxation. The first takes place in 500 fs as a result of the

pulsed laser excitation, the Kerr signal recovers quickly (fast relaxation) due to the

electronic thermal bath equilibrating with the lattice. While the second is a slower re-

laxation with time which is due to the dissipation of the energy to the surroundings.

Similar data in the same figure was obtained for all the samples studied here and

the decay of the precession of the magnetisation was analysed, to obtain the dimen-

sionless damping parameter α. Repeating the measurement for the same sample

with different frequencies as a function of magnetic field was used in order to de-

termined the saturation magnetisation using Kittel formula equation. In TR-MOKE

there is no separation between the intrinsic and extrinsic damping parameter how-

ever, the contribution of both can be indicated by knowing the dependence of α on

the measurement frequency.

FIGURE 3.14: (a) TR-MOKE typical data trace from a Co10/Pt0.6 nm sample showing
Kerr rotation with the T1 and T2 time base and (b) is Kerr rotation as a function of T2,

after removing the general recovery of the magnetisation.

3.4.2 Ferromagnetic Resonance (FMR)

Ferromagnetic resonance (FMR) spectroscopy is the other technique used to inves-

tigate magnetic damping in this work. It is a direct and very powerful technique

to investigate the magnetisation dynamics in ferromagnetic thin-film using a range

of frequencies [79]. The Kittel formula describes the ferromagnetic resonance in the
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frequency and field domains. The first experimentally study was done by Griffiths

[80] in 1946. While the theoretical explanation was provided after two years by Kit-

tel [81]. FMR can give the characterization of a magnetic materials with respect to its

effective magnetisation and precessional damping. The Kittel equation relates field

and frequency variation as

f =
γ

2π

√
Heff(Heff + 4πMeff) (cgs) (3.26)

This equation can be used for the fitting the frequency and field linewidth. Heff is

the effective field, which can vary according to the material and Heff in isotropic FM

materials is equal toH the applied field, while for non isotropic materials it includes

contribution of anisotropy field. Meff is the effective magnetisation which relates

the perpendicular anisotropy magnetising field with the saturation magnetisation

as follow:

Meff = Ms −
Han

4π
(cgs) (3.27)

Beyond this, extracting of the dimensionless damping parameter α comes from the

measurement frequency in the field domain, where the field linewidth (∆H) can be

extracted from the FMR measurements directly. The resolution in the field is much

higher than in frequency. The ∆H is often used to extract α from the fitting of ∆H

as a function of frequency by

∆H = ∆H0 +
4πf

γ
α (3.28)

Where ∆H0 is the frequency independent extrinsic contribution which can be calcu-

lated separately and excluded from the total damping parameter value. However,

this can be done also when the measurement is in the frequency domain [82]; the

frequency linewidth (∆f ) is the main and frequency f has much higher resolution

than the field H . There are two ways to obtain α the first one which relies on the

equation

∆f =
γ

2π
α(2H + 4πMeff) (3.29)
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This equation gives what is known as the damping line; for continuous values of

α, the value is the average when the changing of α values as a function of the field

is more or less negligible. The other way to obtain α is by using Eq. 3.28, after

calculating the field linewidth ∆H from the giving frequency linewidth as

∆H =
1

γ
√

1 + (γMeff
f )2

∆f (3.30)

However this equation can only be used in certain cases, where the contribution

of the extrinsic linewidth approaches to zero [83]. Both approaches are used here.

The measurement was implemented with Vector network analyser (VNA). The main

usage of VNA is to investigate high frequency (GHz) circuits. The magnetisation

dynamics in thin-films have a range of microwave frequencies. In Chapt. 9 a com-

parison between the precision of the two measurements in time domain due to the

field and frequency linewidth, are presented.

It is known that there an inductive coupling between the sample and the waveg-

uide, which leads to an additional radiative damping (αrd) when using the FMR

technique. This term contributes to the total measured damping, however it can

be a very small addition which may have value of order 10−4. This αrd effect is

due to the inductive interaction between the precessing magnetisation in the sample

and the co-planar waveguide in the FMR system. Furthermore, the term is in rela-

tion with the measured perpendicular standing spin waves (PSSWs) profile, which

explains the propagation of the microwaves from the co-planar waveguide to the

sample and the modes related with such propagation. This effect may be very small,

however in some FM systems with very low damping this can be crucial to lower

the damping value further, and also it can help invoke any additional damping con-

tributions in order to explain the data. For the calculation of αrd it can be obtain by

the equation [84–87]

αrd =
γµ2

0MSdsls
16Z0WCPW

(3.31)

where Z0 is the waveguide impedance, WCPW is the coplanar waveguide width,

which is = 450000 nm in our measurements, ds and ls are the thickness and the length
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of the sample. αrd can also be found experimentally by putting ∼ 100 µm glass

spacer between the waveguide and sample to decrease the radiative contribution,

or it can be found through using Eq. 3.31. This was used in Chapt. 9 to find the net

damping from FMR measurements.

Experimental Condition and Setup

FMR measurements were done in IN-IFIMUP, University of Porto, Porto, Portugal

and Brazilian Centre for Research in Physics (CBPF) , Rio de Janeiro, Brazil. How-

ever in CBPF, they used RF generator and diode/lockin detection instead of VNA.

The first FMR measurements were as a function of frequency linewidth, while the

second one as a function of field linewidth. Both devices have a similar basis and

the same measuring tools in general. FMR in general is based on measuring the total

current and voltage however, at higher frequencies this is very difficult. So instead

of that, S-parameters, are used in a two-port measurement configuration, which con-

sist (S12,S21) as transmitted and (S11,S22) as reflected signals. As can be seen in the

Fig. 3.15 the first subscript number refers to the port number which is used to pro-

duces the outgoing wave, while the second subscript number refers to the port used

as the receiver.

These S parameters are related through the scattering matrix via the ratio of the

reflected voltage wave to the incident voltage wave amplitude through the following

equation:

Sij = Vi/Vj (3.32)

This relation shows the relative voltage of the reflected wave i to the incident wave

j. The measurement is carried out by changing the frequency at a fixed applied

magnetic field or the other way around. The complex transmission parameter S12 is

recorded as a function of the frequency or field changing. The signal indicated and

registered at the maximum resonance, where the sample absorbs the maximum of

the microwave signal, and changes the phase of the transmitted microwave signal.

This is the resonance position of the FMR frequency field linewidth, the measure-

ment here used an Anritsu (37247D), the VNA sweeps the excitation frequency of
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FIGURE 3.15: Schematic showing the VNA-FMR system,where the microwave radia-
tion signal and the rf field hrf directions with respect to the external field. The copla-
nar waveguide (CPW) placed in the centre of an electromagnet and the ferromagnetic
magnetic film is placed on the CPW mounted in non-magnetic sample holder with go-

niometer between a set of magnetic coils.

the outgoing signal through a specified range from 45 MHz to 18 GHz. The signal

is passed through a coplanar waveguide (CPW) on to which the sample is placed .

This excites the precession of the magnetisation and changes the microwave signal

propagating through the CPW.

Furthermore CPW has a central strip conductor of 3 cm length and 450 µm width

surrounded by co-planar ground planes in each side. The gap between the central

line and the ground planes is 300 µm. The connection to the CPW is done by us-

ing phase stable non-magnetic coaxial cables and microwave probes. The sample

mounted on the CPW with the magnetic material facing down. the CPW is placed

in the centre of an electromagnet which provide a static magnetic field from an elec-

tromagnet. The magnetic field was monitored by a Hall probe placed between the

pole pieces, at the sample position. As it can be seen from Fig. 3.4.2 the static mag-

netic field is perpendicular to the microwave magnetic field.
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FMR Results Representation

As explained earlier, that FMR linewidth measurements can be done as a function

of frequency or field. Typical FMR data shows the S12 parameter changing as a

function of the external field or the frequency. Fig 3.16 show examples for 5 nm Co

capped with 2 nm Cu, where the signal varies with (a) the external field and (b) the

frequency . Also in the same figure the real and imaginary components which both

can be used to extract the linewidth value are shown in (c). The linewidth is either

peak to peak in the imaginary component or the half width for the peak of the real

component, where it is found using a Lorentzian fit. For the Kittel formula the res-

onant frequency is plotted against the field and by fitting the data the result is the

Kittel non-linear fitting as it is shown in the same figure (d). Information are ex-

tracted from this fitting such as the saturation magnetisation Ms and the anisotropy

field Han.

FIGURE 3.16: Shows a typical data of FMR measurements, where the rf signal changing
as a function of (a) the external field and (b) the frequency, also (c) showing the imagi-
nary and the real component for extracting the frequency linewidth, finally (d) showing

the Kittel formula fitting according the relation between the field and the frequency.
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The linewidth can provide more information, where calculating damping from

∆f or ∆H as a function of frequency is the main. This can be done by fitting either

equation 3.28 or 3.29, the analysis can be done by the available analytical softwares,

where a lot of parameters vary in order to get the best fit such as the gyromagnetic

ratio, the anisotropy and the effective field. The calibration procedure and measure-

ment process are fully automated. The final result is the damping parameter value

(αeff ) for a range of samples with different FM and NM material component as it

is discussed in Chapt. 9. The result show an outstanding change of the magnetic

damping and a better understanding to modify the material magnetic properties.

3.5 Summary

In this chapter the techniques regarding the crystal structure and thin-film studies

are presented. The most important techniques with their theories are discussed from

the simplest picture to the more complex. The use of reflectivity and refraction laws

of optics are explained in order to understand the x-ray interaction with the material.

Using x-ray reflectivity is an important technique regarding thin-film thickness with

the electron density of each layer and the interface determining the behaviour. The

XRD technique was used to obtained the crystal structure in each layer.

The next step is the techniques used to measure the magnetic properties, which

are divided into static and dynamic magnetisation measurements. MOKE and SQUID

are the static measurements, where the importance of these techniques is in the de-

termining magnetisation properties. MOKE and SQUID are showing the relative or

the direct magnetic moment for a FM material as a function of different measure-

ment parameters. The vital role of these techniques is to give the final descriptive

magnetisation of the material in general. The other division is the dynamic mea-

surements, measuring magnetisation precession in time domain by TR-MOKE or

in frequency and field domain by FMR which are the techniques that used in this

thesis. The methods are described, along with the setup and the data analysis.

For all techniques there is an important point where they can show direct critical

changing in the magnetic behavior of the investigated samples such as damping and



3.5. Summary 63

saturation magnetisation. Or they can support the result or give more explanation

regarding the critical changing as in XRR, XRD and also SQUID and MOKE. The re-

sults which have been extracted by using these techniques are shown in Chapters 6,

7, 8 and 9 where all the results show good agreement and give new understanding

with the supportive explanations from the other techniques.
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Chapter 4

Sample Growth and Modification;

Background and Practical

Implementation

4.1 Introduction

In this chapter, an explanation of the details regarding the fabrication of magnetic

samples is presented. The thin-film production is presented starting with the steps

before the actual deposition. This includes cutting and cleaning the substrates for

FM and NM materials deposition, with shapes depending on the measurement prac-

ticality. Deposition techniques are presented in general and UHV deposition tech-

niques are explained as the only methods used to fabricate all the magnetic sam-

ples. The operating conditions of the deposition system used is covered in order

to show thin-films quality and thickness accuracy of the sample investigated. This

demonstrates the sub-nanometre deposition capability for the samples investigated

in Chapters 6 and 8 and the precision controlling of concentration from two co-

sputtered materials as in Chapt. 9. The growth and the formation of the material

layers on a substrate is discussed to give insight regarding the nature of thin-film

layers and interfaces. Ion-beam irradiation is explained as one of the techniques that

was used to modify the samples investigated in Chapt. 7. This is explained with

respect to the main three processes; ion implantation, sputtering of material from
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the sample surface and with main focus on the intermixing at the interfaces in bi-

layered thin-films. The effect of theses main processes is discussed in relation to the

modifications of the magnetic properties of the sample investigated. This facilitates

understanding of the changing nature in the samples and links it with the changing

of the magnetic behaviour.

4.2 Before Deposition

In order to made good samples, cutting and cleaning of high quality flat substrates

is the first step, which is based on a silicon wafers. The process is used to prepared

single crystal silicon wafers with 6 inches diameter, as substrates for all the samples

in this thesis. These wafers are topped with≈100 nm of SiO2. The role of this layer is

to prevent electrical conductivity as the electromagnetic measurements are carried

out. Any contribution from the substrate is reduced to a minimum to avoid any

confusion in the results. Going back to the wafer, a diamond cutter was used to pro-

duce chips and strips. Labelling on the back of the chips/strips was done using the

same diamond cutter for the record. The dimensions of these shapes differ and are

linked with the measurements, for which the samples were made. In the next section

a full description regarding the samples dimensions and shape with respect to the

intended measurement, is explained. After cutting the wafer in to chips/strips, the

cleaning process, where the chips/strips were soaked in acetone. The beaker was

placed in an ultrasonic bath for about 120 second to make sure the cleanliness of the

chips/strips. To remove the acetone from the chips/strips, the same procedure was

repeated but, with isopropan-2-ol (IPA) instead, where beaker was also placed in

the bath for the same time. To remove the isopropan-2-ol, a N2 gas gun was used to

remove the remaining IPA before it evaporates. Cleaning and cutting processes are

carried out in fume hood under lab working conditions with lab gloves on.
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4.3 Samples Shape Related to Measurements Practicality

For matters of measurement practicality, different measurements are explained in

Chapt. 3. Each of them can give the optimal result when the experimental condi-

tions are considered precisely. One of these conditions is the shape of the sample,

where it plays a key role in term of result accuracy. Some of these measurements

share the same sample shape, where it may be either a square chip or a rectangle

strip or approximate dot. Another shape related issue is magnetic shape anisotropy

effect even when it is very small. For example x-rays sample surface needs to be

a wide clean, on the other hand for MOKE and TR-MOKE a relatively small clean

surface is sufficient. however TR-MOKE is more related with sample shape, which

means that all the samples should be the same shape and size. So it is very good

practice to control the shape of the samples for those reasons. Further reasons such

as; sample mounting, fitting size with the measurement stage and insuring enough

FM material exists to give sufficiently indicative results.

In order to cover this issue, a lot of samples were produced in the work of this

thesis, all based on a square chip or rectangle strip but, with different area size. It can

be seen in Fig. 4.1 some of the tools which have been designed and made to serve

this purpose. In figure (a) and (b) a designed tool for holding the silicon wafer with

milled grooves to help cutting stripes of silicon with the same dimensions, where the

strips will be diced according to the desired strip/square size. In order to produce

a semi or circular shape, or sample with a rounded edge a shadow mask was also

made for this reason. Figure (c) shows the designed shadow mask with holes to

allow the flux of atoms to be deposited only on the exposed silicon areas. The upper

edges of the holes are chamfered where it shows in (d) the effect of this technique

on the shape precision. The variety of shapes of the samples are shown in the same

figure (e) with dimensions in mm. All the cut, cleaned and labeled samples are ready

for deposition, where they attached one the back of the mask before they go in the

deposition system.
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FIGURE 4.1: Shows tools for cutting and masking the Silicon wafer (a) and (b) are the
wafer holder from both up and down side respectively, (c) is the shadow mask with
different shapes (d) the chamfered technique and finally (e) all the produced sample

shapes.

4.4 Deposition Modes and Techniques

Thin-film deposition can be divided in to two different methods of growth, which

can observed during the deposition of metallic thin-films. The first method is: vapor-

phase deposition, this covers sputtering, thermal evaporation and molecular beam

epitaxy. The second method is: liquid-based deposition, which also covers electro-

chemical deposition and Langmuir-Blodgett films. Sputtering is the main technique,

used to fabricates all thin-films in the work of this thesis. The physical basics of this

technique is the use of highly energetic ions to bombard a target material to eject

atoms from its surface and for these atoms to be deposited on the surface of a sub-

strate. It is first discovered by W. R. Grove [88] in 1852 and became widely used

after that in thin-film fabrication. This technique has a lot of advantages, where it

allows the use of wide range of materials with the capability of multilayer, alloying

and co-sputtering.

Fig 4.2 (a) shows a schematic illustration of sputtering magnetron, where the
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atoms from the target are sputtered by the argon gas plasma created by a bias DC-

voltage where the target represent the cathode. The ejected atoms travel from the

target and coat all surfaces including the substrate located above the target. The

atoms start to land on the substrate surface and a thin-film layer starts to form by the

bonding between the atoms themselves and the substrate material. The bombard-

ing process raises the temperature of the targets thus, cooling system is required to

prevent damaging the target by milling.

FIGURE 4.2: Shows a schematic illustration of (a) deposition technique where the sput-
tered atoms ejected from the material target (cathode) to the substrate (anode) and (b)

the sputtering process with the magnetron field.

In the same Fig. 4.2 (b) the plasma phase is shown, where the target material

mounted on a metal cathode with magnets in the core creates a magnetic field. The

Ar gas ions interact with the magnetic field. The plasma phase is a mixing betweens

ions and electrons, where the magnetic field will interact by the Lorentz force. Thus

the electrons will be contained in a circular area near the target, restricted by the

magnetic field to this track. Movement of the electrons in the circular track near the

material surface will leads collisions. The Ar ions in the high density plasma will be

accelerated to the target by the DC/RF power and by bombarding in to the target

surface they will ejects the target’s atoms. Due to the guided movement of the ions
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by the magnetic field, atoms will be lost from a certain area of the target material in

the shape of circular track, which is called racetrack.

4.5 Thin-Film Growth Modes

The deposition of sputtered atoms is the initial step of forming any material layer

on substrate. Repeating this step with time will increase the layer thickness in gen-

eral and will leads to a thin-film. Forming layers of a thin-film takes place through

three different ways, which are know as growth modes . All of these three modes

are related to the bonding strength between the deposited atoms with each other

atom-atom with respect to the bonding strength of these atoms with the substrate

atom-substrate surface [89]. The first mode; Volmer-Weber growth mode, which is

also known as island growth mode, is where the atom-atom bonding strength is

much stronger than atom-substrate bonding strength. This mode starts with the

atoms gathering with each other, forming islands in separated areas on the sub-

strate, then these islands join with each other to form the thin-film layer. When the

atom-substrate bonding strength is stronger than the atom-atom bonding strength

the second mode of deposition dominates. This mode; Frank-Van der Merwe growth

mode, is a layer-by-layer growth mode, where the deposited atoms will be arranged

to form a full covering mono-layer over the substrate surface. The lattice matching

between the substrate and the forming layer has a key role, which will increases the

domination of layer-by-layer mode. The forming of these modes is illustrated in

Fig. 4.3 with gradual increasing of thin-film layer thickness.

The third mode, as it shown in the same figure, is a mixing between the layer-by-

layer and island growths, which is know as Stranski-Krastanov growth mode. It is

start by the layer-by-layer growth mode until a full mono-layer covers the substrate,

then island growth takes place to form the rest of the layer [90]. From the first and

the second growing modes the atoms either form their own structural arrangement

or follow the substrate structural arrangement, where this will lead to stress-free

film. While the the third growth mode reduces the stress significantly, because the

interface energy increases with the layer thickness, by changing the growth mode.
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FIGURE 4.3: Schematic illustration of thin-film growth modes including (a) Volmer-
Weber island growth, (b) Frank-Van der Merwe layer-by-layer growth and (c) Stranski-

Krastanov layer plus- island growth.

This shows that the following deposited layers are strained to fit the substrate [91].

With these growth modes different surface structures are expected to be induced.

Crystal structure changes can occur either in a layer or between two layers also as a

function of increasing film thickness [92].

The structural changes are indicative of the presence of defects in thin-films.

These defects can occur when two materials with different lattice parameters are

adjacent with each other, when the thickness of the same material increases to the

extent that the bonding strength of the deposited material is weakened. Thus the

atom-atom bonding strength is more dominant in the formation of the material crys-

tal arrangement. This has been explained in Sec. 2.6 where the pure material have

a specific crystal arrangement preferentially. This arrangement leads the material’s

energetic status at the lowest ground state as explained in Sec. 2.7. However, it has

been shown in Sec. 2.7.1 that the crystal structure can be changed by adding new

material. By depositing thin-films with different thicknesses and with different cap-

ping layers a significant effect on their crystal structure and hence on their magnetic

properties will be induced.
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4.5.1 The Deposition System and Thin-film Growth Conditions

The system used to produced all the sample in this work is Mantis Qprep500 sput-

tering system [93]. This system provides an ultra high vacuum (UHV) base pressure

for thin-film growth, with deposition capability of metals, by DC power source, and

non-conducting materials, by RF power source. The vacuum system has two parts;

load-lock and deposition main chamber, where both can reach to vacuum pressure

≈ 10−9 Torr or better. The load-lock chamber is connected to a rotary and relatively

small but, sufficient, turbo molecular pump. It can hold 5 samples each time with a

carousel. A gate valve is between the load-lock and the deposition chamber, in order

to isolate the main chamber environment while new samples are loaded or taken out.

Fig. 4.4 shows the Mantis Qprep500 sputtering system with main features indicated.

The main chamber is connected to two turbo pumps and one rotary pump to

reach the right pressure within a reasonable time. It can hold 5 different material

targets, each is supported with gas, cooling water lines and DC/RF power connec-

tions. The main chamber is supported with a gas analyser to monitor the chamber

environment and to detect contamination. The substrate stage is located in the roof

of the main chamber with a rotating capability for improving film uniformity [94].

A quartz crystal microbalance (QCM) is mounted and positionally engineered to

determine the growth rate in (Å/Sec) unit. At working conditions the samples can

be moved from the load-lock chamber to the main chamber by transfer arm to be

mounted on the rotating substrate stage. Finally the system is connected to a con-

trolling computer to synchronize the deposition time, where it opens and closes all

the shutters to get an accurate deposition time by knowing the growth rate.

A wide range of thin-films have been fabricated including the ferromagnets; Co

and Ni81Fe19. The deposition conditions of the fabricated thin-films are controlled

and monitored all the time. Keeping records is essential to track the history of thin-

film fabrication and also to link any unusual results with fabrication conditions.

These conditions either link to the main chamber environment such as pressure,

temperature or argon gas flow, where they can change the general deposition pro-

cess, or they linked to the voltage, current and DC/RF power of each target, which
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FIGURE 4.4: Shows side view of Mantis Qprep500 sputtering system in the lab with the
main parts indicated.

affects the sputtering rate of the individual targets. For the environment conditions

the typical parameters were 10−9 Torr order as the base pressure before starting the

deposition, at room temperature and the gas flow of 18 sccm, standard cubic cen-

timeters per minute, units. The pressure during the deposition process is of 10−3

Torr order. These parameters are stabilized during the deposition procedure. The

current, voltage, power parameters are kept in range to stabilize the sputtering rate

and thus fix the growth rate. The growth rate differs with the target material in use,

linked to the DC or RF power.

All of the FM material targets need strong magnets to create a strong magnetic

fields to overcome their flux guiding through the sputtering target. While with non-

magnetic material targets a lower magnetic field will do. The current DC sputtering

was in the range of 74-75 mA and the voltage was in the range 359-389 V with a

power of 25-27 Watt. For the RF source the voltage was in the range of 145-209 V and

the power was 50 Watt. This range of parameters covers all the samples fabricated

in Chapt. 6, 7 and 8.

Changes in the voltage and current values as growing conditions have been
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made in purpose are in Chapt. 9. The samples which have been studied in Chapt. 6,

7 and 8, are bi-layer thin-films. The growing procedure was intend to deposits lay-

ers of FM material with a NM material capping layer. The samples investigated

in Chapt. 6, related to the thickness of the capping layer. The NM capping layer

thickness was controlled accurately with increasing thickness in the range of cou-

ples of Å. While the main concern of the samples investigated in Chapt. 7 was to

maintained the same FM and NM layer thicknesses for all the samples. Then apply

modifications afterwards using ion-beam irradiation in order to investigates the ef-

fect of these interfacial modifications on the magnetic properties of the thin-films.

The same deposition procedures, which were used in Chapt. 6 were applied to the

samples investigated in Chapt. 8 but, patterned in to nanowires using electron-beam

lithography.

As mentioned, the voltage and current values were changed through the fabrica-

tion of the samples investigated in Chapt. 9. This was done in order to to control the

growth rate, where it is essential for the co-sputtering process of two materials at the

same time with correlated sputtering rates. By this correlation, the total sputtering

rate of the two target materials will give the total required thickness yet with dif-

ferent material contribution. In these samples a precise deposition procedures was

executed regarding the concentration of the two different materials forming bound-

ary mono-layers in FM thin-films in Å thickness range. High level precise growth

through low growth rate was established by changing the power feeding to each

target. Examples of the deposition conditions can be seen in Table 4.1, 4.2 and 4.3,

which shows the growth parameters of bi-layered samples of pure and alloyed FM

layers capped with NM material.

All the film thicknesses have been verified by the QCM during the deposition

and the accuracy of the QCM was calibrated by x-ray reflectivity measurement. The

calibration of the QCM involves the execution of XRR on a fabricated sample with

assumed thickness by using the growth rate of the QCM and knowing deposition

time. The assumed thickness is compared with the extracted thickness from the XRR

and by knowing the difference a correction factor is inserted in the QCM tooling

parameter within the depositions controlling program.
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TABLE 4.1: Deposition conditions, showing the system parameters of the bi-layer thin-
film fabrication from 10 nm Cobalt and 0.2 nm Platinum capping layer.

File
No: 50

sample
Name: A12

User:
Sinan

Date:
23/09/2014

Sample structure (Å): Co 100/ Pt 2 Temperature= 22.8 ◦C
Base pressure (Torr): 8.2×10−8 Growth pressure (Torr): 1.1×10−3

Target
and Cusp

Gas flow
rate (sccm)

I
(mA)

V
(V)

Power
(Watts)

Deposition rate
used (Å/S)

Deposition rate
measured (Å/S)

Deposition
time (S)

Thickness
(Å)

Co
2 17.9 74 369 29 0.2 0.2 500 100

Pt
4 17.9 RF 152 50 0.21 0.21 9.55 2

TABLE 4.2: Deposition conditions, showing the system parameters of the bi-layer thin-
film fabrication from 4 nm Ni81Fe19 and 2 nm Platinum capping layer.

File
No: 43

sample
Name: B5

User:
Sinan

Date:
30/05/2015

Sample structure (Å): Ni81Fe19 40/ Pt 20 Temperature= 23 ◦C
Base pressure (Torr): 3.8×10−9 Growth pressure (Torr): 1.2×10−3

Target
and Cusp

Gas flow
rate (sccm)

I
(mA)

V
(V)

Power
(Watts)

Deposition rate
used (Å/S)

Deposition rate
measured (Å/S)

Deposition
time (S)

Thickness
(Å)

Ni81Fe19

3 17.9 74 383 29 0.24 0.24 166.6 40

Pt
4 17.9 RF 157 50 0.18 0.18 111 20

TABLE 4.3: Deposition conditions, showing the system parameters of the bi-layer thin-
film fabrication from 5 nm [Co60%-Cr40% 1.25/C 4.75/Co60%-Cr40% 1.25] and 2 nm Cop-

per capping layer.

File
No: 423

sample
Name: G73

User:
Sinan

Date:
30/01/2017

Sample structure (Å): Co-Cr 1.25/Co 47.5/Co-Cr 1.25/Cu 20 Temperature= 21.8 ◦C
Base pressure (Torr): 7×10−8 Growth pressure (Torr): 1×10−3

Target
and Cusp

Gas flow
rate (sccm)

I
(mA)

V
(V)

Power
(Watts)

Deposition rate
used (Å/S)

Deposition rate
measured (Å/S)

Deposition
time (S)

Thickness
(Å)

Co
2

Cr
1

17.9

74 350 14 0.1 0.1

7.53

60%
0.753

1.255

40%
0.502RF 129 40 0.067 0.067

Co
2 17.9 74 378 28 0.2 0.2 237.5 47.5

Co
2

Cr
1

17.9

74 350 11 0.1 0.1

7.53

60%
0.753

1.255

40%
0.502RF 129 40 0.067 0.067

Cu
5 17.9 RF 126 50 0.16 0.16 125 20



76
Chapter 4. Sample Growth and Modification; Background and Practical

Implementation

4.6 Ion-Beam Irradiation

Ion-beam irradiation was carried out to introduce structural changes in some of the

samples investigated. These samples are the focus of Chapt. 7, where the usage of

ion-beam irradiation brought large change to the magnetic properties. Ion-beam ir-

radiation in short is the irradiation of thin-films through their surface with a beam of

ions, which will interact, scattered and intermix with the sample atoms. With using

ion-beam irradiation, three main processes take place, which are ion implantation,

sputtering and intermixing. The extent of these processes is related with the num-

ber of incident ions per unit area of the irradiated sample. The latter is known as

the irradiation dose, which is expressed in this thesis in Ga+/cm2 and/or pC/µm2

units. In Fig. 4.5 a schematic illustration of ion-beam irradiation, with the main three

processes, shows the interactions of the ions with the surface, interface and beyond

in a thin-film material.

FIGURE 4.5: A schematic illustration of ion-beam irradiation of thin-film showing the
main processes and other events such as backscatter ions, electrons and the emission of

x-ray as a result.
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4.6.1 Ion-Beam Implantation Process

Ion implantation as main process, has an impact on the irradiated sample, where

this effect can be seen as structural changes. The change is due to the inclusion of

the ions as a defects in the crystal lattice, by their physical existence, or it can be

noticed as an intermixing of the implanted ions with the sample material atoms,

through a chemical bonding. It is worth noting that the physical effect can leads to

stress in the lattice due to the dislocation of the material’s atoms or the insertion of

the ion in new site in the crystallographic structure in the sample. The initial energy

of the incident ion is the main factor.

After that, the incident ion will suffer from multiple scattering events while it

propagates in to the sample, which depends on the ion energy. If its energy is less

than the replacement threshold then the ion will rest within the sample but, if it is

above the threshold energy, then it can backscattered to the vacuum. The concentra-

tion of the implanted ions in the sample can be calculated approximately with the

Gaussian distribution with the equation below:

n(x) = n0 exp

(
(x−RP)2

2σ2
P

)
(4.1)

Where x is the depth of the implanted ions andRP its projected range, n0 is the Gaus-

sian peak concentration and σP is the standard deviation. The peak concentration n0

can be calculated based on the ion dose per unit area, φ [95], which is described as:

n0 =
1√
2π

φ

σP
(4.2)

Eq. 4.2 shows that increasing the irradiation dose leads to a linear increase in

the concentration of implanted ions. This will lead to a sample material with high

number of defects, or simply it can be considered as an alloy of the initial sample

material and the implanted ions. Increasing the implanted Ga+ ions leads to a sig-

nificant phase shifting in the crystal structure however, the phase shifting occur at

high concentration. For example a phase shifting occur in Fe material when Ga+
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fraction of around 15% [96]. The maximum doses which have been used in this in-

vestigation will produce much less Ga+ concentration in the targeted material thus,

such things are unlikely to happen.

4.6.2 Surface Sputtering Process

The second process which occur implicitly with the ion-beam irradiation is the sput-

tering of the targeted thin-film surface atoms. This is based on the energy exchange

between the incident ions and the surface atoms, where the ions can transfer some

of their energy to the atoms at the surface. If the surface atoms gain enough energy

from the incident ions to over come their bonding then they can break their bonding

with other atoms and escape the surface. The amount of ejected atoms; the sput-

tered atoms, is related with the amount of the incident ions and the sample surface

binding energy. Thus, the amount of sputtered atoms per incident ions, which is

also known as sputter yield, is linearly related with the ion energy to over come

the surface binding energy and it is non-linearly related with the angle of the ion

incidence.

The ion-irradiation incident angle for the samples investigated of this thesis was

90◦ and the energy of the incident beam was 30 keV. This indicates a possibility

to sputter noticeable amount of the atoms from the surface of the samples investi-

gated [97]. By using the stimulation program (TRIDYN) for ion-solid interactions

for Ni81Fe19/Au irradiated with Ga+ incident beam of energy 30 keV a prediction

of the sample surface sputtering of atoms can be indicated. This can be seen in Fig.

4.6, where the recession of the sample surface, due to surface sputtering, and the

reduction of the capping layer thickness are plotted as a function of the ion-beam

irradiation dose [98–100].

The prediction of such irradiation shows that ≈1 nm of the surface is sputtered

from Ni81Fe19 sampled capped with 5 and 3 nm of Au. This prediction is also veri-

fied by a study on Ni80Fe20 thin-films [101]. This effect was noticed in the investiga-

tion in Chapt. 7, a bi-layer of Ni81Fe19 10 nm/ Pt 3 nm irradiated with Ga+, where

a Pt capping layer thickness reduction was indicated. More information regarding
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FIGURE 4.6: Recession of surface and the capping layer decreasing due to the surface
Au atoms sputtering as a function of ion-beam irradiation dose for bi-layer thin-films

the dashed line are guide to the eye, adapted from [99].

the TRIDYN simulation program can be seen in [102].

4.6.3 Interface Intermixing and Thin-Films Alloying Process

Beyond ion implantation and surface atoms sputtering, the arrangement of the atoms

and the nature of the grain orientation inside the thin-film can lead to channelling

effect. Due to this channelling effect the incident ions can lose their energy by trav-

elling deep inside the sample. As a result of this, sputtered atoms and damage in

the sample can be reduced significantly [103]. This also can extend the effect of the

incident ions deeper into the sample and far from the surface. Hence, atoms located

below the surface can interact with the travelling ions in to the sample. By this in-

teraction these atoms can gain momentum from the ions, thus they will be relocated

and intermixed within the sample. When the sample is bi-layered from two different

materials this effect is more noticeable, due to the relocated atoms across the inter-

face of the adjacent layers. This is the third main process of ion-beam irradiation,
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which is know as intermixing, its extent is a function of ion-beam irradiation dose.

Intermixing can be described by transferring some of the incident ion’s energy

to the targeted atom, by which the atom will gain energy will help to travel across

the interface. The Ballistic model can describe this mixing, which is ion-beam ir-

radiation dose based, head-on collision dependent and temperature independent.

By using this model, it can be shown that targeted atoms can recoil deeply in to

the material with ≈50 nm in forward-momentum model. However, this model is

not that common and it fails to explain the isotropic intermixing broadening which

take place by ion-beam irradiation [104–106]. This model can be used with some ex-

panding for the collisions events, where additional collisions can be added between

the atoms themselves. Due to these additional events, energy will be lost gradually

without increasing the displacement distance. This model is know as cascade mix-

ing, it is more diffusion-like mixing where the relocated atoms follow random paths

moving across the interface. This model is more comprehensive in explaining the

isotropic mixing and shows a gradient concentration of the relocated atoms as they

are displaced farther beyond the interface [107].

The cascade mixing model uses a similar equation to thermally diffusion to de-

scribes the mixing as

Dt =
nα2

6
(4.3)

where in the cascade mixing model equation jump distance, α, is replaced by the

range distance, r, of the displaced atoms and the number of jumps, n, with number

of the displacement per atom, dpa, thus, the diffusion cascade equation will be:

Dct =
dpa(X)〈r2〉

6
(4.4)

The number of the displacements per atom dpa is related to the damage energy unit

length, FD, the atomic displacement energy, Ed, the ion-beam irradiation dose φ and
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the atomic density, N , by:

dpa =
2FDφ

5edN
(4.5)

Substituting Eq. 4.5 in 4.4 will give the final cascade diffusion-like mixing as a func-

tion of ions beam irradiation as follow:

Dct =
FD〈r2〉φ
15NEd

(4.6)

There are other models [106, 108] which have been implemented in order to explain

ion-beam intermixing process. All of them are give a similar results with the same

mixing dependence upon the ion-beam irradiation dose φ and the damage energy

FD.

Experimentally the interface broadening effect can be seen in a thin-film sample

by x-ray reflectivity measurements, where the interface width is changing due to

the ion-beam irradiation. Fig. 4.7 shows XRR result for Ni81Fe19 20 nm/Au 2.5 nm,

where the interface width increases as a function of ion-beam irradiation dose.

Also it shows the contribution of both interface factors; topological and chemical

to the total interface width. TRIDYN simulation shows a similar correlation, of the

squared irradiation induced interface width, to the measure chemical intermixing

by the XRR measurement. This gives an indication that increasing ion-beam irradi-

ation will effect mainly intermixing, where the topological roughness almost has no

change during the irradiation process.

The results shown in this section provide a structural basis for the explanation of

the magnetic damping behaviour of the thin-film samples which have been investi-

gated in Chapt. 7. These samples have been fabricated with the same FM material;

Ni81Fe19 but, with 10 nm thickness and capped with 3 nm of Pt. The modification

were done using ion-beam irradiation with a higher dose range. Noting that Pt and

Au have a similarity thus, the same main three processes take place but with ex-

tended effect.
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FIGURE 4.7: The effect of ion-beam irradiation dose on topological roughness and chem-
ical intermixing for Ni81Fe19 20 nm/Au 2.5 nm thin-film by XRR. The same effect ex-
tracted from TRIDYN simulation, which shows agreement with the XRR results, the

XRR and the simulation results adapted from [99] and [109] respectively.

4.7 Ion-Beam Irradiation Effect on Alloying Bi-Layer Thin-

Films

In the previous section, intermixing of the interface was discussed as a function of

the ion-beam irradiation effect. The broadening of the interface is shown in term

of experimental and simulation results as examples. However, the maximum dose

which have been show previously is 0.8 Ga+/cm2, ≈ 0.5 pC/µm2, which gives ≈ 5

nm of interface mixing. The thermodynamic effect used to explain the interface mix-

ing ignores the material chemical properties. While this effect considers the prefer-

ence of any two material A and B to form an AB alloy. In the thermodynamic case of

preferential mixing, a graded alloy layer is expected to develop between the two lay-

ers, resulting in an enhancement to the interface width [110, 111]. In the case of Au

capping layer on top of Ni81Fe19 a de-mixing effect is likely to be a competing with

the mixing effect for Au mixed in Ni81Fe19 [112, 113]. For the samples investigated

in this thesis the capping layer was Pt.
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4.7.1 Ion-Beam Irradiation Effect on Magnetic Properties.

The effect of the main three processes of ion-beam irradiation was discussed and

these processes affect the magnetic properties of the thin-films. Ion implantation is

the least effective process, however the surface sputtering and the intermixing pro-

cesses have a greater impact on the magnetic properties of the irradiated thin-films.

They can change the magnetic properties of both FM and NM layers in thin-films.

By surface sputtering and interface mixing, ion-beam irradiation led to the modifi-

cation of the local environment and change the moment of the irradiated material.

This effects will change the saturation magnetisation in general hence, will change

other magnetic properties [114]. This effect can break through the changing of the

grain size because, ion irradiation affects the grain growth of the irradiated material

by the incident ion’s energy. The energy exchange with the material will change the

total magnetic moment of the arranged atoms in the material and thus, will changes

the saturation magnetisation of the material [115].

4.8 Summary

The chapter discusses of the production procedures of the samples investigated in

this thesis. This includes the preparation and the deposition of thin-films with ef-

fects regarding changing the deposition conditions. Next is the modification of the

samples investigated using ion-beam irradiation and the effect of this process on the

samples structural properties. Finally, the impact of structural effects on the mag-

netic properties is introduced as it required later.
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Chapter 5

An Introduction and Theory for

Magnetic Damping Phenomena in

Ferromagnetic Thin-Films and

Multilayer

5.1 Introduction to Magnetic Damping

Magnetisation precession and magnetic damping were discussed in Chapt. 2 with

damping detailed using the dissipation of magnetic energy via uniform and non-

uniform precession modes to the lattice. In this chapter a deeper explanation is pre-

sented regarding this topic, with a comprehensive description of the main mecha-

nisms, both intrinsic and extrinsic that explain damping. This is done first by review-

ing and summarising the literature with the aim of giving a clearer understanding

of the damping mechanisms. The next section shows the recent experimental work

and highlights the limitations of this work, which are addressed by the research in

this thesis.

A variety of damping studies have been reviewed covering bulk, bi- and multi-

layered, and doped thin-film systems. This chapter is a part of a review article paper

published in the Institute of Physics publication, Journal of Physics D: Applied Physics

(J. Phys. D. Appl. Phys.), [116].
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5.2 Intrinsic Damping and Landau-Lifshitz-Gilbert

A key part of precessional damping in a ferromagnetic system is termed the intrin-

sic damping mechanism, which is related to the spin-orbit coupling. The coupling

between the electrons spin- and the orbital-angular momenta links the precessing

spin magnetic moment to the lattice as described in Chapt. 2. Without this type of

coupling the k = 0 ’uniform mode’ magnon would not be damped [47, 117–119].

This intrinsic mechanism is the simplest route to dissipate energy. The link between

SOC and magnetic damping is explained theoretically by Kambersky using SOC and

electron-hole recombination, which dissipates the energy to the lattice [40, 120–122].

This model focuses on the variation of the Fermi energy levels with two sources giv-

ing rise to the total damping. The first is the whole Fermi surface, which represents

standard yet minimum contribution to the total damping. The second represents

“special areas” which in total give a larger damping contribution [40, 120–122]. The

model uses the Landau-Lifshitz-Gilbert equation to explain that these “special ar-

eas” or “hot regions” [43] result from the effect of SOC, which leads to degenerate

band-crossing near the Fermi surface. These “hot regions” have k-space pairs of

eigenstates with energies close to the Fermi level [6, 48].

A microscopic view of the electronic interactions was explained by Sparks [47].

This process involves the annihilation of uniform mode magnons and the creation of

electron-hole pairs that scatter to the lattice leading to the energy loss, and thus mag-

netic damping [6, 39, 44, 48, 123]. This explains magnon-electron scattering through

similar mechanisms, which suggest that damping is affected by electronic transitions

into states close to the Fermi energy. The availability of such states determines the

damping rate.

However, there are two suggested modes of electronic transition that can occur

in bulk FM systems depending on the mode. The first is when magnon annihilation

leads to electron-hole pair generation that occupy the same band (intraband). The

intraband transition links damping with temperature inversely, which means that

through this mode damping decreases with increasing temperature. The depen-

dence of this mode on temperature mirrors metallic phenomena, hence it is termed
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‘conductivity-like’. The second mode also involves magnon annihilation leading to

electron-hole pair generation, but in this case the pairs occupy different bands (inter-

band). This also shows a temperature dependence, but has the opposite dependence

so it is termed ‘resistivity-like’ [6, 40, 122, 124–127]. These modes shows that the

damping is correlated with the density of states, showing the importance of the 3d

band in ferromagnets, and that it strongly depends on the spin-orbit parameter for

both the intraband and interband processes [6, 123, 127–129].

The dissipation of the energy via the the intrinsic mechanism is described through

the magnetisation precession in the time domain by Landau & Lifshitz [130]. This

was presented in a general equation:

∂M
∂t

= −γM×Heff −
λ

M2
M×M×Heff (5.1)

where gyromagnetic ratio (γ) and the phenomenological relaxation parameter (λ),

are the inverse time units and Heff is the effective magnetic field. Later, this equation

was modified by Gilbert to produce the Landau-Lifshitz-Gilbert (LLG) equation

∂M
∂t

= −γM×Heff +
α

M
M× ∂M

∂t
(5.2)

It can be seen that α the “dimensionless” Gilbert damping parameter, α = λ/γM , is

a parameter which describes the damping of the system.

Eq. 5.2 suggests that there is an impact on γ from the magnetic precessional ef-

fect. This effect is small enough in many materials to be neglected. Thus both Eq. 5.1

and 5.2 were used to represent the precessional damping behaviour in any giving

FM system. The usage of these equations is more related with their practical suit-

ability, depending on the computation and modeling processes. For example, having

∂M/∂t on one side in Eq. 5.1 makes the equation easy to solve [9, 13].

Explaining LLG equation further, the first term represents the magnetisation pre-

cession about Heff [131–134]

∂M
∂t

= −γM×Heff (5.3)
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The presence or absence of a negative sign in Eq. 5.3 is linked with the definition of

the direction of the applied torque on M, which indicates the precession direction.

This is done recently by considering γ > 0 to over come the sign issue. The second

term of the LLG equation represents the ‘viscous’ damping force perpendicular on

M, by which the magnetisation magnitude is constant, as shown in Fig. 5.1.

FIGURE 5.1: Illustration of damping process of the magnetisation according to Landau-
Lifshitz-Gilbert LLG model, precession as the first term and the damping force as the

second term, where the magnitude of the magnetisation is constant.

This term adds a perpendicular torque to the magnetisation that moves it to-

wards the effective magnetic field by reducing the rotating diameter gradually.

α

M
M× ∂M

∂t
(5.4)

The value of α is the indication factor of how fast the magnetisation precession

damped in any FM material [39].

The LLG equation provides a description of the macrospin but, in order to de-

scribe the effect of the dynamic precession on each individual moment m, the LLG

equation can be expressed as:

∂m
∂t

= −γm×Heff +
α

m
m× ∂m

∂t
(5.5)

The first term shows the interactions between moments and Heff . Furthermore all
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moments m precess at the same frequency and are in phase; in what is termed the

uniform precession mode. The second term shows that α affects individual moments

m rather than on the macrospin M.

The LLG equation for damped uniform precession is valid for bulk and pure

FM materials however, for doped or capped FM materials and thin-film with non-

magnetic (NM) elements some modifications are required for a further dissipation.

These modifications should be able to describe the effects of other mechanisms which

can exist with the NM materials present. It is worth mentioning that the damping

enhancement, which results from doping and capping with NM material, is due the

additional energy dissipation channels that lead to increasing damping. Some of

these effects are associated with interface(s), and with spin-wave and spin-current

propagation from FM into other layer(s) or with the modification of the energy lev-

els which increases the energy dissipation to the lattice and hence damping[46, 135,

136].

However, beyond the intrinsic nature of these effects the addition of NM mate-

rial can lead to extrinsic damping effects. By these effects the energy is transferred

between uniform and non-uniform precessional modes beyond the simplest picture

of intrinsic Gilbert damping of a single precessing macrospin.

5.3 Extrinsic Damping and Bloch-Bloembergen Equation

As the second main part of magnetic damping, extrinsic mechanisms represent the

non-uniform modes magnons. It is linked with energy transformation from the uni-

form to non-uniform precessional modes and is often termed “two-magnon scatter-

ing”. Through this mechanism two counter propagating spin-waves are required

with different spin wavenumber k. The “extrinsic” mechanisms is one of the terms

which adds complications to the image of the energy dissipation through damping.

Extrinsic damping is associated with inhomogeneities, which are present within

a ferromagnetic system. Microscopic crystalline variations in thin-films; such as

point- [137] and line-defects [138] are considered as sources of extrinsic mechanism,
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local structural defects arising from impurities, non-uniformity of the sample sur-

face, sample thickness variation and strain due to lattice mismatches, as well as lo-

cal variations of the magnetic properties are all responsible for extrinsic mechanism.

Systems with a low density of inhomogeneities have a uniform precession, but when

the density of inhomogeneities within a ferromagnetic system is higher the preces-

sion can occur in a number of local resonant modes [6, 44, 46, 118, 138–140].

It has been mentioned that magnon-electron scattering can produce non-uniform

magnons. This occurs when electrons scattered by non-spin-flip collisions (transi-

tions between states having the same spin), cause a uniform mode magnon to be

annihilated and a non-uniform magnon to be created. This can be seen when the ex-

change is anisotropic e.g. in the bulk of a single magnetic layer [13]. The broadening

of the measured ferromagnetic resonance response is considered as an indication of

damping involving these effects [42, 44, 46, 47, 118, 141].

In an a ideal system thin-film can be single domain, however many real systems

are inhomogeneous with multiple magnetic domains, this will affect the energy loss.

In these real systems the domain walls, which are separate the magnetic domains as

a result, the interaction of the magnetisation precession in each domain with each

other will excite the extrinsic two-magnon mechanism. Determining the enhance-

ment of the damping though the extrinsic effect is hard to establish. This is because

of the complex contribution of both intrinsic and extrinsic mechanisms. For exam-

ple, the broadening of the resonance peak in ferromagnetic resonance (FMR) is the

result of the uniform mode and the contribution of two-magnon scattering [42, 44,

47, 118, 142].

A theoretical description of the two-magnon scattering, with the attempt to quan-

tify it in similar way to the LLG equation but taking in to account non-uniform

modes was proposed by Bloembergen. His work was based on Bloch’s dynamical

proposal in his effort to explain nuclear magnetic resonance, leading to the Bloch-

Blombergen (B-B) equation [13, 143, 144]. This equation describes the energy dis-

sipation through two major relaxation channels to the final thermal bath of the lat-

tice [44, 145].



5.3. Extrinsic Damping and Bloch-Bloembergen Equation 91

∂M
∂t

= −γ(M×Heff)− Mx

T2
êx −

My

T2
êy −

Mz −M
T1

êz, (5.6)

Here êx,y,z are unit vectors in the x, y, and z directions, respectively, T1 is the lon-

gitudinal (spin-lattice in NMR) relaxation time and T2 the transverse (spin-spin) re-

laxation time. It can be seen that the B-B equation is not limited to the uniform mode

but, it includes the non-uniform mode also. For comparison with Eq. 5.1 and 5.2

the B-B equation describes the transversal in-plane components of the magnetisa-

tion Mx and My. The difference between Eq. 5.6 and Eq. 5.1 and 5.2 in the damping

term, is that the magnetisation projection along the the z-axis remains constant. It

is suggested that the energy is dissipated via the x and y components of the mag-

netisation [44, 46, 47, 144]. This dynamic description is more reliable regarding the

different modes, but the description lacks the individual moments as covered in LLG

equation is a drawback.

It can be seen from Fig. 5.2, in comparison with Fig. 5.1, the difference between

the two models of magnetic precession, where for B-B model the longitudinal pro-

cess satisfies the condition of conservation of angular momentum, while the trans-

verse component is lost. The description being limited to a certain type of magnon

scattering in B-B equation is another issue, even when it is capable of explaining

more than the LLG equation regarding non-uniform mode [13].

In spite of the complexity that is added by extrinsic mechanisms, magnetic damp-

ing motion has two main pathways; intrinsic and extrinsic. It can be seen that each

mechanism can have its own measurable effects by which they impact the total

damping. Some of these effects are changeable according to the host FM and the

additional NM material, or affect both intrinsic and extrinsic mechanisms. For ex-

ample, spin-pumping and d-d hybridization. These and others effects are covered in

order to understand the current theoretical explanation of damping phenomena.
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FIGURE 5.2: Illustrations of the Bloch-Bloembergen (B-B) gyromagnetic process equa-
tion in the first term, the Z-component of the magnetisation remains constant, but the

effective magnetisation reduces according to the second term.

5.4 Intrinsic and Extrinsic Damping

One of the underlying effects, in magnetisation damping is the angular momentum

dissipation in the form of a “spin-current” in thin-film multilayer systems. This ef-

fect takes place when the FM materials are coupled with adjacent NM material lay-

ers, most effectively with heavy metals. The mechanism by which this effect occurs

is that a spin-current transmits from the ferromagnetic layer to the non-magnetic

heavy metal layer through the interface, which is known as “spin-pumping”. The

transmitted energy carried by the spin-pumped current dissipates in to the NM layer

by spin relaxation processes, due to the non-equilibrium spin population in this layer

as it is shown in Fig. 5.3.

It may seem that spin-pumping is an additional effect, arising externally to the

FM material, but the spin-orbit interaction is the reason that spin-pumping can be

be considered as an underlying intrinsic effect [129, 134]. Another factor is that cal-

culation of this effect can be done under the FMR conditions, where the density of

the pumped spin (js) in DC form can be calculated [146] using

js =
ω

2π

∫ 2π/ω

0

~
4π
g↑↓eff

1

M2
M× ∂M

∂t
dt (5.7)
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FIGURE 5.3: Illustrates the spin-pumping effect in typical FM/NM thin-films with the
effective spin-mixing conductance g↑↓eff at the interface and spin diffusion length λsf .

Where ω is the angular frequency of magnetisation precession and g↑↓eff is the effec-

tive spin-mixing conductance at the interface, which is discussed next. It can be seen

from the equation, the similarity of the spin-pumping contribution to the precessing

magnetisation M dM
dt in the NM layer to the damping term of the LLG equation. The

contribution of the spin-pumping can therefore be also calculated from the dimen-

sionless Gilbert damping parameter α. This enhancement is inversely dependent

on the ferromagnetic layer thickness (dFM), which is explained due to the interfacial

nature, which has a huge impact on this effect [147] as

α = α0 +
gµB

4πMdFM
g↑↓eff (5.8)

The term “effective interfacial spin-mixing conductance”, g↑↓eff , is an integrated

term with spin-pumping, which measures the effectiveness of the spin-current pump-

ing. By this term the spin states at the interface of FM/NM layer is understood by

the conductance at the interface itself. Also g↑↓eff depends on the spin rotating along

the magnetisation axis which is known as mixing conductance. Spin-mixing con-

ductance is a description of variety of events as shown in the same figure. 5.3. These
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events take place at the FM/NM interfaces at the same time as the energy bands

for electrons of FM and NM material interact, where the coupling of the electrons

in the conduction band with the electrons of the exchange split d-band increases the

spin-pumping [129]. The pumped spins diffuse in the NM layer or flow-back as

unrelaxed spin-current into the FM layer [147–151].

The final state of the injected spin through the interface is shown in Fig. 5.3 with

three possibilities; either have full decay, diffuse and relax in the NM layer or flow

back as unrelaxed spin to the FM layer or have a mix between these states [6, 128,

129, 134, 145]. The term spin diffusion length (λsf ) represents the length scale at

which pumped spin-current diffuses in to the NM layer [152, 153]. This effect can

be found experimentally through measurements of the spin resistance, which is a

quantity showing the remaining spin-current after crossing the interface by using a

spin-dependent Ohmic law. The damping contribution of the NM material to the

bulk system can be calculated in terms of λsf

α′∞
α′
≈ 1 +

[√
ε tanh (dNM/λsf)

]−1 (5.9)

where α′∞ is the Gilbert damping enhancement assuming infinite spin-flip rate in

the normal metal, α′ is the additional damping constant due to the interfacial cou-

pling, ε is the spin-flip probability, dNM is normal metal thickness [129]. The NM

materials that have the shortest spin-diffusion length are ideal spin-sinks. The value

of this length is related to the spin-orbit interaction and the spin-flip rate of the NM

material [152, 153]. The damping enhancement depends on the NM material and the

interface atomic intermixing between the FM and NM layers through the effective

spin-mixing conductance g↑↓eff .

The next effect found at the interface of the FM/NM thin-film arises from doping

of the FM material with NM elements that leads to d-d or s-d hybridization. Band

theory and exchange interaction can provide an explanation for this effect, though

the s-d or d-d exchange interactions, or by Ruderman-Kittel-Kasuya-Yosida (RKKY)

interaction [154–156]. For more clarity regarding the s-d and d-d exchange explana-

tion, this effect is the result of “magnetic spin exchange-coupling” of the 3d electrons
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in FM material [156] to the itinerant 4s or 3d electrons respectively. This kind of ex-

change is due to the electronic hybridization. It takes place at the FM/NM interface.

This has been shown by theoretical calculations of the spin density perturbations

due to the electron magnetic moment interaction [41, 155, 156]. This effect has a

major impact on the spin-flip scattering across the FM/NM interface and hence the

spin-mixing conductance and spin-pumping [155, 156]. The damping enhancement

contribution due to d-d hybridization varies with the adjacent or doping NM ma-

terial [6, 156]. However, in the case of doping there are also extrinsic channels for

spin-wave relaxation. Damping enhancement, due to doping of a FM material with

a NM transition metal or rare-earth is explained through the relaxation of a spin-

wave by local changes to the exchange interaction [141, 157]. The d-d hybridization

effect can be seen as the main source for the intrinsic mechanism however, it may

also be a source for the extrinsic mechanism. This is explained in more depth in

Chapt. 6.

It is important to get better knowledge of the underlying correlation of these

effects in order to measure or control damping as it is established in Chapt. 9. It

is also beneficial to understand the relation between the electron distribution and

enhancement of damping in both mechanisms. The separation between these two

mechanisms was the focus of many studies by calculating the damping enhance-

ment value from each separately [6, 48, 86, 147] but, the complication of detecting

each effect individually is one of the main issues which make the separation between

intrinsic and extrinsic not a straightforward process. This is discussed in Chapt. 3.

5.5 Damping Description and Calculation

In general these are based on the direct magnetic dynamic precession and the spin

dynamic motion respectively. The first method is represented by the Kittel for-

mula [81]

f =
γ

2π

√
HRes

eff (HRes
eff + 4πMeff). (5.10)
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were f is the resonance frequency, it is related to material parameters, HRes
eff is the

effective field at which resonance occurs andMeff is the effective magnetisation. The

latter is related with many terms, including saturation magnetisation Ms and effec-

tive surface/interface anisotropy constant, KS.

The principle way of measuring damping is by knowing the resonance field

linewidth (∆H), which is usually taken as the full-width-at-half-maximum (FWHM)

of the magnetic field-swept absorption. This can be done by using an empirical re-

lation [158] through field domain measurements of ferromagnetic resonance

∆H = ∆H0 +
4πα

γ
f, (5.11)

where ∆H0 is termed the “inhomogeneous linewidth” and represents the extrinsic

contributions to the damping of the precessing magnetisation. The intrinsic con-

tribution to the linewidth is derived from the LLG equation in the limit of small

α [159]. For a frequency-swept absorption measurement, the FWHM of absorption

vs frequency may be separated in a similar fashion [82]. The equation of the fre-

quency linewidth (∆f ) can be written

∆f =
γ

2π
α(2H + 4πMeff) (5.12)

It can be seen that in this equation the extrinsic damping is not well distinguished,

which is responsible for the different value of the measured α. There is another way

to find the linewidth for either H or f sweeps, by using the conversion equation.

It has been suggested that this is valid only when the FM material has negligible

inhomogeneous extrinsic damping contribution [83].

It is worth noting that the field derived linewidth is the derivative of the LLG

equation (describing intrinsic damping only), as shown [44, 160, 161]:

∆HLLG(ω) =
2√
3

G

γ2M

ω

cosβ
, (5.13)

where β is the angle between the equilibrium magnetisation vector and the applied
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field. Comparing the field linewidth with the B-B equation shows different depen-

dence . The linewidth ∆HBB from the B-B equation (Eq. 5.6) gives the linewidth due

to the transverse relaxation as [44, 162]:

∆HBB(ω) =
∂HRes

∂ω0

1

T2
, (5.14)

Where HRes is the applied magnetic field at resonance, and ∂HRes/∂ω0 may be ob-

tained from a suitable version of the Kittel formula. Eq. 5.14 is more representative

of the two-magnon scattering, while Eq. 5.13 is limited to the intrinsic mechanism.

The second method to find damping is by using a quantum mechanical equation

of spin dynamic motion which is related to the LLG Eq. 5.3 [163]. The equation of

motion for a single spin can be written as:

∂

∂t
〈S〉 =

gµB
~

(S× B). (5.15)

In the macrospin model the magnetisation M is supposed to be uniform throughout

the sample. The relation between S and M can be written as

M =
gµB
~
〈S〉 (5.16)

5.6 Observations of Damping in Thin-Film Systems

A lot of studies have focused on ferromagnetic resonance and damping of the tran-

sition metal ferromagnets such as Fe [119, 127, 164–172], Ni [119, 127, 173–175] and

Co [5, 75, 119, 127, 151, 164, 170, 176–178]. These elements have been studied as

alone, capped or doped with other materials. Adding another material can prevent

surface oxidation in the FM material and change the damping value. All of these

reasons depend on the magnetic and mechanical properties of the NM material such

as density of state (DOS), electron status on the s and d shell and the material misci-

bility. In order to establish any of these goals, choosing the right material is required.

In general Cu, Au, Si and maybe Ta are considered to have the minimum effect on

damping of a FM material as capping layer. On the other hand other materials have
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an impact to different extents for both capping and doping. Studying damping in

bulk systems shows that the main mechanism is intrinsic damping, even though the

two-magnon scattering is there, but phonons have the largest effect in these systems

[179]. In ultra thin-film system two-magnon scattering is more important however,

the scattering range occurs within hundreds of nanometres. This is because of the

inhomogeneities features within the ultra thin system will acting as sources for the

spin-wave and magnetisation precession. But, these sources will be separated by a

relativity large distance, hence two-magnon scattering may be detected as uniform

spin precession. Thus, scattering mode considered in the uniform mode range with

wavelength magnitude of magnon k ≈ 104 cm−1 [44].

5.6.1 Damping in Ferromagnetic Materials

It has been found that damping in FM thin-film depends on two main factors the

FM material type and the film thickness, dFM. Regarding the first factor, studies

show that Fe has the lowest damping value followed by Co, and Ni has the highest

value. Alloying and doping with different concentrations are discussed in Sec. 5.8

but, Ni81Fe19 which is known as Permalloy is a common ferromagnetic material

particularly the alloy ratio 81:19 [5, 119, 180–182]. In this section, Ni81Fe19 is dis-

cussed along with Co, Ni and Fe because there is no changing in alloying ratio. The

damping dependence on film thickness, dFM, was widely studied [119, 180–182] and

shows the same thickness dependence. Fig. 5.4 summarizes the damping data for a

range of elemental thin-films and Ni81Fe19. It can be seen in Fig. 5.4 that damping

value of Ni81Fe19 is between the values for Ni and Fe. The figure shows a reasonable

results for damping dependence on FM type, the high values of damping are linked

with the magnetic anisotropy in such systems.

5.7 Damping in Bi-Layer and Multilayer Thin-Films

In bi-layered FM/NM, trilayered NM/FM/NM and other multilayers the damping

can be affected by several factors such as the thickness of the FM, the associated NM

layers, the interface properties and if there is a spacer layer between the FM and the
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FIGURE 5.4: The effective damping parameter for elemental ferromagnetic transition
metal thin-films: Fe in the range 4-30 nm; Co with thicknesses between 10 and 20 nm,
Ni81Fe19 with thickness 3.5-20 nm and films of Ni ≥ 20 nm. The thicknesses indicated
are in nanometres and the substrates and any additional underlayers and capping layers

are also listed.

target NM layer in multilayered systems. The spacer layer here refers to a material

with almost no effect on the damping that is used to provide separation between the

FM and NM target layers which can have a significant effect on damping. The next

section discusses the effect of the FM layer thickness dependence.

5.7.1 The Effect of Ferromagnetic Film Thickness on Damping

The variation of the damping parameter with thickness is more complicated for a

ferromagnetic film because of surface and interface effects, which scale in propor-

tion to the inverse of the film thickness. That is why it is often presented graphically

as a function of the reciprocal thickness, 1/dFM where it shows a linear or non-linear

trends. The general trend of the damping dependence on FM thickness is that the

damping increases as the film thickness decreases. Where it is reported in the studies

by different parameters such as: Gilbert damping constant, G, dimensionless param-

eter, α, and ∆H, which all have the same trend with the reciprocal thickness [75, 77,
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151, 165, 170, 171, 173, 178, 179, 183–192]. Some of these studies show a linear damp-

ing reduction with the reciprocal of the FM layer thickness [75, 173, 178, 179, 183,

185–187, 191, 192], and others show a non-linear decrease [77, 100, 151, 172, 184,

188, 189]. The reason for these different behaviours is related in some studies to the

magnetisation orientation, where this can be seen in two thin-films of the same FM

material fabricated under different growth conditions [179], or due to the type of the

NM material used as capping or under layers [75, 147, 151, 173, 178, 179, 187, 189].

These two damping dependencies are shown in Fig 5.5 (a), (b), (c), (d) and (e).

FIGURE 5.5: The effective damping parameter as a function of reciprocal FM layer thick-
ness 1/dFM for (a) ordered and disordered NiFe thin-films. The figure shows linear and
non-linear relations adapted from Ref. [179], (b) for amorphous CoFeB, showing the
sensitivity of the damping to underlayer and capping layer materials, adapted from
Ref. [187, 189],(c) NiFe with different underlayers/capping layers(d) Ni with different
capping layers, adapted from Ref. [147, 173] respectively and (e) Co layer thickness for
different combinations of NM underlayers and capping layers, from Refs [75, 151, 178].
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Studies have tried to link the damping enhancement with the magnetisation ori-

entation in bi-layer thin-films through underlying effects. These studies show that

spin-mixing conductance at the FM/NM interface is changing due to the changing

of the magnetisation orientation. This has been linked to the crystal structure, where

a study showed that the thinnest Co layers is formed with fcc crystal structure while

thicker Co layers have the hcp structure [151].

With the non-linear damping dependence, it has been found that α increases

rapidly with reciprocal thickness when the FM layer thickness is in the range of

dFM < 1 nm. Both intrinsic and the extrinsic mechanisms explain this strong thick-

ness dependence. In more depth, the intrinsic enhancement of the damping coming

from the d-d hybridization effect in thin-films is strongly related to film thickness

dFM [75], while the significant changes of film structure and surface roughness in

ultra-thin-films can increase the extrinsic two-magnon scattering [100].

The damping dependence on film thickness also shows an interface/surface ef-

fect. Another issue to add is that there is lack of information regarding how magnetic

damping varies for each mono-layer that contributes to the total magnetic damping

of the FM system. The contribution from each mono-layer is still not well under-

stood or accessible experimentally, and there is a lack of information regarding this

contribution. The interface/surface effect on damping will be discussed in the next

section, where adding a NM material shows the impact of this factor on damping.

A theoretical study by Barati et al. discussed the contribution effect by calculating

α for each individual mono-layer in Co and Co/NM, (NM = Cu, Pd, Ag, Pt, and

Au) thin-films, where the calculations have been done using a realistic nine-orbital

tight-binding model including spin-orbit coupling. This calculation used spin orbit,

SO, torque term with the Lorentz functions of the electron scattering rate, Γ, at Fermi

energy ,εF. The final equation used to calculate α is written as:

α =
1

NFM

∑
l

αl (5.17)

where NFM is the number of atomic layers in the FM parts of the thin-film, (αl) is

the individual contribution from each layer l. Fig. 5.6 shows the calculation of αl for
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FIGURE 5.6: An examples of damping parameter contribution calculation from each
mono-layer in bcc Fe, fcc Co and fcc Ni, of 18 ML thickness, adapted from [6].

bcc Fe, fcc Co and fcc Ni, where it shows the largest contribution to the damping is

from the outer layers and damping decreases with moving to the material central

layers [6, 193]. These two studies have good agreement regarding the contribution

to the damping in the FM thin-film however there is no experimental results which

can support this theory.

In terms of damping variation with each atomic layer inside FM films, these stud-

ies suggest that damping distribution inside specific FM layer is not homogeneous.

It is related to the intraband transitions which seems to be take place in Co and Fe

heavily in the outer atomic layers to the surface. Such transitions in Ni are more

likely take place in the second and toward the centre of the layer. It has been argued

that intraband transition are the results of considering SOI term in such materials.

The suggestion, which have not been approached yet is that the variations that can

occur on damping in total and damping in these atomic layers with large contribu-

tion, in case of outer layer modification. This will be seen and discussed in details in

Chapt. 9.
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5.7.2 The Effect of Non-Magnetic Layer Thickness on Damping

Adding NM layer(s), adjacent to a single FM layer thin-film, can change the damp-

ing. As discussed in Chapt 2 this can also subtly change the structure of the ferro-

magnetic layer. The general effect of adding NM as capping and/or under layer is

the enhancement of damping via both intrinsic and extrinsic mechanisms [4, 5, 75,

100, 116, 151, 165, 169, 173, 177–179, 183–189, 194–196]. The various mechanisms

responsible were discussed earlier in sections 5.2, 5.3 and 5.4.

Before discussing the relationship between damping and capping layer thick-

ness, dNM, it is important to explain the influence of the specific non-magnetic ma-

terial on damping value. For the same FM material the specific NM material can be

classified into three categories. Pt and Pd are considered as the most effective atomic

species for damping enhancement. Cr and Ir have a smaller effect in comparison,

while Au, Ag and Cu, have almost no effect on damping [4, 5, 100, 151, 165, 172, 177,

178, 183–186, 194, 195, 197]. Fig. 5.7 shows a good example of the damping value

of FM (NiFe) with various NM capping layers. The difference in the enhancement

can be seen in the figure, by adding a specific NM mentioned. The details can also

be linked to interface intermixing, improving the spin-pumping effect and diffusing

the spin with minimum reflectance to the FM layer.

Fabricating more complicated structures like NM layers as capping and under

layers or repeating the FM/NM system to n times enhances the damping. The first

case shows a doubling of the damping value in some studies [5, 198] or just a lit-

tle enhancement in others [165] which is attributed to providing extra spin sinking

for the pumped spin-waves in the system, while for the second case the damping

increases with the increasing of n [77, 176] but, linking this to a specific effect is

difficult. Also there are studies on various complicated thin-film structures such as

FM/NM1/NM2, NM11/FM/NM1/NM2, NM2/NM1/FM/NM1 or

NM2/NM1/FM/NM1/NM2 [169, 177, 178, 194, 195]. These studies used Co, Fe,

Ni80Fe20, Ni81Fe19, CoFe and YIG as FM layer, Cu, Cr, Pd, Ir and MgO as the first

non-magnetic layer, NM1, and Ta or Pt as NM2. Many of these studies investi-

gated the role of the spacer layer on damping enhancement by changing the spacer
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FIGURE 5.7: A summary of the effective damping parameter for NiFe thin-films com-
bined with various NM layers.

layer thickness, where Cu was used as the spacer layer [169, 177, 184, 194–196]. In

these studies the role of the spin diffusion length, λsf , was discussed beside spin-

pumping, which determines the spin current reaching the second NM layer when

dNM1 is small. It was also shown that Cu has not much effect on the damping be-

cause with increasing the Cu thickness in general the damping decreases, which is

not the case for other NM capping materials such as Pt or Pd, as it can be seen in

Fig 5.8 as example. The status is that Cu prevents spin-current to reach to the sec-

ond NM layer at thickness between 2-100 nm or even more [169, 177, 194–196]. This

shows the importance of using a material with a large λsf , which has no significant

effect on damping.

After discussing the effect of the NM material type on the damping, with the

thickness dependence of damping of Cu only, we now move to the damping depen-

dence on the thickness of NM materials and to focus on the most effective ones on

damping such Pt and Pd, where these metals were used as capping or under lay-

ers or both. The general thickness dependence of damping for these two metals is

that the damping increases rapidly with increasing dNM then it usually reaches sat-

uration at a certain thickness [5, 188, 195, 196, 199]. The main effect on damping
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FIGURE 5.8: Effective damping parameter as a function of Cu spacer layer thickness
separating a FM layer (CoFe or YIG) from another NM layer (Ta or Pt) [195, 196], with

large thickness range of capping layers.

in these studies is associated with spin angular momentum pumped from the FM

layer to the NM layer. These materials provide a good spin sink to absorb spin-

current with minimum back reflection to the FM layer, since Pt and Pd have low

spin diffusion lengths of less than 1 nm and 10 nm respectively [188, 196, 200, 201].

The main differences in these studies is the thickness at which damping approaches

a plateau and the maximum damping value as can be seen in Fig 5.9. These studies

used 30 nm of Finmet (Fe66.5Cu1Nb3Si13.5B9Al7), 19 nm of YIG and 10 nm of LSMO

(La2/3Sr1/3MnO3) as the FM material, with Pt and SrRuO3 as NM capping layers

respectively [195, 199, 202]. The saturation damping values were 8.6 × 10−3 at dPt

≥ 4 nm for the first study [199], ∼ (35.4 ± 0.6) × 10−4 at dPt ≥ 3 nm for the second

study [195] and 0.002 at dSrRuO3 ≥ 5 nm for the third study [202]. The range of the

NM material used in these studies was 1-15 nm with relatively large steps of dNM

see Fig 5.9.

For the second element; Pd, a similar damping dependence on dNM has been

observed, even though the studies investigated more than one capping layer sys-

tem. Studies of trilayer thin-film systems, using Co90Fe10 with Pd capping, and with

different number of layers and other materials as an underlayer, showed the damp-

ing saturates when the NM1 layer thicknesses is between 5-10 nm. The maximum

damping value saturates at 0.020 to 0.023 [188, 196] as shown in Fig 5.10. This is in

good agreement with the spin diffusion length of Pd [201], which would provide an
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FIGURE 5.9: Effective damping parameter as a function of NM layer thickness of either
Pt or SrRuO3 capping layers on different FM layers [195, 199, 202], with large thickness

range of capping layers.

explanation consistent with other work on capping layers.

There are other studies which investigated the role of the NM thickness on damp-

ing in other more complicated systems [FM/NM]n, where n is the number of repe-

titions [203, 204], or they have investigated temperature dependence of damping in

NiFe [205–210], ultrathin Co40Fe40B20 [211, 212] or Co thin-films [213, 214]. How-

ever these studies are outside the focus of this thesis, but more information can be

seen in the main source of this chapter [116].

FIGURE 5.10: The effective damping parameter as a function of Pd capping layer thick-
ness on CoFe ferromagnetic films with Ta/Pd underlayers [188, 196].

Summing up the results of the studies that investigated the damping dependence

on dNM, these studies have used a wide range of thicknesses of the NM materials and
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show the effects of the spin diffusion length and the spin-pumping. The effect of the

interface/surface was produced in general the same thing for d-d hybridization ef-

fect. The theory that describes damping in bulk FM systems and the contribution

from each mono-layer, provides a theoretical explanation regrading the effect of the

NM material as an adjacent layer on damping with contributions from each indi-

vidual NM mono-layer. The surface/interface effect is explained by this study by

calculation α of the FM/NM system, with various NM material coupled with Co,

showing that main contribution to damping at the FM/NM interface is intrinsic. It

can be seen from Fig. 5.11 that the largest contribution to the total damping is from

the first mono-layer in the adjacent NM material especially Pt, while there is no ef-

fect when the NM layer is Cu [6]. In all experimental studies the interface is already

developed to a full intermixed layer which gives the final status of the underling

mechanisms mentioned above.

FIGURE 5.11: Calculations of the damping contribution from each mono-layer of FM;Co
and NM (a) Pt, where it shows the largest contribution to α from the mono-layers near
to the interface and (b) Cu where it shows no contribution to the total damping, adapted

from [6]
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5.8 Damping in Doped and Alloy Thin-Films

Doping in the literature is somewhat flexible terminology, because it is linked with

the percentage of dopant at which changes in the magnetic and/or crystallographic

properties of the host material occur. For example adding a new material to the

host up to 7 % can change the structure of the system from body-centred cubic (bcc)

to body-centred tetragonal (bct) [215], on the other hand this is not the case even

when the concentration change is more than 10 %, although it has a huge impact

on damping [216]. In this thesis doping is defined as the addition of an impurity

element(s) into a host material in concentrations up to 10 % and the aim is to show

the general trend on damping.

Doping any FM system can be executed by three techniques, co-deposition e.g.

co-sputtering [181, 182, 217–220], ion beam implantation [180, 221], or by ion beam

intermixing of bilayers [4, 222]. These are explained in Chapt. 4. Doping in general

can change a lot of properties in a FM system, including the electronic behaviour

such as resistivity [223] or the magnetic behaviour such as saturation magnetisa-

tion [166, 182, 197, 218, 220] and magnetic anisotropy [180, 182, 197, 217, 224, 225]

of the system. The general impact of doping on damping is that damping increases

with increasing the concentration of doping, both via intrinsic and extrinsic mech-

anisms [4, 119, 181, 215, 217, 218, 221, 222]. As discussed earlier doping changes

the crystal structure and the Fermi energy level [4, 119, 166, 181, 217–220, 223, 224].

Extrinsic damping is the dominant mechanism in very low doping regime, how-

ever, in the high doping regime alloying is a better term, which gives new magnetic

properties including intrinsic damping [4, 119, 223, 224, 226].

5.8.1 Systems with Low Doping

The most common case of doping is by co-deposition, which has been used in many

studies to investigate the effect on damping. The general trend of damping enhance-

ment is linearly with increasing doping concentration in the low doping regime. This

effect is much pronounced when the dopant are heavy transition metals [167, 181,

182, 217–220, 227] as shown in Fig 5.12. The strongest effect is with Os doping, which
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has strong SOC as a 5-d metals. It can be seen from the same figure (b) that Cr dop-

ing has a different effect on damping when the concentration is below 8 %. This

behaviour is not explained in the studies but, it seems to be a key factor for Cr which

is used later in this thesis to control damping. Higher enhancement of damping with

lower dopant concentration is observed when using rare-earth elements such as Dy,

Tb, and Ho, however, Gd did not show the same effect [181, 182, 217–220]. Damping

increases with rare-earth dopants can not be explained due to their atomic number

or SOC [219] and other studies did not show consistency with the earlier results of

Sm, Eu, Tb, Dy, and Ho dopant [220], see figure 5.12 (c).

FIGURE 5.12: Damping parameter as a function of atomic concentration of (a) and (b)
transition metals Ref. [217] and (c) rare-earth dopants. Results from two different stud-
ies: Solid symbols from Ref. [219] and open symbols from Ref. [220]. All figures show
correlation between damping and the dopant concentration, however the trend in (b)

shows more non-linear dependence at high concentrations.

For Ion-implantation of dopants the same damping enhancement trend is ob-

served however, the trend is non-linear when the doping concentration is a few

atomic percent. This has been explained by the inhomogeneities which result from

lattice damage in Ni81Fe19 caused by the Cr ion-radiation [180]. On the other hand
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the opposite trend was observed, in a more complicated system with bi-layer of

FM/antiferromagnet (AF)/FM (Ni81Fe19/Ir23Mn77/Ni81Fe19). In this system Cr ion-

implantation decreases the exchange interaction at the interface [221].

The third doping method uses focused ion-beam (FIB) irradiation with 30 keV

Ga+-ions. This method is used with FM/NM bilayers thin-films, the effect of this

method is interface widening, which leads to increasing damping via the extrinsic ef-

fect, where the dopants act to break the symmetry of the crystal system and creates a

compositionally graded-alloy at the interface in a FM/NM bilayer system [166, 215,

221], which will create centres for two-magnon scattering. The Ga+ implantation is

very limited so its effect may be neglected. A recent study with this method investi-

gated Ni81Fe19 capped with Au or Cr [222]. For Au the damping increased linearly

with the FIB dose, which agrees with the suggested underlying mechanisms men-

tioned above, however, with Cr the inverse behaviour was observed. It can be seen

in Fig 5.13 that the damping deceases with increasing FIB dose, where α value at 0 %

dose is higher for the bulk Ni81Fe19. This was explained with the ion-beam effect on

the capping layer where it is sputtered away by FIB milling which will reduce its

thickness thus, the intrinsic mechanism [222]. This also agrees with the damping

behaviour for the doping FM material with Cr in the previous section.

FIGURE 5.13: Damping reduction as a function of focused ion-beam irradiation dose,
the general trend shows linear reduction behaviour, adapted from Ref [222].
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5.8.2 Systems With High Doping: Alloys

It is more common to describe the combination of two FM materials as an alloy even

when the atomic constituents range is few percentage [4, 166, 217, 219, 221, 222]. The

combination of a NM metal with a ferromagnet is sometimes described as doping

even when it is in the range of tens of atomic percent [181, 217–219]. As explained

before dopants can act as defects and they will change the host material electronic

structure and thus the material magnetic behaviour [167, 217, 223, 224, 228]. The

most typical and clear indication that can be used to separate doping from alloying

is the changing crystal phase of the resultant material [119, 166, 168, 180, 192, 197,

215, 216, 220, 227, 228].

As discussed in Sec. 5.6.1, Ni81Fe19 is one of iconic magnetic alloys and chang-

ing the atomic ratio will change the damping. For example, it has been found that

changing the concentration of alloys of the three well know FM transition metals;

Co, Fe and Ni has a great impact on the damping. It can be seen from Fig. 5.14

that the range of damping variation in CoFe alloys is small while the strongest effect

on damping is in the alloys involving Ni; NiFe or NiCo. These effects are associ-

ated with the energy level modification regarding changes in the crystal phase with

changes of the composition [119]. CoFe shows a crystal phase change effect on the

damping where changing the Co concentration in the range 75-85 % impacts on the

damping value as shown by two different studies, where the analysis shows that

at 75 % Co the system will have a mixed bcc/fcc phase [87, 227]. Even though,

both studies show agreement with Co concentration, the latter studies achieved a

very low damping value, of order 10−4, when the the composition of the alloy is

Co25Fe75. The explanation to this low damping value is linked to the DOS, where

this concentration leads to low DOS at Fermi level that minimises the contribution

of intraband transition to the intrinsic damping [87]. Many other studies have inves-

tigated alloying or high doping on damping with many complicated systems such

as: iron-, cobalt- rich Heusler alloys where the latter is very sensitive to the system

composition [119, 216, 223, 224, 228]. However they are not the subject of this thesis.
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FIGURE 5.14: The effective damping parameter as a function of the elementary compo-
sitions for binary alloys of Fe, Co and Ni from [119], +, 5, 4, ⊕, 	

, F from [87, 173, 175, 179, 184] respectively and belong to the group colour.

5.9 Limitations of the Recent Experimental Results and the

Focus of this Thesis

In this chapter magnetic precession and damping were introduced and linked to the

most well-known mechanisms for damping, these mechanisms consider the under-

lying sources for damping. Many experimental studies have been reviewed with

their results and analysis and with the support of the theoretical studies explained

to gain a better understanding of the damping phenomena. However,there is lack

of understanding of the source of damping in any systems the general idea is the

SOC and its modification via spin-mixing, spin-pumping and spin diffusion length

effects. However these effects are not well understood and the modification of these

effect due to additional NM layers is still unclear. Also the correlation between d-d

and s-d hybridization and the mentioned effects are not well understood. On the

other hand, the intrinsic and the extrinsic mechanisms are thought to be separated

from each other and they my come from different sources even when they share

some underlying effects. Doping is mostly thought of as an extrinsic effect, where

defects are created by the dopant in the host material, or as an intrinsic effect , by

modifying the energy states at the Fermi energy level. Linking damping with other

phenomena such as DMI is not well understood and the effect of both phenomena
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on domain wall motion is rarely investigated. All of these issues are the focus of

the following chapters, showing new results regarding understanding damping at

the interface in bi-layer thin-films, controlling damping by changing the interface

nature, linking the effects of damping and DMI to gain a better understanding of the

impact of these phenomena on domain wall motion and finally controlling damping

in thin-films by synthetic modifications of band structure in surface mono-layers of

Co to reduce the effective damping. These studies are presented in Chapt. 6, 7, 8

and 9 respectively. The work in these chapters is first, given insight to understand

the development and the evolution of damping from the extrinsic to the intrinsic

stage with clearer linkage and correlation between the main mechanisms and their

underlying effects. Secondly, showing the same aspect with respect to the interface

modification, thirdly, to show the impact of both mechanisms on DMI and the range

at which DMI and damping have the strongest joint effect. Finally, the contribution

to the damping is well investigated based on the theory and thus, damping is ex-

plained and controlled in macroscopic view with the capability to change its total

value for well-known transition material; Co to ultra low value with an order of

10−4.
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Chapter 6

Damping Evolution in FM/NM

Thin-Films as a Function of NM

Thickness

6.1 Introduction to Damping

The precessional dynamics of magnetisation are important to both magnetic field

and current driven applications such as; magnetic data storage. The magnetic pre-

cessional and damping govern the data writing speed and switching behaviour in

magnonic-based device concept and spin-transfer torque magnetoresistive random-

access memory (STT-MRAM) devices. Thus, understanding the role of damping in

thin-film systems will add to the research and contribute to the knowledge on the

magnetisation dynamics. The work in this chapter is published by the American

Physical Society (APS), Physical Review B journal [5].

Damping and damping enhancement were explained in Chapt. 5 through the

recent experimental studies on bulk FM material [4, 6, 44, 48, 217], bi- and multilay-

ered thin-films [134, 147, 149, 165]. The origin of damped magnetisation precession

was addressed in many studies in terms of theory and experiments [40, 44, 48, 151,

164, 195, 217, 229–232] with the aim of understand damping fundamentals. For the

magnetic device applications Co and Ni81Fe19 are the focus magnetic research FM

materials due to their attractive physical and magnetic properties. Combining these

ferromagnets with a heavy NM material, as an adjacent capping layer, will change
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the total damping value. As mentioned elsewhere, intrinsic damping is a uniform

mode magnon and extrinsic damping is associated with non-uniform modes, these

two mechanisms are the result of spin-orbit interaction and energy dissipation. The

first mechanism is linked with spin-mixing conductance, spin-pumping and spin-

diffusion length, while the second mechanism is linked with roughness and defects

in the system in general and at the interface region [6, 44, 48, 75, 77, 148, 151, 164,

176, 187, 195, 217, 231–234].

Intrinsic damping at the interface via spin-mixing conductance with the aid of

the d-d hybridization effect facilitates the spin-pumping effect allowing the pump-

ing of spin in the NM layer where it can dissipate [6, 48, 77, 147, 164]. The extrinsic

mechanism provides additional channels for the energy dissipation due to defects

and roughness via additional magnons associated with non-uniform precessional

modes [6, 48, 187, 235]. The extrinsic damping is also linked with the interface in

general, where roughness and intermixing can increase this mechanism and thus,

the total damping [6, 44, 48, 77]. Linking these mechanisms and the effect of chang-

ing the density of states at the Fermi energy level is another factor that can explain

the variation of magnetic damping at the interface region [6, 48, 77, 176, 231, 232].

The specific electronic behaviour has been explained for the materials involved in

damping studied in a variety of systems with non-magnetic layers including Au,

MgO, Cu and Ta on FM layers of Co, CoFeB and Ni80Fe20 [6, 48, 147, 187, 235]. In

these studies dNM was increased upto 15 nm with dNM increasing steps of 1 nm,

where the interface region was already structurally completed.

Thus, it is of great interest to study the evolution of magnetic damping in FM/NM

bi-layers as the interface develops as a function of the NM layer thickness increasing

through the sub-nanometre range. The role of both intrinsic and extrinsic mecha-

nisms in the enhancement of damping is demonstrated by a comparison with re-

cent theoretical predictions. These predictions were made in a theoretical study of

FM/NM bi-layers by Barati et al. [6, 48], which reported the dependence of damping

whilst increasing in mono-layers the thickness of the non-magnetic layer, assuming

an ideal flat interface. It was predicted that for NM layers the damping depends on

the specific material and the layer thickness. The largest impact was for the case of
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a Co/Pt bi-layer, where with the addition of Pt mono-layers the magnetic damping

was found to increase significantly and non-linearly with NM thickness. Also, it

was predicted in the same study that damping is not homogeneous throughout all

the constituent mono-layers of the FM and NM materials. In order to investigate

these predictions, a well-controlled thin-film deposition study was needed to estab-

lish precise NM layer thicknesses, the interface width and the FM crystal structure.

6.1.1 Formalism for Analysing Damping

The measured effective magnetic damping parameter, αeff , can be written as the sum

of the bulk, intrinsic and extrinsic contributions:

αeff = αint
0 + αext (6.1)

where αint
0 and αext are the total intrinsic and extrinsic damping parameters of

the system, respectively. Furthermore, αint
0 can be expressed such that:

αeff =
G0

γMs
+ αs/dFM + αext (6.2)

where, G0 is the bulk Gilbert damping parameter, γ is the gyromagnetic ratio, Ms is

the saturation magnetisation, dFM is the ferromagnetic layer thickness and αs is the

interface’s contribution to the effective damping [6, 39, 48, 195].

The damping dependence on thickness may be explained by a mixture of spin-

pumping, intermixing, and extrinsic two-magnon scattering effects. In this study,

αeff was measured as a function of the NM layer’s thickness.

6.2 Experimental Details

A variety of Co and Ni81Fe19 based thin-films have been fabricated in this study,

where bi-layer thin-films were deposited on a thermally oxidised silicon substrate

with a 100 nm SiO2 layer. This was done using UHV magnetron sputtering with

a base pressure ∼10−8 Torr; more information about sample preparation and mag-

netron deposition can be seen in Chapt. 4. The FM layer was deposited directly on
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to the SiO2 substrate and the complete structure for all the produced thin-films was

Si/SiO2/FM/NM. The FM layer had two selected thicknesses, 4 and 10 nm for Co

and 4 and 7 nm for Ni81Fe19. The thicknesses were chosen to maximise the interac-

tion between the films and the incident magneto-optical probe; however, the 10 nm

for Co and 7 nm for Ni81Fe19 are the focus of this study. This is because the limitation

of the damping sensing and the time available for extracting data from the measured

samples. It may be considered that the FM material’s surface in the thin-films may

have oxidised completely or partially due to incomplete capping layers. Preventing

this can be done by adding another capping layer, but this will increase the physical

system’s complexity, hence shift the results and may confuse the general trend. The

study aimed to examine the sub-nanometre thickness effect of specific NM materials

on the damping. So the nominal capping layer thicknesses was varied from 0.2 to 10

nm with extra care regarding the deposition parameters in order to achieve a 0.2 nm

step difference to cover the capping layer range from 0-1 nm. After that, larger steps

from 0.5-1 nm were made to complete the capping layer thickness range.

6.3 Thin-Films, Thicknesses, Interface Width and Crystal

Structure

A structural analysis was carried out using a Bede-D1 diffractometer with a CuKα

system for grazing incidence X-ray reflectivity (XRR) angle to study layer thick-

nesses and interfacial structures, and for X-ray diffraction (XRD) to analyse the crys-

tal structure, more information can be found in Chapt. 3 and Ref. [57, 61, 236]. The

true specular XRR data were obtained by subtraction of the measured forward dif-

fuse scatter and was modelled with best fitting simulations generated using the

GenX code [61]. Furthermore, XRD results were analysed to determine the out-of-

plane lattice parameter. For thin-film thickness and interface roughness, Fig. 6.1

summarize the best simulated fit for samples of Co capped with Pt and Au, and

Ni81Fe19 capped with Pt. The data represent the FM and the NM layers, thickness

and roughness development at the interface. The data obtained from x-ray reflectiv-

ity are shown in Table 6.1, where the best fitting simulated thickness and roughness
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of the FM/NM bi-layers are presented. The data in the table provide crucial infor-

mation, which gives an indication about the interface’s nature between the FM and

the NM layer.

TABLE 6.1: Structural properties for selected Co/Au, Co/Pt and NiFe/Pt bi-layers sam-
ples extracted from XRR measurements: FM layer thickness, dFM; NM layer thickness,

dNM and roughness at the FM/NM interface.

Sample Structure dFM (nm) dNM (nm) Interface Width (nm)
Co (10 nm) / Au (4 nm) 9.44 ± 0.05 3.5 ± 0.04 0.61 ± 0.11
Co (10 nm) / Pt (2 nm) 9.56 ± 0.09 2.8 ± 0.05 0.66 ± 0.07
Ni81Fe19 (7 nm) / Pt (1 nm) 7.24 ± 0.11 0.94 ± 0.08 0.92 ± 0.05

Increasing the NM layers thickness will reduce the interface’s roughness and

will form a complete layer. The reduction in the topological roughness is clear in

Fig. 6.1 (a), (b) and (c), where the Kiessig fringes became shallower as the NM layer’s

thickness increased; for more information see Chapt. 3.

FIGURE 6.1: Examples of x-ray reflectivity data and the best fitting simulations for (a)
Co (10 nm)/Pt (dPt), (b) Ni81Fe19 (7 nm)/Pt (dPt), (c) Co (10 nm)/Au (dAu) and (d) XRD

structural analysis for Co and NI81Fe19 capped with Pt

The most representative data for the FM/NM interfacial region relates to when

the NM metal forms a complete layer over the FM layer. These data give the total

interface width that includes topological roughness and intermixing. The interface
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width is important as it provides an indication of the thickness at which the NM

capping layer changes from island-like coverage to continuous coverage of the FM

layer. The XRR structural analysis shows that the interface width was in the range

of 0.6 to 0.7 nm, which indicates that both Pt and Au form a continuous layer on

Co at a thickness greater than ∼ 0.7 nm. However, the data for Ni81Fe19 shows

that the NM capping layer becomes continuous at thicknesses above ∼ 0.9 nm due

to the larger interface width. The differences in the interface widths between Co

and Ni81Fe18 may come from their different crystal structures. The XRD analysis

and literature show that Ni81Fe19 has a fcc crystal structure while Co’s is hcp [6, 48,

151, 235]. As it can be seen in the same figure (d), the XRD pattern for Co 10 /Pt 4

nm and Ni81Fe19 7/Pt 4 nm is where the first diffraction peak is for fcc Pt and the

second represents the hcp Co (0001) and fcc Ni81Fe19 (111) [151, 237]. As it is known

that Au and Pt are both fcc, for Au and Pt capping on Co, the interfacial roughness

is very similar; however, details of the local atomic arrangement are likely to be

different. This is because Co and Pt are miscible with each other while Co and Au are

immiscible [238]. The deposition growth models in Chapt. 4 explain the formation

of the localised islands-growth mode of the NM material; these islands will expand

and develop into a continuous capping layer as the NM thickness increases.

6.4 TR-MOKE, Data Analysis and Magnetic Damping Thick-

ness Dependence

Dynamic magnetisation behaviour was studied ex-situ using time-resolved magneto-

optical Kerr effect (TR-MOKE) magnetometry, using an all optical pump probe tech-

nique at the S.N. Bose Centre for Basic Sciences, Kolkata, India, by A. Ganguly. More

details about the TR-MOKE system can be found in Chapt. 3 and Ref. [239–242].

Raw data obtained by using this technique and use to give the first indication of the

dimensionless effective damping parameter αeff . The results shows a strong depen-

dence of αeff on dPt for Co and Ni81Fe19, while not much dependence on dAu was

observed. Fig 6.2 presents examples of the TR-MOKE raw data for Co and Ni81Fe19
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with Pt and Au capping layers, which show different Kerr rotation oscillating val-

ues and damping for the Pt capping layer while there is almost no change for the Au

capping layer.

The figure shows the final fit after removing the ultrafast demagnetisation and

subtraction of the background signal. This was done by fitting with a bi-exponential

function, as it is explained in Chapt. 3. The background signal was the result of the

sample’s initial recovery of magnetisation, after which there were two stages, which

describe the pumps induced demagnetisation. The first one took about 1 ps for relax-

ation and the second about 20 ps. The latter is associated with dissipation of energy

between the lattice and surroundings, which decreases with the addition of the cap-

ping layer. It can be seen from the figure that the magnetisation precession for the

FM-NM bi-layers with certain NM capping thicknesses are damped faster. The best

fit curves indicate single-mode damped precession behaviour, which represents the

Landau-Lifshitz-Gilbert with the spin rotation relation, by which αeff was obtained.

FIGURE 6.2: Examples of the TR-MOKE data for (a) Co and Ni81Fe19 capped with 0.2 Pt
and Au, (b) capped with 1 nm Pt and Au, and (c) illustrates the tin-film stack with the

frequency.

The final extracted αeff as a function of dNM is presented in Fig. 6.3 (a) and (c),

where NM = Pt and Au. It can be seen that there is a significant increase in the effec-

tive damping parameter with the increase of Pt thickness for both Co and Ni81Fe19.

Then αeff reaches a broad peak when Pt’s thickness is 0.7-0.8 nm for Co and 0.6 for
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Ni81Fe19. For the Au capping layer on Co, however, the effective damping parame-

ter is almost constant as the Au’s thickness increases. It can be seen that the effective

damping parameter value for a pure 10 nm Co thin-film is 0.029 higher than the

reported value in the literature for hcp bulk Co: 0.011. This difference may be at-

tributed to the surface oxidisation of the uncapped Co and Ni81Fe19 films, which

may enhance αeff in comparison with the α of the bulk Co. The oxidation effect is

justified by the interface width in Table. 6.1 from the XRR measurements analysis.

For Ni81Fe19, the increase in damping with dPt up to 0.6 nm is explainable, but, the

damping data are limited to the Pt capping layer thickness, up to 1 nm. The be-

haviour of αeff as a function of dNM can be seen as three regions: an initial rapid

increase with the Pt capping layer increasing up to 0.4-0.6 nm (region I), followed by

a peak and stabilisation for Pt thickness 0.6-0.8 nm (region II), after that falling back

to a lower αeff value and remaining almost constant at Pt thickness > 0.8 (region III).

Even though, αeff fell in region III its value is still higher than the initial value. This

is discussed in more detail later.

Going back to the same figure (b), the precessional frequency, f , and the satu-

ration magnetisation, MS, for Co/Pt thin-films, are plotted as a function of dPt. It

can be seen that f and MS show a similar dependence on Pt thickness. The highest

values at which dPt increases are in the range of 0.6-0.8 nm. Furthermore, the MS

value obtained for bulk Co is lower than the reported value in the literature how-

ever, with Pt thickness increasing to 0.6 nm the MS reaches a comparable value with

the literature.

An indication of the damping nature and the dominant mechanism can be ob-

tained, using TR-MOKE, as explained in Chapt. 3. This can be done by executing

further TR-MOKE measurements in different applied bias magnetic fields, which

will change the precessional frequency. The observed αeff can be used to indicates

the nature of the damping mechanism, where changes in the damping value are a

sign of extrinsic non-uniform modes existing, which can impact the αeff value. In-

creasing the applied field will suppress these modes however, calculating the con-

tribution value of the extrinsic mechanism is not easy task.

Fig. 6.4 illustrates this process, where it shows αeff as a function of f for two
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FIGURE 6.3: αeff as a function of dNM for (a) Co/Pt and (b) Ni81Fe19/Pt. (b) fre-
quency and saturation magnetisation as function of dNM and ∼1.4 kOe of magnetic
field strength, it shows similar trend in their variations. The shaded bar indicate the

Pt thickness where the Pt became continuous.

selected Co thin-films capped with a discontinuous 0.6 nm and continuous 2 nm

Pt capping layers respectively. It can be seen that for the 0.6 nm Pt capping layer,

the variation in f shows suppression of the non-uniform modes, thus the effective

damping parameter decreases linearly, while there is almost no impact of f on αeff

in the case of the 2 nm Pt capping layer. It has been shown that for 10 nm Ni81Fe19

capped with 3 nm Pt, where Pt forms a continuous layer, that the damping is also

constant as a function of the precessional frequency. This result was found in the

study of Chapt. 7.

The dependence of the effective damping parameter presented in Fig. 6.3 (a) and
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FIGURE 6.4: Damping parameter αeff as a function of precession frequency for 10 nm
Co films capped with 0.6 nm and 2 nm Pt. The extrinsic damping decreases as dNM = 2

nm where it became a negligible value .

(c) shows the complex behaviour as a function of dNM that is linked with three dis-

tinct regions. This behaviour can be understood through the underlying contribu-

tion of the intrinsic and extrinsic mechanisms, explained in Chapt. 4, which occur at

the FM/NM interface. The impact of such effects, d-d hybridization, spin-pumping

and two-magnon scattering, are important factors for the enhancement of the damp-

ing in any given FM/NM thin-film [4, 6, 48, 77, 176, 195, 222, 231, 243]. The results

shown in this chapter represent new experimental data that can be linked with re-

cent theoretical studies [6, 48]. It is suggested in this study that damping increases

as a function of increasing dNM up to a certain value before it decreases again to

a constant value when further increasing dNM. However, in the theoretical study,

damping was calculated for fcc Co, while in this chapter Co was largely hcp. A di-

rect comparison between the results is still valid because the crystal structure of the

Pt and Au capping layers are the same, which is fcc [244].

In order to understand the damping behaviour, the intrinsic and extrinsic na-

ture of αeff should be explained for each thickness region. The intrinsic contribution

in region I can be attributed to two main underlying effects: d-d hybridization and

spin-pumping. These two effects can be considered when the capping layer is Pt.

The first effect will change the electronic structure at the FM/NM interface, while
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the second effect facilitates the dissipation of the angular momentum from the FM

layer to the NM layer via the pumped-spin current, where both effects have an in-

trinsic nature. Considering the spin-pumping effect, this should be limited to the

dPt range at which spin-pumping can be effective. This range is when Pt thickness

is comparable with the spin-diffusion length, λsd [177, 184, 194, 195, 198]. Thus, d-d

hybridization can be considered as the main intrinsic contribution to the enhance-

ment of the damping in region I. It is worth noting that the d-d hybridization effect

depends on the availability of electrons, which in this case is 5d for Pt, in the NM

material and the opportunity for hybridization with the 3d electrons in the FM ma-

terial, especially at the interface. This is one of the key factors which shows good

agreement between this study and previous studies and also with the theoretical

study by Barati et al. [6, 44, 48, 75, 77, 148, 151, 164, 176, 187, 195, 217, 231, 232, 234].

For the extrinsic contribution to the damping, two-magnon scattering is the main

direct effect. The two-magnon scattering effect exists in the systems where local

variations, topological roughness, defects and impurities exist, with the focus at

the FM/NM interface. It is suggested that all the mentioned features may occur

in region I, as the Pt capping layer in this region is discontinuous. This will create

variations in the local electronic properties at the interface due to the Pt distribu-

tion variation. Hence, the interface will have areas with different intrinsic damping,

which will cause local variation of damping precession. Thus, this will give rise to

the two-magnon scattering, by which an interaction between different localised pre-

cessional modes occurs. This is supported by the dependence of damping on f in

Fig. 6.4, where the damping increasing as the frequency decreases, which is a clear

indication of the extrinsic effect’s existence, especially when the Pt capping layer is

not complete. It can be seen that both mechanisms contributed to αeff in region I, but

from the available damping and crystal structural data with the aid of the theory, it

seems to be that the extrinsic mechanism’s contribution is more pronounced in this

region. Fig. 6.5 (c) shows the damping behaviour in region I with the damping value

of bulk Co from the literature [77].

For region II, where the effective damping parameter reaches a broad peak, it
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is suggested that both mechanisms contribute to the damping. However, the con-

tribution may be different from the contribution in region I. This is because in this

region, Pt’s thickness is in the range where a continuous capping layer is almost

formed. So it is logical to assume that even if the extrinsic damping not decreases

the intrinsic damping definitely increases. This is because the spin-pumping and the

spin-diffusion length effects are more effective. However, this cannot be considered

as the only explanation where the structural data shows that a complete Pt capping

layer thickness is established beyond this region (see Fig. 6.5 (c)).

FIGURE 6.5: Illustrates the interaction of (a) Pt and (b) Au with Co at the interface and
development of the interface with increasing NM thickness. Also, (c) shows a compari-
son of the damping parameter, αeff , as a function of Pt and Au thickness in relation to the
interaction of these metals with Co, considering the bulk value from the literature [77],

where regions I, II and III are labelled.

The characteristics of region III are that damping falls from the maximum value

and stabilises slowly to an intermediate value as a function of dPt. The main in-

dication which can show the dominant damping mechanism is the dependence of
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the damping on the applied field. This is shown in Fig 6.4 for Co capped with 2

nm of Pt, where the independence of the damping on precessional frequency (bias

field), demonstrates that the predominant mechanism of damping is intrinsic in this

region. This also indicates that the reduction of the damping value in this region re-

lates to the extrinsic mechanism, where its contribution vanishes at high dPt. It can

be seen in Fig. 6.5 (c) that the final value of the effective damping parameter is higher

than the initial value for the uncapped Co. This is because even when the extrinsic

damping contribution at high Pt thickness vanishes, the intrinsic damping evolves

and increases at this thickness. The behaviour in region III shows some variations

in comparison with the theory, where in the theory, periodic oscillations are com-

bined with the falling and the stabilisation of the damping. These oscillations are

attributed to the formation of quantum well states [6, 48], which were not observed

in the experimental results. The reason for this is that even though the range of dPt

is small, the interfacial roughness will disrupt such oscillations.

In order to explain the extrinsic mechanism in Co/Pt thin-films, when the Pt

capping layer is discontinuous, it is suggested that two-magnon scattering is a re-

sult of the local variation of the d-d hybridization of the Co and Pt at the interface.

The miscibility of the NM material changes the electronic local structure by the hy-

bridization via the interaction of Pt with Co. This produces Co-Pt clusters or islands

at the surface [235], while for Au this leads to the formation of Au islands on Co in

the low thickness regime [238]. This is illustrated in Fig. 6.5 (a) and (b); the different

interactions between Pt and Co and Au and Co are a key factor for the damping’s de-

pendence on the thickness of these materials. For thin dPt, where the capping layer

is incomplete, the formation of clusters or islands at the surface acts to break the

translational symmetry. This will change the intrinsic damping at the FM/NM in-

terface to high and low damping value regions, linked with the Co-Pt distribution.

In this range of dPt, the Co-Pt islands are about one mono-layer, which is also the

suggested reason for higher damping. This has been reported by a study on SOC in

Pt, where it showed that 2D Pt has higher SOC than 3D as clusters and thus damping

[245]. As the Co surface magnetic inhomogeneities increase due to the Pt effect at
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this low thickness, the extrinsic mechanism contributes more to the damping. How-

ever, when dPt is enough to form a continuous layer, the magnetic distribution at

the interface is more uniform, thus the extrinsic mechanism vanishes or becomes

unnoticeable [6, 48, 195, 217, 234].

The damping behaviour in Co/Au thin-films in comparison with Co/Pt can be

attributed to two main reasons. Firstly, Pt has greater miscibility, which is consid-

ered as additional factor that can impact damping mechanisms at the interface, thus

increasing αeff . The interface nature analysis for both thin-films may supports this

[238], which shows a lower intermixing for Au with Co than Pt .This may leads to

a lower two-magnon scattering effect at the interface in the case of Co/Au. Sec-

ondly, the density of crossing electrons at the Fermi level from the d band state for

Au is low compared with Pt [246]. This means Au makes a weak contribution to

the intrinsic damping when coupled with Co, as shown in Fig 6.5. Even though

Ni81Fe19/Pt and Co/Pt have the same general damping trends it can be seen that

damping in Ni81Fe19/Pt is higher at lower dPt, as it is shown in Fig. 6.3 (a) and (c).

As Ni81Fe19/Pt has a fcc and Co has a hcp crystal structure, this may change the

interfacial interaction between those two materials with Pt, thus it may be attributed

to higher spin-mixing conductance across the interface when the coupled materi-

als have the same structure like in the case of fcc Ni81Fe19 with fcc Pt [164, 247].

Fig. 6.1 (d) shows the structural differences for Co (10 nm)/Pt (4 nm) and Ni81Fe19

(7 nm)/Pt (4 nm) thin-films, where the peaks for both are almost in the same posi-

tion, they also shows the same peak for fcc Pt [151, 237]. The XRR result also shows

that the interface width for Ni81Fe19 is larger than Co, which supports the higher

interfacial mixing.

The spin-mixing conductance was estimated for both Co/Pt and Ni81Fe19/Pt

using the damping data in this study. It is worth mentioning that the calculation

was applied for thin-films where Pt thickness was more than 1 nm. This is because

in this range, intrinsic damping is the dominant mechanism and there is minimum

extrinsic contribution to damping , which is essential for the validity of the spin-

mixing conductance value. The equation that can be used to show the dependence

of spin-mixing conductance on damping changing is:
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∆α = αeff − α0 =
gµB

4πMeffdFM
geff
↑↓ (6.3)

where g is the Landé g-factor, µB is the Bohr magneton, Meff is the effective sat-

uration magnetisation and geff
↑↓ is the effective spin-mixing conductance. This was

done using the damping bulk value reported in the literature for hcp Co 0.011 [77]

and fcc Ni81Fe19 0.010 [55]. The saturation magnetisation is taken from the experi-

mental results and used to obtain the spin-mixing value for the damping value at the

mentioned dPt for these two thin-films. The results of spin-mixing conductance were

38 nm−2 and 125 nm−2 for Co/Pt and Ni81Fe19/Pt respectively, which are compara-

ble with the recent experimentally observed value [148]. The higher value in spin-

mixing conductance for Ni81Fe19/Pt also suggests that interface mixing between Co

and Ni81Fe19 with Pt is different, which may be related to the crystal structures of

hcp Co and fcc Ni81Fe19. This is supported by recent work on Co/Ir, where the Co

structure at the interface was either hcp or fcc [151].

In Fig. 6.3 (b), the precessional frequency and saturation magnetisation as a func-

tion of dPt show similar trends, whereMS increases as the Pt capping layer increases.

The increase in the net moment may be linked with proximity induced magnetisa-

tion (PIM) from Co to Pt [195]. However, the effect of PIM on damping is still unclear

and debatable [148]. Furthermore, it can be seen from the figure that the initial MS is

lower than that reported in the literature. This may be attributed to oxidation of the

uncapped Co surface. This supports the significant changes in the magnetisation

when dPt becomes 0.6 nm, which means that the Pt forms a layer on the Co sur-

face preventing oxidation. This cannot be the case when the magnetisation reaches

a large value for dPt = 2 nm. By reviewing the crystal structure and the saturation

value, it can be explained that when Co/Pt thin-films form a hcp crystal structure,

MS can reach this value. This is also supported by XRD analysis of this work and

recently published study [151].

The results are in good agreement with the theoretical analysis of damping be-

haviour in Co/Pt and Co/Au as a function of Pt and Au thickness layers by Barati

et al. [6, 48]. This is illustrated in Fig. 6.6 (a) and (b), which compares the results. The
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additional increase in damping in region I, as explained, is attributed to the extrinsic

mechanism which was not calculated in the theoretical study. The peak position in

region II shows the same thickness range at which damping reaches its maximum

peak. In region III, the damping decreases to an intermediate damping value and

levels out with further increases of dNM. The oscillations in (b) cannot be observed

in (a) because the roughness of the samples; however, the agreement between this

work and the theoretical study is very good. Finally, this work also agrees with the

calculations of the damping contribution from each mono-layer in the NM layer for

both Pt and Au where, it shows that the contribution to damping can be attributed

to the interface nearest the mono-layers in FM/NM thin-films.

FIGURE 6.6: A comparison between (a) experimental and (b) theoretical (adapted from
Ref. [6]) variations in damping data for Co/Pt and Co/Au as a function of dNM. The

star symbol is the literature value for pure cobalt.
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6.5 Chapter Summary

In this chapter, a study was done with the aim to investigate precessional damping

in a variety of FM/NM thin-films: Co/Pt, Co/Au and Ni81Fe19/Pt. The study fo-

cused on the dependence of damping enhancement on the NM = (Pt and Au) thick-

ness within the sub-nanometre regime. The results show that damping in Co and

Ni81Fe19 show an increase as a function of dPt, followed by a peak before it falls

back, then stabilising to a low constant value that is higher than the bulk damping

values for both Co and Ni81Fe19. While for dAu almost no precessional damping

dependence was observed. Crystal structure investigation techniques were used to

help explain the damping evolution such as XRR and XRD, which aid the explana-

tion. Intrinsic and extrinsic damping mechanisms are related to the damping en-

hancement. The extrinsic mechanism was related with the d-d hybridization effect

at the Co/Pt interface when Pt coverage was partial in sub-nanometre range. This

gives rise to two-magnon scattering at the interface due to these inhomogeneities,

while these inhomogeneities are lost at dPt higher than one nanometre. The intrinsic

mechanism is more dominant at high ranges of Pt thickness. A comparison between

the damping behaviour of Co/Pt and Ni81Fe19/Pt was carried out through the cal-

culation of the spin-mixing conductance, which showed that the latter is higher for

Ni81Fe19/Pt. Furthermore, this is also supported by the structural analysis, where it

showed different crystal structure type for both thin-films at the interface. Finally,

the results of this study give a deeper understanding of the mechanisms of the com-

plex damping interactions as the thickness of the NM layer increases and due to the

development of the interface. Also, it shows the most effective mono-layer of the

NM capping in terms of contribution to the effective damping parameter.
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Chapter 7

Damping Modification Through

Interface Intermixing in FM/NM

Bi-Layer Microstructures

7.1 Introduction

The interface modification effect, via focused ion-beam irradiation (FIB), on mag-

netic damping and magnetisation properties of bi-layer Ni81Fe19/Pt thin-films was

studied in this chapter. The magnetic properties of FM materials are an important

factor in magnetic data storage and sensor applications and drives research in spin-

tronics and magnonics technology concept [248–250]. Optimising magnetic damp-

ing in FM materials is generally important for applications, where low magnetic

damping enhances spin-transfer torque random-access memory and magnonic de-

vices, while high damping is preferred in data storage devices due to the data bit

rate process improving. Low damping leads to a reduction in the write-current and

facilitates spin-wave propagation, and high damping will reduce the precessional

dynamics, thus enhancing the suppression of the precession of the magnetisation

vector. Lithographic patterning has been recently used to control spin-wave [2]

propagation in magnonic crystals [251–254] and also used to control domain wall

properties through modifications of the shape and anisotropy in FM thin-films by

forming nano-wire structures [255, 256]. Fabricating such structures is a complicated

process which may increase the chance of creating defects and inhomogeneities at
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the nano-scale. In order to control the impact of defects and inhomogeneities on

magnetic behaviour, extra care should be taken.

Circular dots of 30 µm diameter bi-layer thin-films were investigated using an

all-optical time-resolved magneto-optical Kerr magnetometry. Magnetic damping

in the time domain and the spatial coherence of the magnetisation dynamics pre-

cession were analysed using the Landau–Lifshitz–Gilbert equation. The dimension-

less damping parameter αeff and resonant frequency f were extracted as a func-

tion of irradiation dose in the range of 0-3.3 (pC/µm2) or 0-2.06 × 1015 (Ga+/cm2),

where it indicates the interfacial mixing widening and sample alloying. The effective

damping variation was interpreted with both variations of the intrinsic and extrin-

sic mechanisms at the interface. The results represent a better understanding and

a level of control regarding tuning damping for enhanced magnetic device perfor-

mance. This work is published in Nature publication, Scientific Reports journal [4].

In this chapter, a step towards understanding the interfacial structure’s effect

on damping is done through studying engineering of the interface of the bi-layer

Ni81Fe19 10 /Pt 3 nm with FIB irradiation with a low Ga+ dose. As discussed in

Chapt. 5, the ballistic cascade is the main effect for interface intermixing with a low

level of ion implantation up to ∼ 1 % and relatively low sputtering of the thin-film

surface. Damping as a function of the Ga+ irradiation dose is compared in this chap-

ter with a study that used Cr and Au as the capping layers on Ni81Fe19 with a low

ion dose. The damping behaviour in this study was explained through the reduc-

tion of the intrinsic mechanism by the reduction of the capping layer’s thickness in

the case of Cr, while for Au the main reason for damping enhancement was extrin-

sic due to the increase in the inhomogeneities in the system [222]. A time-resolved

magneto-optical Kerr effect (TR-MOKE) microscope was used to obtained damping,

precession frequency and spatial coherence of the dynamic for the investigated sam-

ples. This was done in the S.N. Bose Institute for Basic Sciences, Kolkata, India by A.

Ganguly.

Many magnetic phenomena have been revealed in bi-layer and multilayer sys-

tems such as spin-dependent scattering in giant magnetoresistance (GMR) multilay-

ers [256], interface exchange coupling, interface hybridization, spin-injection [257,
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258] and spin-pumping [259]. The interface properties are a key factor in all these

phenomena, where the electronic structure and interaction behaviour are signifi-

cantly affected by the modification of this layer. Thus, the modification of the in-

terface gives the opportunity to investigate the interface’s role in the magnetic be-

haviour. As discussed in Chapt. 4 and 6, the origin magnetic behaviour may linked

with spin-orbit coupling and the electronic interaction in the s and d orbitals, which

explains the intrinsic damping to some extent [179, 260]. The extrinsic mechanism is

linked with defects and inhomogeneities which gives rise to the two-magnon scat-

tering [261].

7.2 Experimental Details and Fittings

A set of 10 nm of Ni81Fe19 films capped with 3 nm of Pt were grown on a thermally

oxidised silicon wafer, by the magnetron sputtering in a UHV deposition system

with a base and growth pressure of ∼ 9 × 10−8 and 1 × 10−3 respectively. Disks of

30 µm diameter, as illustrated in Fig. 7.1, were patterned using electron beam lithog-

raphy. The irradiation was at normal incidence on the fabricated thin-films surface

using an FEI Dual-beam FIB system with a circular ion beam focus area of 700 µm2,

this was done by J. A. King. The ion irradiation dose was gradually increased from

0 to 3.3 pC/µm2; 0 to 2.06 × 1015 (Ga+/cm2). Ni81Fe19 was selected because of its

relative low magnetic anisotropy. This will focus the study to the impact of Pt, as a

protective and capping layer, and its role while the interface is widened, where Pt

is known for its strong SOC [183] and proximity-induced magnetic moment, even

though PIM is still not clear enough.

X-ray measurements of the as deposited thin-film show that both Ni81Fe19 and

Pt have a fcc crystal structure with an interface width range of less that 1 nm, which

shows both intermixing and topological roughness. A comparison with a study on

Ni81Fe19/Au thin-films irradiated with lower Ga+ showed that the Au capping layer

became very thin and the film developed into a compositionally graded Ni81Fe19-Au

alloy [98, 99], so it is logical that the extent of these two effects will be higher, the ion-

beam irradiation is largely ballistic and Pt is similar to Au.
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FIGURE 7.1: Schematic illustration of a bilayer of a Ni81Fe19 10 nm/Pt 3 nm circular
structure with ion-beam irradiation.

Time-resolved magnetisation dynamics were measured by using a TR-MOKE

microscope. The samples were mounted on a stage where the external magnetic

field was biased out-of-plane by an angle of 5◦, where the magnetisation of the sam-

ple aligned with the Hext. Laser source was used to pump and probe the magnetisa-

tion dynamics using the all-optical femtosecond method as a function of time delay

with respect to the applied external field (for more information regarding the exper-

imental setup see Chapt.3 and [241]). The stage was used to acquire a Kerr image

of the sample under the probe spot at a specific X-Y-Z position and fixed time delay,

where all the measurements were executed at room temperature.

An example is shown in Fig. 7.2 (b) of the evolution of the magnetisation of a

part of a circular patterned disk, for a disk irradiated with 3.1 pc/µm2 or 1.9 × 1015

Ga+/cm2 under a 0.8 kOe bias field. As can be seen in the figure, there are three

regions with respect to the time delay (t). In region A, t < 0, the image shows no

dynamics in the magnetisation, where in this region the demagnetisation laser pump

pulse has not been applied yet. Region B shows the effect of the sample’s recovery

from demagnetisation, where it shows ultrafast magnetisation changing with quick

relaxation as the magnetisation dynamics recover due to the fast energy dissipation

via the thermal bath with the lattice [262]. Finally, in region C there is a slower

relaxation, where a precession of the magnetisation with time is superimposed with
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the exponential recovery of the Kerr value to its initial value. This is illustrated by

the red fit line in the same figure of the oscillation damped signal, where this is the

description of the LLG equation.

FIGURE 7.2: Shows (a) Time-resolved Kerr images of the sample at three time delays.
(b) A raw TR-MOKE data trace from a sample irradiated with ion dose d = 3.1 pC/µm2,

1.9 × 1015 Ga+/cm2, as a function of the time delay [4].

In the same figure (a), composite scanned Kerr images for the same sample at

selected time delays are presented. The images are linked with (b), where the time

is indicated by arrows. It is shown by the images the brightness scale that the Kerr

rotation reduces within the time range of 100 ps to 360 ps and then to 790 ps. It can

be seen that the image shows a spatially uniform magnetisation dynamics across

the observed circular area and no multiple spin wave modes can be seen. This was

seen for all the samples investigated in this work, which eliminates dephasing, two-

magnon contributions to the damping. Furthermore, the sample size in comparison

with the excitation and probe size, 1 µm2, excludes the effect of the disk bound-

aries [249].

In order to extract the effective damping parameter, α, the background was ex-

tracted using

M(t) = M(0)e
−t
τ sin(2πft− φ) (7.1)
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where the relaxation time τ is related with α by the relation τ = 1
2πfα, f is the

precessional frequency and φ is the initial oscillation phase. By fitting this equation

as shown in Fig. 7.2 (b), the damped precessional behaviour is isolated from the

general exponential recovery of the Kerr signal. Examples of the isolated damped

precession can be seen in Fig. 7.3 (a), where a comparison is shown between Ni81Fe19

and Ni81Fe19/Pt thin-films, under a 1.8 kOe external field and a Pt-capped thin-

film irradiated with a 0.3 pC/µm2 dose. It can be seen from the figure that the

precessional damping from the bi-layer is faster than the uncapped Ni81Fe19 with

αeff of 0.15 and 0.042 respectively.

FIGURE 7.3: A comparison of TR-MOKE traces between (a) NiFe/Pt (dose = 0.3
pC/µm2) and NiFe films. Symbols correspond to experimental data while the solid
curves are fits to Eq. 7.1. (b) Power spectra of the NiFe/Pt sample at different bias field
values H. (c) Frequency vs the bias magnetic field for the NiFe/Pt (d = 0.3 pC/µm2)
sample. Here the symbols represent experimental data points and the solid curve is a

fit of the Kittel formula [4].

The damping value for the uncapped Ni81Fe19 is consistent with the bulk damp-

ing value reported in the literature, while the increase in the damping value for the

bi-layer Ni81Fe19/Pt is by a factor of 3. This can be explained by the spin-pumping

effect from the FM to the NM layer [262, 263]. It was found that the frequency for

the uncapped thin-film was 13.05 GHz, while for the bi-layer thin-film was 13.28



7.3. Results and Discussion 139

GHz, this also indicates the increasing moment which is included at the interface by

adding Pt as a layer adjacent to Ni81Fe19 due to Pt’s PIM [183]. It can also be seen

from Fig. 7.3 (b) the frequency reduction with the field reduction where it shows a

monotonic relationship. As mentioned in Chapt. 3, this method can also be used to

extract more than αeff , where the saturation magnetisation and the gyromagnetic ra-

tio can be extracted by using the Kittel formula. This can be seen Fig. 7.3 (c) , where

the formula was fitted to precession from which the saturation magnetisation, MS,

was obtained as 833 emu/cm3, with a fixed gyromagnetic ratio to 0.0176 GHz/Oe.

7.3 Results and Discussion

The overall magnetic damping dependence of Ni81Fe19 10 nm/Pt 3 nm thin-films

on the irradiation dose can be seen in Fig. 7.4, where the upper x-axis is the ion

irradiation dose (dir) in Ga+/cm2 units and the lower axis is in pC/µm2. The αeff

behaviour as a function of dir shows two distinct regions, I and II. In region I the

effective damping increases monotonically with dir it reaches a peak value of 0.06 at

the dir value of 2.0 pC/µm2, 1.25× 1015 Ga+/cm2, then it falls rapidly as dir increases

further.

In order to understand the dependence of αeff on dir in region I, the damping be-

haviour for Ni81Fe19/Pt was compared with Ni81Fe19 /Cu at the same dose range,

as shown in Fig. 7.5. In spite of the offset shifting value of 0.019 between Ni81Fe19/Pt

and Ni81Fe19/Cu, the damping values in both thin-films increases linearly as a func-

tion of dir at a rate of 0.015 pC/µm2. The offset may be explained by the spin-

pumping effect and the strong spin-orbit coupling of Pt, which makes it a good spin

sink [134, 194, 264]. The αeff value for the Ni81Fe19/Cu with irradiation dose = 0 is

0.015. The latter is comparable with the damping value of uncapped Ni81Fe19, where

this suggests that Cu has insignificant impact on damping enhancement [194]. The

same linear increase of damping is observed in both thin-films systems and cannot

be justified by only SOC and spin-pumping effects. Furthermore, Ga+ implantation

is very low, within 1-2 %, which also fails to explain the linear dependence of damp-

ing on dir [99]. However, as it is known one of the effects of ion-beam irradiation
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FIGURE 7.4: Damping parameter is plotted as a function of dose. The shaded box rep-
resents the transition between regions I and II.

is to produce an intermixing in the sample by the collision of the ions with the NM

atoms, which forces them to move in the Ni81Fe19, this will cause structural changes

and defects in the FM thin-film. These defects are known as a source for the extrinsic

damping mechanism called two-magnon scattering, which can increase the effective

damping [100]. With the increase of dir, the intermixing area increases, thus the de-

fect density increases and the effective damping increases [98]. It was shown in an

earlier study that the width of the intermixed region increases linearly with dir [222].

This suggests that the damping enhancement will also vary linearly as a function of

dir through the two-magnon scattering effect, as this was also reported in a previous

study on Ni81Fe19/Au [222]. As we know, increasing defects or disorder density at

the FM/NM interface breaks the symmetry in this region [99, 235, 265]. This sug-

gests that two-magnon scattering is the dominant mechanism for the dir dependence

of damping on dir in region I. This also agrees with the results from several studies

which focused on the interface of FM material coupled with Pt [99, 109, 217, 219, 235,

266, 267].

In Fig. 7.4, between regions I and II, damping was expected reached a maximum

value from the observed trend of these regions. In region II, the dependence of αeff
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FIGURE 7.5: Variation of damping parameter as a function of irradiation dose in the
lower dose regime for Ni81Fe19/Pt (filled circles) and Ni81Fe19/Cu (filled triangles).

on dir shows a different behaviour, where the damping decreases with further in-

creases of dir beyond 2.4 pC/µm2, as shown in Fig. 7.4. According to the structural

analysis increasing dir beyond 2.4 pC/µm2, 1.5 × 1015 Ga+/cm2 leads to the domi-

nation of the cascade ballistic intermixing. More insight regarding the development

of the Ni81Fe19/Pt interface can be gained through the x-ray structural analyses from

previous studies on Ni81Fe19/Au thin-films, which shows the effect of the focused

ion-beam irradiation dose on the interface width [98, 99, 109, 268].

The similar atomic masses between Pt and Au allow such a comparison because

momentum transfer is the main effect of the ballistic intermixing. It was demon-

strated in these studies that the interface width for unirradiated Ni81Fe19/Au would

be 1 nm also, as shown in Chapt. 5, and would increase with increases of dir lin-

early by increasing the intermixing between the FM and NM adjacent layers. In-

creasing intermixing creates a compositionally graded NiFe-Pt alloy layer between

Ni81Fe19 and the Pt capping layer. The irradiation dose in the previous studies on

Ni81Fe19/Au was limited to 1 pC/µm2, which shows the same results regarding the

intermixing of∼ 4 nm, which also shows that about 1 nm of the NM capping layer is
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lost as a result of the sputtering effect of the ion-beam irradiation [98–100], see fig 4.6

and 4.7.

However, in this study dir extended beyond 2 pC/µm2, which logically increased

both intermixing and surface sputtering effects. On this basis it is suggested that the

compositionally graded alloy width will extend through much of the Ni81Fe19 and

also result in losing most of the Pt capping layer. This will form a NiFe-Pt thin-

film, where the Pt concentration increases towards the thin-film surface. Thus, the

reduction in the Pt capping layer’s thickness will lead to reduced spin-pumping and

spin-diffusion contribution in the intrinsic damping of the new NiFe-Pt alloy, which

will lead to a fall in the effective damping parameter αeff .

Fig. 7.6 shows the dependence of αeff as a function of precessional frequency, f

that is controlled by the bias field, for Ni81Fe19/Pt thin-films for three selected ion

irradiation doses. It can be seen that for dir = 0.3 pC/µm2, damping is independent

of f , which shows intrinsic damping dominates αeff . For the second and the third

selected dir, 2 pC/µm2 and 3.3 pC/µm2, respectively, αeff decreases with increases of

frequency with nearly an identical trend. This shows that an extrinsic contribution

is present in the effective damping. Increasing the applied field, Hext, increases the

precessional frequencies, which means that the magnetic dynamics are affected by

H , thus extrinsic scattering is suppressed. The variation of damping on f for each

dose suggests that the extrinsic mechanism is the reason for damping increasing,

see Fig. 7.4, region I. Connecting this with the third dose indicates that the extrinsic

mechanism’s contribution to the effective damping reaches a saturation where the

identical slope supports this view. As a result of αeff ’s variation in Fig. 7.4, region II

may be related to the intrinsic damping contribution more than the extrinsic.

Fig. 7.7 (a) shows the fast Fourier transform ,FFT, power spectra of the frequency

changing with the field for the three selected doses. It can be seen from the figure

that the reduction of f is larger, between 0.3 and 2 pC/µm2, while there is very little

changes in f between 2 and 3.3 pC/µm2. This variation is summarised in Fig. 7.7 (b)

as the frequency is plotted as a function of dir, which shows two distinct regions, I

and II. In the first region, f shows a linear decrease with increasing dir, until the dose

reaches 2 pC/µm2, then in region II, f does not show any changes as the ion-beam
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FIGURE 7.6: Dependence of the damping on the precession frequency, controlled by the
bias field, for three different doses, with their linear fits.

irradiation dose increases further. As it has been reported in the literature, increasing

the concentration of Pt in the Ni-Pt alloy will lead to a reduction in the magnetic

moment of the alloy [261]. This may link the reduction of f with the reduction of

the magnetic moment as the Pt concentration increases in Ni-Pt or Fe-Pt alloys in

the Ni81Fe19 layer. Linking this with Fig. 7.4, increasing dir beyond 2 pC/µm2 will

not increase the number of Pt atoms in the Ni81Fe19 layer significantly but it rather

increases the intermixing of the compositionally graded alloy, which agrees with the

stability of f with increasing dir in region II.

Fig. 7.7 (c) shows another indication that can supports the explanation: the relax-

ation time (τ ) as a function of dir. In this figure both fast, τ1, and slow, τ2, relaxation

times are plotted, where the first relaxation time is linked with energy dissipation

via electrons and spin wave to that lattice, while the second term is linked with the

dissipation of the energy from the lattice to the surrounding. Both τ1 and τ2 are re-

lated with the specific heat of the lattice (S), which can represent an indication of

the S state. It can be seen from the figure that both τ1 and τ2 show larger changes

when dir > 2 pC/µm2, which may provide evidence of the lattice changing by the

formation of the Ni81Fe19-Pt alloy in region II.
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FIGURE 7.7: (a) FFT power spectra of the TR-MOKE data of ion irradiated NiFe/Pt sam-
ples at three different doses. (b) Variation of frequency f as a function of dose. Symbols
are the experimental data and solid lines are linear fits. The shaded box represents the
transition between two regions. (c) Magnetisation relaxation times τ1 and τ2 are plotted
as a function of dose. Here the symbols are obtained from experimental data while the

solid lines are only guides to the eye [4].

7.4 Chapter Summary

In this chapter the magnetisation precession was modified through the engineering

of the interface of Ni81Fe19/Pt thin-films via Ga+ ion irradiation. This was measured

using TR-MOKE microscopy in order to study the variations of the ultrafast mag-

netisation dynamics and the slow and ultrafast relaxation times, the precession of

frequency and the damping parameter as a function of the irradiation dose. It was

found that the effective damping, precessional frequency and the relaxation times

show two distinct regions of behaviour. In the first region, the low irradiation dose

regime, the precession frequency falls and damping increases linearly as a function

of the ion irradiation dose in the range 0-2.0 pC/µm2. In the second region, ion ir-

radiation dose > 2.4 pC/µm2, the precession frequency shows almost no changes

while damping falls slowly. The high magnetic damping for Ni81Fe19/Pt in compar-

ison with the uncapped Ni81Fe19 is linked with the spin-pumping and spin-diffusion

length effects which are provided by the Pt cap layer, as it is known as to be good
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spin sink. Furthermore, the increasing damping for low-dose irradiation shows an

extrinsic nature associated with dislocated atoms and the creation of defects within

the bi-layer thin-film, which brings about the two-magnon scattering mechanism.

In the high dose irradiation regime, the intermixed interface will extend through the

full thin-film, which will finally be transformed into a compositionally-graded al-

loy. Furthermore, sputtering of Pt capping layer thickness will lead to a reduction

of the thickness below the spin-diffusion length, hence, a reduction of damping due

to less contribution from SOC and the spin-diffusion length. This work gives in-

sight into the magnetisation dynamics for understanding spintronic and magnonic

applications.





147

Chapter 8

Understanding the Role of

Damping and DMI on

Magnetisation Reversal in

Nanowires

8.1 Introduction

Domain wall propagation in nanowires has been the focus of interest of much re-

search, where this magnetic process is key to applications such as magnetic logic,

sensors and magnetic memory concepts [269–272]. In such applications, the writing

is governed by the magnetisation reversal by the domain wall in nanowires. The

impact of NM materials, especially Pt, as an adjacent layer to ferromagnetic layers

is known very well and can play a role in the magnetisation behaviour in thin-films

and nano-structures. The interfacial effect for example, which can emerge through

the coupling between FM and Pt, is a modification of the magnetic spin orientation

via the interfacial Dzyaloshinskii-Moriya interaction (IDMI). Another effect, which

has been explained in Chapt. 6 and 7, is the enhancement of the magnetic damping

via d-d hybridization and spin-pumping across the FM/Pt interface. Also, modifica-

tion of the magnetisation switching is shown by the flow of current via the spin-Hall

effect. It is important to understand the relationship between interfacial factors such

as damping and IDMI with regards to the magnetisation reversal, investigated by
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domain wall (DW) motion. Here a system that has a weak IDMI and enhanced

damping i.e. Ni81Fe19/Pt was studied. The effect of damping was carried out with

the aid of the findings from Chapt. 6 for the Ni81Fe19/Pt system, while IDMI was

taken from the literature and together they were combined in micromagnetic sim-

ulations of DW motion in planar nano-wires. The outcome of this work provides

insight to understand and control DW behaviour in nanoscale devices by changing

the magnetisation reversal via damping, as a function of Pt thickness, and IDMI

relative impacts.

Heavy metals have been linked with such important phenomena when they are

coupled with FM material as an adjacent layer, where the strong spin-orbit cou-

pling has an important role in such behaviour. Enhancing the precessional magnetic

damping and effecting magnetisation reversal via a spin-current resulting from the

spin-Hall effect are all associated with the large SOC in heavy metals [4–6, 20, 273,

274]. The occurrence of such phenomena in thin-films may enhance spintronics-

based device application performance. This raises the need to understand the contri-

bution of each mechanism, any interactions with each other and their overall impact

on the system.

The interfacial Dzyaloshinskii-Moriya interaction is an effect of anti-symmetric

exchange at the interface of FM/NM thin-films [32, 34, 150, 275, 276]. This exchange

will raise the IDMI, which varies in terms of strength due to the coupled materials,

where it is reported that Co/Pt has a stronger IDMI than NiFe/Pt thin-films [277,

278]. However, the outcomes of these different studies show a range of IDMI values

in such systems [277, 279–281] with magnitude near the direct ferromagnetic ex-

change interaction, but the impact of IDMI on the local magnetic orientation modifi-

cation is noticeable. Thus, IDMI can affect the precessional magnetisation dynamics,

which shows a vital role in such systems.

Damping phenomena are associated with the spin-orbit interaction, in NM heavy

metals this enhances damping significantly in FM layers via spin-pumping from the

FM layer to the NM layer providing an extra pathway to dissipate energy [4–6, 276].

In order to pump the spin angular momentum from the FM layer to the adjacent
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NM layer, an interfacial hybridization via the electronic d orbitals facilitates the pre-

cessional spin-waves to be pumped into the NM layer from the FM layer [4–6, 129,

282]. These effects are typically associated with enhancing intrinsic damping, while

the extrinsic enhancement of damping is a result of two-magnon scattering, which is

linked with the density of inhomogeneities in the system at the interface. As shown

in Chapt. 6, the magnetisation precession and magnetic damping are influenced by

the Pt layer’s thickness, which shows a rapid increase as the Pt thickness (dPt) in-

creases, then reaches a plateau when dPt is over 1 nm [5, 6].

On the other hand, the spin-Hall effect has been studied in bi-layer thin-films [150,

283, 284], where it shows the influence of Pt material via the interface of Co/Pt based

device structures. This influence emerges by the changing current in the Pt layer,

which will create a spin-current in the Pt layer that can propagate into the adja-

cent FM layer across the interface, by which it can affect the domain wall motion

in the system [150, 274]. It has been shown that the effectiveness of the spin-Hall

process is influenced by the interface of the thin-film along with the spin-Hall angle

(SHA) [150, 283, 284].

The interfacial effects in FM/NM thin-films, as a result of the addition of Pt, have

been investigated on the magnetisation reversal of nanowires, where the systems

have strong IDMI and out-of-the plane anisotropy, while a few studies investigated

the same influence in in-plane systems [285, 286]. It is also known experimentally

and through in-plane micromagnetic studies that the behaviour of the DW, which

is driven by the field, is controlled by precessional processes that lead to Walker

breakdown [287] and it has been shown that the latter can be controlled by periodic

structuring of the nanowires [288, 289]. Gaining a better understanding of the im-

pact of damping enhancement and IDMI on the domain wall dynamics gives new

fundamental physics insight and it also links to potential technological applications.

The aim in this chapter is to gain an insight into the physical mechanisms, which

impact the magnetisation processes in FM/Pt nanowire systems and separate their

effects. In this study the spin-Hall effect was eliminated because no charge current

was injected in to the nanowire structure, which means there was no spin-current

due to the spin-Hall effect. The IDMI is known as an interfacial effect which arises
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at the interface between Ni81Fe19 and Pt; damping enhancement, on the other hand,

varies as a function of dPt. Thus, measuring the magnetisation reversal as a func-

tion of dPt can give insight regarding the effect of both damping enhancement and

IDMI on the magnetisation reversal process behaviour. This was done by combin-

ing the experimental results with micromagnetic simulations, where the effect on

the domain wall dynamics can show the role of damping and IDMI as a function

of the development of the Ni81Fe19/Pt interface. This work is published in Nature

publication, Scientific Reports 7 (Sci. Rep. 7) [3].

8.2 Experimental and Micromagnetic Simulations Details

A set of various nanowire geometries were fabricated using electron-beam lithogra-

phy lift-off method by J. Brandão in Durham University, with a magnetron sputter-

ing deposition system. The wire geometries were modulated from parallel-sided to

fixed-angle periodic triangular features, where these features were selected for their

impact on the DW propagation [289]. The focus here is on the Pt thickness’ effect

on the magnetisation reversal. The width of the parallel-side nanowire was 250 nm,

see Fig. 8.1 (a). By adding triangle features, on both edges the width changes with

magnitude of 30 and 75 nm, as shown in Fig. 8.1 (b) and (c) respectively. In order

to inject an individual domain wall, a pad was fabricated at one end of each wire

with 7 µm × 1 µm dimensions and a tapered end was patterned on the other end to

prevent DWs nucleating. Ni81Fe19 (10 nm) was grown on Si/SiO2 and capped with

Pt with range of 0-3 nm dPt. The Pt thickness and the interfacial roughness were

verified using x-ray reflectivity. The MOKE system was used to investigate the mag-

netisation reversal behaviour mediated by DW propagation in all nanowires [290].

The MOKE measurements were repeated and averaged over the wires’ length of∼ 5

µm with longitudinal geometry; extra care was taken to improve the signal-to-noise

ratio by averaging many hundreds of measured field cycles.

In order to aid the results and gain a better understanding, simulations were car-

ried out using the Mumax3 code [291], the DMI value and the range of the effective
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FIGURE 8.1: SEM images of nanowires of bi-layers Ni81Fe19/Pt show different geome-
tries produced by electron-beam lithography, to study DW propagation. Pinning the
potential to the DW propagation is due to the triangle features placed on the nanowire
edges. It shows that the pad and the tampered shape were used to inject and annihilate

DWs, respectively.

damping parameter (αeff ) were inserted in the simulations, which use the Landau-

Lifshitz-Gilbert equation with a contribution from the effective DMI field (HDMI) in

the effective field Heff as follows:

∂m
∂T

= −m×Heff + αm× ∂m
∂T

, (8.1)

where T = (γMs)−1, t is the time and the effective field can be written as follows:

Heff = Hext +Hexc +Hani +Hms +HDMI (8.2)

Including the external field, exchange, magnetic anisotropy, magnetostatic fields

and the DMI effective field, respectively in the energy of the system. In order to

numerically study the field-driven domain wall behaviour these terms should all be

considered in the general Heff .

In order to solve the LLG equation using Mumax3 code, some magnetic pa-

rameters for Ni81Fe19 were required including the exchange stiffness constant A =

13×10−12 J/m, saturation magnetisation Ms = 860×103 A/m and zero magnetocrys-

talline anisotropy. The thickness, width and length of the simulated nanowires were

10 nm, 250 nm and 5 µm respectively for the parallel-sided structure. Periodic tri-

angular edge features were implemented with amplitudes from 30 to 75 nm. The

micromagnetic cell size was 5×5×10 nm3, which is reasonable with respect to the
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known exchange length for Ni81Fe19 [292] in the x-y plane, which can be found by

exchange length =
√
A/Kd, (8.3)

A is the exchange stiffness andKd is the stray-field energy constant. Executing some

simulations with a smaller cell size of 3 nm × 3 nm gave similar results. It was also

found that transverse domain walls (T-DW) and vortex walls (VW) can be supported

in these nanowires due to the small energetic difference [293]. However, T-DWs

show higher energy and more consistency regarding its formation than in previous

work [294, 295]. As a DW driver, the applied magnetic field was varied from 1

Oe to 200 Oe, while the reversal field for DW mediated magnetisation reversal was

simulated over a range of α values between 0.01 and 0.1. The calculation was also

done over a range of IDMI values starts from 0 up to 1 mJ/m2 to gain better insights

into DW propagation. The analysis of DW propagation dependence on both features

shows no significant differences with respect to the DW chirality, which is to be

expected by the symmetry of the nanowire system.

In Chapt. 6, the dependence of damping for Ni81Fe19/Pt thin-films as a function

of dPt was discussed in detail. The extraction of αeff was explained by fitting the

magnetisation precession as it was damped, oscillating in the time domain as a sin-

gle mode. The effective damping shows a rapid increase with dPt as it reaches its

maximum value at a Pt thickness of 0.6 nm, then reduces again to an intermediate

value and settles as shown in Fig 8.2. This was used as a guide for the experimental

work and simulations here.

The dependence of damping on dPt in Fig 8.2 was explained in Chapt. 6 through

the contribution of the intrinsic mechanism with the aid of the theory work [6] and

the observation of the structural evolution at the FM/NM interface, which shows

additional extrinsic contributions via the interface’s roughness. For the Ni81Fe19/Pt

interface, at dPt < 0.6 nm, it was shown that the extrinsic mechanism emerges due

to the incomplete layer formation of Pt, which will lead to the variation of the lo-

cal magnetisation and damping. These variations initially change d-d hybridization
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FIGURE 8.2: Effective damping parameter obtained in Ni81Fe19/Pt thin-films. The
damping increases rapidly between 0 and 0.6 nm Pt thickness, then above it goes down
slowly. The dashed line illustrates the expected contribution to the damping from in-

trinsic processes.

and spin-pumping locally at the interface, which is linked with the intrinsic mech-

anism; however, the variation will make two-magnon scattering arise due to the

non-uniformity of the magnetisation [5]. Increasing dPt beyond 0.6 nm leads to a

further enhancement for the effective damping via both mechanisms till it reaches

its maximum and then levels out finally at dPt ∼ 0.9 nm. The intrinsic mechanism at

this stage dominates the αeff enhancement. Thus, it is logically expected that intrin-

sic damping will increase rapidly as dPt increases and stabilise at greater thicknesses,

as shown by the dashed line in Fig. 8.2.

The enhancement of the damping behaviour as a function of dPt in studies of

FM/Pt bi-layer thin-films shows a similar trend for a different range of Pt thick-

nesses. Such studies used different FM materials like Ni81Fe19, Co [5, 296], amor-

phous Finemet [199] and yttrium iron garnet (YIG) [195]. In these studies the mech-

anism for the damping enhancement trend may be the same, but the investigated

samples show different features linked with growth conditions, material miscibili-

ties and surface energy. This may explain the different dPt at which damping changes.
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What is most important is that with Pt thickness variations, magnetisation preces-

sion and damping vary, thus this variation should be considered as an effective fac-

tor for the domain wall dynamics.

8.3 Results, Analysis and Discussion

In addition to the effect of the Pt layer thickness on the damping in Ni81Fe19/Pt thin-

films, domain wall behaviour was investigated as a function of dPt in the same range

in nanowires using longitudinal MOKE magnetometry to find the reversal field of

DW mediated nanowire switching. As shown in Fig. 8.3 (a), the reversal field which

is needed to propagate DW in Ni81Fe19/Pt 0.6 nm is higher than the one for the

uncapped Ni81Fe19 wire.

This shows the role of Pt as a capping layer on the DW dynamics which in-

creases the applied magnetic field needed for the magnetisation reversal process.

As a comparison, in the same figure (b), micromagnetic simulations show hystere-

sis loops for the same nanowire geometries with damping parameter of 0.01 and

0.04 for uncapped and 0.6 nm Pt capped Ni81Fe19 respectively. The reversal field re-

sults in Fig. 8.3 (a) and (b) show good agreement between the experimental MOKE

measurements and the micromagnetic simulations. A higher damping parameter

increases the reversal field required to propagate the DW, which supports the sug-

gestion that dPt affects the DW reversal process. This could be interpreted as the

result of inhomogeneities, which increase initially due to the formation of Pt islands

on the Ni81Fe19 surface that provide additional pinning or impede the DW motion.

However, the reversal field trend continues to increase with increasing Pt thickness

beyond 0.6 nm. The experimentally extracted values of the damping parameter as

a function of dPt were in the range 0.025-0.045, while the simulations cover a wider

range between 0.01 and 0.1.

The reversal field of DW propagation is plotted as a function of dPt in order to

gain a full understanding of the general trend. It can be seen in Fig 8.4 (a) that in gen-

eral the reversal field increases rapidly with increasing dPt from 0-0.8; beyond that

the reversal field starts to slowly reach a maximum and stabilises. Another thing to
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FIGURE 8.3: Examples of axial magnetic hysteresis behaviour for nanowires (triangular
modulated edges with 75 nm amplitude). (a) Measured hysteresis for Ni81Fe19 (10 nm)
(continuous line) and Ni81Fe19 (10 nm)/Pt (0.6 m) nanowires (dots). The reversal field
is observed to be higher for Ni81Fe19 (10 nm)/Pt (0.6 m) than the Ni81Fe19 (10 nm). (b)
Simulated magnetic hysteresis for nanowires with a damping parameter of 0.01 (con-
tinuous line) and 0.04 (dots), showing that the increased damping provided by the Pt

overlayer enlarges the reversal field for larger damping.

note that the increasing magnitude of the reversal field increases for the nanowires

with triangle features of 30 nm amplitude and increases more when feature ampli-

tude is 75 nm. This shows the combined role of dPt and edge modulation on the DW

dynamics.

To get a focused insight regarding the role of the Pt thickness effect, the nor-

malised reversal field was plotted as a function of dPt for all three geometries as

shown in Fig. 8.4 (b). It is clear that the general trend of the reversal field is indepen-

dent of the geometry of the features, where the rapid increase followed by it slowly

reaching a plateau occurred for all the nanowires investigated. This gives a further

indication that the effect responsible for increasing the reversal field comes from the
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FIGURE 8.4: Reversal field as a function of Pt thickness. In (a), for different periodic
edge-modulated nanowires with the general trend of the reversal field increasing as
a function of dPt. In (b), the normalised reversal field shows that the reversal field
independent of the nanowire geometry. Insert, scanning electron microscopy (SEM)
images of nanowires show the different geometries used to study DW propagation in

Ni81Fe19 with a Pt overlayer.

increase in Pt thickness up to 1 nm.

In order to explain the reversal field dependence on dPt with respect to damping

mechanisms, there is a linear relation between intrinsic damping and the reversal

field. As has been explained, damping enhances with increasing dPt via both in-

trinsic and extrinsic mechanisms, where the variation of the d-d hybridization and

spin-pumping across the interface brings about both mechanisms. However, it has

been shown by structural analysis that when dPt = 1 nm, a continuous coverage

layer forms of Pt on Ni81Fe19 and more; the precessional frequency independence
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on dPt showing that intrinsic is the observed dominant mechanism. It is logical to

suggest that the intrinsic mechanism increases with increasing dPt from 0.9-1 nm and

then levels out for thicker Pt layers. Thus it is suggested that the DW reversal field

is sensitive mainly to the intrinsic damping, rather than the extrinsic and increases

linearly within this mechanism.

The micromagnetic simulations, which were done by J. Brandão, shows support-

ive results regarding the DW reversal dependence upon intrinsic damping, as shown

in Fig. 8.5 (a). Furthermore, it has been argued that the indirect relaxation of pre-

cession will be inhibited at the length scale near to the domain wall width [297].

However, in the simulations the reversal field magnitude shows higher values than

the experimental results, where this has been observed in the micromagnetic sim-

ulations for a cell size of 5×5 nm and also for 3×3 nm. The different values of the

reversal field between the simulation calculations and experimental measurements

may be attributed to the limitations of the physical modelling in calculating all of

the various effects. For example, the simulations were executed at zero tempera-

ture, which is a known factor for increasing the reversal field; also, even though the

parameters being inserted into the simulations were widely known for NiFe such

as the exchange constant, the real NiFe investigated may have slightly different pa-

rameters. Finally, there are also differences regarding the simulated geometries and

the real samples when edges roughness and shape accuracy in the real samples are

limited, while in the simulations these factors are rendered with square cells.

The nearly linear relation between the reversal field and damping, which was

shown by the micromagnetic simulations, suggests that increasing the intrinsic damp-

ing is able to explain the linear increase of the reversal field and plateau. The mag-

netisation precession also tends to reach an equilibrium faster when the damping is

larger, which reduces the torque on the domain wall to less than that for low damp-

ing cases. This indicates that the magnetic field must be increased in larger damping

cases in order to drive DW magnetisation reversal.

Besides damping there are other interfacial effects which may impact the DW

dynamics, DMI affects the reversal behaviour and this was also implemented in the

micromagnetic simulations. The range of IDMI values used were obtained from the
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FIGURE 8.5: Reversal field simulated as a function of (a) the intrinsic damping param-
eter , where it shows the reversal field goes up rapidly from 0 nm to 0.6. In (b), the
reversal field shows that the behaviour as a function of IDMI has two different damp-
ing values of 0.01 and 0.04. Both the reversal fields as a function of IDMI show a smaller
influence on the DW propagation, though for higher damping the IDMI makes a more

important contribution to the reversal field strength.

results of the experimental studies [298, 299], which showed that the IDMI strength

has some dependence regarding the ferromagnetic and heavy metal layer’s thick-

ness. So, a range of IDMI values, from 0-1 mJ/m2 were used in the simulations with

damping values of 0.01 and 0.04.

The dependence of the reversal field on IDMI for two intrinsic damping values of

0.01 and 0.04, is plotted in Fig 8.5 (b). The figure shows a monotonic increase of the

reversal field as a function of IDMI, where it can be seen that with a higher damping

value of 0.04 there is a shift in the reversal field of about 8 % higher. Furthermore,

increasing the IDMI in the range 0-1 mJ/m2 increases the reversal field by ∼ 14

%, where this may be explained by the DW inertia due to the dual contribution of

IDMI and damping at the interface [273, 300, 301]. The simulations of ferromagnetic
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nanowires by solving the Landau-Lifshitz-Gilbert equation gives an analytical result

which considers the wire as one classical spin chain [301] by:

∆wall
0 =

√
A

k
, (8.4)

where A is the exchange coefficient, k is the anisotropy constant and ∆wall
0 is the

domain wall width in the absence of DMI; and by inserting the DMI’s influence,

Eq. 8.4 becomes,

∆wall =

√
A

2Ak −D2
, (8.5)

It can be seen from Eq. 8.5 that ∆wall is the domain wall width including DMI,

which show the relation with the IDMI through the DMI constant (D). The D2 in-

dicates that ∆wall does not depend on the IDMI sign, which means that increasing

IDMI in any direction will lead to the domain wall width to enlarge. As a result, the

magnetic field needed to propagate DW and produce magnetisation reversal must

be larger than the case where there is no IDMI.

As a general result, this shows that damping has a major impact on increasing

the DW propagation field as the damping increases with increasing dPt, but at high

values of damping, the IDMI’s role becomes significant, which increases the mag-

netisation reversal field, thus both effects will impact the DW dynamics significantly.

It is important to note that no modifications of the DW type or chirality were

observed at zero magnetic field for the full range of IDMI and damping regarding

the DW nucleation process in the simulations. Another thing to add is that there was

no transformation from transverse DW to vortex DW for all the cases in the case of

increasing the applied magnetic field. However, the DW mobility and the onset of

Walker breakdown show different dependences on IDMI and damping.

Expanding the micromagnetic investigation regarding the impact of damping

and IDMI on the DW velocity can provide further insight about the contribution

of both effects on the magnetisation reversal mediation by the DW propagation in

nanowires. This also provides more informative data in relation to applications
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based on DWs, as it helps in controlling the DW velocity and structure. The DW ve-

locity from simulations is plotted in Fig. 8.6 (a) and (b) as a function of the magnetic

field for different IDMI strength values, where (a) and (b) are for damping values

of 0.01 and 0.04 respectively. The results show that the DW velocity increases with

the magnetic field to certain point, at which the onset of Walker breakdown occurs.

Above these magnetic field values, the velocity decreases significantly. Comparing

the results of Fig. 8.6 (a) with (c), for precessional dynamics it was expected that

for low damping the Walker breakdown would occur at lower field adjacent point,

while increasing damping extends the magnetic field range, the green marked area,

at which Walker breakdown occurs without changing the peak velocity. The be-

haviour also suggests that increasing damping increases the inertia of the DW, which

slows the DW’s motion in low fields. The impact of damping on the DW’s velocity

was explained in Ref. [302] and [303], as WF ∝ α as a derivative of Walker field

from the LLG equation. Also, the domain wall mobility was predicted to depend on

γ.∆/α (where ∆ is the wall width), which gives support to the simulations.

As it is shown in Fig 8.6 (a) and (b), increasing IDMI in in-plane magnetised

nanowires lowers the field at which Walker breakdown occurs, as is shown by the

projection lines on the XY plane. From the same figure (c) and (d), it can also be

seen that increasing IDMI will lead to a decrease in the Walker field (WF) and the

peak DW velocity for both damping values 0.01 and 0.04. It can also be seen from

Fig. 8.6 (c) and (d) that WF and peak DW velocity are constant for IDMI strengths

that range from 0 up to 0.3 mJ/m2. Beyond that both decrease, where a range above

0.3 mJ/m2 is physically reasonable for a NiFe/Pt system. The highest change can

be seen for WF behaviour as a function of IDMI, when the high damping value

was implemented, while for Walker DW velocity the greatest change took place for

the lower damping values as shown in (c) and (d) respectively. This gives a general

indication that WF and velocity are modified due to the combined effects of damping

and IDMI at the interface.

In order to explain this behaviour, the magnetisation components of the local re-

orientated spin-structure at the interface due to the impact of IDMI were extracted
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FIGURE 8.6: DW velocity calculated in parallel-sided nanowires for various IDMI and
damping values 0.01 (a) and 0.04 (b), which shows the different Walker breakdown
ranges. For both the damping values the velocity undergoes a reduction beyond the
Walker field threshold. The Walker field is higher for damping values 0.04 than 0.01.
However, the IDMI affects both the Walker field (c) and DW velocity (d), which for

IDMI beyond 0.3 (mJ/m2) are decreased.

from the micromagnetic simulations as a function of the DW’s position in the nu-

cleation process, as shown in Fig. 8.7 (a) and (b). From figure (a) it can be seen that

the magnetisation components Mx, My and Mz , are either transverse or perpendic-

ular to the nanowire’s axis. The Mx value changes from positive to negative, which

is typical for head to head DW separation, while My is always positive because a

transverse DW was shown with up polarisation in the simulations. Mz is what gives

an interesting result, showing changes in the values in the positive direction (see the

dashed blue line). The behaviour along the Z-axis is shown in Fig 8.7 (b) in more

detail as a function of DW position and for different IDMI strength values, 0, 0.6, 0.8

and 1 mJ/m2, and for an α value of 0.01. It can be seen that for a high IDMI strength

the magnetisation component along the Z-axis rose and became larger with higher
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IDMI values. Without the IDMI’s effects this behaviour cannot be observed.

FIGURE 8.7: Calculated along of the magnetisation component as a function of DW
position in the nucleation process with a 0.01 damping value. In (a), the Mx changes
from 1 to -1 due to the magnetic moments head to head in transverse DW. My is always
positive, which is typical for transverse domain walls. Mz , however, the dashed blue
line, emerges for a DMI value of 1 mJ/m2. In (b), Mz magnetisation components were
calculated for different values of DMI, where Mz increases as the DMI becomes larger.
The continuous line shows the absence of the magnetisation component without DMI.
In (c), the snapshots show the the transitions from transverse domain wall up to down,

mediated by core vortex nucleation.

Fig 8.7 (c) shows a snapshot of the magnetisation dynamics of the transition from

T-DW to V-DW (vortex domain wall), which is explained by the energetic tendency

of the magnetic components to vortex-core nucleation due to the out-of-plane nu-

cleation [304]. This indicates that IDMI supports the magnetisation components for

out-of-plane directions and by that it aids the DW vortex core. This means that nom-

inally in-plane magnetisation wires required more control over the IDMI’s strength

to prevent DW velocity loss. A negative IDMI value in the simulations was also

used to compare the results with a positive IDMI, where it shows that with nega-

tive IDMI values, the onset of the peak velocity is reduced when the IDMI value

increases. Both negative and positive values show asymmetric behaviour, but the

peak velocity is lower for a negative IDMI than for a positive value.

As a comparison with other studies, the findings in this study show a different

impact for DMI on DW’s velocity for in-plane nanowires, where as other studies
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investigate out-of-plane nanowires. It was shown in such studies that DWs chang-

ing from Bloch to Néel states with stability depending on the sign and the value

of the DMI [305]. Furthermore, for the out-of-plane case, DW mobility is high and

with increasing DMI stability increases and the Walker breakdown point occurs at a

higher driven field [279]. Also, it was shown in out-of-plane magnetised wires that

DW wall motion is robust, allowing for faster reversal of the magnetisation under

strong DMI and with a constant DW angle [279, 306]. In these cases the DW can

reach maximum velocity without precessional breakdown and also stabilise the DW

angle, which allows the transition from a Néel to Bloch wall in the range of the mag-

netic field without rotation in DW. In the in-plane case this is not the same, where

beyond the Walker field’s threshold this field’s transition from transverse to vortex

domain wall is unavoidable. The simulations shows that the transition from T-DW

to V-DW in larger magnetic fields is joined with the translation and rotation around

the nanowire axis, which results in the slow motion of the DW velocity due to the

back-and-forth motion as a result of the spin dynamics along the nanowire axis.

8.4 Chapter Summary

The study in this chapter was based on the experimental findings of Chapt. 6 on

the the effect of the heavy metal on increasing damping in Ni81Fe19/Pt thin-films.

This was done through experimental measurements and the micromagnetic analysis

of the domain wall magnetisation behaviour for in-plane magnetised nanowires of

Ni81Fe19 coupled with a Pt layer, which shows the effect of different phenomena tak-

ing place in the interface area. Investigating magnetisation reversal in parallel-sided

and edge modulated Ni81Fe19/Pt nanowires as a function of Pt thickness increasing

from 0-3 nm shows the impact of dPt on the magnetisation reversal behaviour. IDMI

and damping were both investigated as influencing sources in order to gain a bet-

ter understanding regarding the magnetisation reversal behaviour, where it showed

that the reversal field increases with an increase in Pt thickness in the range of 0-1

nm, with rapid behaviour up to 0.8 nm then tending to a plateau when dPt is 3 nm.
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Both a parallel-sided and edge modulated nanowire showed the same reversal be-

haviour, which suggests that this impact of the heavy metal is intrinsic regardless of

the nanowire shape details.

More informative data regarding the damping and IDMI variation were extracted

through micromagnetic analysis, as they give more insight into the damping and

IDMI effects upon the magnetisation reversal. The results show that the propaga-

tion and the de-pinning of the domain wall depends on damping increasing more

than IDMI; however, the latter has a significant role by increasing the magnetisation

reversal at high damping. Further analysis shows that DW velocity and Walker field

were varied in a significant way by both effects, where increasing the damping gave

a higher magnetic field in which the peak velocity and Walker field occur, while the

existence of IDMI will lead to a reduction in both the peak velocity and Walker field.

As a final result, coupling a heavy metal with high spin-orbit coupling with a

ferromagnet changes the magnetisation behaviour of the ferromagnetic system by

the effect of Dzyaloshinskii-Moriya interaction at the FM/NM interface and also

due to the effect of damping increasing via hybridization and spin-pumping across

the interface. The manipulation of damping and a weak IDMI may aid the control

of the DW dynamics regarding the velocity and Walker field in order to improve the

performance DW-based device.
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Chapter 9

Controlling Magnetic Damping in

Synthetic Ferromagnetic

Thin-Films Via Surface Layer

Modification

9.1 Introduction

In this chapter, a novel study has been carried out, on synthetic 5 nm Co thin-films,

capped with 2 nm of Cu, where the upper and lower surfaces mono-layers of the FM

material were modified via doping with Cr and Ag. The doping concentration was

in the range of 0-80 % in the first couple of mono-layers on each side of the FM. This

was compared with another set of samples with full FM layer doping in the range of

0-8 %. Magnetic damping measurements were carried out using ferromagnetic res-

onance (FMR) techniques in both the field and frequency domains. The dimension-

less damping parameter αeff was obtained for both methods. Magnetisation satura-

tion was measured using an MPMS superconducting quantum interference device

(SQUID). Structural investigations were carried out using x-ray reflectivity (XRR) to

determined the film thickness and interface width. The experimental results were

interpreted in relation to theoretical calculations undertaken by A. Umerski. This

study shows significant new results regarding the understanding of damping, the

control of damping and agreements between theory and experimental predictions
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providing a complementary novel route to lowering damping in FM material.

Low damping in general is key important to magnonic and spin transfer torque

cutting edge technologies, by reducing the required writing-current and improving

spin wave propagation, which represent an obstacle for many spintronic applica-

tions [1]. Understanding and improving magnetic damping has been the focus of

research in both theory and experimental aspects [6, 87, 116, 120, 121]. However

the damping contributions from individual mono-layers in FM systems has been re-

ported in only a few theoretical studies [6, 193, 307]. These studies report that the

largest contribution to the total damping is from the surface layers of FM films in

case of Co and Fe and layers contributions decrease steadily toward the central lay-

ers For Ni, the largest contribution come from the second to the surface layers and

the central layers.

Experimental studies have been focused on the dependence of damping on FM

and NM material thickness on doping and alloying. Studies with doping and al-

loying show a reduction in damping with changing the concentration of the dopant

element in NiFe [217, 222] and Fe [87, 227], where the dopant elements were Cr and

Ag for NiFe and Co into Fe. Studies investigating Cr and Ag doping in Ni80Fe20

used co-sputtering to vary the concentration of the dopant material, the reduction

in damping was small for the concentration range ∼ 0.06-0.07 for Cr and 0.1-0.11 for

Ag. However, there is no explanation for the observed reduction at this range [217].

The reduction is more pronounced in a study investigated the effect of Cr intermix-

ing in Ni81Fe19 on damping. That study used focused ion-beam irradiation to inter-

mix a Ni81Fe19/Cr bi-layer thin-film and it is known that with increasing ion dose,

intermixing between FM and NM layer increases. The explanation for the reduction

in damping was attributed to the reduction of spin-pumping effects due to the sput-

tering of the atoms from Cr layer and reduces its thickness. However, through the

full range of the ion dose, damping showed intrinsic nature and no observed extrin-

sic contribution due to the intermixing between Cr and Ni81Fe19 [222]. On the other

hand, studies investigating Fe thin-films doped with Co showed significant reduc-

tion in damping [87, 119, 227], all these studies attributed the reduction in damping

to the changing of density of states and showed a variation of the crystal structure
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with Co dopant concentration.

In experimental studies and most of the theoretical ones, the localized variation

of magnetic damping cannot be separated or detected. In this study, we used a

theoretical finding in Ref. [6] and used the results from an experimental studies on

doping Cr and Ag in NiFe [217, 222] to produce a composite material by modifying

both surface mono-layers of Co through doping with materials that show a reduc-

tion effect on damping in other experimental observations. This study shows new

significant findings which supports the theoretical work on damping as it varies

through a FM layer. The work here shows the capability to reduce the damping

value to an order of 10−4 by targeting the surfaces of a Co film. This work opens a

door to understand and control magnetic damping and build new materials that can

be used to improve the technologies in spintronics, spin-orbitronics [248, 308, 309]

and magnonics [249, 250].

Some other FM materials that have been reported to have ultra-low damping

such as yttrium-iron-garnet (YIG) [310]. However, the use of YIG in spintronics,

spin-orbitronics and complementary metal-oxide semiconductor (CMOS) is not eas-

ily applicable because it is an insulator. Some Heusler alloys are also predicted

to have the same order of damping value, but the preparation process and high-

temperature annealing are not suitable for spintronics and CMOS applications [311].

Thus, transitional metal ferromagnetic materials are considered for such applica-

tions due to their conductivity features and the capability to produced high quality

systems with no high temperature required. The one feature which is thought to be

hard to achieve so far is the ultra-low damping , where the role of electron-magnon

scattering causes the high value of magnetic damping.

9.2 Underlying Theory and Experimental Details

Our original idea was developed from the theory work of Barati et al [6], based on

a realistic nine-orbital tight-binding model that included spin-orbit coupling and

electron-scattering rate (Γ), which describes the range of lifetimes electronic states.

One of the findings of this study is the expression for the contribution to the damping
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from individual atomic layers in 18 mono-layers (ML) thick bcc Fe, fcc Co and fcc Ni

with Γ = 0.01 eV [6]. The calculation of the contribution was based on the derivation

of the Kamberský’s expression for the Gilbert damping parameter from the effective

magnetic field (Heff ) [274]. This equation used the Fermi-Dirac distribution function

and the total spin magnetic moment, in units of the Bohr magneton, with the spin-

orbit torque operator as a function of the Lorentz function of the electron-scattering

rate. The damping parameter values in those studies are attributed to both intraband

and interband processes, which arise from spin-orbit coupling, for more information

see [6, 311, 312]. The different contributions to the damping is obvious between Ni

on one hand and Fe and Co on the other, regarding the mono-layers contributions

to damping, as explained in Chapt. 5.

We have used this theoretical work with suggestions based on the experimental

results [217, 222], to test the concept of doping the atomic surface layers in Co with

Cr or Ag to create a synthetic ferromagnetic layer with a lower damping parame-

ter. A range of Co thin-films have been grown using a UHV magnetron sputtering

system, the Co was capped with 2 nm of Cu to prevent surface oxidation. Cu was

selected as capping layer as it show very low contribution to the damping enhance-

ment in theoretical and experimental studies [6, 147, 195, 196].

Two sample sets with different doping were fabricated, the first one simply of

Co that was uniformly doped with Cr or Ag with a concentration range from 0-8 %,

while for the second set doping was limited within the first few atomic layers near

to the upper and lower surfaces of the Co layer. Extra care was taken to optimize

the accuracy of the co-sputtered deposition rate and to limit doping to the surface

layers. Structural analysis was carried out to verify thickness, interface width and

the doped atomic layers thickness. The main magnetic damping measurements were

carried out in two different labs as frequency and field linewidth; in IN-IFIMUP,

University of Porto, Porto, Portugal and by D. Atkinson in the Brazilian Center for

Research in Physics (CBPF) , Rio de Janeiro, Brazil respectively. Finally a theoretical

calculation on fcc Co doped with Cr in the first two atomic surface layers was done

by A.Umerski who led the theoretical work in Ref. [6]. Due to the time and data

limitation results, Ag doping will not be presented in this work.
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9.3 Results and Discussion

Starting with structural analysis, Fig. 9.1 (a) shows XRR pattern with best fitting

using GenX code, where the layer thicknesses and interface widths were extracted

from the best fitting simulations code. The thickness of the Co layer was in the

FIGURE 9.1: X-ray reflectivity results for selected samples, where it shows (a) specular
x-ray with the best fit and (b) specular diffuse scattered x-rays.

range 4.8± 0.1 nm, for the Co 5 nm/Cu 2 nm whiles Cu thickness was 2.9± 0.01 nm

with the interface width between Co and Cu ∼ 0.8 ± 0.1 nm. For thin-films with Cr

doping on the upper and lower surface of Co a similar ranges between 4.7-4.8 nm

of Co and ∼ 3.5 nm of Cu was determined, the CoCr layers between SiO2 and Co in

the lower interface and Co with Cu in the upper interface with a range of 0.2-0.3 nm

which seams to be targeting the right layer which will have the largest contribution

to damping.

Diffuse scattering x-ray measurements have been done to investigates the inter-

face topological roughness. From the same figure 9.1 (b) it can be seen from the

shape (Yoneda wings) that samples investigated shows a relatively smooth topolog-

ical interface width. see Chapt. 3 for more information.

The field and frequency linewidths from FMR measurements were used to ex-

tract the dimensionless damping parameter αeff and other parameters such as inho-

mogeneous line broadening (∆H0) and the saturation magnetisation (MS). Fig. 9.2

(a) (b), shows selected samples raw data and FMR measurements with field and fre-

quency variation for Co 5 nm/Cu 2 nm thin-film. For (a) and (b) the increasing of
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FIGURE 9.2: The FMR signal in (a) S12 is changing as a function of both frequency and
field, also (b) shows the variation of the peak and the dip as with increasing field and
frequency in 3D projection, where the colour legend stand for S12 signal. (c) damping
fitting using field linewidth domain and (d) shows Kittel fitting for Co 5 nm/Cu 2 nm.

the resonant frequency can be seen as a function of the external magnetic field with

the indication of the S12 signal variation.

The Kittel formula was fitted in order to extracts MS using gyromagnetic ratio

(γ) value of 2.96 × 10−6 GHz/Oe [14]. The same value was used to extracts αeff by

fitting the field linewidth damping equation derived from LLG equation. The fitting

was done using python code program created by C. Swindells, and other program

created by S. Bunyaev, used to separate the real and imaginary components. For

measurements with frequency, a conversion between field and frequency was car-

ried out in order to extracts αeff , where the field linewidth in both measurements

was used to find the value of αeff . More information regarding Kittel formula and

fitting damping equation can be seen in Chapt. 3.

In order to verify the experimental works on damping [217, 222], which showed

a reduction in damping as a function of Cr concentration the first set of CoCr 5
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nm/Cu 2 nm films were measured and damping parameter was extracted in field

and frequency linewidth. The results show the same trend as for the previous work,

as shown in Fig. 9.3 (a), with the exception that some points show high or low values

of αeff . However, from the figure it can be seen that the measurement in the field

is more consistent with previous experimental results where the magnitude of αeff

value is within the range of 0.5. While for the frequency linewidth measurements the

reduction was larger. This can be explained by a lack of accuracy with the conversion

equation used to extracts the field linewidth from the frequency linewidth data [83].

The equations used to find the field linewidth, ∆H , from the frequency linewidth,

∆f , and the other way around can be seen below:

∆f = γ

√
1 +

(γMeff

f

)2
∆H (9.1)

and

∆H =
1

γ

√
1 +

(
γMeff
f

)2
∆f (9.2)

FIGURE 9.3: Damping extraction from FMR measurements of field and frequency
linewidths, where (a) shows the same general trend of αeff reduction with increasing Cr
concentration for 0- 0.8 % Cr doping, (b) the extrinsic contribution to damping, which

shows big contribution from the inhomogeneous component to αeff .

The use of these equations to obtain the field linewidth from the frequency linewidth

is linked with the condition that the inhomogeneous broadening contribution to the

linewidth should be negligible [83]. This is also supported by the extrinsic damp-

ing components shown in Fig. 9.3 (b), which show that the extrinsic contribution
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starts at the same value for both measurements, but it increases rapidly with increas-

ing Cr concentration according the filed linewidth directly, while for the frequency

linewidth extrinsic contribution it can not be directly extracted since the damping in

relation with frequency linewidth does not include the inhomogeneous line broad-

ening contribution.

Other parameters have been extracted from fitting the Kittel formula. In Fig. 9.4

(a) and (b) MS is plotted against Cr concentration which shows a reduction in MS

with increasing Cr concentration. The decreasing in MS is in agreement with pre-

vious studies on Co doping with Cr [313–315]. However the results in Ref. [313]

FIGURE 9.4: Saturation magnetisation is plotted as a function of the Cr concentration,
where it is calculated from (a) frequency and (b) field linewidths. It shows reduction in

magnetisation with the increasing of doping.

shows a smaller decreases of MS with Cr doping. This may be attributed to the cap-

ping Co layer above and under the investigated thin-films in the previous study,

which may reduces the Cr doping effect on MS. This work shows a comparable

magnitude of reduction MS with the studies in Refs. [314, 315], where there is no

FM capping layer. In Fig. 9.4 MS start to level out after 4 % concentration for field

linewidth and increases for frequency linewidth at 7 %, however the error bar in

both measurements are large. Furthermore, there are no samples have been mea-

sured with higher doping. These results shows agreement with previous studies

that investigated Co thin-films with Cr doping regarding damping [217, 222] and
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also with studies investigated other magnetic properties such as MS [313–315].

Moving toward the main investigation where Co thin-films doped with Cr only

in the outer layers. The films have the form Co1−xCrx 0.12/Co 4.8/Co1−xCrx 0.12/Cu

2 nm, where x= 0 to 0.8. The same measurements have been carried out for these

samples, with SQUID measurement in order to compare the direct experimental MS

with the extracted from Kittel formula. MS is plotted from the SQUID measure-

ments and compared with values extracted from both set of FMR measurements,

see Fig. 9.5.

FIGURE 9.5: Saturation magnetisation as a function of the Co surface layers doping
concentration with Cr. The general trend of MS shows some similar behaviour between
all results. Noting that© is the literature value of the saturation magnetisation of bulk

Co [314].

The results of the SQUID show some similarity with the extracted results from

FMR measurements. The figure in general shows a reduction in MS with increasing

Cr concentration, however after 40 % concentration of Cr, MS shows almost con-

stant behaviour, noting that the first point in SQUID results is taken from the litera-

ture [314]. The behaviour of MS from SQUID measurement is similar to the previous

study. In that study they used three layers of Co with thickness of 20, 66 and 20 nm

respectively, while they doped only the middle layer with Cr. The reduction was

attributed to the doping concentration of Cr in Co however, the constant behaviour

witnessed is also justified in Ref. [313] by the layers of Co without doping where

the MS measured is averaged from the full samples. The magnetic moment in the
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boundaries layers is suppressed due to the Cr doping [314], while the middle Co

layer has its own momentum which in total can produce the observed MS value.

The extracted inhomogeneous broadening (∆H0) contribution to damping is shown

in Fig. 9.6. It can be seen in this figure that ∆H0 starts to rise with increasing of Cr

concentration in both measurements. The extrinsic contribution then comes down

almost to zero at 30 % Cr concentration, then it rises again at 40 %. However after

that there is almost a settlement in the extrinsic contribution where it shows constant

behaviour and near to zero contribution. This may shows that, with the exception

to the point at 40 % Cr concentration, an homogeneous crystal structure system is

formed and there are no changes in the system. This also agrees with the previ-

ous study which showed that at 30 % Cr concentration a hcp crystal structure is

formed [313]. By linking the ∆H0 behaviour of this study, it can be argued that

FIGURE 9.6: Inhomogeneous broadening to the damping as a function of Cr concentra-
tion where it shows the homogeneities of the system.

our samples have the same hcp crystal structure at the same Cr concentration point

except 40 %. XRD measurements were executed in this study to investigate crys-

tal structure, however the measurements did not give any useful data to indicates

the crystal structure of these thin structures. The largest effect which can be seen in

Fig. 9.6 with low doping in just a few atomic layers can be attributed to the contri-

butions of these atomic layers to the total damping.

As the main concern of this study is the damping value, the intrinsic damping

parameter was extracted from both the field and the frequency linewidth analysis of
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the FMR measurement. The damping parameter is plotted as a function of the Cr

doping concentration in the boundaries of the Co layer. The results in Fig. 9.7 show

good agreement in the overall trend as a function of doping between the frequency

and field linewidths data, where it can be seen that damping in general starts from

a high value and then declines rapidly with increasing Cr doping concentration be-

tween 30 to 50 %. After that point the damping shows almost constant behaviour.

FIGURE 9.7: Intrinsic damping parameter αeff extracted from FMR measurements in
frequency linewidth and field linewidths analysis. The data shows the general trend of
the damping behaviour as a function of the Cr doping concentration and the difference

in the results between the frequency and field linewidth measurements.

The damping values extracted from the frequency linewidth are higher than the

values of the field linewidth. This may be attributed to the issue with damping

extracted from the frequency linewidth measurements, where the inhomogeneous

broadening contribution to the damping is not distinguished and therefore adds to

the damping value, noting that, this effect is weaker for higher doses where good hcp

structure is expected. The damping value for pure Co, extracted from the frequency

linewidth, in this study is comparable with the damping value for similar system

studied in Chapt. 6. In that study, damping was measured using the TR-MOKE

method, and the results are in good agreements. Furthermore, it is known that in TR-

MOKE measurements, the total extracted damping value is the sum of both extrinsic

and intrinsic contributions, by which, the damping extracted in this study in the
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frequency linewidth FMR is almost the same as the value extracted by TR-MOKE [5].

As it is known that the field linewidth is more accurate in terms of extracting the

damping parameter, hence we will use the field linewidth results to discuss the main

behaviour for the damping dependence on Cr doping concentration. The damping

values show a significant drop in the range from 10 to 50 % Cr concentration doping,

at 50 % Cr concentration and beyond the damping shows constant behaviour.

Before explaining the behaviour further corrections to the data have been calcu-

lated to obtain the true net damping parameter, α. The estimated radiative damping

(αrd) contribution, due to the inductive interaction between the precessing magneti-

sation in the sample and the co-planar waveguide in the FMR system, was sub-

tracted, see Chapt. 3 for details of damping calculation. This effect can be extracted

experimentally, but due to time limitation it is calculated for the time being. A sec-

ond effect was also subtracted which comes from the contribution of the Cu capping

layer to the damping, which is responsible for absorbing spin angular momentum

pumped from the FM layer. This is the spin-pumping damping (αsp) contribution

which was calculated and subtracted from the term (αeff−αrd), see also Chapt. 5 and

6. Both αrd and αsp were very small, of order 10−4, however for the lowest αeff this

can be significant. The measured and corrected results are shown in Fig. 9.8.

FIGURE 9.8: Intrinsic damping results extracted from FMR measurements in the field
linewidth and the calculated Radiative, αrd, and the spin-pumping, αsp, where their
contributions subtracted from the total damping. The final corrected net damping, α
after the subtraction of both contribution shows very low values especially at 50 % Cr

doping concentration and beyond.
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It can be seen from the figure that a new final damping parameter, α, is ob-

tained from the damping extracted from the field linewidth αeff , which shows that

α reaches very low values of order 10−4 with doping of the surface layers. The crys-

tal structure changes with doping may be one of the explanations for the damping

reduction as it was used to explain, ∆H0, see Fig. 9.6 and MS, see Fig. 9.5. However

this may not fully explains the low observed damping value.

In order to explain the behaviour that leads to this low damping value, a the-

oretical calculations were done by A. Umerski from the Open University over 12

mono-layers of Co layer with the same Cr doping from 10- 40 % in the surface mono-

layers. Fig. 9.9 (a) (b) (c) and (d) presents the finding of the theoretical work, which

shows the damping contribution from each individual layer for different Cr doping

concentration.

FIGURE 9.9: Theoretical calculation for damping contribution form each individual
layer, with a schematic illustration shows the Cr concentration increasing from (a) 10
%, (b) 20 %, (c) 30 % and (d) 40 %, where the effect on damping starts by decreasing the

contribution to the total damping from the boundaries atomic layers.

It can be seen that the doping affects the first couple atomic outer layers symmet-

rically. Higher Cr doping gradually reduces the contribution coming from the outer
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atomic layers, at the same time doping increases the contribution from the second

outer layers at Cr concentration 30 %. Doping starts to impact the damping contri-

bution value of the outer couple atomic layers at a Cr concentration of 40 %, at which

a big drop in damping takes place. It is worth mentioning that the calculated in the

theoretical work is was limited to 40 % Cr doping concentration. By calculating the

total damping and using the same study to calculate the damping for pure Co the

results from theory are compared with the experimental work as shown in Fig. 9.10.

In order to explain the behaviour of the intrinsic damping beyond the crystal

phase changes, this theoretical work can aid the interpretation. Fig. 9.10 shows the

comparison between the final net damping and the full damping calculated from

the contribution of each individual layer. The value for the damping for pure Co is

calculated from 18 mono-layers of Co in the same theoretical work [6]. It is worth

mentioning that the real thin-films were much thicker than the Co thickness calcu-

lated in the theoretical work. However the initial points in Fig. 9.10 almost perfectly

agree, which shows that the experimental results benefit from subtracting the spin-

pumping and radiative damping effects.

FIGURE 9.10: Comparison between theoretical calculation and the final extracted exper-
imental results.

It is suggested that the rapid decreasing of damping from 0 up to 50 % is a mixed

effect combining the crystal phase changes and the theoretical predicted energetic

states of the system. However, the latter has more impact than the crystal changes
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as the changes in the crystal structure cannot leads to such low damping values.

Furthermore, in Fig. 9.10 the calculations were executed on fcc Co, which as shown

give almost perfect results for Pure cobalt. The theory behind the calculated damp-

ing used a nine-orbital tight-binding model including spin-orbit coupling, with the

dependence on Fermi-Dirac distribution function. This shows that the damping

is linked predominantly by states with energies close to the Fermi level. Further-

more, this effect is essential for the intraband transition which was explained previ-

ously [6]. It was also demonstrated by a previous study that structural phase tran-

sitions and ferromagnetic phase boundaries can be affected by variations of sample

surface [316]. The electronic structure is re-engineered in the atomic boundaries by

which the intraband transition events may reduced, which may lead to decreases in

the scattering rate coming from these layers and finally lowering the states with en-

ergies close to the Fermi level εF. Thus damping as in the image of the dimensionless

parameter will be reduced.

9.4 Chapter Summary

In this chapter novel work was done to create synthetic ferromagnetic systems by

introducing new composite materials with new magnetic properties that may open

the research field with a new method to reduce damping in FM material to value

with order of 10−4. In this study, results from a previous theoretical study were con-

sidered and developed experimentally and new theoretical calculations were under-

taken to support this new idea. The samples were investigated in two laboratories

for FMR measurements as a function of field and frequency linewidths. XRR mea-

surements and SQUID magnetometry, were carried out to aid the results and gain a

better understanding to the magnetic behaviour. The reduction in damping was sig-

nificant and other magnetic properties varied, such as saturation magnetisation and

the inhomogeneous damping of the system. Crystal structure insight from previ-

ous studies were considered to help explain the results. The existence of XRD result

would help the research however, the results cannot be explained only by crystal

structures effects. Theoretical work was carried out by the same group whom made



180
Chapter 9. Controlling Magnetic Damping in Synthetic Ferromagnetic Thin-Films

Via Surface Layer Modification

the previous theoretical work, and shows some agreement with the experimental re-

sults. As a conclusion for this work, magnetic damping was controlled to a very low

values by re-engineering the electronic structure of the outer layers of Co thin-film

leading to reduction in the contribution to damping that comes from these atomic

layers. This work can use as first step to investigates a lot of other materials to find

their effect on damping, which may lead to further reductions in damping. Theoreti-

cal work also can be done on other pure and alloyed FM materials to find the atomic

layers which largely contributes to damping, opening a new field, that can explore

to reduce damping and feed into technology with new engineered materials.
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Chapter 10

Conclusions and Further Work

10.1 Conclusions

In this thesis, the magnetic damping behaviour was investigated in ferromagnetic

thin-film systems. In general the magnetic damping was studied and controlled in

Co and Ni81Fe19 thin-films with a range of non-magnetic materials (NM = Pt, Au,

Cr, Ag and Cu) as a capping layers or dopant. The studies in this thesis was focus-

ing on the effect on damping behaviour through different approaches. This is done

by firstly studying the additional capping layers and secondly the modification of

the interface layer between the combined FM and NM layers. The third is studying

the contribution of the damping variation with IDMI as interfacial localised mag-

netisation effects on the magnetic domain wall dynamics in terms of velocity and

magnetisation reversal. Finally, new works demonstrates a novel method of control-

ling magnetic damping through the modification of the surface of a ferromagnetic

layer. This was done using well-known fabrication techniques with well-established

measurement methods. The results add new understanding of the magnetic damp-

ing behaviour with new findings in the research field.

The evolution of magnetic damping as a function of NM layer thickness in bi-

layer thin-films of a Co or Ni81Fe19 layer capped with Pt and Au shows a significant

effect on damping for Pt on both FM materials, but not for Au. The dependence

of damping on Pt thickness shows a rapid increase with increases in the Pt thick-

ness in the range 0-0.6 nm for Co and 0-0.8 for Ni81Fe19. The investigation shows
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that this increase is due to the development of an interface between the FM ma-

terial and Pt, where the local magnetisation is modified by the Pt atoms initially

via forming islands of Pt-FM which have different magnetic properties. The varia-

tion of the magnetic properties at the interface between the FM layer and Pt is due

to the incomplete coverage of the Pt layer on Co and Ni81Fe19 at the Pt thickness

ranges mentioned above. By the creation of these islands, the intrinsic damping in-

creases via the d-d hybridization effect. However, due to the inhomogeneities of the

magnetic moment between the Pt-FM island and uncovered FM areas, two-magnon

scattering emerges, thus damping in general seems to be extrinsically enhanced.

With increasing Pt thickness damping tends to a maximum and then falls to a

plateau when the Pt thickness > 0.6 for Co and > 0.8 for Ni81Fe19. X-ray reflectiv-

ity shows that at these thicknesses Pt forms a continuous layer on Co and Ni81Fe19

respectively. This increases the uniformity of the interface and leads to increased in-

trinsic damping while the extrinsic effect is reduced, which explain the fall in damp-

ing from the peak. Comparing Co and Ni81Fe19 the latter shows higher damping

values at lower Pt thicknesses. This is may be explained by the XRD investigation

which shows that that Co has hcp structure while Ni81Fe19 has fcc, which may sup-

port the higher spin-mixing conductance for the case of Ni81Fe19 than for Co re-

garding their crystal structure with respect to Pt. The damping for the Au capping

layer on Co did not show any enhancement, which may be attributed to the higher

intermixing for Pt with Co and the higher density of states in comparison with Au.

The damping behaviour shows good agreement with a recent theoretical study, with

small differences arising from the uncalculated effects such as roughness in the real

investigated in comparison with the theoretical study where the atoms arranged

perfectly.

The variation of damping was investigated as a function of the modified inter-

facial region in Ni81Fe19/Pt thin-film microstructures. The interfacial modifications

were done by focused ion beam irradiation in a low range of ion-beam doses. Mag-

netic damping shows a rapid increase as the dose increases up to a dose range 2–2.4

pC/µm2. This increasing damping is due to a widening of the interface area be-

tween the Ni81Fe19 and Pt layer. The dependence of damping on frequency shows
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that the enhancement of damping has a contribution due to the extrinsic mecha-

nism, via two-magnon scattering developed at the interface. The structural analysis

shows that the interface changes as a function of the focused ion-beam irradiation

dose in the previous cases with Au capping layer. The damping starts to fall and

continues as the irradiation dose increases more than 2.4 pC/µm2. In this region,

however, intrinsic damping is responsible for damping decreasing. This is demon-

strated by using the structural results of previous studies and the dependence of the

frequency on irradiation dose. It shows that there are no contributions from the ex-

trinsic mechanism to the total damping. Furthermore, new NiFe-Pt graded alloy is

gradually formed with almost no Pt capping layer. This suggests that the reduction

in damping is due to the reduction of the spin-pumping effect by the loss of the Pt

capping layer by sputtering and intermixing due to irradiation. The variation of the

precessional relaxation time as a function of irradiation dose also shows a change

in the lattice configuration. These changes take place at irradiation doses in the

same range as when the damping reaches the maximum value. The development

of the interface in this microstructure and the change of the bi-layer thin-film into

a compositionally-graded alloy with the loss of the Pt capping layer are the main

events that explain the variation of magnetic damping.

Understanding the roles of damping and IDMI at the interface is the third con-

clusion. This work used the results of the damping enhancement in Ni81Fe19/Pt

thin-films and was applied to differently shaped nano-wires. Also, this study shows

the effect of the Dzyaloshinskii-Moriya interaction at the interface in micromagnetic

simulations in order to understand the effect of both on the domain wall dynam-

ics. The results show that the magnetisation reversal field for domain wall reversal

increases linearly with the intrinsic damping and it appears to be independent of

the extrinsic damping and is only secondarily dependent on the nano-wire shape.

However, an independence of the reversal field on extrinsic effect is known at length-

scales comparable with the domain wall width. Interfacial DMI shows large effect

on the reversal field when the damping value is high. Damping and interfacial DMI

shows a larger influence on the domain wall velocity and Walker field. Damping

increasing shift domain wall velocity and Walker field maximum pekes to a higher
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magnetic field. The increasing of interfacial DMI however, reduces both to a lower

magnetic field.

The results show differences between the micromagnetic simulations and experi-

ment. This may be justified by the different parameters that were used in the simula-

tions compared to the real values of the material investigated, such as the exchange

stiffness constant, saturation magnetisation and temperature. Furthermore, there

were differences in the details of modelling the geometry for the real wires and the

simulation. In general, the strong spin-orbit coupling from Pt had an impact on the

magnetisation behaviour in Ni81Fe19 through the variation of the interfacial damp-

ing and DMI. This study shows the possibilities to control domain wall propagation,

mobility and stability by the modification of damping and IDMI.

Controlling damping through the modification of the surface atomic layer of Co

is a new method, which implements the theoretical work of Barati et al [6], with the

experimental results from well know previous studies [217, 222] to examine a new

approach, by controlling the contribution to damping parameter expression from

individual mono-layers in FM material . This has been done by modifying the sur-

face atomic layers of each side in Co layer with Cr dopant. The latter shows a kind

of reduction effect when it was used with very low concentration as dopant in FM

material. Knowing from the theory that largest contribution to damping in Co, this

concept was applied and measured. The first part of this study is to verify the re-

sults from the previous studies, by doping the full Co layer with Cr with range from

0 to 8 %, which shows good agreement regarding magnetic damping and saturation

magnetisation. The results shows a reduction in damping and saturation magneti-

sation in the range of doping concentration upto 8 %. This reduction may attributed

to the magnetic moment suppression due to the Cr dopant. This also shows good

agreement with a similar studies on Cr doping effect on saturation magnetisation.

The second part is related with the doping of the surface atomic layers of the

Co. In this part Saturation magnetisation shows a trend of reduction with Cr doping

concentration between 0 to 40 % after that the trend almost constant. This behaviour

may also attributed to the changing magnetic moment in these doped atomic layers,
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however the constant behaviour is may linked with the unchangeable magnetic mo-

ment in the rest of the undoped Co layer. The inhomogeneous broadening results

shows similar trend to the saturation magnetisation, by reviewing previous work

on doping and the effect on the crystal structure of the system investigated, this be-

haviour my be attributed to the crystal phase transition that occurs with increasing

doping of Cr from 0 upto 30 %. After that it may argued that our samples formed a

hcp structure where the inhomogeneous broadening shows constant behaviour and

almost zero. Intrinsic damping show interesting results where damping parame-

ter shows decreasing in value between 0 to 40 % Cr doping concentration. Beyond

this concentration damping is very low and almost constant. The results was as a

function of field and frequency linewidth, however the frequency linewidth’s re-

sults show a higher value than the field linewidth. This was also my explained by

the unseparated inhomogeneous broadening in the frequency linewidth measure-

ments. Also the similar results with our previous study on similar system, where

damping measured by TR-MOKE which is known that in this method the damping

parameter is the sum of both extrinsic and intrinsic damping contribution.

By using the FMR field linewidth results, damping value was very low and by

subtracting the radiative and spin-pumping damping contributions the results were

significantly lower with an order of 10−4, which represent a very low damping value

in any given metal FM. The explanation was aid by theoretical calculations done by

A. Umerski, where the results again show very good agreements. This behaviour

of damping may attributed to the more than one effect. The first one is the crystal

phase changing by Cr dopant concentration, which may have a lower impact than

the second effect, which is the electronic distribution in the boundaries atomic layers

in Co. Adding Cr in these atomic layer will firstly may suppress their magnetic mo-

mentum, secondly it may lower the intraband transition processes by decreasing the

number of energy states close to the Fermi energy level, Thus it may decreases the

contribution to the total damping from these atomic layers. Since, by theory, these

layer are the most contributed to the total damping, the damping reduces signifi-

cantly by doping these layer with Cr. This work can be considered as first step to

try many other elements on Co or other pure or alloyed FM materials, which can be
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done with knowing the most affective regions by theory.

10.2 Further Work

The studies in this thesis have shown some contribution regarding understanding

magnetic damping behaviour in ferromagnetic thin-films as a function of substantial

variations. These variations involve non-magnetic materials in different locations

in the ferromagnetic thin-films, including interface, capping layer and the border

mono-layers of the ferromagnetic material. The studies lead to a new findings, but

more investigations are required as the field of research continues to develop.

The study of the evolution of magnetic damping was focused on the damping

dependence as a function of Pt thickness. The study shows that Co has a hcp crys-

tal structure, which indicates the low value of damping compared with Ni81Fe19. A

similar study can be carried out to show the effect when Co has fcc structure may

lead to enhancement of the damping through the intrinsic mechanism. Trying other

heavy metals, such as osmium will be good practice to find the limits of damp-

ing increasing, where osmium is reported as a very effective elements in increasing

damping in the case of doping. This also may be true in the case of the capping layer.

For the study on the interfacial variation effect on damping in Ni81Fe19/Pt mi-

crostructures, the focus was on the development of the interface layer and the re-

duction of the capping layer effects on damping. This study could be extended to

include micromagnetic simulations in order to understand the role of IDMI while

increasing the interface layer, which may provide more insights to the study. The

study can include the effect of damping and the IDMI on the magnetisation dy-

namic and domain wall motion. Repeating the study for Ni and Fe only with the

same Pt capping layer may show a comparison between the two cases and give in-

sight regarding the effect of Pt on the damping of each thin-film. This may also show

a comparison of the relative interaction of Pt with Ni and Fe.

The study focused on the effect of damping and interfacial DMI on the magneti-

sation reversal and domain wall motion, used the experimental results combined

with micromagnetic simulations of Ni81Fe19/Pt thin-films. IDMI can be found in
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thin-film materials known for their high spin-orbit coupling. This study could be ex-

tended by using a range of different ferromagnetic layers with Pt as a capping layer

and the simulations can be compared with anisotropic magnetoresistance (AMR)

measurements . DMI in the interface can show different behaviour with a very low

applied magnetic field; this is because in the in-plane thin-films with IDMI, the lo-

calised magnetisation spin at the interface should have an out-of-plane combination,

as it was shown by the snapshots of the simulation softwares; this can be simulated

and compared with the experimental results for selected bi-layer thin-films with in-

plane magnetisation and high expected IDMI strength values. This may help to gain

better knowledge regarding IDMI in different ferromagnetic bi-layer thin-film sys-

tems.

As the final study in Chapt. 9 shows a significant and novel results by synthesis-

ing ferromagnetic material with changes on the bordering mono-layers, this study

was a step toward controlling damping in Co by doping the outer mono-layers with

Cr, where it shows a significant impact on damping due to this doping. This study

opens the door to new research to investigate new materials using the same proce-

dure by knowing the effect of the dopant material. The use of different materials

is not yet explored and the theory behind damping reduction can be extended to

any ferromagnetic material with different crystal structures. The study can be ex-

panded to different levels with the effects on systems with out-of-plane magnetisa-

tion, nano-wires and other alloyed ferromagnetic materials. The results may allow

further control in terms of magnetic damping, crystal structure and other magnetic

properties.
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