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Abstract

Background

Risk prediction is crucial in many areas of medical practice, such as cardiac transplantation,

but existing clinical risk-scoring methods have suboptimal performance. We develop a novel

risk prediction algorithm and test its performance on the database of all patients who were

registered for cardiac transplantation in the United States during 1985-2015.

Methods and findings

We develop a new, interpretable, methodology (ToPs: Trees of Predictors) built on the prin-

ciple that specific predictive (survival) models should be used for specific clusters within the

patient population. ToPs discovers these specific clusters and the specific predictive model

that performs best for each cluster. In comparison with existing clinical risk scoring methods

and state-of-the-art machine learning methods, our method provides significant improve-

ments in survival predictions, both post- and pre-cardiac transplantation. For instance: in

terms of 3-month survival post-transplantation, our method achieves AUC of 0.660; the best

clinical risk scoring method (RSS) achieves 0.587. In terms of 3-year survival/mortality pre-

dictions post-transplantation (in comparison to RSS), holding specificity at 80.0%, our algo-

rithm correctly predicts survival for 2,442 (14.0%) more patients (of 17,441 who actually

survived); holding sensitivity at 80.0%, our algorithm correctly predicts mortality for 694

(13.0%) more patients (of 5,339 who did not survive). ToPs achieves similar improvements

for other time horizons and for predictions pre-transplantation. ToPs discovers the most rel-

evant features (covariates), uses available features to best advantage, and can adapt to

changes in clinical practice.

Conclusions

We show that, in comparison with existing clinical risk-scoring methods and other machine

learning methods, ToPs significantly improves survival predictions both post- and pre-car-

diac transplantation. ToPs provides a more accurate, personalized approach to survival
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prediction that can benefit patients, clinicians, and policymakers in making clinical decisions

and setting clinical policy. Because survival prediction is widely used in clinical decision-

making across diseases and clinical specialties, the implications of our methods are far-

reaching.

Introduction

Risk prediction (survival prediction) is crucial in many areas [1–3], perhaps most obviously in

medical practice. Survival prediction before and after heart transplantation, which is the focus

of this paper, is an especially important problem because transplantation and treatment deci-

sions depend on predictions of patient survival on the wait-list and survival after transplanta-

tion [4, 5]. In addition to providing useful guidance for the treatment of individual patients,

better predictions may increase the number of successful transplantations. (Currently, only

about one-third of available hearts are transplanted; the other two-thirds are discarded [6–8]).

Risk/survival prediction in this context is a challenging problem for a number of reasons.

• The populations of patients and donors are heterogeneous. This heterogeneity is reflected in

different survival patterns for subpopulations. Moreover, the importance of particular fea-

tures (covariates) on survival is different for different sub-populations, and the dependence

of survival on features involves the interactions between features, which are again different

for different sub-populations.

• The features that have the most effect on survival depend on the time horizon: the features

that are most important for survival for 3 months are different from those that are most

important for survival for 3 years.

• The underlying clinical practice and the patient population change over time. In the case of

heart transplantation, the most dramatic example of change in the underlying clinical prac-

tice took place following the introduction of mechanical assists, especially left ventricular

assist devices (LVADs) in 2005, after which population average survival times improved sig-

nificantly [9, 10].

Most of the commonly used clinical approaches to survival prediction use one-size-fits-all

models that apply to the entire population of patients and donors and does not fully capture

the heterogeneity of these populations. Most of these clinical approaches construct a single

risk score (a real number) for each patient as a function of the patient’s features and then use

that risk score to predict a survival time or a survival curve [11–16]. A consequence of this

approach is that patients with higher risk are predicted to have a lower probability of surviving

for every given time horizon—so survival curves for different individuals do not intersect.

The main objective of this study was to construct and test a new approach to survival prob-

lems: ToPs—trees of predictors. ToPs captures the heterogeneity of the populations by learn-
ing, automatically on the basis of the data which features have the most predictive power and

which features have the most discriminative power for each time horizon. ToPs uses this

knowledge to create clusters of patients and specific predictive models for each cluster. The clus-

ters that are identified and the predictive models that are applied to each cluster are readily

interpretable. ToPs can be easily re-trained to accommodate to changes in clinical practice and

the patient/donor population. (A particularly dramatic change in clinical practice occurred in

2005 with the introduction of LVADs, which significantly improved patient survival. As we
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discuss below, when we re-trained ToPs on data that takes this change into account, predictive

accuracy was also significantly improved.) We tested ToPs on the United Network for Organ

Sharing database (using various time periods for training and testing) and found that it pro-

vided significantly better predictions of survival, both post- and pre-transplantation, than

commonly used clinical approaches and state-of-the-art machine-learning methods.

Materials

Study design

We conducted our study using the United Network for Organ Sharing (UNOS) database of

patients who were registered to undergo heart transplantation during the years from 1985 to

2015 (available at https://www.unos.org/data/). This provided a dataset of 59,820 patients who

received heart transplants and 35,455 patients who were on a wait-list but did not receive heart

transplants; we refer to the former as transplanted patients and to the latter as wait-listed

patients. We excluded the patients whose age is less than 18 (to focus on adults); thus, our

cohorts consist of 51,971 transplanted patients and 30,911 wait-listed patients. Of the 51,971

transplanted patients, 26,109 patients (50.2%) were followed until death, and the remaining

25,862 patients (49.8%) were right-censored (i.e., either still alive or their exact survival time

was not known). Of the 30,911 wait-listed patients, 16,916 patients (54.7%) were followed until

death; the remaining 13,995 patients (45.3%) were right-censored.

Patients in the dataset are described by a total of 504 clinical features. Of these, 334 features

pertain to (potential) recipients, 150 features pertain to donors and 20 features pertain to

donor-recipient compatibility. We discarded 12 features that can be obtained only after trans-

plantation and so cannot be used for prediction before transplantation, and 439 features for

which more than 10.0% of the information was missing. ([17] shows that imputing missing

data is useful when the missing rate is less than 10.0%, but much less useful when the missing

rate is higher.) After discarding these features, we were left with 33 recipient features, 14 donor

features, and 6 donor-recipient compatibility features—a total of 53 features (See Supporting

Information for the specific features used in this paper.) The exclusion criteria is summarized

in Fig 1 for both patients and features.

Fig 1. The summary of exclusion criteria for UNOS dataset. (a) Patients, (b) Features.

https://doi.org/10.1371/journal.pone.0194985.g001
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Categorical binary features (e.g., Male/Female) are represented as 0, 1; categorical non-

binary features are converted to binary features (e.g., blood type A/not-A); other features are

represented as real numbers (Results from information theory imply that converting categori-

cal non-binary features to multiple binary features is equivalent to using the original categori-

cal non-binary features [18–20]; doing so is standard in data science [21, 22]). For missing

components of the features, we use standard imputation methods to impute those compo-

nents. More specifically, we conduct 10 multiple imputations using Multiple Imputation by

Chained Equations (MICE) as in [17]. Furthermore, we assign a correlation coefficient

between each feature and label to a relevance score for each feature. These scores depend on

the task at hand: the relevance scores for survival on the wait-list are different for different

time horizons, and the relevance scores for survival on the wait-list are different from the rele-

vance scores for survival after transplantation (for various time horizons).

To develop and test our models we used 5-fold cross-validation. We randomly separated

both the data set into 5 folds. In each of 5 iterations, 4 of the folds (80.0% of the data) were

used for development of the models, and the remaining fold (20.0% of the data) was put aside

for evaluating performance.

Methods

Model development: Personalization and clusters

As discussed in the Introduction, because patient (and patient-donor) features are heteroge-

neous, the predictive models to be used should be personalized to (the features of) a patient.

We accomplish this personalization by using the data to identify predictive clusters—clusters of

patients for whom predictions can best be made by using some specific learner, trained in

some specific way (i.e. with coefficients fitted to some specific training set)—and then combin-

ing the predictions obtained over the clusters that contain the array of features of the particular

patient for whom we need a prediction. This approach allows us to construct a complex pre-

dictive model from simple learners.

A potential problem with any such construction is that the predictive model becomes too
complex and hence overfits. One way to control model complexity is to append a term that

penalizes for complexity—but then the magnitude of the penalty term would become a param-

eter of the model. Instead, our approach controls model complexity automatically by training

learners on one part of the development set and then validating on a different part of the devel-

opment set. We give an outline below; further details, including the pseudo-code for the algo-

rithm, can be found in the Supporting Information.

Model development: Tree of predictors

Our method recursively splits the space X (of patient features or patient-donor compatibility

features) into disjoint subsets (clusters) and, for each cluster, creates a specific predictive

model by training a learner from the given base class R of learners (Cox Regression, Linear

Perceptron, Logistic Regression) using the training set (the development set). This creates a

tree of predictors: a tree T of clusters (nodes) of the feature space X together with a predictive

model hC associated to each cluster C in the tree. The overall prediction for a particular patient

(or patient-donor pair) having a specific array of features is formed by finding the unique ter-

minal node (cluster) of the tree to which that array of features belongs and the unique path

through the tree from the initial node to this terminal node (this is precisely the set of clusters

to which the patient belongs) and forming a weighted average of the predictions of the predic-

tive models along this path, with weights determined (for the particular path) optimally by lin-

ear perceptron.
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The construction of the optimal tree of predictors is recursive; at each stage, it builds on the

tree previously constructed. We initialize the construction (Stage 0) by defining the initial

node of the tree to be the entire space X of features. To determine the predictive model hX to

be assigned to the initial node, we train each of the learners in R globally; that is, for each

learner, we find the parameters that create the predictive model that best fits the development

set. Among these predictive models, we set hX to be the one that yields the overall best fit. Hav-

ing done this, we have built a (trivial) tree of predictors (i.e., a single node and predictive

model). At each successive stage n + 1 we begin with the tree Tn of predictors constructed in

previous stages. For each terminal node C of Tn we proceed as follows. Fix a feature i and a

threshold τi. (If necessary, we discretize all continuous features.) Define

C� ¼ fx 2 C : xi < tig ; C
þ ¼ fx 2 C : xi � tig ð1Þ

Fix learners L−, L+ 2 R and nodes A−, A+ 2 Tn that weakly precede C−, C+, respectively. Train

L− on A− (i.e., find the coefficients of L− that best fit the portion of the development data with

features in A−) and train L+ on A+; call the resulting predictive models h−, h+. Using h− on C−

and h+ on C+ yields a predictive model h− [ h+ on C− [ C+ = C. Among all choices of the fea-

ture i, the threshold τi, the learners L−, L+ and the training sets A−, A+, find those that maximize

the AUC of h− [ h+ on C. This defines a split of C = C− [ C+ and predictive models associated

with the sets C−, C+. If no further improvement is possible, we stop splitting. It can be shown

that the process stops after some finite number of stages.

Note that at each stage the construction jointly chooses the feature, the threshold, the

learner and the training set to optimize the gain in predictive power and the construction stops

when no further improvement is possible; the end result of the process is the optimal tree of
predictors.

To determine the prediction for a patient having the array x of features, we find the set P of

all nodes in the tree to which the array of features x belongs; this is the unique path from the

initial node X to the unique terminal node to which x belongs. The overall prediction for x is

the weighted average

HðxÞ ¼
X

C2P

wðC;PÞ � hCðxÞ ð2Þ

where the weights w(C, P) are determined optimally by linear regression. Fig 2 illustrate the

construction of the tree of predictors.

A typical optimal tree of predictors is shown in Fig 3, which shows the feature and threshold

used to create each split. Within each cluster, it shows the total number of patients within that

Fig 2. Illustration of ToPs construction.

https://doi.org/10.1371/journal.pone.0194985.g002

Personalized survival predictions for cardiac transplantation via Trees of Predictors

PLOS ONE | https://doi.org/10.1371/journal.pone.0194985 March 28, 2018 5 / 19

https://doi.org/10.1371/journal.pone.0194985.g002
https://doi.org/10.1371/journal.pone.0194985


cluster and the index of the three most relevant features for that cluster. (The list of relevant

features is shown in the lower part of Fig 3.) Note that, as is typical of our method, the tree con-

structed is not very deep—the recursive process of construction stops fairly quickly because no

further improvement is possible. Consequently, only a few of these clusters are small, which

helps to prevent overfitting.

Fig 3. Tree of predictors for 3-year post transplantation survival (End nodes shaded gray. 3 most relevant features

shown for each node as feature indices).

https://doi.org/10.1371/journal.pone.0194985.g003
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Implementation of ToPs

The implementation we use here uses as its base learners (algorithms) three familiar regression

methods—Cox Regression, Linear Perceptron and Logistic Regression—so we use the acro-

nym ToPs/R. In fact, we could use any collection of base learners and a larger or more sophisti-

cated collection of base learners would lead to improved prediction accuracy. The choice of

base learners made here was motivated by their familiarity and widespread use in the medical

literature and because it lends itself more readily to interpretability of the clusters by clinicians.

Clinical risk scores and survival prediction

Three predictive models for survival times post-transplantation are in widespread use in clini-

cal practice: the Donor Risk Index (DRI), the Risk-Stratification Score (RSS), and the Index for

Mortality Prediction After Cardiac Transplantation (IMPACT) [12, 13, 16]. We compare the

post-transplantation predictions of our model with the predictions of these three clinical mod-

els. Similarly, three predictive models for survival times pre-transplantation (on the wait-list)

are in widespread use in clinical practice: the Heart Failure Survival Score (HFSS), the Seattle

Heart Failure Model (SHFM) and Meta-Analysis Global Group in Chronic Heart Failure

(MAGGIC) [11, 14, 15]. We would have liked to compare the pre-transplantation predictions

of our model with those of these three clinical models. Unfortunately, this was simply not pos-

sible because the UNOS dataset contains only 20% of the features used by these clinical mod-

els. All of the clinical predictive models compute an overall risk score—a weighted sum of

scores of individual features. Patients with higher risk scores are viewed as more likely to die/

less likely to survive for any given time horizon.

Performance metrics and comparisons

The performance of any risk score can be assessed in terms of the Receiver Operating Charac-
teristic (ROC) curve that plots the True Positive Rate (TPR) (sensitivity) against the False Posi-
tive Rate (FPR) (1—specificity). A summary performance statistic is the Area Under the ROC
Curve (AUC). We report the performance (AUC for survival on the wait-list and for post-

transplantation survival at the time horizons of 3 months, 1 year, 3 years and 10 years) of

ToPs/R, of state-of-the-art machine learning methods, of regression methods, and of the rele-

vant clinical risk scores. (When computing the AUC, we discard the censored patients whose

survival time is less than the specific time horizon.) We also use the Concordance index (C-

index) as another performance metric to evaluate the discrimination of the risk score [23]. We

report the average C-index of 4 different time horizons. (In calculating the C-index, we do not

discard any censored patients.) For evaluating the average population risks, we plot the calibra-

tion curve with 95% confidence bound.

Results

Performance improvement of ToPs/R

We evaluate the discriminative power of ToPs/R using both the C-index and AUC (at four dif-

ferent time horizons). Table 1 shows the predictive performance post-transplantation for

ToPs/R, current clinical risk scores, familiar regression models and state-of-the-art machine

learning benchmarks. Table 2 shows the predictive performance pre-transplantation (i.e., on

the wait-list) for ToPs/R, familiar regression models, and state-of-the-art machine learning

benchmarks. (In both settings, for the machine learning methods, we used 15% of the training

samples for cross-validation in order to optimize hyper-parameters.) We do not compare with

clinical risk scores pre-transplantation, because, as we have already noted, the UNOS dataset
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does not allow such comparisons. As can be seen, in comparison with other methods (includ-

ing machine learning methods), our method provides consistent, large and statistically

significant (p-value < 0.01) improvements in the prediction of survival both post- and pre-

transplantation. The improvements over current clinical risk scores post-transplantation are

particularly striking. For instance, for post-transplantation survival at a time horizon of 3

months, our method achieves AUC of 0.660 (95% Confidence Interval (CI): 0.650-0.671). By

contrast, the best performing currently used clinical risk score (RSS) achieves AUC of only

0.587 (CI: 0.579-0.598). In terms of the C-index, our method achieves C-index of 0.577 (95%

Confidence Interval (CI): 0.572-0.582). By contrast, the best performing currently used clinical

risk score (RSS) achieves C-index of only 0.544 (CI: 0.539-0.549). The improvements achieved

by our algorithm are similar for other time horizons.

Table 1. Comparisons among ToPs/R, existing clinical risk scores, regression methods, and machine learning benchmarks for post-transplantation survival predic-

tion using C-index and AUC (at horizons of 3-months, 1-year, 3-years, and 10-years).

Methods AUC (Mean ± Std) C-index (Mean ± Std)

3-month 1-year 3-year 10-year

ToPs/R .660 ± .003 .641 ± .005 .623 ± .005 .631 ± .003 .577 ± .003

DRI .540 ± .007 .547 ± .004 .547 ± .003 .556 ± .005 .529 ± .002

IMPACT .561 ± .005 .556 ± .006 .549 ± .007 .558 ± .005 .527 ± .003

RSS .587 ± .006 .582 ± .006 .570 ± .004 .547 ± .003 .544 ± .003

Cox .572 ± .006 .579 ± .005 .553 ± .005 .577 ± .004 .519 ± .003

Linear P .632 ± .007 .617 ± .003 .596 ± .003 .612 ± .005 .554 ± .003

Logit R .629 ± .007 .613 ± .007 .599 ± .006 .611 ± .007 .554 ± .004

AdaBoost .605 ± .006 .605 ± .006 .588 ± .004 .596 ± .004 .551 ± .003

DeepBoost .594 ± .009 .608 ± .004 .591 ± .006 .594 ± .004 .548 ± .003

LogitBoost .621 ± .005 .614 ± .004 .596 ± .004 .611 ± .003 .554 ± .003

XGBoost .565 ± .007 .553 ± .005 .548 ± .003 .584 ± .005 .530 ± .003

DT .592 ± .007 .595 ± .004 .575 ± .004 .595 ± .003 .543 ± .003

RF .625 ± .004 .610 ± .004 .597 ± .003 .607 ± .004 .555 ± .003

NN .600 ± .003 .608 ± .007 .587 ± .004 .598 ± .003 .550 ± .003

Linear P: Linear Perceptron, Logit R: Logistic Regression, DT: Decision Tree, RF: Random Forest, NN: Neural Nets

https://doi.org/10.1371/journal.pone.0194985.t001

Table 2. Comparisons among ToPs/R, regression methods, and machine learning benchmarks for pre-transplantation survival prediction using C-index and AUC

(at horizons of 3-months, 1-year, 3-years, and 10-years).

Methods AUC (Mean ± Std) C-index (Mean ± Std)

3-month 1-year 3-year 10-year

ToPs/R .685 ± .003 .667 ± .005 .652 ± .009 .663 ± .005 .603 ± .003

Cox .624 ± .005 .623 ± .008 .614 ± .006 .612 ± .006 .534 ± .004

Linear P .671 ± .004 .653 ± .002 .633 ± .006 .653 ± .009 .584 ± .003

Logit R .672 ± .004 .651 ± .006 .635 ± .007 .650 ± .009 .582 ± .004

AdaBoost .633 ± .004 .640 ± .008 .624 ± .007 .628 ± .009 .577 ± .004

DeepBoost .635 ± .004 .645 ± .004 .626 ± .006 .620 ± .016 .578 ± .004

LogitBoost .674 ± .006 .654 ± .008 .641 ± .009 .647 ± .006 .584 ± .004

XGBoost .614 ± .005 .596 ± .007 .593 ± .007 .582 ± .010 .550 ± .004

DT .664 ± .005 .646 ± .005 .618 ± .007 .610 ± .007 .574 ± .003

RF .660 ± .004 .642 ± .004 .611 ± .007 .618 ± .009 .571 ± .003

NN .637 ± .004 .641 ± .005 .629 ± .006 .622 ± .010 .580 ± .003

https://doi.org/10.1371/journal.pone.0194985.t002
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An alternative illustration of the improvement achieved by our method is the increase in

the number of correctly predicted patients. For instance, for 3-year survival after transplanta-

tion, holding specificity at 80.0%, ToPs/R correctly predicted survival for 2,442more patients

(14.0% of the 17,441 patients survived up to 3 years) and, holding sensitivity at 80%, ToPs/R

correctly predicted mortality for 694more patients (13.0% of the 5,339 patients who died

within 3 years), in comparison with the best clinical risk score, RSS. Because survival (or mor-

tality) in the wait-list (urgency) and survival post-transplantation (benefit) are perhaps the

most important factors in transplant policy, these predictive improvements are of great

importance.

Calibration of ToPs/R

To evaluate the average performance across the population, we plot calibration graphs for each

time horizon. The various panels of Figs 4 and 5 show calibration graphs for 3-month, 1-year,

3-year, and 10-year survival predictions, both post- and pre-transplantation. The value ρ repre-

sents the root mean square error between optimal calibration graph and the calibration graph

of ToPs/R. It also shows the 95% confidence interval of observed risks for each calibration

point.

As can be seen in Figs 4 and 5, in most cases the calibration graph of ToPs/R is closely

aligned with the optimal calibration graph with small root mean-square error: ρ< 0.1. There

are two cases in which the calibration graph of ToPs/R is less closely aligned with the optimal

calibration graph. The first is for 10-year survival prediction pre-transplantation, where the

mean square error is 0.2315; the second is for 3-month survival prediction post-transplanta-

tion, where the calibration graph does not capture high risk patients well. In both of these

Fig 4. Calibration graphs for post-transplantation (ρ = Root mean square error).

https://doi.org/10.1371/journal.pone.0194985.g004
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cases, the main problem is that the dataset is very unbalanced: the 10-year pre-transplantation

survival rate is only 6.6%, and the 3-month post-transplantation mortality rate is only 9.2%. In

the other settings, the dataset is much more balanced (e.g., the 3-month and 1-year pre-trans-

plantation mortality rates are 19.7% and 33.9%, respectively) and the calibration graph is

closely aligned to the optimal calibration graph, so that average predicted mortality is close to

actual average mortality).

Which features?

A striking observatiodn about the leading post-transplantation clinical risk-scoring methods is

that the three methods use quite different sets of clinical features. Indeed, as illustrated in Fig

6, there is no one feature that is used by all three clinical risk-scoring methods. This certainly

suggests that there has been no clinical consensus about which features are important for eval-

uating post-transplantation risk. We have already noted that the UNOS dataset contains only

20% of the features used by the leading pre-transplantation clinical risk scores, and in fact,

these methods also use rather different sets of features, so it seems that has been no clinical

consensus about which features are important for evaluating pre-transplantation risk either.

Motivated by these observations, we evaluated the performance (using the concordance

index) of ToPs/R, clinical risk scores, and the best ML benchmark for post-transplantation sur-

vival using various sets of features: (1) All F: all the 53 features used above, (2) Medical F: the

23 features used by at least one of the leading clinical risk scoring methods (IMPACT, DRI,

and RSS) and (3) RSS F: the 14 features used by the best-performing clinical risk-scoring

method (RSS). The results, are shown in Table 3. We highlight several findings and conclu-

sions: (1) The performance of ToPs/R using all 53 features (All F) is indistinguishable (within

Fig 5. Calibration graphs for pre-transplantation (ρ = Root mean square error).

https://doi.org/10.1371/journal.pone.0194985.g005
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margin of error) from its performance using only the 23 features used by at least one of the

leading clinical risk-scoring methods (Medical F) but significantly better than the performance

using only the 14 features used by RSS (RSS F). This suggests that, although no single clinical

risk-scoring method seems to use all the most relevant features, when taken together, the three

leading clinical risk-scoring methods have identified the most relevant features. And this

shows that ToPs/R is capable of discovering the most relevant features. (We note that the lead-

ing ML method also seems to be capable of discovering the most relevant features.) (2) In all

three settings, the performance of ToPs/R is superior to the performance of the best ML

method and the best clinical risk-scoring method. Thus, ToPs/R makes better use of the given

set of features—whichever set of features is given.

Changing clinical practice

Clinical practice changes over time. In particular, the treatment of heart failure changed dra-

matically with the introduction of LVADs in 2005 [9, 10, 24–26], but there were also other, less

dramatic changes during the period 1985-2015. Because of changes in selection criteria and

availability of donor organs, the patient population also changed over this period, but perhaps

less dramatically. As can be seen in Fig 7, the population-level Kaplan-Meier survival curves

for the periods 1985-1995, 1995-2005, and 2005-2015 reflect these changes. (The pre-trans-

plantation survival curve for 1995-2005 is below the pre-transplantation survival curve for

Fig 6. Venn diagram of clinical features used for each clinical risk score. (a) Post-transplantation, (b) Pre-transplantation.

https://doi.org/10.1371/journal.pone.0194985.g006

Table 3. Comparison of C-index among ToPs/R, existing clinical risk scores, and the best machine learning bench-

mark for survival prediction in post-transplantation with different feature sets.

Features C-Index (Mean ± Std)

All F Medical F RSS F
ToPs/R .577 ± .003 .578 ± .003 .569 ± .002

DRI .529 ± .002 .529 ± .002 .529 ± .002

IMPACT .527 ± .003 .527 ± .003 .527 ± .003

RSS .544 ± .003 .544 ± .003 .544 ± .003

Best ML .555 ± .003 .558 ± .003 .548 ± .002

F: Features, ML: Machine learning benchmark.

https://doi.org/10.1371/journal.pone.0194985.t003
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1985-1995; this may reflect different selection criteria rather than differences in treatment pro-

tocols.) It should be expected that as clinical practice, the patient population and the actual sur-

vival change, predictability should also change. Of course, it is not possible for ToPs/R—or any

other method—to predict the effect of an improvement in clinical practice until data following

that change is available. However, once such data is available, ToPs/R can use that data to pro-

vide improved predictions.

To illustrate this point, we use data from 2005-2009 (the first five-year period following the

widespread introduction of LVADs) to predict 3-month, 1-year and 3-year survival both pre-

and post-transplantation in the period 2010-2015. The results, shown in Tables 4 and 5, which

should be compared with Tables 1 and 2, show that ToPs/R can utilize recent data to greatly

improve the accuracy of prediction when treatment protocols (or patient populations) change.

For example, the AUC for 3-month post-transplantation survival prediction increases from

0.660 when training on 1985-2015 and testing on 1985-2015 to 0.688 when training on 2005-

Fig 7. Kaplan-Meier survival curves for different periods in post- and pre- transplantation.

https://doi.org/10.1371/journal.pone.0194985.g007

Table 4. Comparisons among ToPs/R, existing clinical risk scores, regression methods, and machine learning benchmarks for post-transplantation survival predic-

tion using C-index and AUC (at horizons of 3-months, 1-year, and 3-years). Train on 2005-2009; predict on 2010-2015.

Methods AUC (Mean ± Std) C-index (Mean ± Std)

3-month 1-year 3-year

ToPs/R .688 ± .001 .651 ± .001 .639 ± .009 .625 ± .007

DRI .551 ± .014 .559 ± .016 .546 ± .014 .542 ± .013

IMPACT .598 ± .013 .593 ± .001 .585 ± .011 .574 ± .009

RSS .593 ± .017 .599 ± .020 .584 ± .013 .580 ± .012

Cox .588 ± .012 .581 ± .009 .560 ± .010 .565 ± .007

Linear P .666 ± .018 .632 ± .009 .600 ± .008 .608 ± .008

Logit R .662 ± .009 .633 ± .007 .604 ± .008 .609 ± .006

AdaBoost .643 ± .009 .630 ± .009 .606 ± .013 .607 ± .009

DeepBoost .643 ± .009 .630 ± .010 .608 ± .006 .606 ± .008

LogitBoost .655± .009 .632 ± .007 .602 ± .013 .607 ± .008

XGBoost .574 ± .010 .567 ± .011 .554 ± .010 .555 ± .008

DT .603 ± .009 .619 ± .008 .575 ± .009 .585 ± .007

RF .641 ± .009 .628 ± .006 .613 ± .008 .606 ± .006

NN .648 ± .014 .628 ± .009 .600 ± .011 .604 ± .007

https://doi.org/10.1371/journal.pone.0194985.t004
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2009 and testing on 2010-2015. Even more dramatically, the AUC for 3 month post-transplan-

tation survival prediction increases from 0.685 (training on 1985-2015 and testing on 1985-

2015) to 0.758 (training on 2005-2009 and testing on 2010-2015). This improvement in predic-

tive accuracy reflects the facts that treatment protocols did change significantly over the

30-year period 1985-2015. In particular, it seems clear that widespread introduction of LVADs

in 2005 made a significant difference in treatment protocols and hence in survival—and also

in predictability. As can be seen in Tables 4 and 5, the model achieves significantly higher pre-

dictive accuracies when trained on patients in 2005-2009(recent patients) and tested on

patients in 2010—2015 (current patients) than when trained and tested on patients in 1985-

2015.

Predictive features

Some features are more predictive of survival than other features, and some features are more

predictive for survival for a particular time horizon than for other time horizons. Fig 8 presents

heat maps displaying the predictive value of the features for various predictions over different

time horizons. For instance, as can be seen in Fig 8(f), donor’s age is a very predictive feature

for long-term post-transplantation survival, but it is less predictive of short-term survival; the

most predictive features for short-term survival are the need for advanced cardiac and respira-

tory life support (ECMO and ventilator support, etc.). Moreover, the predictive power of

donor’s age also differs across various sub-populations as well as across different time hori-

zons. For instance, as Fig 3 shows, ToPs/R splits the entire population according to whether

the creatinine level is below/above 4.64 mg/dL. The set of patients for whom the creatinine

level is above 4.64 mg/dL is deemed Cluster 17; ToPs/R does not split this cluster any further.

To see the importance of features in Cluster 17, refer again to the heat map Fig 8(d): we see

that comorbidities such as diabetes are much more predictive of long-term survival than the

donor’s age. This is consistent with the fact that chronic kidney disease and its interrelated set

of comorbidities (which includes diabetes) can generally worsen cardiovascular outcomes [27,

28]. Diabetes does not have the same predictive power for other groups of patients. For exam-

ple, in Cluster 5 (patients with creatinine level below 1.74 mg/dL, Panel Reactive Antibody

(PRA) above 27% and BMI within the “normal” range 23.0-27.3 kg/m, the donor’s age and the

ischemic time have more predictive power than diabetes. In this particular example, creatinine

serves as a discriminative feature that filters out populations for whom survival prediction

Table 5. Comparisons among ToPs/R, regression methods, and machine learning benchmarks for pre-transplantation survival prediction using C-index and AUC

(at horizons of 3-months, 1-year, and 3-years). Train on 2005-2009; predict on 2010-2015.

Methods AUC (Mean ± Std) C-index (Mean ± Std)

3-month 1-year 3-year

ToPs/R .758 ± .008 .746 ± .001 .746 ± .026 .685 ± .005

Cox .614 ± .010 .620 ± .007 .630 ± .011 .579 ± .006

Linear P .734 ± .009 .728 ± .010 .722 ± .017 .668 ± .007

Logit R .734 ± .008 .728 ± .007 .731 ± .013 .670 ± .005

AdaBoost .718 ± .006 .699 ± .008 .706 ± .017 .644 ± .005

DeepBoost .726 ± .008 .701 ± .009 .702 ± .015 .646 ± .007

LogitBoost .736 ± .006 .727 ± .008 .719 ± .015 .667 ± .005

XGBoost .646 ± .007 .630 ± .009 .616 ± .013 .586 ± .006

DT .706 ± .007 .673 ± .007 .655 ± .016 .620 ± .005

RF .721 ± .010 .705 ± .007 .669 ± .016 .644 ± .006

NN .724 ± .007 .706 ± .011 .706 ± .012 .647 ± .007

https://doi.org/10.1371/journal.pone.0194985.t005

Personalized survival predictions for cardiac transplantation via Trees of Predictors

PLOS ONE | https://doi.org/10.1371/journal.pone.0194985 March 28, 2018 13 / 19

https://doi.org/10.1371/journal.pone.0194985.t005
https://doi.org/10.1371/journal.pone.0194985


Fig 8. (a) Informative features for each cluster for 3-month pre-transplantation survival prediction, (b) 3-year pre-transplantation

survival prediction, (c) for 3-month post-transplantation survival prediction, (d) for 3-year post-transplantation survival prediction,

(e) for pre-transplantation survival across the time horizon, (f) for post-transplantation survival across the time horizon. (a * f: from

top left to bottom right).

https://doi.org/10.1371/journal.pone.0194985.g008
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needs to consider different predictive features via “customized” predictive models. This exam-

ple also sheds light on how ToPs/R can recognize the impact of comorbidities—in this case,

renal failure and diabetes—on a patient’s survival: ToPs/R recognizes some features related to

comorbidities as being discriminative, and also learns the appropriate predictive features for

patients with these comorbidities. Note that two of the clinical risk scores—Donor Risk Index

(DRI) and IMPACT—do not use diabetes as an input to their prediction rule; this may lead to

misinformed surgical decisions for patients with comorbidities [12, 13].

Discussion

In this study, we develop a methodology for personalized prediction of survival for patients

with advanced heart failure while on the wait-list and after heart transplantation. Our methods

and associated findings are important because they outperform the clinical risk scores cur-

rently in use and also because they automate the discovery and application of cluster-specific

predictive models and tune predictions to the specific patient for which the prediction is to be

made. Moreover, our predictive model can be easily and automatically re-trained as clinical

practice changes and new data becomes available. The clinical and public health implications

of our findings are broad and include improved personalization of clinical assessments, opti-

mization of decision making to allocate limited life-saving resources and potential for health-

care cost reduction across a range of clinical problems.

Key findings

We emphasize three key findings of our study:

• Our method significantly outperforms existing clinical risk scores, familiar regression mod-

els, and state-of-the-art machine learning benchmarks in terms of accurate prediction of sur-

vival on the wait-list and post-transplantation.

• This improvement in performance has clinical significance: our method correctly predicts

both survival and mortality for a larger number of patients.

• There is substantial heterogeneity—both across clusters of patients and across different time

horizons. Our method captures this heterogeneity far better than other methods.

The sources of gains for ToPs/R

As the results show, ToPs/R achieves large performance improvements over current clinical

risk-scoring models. It does so by explicitly addressing the weaknesses of these clinical models:

• Tops/R addresses the heterogeneity of the population(s) by identifying sub-populations (clus-

ters) and the specific predictive models that are best suited to prediction in each sub-popula-

tion. Tops/R makes predictions that are personalized to the features of the patient (or patient

and donor).

• Tops/R addresses the interactions between features by using non-linear predictive models for

those sub-populations (clusters) in which the interactions between features are important.

• Tops/R addresses the heterogeneity across time horizons by constructing different predictions

for different time horizons.

Using different predictive models on different clusters means that we allow different fea-

tures to have different importance and to interact differently for different clusters of patients.
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And because we make the choice of predictive models endogenously and optimally, and

update as clinical practice changes and new data becomes available we are letting the data tell
us which choices to make.

As we have already noted, ToPs/R finds the most relevant features and uses those features

more effectively.

Non-proportional and heterogeneous hazards models

The existing clinical risk scores do not produce individual survival curves. Clinicians using

these scores infer survival curves by clustering patients with similar scores and constructing

Kaplan-Meier curves from the actual survival times for these clusters. Our method produces

individual survival curves by interpolating the predictions for 3 months, 1 year, 3 years and 10

years. Our approach can be viewed as providing a non-parametric survival model. In terms of

hazard functions, our method could be interpreted as forming clusters, assigning a model to

each cluster, and then aggregating those models to construct a non-proportional hazard func-

tion. In contrast to familiar approaches [29, 30] our approach learns which clusters to create,

which models to assign and how to aggregate these models.

Cox Regression does produce individual survival curves. However, because Cox Regression

assumes that relative hazard rates are constant over time, the survival curves produced by Cox

Regression for two different patients cannot cross: if the survival probability for patient 1 is

greater than that of patient 2 at a time horizon of 3 months it will also be greater at every time

horizon. However, actual survival curvesmay cross [31, 32]. Our method allows for this—and

this is a virtue because it reflects the fact that the features and interactions that are most impor-

tant for survival at 3 months are different from the features and interactions that are most

important for survival at longer horizons. (See Fig 8).

Clinical support

Our work provides support for clinical decision making in real time. By using our user-friendly

website http://medianetlab.ee.ucla.edu/ToPs_TransplantSurvival and entering relevant fea-

tures, the clinician can obtain immediate predictions for a specific patient, including survival

on the wait-list, the impact of an LVAD (if relevant), and benefit of transplantation (if rele-

vant). All of this can be done at the desk of the clinician or the bedside of the patient, in no

more time than is currently required to access the clinical risk scores, and with much greater

accuracy (and confidence).

Risk scoring and usability

Our analysis shows that our method provides significantly greater predictive power for sur-

vival while on the wait-list and post-transplantation. However, more research in actual practice

is required. This success of our method in the setting of cardiac transplantation suggests it may

have wide applicability and usability for risk prognosis and diagnosis for other medical condi-

tions and diseases. The methodology developed here can also be applied in other settings, in

particular to transplantation of other organs, such as kidneys; we leave this for future work.

Such wider applications may benefit from further refinements of our method.

Limitations

The results of this study carry limitations associated with the quality of the source data and the

amount of missing data. Moreover, is not possible to integrate the effect of changes in treat-

ment protocols until sufficient time has elapsed and sufficient new data becomes available.
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However, once sufficient data has become available, our method can integrate the new data to

provide improved predictions. (See Tables 4 and 5, where we use data from the first 5 years of

the LVAD era to make more accurate predictions for the following 5 years).

Our method produces risk scores and survival prediction both for patients both pre- and

post-transplantation. We have provided extensive performance comparisons with the post-

transplantation predictions of clinical and machine learning methods and with the pre-trans-

plantation predictions of machine learning risk methods. As we have noted, it is unfortunately

it is not possible to provide meaningful pre-transplantation comparisons with existing clinical

methods such as HFSS, SHFM, and MAGGIC [11, 14, 15] because UNOS does not collect

many of the features on which these clinical risk scores rely, such as ejection fraction, etc.

Conclusion

We offer a new method for personalized risk prediction using a novel machine learning tech-

nique. Our method is explicitly designed to address the heterogeneity of the patients/donor

populations by identifying various sub-populations. It captures the different effects of features

and interactions between features for these various sub-populations. It also captures the differ-

ent effects of features and interactions between features for different time horizons. Our

method outperforms existing clinical scores and state-of-the-art machine learning methods

both pre- and post-transplantation and for different time horizons. Moreover, our method is

easily interpretable and applicable by clinicians. The present study has important clinical

implications for the practice and policy of heart transplantation. The general methodology

developed here has wide applicability to the construction of personalized risk scores in other

medical domains.
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