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Abstract 
 

The ‘expensive-tissue’ hypothesis of Aiello and Wheeler is well-known in 

anthropology for positing that an increasingly small gut was a key factor in the 

evolution of the large hominin brain. The insight that organs and tissues in the body 

compete for energy resources was also central to the ‘thrifty phenotype’ hypothesis 

of Hales and Barker, which proposed that nutritional stress in fetal life resulted in 

differential growth of the brain and pancreas. Both hypotheses are consistent with 

life history theory, which assumes that energy allocation trade-offs occur in energy-

limited environments. The prediction that somatic traits trade off against one 

another in the context of the body’s fixed energy budget has, however, yet to be 

rigorously tested in humans. The current thesis project aimed to fill this gap by 

recruiting 70 healthy young women and obtaining comprehensive, high-quality 

data on their brain and body composition. This included, specifically, measures of 

brain gray and white matter volume, fat mass, skeletal muscle mass, and volumes 

of the heart, liver, kidneys and spleen. Additional outcomes included resting energy 

expenditure and two proxies of early-life growth: birth weight, a marker of fetal 

weight gain, and tibia length, a marker of linear growth indexing postnatal 

experience. With these data, three principal hypotheses were tested: 1) there is 

variation in the energy expenditure of tissues and organs; 2) trade-offs are 

observed between brain and body organs/tissues; and 3) trade-off relationships 

are mediated by early-life growth. Results suggest the metabolic cost of organs 

and tissues is variable, and that the brain – in particular its gray matter component 

– trades off against lean tissues in the body (i.e. skeletal muscle, the liver and 

kidneys), but not fat mass. However, less support was found for the prediction that 

trade-offs are mediated by fetal and infant growth.  
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It is increasingly recognized that a life course approach is essential for gaining a 

more complete understanding of human variability and health. Integrating several 
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hypotheses concern different points in the life course, so that examining them 
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which have classically not been closely integrated. For epidemiologists and 

biomedical researchers, this work highlights the utility of incorporating an 

evolutionary approach to current problems in population health. For 

anthropologists, this work demonstrates the utility of body composition and 

biomedical techniques for addressing important evolutionary questions.  
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Preface 
 
The ‘expensive-tissue’ hypothesis (ETH) of Aiello and Wheeler (1995) is one of the 

most well-known in anthropology. Among a number of other theories, it sought to 

address a longstanding evolutionary problem: how the metabolically expensive 

hominin brain expanded in size without a concomitant expansion in the energy 

budget. The ETH suggested a novel answer, specifically that over time and 

following shifts in dietary quality, energy from a smaller gut was utilized to fund an 

increasingly large brain. Aiello and Wheeler’s key insight was that the brain and 

organs in the body are ultimately in competition for finite energy resources.  

 

Around the same time, a similarly famous hypothesis in the biomedical literature 

had the same insight whilst addressing a different problem. Clinicians and 

researchers had so far struggled to explain data showing a link between small size 

at birth and increased adult diabetes risk. Hales and Barker’s (1992) ‘thrifty 

phenotype’ hypothesis (TPH) proposed that nutritional stress in fetal life resulted 

in competition amongst tissues; the outcome in human neonates, they argued, was 

the preservation of the brain at the expense of the pancreas and its blood sugar-

regulating functions. This notion of ‘brain-sparing’ echoes the ETH, although the 

competition is predicted to occur within the life course, specifically in early 

development, rather than on an evolutionary timescale.  

 

Although not explicitly invoked by either set of authors, both the ETH and the TPH 

are consistent with evolutionary life history theory, which predicts that finite energy 

resources are traded off amongst various traits in the living organism. Here, I 

situate both hypotheses within a life history framework to better integrate their 

evolutionary and developmental perspectives. Taking a life history approach 

similarly highlights the persistent dearth of research on physiological tissue/organ 

trade-offs, which remain understudied relative to functional trade-offs.  
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The ETH and the TPH have been incredibly influential in their respective fields, 

and they continue to stimulate theory and research. Although their respective 

predictions of organ competition in humans are generally accepted, they remain to 

be tested directly. For this thesis, I gathered comprehensive data on brain and 

body composition in a sample of adult women to empirically examine whether brain 

and body tissues are in competition with one another, as predicted by the ETH and 

TPH. Using the highest quality measurement techniques available in vivo I was 

able as well to extend beyond the whole brain and visceral organs, so that 

relationships could be tested between the brain and various tissues in the body; 

among tissues within the brain; and among tissues within the body.  
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1 Background: the expensive-tissue hypothesis, 
the thrifty phenotype hypothesis, and life 
history theory 

 

This chapter reviews the prior work and theory that stimulated the hypotheses of 

this thesis. Sections 1.1 and 1.2 overview the background to and predictions of the 

ETH and TPH, respectively. Section 1.3 introduces life history theory in order to 

place the ETH and TPH within that framework, and reviews previous evidence for 

competition between somatic traits in non-human animals. In Section 1.4 I return 

to the developmental perspective of the TPH to expound on the implications of 

organ/tissue competition for health, and explain how this shaped my decisions in 

study recruitment.  

 

1.1 The expensive-tissue hypothesis 
Questions about human brain evolution have been some of the most persistent in 

anthropology. Attempts to explain the expansion of the hominin brain have 

traditionally fallen into two broad camps, one which focuses on benefits and the 

other on costs. The former camp, as Aiello and Wheeler (1995) noted, is comprised 

of ‘why’ questions; namely, why were bigger brains selected in human evolution. 

Explanations have included, but are not limited to, the potential association of a 

larger brain with hunting behavior (Washburn and Lancaster, 1968; Laughlin, 

1968; Kaplan et al., 2000), foraging (Clutton-Brock and Harvey, 1980; Milton, 

1981) or group size and social pressures (Humphrey, 1976, 1986; Byrne and 

Whiten, 1989; Dunbar, 1992).  

 

Those in the second camp employ an energetics perspective and focus on the 

costs that would have acted to constrain brain expansion, whatever the potential 

advantages (i.e. ‘how’ questions; e.g. Martin, 1981; Foley and Lee, 1991; Leonard 

and Robertson, 1994; Isler and van Schaik, 2006a,b, 2009). Aiello and Wheeler’s 

ETH emerged from this framework with a novel proposition: the growth of 
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metabolically ‘expensive’ brain tissue in humans was funded as another expensive 

tissue – the gut – decreased in size. The authors framed their argument as the 

solution to a problem with three main dimensions, which I lay out below: the human 

brain is large, and it is metabolically expensive, but it is apparently not funded by 

an increase in the body’s energy budget. I then describe Aiello and Wheeler’s 

hypothesis in more detail, as well as an alternative hypothesis suggesting that a 

reduction in skeletal muscle may have facilitated brain enlargement.  

 

1.1.1 The human brain is relatively large 

The human brain is, both relatively and absolutely, unusually large in size (Deacon, 

1997). Primates in general have large brains relative to body size in comparison 

to other mammals (i.e. they are relatively encephalized), but humans in turn have 

larger brains than the typical primate (Deacon, 1997; Schoenemann, 2006). The 

encephalization quotient (EQ) is the ratio of observed to expected brain size in 

relation to species’ average body size (Jerison, 1973). Although estimated EQs 

may differ slightly depending on the parameters used in their calculation, among 

mammals the values are invariably highest for humans (Schoenemann, 2006).  

 

Using the equation of Martin (1981) to calculate EQ, the human EQ is ~5 whilst 

the value for anthropoid primates averages ~2. In other words, holding constant 

for body size, the anthropoid brain is roughly twice the size of the non-primate 

mammal brain. In turn, the human brain is approximately 3 times the size of the 

average anthropoid brain, and 5 times the size of the average mammal brain 

(Aiello and Wheeler, 1995; Schoenemann, 2006).  

 

Indeed, data indicate the hominin brain tripled in size in fewer than 3 million years 

of evolution (Passingham, 1982; Flinn et al., 2005; Schoenemann, 2006), with a 

notable increase across the Middle Pleistocene (although a slight decrease in size 

occurred more recently within Homo sapiens; Ruff et al., 1997). Overall, the Homo 

lineage experienced brain volume expansion of ~1000 cubic centimeters over that 

of Australopithecus; the average brain volume in modern humans is ~1400cc 
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(Aiello and Wheeler, 1995; Potts, 1996). A portion of this enlargement occurred 

along with increases in body size (Potts, 1996; Deacon, 1997; Aiello and Key, 

2002), although brain growth in the period of ~800 to 200 thousand years ago 

appears to have been independent of body size changes (Antón et al., 2014).  

 

1.1.2 The human brain is metabolically expensive  

An energetics approach to questions of brain evolution is driven by the fact that, in 

addition to being large, the human brain is highly metabolically expensive relative 

to its percentage of body mass, which is ~2% (Reinmuth et al., 1965; Holliday et 

al., 1967; Clarke and Sokoloff, 1999). For comparison, the proportional contribution 

of skeletal muscle to total body mass is approximately 30-40% (Brozek and 

Grande, 1955; Elia, 1992; Janssen et al., 2000).  

 

The relative expense of an organ is determined by its mass-specific metabolic rate 

(SMR, kcal/kg/day). The SMR, multiplied by an organ’s mass, reflects the number 

of kilocalories it expends in a 24-hour period. The summed products for all body 

tissues is equal to whole-body resting metabolic rate (RMR), or resting energy 

expenditure (REE1, kcal/day; Brozek and Grande, 1955; Wang et al., 2010). SMRs 

have been quantified for several tissues, including the brain (Kety and Schmidt, 

1945; Drabkin, 1950; Brozek and Grande, 1955; Holliday et al., 1967; Elia, 1992).  

 

The brain in fact does not demonstrate the largest SMR value overall, although it 

is among the largest. For the brain, the SMR is 240 kcal/kg/day, compared to 440 

for the heart and kidneys, and 200 for the liver. Values for skeletal muscle and 

adipose tissue are relatively small at 13 and 4.5 kcal/kg/day, respectively 

(Elia,1992; Wang et al., 2010).  

                                            
1 RMR and REE (kcal/day) are used interchangeably, both defined as an animal’s 
energetic expenditure measured at rest under thermo-neutral conditions. The term ‘basal 
metabolic rate,’ or BMR, is defined in a similar way to RMR and REE, but is typically 
obtained under more highly controlled measurement conditions (Henry, 2005; although a 
recent review by Lam and Ravussin (2017) does not distinguish between RMR and BMR). 
Here, I use BMR only when referencing studies which specifically employed the term.  
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On the basis of the calculation of SMR with organ mass, adult humans use ~20% 

of REE to fuel the brain, which is ten times more than predicted based on its weight 

(Elia, 1992; Clarke and Sokoloff, 1999; Raichle, 2006). Human infants and children 

may use up to 50% of resting energy expenditure in the brain (Kennedy and 

Sokoloff, 1957; Elia, 1992). For comparison, the same figure was 2-8% in 

vertebrates studied by Mink et al. (1981), and 3% and 8% for non-primate 

mammals and anthropoid primates, respectively, as reported by Leonard and 

Robertson (1992).  

 

Brain function is sustained day and night, and is highly sensitive to even small 

interruptions in energy supply. A high rate of O2 consumption provides energy for 

“intense physiochemical activity” (Clarke and Sokoloff, 1999, p. 637), very little of 

which is expended in association with external environmental stimuli (Raichle, 

2006). Rather, much of the brain’s activity is related to ‘intrinsic’ demands 

associated with neuronal signaling, e.g. powering action potentials and 

maintaining post-synaptic potentials (Clarke and Sokoloff, 1999; Laughlin, 2001; 

Niven and Laughlin, 2008; Du et al., 2008). According to Attwell and Laughlin 

(2001), the brain’s substantial signaling costs are comparable to the energy used 

in the leg muscle of a marathon runner.  

 

Oxygen is also consumed to synthesize and metabolize various neurotransmitters, 

although this represents a much smaller proportion of energy use (Clarke and 

Sokoloff, 1999). A study in rats further suggested adenosine triphosphate (ATP; 

cells’ ‘energy currency’) may fund ‘housekeeping’ functions that serve to maintain 

the health of brain cells over time (Du et al., 2008).  

 

In their paper, Aiello and Wheeler (1995) calculated that BMR for the observed, 

large human brain is nearly five times higher than would be expected for a 

comparably-sized average mammal of expected brain size. They and others 

recognized that hominins’ extra brain tissue would have necessitated extra energy 

resources.  
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1.1.3 The resting metabolism of humans is not elevated2 

One potential solution to the problem of funding an increasingly large, expensive 

organ would be to increase REE. Indeed, early work which approached human 

brain evolution from an energetics perspective recognized the importance of the 

brain-metabolism link (e.g. Martin, 1981; Armstrong 1983, 1985). For example, 

Martin (1981) proposed that adult brain size was shaped within the niche of 

maternal metabolism during fetal and postnatal development, and is therefore 

constrained by maternal metabolic turnover. Barton and Capellini (2011) provided 

more recent support for this hypothesis (although see Pagel and Harvey, 1988).  

 

Several researchers argued that evolutionary changes in foraging efficiency and 

diet quality (i.e. food digestibility and caloric value) would have been necessary as 

brain metabolism demanded an increasingly large proportion of the overall energy 

budget (Milton, 1987, 1988; Foley and Lee, 1991; Leonard and Robertson, 1992, 

1994, 1997). An analysis of primate species, including humans, showed that 

resting metabolism correlated with diet quality, however humans appeared to 

consume a higher-quality diet than would be predicted, based on their metabolic 

rate (Leonard and Robertson, 1994). Dietary changes were clearly important, 

however they were insufficient to fully explain the evolution of the larger human 

brain (Leonard and Robertson, 1994).  

 

For example, in their paper Aiello and Wheeler (1995) showed that the basal 

metabolic rates of young adult men and women fit the regression line for similar-

sized mammals modelled using the Kleiber equation (which describes the 

allometric relationship of BMR to body mass; Kleiber, 1961). The figure from their 

original publication is shown in Figure 1-1.  

 

                                            
2 The title of this section reflects one of the main dimensions of the problem Aiello and 
Wheeler sought to address with the ETH in 1995. Some recent evidence, described below, 
indicates human REE may in fact be elevated over that of other apes (Pontzer et al., 2016; 
but see Simmen et al., 2017). 
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Figure 1-1 BMR against body mass, demonstrating the position of 
human males and females aged 18-30 in relation to the best-fit line 
for mammals. 
From Aiello and Wheeler, 1995. 
 
 

Leonard and Robertson (1992, 1994) demonstrated similar results in a larger 

sample, and also found that humans were outliers in plots of brain size against 

body weight, and brain size against whole-body resting metabolism (Figure 1-2 

below). These results appeared to suggest that humans’ relatively large and 

expensive brains were not funded by a corresponding increase in total resting 

metabolic rate.  
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Figure 1-2 Brain size against RMR, demonstrating humans’ 
deviation from the line for brain size, and apparent lack of 
increase in RMR. 
From Leonard and Robertson, 1994. 
 

 

The paradox of growing a larger brain seemingly without an increase in RMR might 

be partially explained by a number of factors, each of which could be considered 

to free up energy from other areas and allow for increased energy allocation to the 

brain. In addition to dietary changes and, eventually, the adoption of cooking 

(Wrangham, 2009), energy resources may have been stabilized over time by 

increased fat stores; increased locomotor efficiency; cooperative care and 

provisioning; slower, flexible growth patterns; and overall increased behavioral and 

physiological plasticity (Foley and Lee, 1991; Leonard and Robertson, 1992; Potts, 

1996; Kuzawa, 1998; Gurven and Walker, 2006; Sockol et al., 2007; Hrdy, 2009; 

Wells, 2006a, 2012a, 2016; Isler and van Schaik, 2009, 2012, 2014; Burkart and 

van Schaik, 2010; Navarette et al., 2011; Antón et al., 2014).  
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For example, Hrdy (2009) has argued that evolved brain expansion was rendered 

possible in the context of cooperative breeding, which characterizes humans and 

some other animals, including primate species, but is not seen in the great apes. 

Indeed, she posited that alloparental care and provisioning represented the ‘pre-

existing condition’ that must have been present in order for longer lifespans, longer 

childhoods, and bigger, expensive human brains to evolve (Hrdy, 2009). Isler and 

van Schaik (2012) have similarly proposed that cooperative breeding was a central 

factor allowing the hominin brain to enlarge over time, as it would have facilitated 

a redistribution of energy resources to mothers and their offspring. Importantly, this 

may have avoided fundamental shifts in the size of the hominin energy budget 

(Isler and van Schaik, 2012).  

 

A possibility proposed by Aiello and Wells (2002) is that the increased adiposity of 

humans may in fact be concealing an increase over other primates in resting 

metabolism per kilogram fat-free mass, which is the more metabolically active 

component of body composition relative to fat mass (Keys and Brozek, 1953; 

Garby et al., 1988). More recent evidence supports the idea that human BMR may 

indeed be elevated relative to that of other apes, which is argued to account for 

findings of increased total energy expenditure (TEE; kcal/day) in humans 

compared with chimpanzees, gorillas, bonobos and orangutans (Pontzer et al., 

2016). (TEE includes components of energy expenditure beyond that required for 

metabolism and basic bodily functions at rest, for example physical activity.)  

 

However, based on analyses of wild non-human primates and human subsistence 

populations, Simmen and colleagues (2017) counter that the TEE of hominins was 

not inevitably elevated, since subsistence-level human populations lie within the 

confidence intervals of the general association of size and TEE in primates. 

Instead, hominins may have reduced costs of digestion by consuming higher-

quality food in smaller quantities, and also stabilized energy intake across 

seasons, thereby allowing brain growth without an increase in energy turnover 

(Simmen et al., 2017). In either case, such changes in the energetic strategy of 
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hominins would be predicted not to supplant, but more likely complement the 

changes proposed above, and those proposed below (Aiello and Wells, 2002; 

Pontzer et al., 2016). 

 

Aiello and Wheeler (1995) posited that a reorganization of energy allocation among 

tissues in the body may have been key to the evolution of the human brain. To 

account for “the missing difference in BMR” (Aiello, 2007, pg. 17), they suggested 

that energy to fund the brain came from a decrease in the size of the 

gastrointestinal tract (gut) as diet quality increased.  
 

1.1.4 The brain versus the gut 

Key to the ETH was the recognized differential expense of tissues in the body. For 

example, the internal organs including the heart, liver, and kidneys, along with the 

brain, comprise roughly 60% of REE in adult humans, despite accounting for only 

5-7% of body mass (Brozek and Grande, 1955; Holliday et al., 1967; Elia, 1992; 

Heymsfield et al., 2012a). Citing data on human organ mass and metabolic rate 

reported by Aschoff et al. (1971), Aiello and Wheeler (1995) observed that the 

mass-specific metabolic rate of the gut was also relatively high, with its percentage 

contribution to total BMR similar to that of the brain. 

 

The considerable contribution of the internal organs to human REE suggested that 

even small changes in tissue size could have led to a substantial reorganization of 

the energy budget. Following from that, if a reorganization of the energy budget 

occurred, it was more likely to have involved these high metabolic rate tissues, 

rather than larger-in-mass but less expensive skeletal muscle and adipose tissue 

(Elia, 1992; Aiello and Wheeler, 1995). Aiello and Wheeler’s (1995) analyses 

specifically indicated shifts in energy allocation between gut and brain tissue. First, 

this was suggested by an analysis based on organ masses in a ‘standard’ human 

male and a primate of comparable body size, wherein the human gut was smaller 

in size than predicted by roughly the same amount that the brain was larger than 

predicted (Figure 1-3).  
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Figure 1-3 Observed vs. expected organ mass for a ‘standard’ 
65kg adult human male. 
From Aiello and Wheeler, 1995. 
 

 

Secondly, a calculation of the estimated energy savings associated with the 

reduction in gut mass was similarly matched to the estimated metabolic increase 

associated with brain enlargement. Finally, Aiello and Wheeler showed a negative 

correlation between relative brain mass and relative gut mass in 18 anthropoid 

primates, including Homo sapiens. A comparison of equations for the relationship 

of gut mass to body mass in anthropoids and, separately, non-primate mammals 

suggested that anthropoids had smaller guts relative to body size than the average 

mammal, in addition to anthropoids’ noted larger relative brain size (although 

Hladik et al. (1999) disagreed with the findings of smaller-than-expected gut size 

in humans, based on the available data).  
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Carrying out a similar analysis of relative brain mass against relative gut mass 

whilst correcting for phylogenetic relationships, Isler and van Schaik (2006) also 

found a negative correlation between the brain and gut in anthropoids (however in 

a further analysis in a later paper, the authors reported no association; see 

Navarette et al., 2011).  

 

The data presented by Aiello and Wheeler appeared convincing, whilst other 

factors were consistent with their hypothesis; for example, the association between 

increased brain size and diet quality. Animals that use a larger proportion of their 

resting metabolism to fuel their brain have higher-quality diets, whilst gut size and 

diet quality are negatively related (Milton, 1987; Leonard and Robertson, 1994; 

Aiello and Wheeler, 1995; Snodgrass et al., 2009). For humans, a more readily 

digestible, nutrient-rich diet may have provided additional nutrients and calories, 

whilst also facilitating the diversion of energetic resources to the brain as the gut 

became smaller and less specialized (Aiello and Wheeler, 1995; Kaufman, 2003).  

 

The ETH when published offered little supporting empirical evidence in humans, 

however it broke new ground with its implicit suggestion that tissues and organs of 

the body ultimately compete for energy resources. Subsequent studies, which I 

discuss further in Section 1.3, have provided support for the notion that energy 

allocation to a given organ or tissue is not independent of allocation to others in 

the context of a fixed energy budget. Other authors have acknowledged this as 

well, but have suggested patterns of allocation involving different tissues.  

 

1.1.5 The brain versus skeletal muscle 

Leonard, Robertson, Snodgrass and colleagues noted that a reduction in skeletal 

muscle mass may have been important in the context of hominin brain expansion. 

They demonstrated that primates overall had less muscle compared to other 

mammals, and that humans had less muscle than other primates of similar body 

size (Leonard et al., 2003; Snodgrass et al., 2009). A recent comparative analysis 

of human and bonobo body composition was consistent, corroborating the finding 
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that humans are relatively less muscular, and also suggesting that hominins likely 

experienced a redistribution of muscle tissue between the upper and lower body 

(Zihlman and Bolter, 2015).  

 

The observed relationships of skeletal muscle relative to body size in humans and 

other primates may be explained by locomotor patterns. Primates have an arboreal 

heritage, which evidence suggests would predispose to reduced muscularity 

relative to terrestrial species (Snodgrass et al., 2009). Humans may have adapted 

in this way to render bipedal locomotion and physical activity more efficient, or 

alternatively, lower muscle mass may be related to humans’ increased adiposity 

(Snodgrass et al., 2009; Antón and Snodgrass, 2012). Human males and females 

– in particular females – are more adipose than would be expected for a mammal 

with tropical origins (Wells, 2006a, 2010a).  

 

Using estimations of height and weight for hominin species, along with equations 

developed in modern human populations, Wells (2017) recently derived estimates 

of fat and lean mass indices for several hominin groups. The indices are derived 

in the same way body mass index (BMI) is calculated, for example lean 

mass/height2. The results indicated a general trend in hominins towards decreased 

lean mass (which includes skeletal muscle), as shown by a decline in the lean 

mass index from australopithecines and paranthropines to Homo (Wells, 2017). 

Expending fewer energy resources building muscle may have contributed to 

freeing up energy for the expensive human brain (Leonard et al., 2003, 2007; 

Snodgrass et al., 2009; Muchlinski et al., 2012). In turn, reduced muscle and 

increased fat may have allowed females to more readily fund the growth of large-

brained offspring (Wells, 2017).  

 

In their paper, Aiello and Wheeler (1995) argued that a reduction in skeletal muscle 

could not feasibly balance RMR if brain size increased, due to muscle’s lower SMR 

relative to the SMRs of the internal organs. The authors calculated that nearly three 

quarters of the body’s total muscle mass would need to be replaced by 
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metabolically inert tissue to cover the costs associated with an increase in brain 

tissue (Aiello and Wheeler, 1995).  

 

Despite its relatively low metabolic rate, muscle does, however, constitute a 

considerable proportion of the body’s energy budget due to its size (Zurlo et al., 

1990; Isler and van Schaik, 2006). As mentioned above, muscle may account for 

30-40% of total body mass, in contrast to ~2% for the brain (Figures 1-4A and 1-

5A). Elia (1992) puts muscle’s relative contribution to BMR at 22% for the reference 

male, and 16% for the reference female3 (Snyder et al., 1975). These numbers are 

not highly dissimilar to those reported for the brain, which are 21% and 20% for 

females and males, respectively (Elia, 1992; see Figures 1-4B and 1-5B). (In Elia’s 

model, ‘Miscellaneous’ comprises all remaining body tissues after those explicitly 

quantified (heart, liver, brain, etc.) are accounted for; this includes gut tissue).  

 

It should be noted, however, that the reference female and male are comparatively 

fat in relation to the average forager, at 33% and 21% fat, respectively. For 

example, a recent study by Pontzer and colleagues (2012) reported the average 

percentage fat of Hadza women to be 21%, whilst Hadza men demonstrated 

13.5% fat on average.  

 

 

 

 

                                            
3 Researchers in 1975 described the body size and composition of the reference male and 
female to aid in calibrating appropriate radiation doses for occupational, public and 
medical settings (Snyder et al., 1975). Average body composition has since changed 
(Later et al., 2010), however the data as reported by Elia remains generally illustrative of 
the proportional contributions of tissues to body mass and metabolic rate. 
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Figure 1-4 Percentage contribution of organs and tissues to body 
weight (A) and of organ/tissue metabolism to the overall energy 
budget (B) in the reference female. 
Data from Elia, 1992. 
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Figure 1-5 Percentage contribution of organs and tissues to body 
weight (A) and of organ/tissue metabolism to the overall energy 
budget (B) in the reference male. 
Data from Elia, 1992.  
 

 



 44 

Beyond its contribution to REE, the metabolism of skeletal muscle is elevated 

during physical activity, which is defined as “any bodily movement produced by 

skeletal muscle that results in energy expenditure” (Caspersen et al., 1985, pg. 

126). Muscle metabolism may increase by a factor of 100 during exercise 

(Snodgrass et al., 2009; Muchlinski et al., 2012), whilst consistent, less rigorous 

activity is likely to have been an important factor shaping the allocation of energy 

within the hominin budget as well.  

 

The hypotheses of Aiello and Wheeler and Leonard, Snodgrass and coworkers 

are both plausible, and are not mutually exclusive. It is possible that reductions 

both in the hominin gut, and in the level of skeletal muscle mass over time served 

to ‘release’ energy that then became available to support the growing brain. Both 

proposals concern what would have been long-term physiological changes in the 

hominin lineage, and certainly involved genetic adaptation. They highlight how 

competition amongst tissues may have occurred over an evolutionary timescale.  

 

Remarkably, a very similar idea was put forward in a very different context, this 

time to help understand the effects of energy constraint in early life on the life 

course development of the human body. This was the purview of Hales and 

Barker’s TPH, which is described in the next section.  

 

1.2 Tissue competition in development: the thrifty 
phenotype hypothesis 

In line with Aiello and Wheeler’s ETH, Hales and Barker’s TPH predicted that 

energetic constraints on resource allocation would engender competition amongst 

tissues in the body. A key difference is that the TPH predicted this would occur in 

fetal life and infancy, when organs and tissues are initially developed. The 

hypothesis has made a substantial contribution within a framework which seeks to 

elucidate the early-life etiology of adult chronic disease risk: the developmental 

origins of health and disease, or DOHaD.  
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1.2.1 Evidence linking size at birth with adult chronic 
disease risk 

The DOHaD framework employs a life course approach to understand how 

variability in early development may differentially predispose to chronic, non-

communicable diseases, which include type II diabetes, cardiovascular disease, 

obesity and the metabolic syndrome (e.g. Barker, 1990, 1995; Cameron and 

Demerath, 2002; Gluckman and Hanson, 2006; Gluckman et al., 2007, 2008; 

Criscuolo et al., 2008; Kuzawa and Quinn, 2009; Wells, 2009, 2014).  

 

For some time, the etiology of these diseases was attributed to genetics and 

lifestyle factors in adulthood, such as diet, smoking, and exercise patterns (Barker, 

2007; Wells, 2016). One prominent hypothesis along these lines was the ‘thrifty 

genotype’ hypothesis of Neel (1962), which argued that population variability in the 

predisposition to type II diabetes was rooted in differential historical exposure to 

periods of ‘feast and famine.’ Neel predicted that genes which were selected to 

buffer poor conditions via effects on insulin production and the promotion of fat 

storage were now detrimental in industrialized nutritional milieus (Neel, 1962).  

 

However, such explanations could not adequately account for the variation 

researchers were observing in the incidence and geographical distribution of 

chronic diseases (Barker, 2007). The importance of early-life conditions was 

increasingly recognized, as more and more evidence emerged linking poor fetal 

and infant growth with increased susceptibility to non-communicable conditions in 

adulthood (see McMillen and Robinson, 2005 for an extensive review).  

 

For example, a classic study found that men exposed early in their gestation to 

undernutrition associated with the Dutch Famine of 1944-45 were more likely to 

develop obesity (Ravelli et al., 1976). In an English cohort, men in the lowest birth 

weight category were more likely to die of heart disease (Barker et al., 1989), while 

similarly, heart disease prevalence was higher in Indian men and women born 

relatively small (Stein et al., 1996). In a follow-up study of the Hertfordshire, 
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England cohort studied by Barker et al. (1989), men who were born small and who 

were smaller in infancy were more likely to have impaired glucose tolerance or 

type II diabetes as adults (Hales et al., 1991; Figure 1-6).   

 

 

Figure 1-6 An inverse association between birth weight and later 
risk of impaired glucose tolerance or type II diabetes. 
From Hales and Barker, 2001.  
 

 

The high prevalence of obesity and diabetes in the Pima Indians of Arizona in the 

United States has been attributed to genetics (e.g. Knowler et al., 1983), however 

a separate study found that Pimas born at lower birth weight later demonstrated 

greater insulin resistance for their size (Dabalea et al., 1999). Birth weight was also 
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negatively correlated with type II diabetes risk in Chinese adults (Tian et al., 2006), 

in women in the Nurses’ Health Study in the US (Rich-Edwards et al., 1999) and 

in a cross-population systematic review (Whincup et al., 2008).  

 

A crucial factor in the link between early development and later ill-health is the 

existence of ‘critical windows’ of plasticity. I describe this in the next section, before 

going on to introduce Hales and Barker’s TPH.  

 

1.2.2 Plasticity in critical periods of early life 

The term ‘plasticity’ reflects the capacity of a single genotype to produce different 

phenotypes in different environments (Bradshaw, 1965; West-Eberhard, 1989; 

Bateson et al., 2004; Gabriel et al., 2005). Plasticity can be demonstrated in a 

variety of ways throughout the life course in association with environmental 

conditions. For example, humans adapt to current circumstances through changes 

in their behavior, as studied by human behavioral ecologists (Nettle et al., 2013). 

It is also well-established that components of the skeleton remain plastic 

throughout life and demonstrate variability in size and shape in association with 

mechanical loading patterns (Stock and Pfeiffer, 2004; Ruff et al., 2006).  

 

In early life, humans and other animals demonstrate morphological and 

physiological plasticity in development (West-Eberhard, 2003), which may allow 

for a better ‘match’ between the phenotype and prevailing ecological conditions 

(Bateson et al., 2004; Barker, 2007). In particular, plasticity in the growth of body 

tissues and organs is substantial in utero and in early infancy, within the so-called 

‘critical periods’ or ‘windows’ of development (Barker, 2007; Cameron and 

Demerath, 2002; Gluckman et al., 2008; Wells, 2016). These periods are 

described as such because they ultimately close, after which tissues become 

relatively canalized (less sensitive to environmental stimuli), and any deficits in 

growth track on into adulthood (Widdowson and McCance, 1963; Lucas, 1991; 

Godfrey and Barker, 2001; Fowden et al., 2006; Wells, 2016). This is less true for 

fat/adipose tissue, which remains relatively plastic after infancy and across the life 
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course (Bhargava et al., 2004; Ezzahir et al., 2005; Kensara et al., 2005; Wells et 

al., 2007; Wells, 2011).  

 

Early critical windows are of major consequence because a specific type of 

organ/tissue growth occurs within them. This is hyperplasia, which is characterized 

by cell multiplication, and thus a progressive increase in cell number. It can be 

contrasted with hypertrophy, where existing cells enlarge (Enesco and Leblond, 

1962; Winick and Noble, 1965; Allen et al., 1979; Owens et al., 1993). Both 

contribute to the mass of an organ or tissue, however hyperplasia is largely 

confined to the periods of increased plasticity in fetal and infant life, wherein cells 

rapidly divide (Barker, 1998, 2004). Studies in humans have indicated that cells 

divide just five times after birth, in contrast to 42 times in utero, although there is 

variation amongst specific tissues and organs (Hales and Barker, 1992; Owens et 

al., 1993; Barker, 1995).  

 

For example, nearly all of a mammal’s skeletal muscle fibers develop prenatally 

through hyperplasic growth (Allen et al., 1979; Owens et al., 1993). This is also 

true for nephrons in the kidney, and a study by Hinchliffe and coworkers (1992) 

found nephron numbers to be reduced in intrauterine growth-restricted (IUGR) 

infants compared to a control group. Crucially, they found no evidence for a 

compensatory increase in nephron number following birth (Hinchliffe et al., 1992). 

Perturbed pancreatic Beta cell development has similarly been found to persist in 

mature rats following early-life protein or caloric restriction (Reusens and Remacle, 

2006), although Beta cell proliferation continues postnatally (Kassem et al., 2000), 

and thus is sensitive to environmental conditions in infancy as well (Barker, 1992; 

Barker and Fall, 1993).   

 

Once sensitive developmental windows close and hyperplasic growth ceases, 

tissues may still enlarge through hypertrophic growth, and the body of course 

continues to grow following infancy. However, the persistence in adult phenotype 

of early-determined aspects of organ/tissue size and composition may have 
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implications for adult health. Hales and Barker (1992) recognized this in the context 

of the mounting evidence for a link between poor early growth and later chronic 

disease. This led them to propose the TPH.  

 

1.2.3 The thrifty phenotype hypothesis 

Critical windows of developmental plasticity occur within the niche of maternal 

phenotype (Barker, 1990; Wells, 2007a, 2014). Among other factors, the nutritional 

condition of the mother – shaped by her own development, and also current 

circumstances – shapes the growth of fetal tissues and organs (Wells, 2007a; 

Gluckman et al., 2008; Barker, 2012). With the TPH, Hales and Barker (1992) 

proposed that undernutrition during the sensitive periods of fetal life and infancy 

may be associated with deficits in specific organs, which would in turn predispose 

to adult chronic diseases like type II diabetes.  

 

They argued that in the nutritionally-stressed human fetus, competition between 

the brain and pancreas would manifest, wherein the brain would be relatively 

buffered from growth disruption at the expense of poor pancreatic development. 

This is referred to as ‘brain-sparing’ growth, whereby the brain is relatively 

protected over other organs (Barker, 2004; Giussani, 2011; although protection is 

not always complete, see Hediger et al., 1998; Antonow-Schlorke et al., 2011; 

Pomeroy et al., 2012). With poor nutrition imposing “mechanisms of nutritional thrift 

upon the growing individual,” Hales and Barker hypothesized that pancreatic Beta 

cell development would be adversely impacted (Hales and Barker, 1992, pg. 595). 

Beta cells produce insulin and thus have a vital role in glucose homeostasis. A 

defect in Beta cell function was therefore proposed as one potentially important 

link between poor early growth and adult type II diabetes susceptibility (Hales and 

Barker, 1992). 

 

As Aiello and Wheeler recognized for earlier hominins, the pattern of energy 

allocation among organs and tissues may vary within the constraints of an 

organism’s energy budget. If sufficiently constrained, the fetus may be forced to 
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‘choose’ to invest in some tissues over others. As Barker elaborated in a recent 

lecture, the developing individual has “a hierarchy of priorities” (Barker, 2012, pg. 

186; also Wells, 2013) that are shaped by its genes and ecological conditions. For 

humans and many other animals, buffering growth of the brain is a central priority, 

and energy used to do so cannot then be used to fund the growth of tissues 

positioned lower in the hierarchy (Barker et al., 1993; Barker, 2012). This may 

affect the pancreas, as the original TPH predicted, or possibly other organs 

including the liver, kidneys and spleen.  

 

The TPH of Hales and Barker was immediately distinguished from the ‘thrifty 

genotype’ hypothesis proposed by Neel (1962), which was briefly introduced 

above. Both held that something was interacting with aspects of adult lifestyle in 

the industrialized niche to promote chronic disease, however they diverged with 

respect to what the key factor was. Genetics are not unimportant, as Hales and 

Barker acknowledged, however limited evidence has been found to support the 

contention that specific genes have substantial effects on variability in metabolism 

and disease risk (Wells and Stock, 2011; Barker and Lampl, 2013). In contrast, 

there is compelling support for the TPH, as suggested by lines of evidence from 

several studies.  

 

1.2.4 Supporting evidence for the TPH 

In 1993 Barker and colleagues assessed cholesterol profiles in men and women 

who had their abdominal circumference taken at birth. The circumference 

measure, which served as an index of liver size, was found to be negatively related 

to total and LDL cholesterol concentrations. In line with the central predictions of 

the TPH, decreased liver size may have resulted from brain-sparing growth, which 

ultimately impacted cholesterol metabolism (Barker et al., 1993). This indicated 

that the growth of internal organs other than the pancreas could be forfeited in the 

face of early nutritional insufficiency.   
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Brain preservation at the expense of the liver had been noted previously, and 

head-to-abdominal circumference ratios were found to be higher in a sample of 

small-for-gestational-age (SGA) fetuses relative to those exhibiting normal growth 

(Campbell and Thoms, 1977). In another study on the effects of the Dutch Famine, 

an increased head-to-birth weight ratio in exposed individuals likewise suggested 

brain-sparing (Ravelli et al., 1998). Indeed, the predictions of the TPH manifest in 

what is referred to as asymmetric IUGR, which represents approximately 70-80% 

of IUGR incidence (Brodsky and Christou, 2004). The asymmetric pattern is 

characterized by a reduction in the size of the abdomen relative to the head, and 

“is attributed to the ability of the fetus to adapt, redistributing its cardiac output to 

the spleen, adrenal, coronary and cerebral circulations” (Brodsky and Christou, 

2004, pg. 307). An investigation by Latini and colleagues (2004) assessed 

differential organ growth in SGA and appropriate-for-gestational-age (AGA) 

newborns in more detail using ultrasonography. Although brain or head size was 

not measured, the authors were able to compare volumes of the kidneys, liver and 

spleen between SGA and AGA infants, and found that organs were smaller in the 

former group.  

 

Several studies have observed differential organ growth in rats under nutritional 

stress. For example, rats given a restricted diet after weaning demonstrated lower 

organ weights than controls; after refeeding, just the brain and lungs appeared to 

recover normal weight (Winick and Noble, 1966). Similar experimental results saw 

reductions in the pancreas, spleen, muscle and liver of rats in response to 

nutritional insufficiency, whilst the brain and lungs decreased less in weight (Desai 

et al., 1996; Petry et al., 1997). An earlier study showed that rats which first grew 

quickly and were then subject to undernutrition had heavier testes and stomachs, 

but lighter spleens, livers and small intestines (Widdowson and McCance, 1963).  

 

Findings have also been reported which support the broader formulation of the 

TPH, but suggest tissues and organs may be forced into competition under the 

influence of environmental exposures that extend beyond nutritional stress per se. 
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For example, a study by Alexander (2003) showed that the experimentally induced 

disruption of uteroplacental perfusion in pregnant rats induced IUGR and low birth 

weight, and predisposed the affected animals to hypertension. Elsewhere, rats 

exposed to hypoxia and anoxia demonstrated increased cerebral blood flow, whilst 

perfusion to the intestines was reduced (Barbiro-Michaely et al., 2007). An 

experiment using chick embryos further indicated that variation in oxygen 

availability may impact organ or tissue growth. If a hypoxic condition was induced, 

chick embryos were found to largely maintain the size of the brain and heart, as 

determined by comparison with a control group, however liver size was more 

adversely affected (McCutcheon et al., 1982).  

 

Tissues may be affected beyond the brain and internal organs. As noted in the title 

of their 2012 paper, Pomeroy and colleagues were able to extend the thrifty 

phenotype hypothesis to limb proportions in a test of two groups of Peruvian 

children. Limb length (femur + tibia) is known to demonstrate greater plasticity than 

head-trunk height (i.e. sitting height), and the former, like birth weight, has been 

negatively associated with adult chronic disease risk linked to adverse 

environmental impacts (Gunnell et al., 2002; Bogin and Varela-Silva, 2010; Whitley 

et al., 2012). Children living in the Andean highlands faced several environmental 

stressors including hypoxia, cold temperature, poverty, and reduced access to 

healthcare and adequate nutrition. Children in the second, lowland population 

faced environmental stress as well, but apparently to a lesser degree, as 

suggested by the lowland group’s relatively low rates of stunting and wasting 

(Pomeroy et al., 2012).  

 

Using anthropometry, measurements were obtained of highland and lowland 

children’s head-trunk height, upper and lower limb lengths, and also limb segments 

including zeugopod (ulna/radius or tibia/fibula) and autopod (hand or foot) 

segments. Head circumference was measured as well, and was found to 

demonstrate the smallest difference of all the measurements between the 

populations. Comparing the two groups of children with adjustment for head size, 
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the authors found that differences were greatest in full limb and zeugopod segment 

lengths, relative to head-trunk height or the lengths of the autopod elements 

(Pomeroy et al., 2012, Figure 1-7). The results are consistent with brain-sparing, 

whilst also suggesting that the organ-containing trunk is preserved relative to 

growth of the limbs. A novel finding was the apparent difference in preservation of 

specific aspects of the limbs: autopod segments may be relatively protected due 

to their functional importance in manual object manipulation and locomotion 

(Pomeroy et al., 2012).  

 

 

Figure 1-7 Differences in head-trunk and limb segment z-scores 
(reflecting number of standard deviations from the mean) for 
lowland versus highland children. 
From Pomeroy et al., 2012.  
 

 

In another recent article, Baker and coworkers (2010) developed an allometric 

model to test the predictions of the TPH, which they framed as a test of ‘brains 
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versus brawn.’ Using data collected from US children in 1998 (the third National 

Health and Nutrition Examination Survey (NHANES III)), they asked whether 

individuals born at lower birth weight could be seen to have ‘sacrificed’ muscle 

mass to protect the brain, and if the rates of brain and skeletal muscle growth were 

inversely related. To test their hypotheses, the authors utilized head circumference 

as a proxy for brain mass, and a proxy for muscle mass was derived from an upper-

arm circumference measurement. This approach relies on less robust methods 

than are used in the current study (this is discussed further in Chapter 3). 

Nevertheless, Baker et al. (2010) found support for the predictions of Hales and 

Barker’s TPH: relative growth of the head was not different between low and 

normal birth weight groups of children, whilst muscle growth appeared to be 

restricted in low birth weight children (<2.5kg), relative to those in the normative 

birth weight range.  

 

As the above studies highlight, all organisms – human and non-human – are 

expected to face competition amongst organs and tissues as they build their 

bodies during development. In humans, this contributes to variability in body 

composition within populations, and also shapes differential chronic disease risk, 

as Hales and Barker (1992) and others showed. I return to expand on this in 

Section 1.4 and discuss its relevance to the selection of my study cohort. First, I 

introduce life history theory, which provides a valuable theoretical framework within 

which to integrate the ETH and TPH more systematically and situate my own study 

hypotheses. 

 

1.3 Life history theory 
Life history theory explains how local environments shape the manner in which 

organisms utilize energy resources, and this in turn shapes species’ diversity. It is 

a robust framework, with its central predictions supported by a wealth of data. 

Neither Aiello and Wheeler (1995) nor Hales and Barker (1992) explicitly invoked 

life history theory in their publications, however its central tenet – the trade-off – is 

what they predicted must occur among components of the body in the face of finite 
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energy resources. Their approach was groundbreaking, and remains rare from a 

life history perspective; the majority of the literature focuses on trade-offs among 

biological functions such as growth and reproduction, rather than individual 

somatic traits.  

 

In this section I introduce the central components of life history theory and discuss 

supporting evidence for functional trade-offs in order to highlight the theory’s 

explanatory power (although the review is not exhaustive). Building on that 

discussed in the previous section, I then overview further evidence for tissue trade-

offs, some of which has been reported from studies testing the predictions of Aiello 

and Wheeler’s ETH. 

 

1.3.1 The principle of allocation  

The notion of competition features prominently in Charles Darwin’s theory of 

evolution by natural selection; specifically, competition amongst individuals for the 

resources necessary to survive and reproduce. Life history theorists in diverse 

fields including biology, ecology and anthropology have long-recognized that 

competition also occurs at an intra-individual level, between a number of essential 

functions that require energetic input in the living animal (Cody, 1966; Gadgil and 

Bossert, 1970; Hill, 1993). Both inter- and intra-individual competition occur in 

environments where energy resources are finite.   

 

The ‘principle of allocation’ reflects the notion that with resources fundamentally 

limited, energy used to fund one function is unavailable to fund others (Cody, 1966; 

Hill, 1993). Thus, investment in one function necessarily comes at the cost of 

another, or is ‘traded off’ (van Noordwijk and de Jong, 1986; Stearns, 1989; Roff 

and Fairbairn, 2006). Organisms are predicted to trade off resources to various 

essential functions in a manner that will promote their survival and reproduction, 

given constraints of their biology and environment (Gadgil and Bossert, 1970; 

Horn, 1978; Case, 1978; Stearns, 1992; Hill, 1993; Tracer, 2002). 
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Growth and reproduction are essential functions at the center of many energetic 

trade-offs (Stearns, 1992; Hill, 1993). Energy is also required for maintenance and 

repair of the body, and to defend against pathogens via the immune response 

(Stearns, 1992; Hill, 1993; Sheldon and Verhulst, 1996; Lochmiller and 

Deerenberg, 2000; McDade, 2003). Strategizing allocation among these areas to 

ultimately promote reproduction and enhance fitness is a delicate balancing act. 

Fitness may suffer if growth or maintenance is funded at the expense of 

reproduction (although this ultimately depends on environmental circumstances; 

see below). At the same time, however, maintaining the soma increases the 

chance an animal will survive to reproductive age, and investment in growth may 

further increase reproductive capacity (Gadgil and Bossert, 1970).  

 

An organism’s full life cycle, positioned by Bonner (1965) as “the central unit in 

biology” (pg. 488), is thus a series of investment decisions which are part of an 

overarching life history strategy to pass on one’s genes (Ellison, 2003; Speakman, 

2008; Wells, 2016). The overarching strategy is that of the species, shaped in part 

through long-term genetic adaptation, whilst plasticity allows for flexibility in the 

magnitude and direction of allocation depending on prevailing conditions (Wells, 

2016). As introduced in the previous section, plasticity operates on a much shorter 

timescale than genetic adaptation.  

 

Mortality risk and environmental quality profoundly shape species-level life history 

strategies. These factors also influence organisms’ energy allocation ‘decisions’ 

within the life course in response to more acute circumstances. This is described 

further below. 

 

1.3.2 The impact of environmental circumstances 

Patterns of energy investment across the life course are associated with 

observable life history traits including an animal’s growth trajectory, age at 

maturity, adult body size, age at death, and the number and quality of its offspring 

(Stearns, 1992; Hill and Kaplan, 1999). Investment strategies and the 
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characteristics of these key traits are largely determined by levels of extrinsic 

mortality risk, or the probability of dying at a given point in the life course due to 

predation, violence, disease, starvation, or climatic factors (Promislow and Harvey, 

1990; Gurven and Kaplan, 2007).  

 

Mortality risk, for example, affects the calculus regarding investment in growth and 

body size, as it signals the likelihood of receiving returns on such an investment. 

As noted above, larger adult body size may promote greater reproductive potential 

(Gadgil and Bossert, 1970; Stearns and Koella, 1986; Charnov and Berrigan, 

1993; Stearns, 2000). However, any such benefits would be outweighed by the 

costs if an organism missed out on reproduction altogether. If mortality risk is high, 

organisms are thus predicted to grow less and reach maturity more quickly so as 

to start reproducing sooner (Promislow and Harvey, 1990). This has been 

demonstrated with experiments in the lab and in nature. 

 

Stearns and colleagues (2000) demonstrated variable investment in the growth 

and reproductive effort of fruit flies through the manipulation of their mortality rates 

in a laboratory experiment. Specifically, adult flies in the higher mortality group 

were smaller and demonstrated higher fecundity, whilst the opposite traits were 

observed in the low mortality group (Stearns, 2000). In the field, groups of guppy 

fish were observed to grow at different rates and mature earlier or later, apparently 

in association with the level of predation in their area of the stream. To test this, 

researchers transplanted the fish so they were exposed to more or less predated 

areas; over generations, guppies newly exposed to greater mortality risk matured 

earlier, whilst those moved to a safer environment grew relatively slowly and 

matured later (Reznick and Ghalambor, 2005). 

 

Beyond predation levels, the quality of the environment may also impact the 

allocation of resources to life history functions in association with energy 

availability (Lambers and Poorter, 1992; Ellison, 2003; French et al., 2007; Wells, 

2016). As explored in Section 1.2 above, this is a key factor shaping energy 
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allocation to organs and tissues in the body in early-life development. Similarly, the 

capacity of an organism to allocate energy to key functions such as reproduction 

may be constrained in an environment characterized by inadequate nutrition 

and/or exposure to infection and disease (Lochmiller and Deerenberg, 2000; 

Tracer, 2002; Walker et al., 2006; Gurven et al., 2016).  

 

For a human fetus facing undernutrition, the prospect of reproduction remains far 

in the future; the immediate drive is to allocate available energy so as to promote 

survival, and thereby increase the chance of reaching reproductive age. For 

organisms which develop, reproduce and die much more quickly than humans, the 

calculus is predicted to be different. For example, when young adult male fruit flies 

were injured and nutrient-deprived through experimental parasitization, they 

responded by increasing their reproductive effort (Polak and Starmer, 1998; Figure 

1-8 below). This demonstrates how in certain organisms and at certain points in 

the life course, constraints due to low resource availability may be overridden if the 

potential to lose out on reproduction altogether is high (Stearns and Koella, 1986; 

Charnov and Berrigan, 1993; Walker et al., 2006).  

 

Signals of risk and/or poor environmental quality may favor reproduction early in 

adolescent human females, promoting earlier maturation. High rates of mortality 

have been inversely associated with age at first birth in populations from rural 

Dominica (Quinlan, 2010) and Sub-Saharan Africa (Gant et al., 2009). In the 

United States and England, an earlier average onset of reproduction was identified 

in disadvantaged neighborhoods characterized by low life expectancy (Wilson and 

Daly, 1997; Nettle, 2010).  
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Figure 1-8 Proportion of time expended on courtship activity in 
relation to level of parasite burden in male Drosophila flies. 
From Polak and Starmer, 1998.  
 

 

A recent study suggests that an energy allocation strategy leading to earlier 

maturation in humans may be set in motion in response to conditions in utero, and 

demonstrates how earlier maturation may in turn affect growth. In South Asian 

women in the UK, birth weight was taken as a proxy for maternal investment, which 

reflects environmental and maternal condition (Wells et al., 2016a). Those born 

with low birth weight reached menarche earlier and were relatively shorter. The 

results suggest that signals of suboptimal conditions via decreased maternal 

investment in utero favored a ‘faster’ life history strategy (Wells et al., 2016a).  

 

Risk levels over time shape growth patterns, final body size, and other traits at a 

species level, which explains trait diversity amongst organisms in nature (Stearns, 

1992; Hill, 1993). Species in riskier environments are typically placed on the ‘fast’ 
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end of a slow-fast life history continuum, due to their faster/earlier maturation, 

smaller adult size, production of more, low-quality offspring, and shorter lifespan 

(Stearns, 1983; Read and Harvey, 1989; Promislow and Harvey, 1990). Overall, 

the life course is shorter and more quickly traversed, in contrast to ‘slow’ species, 

which generally demonstrate the opposite traits.  

 
A key avenue by which extrinsic risk shapes the lifespan is through its impact on 

senescence, which refers to the gradual wearing down of an organism’s cells and 

tissues and their functions with age (Kirkwood and Austad, 2000). One prominent 

explanation for this phenomenon invokes life history theory; namely, the body 

wears down because investment in its maintenance (e.g. through DNA repair and 

antioxidant defense) is traded off against other functions, such as reproduction 

(Kirkwood, 1977; Kirkwood and Rose, 1991). Increased somatic maintenance is 

favored, however, in lower-risk environments, so that organisms in such conditions 

age more slowly and live longer.  

 

Consistent with the reduced adult mortality of human foragers relative to 

chimpanzees and similarly-sized mammals (Hill, 1993; Hill et al., 2001; Robson 

and Wood, 2008), humans live exceptionally long lives (Robine and Allard, 1998; 

Gurven and Kaplan, 2007). The human species is thus habitually placed at the 

‘slow’ end of the life history continuum, although some ‘faster’ life history traits 

including early infant weaning and short inter-birth intervals complicate this 

(Hawkes et al., 1998; Kennedy, 2005; Kuzawa and Bragg, 2012; Wells 2012a, 

2016). Nevertheless, humans grow incredibly slowly and thus take longer than 

other primates to reach maturity, and they invest considerable resources in large 

bodies and brains (Potts, 1996; Aiello and Wheeler, 1995; Aiello and Key, 2002; 

Gurven and Walker, 2006; Robson and Wood, 2008).  

 

In the section below, I describe a range of studies that have supported the 

predictions of life history theory, by showing how ecological circumstances shape 

energy allocation to different functions. This results in organisms residing at 
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different points along the slow-fast life history continuum, both across and within 

species.  

 

1.3.3 Evidence for functional trade-offs 

As introduced above, the ‘disposable soma’ theory of Kirkwood and colleagues 

predicts that signals of extrinsic mortality risk will ultimately determine how much 

an animal invests in maintenance, and thereby shape the senescence rate and the 

length of the animal’s lifespan (Kirkwood and Rose, 1991; Kirkwood and Austad, 

2000). These predictions have been supported by several lines of evidence. For 

example, female Virginia opossums living on less-predated islands experience 

lower mortality, age slowly relative to their counterparts on the more heavily 

predated mainland, and produce fewer offspring per litter (Austad, 1993). Similarly, 

reduced predation may explain the longer lifespans identified in arboreal relative 

to terrestrial mammals (Shattuck and Williams, 2010). In general, bats and birds 

are found to demonstrate greater longevity compared to eutherian non-flying 

mammals of similar body size, which has also been interpreted as an effect related 

to reduced predation risk (Austad and Fischer, 1991; Wilkinson and South, 2002; 

Munshi-South and Wilkinson, 2009).  

 

Evidence for the disposable soma model has likewise come from lab experiments 

in organisms such as D. melanogaster and C. elegans (Kirkwood and Austad, 

2000). Zwaan and colleagues (1995) demonstrated that selection for increased 

longevity leads to reduced reproductive output in female Drosophila flies, which is 

consistent with the prediction that maintenance of the body trades off against 

reproductive effort. With this in mind, the queens of eusocial insect species are an 

interesting case, as they live much longer than solitary insects or their own 

workers, whilst also reproducing prodigiously to maintain the viability of the colony. 

Keller and Genoud (1997) suggested that the longevity of queens is attributable to 

their low mortality risk in heavily protected nests, and their exhibited pattern of 

increasing age-dependent fecundity, which may slow ageing.  
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I described the idea and offered examples in the previous section of ecological 

conditions shaping the scheduling of reproduction through earlier or later maturity. 

As suggested already through some of the examples, age at maturation is likely to 

trade off with somatic growth. In mammals, growth in body size generally ceases 

once reproduction commences (Charnov and Berrigan, 1993). Human pygmies 

are illustrative of the growth-reproduction trade-off, as shown by Migliano and 

colleagues (2007). Rather than direct selective pressures explaining pygmies’ 

small body size, the authors argue that it has arisen via the strategy of ceasing 

growth and reaching reproductive maturity earlier. This may be the most viable 

reproductive strategy in environments which are characterized by significant 

mortality in both young and older individuals (Migliano et al., 2007). Similar findings 

have also been reported for small-scale societies in Venezuela and the Philippines 

(Walker et al., 2006).  

 

On one hand, expanding the period of growth so as to achieve greater height may 

increase fitness, however at the same time, fitness may also be augmented by 

increasing the number of years during which offspring can be produced. Taller 

height is associated with increased survival and fecundity, and the number of 

surviving offspring is a primary marker of evolutionary success; however, a trade-

off is expected due to the energetically demanding nature of investment in these 

areas (Sear et al., 2004). Sear and colleagues modelled such a trade-off among 

females in the Gambia, finding that women who began reproducing earlier were 

shorter than those whose age at first birth was later (Sear et al., 2004; Allal et al., 

2004). Their optimality model indicated that reproductive success in the context of 

the local environment would be maximized for women reaching puberty at age 18, 

as at this point, time spent growing would be balanced by the benefits that 

additional height conferred through offspring mortality reduction (Allal et al., 2004).  

 

Energetic costs of activating the immune response are also recognized to 

engender trade-offs with growth and reproduction, and have further been shown 

to alter the length of the lifespan. For example, endemic helminth infections are 



 63 

associated with stunted growth, evidenced in part by the fact that growth outcomes 

are seen to improve in children treated with anthelminthic drugs (Crompton and 

Nesheim, 2002). With respect to reproduction, researchers who manipulated the 

clutch size of female common eider birds (Somateria mollissima) observed that 

those with larger clutches demonstrated markers of decreased immune function 

(Hanssen et al., 2005). Similar findings have been reported in collared flycatchers 

(Ficedula albicollis), where increased brood size correlated with the rate of parasite 

infection (Gustafsson et al., 1994).  

 

With respect to immune trade-offs impacting longevity, Crimmins and Finch (2006) 

have linked reduced early-life mortality with increased longevity in European 

cohorts born before 1900. The authors posit longer lifespans were related to a 

reduction in the exposure of individuals to inflammation and infection as children, 

which when previously encountered may have diverted resources from growth and 

maintenance and increased the rate of senescence. At the same time, those 

exposed to infection in early life may survive, but eventually pay a penalty that is 

reflected in their earlier mortality. In adult cohorts from England and Wales, 

maternal mortality rates at the time cohort participants were born significantly 

predicted their age of mortality (Barker and Osmond, 1987). Similarly, exposure to 

airborne infectious disease in the first year of life increased mortality among 

individuals aged 55-80 in Sweden (Bengtsson and Lindström, 2003).  

 

The examples offered above and in the previous section represent just a small 

number of studies offering evidence for trade-offs among life history functions, but 

hopefully serve to highlight the robustness of the theory for explaining energy 

allocation patterns under various environmental circumstances. Below, I describe 

evidence for trade-offs among somatic traits, largely identified in non-human 

animals. Although substantially fewer studies have taken a life history perspective 

to test tissue trade-offs, as I noted above, several have emerged since the 

publication of the ETH, in a number of cases to test its predictions.  
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1.3.4 Evidence for tissue trade-offs in non-human animals 

Aiello and Wheeler’s ETH and Hales and Barker’s TPH both predicted competition 

– or trade-offs – between the brain and organs of the body in humans. Looking to 

evidence in non-human animals, the tissue trade-offs observed are more mixed. 

This is not hugely surprising; as highlighted above, there is considerable variability 

in the strategies animals pursue to adapt to local ecologies.  

 

For example, ground squirrels are animals that require prodigious fat stores for 

hibernation. Thus, when they are experimentally trapped, restrained, and unable 

to forage, they are seen to forfeit lean mass and retain fat, as measured against 

the body composition of control animals (Dark, 2005).  

 

In another study, researchers examined potential developmental trade-offs 

between head horns, a sexually-selected trait, and genitalia of male horned scarab 

beetles (Onthophagus taurus; Moczek and Nijhout, 2004). Their experiment 

involved removing the genital precursor tissues, referred to as disks, during 

development to test for impacts on horn growth. They found that beetles who had 

the disks removed grew markedly larger head horns than those who had received 

a sham disk-removal operation. Interestingly, one of the hypotheses these authors 

sought to test was whether structures located at opposite ends of the body, rather 

than those situated adjacent or very close, would be seen to compete for 

resources. They concluded that structures draw from the same resource pool and 

will thus compete for those resources, irrespective of their specific location on the 

body (Moczek and Nijhout, 2004). 

 

Nijhout and colleagues found comparable results in earlier studies of the butterfly 

(Precis coenia; Nijhout and Emlen, 1998; Klingenberg and Nijhout, 1998). Like the 

structures of the beetles described above, the butterfly’s wings develop from disks. 

When these were experimentally removed from the hindwings of butterflies in the 

larval stage, forewings after metamorphosis were relatively increased in size. The 

thorax and forelegs were also seen to increase in size, however measures of the 
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head and abdomen were not statistically different between experimental and 

control groups (Nijhout and Emlen, 1998).  

 

In order to test for a functional trade-off between maintenance and immune 

defense in laboratory mice, Ksiazek and Konarzewski (2012) artificially selected 

for higher or lower BMR in two mouse lines and then subjected them to dietary 

restriction and an immune challenge. Their results were consistent with a trade-off 

between maintenance and immune function under nutritional stress (specifically, 

the immune response appeared to be compromised in both mouse lines), however 

they also noted effects on the size of organs: high BMR-selected mice lost more 

spleen and lymph node mass, whilst the low BMR line lost more thymus mass. 

Both lines saw reductions in internal organs over the course of dietary restriction 

(Ksiazek and Konarzewski, 2012).  

 

With respect to the ETH, several apparently corroborative findings have come from 

studies in fish and amphibians. In 2013, Kotrschal and colleagues carried out an 

artificial selection experiment in guppies (Poecilia reticulata), selecting in different 

lines for either smaller or larger brain size relative to body length. They found a 

concomitant decrease in gut size in the larger-brained fish, demonstrating a 

reorganization of energy investment within the body in line with Aiello and 

Wheeler’s hypothesis.  

 

Further evidence of a gut-brain trade-off was found in Lake Tanganyika cichlid fish 

(Tsuboi et al., 2015), and in 30 species of frogs and toads, where brain mass was 

negatively correlated with the length of the digestive tract (Liao et al., 2016). A 

similar negative correlation was found in the African freshwater fish Gnathonemus 

petersii, which, similar to humans, uses a substantial proportion of its resting 

energy budget to fuel its brain, and consumes an energy-rich diet (Nilsson, 1996; 

Kaufman, 2003).  
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In contrast, a test of a negative correlation between brain mass and gut mass was 

not supported in 313 bat species by Jones and MacLarnon (2004), although a 

separate study in bats found an apparent trade-off between brain and testes size 

(Pitnick et al., 2006).  

 

Two notable studies have been carried out by Isler and van Schaik and coworkers. 

In 2006, they conducted a test of the ETH in bird species, wherein they also tested 

for relationships among other body tissues, including visceral organs and skeletal 

muscle. They found that the brain did not trade off against the gut or other 

expensive tissues like the heart, liver, kidneys or lungs. Brain mass instead 

demonstrated a negative relationship with pectoral muscle mass, which suggests 

a trade-off in birds between locomotion and brain size and/or cognitive capacity 

(Isler and van Schaik, 2006). 

 

In a more recent study, the authors performed necropsies in 100 mammal species, 

including 23 non-human primate specimens (Navarette et al., 2011). The brain 

volume of the measured mammals was not correlated with the digestive tract, or 

other organs including the heart, lungs, kidneys, liver and spleen. In this sample, 

Navarette et al. (2011) did however report evidence of a trade-off between brain 

size and adipose tissue, controlling for fat-free mass (primarily in the non-primate 

portion of the sample; Figure 1-9). They suggested that increased adiposity and 

increased brain size may represent alternative strategies for buffering starvation, 

and that the mammals under study tended to invest in one at the expense of the 

other (Navarette et al., 2011). 
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Figure 1-9 A negative association between brain mass and 
adipose tissue mass in wild-caught female mammals.  
From Navarette et al., 2011. 
 

 

Wells (2010a, 2012b, 2016) has developed the idea of the brain and fat stores as 

two interrelated ‘risk management systems’ in the body, which have the capacity 

to buffer a range of environmental stressors. The brain allows the animal to 

respond to shorter-term signals through behavioral responses, whilst adipose 

tissue is an important regulator of energy use within the body and its allocation 

amongst life history functions. In this way, adipose tissue both stores fuel and plays 

an essential role in determining how it is used in the context of shorter and longer-

term ecological pressures. Humans demonstrate both relatively large fat stores 

and brains, which suggests that hominin evolution occurred in highly stressful 

environments (Wells, 2016).  
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Heldstab et al. (2016) further tested the brain-fat trade-off in non-primate mammal 

and primate species, finding a negative relationship between brain size and 

seasonal variability in body mass. The latter served as a marker of animals’ 

propensity to store fat. Specifically, the negative correlation was seen in arboreal, 

but not terrestrial species. The authors posited that the costs of transporting extra 

fat on the body may be reduced in terrestrial animals, so that maintaining both 

increased brain and fat mass is viable. They further suggested this may have 

allowed large brains and fat stores to evolve in terrestrial hominins. A potential 

brain-fat trade-off in living humans remains to be tested, however the results 

presented by Heldstab and coworkers (2016) suggest these body components are 

less likely to demonstrate a negative relationship in humans. Indeed, a recent 

imaging study reported that fat-free body mass was correlated with decreased gray 

matter volume in the adult human brain, but fat mass demonstrated no such 

relationship (Weise et al., 2013).  

 

1.3.5 The ETH and TPH in a life history framework 

Evidence given above strongly supports the notion that competition for energy 

resources exists among functional areas and somatic traits, and such competition 

results in trade-offs when energy is constrained. Drawing from thermodynamic 

principles, life history theory holds that constraints on energy resources will be 

present in all environments (Hill, 1993), however the magnitude will vary in relation 

to external factors and the condition of the organism. The examples I have 

described highlight that costs and benefits associated with trade-offs occur over 

variable timescales and may involve genetic changes or shorter-term plastic 

responses in the service of augmenting survival and reproductive fitness.  

 

The evolutionary ETH and developmental TPH can thus both be situated within a 

life history framework. Aiello and Wheeler (1995) largely focused on the energetic 

constraints of hominin encephalization, rather than why the brain was selected to 

grow bigger. Nevertheless, if the authors’ hypothesis is correct, a trade-off between 

the brain and gut was incorporated over time into the hominin life history strategy 
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through genetic adaptation. It has long been recognized that investment in body 

size is an important component of the human strategy (Potts, 1996; Aiello and Key, 

2002), however Aiello and Wheeler (1995) highlighted that tissues and organs of 

the body may be equally subject to allocation trade-offs, and should be considered 

as well. ‘Why’ and ‘how’ questions are both important for increasing our 

understanding of human brain evolution; a life history perspective underscores the 

importance of metabolic cost questions by highlighting that no tissue can be 

understood in isolation if the energy budget is fixed. This was also noted by Aiello 

and Wheeler (1995).  

 

The capacity to demonstrate substantial plasticity in response to variable life 

course conditions is increasingly recognized as another key life history trait in 

humans (Potts, 1996, Wells and Stock, 2007, 2011; Kuzawa and Bragg, 2012; 

Wells, 2012a, 2016; Antón et al., 2014). This allows individuals to alter their life 

course strategy through shorter-term flexibility in the allocation of resources, as 

Hales and Barker (1992) predicted to occur in early life development in the face of 

undernutrition. The ‘brain-sparing’ nature of the trade-off predicted by the TPH 

indicates this may be the most viable ‘decision’ for the human fetus in poor 

circumstances, allowing it to survive and potentially reproduce later in life. 

Ultimately, as evidence outlined in Section 1.2 suggests, shorter-term benefits may 

be traded off against long-term costs in health and/or survival. In contemporary 

populations, the costs are expected to be higher for those encountering an 

obesogenic environment following infancy (Hales and Barker, 1992; Wells, 2016).  

 

In the chapter’s final section below I return to the TPH and discuss further how 

brain-sparing growth may shape adult body composition and the risk of ill-health. 

There is evidence that the ‘thrifty phenotype’ operates at the population level in 

modern humans, for example following long-term exposure to malnutrition. This 
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scenario is seen in contemporary South Asian4 populations, wherein the 

characteristic body composition phenotype suggests developmental trade-offs 

between the brain and lean body mass. 

 

1.4 The thrifty phenotype in South Asia 
At the species level, humans are less variable genetically than other hominoid taxa 

(Gagneux et al., 1999), and greater variation is observed within human populations 

than among them (Rosenberg et al., 2002). Beyond genetics, geographical 

variability in modern humans has been and continues to be shaped by phenotypic 

plasticity, although differentiating between these two sources of variability is not 

always straightforward (Wells and Stock, 2007; Wells, 2017).  

 

Diverse environmental factors and stresses including those related to climate, 

disease and nutrition have had long-term differential impacts on the world’s 

populations. One consequence is that body composition varies in relation to 

regional and ethnic background (Ortiz et al., 1992; Rush et al., 2004; Yajnik, 2004; 

Wells, 2012c). Bergmann’s (1947) and Allen’s (1877) rules are well-known 

examples in anthropology, where local temperature is predicted to shape average 

body mass and proportions. More recently, it was recognized that populations 

differ on average in the percentage contributions of fat and lean tissues to overall 

body mass (Wang et al., 1994; Rush et al., 2007; Lim et al., 2011). For example, 

Asians from Indonesia, Singapore and China were found to have a higher 

percentage body fat compared to Europeans with the same BMI (Deurenberg et 

al., 2002).  

 

This pattern is especially marked in South Asian populations: much evidence 

suggests they have, on average, decreased skeletal muscle mass and increased 

central fat mass relative to other populations (Banerji et al., 1999; Raji et al., 2001; 

                                            
4 In using the terms ‘South Asia’ or ‘South Asian’ I am referring collectively to the countries 
on the Indian subcontinent; otherwise, I refer to the specific country within South Asia, for 
example India or Bangladesh. 
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Rush et al., 2007; Unni et al., 2009; Wulan et al., 2010). Both aspects of phenotype 

are associated with higher metabolic risk, and indeed severe epidemics of type II 

diabetes and cardiovascular disease are occurring in South Asian countries 

(McKeigue et al., 1991; Shelgikar et al., 1991; Yajnik, 2004; Yusuf et al., 2005; 

Jayawardena et al., 2012). In a sample of children and adolescents in the UK, 

those with South Asian ethnicity had lower lean mass-for-height than individuals 

identifying as black or white (Haroun et al., 2010). Measured by computed 

tomography (CT), Indian men had more adipose tissue, less lean mass, and less 

leg muscle than Swedish men matched for body size and age (Chowdhury et al., 

1996). There is also evidence that South Asians have smaller organs compared to 

Europeans of the same height (Wells et al., 2016b).  

 

Even before specific aspects of body composition are considered, the TPH 

appears more likely to manifest in the life course development of South Asian 

individuals than in many other groups. South Asian populations demonstrate some 

of the lowest averages for stature worldwide, and it appears some countries are 

struggling to reverse these deficits; for example, adult height in Bangladesh and 

India appears to have plateaued below trends in East Asia (NCD Risk Factor 

Collaboration, 2016).  
 

Low stature is in turn associated with low birth weight (Deshmukh et al., 1998; 

Bisai, 2010). Data show that South Asian countries indeed experience high rates 

of low birth weight (UNICEF/WHO, 2004), and also considerable child malnutrition 

(FAO, 2015), although the specific incidence varies by country. Data from the 

Millennium Cohort Study in the UK showed that Indian, Pakistani and Bangladeshi 

infants were smaller and more likely to demonstrate low birth weight than infants 

of European ethnicity (Kelly et al., 2008). The recognized link between low birth 

weight and later chronic disease risk was, as described above, a central stimulus 

for Hales’ and Barker’s (1992) TPH, which hypothesized trade-offs in organ 

investment would be necessary in the face of undernutrition in fetal life.  
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In 2003, Yajnik and colleagues reported findings from a study in which they used 

anthropometric techniques (e.g. circumferences and skinfold thickness 

measurements) to look beyond birth size and test whether body composition 

differed between babies born in India and the UK. Indian babies were found to be 

smaller and their abdominal circumference suggested decreased visceral organ 

size, although head circumference was similar between the two groups. Indian 

babies also appeared to have less muscle, but demonstrated a “fat-preserving 

tendency,” especially those of smaller body size (Yajnik et al., 2003, pg. 177). The 

authors referred to this as the ‘thin-fat’ phenotype, and proposed, consistent with 

the TPH, that brain growth was buffered at the expense of muscle and visceral 

organs (Yajnik et al., 2003; Yajnik, 2004). Fat may have been preserved to 

promote survival and further support the growing brain.  

 

Yajnik et al. (2003), like Hales and Barker (1992), recognized the important impact 

of maternal nutrition and intra-uterine energy supply on body composition 

development. They showed that the thin-fat phenotype, already recognized in 

Indian adults, actually emerged in fetal life, and subsequent data have supported 

this. For example, a magnetic resonance imaging (MRI) study comparing body 

composition in Indian and UK newborns found increased central adiposity in the 

Indian babies (Modi et al., 2009). Stanfield and colleagues (2012) further found 

that South Asian infants had more fat and less lean mass than those of European 

descent. The early-life presentation of this characteristic phenotype suggests the 

action of inter-generational maternal and/or epigenetic effects in populations that 

have been chronically undernourished (Hardikar et al., 2015), although genetic 

effects on birth size and body composition are also plausible (Hales and Barker, 

1992; Dunger et al., 1998; Yajnik, 2004; Stanfield et al., 2012; Wells et al., 2013).  

 

Hardikar and coworkers (2015) recently found support for the 

epigenetic/environmental scenario in a rat model, where they specifically sought 

to mimic the chronic undernutrition faced by humans in developing countries. Rats 

undernourished over 50 generations had lower birth weight, more centrally-
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deposited fat, and less muscle than control rats, although the average size of the 

brain was similar between the groups. Results suggested the outcomes were 

driven by epigenetic, rather than genetic, effects. Undernourished rats were 

‘recuperated’ for two generations in which they ate a normal diet, however the 

observed epigenetic modifications persisted (Hardikar et al., 2015).  

 

The available evidence is suggestive of a thrifty phenotype effect at the population 

level, whereby chronic nutritional stress over generations has driven the thin-fat 

phenotype’s manifestation in contemporary South Asians. Wells and colleagues 

(2016b) developed this argument in a recent paper based on a comprehensive 

review of archaeological and historical evidence extending back 10,000 years. 

They posit that a long-term negative secular trend in height and changes in 

muscularity and fatness are associated with persistent ecological stressors related 

to diet and infectious disease, and a number of severe famines (Wells et al., 

2016b). Again, however, the relative contribution of plasticity and genetics has yet 

to be elucidated.  

 

As described in Section 1.2, low birth weight and the underdevelopment of organs 

has been linked in many studies with increased chronic disease risk in adulthood. 

Low lean mass and increased central adiposity are also associated with 

cardiovascular disease and type II diabetes, and the high prevalence of these 

conditions in South Asian countries has been linked to South Asian body 

composition, as noted above (Banerji et al., 1999; Yajnik, 2004; Mohan et al., 2007; 

Unni et al., 2009; Jayawardena et al., 2012; Wells et al., 2016b; Wells, 2016).  
 

Crucially, detrimental effects of sub-optimal organ/tissue growth are not limited to 

individuals who, for example, were severely malnourished in early life, experienced 

very low birth weight, became obese and diabetic, or would be described as 

generally ‘unhealthy’ in adulthood. In other words, associations between birth 

weight, differential organ growth and later health are not limited to extremes of 

early nutrition/growth and adult condition (Wells, 2016). In his capacity-load model 
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which expands on the insights of Hale’s and Barker’s TPH, Wells (Wells, 2010b, 

2011, 2016, 2017; Grijalva-Eternod et al., 2013) identifies that there is a 

continuous, negative correlation between birth weight and the risk of later 

developing chronic conditions (e.g. Hales et al., 1991; Rich-Edwards et al., 1997). 

The link furthermore depends on adult body size and additional markers of 

‘metabolic load’ (e.g. smoking, poor diet, lack of physical activity) interacting with 

‘metabolic capacity,’ represented by traits including muscle mass and the structure 

and function of organs. 

 

In this way, even those characterized by normative birth weight and organ 

development may experience differential chronic disease risk. Individuals in South 

Asian countries who fall within the normal range of birth size may be at increased 

risk relative to Europeans even before factoring in later metabolic load, as reduced 

metabolic capacity appears to persist at the population level for South Asians, as 

described (Yajnik et al., 2003; Wells et al., 2016b).  
 

In the sections above I have introduced the ETH and TPH, and discussed their 

similar predictions of competition between somatic traits in the face of finite energy 

resources. As I have argued here, both these hypotheses are consistent with life 

history theory, and theoretically strengthened by being situated within its 

framework. However, gaps in the literature are recognized, as relationships 

between organs and tissues have been inadequately tested in humans, and 

appealing to life history theory highlights the dearth of studies on somatic, rather 

than functional, trade-offs. For the current study, I aimed to recruit healthy 

individuals of South Asian ethnicity to test for somatic trade-offs. The decreased 

skeletal muscle mass and potentially decreased visceral organ mass recognized 

in the ‘thin-fat’ phenotype is suggestive of somatic trade-offs, and therefore 

evidence of competition between tissues may be more readily observable in a 

South Asian cohort. At the same time, the current study will add to the literature on 
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variability in South Asian body composition, which is recognized to contribute to 

their heightened chronic disease susceptibility.  
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2 Research questions and hypotheses 
 

As discussed in Chapter 1, two incredibly influential hypotheses in different fields 

arrived at a similar answer to problems concerning the evolution of the human 

brain and the etiology of adult chronic disease risk. Namely, Aiello and Wheeler 

and Hales and Barker both predicted the brain and visceral organs of the body 

would trade off against one another. As I showed, there is support for the prediction 

that organs and tissues compete for energy resources, both in humans and non-

human animals, from lab experiments and studies in the field. At the same time, 

the predictions of life history theory, which are well-supported across species, 

closely match the predictions of the ETH and TPH.  

 

However, a more direct test of the predictions of these two hypotheses in humans 

remains a gap in the literature of anthropology and biomedicine. A robust way to 

address this would be to gather detailed data on body and brain composition in a 

human cohort and test for relationships among organs and tissues. Prior evidence 

where brain and body tissues were directly measured largely comes from non-

human animals (e.g. Moczek and Nijhout, 2004; Isler and van Schaik, 2006; 

Navarette et al., 2011; Kotrschal et al., 2013). Studies which have found evidence 

for tissue competition in humans have mostly done so using proxies for the brain, 

visceral organs or skeletal muscle size, such as head, abdominal and arm 

circumferences (e.g. Yajnik et al., 2003; Baker et al., 2010; Pomeroy et al., 2012); 

or, they have examined fat or organs using MRI or ultrasonography, but not 

measured the brain (e.g. Latini et al., 2004; Modi et al., 2009).  

 

Also as yet unexplored is the question of whether specific components of the brain 

(e.g. gray matter, white matter, the cerebellum) can be seen to compete with 

organs or tissues in the body. Previous studies have focused on the whole brain. 

A more nuanced analysis could be done using high-resolution MRI data, which 

allows for the partitioning of the brain into its gray and white matter components.  
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Beyond central predictions regarding tissue competition, the ETH and TPH 

highlight two additional questions that can be tested. First, both hypotheses posit 

trade-offs between metabolically expensive organs in the body; indeed, Aiello and 

Wheeler invoked this in naming the ‘expensive-tissue’ hypothesis. At the same 

time, others have proposed the brain may trade off against less expensive tissues, 

such as skeletal muscle (Leonard et al., 2003; Snodgrass et al., 2009) or fat 

(Navarette et al., 2011; Heldstab et al., 2016). As introduced in Chapter 1, it is well-

established that tissues and organs demonstrate specific metabolic rates, which 

are indicative of their relative expense and appear to be relatively conserved in 

humans across development and among individuals (Elia, 1992; Javed et al., 

2010; Wang et al., 2001). However, with the collection of data on REE, it would be 

possible to test the differential expense of organs and tissues in the same cohort 

being investigated for tissue trade-offs.  

 

Second, the TPH and supporting studies suggest that fetal life and infancy are 

essential developmental periods when competition amongst organs and tissues is 

predicted to occur. Furthermore, evidence suggests the potential outcome of this 

competition – differential organ/tissue growth – persists into later life and is 

incorporated into adult phenotype. This appears to be the case in particular for 

organs and skeletal muscle, but less so for fat. Birth weight (Hales and Barker, 

1992; Wells et al., 2007; Victora et al., 2008) and relative leg length (leg 

length/height) or tibia length (Pomeroy et al., 2012; Wells et al., 2016c) are 

commonly used as proxy measures of fetal and infant developmental experience. 

Thus, collecting information on birth weight and tibia length would allow 

investigation of developmental mediation on any organ/tissue trade-offs that might 

be observed.  

 

Overall, testing questions of tissue expense, tissue competition, and the potential 

influence of early developmental periods on tissue trade-offs would be novel if 

carried out in a South Asian cohort. Relatively few studies to date have 

investigated body or brain composition with gold-standard techniques in South 
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Asians. I am unaware of any study which has combined a range of such techniques 

with the assessment of REE in a South Asian cohort, despite the relevance of body 

composition and metabolism to the etiology of chronic disease in South Asian 

populations, as described in Chapter 1.  

 

The aim of the current study was therefore to collect comprehensive data of the 

best possible quality on body and brain composition; REE; and birth weight and 

tibia length in young adult South Asians. With these data, I aimed to address the 

following questions (given in the order in which they are discussed in later 

chapters, with the exception of part (iv) of Question 2, which is addressed in 

Chapter 5): 

 

Research Question 1: Can I detect variation in the energy expenditure of 

organs and tissues in my cohort using data on REE and organ/tissue masses? If 

so, are the results consistent with previous studies undertaken in non-South Asian 

cohorts? 

 

Research Question 2: Using data on the volumes or masses of the brain, 

internal organs, skeletal muscle and fat, (i) can I detect evidence for trade-offs 

(negative statistical relationships) among brain and expensive body components, 

as predicted by the ETH and TPH? Or (ii) can I detect evidence for trade-offs 

among less-expensive components such as skeletal muscle and fat mass? 

Expanding further, (iii) can specific components of the brain be seen to trade off 

against body organs/tissues? 

 

Alternatively, (iv) do brain and body tissues grow in proportion to one another, and 

thus demonstrate positive relationships?  

 

Research Question 3: Using birth weight and tibia length as markers of fetal 

and infant nutritional experience, respectively, can I detect evidence of 

developmental mediation on any observed brain-body component trade-offs? 
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To address these questions, I test the following hypotheses:  

 

Hypothesis No. 1 – Organs and tissues in the body will 
demonstrate variation in specific metabolic rate (kcal/kg/day) 
 
I predict I will find evidence of differential organ/tissue expense, a notion that is 

well-supported in the literature (e.g. Kety and Schmidt, 1945; Drabkin, 1950; 

Brozek and Grande, 1955; Holliday et al., 1967; Elia, 1991, 1992), and which has 

been demonstrated statistically with similar data in a more recent paper (Wang et 

al., 2010). I further hypothesize that I will find tissue-specific metabolic rate values 

similar to those reported by previous researchers in non-South Asian cohorts; as 

noted above, these values appear to be relatively conserved across individuals 

(Elia, 1992; Javed et al., 2010; Wang et al., 2010). 

 

Hypothesis No. 2 – Both positive and negative relationships will 
be observed amongst components of the brain and body  
 

Specifically, I hypothesize that: 

 

(i) negative associations (indicating trade-offs) will be observed among the   

     brain and ‘expensive’ internal organs, consistent with the predictions of   

     the ETH and TPH, and evidence that South Asians sacrifice internal  

     organs as the brain is protected (Yajnik et al., 2003; Wells, 2016) 

 

(ii) a negative association will be observed between the brain and less-  

     expensive skeletal muscle; this would be consistent with suggestions the  

     brain may trade off against muscle (e.g. Leonard et al., 2003), and also    

     evidence that skeletal muscle is reduced on average in South Asians  

     (e.g. Rush et al., 2007; Unni et al., 2009; Stanfield et al., 2012); however,  

     because humans have both large brains and fat stores, I predict I will not  
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     find the negative correlation between brain size and fat mass that  

     Navarette et al. (2011) identified in non-human mammals 

 

(iii) gray matter in the brain will be seen to trade off against organs and/or  

      skeletal muscle, whilst white matter will show no such association; this  

      is suggested by evidence that gray matter has a higher energy  

      expenditure than white matter (Hofman, 1983; Karbowski, 2007; Zhu et  

      al., 2012), and thus may be more likely to trade off against other tissues  

 

(iv) positive relationships will be observed amongst tissues within the body  

      (e.g. organs, fat and skeletal muscle) and positive relationships will be  

      observed amongst brain components; in contrast, positive relationships 

      between brain and body components will be fewer and weaker (this has  

      been demonstrated previously, e.g. Gallagher et al., 1998; Illner et al.,  

      2000; Heymsfield et al., 2012a,b) 

 

How do I expect to find both positive and negative associations among some of 

the same brain and body components? Nijhout and Emlen (1998) discuss how 

failing to control for overall body size may render differences in the relative size of 

specific bodily traits or components difficult to detect unless the effects are 

extreme. In flies, for example, “the correlation of traits with overall body size (wings 

and legs of large individuals are larger than wings and legs of small individuals) 

may [mask] subtler relations among the individual traits” (Nijhout and Emlen, 1998, 

pg. 3688). Following their argument, I expect that the absolute sizes of various 

tissues will correlate positively with one another in my sample, but ‘subtler relations 

among the individual traits’ (i.e. negative trade-offs, if they exist) will be seen once 

body, and also head/skull size when considering the brain, are controlled for.  
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Hypothesis No. 3 – Observed trade-offs between the brain and 
organs or skeletal muscle will be associated with markers of 
growth variability in fetal life and/or infancy  
 
Based on evidence that fetal and infant developmental experience shapes adult 

body composition, in particular organ and muscle components (see Chapter 1, 

Sections 1.2 and 1.4), I hypothesize that birth weight and tibia length will prove to 

be mediating factors in any statistical models where trade-offs among brain and 

visceral organs or skeletal muscle are found.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 82 

3 Selection of study methods  
 

To test the hypotheses set out in Chapter 2, I sought to collect data on the following 

outcomes: the brain and its component volumes; visceral organs; skeletal muscle; 

fat mass; tibia length; and resting energy expenditure. (I also required information 

on birth weight, but this was collected by recall from study subjects, not measured.) 

For each outcome, my aim was to obtain data of the highest available quality.  

 

Cadaver analysis is the true gold-standard for measuring body and brain 

composition, however it is largely impractical for research. Several methods have 

thus been developed which predict body composition in vivo. This chapter 

describes methods which are of varying quality for the purposes of testing my 

hypotheses. It is not an exhaustive review of every possible method, but rather a 

summary of available techniques from which there was an opportunity to choose. 

A number of techniques were recognized not to provide adequate accuracy in 

measuring brain and body tissues, and were thus discarded.  

 

The first section below introduces the five-level body composition model of Wang 

and colleagues (1992), which is used to organize the subsequent sections. Two of 

the levels are not relevant to the current thesis, therefore Sections 3.2 – 3.4 of this 

chapter are Level V, Level IV and Level II, respectively. I proceed in this order 

because Level V is associated with simpler techniques, whilst Levels IV and II are 

more complex. Section 3.5 describes the method used to collect data on REE. 

 

3.1 The five-level body composition model 
In vivo body composition techniques are largely based on indirect measures of 

body components used in conjunction with established theoretical assumptions 

(Wells, 2006b). Their accuracy varies in relation to the assumptions used and 

variation in methodological error (Wells and Fewtrell, 2006).  
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A model proposed by Wang and coworkers (1992; Figure 3-1) distinguishes five 

levels at which body composition can be assessed. The levels, defined by the 

outcomes measured, increase in complexity from atomic (I) to molecular (II), 

cellular (III), tissue-system (IV), and finally whole body (V; Wang et al., 1992; 

Heymsfield et al., 1996, 1997). The most complex level (V) is the most easily 

measured, but offers less information and is less accurate for quantifying body 

composition outcomes such as fat, skeletal muscle and organs. Summing the 

components at a given level is equal to body weight (Heymsfield et al., 1996).  

 

 

Figure 3-1 The five-level body composition model of Wang and 
colleagues. 
From Wang et al., 1992. 
 

 

Various aspects of body size, shape and length can be measured at Level V. 

These include height; weight; limb segment lengths; circumferences/girths (e.g. of 

the waist, hip, arm, head) and skinfold thicknesses (Wang et al., 1992). BMI can 

be calculated using weight and height. As only a tape measure, stadiometer, scale 
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or pair of handheld calipers are required, such data remain the most readily 

obtainable proxies of body composition, particularly for very large studies and field 

situations. These are referred to as anthropometric techniques. 

 

Skeletal muscle (SM), visceral organs, the brain, and adipose tissue (AT) are 

included at Level IV, the tissue-system level (Wang et al., 1992; Heymsfield et al., 

1997). Available methods are more limited for accurately quantifying organ size 

and other tissues in vivo, but I discuss two below: CT and MRI. I also describe how 

body organ and brain volumes can be extracted from imaging data. Whole-body 

SM can be assessed using dual-energy X-ray absorptiometry (DXA), discussed in 

Section 3.4.  

 

Across the five levels, a main aim of body composition research is to quantify fat 

mass (FM) and fat-free mass (FFM). (In Chapter 1, I referred to ‘lean mass;’ I use 

this term and FFM synonymously in this thesis. Both are distinguished from FM, 

and include SM and visceral organs). Whole-body weight is comprised of FM and 

FFM. Obtaining comprehensive data on the body composition of my study 

subjects, therefore, requires both components. As noted, SM and visceral organs 

are part of FFM, as they are largely non-fat tissues; the same is true for the brain, 

which is mostly water. I thus aim to quantify FFM in order to achieve a broad 

measure of lean body mass, and also independently measure organs and SM. As 

described below, measurements at Level IV and V can be used to predict whole-

body FM and FFM, however Level II methods are more accurate for this purpose.  

 

Level II, following Wang and coworkers (1992), is the molecular level. Typically, 

four main molecular components are measured to assess FM and FFM: water, 

protein, lipid, and mineral. Depending on how many of the four are measured, two-

component (2C), three-component (3C) or four-component (4C) body composition 

models can be constructed. All model FM and FFM, but they vary in their 

assumptions and accuracy. In Section 3.4, I describe the 2C, 3C and 4C models 

further, and measurement techniques which can be used to build them.  
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Each section below discusses body composition outcomes, and techniques 

available to measure those outcomes. As I proceed through the sections I discuss 

the uses and limitations of the various methods, and indicate where techniques 

were used for the current project or discarded. 

 

3.2 Level V (whole body) measurement outcomes and 
techniques 

3.2.1 Height, weight and BMI 

Anthropologists interested in population phenotypic variation have long explored 

associations among height, body mass and local ecology (Bergmann, 1847; Allen, 

1877; Roberts, 1953; Ruff, 1994; Katzmarzyk and Leonard, 1998; Wells, 2012c). 

Height is likewise an important marker of individual and population growth and 

health (Steckel, 1979; Eveleth and Tanner, 1976; Cole, 2000; Deaton, 2008; NCD 

Risk Factor Collaboration, 2016). Body weight can similarly serve as an index of 

health and nutritional status (McWhirter and Pennington, 1994; Norgan, 2005; 

Racette et al., 2005; Wu et al., 2009).  

 

As established by Quetelet (1994), weight is often reported in relation to height, 

where weight in kilograms divided by height in meters squared is an individual’s 

BMI. BMI is widely used to assess relative weight, and identify categories of 

underweight, overweight and obesity (Nuttall, 2015), following its original 

application to the assessment of obesity by Garrow and Webster (1985). These 

categories are further related to health outcomes including type II diabetes and the 

metabolic syndrome. Measuring BMI is practical and economical, thus its 

continued use for very large studies and the monitoring of secular trends in 

populations has been advocated (Hall and Cole, 2006).  

 

However, links between body fatness, lean mass and BMI are not straightforward. 

BMI is often interpreted as a marker of FM, rather than FFM, however it is 

associated with both, as well as other body composition measures (Nuttall, 2015). 



 86 

For a given BMI, individuals differing by sex, age, ethnicity, average physical 

activity, and health may differ in the relative proportion of FM to FFM (Prentice and 

Jebb, 2001; Hall and Cole, 2006; Wells, 2006). Two healthy adult males may have 

an identical BMI, but differ considerably with respect to their percentage fat (%fat; 

see Yajnik and Yudkin, 2004). The BMI measurement does not have the resolution 

to elucidate the FM/FFM ratio.  

 

The limitations of BMI for assessing relative FM and FFM are visualized with the 

Hattori chart (Hattori et al., 1997, 2004), which simultaneously incorporates data 

on fat mass index (FMI), fat-free mass index (FFMI), %fat, and BMI. FMI and FFMI 

are calculated as FM/height2 and FFM/height2, respectively (Hattori et al., 1997). 

A graph from Wells et al. (2007) is shown in Figure 3-2 below. Green and red 

circles indicate two children with similar BMI, but quite different FMI and FFMI; 

green and blue circles highlight two children with similar FMI, but very different BMI 

and FFMI (Wells et al., 2007).  
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Figure 3-2 Hattori graph for a sample of 8-year-old children. 
Image from Wells et al., 2007. 
 

 

Comparisons of body composition in individuals of differing ethnicity offer another 

example of the limitations associated with BMI. I first described how body 

composition may differ among populations in Chapter 1, Section 1.4 on South 

Asian body composition. A 1994 study by Wang and colleagues obtained 

measures of body fat and BMI in men and women of European5 and Asian 

(Chinese, Japanese, Korean and Filipino) descent. The authors reported that at a 

lower BMI, Asians had significantly more fat compared to Europeans (Wang et al., 

1994). Deurenberg-Yap et al. (2002) found that Singaporean Chinese, Indians and 

Malays demonstrated the same %fat as European individuals, but had BMI values 

~3kg/m2 lower.  

                                            
5 When referring to the ethnic background of a study sample, I generally use the term(s) 
that were used in the publication I am citing. However, I use ‘European’ and ‘white’ 
interchangeably to denote individuals of European descent, and avoid the term 
‘Caucasian.’  
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Relationships between %fat and BMI also appear to differ between Polynesian and 

New Zealand European females (Rush et al., 1997). Similarly, correlations 

between BMI and body composition were less than straightforward for New 

Zealand European, Pacific Island and Asian Indian men. Namely, Pacific Islanders 

had higher SM mass, whilst Asian Indians had more fat and less muscle mass for 

a given BMI (Rush et al., 2004). These data indicate that FM/FFM ratios are not 

independent of ethnicity.  

 

I aimed to recruit subjects whose ethnicity traces to a relatively specific 

geographical area in order to avoid the extra source of variation associated with a 

mixed-ethnicity sample. However, accurately measuring FM and FFM clearly 

requires a more sophisticated technique than BMI, irrespective of subject 

recruitment.  

 

3.2.2 Body girth/circumference measurements 

Compared to BMI, girth/circumference measurements including those of the head, 

upper arm, chest, waist, hip, thigh and calf offer more information about tissue 

distribution on the body. These measurements are relatively simple and easy and 

can be taken using a measuring tape. In some research centers and hospitals, 

three-dimensional (3D) photonic scanning is also available, which projects safe, 

white light onto the body inside a structure similar to a photo booth. Computer 

algorithms reconstruct skin surface topography from photonic data, and a ‘virtual 

tape measure’ is applied to the 3D image to quantify circumferences (Douros et 

al., 1999; Treleaven, 2004; Wells et al., 2011). 

 

Girth measurements are an improvement over BMI because measures of body 

shape can offer additional information that may be helpful in making predictions 

about underlying tissues. For example, if waist circumference is found in an adult 

to be large relative to their hip circumference, or if waist circumference increases 

over time, this may indicate an increase in abdominally-deposited fat. This fat 

depot, also referred to as visceral AT (VAT) is of interest to researchers and 
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clinicians because it is associated with chronic disease risk (e.g. Ho et al., 2003; 

Araneta and Barrett-Connor, 2005; Zhu et al., 2005).  

 

Indeed, indices incorporating waist measurements were, compared with BMI, 

better able to identify metabolic disease in two Arab cohorts (Al-Daghri et al., 

2015). In a study of over 27,000 participants from 52 countries, waist-to-hip ratio 

was a stronger predictor of myocardial infarction risk than BMI (Yusuf et al., 2005). 

However, tape or 3D scan measurements of waist or other girths are ultimately 

limited because they cannot with suitable accuracy distinguish between underlying 

tissue types. A study by Araneta and Barrett-Connor (2005) demonstrates this. 

The authors both gathered anthropometric data and measured fat depots using 

CT imaging in Filipino, African American and white women. Adjusting for age, 

African American women had significantly higher outcomes for BMI and waist girth 

than Filipinas or white women, yet VAT was significantly higher in Filipinas 

compared to the other two groups (Araneta and Barrett-Connor, 2005).  

 

The upper arm circumference has been used along with a measure of the triceps 

skinfold (see next section) to estimate arm muscle area (AMA) and arm fat area 

(AFA; Frisancho, 1974, 1981; Heymsfield et al., 1982). AMA and AFA have further 

been used as proxy measures for FFM and FM, respectively. This relies on a 

number of assumptions accompanying the calculations, including that the arm is 

cylindrical; that a circular core of muscle is surrounded by an evenly distributed 

band of subcutaneous fat; that the triceps skinfold measurement can accurately 

separate fat and non-fat tissue in the arm; and finally, that the skinfold is equal to 

double the arm subcutaneous fat thickness (Chomtho et al., 2006). In a study of 

children, Chomtho and coworkers (2006) found that arm circumference and AFA 

were reasonably useful in predicting FM as measured by criterion methods, and 

adequate for ranking children in terms of level of fatness. However, arm 

circumference and AMA performed poorly in predicting both regional and whole-

body FFM.   
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Heymsfield and colleagues (1982) found that an old equation overestimated AMA 

by 20-25% in comparison to more accurate measures by CT; they revised the 

equation, which subsequently overestimated AMA by an average of 7-8%. The 

study of Baker and colleagues (2010) described in Chapter 1, Section 1.2.4 utilized 

the revised equation of Heymsfield et al. (1982) to calculate AMA in their sample 

of children from NHANES III. The authors note that previous studies found AMA to 

be strongly associated with levels of urinary creatinine, a byproduct of muscle 

metabolism. Indeed, proxy measures such as AFA and AMA are useful in large 

studies where more expensive and complex methods cannot feasibly be 

employed. However, these measurements are not adequate for assessing FM, 

FFM or SM in my sample.  

 

Baker et al. (2010) further used a measure of head circumference as a proxy for 

brain mass in their study, an approach which has been used in many additional 

investigations in children (e.g. Dessens et al., 2000; Aylward et al., 2002; 

Hebestreit et al., 2003). With autopsy data, Epstein and Epstein (1978) 

demonstrated that brain weight scales closely with head circumference in 

individuals from birth to age 18 years. In an earlier study, Bray and colleagues 

(1969) showed that estimated intracranial volume correlated strongly with head 

circumference in 56 patients of varying age. However, more recent research by 

Bartholomeusz and coworkers (2002) suggested that head circumference may be 

a poor marker of brain volume, particularly in adults. They measured 76 healthy, 

mostly white male subjects using MRI, from which they obtained both head 

circumference and brain volume. Results indicated that a given adult head 

circumference measure could be associated with a range of brain sizes, likely due 

to the fact that brain volume decreases somewhat following adolescence, whilst 

achieved head size does not change (Bartholomeusz et al., 2002).  

 

Based on these findings I concluded head circumference was not a sufficiently 

sensitive measurement of brain size to use in my study. Furthermore, an external 
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proxy of brain volume does not offer any information on specific brain components, 

which I require to test one of my hypotheses.  

 

Additional studies I overviewed in Chapter 1 (Sections 1.2 and 1.4) utilized 

abdominal circumference as a proxy for internal organ size (e.g. Campbell and 

Thoms, 1977; Barker et al., 1993; Yajnik et al., 2003). An investigation by 

Vintzileos and coworkers (1985) found a strong correlation between liver length 

and abdominal circumference in fetuses, however I did not find reports of similar 

evidence in adults. In any case, to test my hypotheses that organs and tissues are 

differentially metabolically expensive and that the brain trades off against 

expensive organs, a more direct measure of organ size than abdominal 

circumference is required.  

 

3.2.3 Regional skinfold thickness 

Measuring regional skinfold thickness (SFT) is comparable to the measurement of 

body girths by tape measure with respect to ease of use and cost-effectiveness. 

The measurement involves isolating a fold of skin and underlying subcutaneous 

fat with the fingers. Handheld calipers are used to measure the size of the fold at 

specified sites on the body, often in biceps, triceps, subscapular and suprailiac 

regions. The latter two are on the upper back and above the hip, respectively.  

 

Accuracy and precision may suffer when SFT measurements are attempted for 

overweight or obese individuals, or for those whose skin is particularly well-

attached to the underlying tissue and more difficult to lift into a fold. The 

compressibility of skin may vary between individuals and introduce some degree 

of error (Durnin and Womersley, 1974).  

 

Skinfold thicknesses have been used by researchers seeking to identify a simple 

technique which demonstrates good agreement with more accurate but at times 

impractical laboratory methods. For example, Durnin and Womersley (1974) 

developed regression equations using skinfold measurements from the biceps, 



 92 

triceps, subscapular and suprailiac sites to predict body density and fatness in 481 

men and women of varying age. These equations were widely used in subsequent 

research (Coward et al., 1988; Norgan, 2005).  

 

However, some argued that the high degree of error associated with estimating 

FM and FFM from SFT measurements rendered the method unacceptable (e.g. 

Coward et al., 1988). Predicting FM from SFT requires two significant 

assumptions: first, that average whole-body SFT is adequately represented by 

chosen skinfold measurement sites, and second, that a constant relationship exists 

between subcutaneous fat and total FM (Lukaski, 1987; Coward et al., 1988; Wells 

and Fewtrell, 2006).  

 

An additional limitation is that the validity of developed prediction equations may 

only be applicable in the populations from which they were derived (Lukaski, 1987; 

Rode and Shephard, 1994; Dioum et al., 2005; Norgan, 2005; Wells and Fewtrell, 

2006). Many equations were derived in adults and children from European 

populations, therefore they would not be appropriate for use in my cohort.  

 

As suggested by Wells and Fewtrell (2006), SFT measurements may be used most 

effectively as raw values, for example to quantify fat stored in specific 

subcutaneous depots and/or rank individuals in a sample by relative fatness. As 

the technique only directly measures skin and subcutaneous fat, attempts to 

assess the FFM component of body mass with SFT-derived equations is not 

appropriate (Wells and Fewtrell, 2006). SFT measurements would thus not allow 

me to collect adequate data for testing my study hypotheses.  

 

3.2.4 Limb segment lengths 

The human body can be divided and measured in several segments. Using a 

measuring tape, stadiometer or sliding calipers, one can obtain data on limb length 

(leg, arm), limb segment length (e.g. humerus, femur, tibia, foot) and trunk or head-

trunk height. Head-trunk height is also referred to as sitting height. With these data 
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and also total stature, proportions can be calculated including relative leg length 

(RLL; leg length/stature) or sitting height ratio (sitting height/stature; Bogin and 

Varela-Silva, 2008, 2010). Limb/body segment measurements are not options for 

measuring soft tissues, however RLL or tibia length could both potentially be used 

as markers of postnatal experience to test my hypothesis concerning 

developmental mediation on trade-offs. 

 

RLL has classically been used as a marker of growth in postnatal life, as the legs 

of humans are recognized during this period to grow quickly relative to other parts 

of the postcranial body (Cole, 2000; Bogin and Varela-Silva, 2008). Population 

secular increases in stature have been attributed largely to increased leg length 

(Tanner et al., 1982; Jantz and Jantz, 1999; Sanna and Soro; 2000; Cole, 2000). 

As RLL indexes growth postnatally and is apparently sensitive to environmental 

stimuli, it can act as a marker of environmental quality and nutritional experience 

in this period (Gunnell et al., 1998; Leitch, 2001; Bogin et al., 2002; Wadsworth et 

al., 2002; Wells et al., 2016c). Like birth weight, which is used in the current study 

as a marker of fetal experience, RLL is associated with adult chronic disease risk 

(Davey Smith et al., 2001; Lawlor et al., 2002, 2004; Ferrie et al., 2006). 

Importantly, several studies have suggested that RLL is independent of fetal 

weight gain, indexed by birth weight (e.g. Gunnell et al., 1999; Bogin and Baker, 

2012; Pomeroy et al., 2014; Wells et al., 2016c), although some evidence suggests 

body and limb segments impacted in utero from maternal smoking or diabetes 

could affect birth length (e.g. Lindsay et al., 1997; Lampl et al., 2003; Lampl and 

Jeanty, 2004). 

 

Although it has been used in studies less often than RLL, the tibia may in fact be 

the more sensitive component of the lower leg. Distal limb segments including the 

tibia and radius are more variable than proximal segments (Holliday and Ruff, 

2001). I described the Peruvian study of Pomeroy and colleagues (2012) in 

Chapter 1, where the authors found that tibia length showed the greatest 

differences between differentially stressed highland and lowland children. 
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Additionally, following their investigation of secular changes in long bone lengths 

in US individuals, Jantz and Jantz (1999, pg. 57) reported that “lower limb bone 

secular change is more pronounced than upper limb bone change, and distal 

bones change more than proximal bones, particularly in the lower limb.”  

 

Knee height is a similar measure which effectively indexes tibia length, and 

likewise serves as a marker of early-life nutrition (Bogin et al., 2014). Because 

taking knee height does not involve palpating the proximal and distal ends of the 

tibia through soft tissue, it may be an option for avoiding confounding in very 

overweight subjects, however the foot and ankle are included in the measurement. 

In a study of Maya children from Mexico, knee height as a measure of distal leg 

length and the knee height/stature ratio were more strongly associated with 

socioeconomic and environmental variables than was a variable reflecting 

ancestry (Vázquez-Vázquez et al., 2013).  

 

I chose to measure tibia length in my sample as a marker of postnatal 

developmental experience. As noted above, the tibia appears to be the most 

plastic component of the lower limb in early life, and therefore may be a more 

sensitive marker than RLL. I considered that a more direct measurement of the 

tibia, accomplished by palpating the proximal and distal ends of the bone, was 

preferable to knee height, and feasible as my sample would not include very 

overweight or obese individuals.  

 

3.3 Level IV (tissue-system) measurement outcomes 
and techniques 

The review above has demonstrated that at Wang et al.’s (1992) ‘whole body’ level 

of assessment (V), only the anthropometric measurement of tibia length is 

appropriate for use in my study. I described how external circumference 

measurements would not give sufficiently detailed data on soft tissue components 

including brain and body organs; however, imaging methods such as CT and MRI 
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used at the tissue-system level (IV) are a further possibility. In contrast to the 

section above, here I organize the subsections by method, rather than outcome.  

 

3.3.1 Computed tomography 

Three-dimensional brain imaging by CT was first introduced by Hounsfield in the 

1970s, and was thereafter utilized in many studies of normal and pathological 

brains (e.g. Hahn and Rim, 1976; Carlen et al., 1978; Brott et al., 1989). Its use 

was extended to measure visceral organs, muscle mass and AT6 depots 

throughout the 70s and 80s, as reported in multiple studies (see Heymsfield et al., 

1997).  

 

CT data are contained in volume elements (voxels), which are two-dimensional 

picture elements (pixels; typically 1mm x 1mm) plus a third dimension reflecting 

slice thickness. In gray scale, voxels provide image contrast and show tissue 

composition, generating volumetric estimates of body and brain components 

(Heymsfield et al., 1997). The reconstruction of body composition data in each 

voxel is achieved via the differential attenuation of X-ray beams as they come in 

contact with fat, fat-free, brain and bone tissues (Heymsfield et al., 1997; Shen and 

Chen, 2008). Tissues are labeled based on attenuation values, which are 

measured in Hounsfield units (Després et al., 1996).  

 

Using CT images, it is possible to delineate SM and organs among fat-free tissue, 

and also quantify AT components (Ellis, 2000). For example, studies have used 

CT to investigate associations between waist indices, abdominal fat and risk 

markers for chronic disease (Seidell et al., 1987; Schwartz et al., 1991). Kvist and 

colleagues (1988) further developed a method for quantifying whole-body AT 

                                            
6 ‘Fat’ and ‘adipose tissue’ are often used interchangeably, but following the five-level 
body composition model it is important to recognize they are separate components; fat 
typically refers to lipid (triglycerides), which is found in adipose tissue, but also in smaller 
amounts in other regions of the body (Shen et al., 2003). 
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volume using multiple CT image slices, and in an earlier study, Heymsfield et al. 

(1979) showed that CT could accurately quantify kidney, liver and spleen volumes. 

 

Measuring total body mass and specific organ masses where CT image slices are 

taken at designated intervals across the body demonstrates excellent precision 

and accuracy (both <1% error; Ellis, 2000). Several validation studies have 

supported the use of the technique for estimating body tissues (Heymsfield et al., 

1997). A number of more recent studies have also utilized CT to assess body 

composition (e.g. Goodpaster et al., 2006; Kuk et al., 2006; Irlbeck et al., 2010). 

However, undergoing a CT scan exposes subjects to multiple X-ray beams and a 

high degree of ionizing radiation (Després et al., 1996), which is a considerable 

disadvantage. 

 

Yoon and colleagues (2008) reported the measurement of intra-abdominal AT by 

CT was valid and reproducible using a modified protocol which reduced the 

estimated radiation dose by ~75%. Indeed, if image resolution is reduced, the 

radiation dose can be decreased as well (Ellis, 2000). Nevertheless, the radiation 

exposure associated with CT may continue to limit its wider application in body 

composition research, particularly in healthy persons (Thomas et al., 2013). This 

extends to my study, for which CT did not represent a feasible imaging method.  

 

3.3.2 Magnetic resonance imaging 

Early work which led to the currently used method of MRI was carried out by 

researchers including Bloch et al. (1946), Purcell et al. (1946) and Damadian 

(1971). Central to MRI are the human body’s billions of hydrogen atoms, which 

contain protons with a magnetic moment (Edelman and Warach, 1993; Heymsfield 

et al., 1996, 1997; Brown and Semelka, 2003). Subject to the Earth’s relatively 

weak magnetic field, hydrogen protons are randomly configured. Within an MRI 

scanner, however, the protons’ magnetic moments align with the much stronger 

magnetic field (B0) generated by the MRI system (Heymsfield et al., 1997; Ellis, 

2000). A rendering of the system is shown in Figure 3-3.  
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Figure 3-3 Simplified rendering of the MRI scanner. 
 

 

During an MRI scan, applied pulses of radiofrequency (RF) energy at the resonant, 

or Larmor frequency are absorbed by a proportion of the body’s hydrogen protons, 

disrupting their alignment with B0 (Edelman and Warach, 1993). Following a RF 

pulse, protons undergo relaxation, or re-alignment with B0, releasing energy that 

is used to generate MR images (Heymsfield et al., 1997; Ellis, 2000; Brown and 

Semelka, 2003; McRobbie et al., 2007). Additional magnetic field gradients 

interrupt B0 to create spatial variations in field strength across the length of the 

subject’s body, localizing MR signals to orient the image (McRobbie et al., 2007). 

Similar to CT, MR images are made up of pixels, the front face of many thousands 

of 3D voxels (with depth created by the slice thickness). 

 

MRI’s ability to provide image contrast and distinguish between different tissues is 

related to parameters known as T1 and T2. Both refer to the time (T) required for 
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hydrogen nuclei to return to alignment with B0 (Brown and Semelka, 2003). For 

example, T1, the longitudinal relaxation time, is shorter for protons in fat compared 

to those found in water. Thus, differential relaxation allows fat and SM to be 

distinguished in the body, and white and gray matter separation in the brain. The 

generated contrast (i.e. variation in image signal intensity or brightness) can be 

optimized through the manipulation of the RF pulse parameters TE (time-to-echo) 

and TR (time-to-repeat; Heymsfield et al., 1997; McRobbie et al., 2007).  

 

MRI is a state-of-the-art method and produces high quality data. With respect to 

the brain, it underpins the vast majority of the clinical and research literature, 

including structural, functional and diffusion imaging to assess various aspects of 

brain form and function in health and disease (e.g. DeYoe et al., 1994; den Heijer 

et al., 2003; Sowell et al., 2003; Debette et al., 2010; Anblagan et al., 2013; 

Kawadler et al., 2015; Lisofsky et al., 2015). It is possible using MRI to employ a 

volume-based approach (Fischl et al., 2002; Giorgio and De Stefano, 2013; 

Maclaren et al., 2014; Schmitter et al., 2015) and obtain highly accurate data on 

whole-brain volume and the volumes of specific regional components. MRI 

scanning is expensive, and scan times may be long relative to CT, however a 

principle advantage is that MRI does not subject individuals to ionizing radiation 

exposure. With access to a scanner, I was able to use MRI to quantify total and 

component brain volumes in my study cohort.  

 

Once raw data are obtained (the scan protocol is described in Chapter 4), there 

are a number of options for extracting volumetric outcomes. In earlier studies, brain 

volumes were typically manually segmented (Morey et al., 2009; Maclaren et al., 

2014), which can be extremely time-consuming; the volume or region of interest 

(ROI) must be traced in each slice of multi-slice datasets. Manual segmentation by 

an experienced clinician or researcher is considered the criterion against which 

many emerging semi- and fully-automated software methods are evaluated (e.g. 

Buckner et al., 2004; Morey et al., 2009; Lehmann et al., 2010), and the latter may 

be preferred for efficiency and practicality, particularly with large datasets.  
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A greater range of semi- and fully-automated methods are now available, as 

described by Giorgio and De Stefano (2013). Manual segmentation may be 

considered the reference method, however new methods which utilize 

computational algorithms could be argued to offer greater objectivity in brain 

volume assessment. Automated segmentation methods have been shown to be 

accurate and reproducible, and have been used in a number of studies to measure 

the whole brain and its gray and white matter components (Giorgio and De 

Stefano, 2013). Many involve the registration of 3D MR images to an electronic 

brain atlas, or template, allowing tissue classification within voxels according to 

prior tissue probabilities, which streamlines data acquisition and analysis 

(Klauschen et al., 2009).  

 

One well-established, freely-available software package for the fully-automated 

segmentation of brain structures is called FreeSurfer, developed and made 

available by the Martinos Center for Biomedical Imaging at Harvard and MIT in 

Boston, USA, a leading imaging research group. FreeSurfer is a popular tool; it 

was described recently as “probably the most widely used software for [volume-

based brain morphometry]” (Schmitter et al., 2015, pg. 9). It has been evaluated 

against manual brain volume measurements (e.g. Morey et al., 2009; Lehmann et 

al., 2010), and was recently used in a test-retest dataset which assessed the 

reproducibility of automated software within and across MRI scan sessions 

(Maclaren et al., 2014).  

 

Morey et al. (2009) found reasonably good correlations between regions traced by 

hand and derived using FreeSurfer in 20 healthy adult controls (i.e. r = 0.82 for the 

hippocampus, and r = 0.56 for the amygdala). Using manual methods and 

FreeSurfer to measure bilateral temporal lobe structures in individuals with 

Alzheimer’s disease, semantic dementia, and controls, Lehmann and coworkers 

(2010) reported strong correlations between the methods for many of the 

structures, and observed comparable volume differences in a patient/control 

comparison. In their test-retest analysis, Maclaren et al. (2014, pg. 4) reported that 
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FreeSurfer demonstrated “generally good segmentation accuracy.” FreeSurfer has 

been utilized in previous studies carried out by my research group (e.g. Webb et 

al., 2012; Ranpura et al., 2013; Kawadler et al., 2013), and I chose to use it for 

brain volume segmentation in the current study.  

 

MRI is also an option for obtaining detailed data on organs and tissues in the body, 

and I describe this further below.  

 

3.3.2.1 MRI of the body 

According to Heymsfield et al. (1997), Foster and colleagues’ (1984) 

demonstration that MRI could identify AT and SM in cadavers was the initial use 

of the technique in body composition research. This work was followed by a 

number of studies in the body composition literature (e.g. Hayes et al., 1988; 

Fowler et al., 1991; Ross et al., 1992). Compiled by Després et al. (1996), 

coefficients of variation for repeated measures of total body AT in earlier human 

MRI studies were 3.0 (Staten et al., 1989), 5.4 (Seidell et al., 1990), 2.5 (Ross et 

al., 1993) and 1.5 (Sohlström et al., 1993). The smaller values of 2.5 and 1.5 come 

from investigations where several image slices across the body were taken, rather 

than at one specific site (e.g. the umbilicus).  

 

Ross and colleagues further quantified AT and lean tissues using MRI in a 1994 

study. They described how the scan acquisition resulted in 41 images taken at 

50mm intervals across the body for each subject, from which total-body adipose 

and lean tissue values were calculated. This involved setting a threshold to identify 

adipose and lean tissues in image pixels; calculating areas for adipose and lean 

components (pixels corresponding to each tissue were summed and multiplied by 

their surface area); multiplying areas by the slice thickness to get volumes; and 

then calculating total volume for both tissue types using a mathematical equation 

(Ross et al., 1992, 1994). The group used the same methods in a later study to 

assess the influence of diet and exercise on AT and SM in men (Ross et al., 1996).  
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The above whole-body multi-slice protocol is regarded as the reference method 

for obtaining total body volumes of AT and SM in vivo (Heymsfield et al., 1997; 

Shen et al., 2004), and it has subsequently been used in a number of other studies 

(e.g. Janssen et al., 2000; Park et al., 2001; Song et al., 2004; Kuk et al., 2008; 

Gallagher et al., 1998). Once a tissue volume is derived at the whole-body level, it 

is possible to convert it to mass using assumed constant tissue densities (e.g. 1.04 

kg/l for SM and 0.92 kg/l for AT; Heymsfield et al., 1997). 

 

Similar steps can be carried out to segment body organs from MR images. In a 

multi-slice dataset for a single subject, ROIs can be drawn along the edge of the 

organ so that it is entirely encircled in each image in the series. The organ areas 

as identified in each image slice in the series are then summed and multiplied by 

the slice thickness to obtain volume, and converted to mass using known densities. 

Software packages are available which have been used by a number of 

researchers for this purpose (e.g. Gallagher et al., 1998; 2006; Anblagan et al., 

2013; Bosy-Westphal et al., 2013), however they may be expensive to purchase. 

Others have reported obtaining organ volumes from MR images with manual 

segmentation (e.g. Illner et al., 2000; Bosy-Westphal et al., 2004). This can be 

done using a free, downloadable image viewer, of which several are available. 

 

One such image viewer is OsiriX, which has been used in a number of studies 

since it was released in 2004 (Fortin and Battié, 2012; Salaffi et al., 2013; Ahedi et 

al., 2014; Knight et al., 2015; Kartalis et al., 2016). In a number of these, authors 

used the OsiriX workstation to measure body tissues including muscle and bone 

(e.g. Fortin and Battié, 2012; Salaffi et al., 2013; Ahedi et al., 2014). A recent 

evaluation of image processing software rated OsiriX highly amongst several 

open-source packages (Valeri et al., 2015).  

 

Considering the above, I chose to measure internal organs using MRI, and carry 

out post-processing to quantify volumes with OsiriX. I chose not to use MRI to 

quantify FM for three reasons. First, as described, a measure of AT, not fat, is 
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derived from imaging methods. Converting AT volume to FM requires assumptions 

regarding the density of AT and also its fat content (lipid fraction; Wells and 

Fewtrell, 2006), which are variable and difficult to estimate in vivo (Després et al., 

1996). Second, measures of body fat by MRI cannot account for lipid that is not 

present in AT (Després et al., 1996; Wells and Fewtrell, 2006).  

 

Third, measuring FM (and FFM) at the molecular level with a different technique 

than MRI would allow for independence among FM, FFM and brain/body organ 

outcomes, and therefore uncorrelated error. This similarly informed my decision 

for measuring SM, which, beyond CT and MRI, can also be obtained using DXA. 

DXA is technically an imaging method, however it is utilized extensively to 

construct 2C and multi-component models at the molecular level, so I describe it 

below rather than in the current section. I describe further in the section on DXA 

how I used it to derive SM mass in my sample, and the basis for this in the 

literature.  

 

3.4 Level II (molecular level) measurement outcomes 
and techniques 

I have described so far that I aim to obtain tibia length by anthropometry at Level 

V, and brain and body organ volumes by MRI at Level IV, the tissue-system level. 

As introduced in the first section of this chapter, 2C, 3C and 4C models of body 

composition assessment can be utilized at Level II, the molecular level, to model 

whole-body FM and FFM. Below, I initially overview how three different 

measurement techniques can be used to construct a 2C model. I then describe 

how these techniques can be used in conjunction and their data combined to 

construct 3C and 4C models.  

 

3.4.1 Two-component (2C) models 

Two-component models improve on Level V techniques such as BMI and 

anthropometry by measuring both FM and FFM, and avoiding the prediction of 
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these components from external measurements at one or a few sites on the body 

(Wells and Fewtrell, 2006). Molecular level 2C models are used extensively in body 

composition research (Heymsfield et al., 1996), however they do have limitations, 

which I discuss along with background to deuterium isotope dilution, DXA, and air-

displacement plethysmography in the next three sections. Here I note both the 

outcome and measurement technique in the section headings, and provide a short 

summary of the information given in a fourth section at the end.  

 

3.4.1.1 Total body water by deuterium isotope dilution 

Water is the main component of body mass in humans and is clearly delineated at 

the molecular level (Wang et al., 1999; Ellis, 2000). Based on its presence in non-

fat tissues, the measurement of total body water (TBW) allows for the quantification 

of FFM (Thomas et al., 1991), and FM can then be calculated if body weight is 

known (Wong, 2003). TBW techniques have been used to assess body 

composition in humans since the first half of the 20th century (Moore, 1946; 

Edelman et al., 1952). 

 

One technique for measuring TBW is based on the dilution in the body water pool 

of a biological tracer. Deuterium (2H), a stable isotope of hydrogen, can be used 

for this purpose (Schoeller, 1989; Moore, 1946). Discovered in 1931 by Urey, 2H 

was first reported in the literature as an experimental tag for water by Hevesy and 

Hofer (Pinson, 1952; Schoeller et al., 1980). 2H and the more common isotope of 

hydrogen (protium, 1H) differ by one neutron. Due to the higher mass of 2H, the 

isotopic ratio of deuterium:protium is quantifiable by mass spectrometry (Hachey 

et al., 1987).  

 

Deuterium oxide (2H 2O, or ‘heavy water’) is non-radioactive and non-toxic at tracer 

doses (Pinson, 1952; Thomas et al., 1991; Wong, 2003). Upon dose ingestion, 2H 

is exchangeable with 1H in the body, and, following the dilution principle, TBW is 

calculated as the amount of tracer added to the body water pool, divided by the 

tracer’s concentration in the pool after equilibration (Edelman et al., 1952; Wong, 
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2003). Samples of a body fluid (e.g. saliva) are typically collected for analysis (Ellis, 

2000). 

 

TBW quantification in humans is subject to both biological variability and 

measurement error (Siri, 1961; Coward et al., 1988). Two main assumptions of this 

method are 1) that 2H exchanges only with 1H in the body water compartment (i.e. 

no non-aqueous exchange of hydrogen occurs; and 2) neither 2H nor body water 

is metabolized during the equilibration period (Ellis, 2000).  

 

Regarding the first assumption, at least 95% of the body’s exchangeable hydrogen 

is in water; however, ingested 2H2O molecules may mix to some degree with 

hydrogen in protein, fat and carbohydrate (Moore, 1946; Culebras and Moore, 

1977). The exchange of 2H with non-aqueous organic solids has been investigated 

by several authors (e.g. Krogh and Ussing, 1936; Pinson, 1952; Culebras and 

Moore, 1977). The potential overestimation of TBW (~4%; Schoeller et al., 1980) 

necessitates a correction when calculating final body composition values (Racette 

et al., 1994), as described below.  

 

With regard to the second assumption, Edelman and colleagues (1952) have 

suggested that water turnover during equilibration is minimal. For example, urine 

secretion in this period may account for less than 0.5% of TBW (Edelman et al., 

1952). According to Wong (2003), the assumption that TBW remains at constant 

volume throughout equilibration is appropriate for healthy adults, with only minor 

tracer loss over a 4-hour equilibration period.  

 

The following equation is used to calculate the dilution space (Halliday and Miller, 

1977): 

 

(3-1)  𝑁 = #$
%
∗ '()'*
'+)',
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where  

 

N= dilution space (ml) 

a= portion of dose diluted (g) 

T= tap water in which the dose portion was diluted (g) 

A= dose given to subject (g) 

E= isotopic enrichment in delta units relative to Vienna Standard Mean Ocean 

Water (VSMOW) standard   

 Ed= enrichment of diluted dose  

 Et= enrichment of tap water used as diluent  

 Es= enrichment of the post-dose sample  

 Ep= enrichment of the pre-dose sample  

 

A correction is then applied to account for the non-aqueous exchange of hydrogen 

(Racette et al., 1994), giving TBW: 

 

(3-2)  𝑇𝐵𝑊 = 𝑁/1.044 

 

Subjects’ reported fluid intake during the equilibration period is subtracted from 

calculated TBW values to correct for the addition of fluid to the body water pool, 

which could lead to an overestimation of TBW. These values are then divided by 

0.99337 to convert TBW in kg to liters. Assuming a hydration fraction of 73% (Pace 

and Rathbun, 1945; Fuller et al., 1992; Wang et al., 1999), FFM is calculated thus:  

 

(3-3)  𝐹𝐹𝑀 = 𝑇𝐵𝑊/0.73 

 

and FFM is subtracted from total weight to get FM, giving a 2C model. This model 

assumes a constant density of FFM (Wells et al., 1999; Ellis, 2000).  

 

The dilution method has been reported to measure TBW with good precision and 

accuracy (1-2%; Wang et al., 1999). In a study by Fuller et al. (1992) the method’s 
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propagation of error in estimating FM was only ±0.62kg. However, error in TBW-

derived estimates of FFM (the larger body compartment, relative to FM) may 

translate to a larger error for calculated FM (Withers et al., 1999). In addition, the 

hydration and density of FFM varies between individuals (Wells et al., 1999) and 

may vary with increasing age. Relatively little is known about how these properties 

vary by ethnicity, as most research on FFM hydration and density has been done 

in non-human animals and populations of European ethnicity (Wang et al., 1999). 

 

Deurenberg-Yap and coworkers (2001) assessed 2C model outcomes, with a 

specific focus on %fat, against a criterion 4C model in three ethnic groups from 

Singapore. At a group level, comparisons of isotope dilution with the 4C model 

revealed relatively small differences in %fat (0.0-1.4 %), in comparison with the 

other 2C models. These data suggest the potential suitability of a 2C model by 
2H2O dilution at the group level. However, the authors concluded significant error 

and the violation of assumptions of FFM properties rendered 2C models 

unadvisable for assessing body composition among these ethnic groups at the 

individual level (Deurenberg-Yap et al., 2001).  

 

3.4.1.2 Bone mineral content by dual-energy X-ray 
absorptiometry 

DXA scanning estimates bone mineral content (BMC) and soft tissue via the 

differential attenuation of two distinct energy beams by a subject’s body (Laskey, 

1996; Heymsfield et al., 1997; Wells and Fewtrell, 2006). The method was 

originally developed to measure bone mineral, for which its precision has been 

reported at ~1% (Mazess et al., 1990; Roubenoff et al., 1993; Laskey, 1996).  

 

As it accounts for soft tissue overlying bone, DXA can also quantify FM and FFM 

to obtain a 2C model (Roubenoff et al., 1993; Laskey, 1996; Heymsfield et al., 

1997). The two energy beams measure only two tissue types in each image pixel: 

either bone and soft tissue, or FM and FFM (minus mineral) in pixels without bone 

(Pietrobelli et al., 1996; Heymsfield et al., 1997). For the roughly 1/3 of pixels 



 107 

containing bone, FM and FFM are estimated from non-bone pixels in the same 

region (Laskey, 1996; Ellis, 2000). Bone and soft tissue components are identified 

across image pixels by DXA system algorithms (Pietrobelli et al., 1996).  

 

The ease with which a 2C body composition model can be derived, along with data 

on tissue distribution, is advantageous and a strong motivation for using DXA in 

research and clinical practice (if one has access to a scanner). Other advantages 

include a short scan time (5-10 minutes) and very low radiation exposure 

compared to imaging methods like CT (Laskey, 1996).  

 

A number of studies have utilized DXA to assess body composition (Lohman et 

al., 2000), however several point to the potential error resulting from incorrect 

assumptions of FFM density and hydration in DXA estimations of soft tissue 

(Roubenoff et al., 1993; Laskey, 1996; Clasey et al., 1999). Others have argued 

that such error occurs, but is very small (Pietrobelli et al.,1998; Testolin et al., 2000; 

Lohman et al., 2000).  

 

In Deurenberg-Yap et al.’s (2001) test of 2C models against the 4C model, the 

authors argued that variation in model outcomes resulted from the use of assumed 

values of FFM properties that were not valid in their study populations. Specifically, 

they found that DXA underestimated %fat across groups of Singaporean Chinese, 

Malays and Indians; error was in the range of 2.1-4.2 %fat, compared to the 4C 

model (Deurenberg-Yap et al., 2001). 

 

Williams and colleagues (2006) evaluated DXA against the 4C model in patients 

and healthy controls, finding a variable degree of bias in body composition 

associated with age, sex, disease state and body size. Error might be introduced 

in DXA estimations of FM and FFM due to variability in tissue thickness across the 

body, or between individuals (Roubenoff et al., 1993; Williams et al., 2006). For 

example, bias has been positively associated with tissue depth (Laskey, 1996; 

Mitchell et al., 2000). In a study by Van der Ploeg et al. (2003), variation in 
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anteroposterior tissue thickness may have accounted for DXA’s underestimation 

of fat, particularly for lean subjects, relative to the 4C model. 

 

Overall, research suggests that DXA whole-body soft tissue outcomes should be 

interpreted with caution (Roubenoff et al., 1993; Deurenberg-Yap et al., 2001; Van 

der Ploeg et al., 2003; Williams et al., 2006; Wells and Fewtrell, 2006). Beyond its 

utility for accurately estimating BMC, DXA may be best utilized to asses regional 

FM and FFM, particularly in the limbs; determining trunk composition requires a 

higher degree of prediction due to the amount and distribution of bone in the truncal 

region (Wells and Fewtrell, 2006).  

 

DXA therefore offers an option for measuring lean tissue in the limbs, and using 

this as a measure of whole-body SM mass. Following Kim et al. (2002), the sum 

of DXA’s estimates of lean tissue in both the arms and legs can be referred to as 

appendicular lean soft tissue (ALST), which comprises skeletal muscle, skin, and 

connective tissues, but not fat and bone mineral (Kim et al., 2002). SM represents 

the largest FFM component in the adult body, and approximately 73-75% of its 

mass is found in the appendages (Heymsfield et al., 1990; Wang et al., 1996; Fuller 

et al., 1999; Kim et al., 2002). In turn, the largest component of ALST is SM (Figure 

3-4), so that measuring ALST by DXA is a useful and more practical option for 

quantifying SM than either CT or MRI. From here, I use ALST and SM 

synonymously.  

 

In an early assessment of the use of DXA for quantifying SM, Heymsfield and 

coworkers (1990) found DXA’s estimates were highly correlated with those 

achieved using both simpler and more complex techniques. DXA only slightly 

overestimated SM compared to CT estimates in a later study, so that Wang et al. 

(1996) recommended its use as a practical alternative method for SM 

quantification in vivo. Indeed, DXA has subsequently been utilized by many 

researchers for this purpose (e.g. Gallagher et al., 1997; Starling et al., 1999; Kyle, 

et al., 2001; Iannuzzi-Sucich et al., 2002; Szulc et al., 2004; Moon et al., 2014).  
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Figure 3-4 Appendicular skeletal muscle as a component of 
appendicular lean soft tissue and total body SM. 
From Kim et al., 2002. 
 

 

In their 2002 paper, Kim and colleagues assessed DXA-derived ALST against 

whole-body SM derived from MRI. For the latter, they utilized the reference whole-

body multi-slice method I described above in Section 3.3.2.1. As shown in Figure 

3-5 below, they found a close correlation between the outcomes. 

 

Based on the recognized proportion of appendicular SM to total SM (as noted 

above, ~73-75%), some authors have obtained ALST from DXA and divided the 

value by 0.75 to achieve total SM (e.g. Wang et al., 1996; Iannuzzi-Sucich et al., 

2002). Others have utilized ALST as SM without the additional calculation (e.g. 

Gallagher et al., 1997; Illner et al., 2000; Kyle et al., 2001; Kim et al., 2002; Szulc 

et al., 2004). I took the latter approach in my study to avoid making the assumption 

that appendicular SM represents 75% of whole-body SM in my sample. Deriving 

my SM measure from DXA’s ALST estimate is advantageous as it means that SM 

will be independent of FM, FFM, brain and body organ outcomes.  
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Figure 3-5 Total-body skeletal muscle estimated by MRI against 
appendicular lean soft tissue measured by DXA.  
Women are open circles, men are shaded circles, r2 = 0.96; from Kim et al., 2002. 
 

 

Below, I return to the topic of the 2C model and explore how a third measurement 

technique, air-displacement plethysmography, can be used for this purpose.  

 

3.4.1.3 Body volume by air-displacement plethysmography 

Air-displacement plethysmography (ADP) is a densitometric technique, one of the 

oldest and most frequently used methods for generating 2C body composition 

models (Behnke et al., 1942; Keys and Brozek, 1953; Siri, 1961; Brozek et al., 

1963; Heymsfield et al., 1997). ADP has largely superseded the classic technique 

of underwater weighing, pioneered by Behnke and colleagues (1942), which 

measures body volume via submersion in and displacement of water by the body 

(Ellis, 2000). ADP instead derives body density by quantifying the volume of air 

displaced by an individual within a closed chamber (Figure 3-6). This is often 
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undertaken using instrumentation known as the BodPod (Dempster and Aitkins, 

1995; McCrory et al., 1995; Wells and Fuller, 2001; Fields et al., 2002). 

 

 

Figure 3-6 General components of an ADP system.  
Image from Ellis, 2000, originally adapted from Dempster and Aitkens, 1995. 
 

 

The BodPod system’s front measurement chamber, where the subject sits, is 

separated from a rear reference chamber by an oscillating diaphragm that induces 

subtle changes in pressure (Ellis, 2000). The principle of an inverse relationship 

between pressure and volume at a constant temperature – Boyle’s Law – is used 

to determine the subject’s body volume (Ellis, 2000; Fields et al., 2002). Raw body 

volume (RBV) is corrected for thoracic gas volume (TGV) and surface area artefact 

(SAA; warmer, more compressible air close to the surface of the skin) to derive 

actual body volume (ABV). As outlined in Dewit et al. (2000), TGV is predicted from 

tidal volume (TV) and functional residual capacity (FRC):  

 

(3-4)  𝑇𝐺𝑉 = 𝐹𝑅𝐶 + 0.5𝑇𝑉 
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The sex-specific equations of Crapo et al. (1982) predict FRC, whilst TV is an 

assumed constant which also differs for males and females. A study by Demerath 

and colleagues (2002) indicated that using predicted TGV, rather than directly 

measuring this outcome during ADP assessment, did not have a significant effect 

on estimations of FM in adults.  

 

Surface area (SA) is calculated using the equation of Du Bois and Du Bois (1916). 

SA is multiplied by a constant provided by the manufacturer to obtain SAA (Dewit 

et al., 2000). The following equation yields ABV:  

 

(3-5)  𝐴𝐵𝑉 = 𝑅𝐵𝑉 + 0.4𝑇𝐺𝑉 − 𝑆𝐴𝐴 
 

To construct a 2C model, whole-body density is calculated as the mass of the 

subject divided by ABV, and assumed fixed densities of FM and FFM are used to 

estimate the FM:FFM ratio (Wells and Fewtrell, 2006).  

 

Specifically, following Siri (1961), %fat is calculated as shown below:  

 

(3-6)  %𝑓𝑎𝑡 = 	 G
()H

 

 

where d is body density, and x and y are empirical constants derived using density 

values of 0.9 kg/l for FM, and 1.1 kg/l for FFM (Siri, 1961). Percentage fat and body 

weight outcomes can be used to obtain values for FM and FFM (Dewit et al., 2000; 

Wells and Fuller, 2001). 

 

Assuming a density of 0.9 kg/l for FM has been deemed appropriate based on 

several studies (Fidanza et al., 1953; Keys and Brozek, 1953; Siri, 1961). 

Research has validated ADP using the BodPod in adults and children (McCrory et 

al., 1995; Demerath et al., 2002; Fields et al., 2002) over a range of body size 

(Wells and Fuller, 2001) with generally good precision, although some studies 
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have reported underestimations (Wagner et al., 2000) and overestimations (Collins 

et al., 1999) of body density.  

 

However, as described in the preceding sections regarding TBW and DXA 2C 

models, the assumption of constant FFM properties remains a major limitation of 

the densitometric 2C model (Siri, 1961; Ellis, 2000; Fields et al., 2002; Wells and 

Fewtrell, 2006). An individual’s FM or FFM may be estimated incorrectly if variable 

proportions of water, mineral or protein result in a value for FFM density that differs 

from 1.1 kg/l. For example, evidence has suggested black individuals have a 

higher FFM density than whites, which could result in spurious estimates of FFM 

if an equation based on density measured in the latter group is used for the former 

group (Schutte et al., 1984; Wagner and Heyward, 2000). As yet unpublished data 

from my research group suggests that the density of FFM differs between 

Europeans and South Asians, as well.  

 

In a study comparing ADP’s 2C model estimate of FM with the 4C model in women, 

Fields and colleagues (2001) found that the BodPod under-predicted %fat. With 

additional measurements, they concluded this was related to incorrect estimation 

of the FFM hydration fraction. The authors suggested the use of ADP data in the 

4C rather than 2C model, when possible (Fields et al., 2001).  

 

3.4.1.4 2C model summary 

As noted above, human body composition differs in association with various 

characteristics including age, body size, sex, ethnic background and disease state. 

In particular, these characteristics have been associated with variability in the FFM 

component of body composition, whilst FM is relatively homogeneous at the 

molecular level. Assuming relative homogeneity of FFM – namely, the constancy 

of water, protein and bone mineral across populations and subject characteristics 

– can lead to error in estimating body composition using a 2C model (Wells et al., 

1999; Withers et al., 1999). In my study recruitment, I aimed to control for many of 
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the characteristics listed above – e.g. age, sex, ethnicity and health – however 

variability in FFM properties would still be expected among individuals.  

 

Indeed, it has been suggested that 2C model error is largely due to the violation of 

biological assumptions, rather than a result of technical inaccuracy associated with 

DXA, ADP and isotope dilution measurements (Withers et al., 1999). Data should 

be combined from two or more of these techniques in a multi-component model, if 

feasible, to reduce reliance on assumptions and estimate FM and FFM more 

accurately (Jebb et al., 1993; Jebb and Elia, 1993; Withers et al., 1999; Norgan, 

2005; Wells and Fewtrell, 2006). Considering the limitations of the 2C model, and 

following these authors, I did not utilize a 2C approach in my study.  

 

Below, I describe the 3C and 4C multi-component models. Figure 3-7 visualizes 

the additional properties that these models assess, in relation to the 2C model.  

 

 
 

Figure 3-7 2C, 3C and 4C body composition models. 
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3.4.2 Multi-component models 

The 3C model is a multi-component model that incorporates data on body volume 

and body water, often obtained via ADP and isotope dilution, respectively. With the 

further addition of body weight, the 3C model divides the body into FM, water, and 

fat-free dry matter, where the latter includes protein and mineral (Figure 3-7; Siri, 

1961; Fuller, et al., 1992). The water content of FFM is not assumed in this model, 

and the derivation of FFM hydration and density values is possible. However, a 

constant, whole-body ratio of protein to mineral in fat-free dry matter is assumed 

(Fuller et al., 1992; Wells et al., 1999; Ellis, 2000), so that protein and mineral are 

considered together (protein+mineral). 

 

Following Fuller et al. (1992), the density of protein+mineral and fat (Dpm + f) in kg/l 

is calculated thus:  

 

(3-7)  𝐷,J + 𝑓 =	K*)#LKM
LN)#LKO

 

 

Wt is body weight in kg, TBWm is total body water mass in kg, BV is body volume 

in liters, and TBWv is total body water volume in liters. FM is obtained from the 

following calculation (Fuller et al., 1992):  

 

(3-8)  𝐹𝑀 = PQR.RSTT
UVMWX

Y − 1.4646[ ∗ (𝑊𝑡 − 𝑇𝐵𝑊J) 

 

where 2.2199 and 1.4646 are constants derived from assumed density values of 

fat, water (at 36°C) and protein+mineral (Fuller et al., 1992).  

 

With the 4C model, the assumed constant ratio of protein:mineral in fat-free dry 

matter is avoided with the addition of BMC data from DXA. This allows for the 

division of the body into four components: fat, water, protein and mineral (Figure 

3-7; Heymsfield et al., 1996, 1997; Fuller et al., 1992; Wells et al., 1999; Ellis, 



 116 

2000), and may improve accuracy over the 3C model. Like the 3C model, the 

hydration and density of FFM can be estimated. A remaining assumption of the 4C 

model is that the ratio of bone mineral:total body mineral demonstrates a constant 

relationship (Fuller et al., 1992; Wells et al., 1999).  

 

The calculations are similar to those above (Fuller et al., 1992). First, one 

calculates the density of protein and fat (Dp + f) in kg/l:  

 

(3-9)  𝐷,^_	 =
K*)	#LKM)#L``
LN)#LKO)#L`N

 

 

Here again, Wt is body weight in kg, TBWm is total body water mass in kg, BV is 

body volume in liters, and TBWv is total body water volume in liters. The added 

outcomes are total body mineral mass (TBMM) in kg, and total body mineral 

volume (TBMV) in liters. TBMM is equal to BMC measured by DXA, multiplied by 

the value 1.2741 (Brozek et al., 1963). TBMV is obtained from the calculation BMC 

x 0.4195 (Fuller et al., 1992). FM is then calculated with the following equation:  

 

(3-10)  𝐹𝑀 = PQR.abab
UVWX

Y − 2.0503[ ∗ (𝑊𝑡 − 𝑇𝐵𝑊J − 𝑇𝐵𝑀𝑀) 

 

where, similar to the 3C model, 2.7474 and 2.0503 are values derived from the 

assumed densities of the four components (Fuller et al., 1992; Wells et al., 1999). 

FFM can be calculated with the following:  

 

(3-11)  𝐹𝐹𝑀 = 𝑊𝑡 − 𝐹𝑀 
 

Although it is not entirely free of assumptions, the 4C model is considered the gold-

standard in vivo body composition technique: by combining several 

measurements, it minimizes assumptions to the extent currently possible. With the 

4C model, researchers can accurately measure body composition and also 
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evaluate the validity of simpler methods, which obviates the need to rely on 

relatively impractical chemical cadaver analyses (Heymsfield et al., 1997; Wells 

and Fewtrell, 2006). An additional question, though, is relevant to the multi-

component model’s use of several measurements; namely, whether errors 

associated with the individual measures are propagated and ultimately result in 

larger error for final outcomes (Fuller et al., 1992; Withers et al., 1999).  

 

According to a review of models by Withers and coworkers (1999), 3C and 4C 

models offer increased accuracy that is not attenuated by propagated error. 

Likewise, Fuller and colleagues (1992) found no evidence that individual 

measurement errors were additive. Estimation with the 4C model of both FM and 

FFM produced in their sample an overall error of ~1% body weight, which is lower 

than the error associated with body composition outcomes derived using a single 

technique. Error propagation for the estimation of FM was ±0.54 kg and ±0.49 kg 

with 4C and 3C models, respectively (Fuller et al., 1992). In a study comparing 2C 

and multi-component models, Wells et al. (1999) reported similar propagation of 

error to the study of Fuller et al. (1992), with a precision of ±0.5 kg for FM and FFM 

from 3C and 4C models.  

 

An evaluation of various body composition models in African American and white 

children found that 4C models demonstrated the greatest degree of reliability, 

relative to 3C models and simpler methods (Bray et al., 2002). More recently, the 

4C model was used to validate field and 2C techniques, including ADP and DXA, 

in a cohort of Indian adults (Kuriyan et al., 2014). Numerous others have utilized 

the 4C model to assess body composition or serve as a criterion method (e.g. 

Gallagher et al., 1996; Williams et al., 2006; Chomtho et al., 2008; Deurenberg-

Yap et al., 2001; Pourhassan et al., 2013; Wells et al., 2015).  

 

As I had access to isotope dilution, DXA and ADP techniques, I was able to utilize 

the gold-standard 4C model to predict FM and FFM in my sample. In the next 
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section I describe the method I used to measure REE, after which I give a summary 

table of my study outcomes and methods. 

 

3.5 Resting energy expenditure by indirect calorimetry 
The quantification of REE by indirect calorimetry (IC) will allow me to test my first 

hypothesis, that organs and tissues demonstrate differential metabolic cost, as 

measured in kcal/kg/day (see Chapter 2). I first described REE in Chapter 1. This 

outcome constitutes the number of kilocalories used daily by the body for functions 

including respiration, circulation and cellular homeostasis. It is the main component 

of TEE, and it is measured at rest in a post-absorptive state (Gannon et al., 2000; 

Wang et al., 2001; Mittelsteadt et al., 2013).  

 

TEE reflects the total heat energy used by the body to carry out all functions over 

a 24-hour period (Haugen et al., 2007). There is some variation in the literature 

regarding what proportion of TEE is accounted for by REE. Estimates range from 

60-90% (Bogardus et al., 1986; Owen, 1988; McClave and Snider, 1992; 

Matarese, 1997; Case et al., 1997; Gannon et al., 2000; Ruggiero et al., 2008; 

Gurven et al., 2016), which may be due to differences in the way authors define 

REE. The remaining proportion of TEE is attributed to thermogenesis, physical 

activity, anabolism (growth) and the thermic effect of food (Wang et al., 2001).  

 

The assessment of heat loss in animals through direct measurement dates to 

Lavoisier and Laplace at the end of the 18th century, and IC has been used to 

measure energy expenditure in humans for about a century (Passmore and 

Durnin, 1955; Jéquier et al., 1987; Henry, 2005). Where direct calorimetry 

measures heat lost from the body, IC estimates heat loss as a function of the 

oxidative process (Jéquier et al., 1987). Specifically, an indirect calorimeter 

measures oxygen consumption and the production of carbon dioxide; with these 

data, established equations are used to calculate REE (see Weir, 1949; McClave 

and Snider, 1992; Matarese, 1997; Case et al., 1997). Although the full equation 

technically takes into account urinary nitrogen production, Weir (1949) argued that 
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error introduced by failing to correct for this was negligible (1% for each ~12% 

calories from protein), and would likely cancel out as, broadly, humans appear to 

consume similar amounts of dietary protein.  

 

The relative availability and ease of use of IC equipment renders this method, 

compared with direct calorimetry, more feasible for research studies and clinical 

assessment (Lam and Ravussin, 2017). Before its production ceased, the 

Deltatrac II metabolic monitor was validated and widely used for measuring REE 

in adults and children, and utilized as the standard for validation studies of new 

equipment (Phang et al., 1990; Weissman et al., 1990; Bauer et al., 2001; 

Littlewood et al., 2002; Alam et al., 2005). I had access to a Deltatrac II system, 

and therefore used it to measure REE in my study participants.  

 

REE has demonstrated intra-individual variation in healthy volunteers undergoing 

repeated measurements, both over several months and with hourly-repeated tests 

on consecutive days (McClave and Snider, 1992). This indicates that a one-time 

measurement may not offer the most accurate estimate of an individual’s REE. 

Nevertheless, a single measurement is preferable to the estimation of REE using 

predictive equations. These have demonstrated variable efficacy in different ethnic 

groups, and may only be appropriate when used in the population from which they 

were derived (Case et al., 1997; Wang et al., 2001).  

 

Following IC measurements, REE was calculated with the equation of Weir (1949): 

 

(3-12)  (3.941 ∗ 𝑉0R	) + (1.106 ∗ 𝑉𝐶0R) 
 

The table given below (Table 3.1) summarizes the techniques I selected to obtain 

data of the highest possible quality in my sample. I list the instruments used, which 

will be described along with more practical aspects of data collection in Chapter 4. 
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As described in the current chapter, I largely discarded techniques at Wang et al.’s 

(1992) whole-body level, which offer limited detail and accuracy, in favor of more 

difficult to acquire, more accurate methods such as MRI and the 4C model. 

Table 3.1 Summary of measurement outcomes and techniques  

Method Instrument Outcome(s) 

Anthropometry Stadiometer, calipers Height, tibia length 

MRI MRI scanner Brain and organ volumes 

4C model    

      Air-displacement      
      plethysmography BodPod, scale Body volume*, weight* 

      Dual-energy X-ray  
      absorptiometry DXA scanner 

Bone mineral content*, 
appendicular skeletal 
muscle mass 

      Deuterium isotope  
      dilution 

2H2O dose and saliva 
samples Total body water* 

Indirect calorimetry 
Deltatrac II indirect 
calorimeter 

Resting energy 
expenditure 

*combined in 4C model to derive FM and FFM 
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4 Recruitment, ethics and methodology 
 

In the previous chapter I described how I selected methods for data collection out 

of several available. This chapter provides details on the practical aspects of data 

collection using the chosen methods. I also describe recruitment, ethical 

considerations, methods of data post-processing and statistical analysis, and 

consideration of potential confounders.  

 

4.1 Criteria of inclusion/exclusion 
For the current study I sought participants who demonstrated the following 

characteristics:  

 

• Aged 20-28 years 

• Of South Asian ancestry  

• Female 

• Nulliparous 

• BMI in the range 17-28 kg/m2 

• Generally healthy, non-smoking  

• Born at term (≥37 weeks gestation) 

 

I excluded potential participants if they reported:  

 

• Having any condition likely to affect growth and/or metabolism 

• Taking medications with the potential to affect metabolism  

• Weight change greater than 3kg in the past three months 

• Contraindications for MRI scanning, including pacemakers or other 

metallic implants, or severe claustrophobia  

 

The relatively narrow age range of 20-28 was chosen to limit variability in body 

composition brought about by pubertal growth and later changes associated with 
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aging. The decision was made to recruit a single sex, rather than split the sample 

size between males and females. I chose females, as they engender a particular 

anthropological interest as the physical and metabolic niche of subsequent 

generations. However, I sought to include in the present cohort only women who 

were currently nulliparous. This was to avoid potential confounding by body 

composition variability associated with differential parity.  

 

Only women who had been born at term were recruited to control for the possibility 

that any observed tissue trade-offs would have developed specifically in 

association with pre-term birth. The BMI range was set so as not to include very 

underweight or obese women, as the aim of the study was to assess relationships 

among body components across a normative range of body size and composition. 

In general, Asian populations demonstrate lower mean or median BMI compared 

to non-Asian populations (Lancet, 2004). Because the BMI distribution is shifted to 

the left for Asians, obesity-related health risks may occur below a BMI of 30 kg/m2 

(Lancet, 2004; Unni et al., 2009), thus our upper BMI cutoff was set at 28 kg/m2. 

The exclusion criterion related to recent weight change aimed to avoid potential 

confounding by fluctuating body composition, particularly FM.   

 

The decision to recruit South Asian women was discussed in Chapter 1. Additional 

motivations were: 1) research studies in non-European/North American 

populations remain relatively rare, and 2) of the UK population identifying as non-

white, South Asians make up a relatively large proportion, with many residing in 

London (Office for National Statistics, 2012). The latter point was considered to 

increase the feasibility of successful recruitment and the likelihood of achieving the 

target sample size, as the study was carried out in London, UK (see below).  

 

I specifically aimed to recruit women with Indian, Pakistani, Bangladeshi and Sri 

Lankan ancestry. Nepal was excluded in an attempt to avoid recruiting subjects 

who may have lived at and adapted to a high-altitude environment. The 
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geographical location of the target countries on the Indian subcontinent is shown 

in Figure 4-1.  

 

 

Figure 4-1 Map of the Indian subcontinent, highlighting India, 
Pakistan, Bangladesh and Sri Lanka. 
 

 

Ancestry was ascertained by subject self-identification, confirmed by the subject’s 

four grandparents also being Indian, Pakistani, Bangladeshi or Sri Lankan. It was 

not a requirement that subjects themselves were born in one of the four target 

countries. Further information on the ethnic background and birthplace of 

participants in the final sample is given in Chapter 5, Section 5.1. 
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4.2 Sample size calculation 
Considering limitations of time and funding to cover costly measurement 

techniques such as MRI scanning, a sample size of 70 was originally conceived 

for its feasibility. A power analysis showed that this sample size would yield 80% 

power to detect a correlation of 0.33 and explain 10% of the variance in the 

outcome at a significance level of 0.05. This r value is suggested to represent a 

medium effect size (Cohen, 1992).  

 

4.3 Study site and recruitment procedures 
The study was carried out in London, UK, with all data collection procedures 

performed at the UCL Great Ormond Street Institute of Child Health (GOSICH) and 

Great Ormond Street Hospital for Children NHS Foundation Trust (GOSH). 

Recruitment was carried out in London, mainly within and around UCL, although 

study details were also circulated at the University of Cambridge.  

 

Methods of recruitment included hanging posters in buildings at UCL and 

surrounding universities (e.g. the London School of Hygiene and Tropical 

Medicine, SOAS), and circulating study details via email, for example to staff and 

students of GOSICH and UCL societies (e.g. the Indian Society, the Hindu 

Society). The study was also advertised in an online student newsletter at the 

London School of Economics, and on more than one occasion in the weekly 

student newsletter of the UCL Union. Word-of-mouth proved to be an important 

tool through the assistance of colleagues, friends and already-recruited 

participants. Two subjects were recruited from Cambridge after a University of 

Cambridge student shared details of the study within her college, and a GOSICH 

colleague invited me to attend a Sikh Gurdwara (temple) in London to connect with 

potential participants. The poster mentioned above, and additional recruitment 

materials described below are included in the Appendix.  
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My contact details were included on posters and in online advertisements about 

the study, and most often, potential participants would send an email or text 

message expressing their interest in joining. In response, I would send the 

individual a copy of the study information sheet, and ask them to contact me again 

to set up a phone interview if they remained interested after reading a more 

detailed description of the study. In the phone interview, I asked for the individual’s 

age, information about the ancestry and birthplace of their parents and 

grandparents, whether or not they were or ever had been pregnant, and whether 

they had any medical conditions or took any medications. I asked if they knew their 

birth weight and gestational age, or if they believed they could obtain this 

information from a parent or relative. 

 

I asked about smoking; as detailed above, we sought to recruit only non-smokers. 

I also asked about alcohol use, as we wanted to avoid recruiting subjects who 

appeared to drink excessively, however all individuals reported moderate or no 

drinking. I explained the MRI process for those who had not been scanned 

previously, and discussed the potential for claustrophobia and other 

contraindications for scanning. Individuals were asked whether they had gained or 

lost more than 3kg in the previous 3 months, and if they knew or could estimate 

with confidence their height and current weight. Height and weight were used to 

calculate BMI and screen out individuals above or below the specified BMI range.  

 

4.4 Ethical considerations 

4.4.1 Informing subjects and getting consent 

Potential participants were informed of why the study was being done, why they 

were being asked to participate, and what each aspect of the data collection would 

entail for them personally. All were assessed regarding their suitability and safety 

for MRI scanning, both before an appointment for data collection was booked, and 

again immediately prior to scanning. We requested participant GP details prior to 

scanning per standard protocol. It was communicated to all subjects that incidental 
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MRI findings are rare, but in the case of such findings their GP would be notified 

in the first instance.  

 

Each participant was given as much time as they wished to ask any questions 

before deciding whether they wanted to participate in the study, and advised that 

they were free to ask questions or voice any concerns at any point after joining. 

Consent was taken in writing before any measurements were done. Subjects were 

informed that they were free to withdraw from the study at any point without 

needing to give a reason. They were given at the end of the study information 

sheet details to contact the UCL office for Research Incidents and Complaints, or 

GOSH’s Patient Advice and Liaison Service, in the event they wished to make a 

comment or complaint.  

 

4.4.2 Potential risks and burdens and how I sought to 
minimize them 

All measurements were harmless and non-invasive, and used in many prior 

studies of both adults and children.  

 

I made it clear to all participants that taking part in the study was not a clinical 

assessment, and that it was important they consult their GP if they had any specific 

health concerns. 

 

The REE measurement by IC was done following an overnight fast, as per 

protocol. I conveyed this information to potential participants before booking them 

in for an appointment, in case they would not wish to fast. I scheduled visits to 

GOSICH/GOSH so that the REE measure could be performed in the morning, and 

afterwards I provided subjects with a light breakfast before further measurements 

were carried out.  

 

The DXA scan exposes subjects to a very small amount of ionizing radiation. This 

exposure is at maximum 2 microSv, which is well below daily background radiation 
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in the UK (approximately 7 microSv, depending on location), or that experienced 

during a trans-Atlantic flight (Williams et al., 2006). However, pregnancy is a 

contraindication for DXA. Potential subjects were asked in the recruitment 

interview if they were pregnant, and an item on the consent form asked whether 

the subject was, or potentially could be, pregnant. They signed the consent form 

just prior to scanning. 

 

Individuals who suffer from claustrophobia may experience distress during MRI 

scanning, or during the BodPod measurement, as both techniques require 

participants to enter a narrow, confined space. Potential subjects were asked 

about their susceptibility to claustrophobia during recruitment, as noted above, with 

the conditions of the MRI and BodPod measurements described to them in full.  

 

Incidental findings of pathology on the MRI scan had the potential to cause 

distress, although, as subjects were informed prior to the measurement, such 

findings are rare. An MRI scan may also present risk of heating of the skin or 

discomfort due to persistent loud noise during image acquisition. The risk is always 

present of accidental injury if metallic objects, either internal or external to the 

subject, are brought in contact with the scanner’s strong magnetic field.  

 

Injury due to the movement of metallic objects in or around the body was very 

unlikely to occur: individuals were carefully checked before entering the scanner 

room, and MRI-safe equipment was used. Heating of the skin was avoided with 

appropriate precautions taken by the radiographers, including proper placement of 

the participant on the scanner table. Ear protection was provided to avoid 

uncomfortable effects of noise. Throughout each scan, radiographers remained in 

direct contact with the subject, and were able to stop scanning immediately if the 

subject signaled distress or discomfort.  
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4.4.3 Data anonymization and security 

Each participant was given a study identification number following recruitment, and 

this number was used on all forms throughout the data collection process to 

maintain confidentiality. Paper data forms and MRI scans, which were collected 

from radiology on DVDs, were stored in a locked filing cabinet in a locked office on 

a floor with keycard access.  

 

The document that linked ID codes to participants’ full names was the consent 

form. These were stored on the same keycard-protected floor in a separate, locked 

cabinet. All electronic data (containing ID code only) were stored and analyzed on 

a password-protected computer. MR image data were transferred to a password-

protected, encrypted hard drive for analysis.  

 

Saliva samples were stored in a GOSICH laboratory, on a floor with keycard 

access. Samples were marked by date of collection and subject ID code. All 

samples will be destroyed upon completion of the project in accordance with the 

Human Tissue Act Code of Practice on Disposal.  

 

4.4.4 Ethical approval  

Ethical approval for the study was granted by a NHS Research Ethics Committee 

of the Health Research Authority on 15 October 2014 (REC reference: 

14/LO/1684; IRAS project ID: 151208). I was issued an amended letter on 7 

November 2014 to include the version number and date of the project protocol, 

which was missing from the original favorable opinion letter. 

 

The study was granted approval by the Joint Research and Development Office of 

GOSICH and GOSH on 21 November 2014 (R&D reference: 14NT03). Completed 

risk assessments for the study were approved by the Head of Laboratory 

Management and Safety at GOSICH on 24 December 2014.  
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4.5 Methods of measurement 
Following the recruitment interview, eligible individuals who still wished to join the 

study were booked in for a data collection appointment at GOSICH/GOSH. I 

arranged this, and booked scans in advance for DXA and MRI with GOSH 

radiology. Subjects visited on one occasion, or on two separate days which, in the 

majority of cases, occurred within a fortnight of one another. All participants initially 

reported to GOSICH, where I met them and took their written, informed consent to 

join the study (a copy of the consent form is included in the Appendix). 

Measurements were then carried out at GOSH.  

 

Overall, subjects underwent 12 separate measurements, as described in the study 

information sheet (see Appendix). The data from a select number of these 

measurements are used in the analyses in this thesis; remaining data will be 

analyzed in future studies. This section describes the measures used for this study 

only, with the subsection headings reflecting the outcome variable/s collected. 

There was some variation in the order of measurements for each subject, largely 

related to the time of the subject’s arrival on the day and the availability of slots for 

DXA and MRI. However, the order in which measurements are detailed below 

reflects the order in which most subjects experienced them. I give information on 

how data were obtained from each measurement, and describe further calculations 

and sample/data processing where relevant.  

 

4.5.1 Birth weight  

I asked participants to fill out a questionnaire, which they sent in advance or 

brought with them to the data collection appointment. The questionnaire included 

space for the participant to report their birth weight, obtained by their own 

knowledge, the recollection of a parent/relative, or documentation to which they 

had access. I also asked for information on gestational age in order to derive birth 

weight standard deviation scores (SDS). This is described further in Chapter 9, 

where birth weight data are used in analyses.  
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4.5.2 Height 

Height was taken in duplicate to the nearest 0.1cm using a wall-mounted 

stadiometer (Holtain), with subjects standing and unshod, and the head assessed 

for alignment with the standard Frankfurt plane. The average of the two 

measurements was used for analysis. 

 

4.5.3 Resting energy expenditure  

Subjects were asked to fast overnight prior to the REE measurement (e.g. if their 

data collection appointment was 9am, they were requested to refrain from eating 

or drinking anything apart from water from 9pm the previous evening). Following 

standard protocol the measurement was carried out in the morning, in a 

thermoneutral environment. The subject lay supine on a padded hospital table 

under a ventilated plastic canopy connected by cylindrical pump to a Deltatrac II 

indirect calorimetry system (Datex-Engstrom Corp, Helsinki, Finland). They were 

asked to remain awake, relax and breathe normally during the measurement, 

which lasted approximately 25 minutes.  

 

A gas calibration of the metabolic cart was carried out prior to each measurement 

session. During the measurement, ambient air is drawn through the pump and 

directed to a mixing chamber within the machine. Measured concentration 

differences between inspired oxygen and expired carbon dioxide are used to 

calculate REE (Littlewood et al., 2002). These data were recorded minute by 

minute from the display on the Deltatrac monitor, and used in the Weir equation 

(given in Chapter 3, Section 3.5) to calculate a final REE value for each subject in 

kcal/24hr units.  

 

4.5.4 Body volume and weight 

Body volume was measured by ADP using the BodPod system (BodPod, Cosmed, 

Rome, Italy). Weight was also obtained during this measurement. Subjects wore 

clothing that were minimal and tight-fitting (e.g. a swimming costume, bra and 
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pants), and they covered their hair with a swim cap. Shoes, jewelry and glasses 

were removed. For calibration, the volume of gas in the BodPod’s front chamber 

was measured first with the chamber empty, and then containing a 50-liter cylinder.  

 

After being weighed to the nearest 0.01kg, subjects entered the BodPod. Gas 

volume in the chamber was measured again, now with the subject inside and the 

door closed; they were asked to limit bodily movement, breathe normally, and 

refrain from speaking. One complete test was comprised of two or three volume 

measurements (~50 seconds in duration each), depending on consistency. If the 

first two measurements differed by >150ml, a third was performed.  

 

Mean volume was calculated from the two measurements (or the two of three 

which agreed within 150ml), after which the entire process was repeated for a 

second test. A second weight measurement was taken (as with height, the average 

of the two weight measures was used for analysis). If calculated mean density was 

consistent between the two tests (within 0.007 kg/l; Wells and Fuller, 2001), a third 

test was not performed.  

 

RBV was corrected for TGV and SAA to derive ABV, as described in Chapter 3, 

Section 3.4.1.3. ABV was used in the 4C model (Chapter 3, Section 3.4.2).  

 

4.5.5 Tibia length 

Large sliding calipers (Harpenden) were used to measure, to the nearest mm, tibia 

length as the distance from the medial tibial plateau to the inferior edge of the 

medial malleolus (Cameron, 2004) on the left leg only. This measure was taken in 

duplicate and the values averaged.  
 

4.5.6 Bone mineral content and SM 

All subjects underwent a DXA scan of approximately 5 minutes’ duration, whilst 

wearing light clothing. The scan, which I performed, involved the subject lying 
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supine on the bed of a Lunar Prodigy fan beam scanner (GE Medical Systems, 

Madison, WI), as the scanner arm moved rectilinearly from head to toe. Information 

on subject weight and height was recorded in the integrated computer system, 

allowing scan depth to be automatically adjusted (Williams et al., 2006).  

 

Measures of BMC were obtained directly from the scanner software (Encore, 

Version 14.10.022). Precision of BMC quantification by this method was reported 

to be 1.1% (Kiebzak et al., 2000). BMC data were incorporated in the 4C model, 

as described in Chapter 3, Section 3.4.2. Estimated ALST in the arms and legs 

was also obtained directly from the software to be used as a measure of SM mass, 

following previous authors (Heymsfield et al., 1990; Sparti et al., 1997; Illner et al., 

2000; Kim et al., 2002).  

 

4.5.7 Total body water 

TBW was measured using 2H-labeled water dilution with a dose equivalent to 

0.05g 2H2O/kg body weight (99.9 atom % 2H, Sigma Chemical Co., Poole, UK). 

The dose was filtered and mixed with approximately 100ml of tap water. From the 

mixture, an aliquot was drawn to be analyzed along with physiological samples in 

lieu of relying on enrichment data provided by the manufacturer (Wong, 2003).  

 

Subjects drank the 2H2O dose following the collection of a baseline saliva sample 

using an absorbent salivette (Sarstedt, Rommelsdorf, Germany). The human body 

naturally contains deuterium ions, thus the pre-dose sample is required to 

document subjects’ baseline isotopic enrichment. In nature, 2H abundance is 

0.0156%, relative to the abundance of 1H (99.9844%), although the precise 

amount varies geographically and seasonally. The average amount of 2H is 

reported to be 1.5g in an adult (Wong, 2003).  

 

The equilibration period from ingestion of the deuterium dose to the post-dose 

saliva sample was 4 hours (Williams et al., 2006). Subjects reported any liquids 

consumed during this period. They did not consume food or drink for 30 minutes 
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prior to the post-dose sample, which was collected in the same manner as the pre-

dose. Saliva was collected from salivettes via centrifugation as soon as possible 

and stored at -20˚C. I prepared and processed all 2H2O doses and saliva samples 

at GOSICH. 

 

4.5.7.1 Deuterium isotope sample analysis 

The aliquotted 2H2O dose was gravimetrically diluted with double-distilled water 

(Milli-Q water, Millipore) to an enrichment approximately equivalent to the post-

dose saliva sample. This is necessary to measure the isotopic concentration of the 

dose, as highly enriched samples can contaminate the mass spectrometer, and 

traceable analytical standards were not available at higher levels of enrichment. 

Specifically, 200µl of the dose was diluted in a 50ml flask, with the weight of both 

dose and diluent recorded. 

 

For analysis, 250µl samples (in duplicate) of dilute dose, diluent, pre-dose sample, 

and post-dose sample were added to 12ml septum-sealed vials (Exetainer, Labco 

Ltd.) along with platinum catalyst rods (Thermo). Five standard waters were used 

to normalize deuterium isotope data against the international standard VSMOW; 

like the samples, they were prepared in duplicate.  

 

Vials were flush-filled with 2% hydrogen in helium at 75ml/min for 5 minutes and 

then left to equilibrate for 24 hours at 25ºC. During this time, the hydrogen and 

deuterium (1H and 2H) of water equilibrates with hydrogen gas in the headspace, 

catalyzed by the platinum.  

 

The enrichment of 1H to 2H in the headspace was measured by continuous-flow 

isotope ratio mass spectrometry (Thermo Delta XP with Gasbench sample 

introduction). With 10 gas injections into the mass spectrometer of 100µl, 1H to 2H 

enrichment was compared with a pure reference gas (99.999% hydrogen). This 

yields a chromatogram (Figure 4-2 below), which shows the results as 10 peaks.  
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Figure 4-2 Sample chromatogram. 
 

 

The standard deviation of the 10 peaks was routinely found to be <1.0‰. 1H/2H 

enrichment in the headspace was converted to actual enrichments in the sample 

by reference to the 5 water standards referred to above. A sample standard curve 

used to make the calculation is shown below in Figure 4-3.  

 

 

Figure 4-3 Sample standard curve for calculating actual 
enrichment. 
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For these example data, the linear regression yields r2=1.000, slope 0.3158 and 

intercept -673.5, so that measured sample enrichments were converted to actual 

enrichments by the equation: 

 

(4-1)  𝐴𝑐𝑡𝑢𝑎𝑙	𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 = Jn%+opn(	nqprstJnq*^uav.w
x.vSwy

 
 

Following calculation of the actual enrichments, agreement between the duplicates 

was assessed. Samples were repeated where the difference in actual enrichment 

between the two duplicates was more than 5‰. Final data were used to calculate 

TBW as described in Chapter 3, Section 3.4.1.1, Equations 3-1 and 3-2, and 

incorporated in the 4C model.  

 

4.5.8 Brain and body organ volumes 

4.5.8.1 MRI protocol 

Subjects were scanned at GOSH on a 3-Tesla (3T) Siemens Magnetom Prisma 

scanner (Siemens, Erlangen, Germany). The protocol included the following 

acquisitions:  

 

• For 3D brain volume, a T1-weighted MPRAGE (Magnetization 

Prepared Rapid Gradient Echo; TR = 2300ms, TE = 2.74ms, flip angle 

= 8°, voxel size = 1mm3, duration = 5 minutes).  

• For the abdomen, a 3D isotropic T2-weighted turbo spin echo SPACE 

sequence (TR = 2000ms, TE = 220ms, flip angle = variable, voxel size 

= 1.5mm3, duration = 7 minutes).  

• For the chest, a T2-weighted TrueFISP (True fast imaging with steady 

state precession) with breath-hold (TR = 475.4ms, TE = 1.53ms, flip 

angle = 47°, voxel size = 1.5 x 1.5 x 4.0mm, duration = 20 seconds).  
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All images were visually assessed by trained radiographers during scanning for 

artefacts or anatomical abnormalities.  

 

4.5.8.2 Brain volumetric analysis using FreeSurfer 

High-resolution T1-weighted MR images were automatically segmented using 

FreeSurfer, the open source software suite for MR image analysis described in 

Chapter 3, Section 3.3.2 (version 5.3.0 for Mac OS X, 

https://surfer.nmr.mgh.harvard.edu). Figure 4-4 shows raw T1-weighted brain data 

in, from left to right, axial, coronal and sagittal orientations.  

 

 

Figure 4-4 T1-weighted brain images. 
 

 

The technical aspects of FreeSurfer’s processing pipeline have been discussed 

extensively in the literature (e.g. Dale et al., 1999; Fischl and Dale, 2000; Fischl et 

al., 2002; Fischl et al., 2004a,b; Segonne et al., 2004; Jovicich et al., 2006). 

 

Core elements of the pipeline include affine registration to the MNI305 atlas 

(Collins et al., 1994), bias field and motion correction (Reuter et al., 2010), skull 

stripping and removal of non-brain tissue (Segonne et al., 2004), automated 

Talairach transformation (spatial normalization), intensity normalization, and 

segmentation of white matter, cortical gray matter, and subcortical gray matter 

structures (Fischl et al., 2002; Fischl et al., 2004a). FreeSurfer’s procedure of 
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probabilistic labeling of tissues at each voxel was found to be comparable to 

manual rating (Fischl et al., 2002).  

 

Figure 4-5 shows subcortical structures (caudate, pallidum, putamen, amygdala, 

hippocampus), white matter and gray matter labeled by color. The image, in 

coronal orientation, was loaded in FreeSurfer’s volume viewer. The nucleus 

accumbens, cerebellum cortex and cerebellum white matter were quantified, but 

are not shown in the figure.  

 

 

 

Figure 4-5 FreeSurfer volume-based labeling. 
 

 

Following FreeSurfer processing, all segmentations were visually inspected. 

Certain aspects of the output can be manually edited with FreeSurfer tools if the 

segmentation appears incorrect (https://surfer.nmr.mgh.harvard.edu/fswiki/Edits). 
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I used the tools to make edits for several subjects where: incompletely stripped 

skull or dura interfered with brain surface delineation; small groups of voxels well 

within the white matter boundary were not labeled as white matter; or where white 

matter voxels were mislabeled near the white-gray boundary. In the latter case, 

‘control points’ were added to ‘push out’ the white matter to meet the gray matter 

boundary. All edited datasets were re-processed with corrections incorporated.  

 

4.5.8.3 Re-segmenting brain subcortical structures using 
FIRST 

My original intention was to use the volume segmentation from FreeSurfer to 

quantify all brain tissue structures. However, upon visual inspection, FreeSurfer’s 

subcortical segmentation output appeared incorrect in several subject datasets, 

particularly for the putamen and pallidum. These issues could not be addressed 

with FreeSurfer editing tools.  

 

The segmentation tool FIRST (FMRIB’s Integrated Registration and Segmentation 

Tool), part of the FSL library for brain imaging analysis, was used in an attempt to 

improve on FreeSurfer’s results for subcortical structures. Like FreeSurfer, FSL is 

a fully-automated, widely-used toolkit (e.g. Zivadinov et al., 2012; Tondelli et al., 

2012; Witte et al., 2014; Pardini et al., 2014), made available by the Oxford Centre 

for Functional MRI of the Brain (FMRIB) at Oxford University in the UK 

(https://fsl.fmrib.ox.ac.uk; Woolrich et al., 2009; Jenkinson et al., 2012). FIRST, 

described by Patenaude et al. (2011), employs a Bayesian approach to the 

labelling and segmentation of brain volumes. The default settings of the 

segmentation script have been empirically optimized for each subcortical structure 

(Patenaude et al., 2011).  

 

Figure 4-6 shows FreeSurfer-derived subcortical structures loaded in FslView, 

FSL’s brain volume viewer. Figure 4-7 shows the same structures, in the same 

subject, derived using FIRST. Upon visual inspection, the FIRST segmentation 

generally appeared more accurate across subjects.  
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Figure 4-6 FreeSurfer-derived subcortical structures in FslView. 
 

 

 

Figure 4-7 FIRST-derived subcortical structures in FslView. 
 

 

FreeSurfer-derived white matter volume (the white matter ‘mask’) was corrected 

so that white matter boundaries were consistent with FIRST-segmented 
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subcortical structures. This was done by subtracting FreeSurfer’s subcortical 

segmentation from the white matter mask; re-labeling these areas as white matter; 

and then subtracting FIRST subcortical structures from the modified white matter 

mask. Finally, manual edits were carried out to correct for any areas mislabeled in 

this process, for example spuriously labeled white matter at the caudate-

cerebrospinal fluid (CSF) boundary. Figures 4-8 and 4-9 demonstrate these steps. 

FreeSurfer-derived gray matter, and cerebellum gray and white matter volumes 

were not modified. 

 

 

Figure 4-8 FreeSurfer-derived subcortical structures subtracted 
from the white matter mask (A), and re-labeled as white matter (B). 
 

 

Included in Figure 4-9 below is an example of the manual correction necessary at 

the caudate-CSF boundary: the arrows indicate where mislabeled white matter 

was corrected in the final dataset.  
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Figure 4-9 FIRST-derived subcortical structures subtracted from 
the modified white matter mask (A), and the final mask following 
edits (B). 
 

 

Following FreeSurfer and FIRST processing, output included 12 brain volume 

variables: gray matter, white matter, cerebellum cortex, cerebellum white matter, 

amygdala, hippocampus, caudate, nucleus accumbens, putamen, pallidum, 

thalamus, and total intracranial volume (TIV). TIV is utilized as a covariate in 

statistical analyses. Buckner et al. (2004) describe FreeSurfer’s approach to 

estimating TIV; Figure 4-10 below shows the area included in the TIV measure.  
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Figure 4-10 Area included in TIV. 
Image from Buckner et al., 2004. 
 

 

I combined caudate, putamen and nucleus accumbens structures to make a 

striatum volume variable. I combined all brain volumes given by FreeSurfer and 

FIRST, except TIV, to make a ‘composite’ brain variable. Composite brain includes 

the pallidum and thalamus, however these variables are not tested further as 

discrete variables. Composite brain captures the majority of tissue in the brain, but 

excludes the CSF. I use the term ‘composite’ rather than ‘total’ to reflect the fact 

that the CSF and additional small components (e.g. substantia nigra, 

hypothalamus, pituitary gland) are not incorporated. The brain stem is likewise not 

included.  

 

For use in analyses in Chapters 5 through 9, I thus had 7 brain component volume 

variables (gray matter, white matter, cerebellum cortex, cerebellum white matter, 

amygdala, hippocampus, striatum), 1 global brain measure (composite brain) and 

1 covariate (TIV).  
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I describe as ‘gray matter’ what could also be referred to as cortical or cerebral 

gray matter, the large mass of brain tissue visible as a series of folds when viewing 

the whole brain. In a slice of brain, ‘white matter’ is that which is seen to underlie 

the gray matter. For gray and white matter of the cerebellum I refer to ‘cerebellum 

cortex’ and ‘cerebellum white matter.’ The amygdala, hippocampus and striatum 

are smaller gray matter volumes located subcortically, thus I refer to these 

throughout as subcortical structures.  

 

In addition to gray and white matter, which are the two largest tissue components 

in the brain, I chose to include the amygdala, hippocampus, striatum and 

cerebellum in analyses following evidence in the literature of their potential 

relevance in human evolution (e.g. Balsters et al., 2010; Barger et al., 2014; Barton 

and Venditti, 2014; Raghanti et al., 2016).  

 

Figure 4-11 below is given to clarify from which software package each brain 

outcome was derived, the components of the striatum variable, and the 

components which comprise the composite brain variable.  

 

 

 



 144 

 

Figure 4-11 Brain volume variables derived from FreeSurfer and 
FIRST. 
 

 

4.5.8.4 Body organs – OsiriX 

I manually segmented the heart, liver, kidneys and spleen from raw MRI data using 

the OsiriX viewer for DICOM images (Version 8.5, http://www.osirix-viewer.com; 

Rosset et al., 2004). I chose to segment the heart, liver and kidneys because they 

are known to be high-metabolic rate tissues (Elia, 1991; 1992). The spleen is also 

likely to have a high SMR (Heymsfield et al., 2012a), and these four organs were 

feasible to extract from the MR images. I created a ‘composite organ’ variable by 

summing the four organs. The specific organs predicted by the ETH and TPH to 

trade off with the brain – the gut and the pancreas – were unfortunately not 

obtainable due to excessive image artefact in the relevant areas.  
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As briefly discussed in Chapter 3, Section 3.3.2.1, the manual estimation of organ 

volumes involves drawing an ROI along the border where the organ can be seen 

to meet surrounding tissue. Figure 4-12 shows an ROI around the heart. 

 

 

Figure 4-12 ROI around the heart in coronal orientation. 
 

 

Once again, as first described in Chapter 3, an ROI is drawn on every image in a 

series of images; each MRI scan produces a variable number of image ‘slices’. 

Area is automatically calculated for each ROI in OsiriX. When ROIs are drawn in 

all images, the software automatically calculates organ volume by summing the 

ROIs and multiplying by the slice thickness.  

 

The series containing the image in Figure 4-12 contained 22 images where the 

heart was visible, thus I drew 21 additional ROIs in order to estimate heart volume 

for this subject. The liver series for this same subject contained 39 images. There 

is some variation in the number of image slices in a series owing to body size and 
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positioning of the subject during scanning. As chest scans were done during 

breath-hold, they were shorter and had relatively large slice gaps compared to the 

abdominal scans, which were more comprehensive. Thus, abdominal scan series, 

from which I measured the kidneys, contained a greater number of images. For 

example, there were 73 image slices for this subject’s right kidney, measured in 

the axial plane (Figure 4-13). 

 

 

Figure 4-13 ROI around the right kidney in axial orientation. 
 

 

I measured each organ for each subject twice and took the average as the final 

data, as the mean of two or more measurements is likely to give a better estimate 

of the true size of an object than a single measurement (Harris and Smith, 2009). 

I concluded that the number of images in each series made it less likely for repeat 

measurements in a single day to introduce bias. For this reason, and with time 

constraints in mind, I did not consider it a requirement for repeat measures to be 

performed after a specific length of time (i.e. on separate days, although repeat 

measures for some subjects ultimately did occur on different days).  
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The calculated technical error of measurement (TEM), as a percentage (following 

Perini et al., 2005), was as follows for duplicate measures of each organ: 1.9 for 

the heart (n = 67), 1.1 for the left kidney (n = 68), 0.7 for the right kidney (n = 68), 

0.7 for liver (n = 67), and 1.4 for the spleen (n = 61). I explain below why the sample 

sizes given here do not match my study sample size of 70. 

 

The kidneys were generally clearest in images, and most easily delineated from 

surrounding tissue. The greater number of image slices decreased the contribution 

of measurement error on any given slice to overall measurement error for the 

particular organ. Additionally, the kidneys were segmented, as shown above, in 

axial orientation: this decreased the area for each slice, and likewise minimized 

error if an ROI was poorly-drawn. 

 

The heart and liver were segmented in coronal orientation (e.g. Figure 4-12). 

Although the border between the heart and surrounding tissue was clear in most 

images, in others it was difficult to distinguish from surrounding blood vessels, and 

this may have contributed to poorer repeatability, relative to the other organs. Like 

the kidneys, spleen ROIs were drawn in axial orientation, however image contrast 

was generally poorer than that seen for the kidneys. Figure 4-14 below 

demonstrates an ROI drawn around the spleen (this image series had 48 slices 

total). 

 

 



 148 

 

Figure 4-14 ROI around the spleen in axial orientation. 
 

 

The scan sequences used to image the abdomen (SPACE) and chest (TrueFISP) 

were described in Section 4.5.8.1. Overall, the heart and liver were segmented 

from the TrueFISP images, and the kidneys and spleen derived from the SPACE. 

However, for a small number of subjects, it was necessary to take an alternative 

approach.  

 

The first three subjects recruited and scanned did not have the TrueFISP, as it was 

included in the scan protocol following their visits for data collection. Thus, the 

heart and liver could not be segmented from the TrueFISP for these participants.  

 

The SPACE sequence was included in the scan protocol from the start of data 

collection for the study. However, for one subject, a scanner fault caused the 

sequence to fail and the data were not collected. A second subject was unable to 

limit her body movement sufficiently during the SPACE (a relatively long scan of 

approximately 20 minutes), and movement artefact precluded segmentation of the 
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kidneys and spleen. For 7 additional subjects, the spleen was not clearly visible on 

SPACE images and could not be segmented, although kidney segmentation was 

unaffected.  

 

My approach was to segment the missing organs from an available alternative. For 

the liver, I used TIRM (turbo inversion recovery magnitude) sequences; these were 

shorter sequences done prior to the main protocol sequences to confirm normal 

anatomy. A sub-sample of 30 subjects was chosen where the liver could be 

segmented from both TIRM and TrueFISP images (and which attempted to 

represent the range of liver size in the full sample). Single measures were taken 

for this exercise. I regressed the TrueFISP values measured in the 30 subjects on 

TIRM values measured in the same 30 subjects, and used the derived equation to 

correct the liver values – also measured on TIRM – for the 3 subjects where 

segmentation from TrueFISP was not possible. Similar prediction equations have 

been used previously, for example in the recent publication by Devakumar and 

colleagues (2015).  

 

A similar process was undertaken for the kidneys and spleen, although here 

TrueFISP, rather than TIRM, images were used as the best available alternative. 

Data for two out of nine missing spleen volumes could not be derived by the 

prediction method, as it was not possible to segment the spleen from any of the 

images obtained for these two subjects. 

 

With respect to the heart, it was visible in TIRM images for two of three subjects 

missing the TrueFISP sequence. However, as the heart was not visible in TIRM 

images for the majority of the sample, the process of correction by sub-sample 

analysis and regression described above could not be carried out. Figure 4-15 is 

a flow chart demonstrating the approach for obtaining final data for each organ.  
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Figure 4-15 Dealing with missing body organ data.  
 

 

4.6 Potential confounders 
This section introduces variables that will be explored as potential confounders. In 

Chapter 5 I assess their association with study variables to determine whether it is 

indeed appropriate to include them as confounders in my analyses. If it is 

determined they should be included, findings related to their impact on results will 

be discussed where appropriate in subsequent chapters.  
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4.6.1 Place of birth 

As discussed in Chapter 1, regional environmental characteristics are recognized 

to contribute to geographical variability in body composition. This informed the 

decision to recruit women of South Asian ancestry only, and avoid extra sources 

of variation that would be expected in a sample with a wider range of ethnicity. 

However, my participants were not exclusively born in South Asia (see Chapter 5, 

Section 5.1), and variation in place of birth may also represent a source of added 

variation due to differing environmental experience. Place of birth (South Asia, or 

elsewhere) will thus be investigated as a potentially confounding variable.  

 

4.6.2 Physical activity 

Physical activity (PA) may impact on body composition, REE, or relationships 

therein. To collect information on PA, subjects were asked to fill out a version of 

the International Physical Activity Questionnaire (IPAQ). “[D]eveloped as an 

instrument for cross-national monitoring of physical activity and inactivity” (Craig 

et al., 2003, pg. 1381), the IPAQ has demonstrated reliability and validity across 

populations (Craig et al., 2003; Rosenberg et al., 2008), although some studies 

have reported discrepancies between IPAQ and accelerometer data (Boon et al., 

2010; Cerin et al., 2016).  

 

There are short and long versions of the IPAQ, and I opted to use the latter for this 

study (see Appendix). It offers more information than the short version, but in fact 

is not appreciably longer. Questions cover four domains of activity: work; active 

transportation; domestic and yard work; and leisure-time. The questionnaire asks 

individuals to recount PA relevant to these domains in the last 7 days. I followed 

the guidelines for data processing and analysis of the IPAQ (downloadable from 

the IPAQ web page, https://sites.google.com/site/theipaq/) to obtain PA in MET 

(metabolic equivalent) minutes/week. The MET value reflects energy expended 

during an activity relative to energy expended by the body at rest. PA in kcal/week 

was derived following the equations outlined in Bushman (2012).  
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4.6.3 Menstrual cycle 

I controlled for known effects of reproduction on body composition by recruiting 

nulliparous women only. However, it was not feasible in recruitment to control for 

all aspects of reproductive function which have the potential to impact on 

body/brain composition or REE. For example, previous research found that REE 

“cannot be assumed to be ‘stable’ in all women” across the menstrual cycle (Henry 

et al., 2003, pg. 817). Additionally, cyclical hormonal changes throughout the 

menstrual cycle are increasingly recognized to associate with changes in the 

structure of brain components, including the hippocampus, in rodents and humans 

(Galea et al., 2008; Lisofsky et al., 2015; Barth et al., 2016). Thus, variation in REE 

or brain volume measurements could be attributable to variation in the phase of 

the menstrual cycle at which participants were seen for data collection. 

 

To allow menstrual phase to be treated as a potential confounder, I asked 

participants to report in the questionnaire they returned the date on which they had 

most recently begun menses, and whether they generally experienced a regular 

menstrual cycle. I used this information to estimate on which day of a participant’s 

cycle their data collection visit fell, similar to the method of Henry et al. (2003).  

 

4.7 Statistics 

4.7.1 Assessing normality 

Variables were assessed for normality using Shapiro-Wilk tests and histograms. 

All brain variables were normally distributed, as was FFM; FM demonstrated a 

slight positive (right) skew, but Shapiro-Wilk was not significant. Shapiro-Wilk was 

significant for REE, however this was due to the influence of a single outlier. 

Otherwise, the data demonstrated a normal distribution.  

 

Of the organs, liver volume demonstrated normality; the heart, kidneys and spleen 

were right-skewed. This caused the composite organ variable to skew slightly 

positive as well, although Shapiro-Wilk was only borderline significant. As with 
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REE, one or two outliers were found to cause the skew, and with their removal the 

distributions were normal. The spleen, however, remained non-normal following 

the removal of two outliers. Any outliers removed to explore normality were 

subsequently returned to the dataset.  

 

Following natural log-transformation all variables demonstrated normality. Log-

transformed variables are utilized in Chapter 5, where I initially explore 

relationships amongst organs and tissues, and in Chapters 7, 8 and 9, where I test 

for trade-offs, and for evidence of developmental mediation on observed trade-offs 

using markers of early-life growth.  

 

4.7.2 Testing study hypotheses 

I utilize Pearson correlation, regression and graphical analyses to describe the 

data and test my study hypotheses. There is some variation in the use of these 

statistical methods in Chapters 5-9, thus I include in each of these chapters a 

section which describes the statistical methods for the current chapter analysis.  

 

All statistical analyses were carried out using the R language for statistical 

computing in RStudio (Version 1.0.136) with two-tailed tests for significance at an 

alpha level of 0.05. 
 

4.7.3 Potential confounding variables 

4.7.3.1 Place of birth  

A binary birthplace variable was generated to reflect those subjects who were born 

in South Asia (n = 33), and those born elsewhere (n = 37).  

 

4.7.3.2 Physical activity 

PA in kcal/week was calculated as described in Section 4.6.2 for 69 subjects; one 

subject did not return the IPAQ. The plotted data revealed an extreme outlier, 
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shown in Figure 4-16. I removed this individual’s data, and derived a variable I 

called PA1 for the remaining 68 individuals.  

 

 

Figure 4-16 Physical activity data outlier. 
 

 

Although they did not appear as obvious outliers, a further 10 subjects reported 

levels of physical activity which seemed unrealistic, given additional information I 

collected. For example, some participants who reported being undergraduate or 

graduate students also reported a considerable amount of moderate or vigorous 

physical activity associated with the IPAQ’s work domain, which seemed 

inconsistent with their student status.  

 

According to the instructions given to participants on the questionnaire, “moderate 

activities refer to activities that take moderate physical effort and make you breathe 
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somewhat harder than normal,” whilst “vigorous physical activities refer to activities 

that take hard physical effort and make you breathe much harder than normal.” 

 

I made a second variable called PA2 which does not include data from these 10 

individuals; I tested both PA1 and PA2 for potential confounding.  

 

4.7.3.3 Menstrual cycle 

I calculated three different variables to assess the potential effects of variation in 

menstrual cycle stage at the time of data collection. Each variable is comprised of 

a single number for each participant: estimated day-of-cycle at data collection visit. 

I obtained the number by counting days between the participant’s visit and their 

reported first day of last menstruation. The first variable, MC1, included data from 

subjects who, based on this reporting, appeared to experience a normative cycle 

range of 21-35 days (n = 48). 

 

In their 2003 paper on metabolism and the menstrual cycle, Henry and colleagues 

reported for their subjects a wider range of cycle length, from 24-41 days. The 

variable MC2 includes those participants in my own sample whose reported data 

puts them within the range 21-41 days, which increased the sample size to 54. I 

also calculated a variable, MC3, which extended the upper range value to 45 days, 

and the sample size increased by 4 to 58. Data were missing for 12 subjects.  

 

4.8 Summary of study methods, techniques and 
outcomes 

Similar to Table 3.1 at the end of Chapter 3, I offer a table below summarizing 

measurement methods, instruments and outcomes. I have added more detail 

regarding the specific organ and brain components I described in this chapter. I 

have also added birth weight and gestational age.  
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Table 4.1 Final summary of measurement methods and outcomes 
Method Instrument Outcome(s) 

Anthropometry Stadiometer, calipers Height, tibia length 

MRI (head) 3T scanner 

Individual gray matter, 
white matter, cerebellum 
cortex, cerebellum white 
matter, amygdala, 
hippocampus, striatum 
volumes 
 
Composite brain volume 

MRI (body) 3T scanner 

Individual heart, liver, 
kidney and spleen 
volumes 
 
Composite organ volume 

 
 
4C model 

BodPod, scale, Lunar 
Prodigy scanner, 2H2O 
dose and saliva samples  FM, FFM 

DXA Lunar Prodigy scanner SM 

Indirect calorimetry 
Deltatrac II indirect 
calorimeter 

Resting energy 
expenditure 

Recruitment screening 
and collection of 
subject background 
information  

Questionnaire, and UK-
WHO reference birth 
centiles to derive SDS 
(see Chapter 9) 

Birth weight and 
gestational age 

 

 

 

 

 

 

 



 157 

5 Description of the sample 
 

In this chapter I describe my study sample, which I recruited and measured as 

detailed in Chapter 4. I begin by providing frequency statistics in Section 5.1 for 

ethnicity, place of birth and profession, as reported by participants. Section 5.2 

details statistical methodology. My aim in Sections 5.3 and 5.4 is to describe the 

average body and brain composition of participants, and the range of variability in 

outcomes. Before testing tissue trade-offs in Chapters 7 and 8, I show how 

components of the body and brain relate to one another and with weight and 

height. This allows me to test part (iv) of my second hypothesis, set out in Chapter 

2, which predicts positive associations amongst body components, and also 

amongst brain components, but predicts that potentially fewer positive 

relationships will be found between body and brain components. Section 5.5 

examines whether place of birth, physical activity and menstrual cycle variables 

should be included in further analyses as potential confounders. Finally, I discuss 

the chapter’s findings in Section 5.6.   

 

5.1 Ethnic background, place of birth and profession 
As described in the previous chapter, a key criterion of inclusion for the present 

study was South Asian ancestry. Table 5.1 shows that the majority of the sample 

(n = 70) reported Indian ethnicity. Mixed South Asian ancestry identifies those 

subjects who reported an ethnic background characterized by a mix of two or more 

of the four target ethnicities. For example, a subject might have reported one set 

of grandparents from India and the other set from Pakistan, or a mix of Pakistani, 

Indian and Bangladeshi ancestry among her grandparents.  

 

As seen in the final row of Table 5.1 below, one subject reported that her parents 

and grandparents were born on Mauritius, an island nation located in the Indian 

Ocean. This subject reported that her ancestors emigrated to Mauritius from the 

Indian subcontinent, and was considered eligible for the study. 
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Table 5.1 Reported ethnic ancestry of the sample 
Ethnic ancestry n 

Indian 36 

Pakistani 8 

Bangladeshi 8 

Sri Lankan 8 

Mixed South Asian 
ancestry 

9 

Mauritian 1 

 

 

Table 5.2 shows that roughly half of the sample was born in one of the countries 

listed in Table 5.1. Table 5.3 gives information on place of birth for the rest of the 

sample.  

Table 5.2 Frequency statistics for place of birth 
 n South Asia Elsewhere 

Place of birth  70 33 37 

 

Table 5.3 Place of birth for subjects born outside South Asia 
Place of birth  n 

United Kingdom 25 

United States 5 

Canada 3 

Australia  1 

Mexico  1 

Saudi Arabia  1 

Kenya  1 
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For those born outside the UK, age of emigration to the UK varied, with a mean 

age of 18.7 years (range = 2-28 years). Out of this group, the majority moved to 

London in their early to mid-twenties to attend undergraduate or graduate-level 

university programs. In the full sample, the vast majority were students, as shown 

in Table 5.4.  

Table 5.4 Frequency of reported professions 
Profession n 

Student  59 

Researcher  2 

Teacher 1 

Communications 
professional 

2 

Management 
accountant 

1 

Doctor 2 

Physiotherapist 1 

Banker 1 

Pharmacist 1 

 

 

5.2 Statistical methods 
For statistical analyses in this chapter, all brain and body composition variables 

were log-transformed to capture their allometric relationships. Pearson correlation 

coefficients were calculated for body composition and brain variables with height 

or weight. Correlations were also calculated among body and brain components, 

and the data were plotted to visualize relationships. In Section 5.5, independent 

sample t-tests and Pearson correlations were utilized to assess potential 

confounders. 
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5.3 Composite brain and body composition variables 
This section begins to explore correlations among my main study variables, which 

were summarized in Table 4.1 at the end of Chapter 4. I focus on tissues and 

organs of the body and the composite brain variable, aiming to elucidate their 

relationships with one another, and with weight and height. Brain component 

volumes are examined in more detail in Section 5.4. First, Table 5.5 contains 

descriptive statistics for age, weight, height and BMI in the sample. As noted in 

Chapter 4, BMI in the range 17-28 kg/m2 was a criterion of inclusion, however two 

subjects inaccurately estimated their height and weight in the recruitment 

interview; therefore, my final sample range extends from 17-30 kg/m2. 

Table 5.5 Characteristics of 70 female subjects 
 Mean±SD Range 

Age, yr 24±2.4 20-28 

Weight, kg 57.8±9.3 40.7-81.1 

Height, cm 161.2±6.6 147.8-177.3 

BMI, kg/m2 22.3±3.5 17.2-30.3 

 

 

Figure 5-1 below shows subjects’ weight plotted against their height on a log-log 

axis. Weight and height are positively correlated (r = 0.34, p = 0.005). The plot 

demonstrates the range of variability in body size in the sample.  
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Figure 5-1 Weight plotted against height for 70 subjects. 
r2 = 0.12, p = 0.005 
 
 

Table 5.6 contains descriptive statistics for FM, FFM, SM, body organs, composite 

organ, and composite brain. With regard to the body variables, as described in 

Chapter 3, skeletal muscle and organs are considered components of FFM, as 

they are largely fat-free tissues. However, as described in Chapters 3 and 4, I 

obtained these outcomes using independent methods: FFM by the 4C model, SM 

by DXA, and body organs by MRI.   

 

Coefficients of variation (CV) are included in Table 5.6 to show the relative 

variability of the outcomes. The CV is highest for FM and spleen volume, and lower 

for FFM. CVs for the heart, liver and kidney are virtually identical. (‘Kidney’ is data 

for the right and left kidney, combined in a single variable.) Compared to the body 

outcomes, the CV for the brain is the lowest at 7.5%.  
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Table 5.6 Raw values and CV percentages for FM, FFM, SM, body 
organs and composite brain 
Body/brain outcomes n Mean±SD Range CV % 

FM, kg 70 20.3±6.7 8.3-40.1 32.9 
FFM, kg 70 37.6±4.3 28.4-48.8 11.4 
SM, kg 70 15.3±2.2 10.8-20.2 14.2 
Organ volumes, cm3     
   Heart  69 499±89 330-780 17.8 
   Liver  70 1140±202 722-1599 17.7 
   Kidney 70 277±48 197-453 17.5 
   Spleen  68 132±46 73-310 34.9 
   Composite organ 67 2055±327 1410-2811 15.9 
Composite brain, cm3 70 1041±78 851-1210 7.5 

 

 

In order to shed light on whether bigger individuals in the sample tend to have 

bigger tissues, Table 5.7 shows correlations of the variables in Table 5.6 with 

weight and height.  

Table 5.7 Pearson correlation coefficients for weight and height 
with FM, FFM, SM, body organs and composite brain 
Body/brain outcomes Weight  

r, p 
Height 

r, p 
FM, kg 0.88, <0.001 0.12, 0.33 
FFM, kg 0.76, <0.001 0.54, <0.001 
SM, kg 0.73, <0.001 0.49, <0.001 
Organ volumes, cm3   
   Heart  0.63, <0.001 0.50, <0.001 
   Liver  0.63, <0.001 0.46, <0.001 
   Kidney 0.58, <0.001 0.42, <0.001 
   Spleen  0.38, 0.001 0.31, 0.009 
   Composite organ 0.70, <0.001 0.53, <0.001 
Composite brain, cm3 0.04, 0.72 0.41, <0.001 
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All body components are more strongly related to weight than they are to height, 

demonstrated by the relative size of the correlation coefficients. In contrast, 

composite brain is related to height, but not weight. Of the body variables, the only 

non-significant correlation is that between FM and height, although FM is strongly 

correlated with weight. With respect to the organs specifically, heart and liver 

demonstrate the largest coefficients with both weight and height, while coefficients 

for the spleen are smallest. 

 

Overall, the data suggest that individuals who weigh more have bigger organs and 

larger body tissues, but brain size does not track weight in the same way. 

Individuals who are taller on average have larger organs and body tissues, and 

larger brain size, although being taller is not associated with having more fat mass. 

 

The following figures demonstrate these relationships visually, with FM, FFM, SM, 

organs, and composite brain plotted against weight and height.  

 

 

Figure 5-2 FM against weight and height (n = 70). 
With weight (r2 = 0.77, p < 0.001), with height (r2 = 0.01, p = 0.33). 
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Figure 5-3 FFM against weight and height (n = 70). 
With weight (r2 = 0.58, p < 0.001), with height (r2 = 0.29, p < 0.001). 
 

 

 

 

 

Figure 5-4 SM against weight and height (n = 70). 
With weight (r2 = 0.53, p < 0.001), with height (r2 = 0.24, p < 0.001). 
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Figure 5-5 Heart volume against weight and height (n = 69). 
With weight (r2 = 0.40, p < 0.001), with height (r2 = 0.25, p < 0.001). 

 
 

 

 

Figure 5-6 Liver volume against weight and height (n = 70). 
With weight (r2 = 0.40, p < 0.001), with height (r2 = 0.21, p < 0.001). 
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Figure 5-7 Kidney volume against weight and height (n = 70).  
With weight (r2 = 0.34, p < 0.001), with height (r2 = 0.18, p < 0.001). 
 

 

 

 

Figure 5-8 Spleen volume against weight and height (n = 68). 
With weight (r2 = 0.14, p = 0.001), with height (r2 = 0.10, p = 0.009). 
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Figure 5-9 Composite organ against weight and height (n = 67). 
With weight (r2 = 0.49, p < 0.001), with height (r2 = 0.28, p < 0.001). 
 

 

 

 

Figure 5-10 Composite brain against weight and height (n = 70). 
With weight (r2 = 0.002, p = 0.72), with height (r2 = 0.17, p < 0.001). 
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To examine how the components plotted against weight and height above relate 

to one another, Table 5.8 gives a matrix of correlations.  

Table 5.8 Matrix of Pearson correlation coefficients among FM, 
FFM, SM, body organs and composite brain 
 FM FFM SM Heart  Liver  Kidney  Spleen 

FFM 0.382       

SM 0.362 0.951      

Heart 0.441 0.661 0.651     

Liver 0.382 0.711 0.721 0.641    

Kidney 0.372 0.671 0.631 0.481 0.581   

Spleen  0.24 0.431 0.421 0.481 0.411 0.342  

Brain -0.07 0.16 0.13 0.03 0.09 0.19 0.04 
 1p < 0.001, 2p < 0.01; FM, FFM and SM are in kg, organs and brain are in cm3 

 

 

As SM accounts for a large proportion of FFM, these variables are predictably 

strongly correlated, although SM also correlates well with body organs, which in 

turn scale to a variable degree with FFM. The relationship between FFM or SM 

with liver volume is strongest among the organs, although coefficients for the heart 

and kidney with FFM or SM are not markedly smaller. The composite brain 

variable, in contrast, is not related to FM, FFM, SM, body organs, or composite 

organ volume (r = 0.15, p = 0.22 for the latter).  

 

All organs are associated with one another, with the strongest relationships seen 

between the heart and liver, and the liver and kidneys. Among the organs, the 

correlation between the kidneys and spleen is weakest. The composite organ 

variable is strongly correlated with FFM (r = 0.79, p < 0.001) and SM (r = 0.78, p < 

0.001), and significantly but more weakly correlated with FM (r = 0.43, p < 0.001) 

(results not shown in the table).  
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FM is significantly correlated with most fat-free tissue variables. The relationships 

are generally weaker than those found among the fat-free components, however 

there is some overlap in the size of the coefficients. FM’s strongest relationship is 

with the heart, whilst the FM-spleen correlation is borderline significant (p = 0.05).  

 

These findings demonstrate that a majority of the main study variables correlate 

positively with one another. The data cannot indicate whether FFM components 

like the organs and SM grow in concert with one another per se, however if one 

component is relatively large in adulthood, it appears the other has some tendency, 

varying between outcomes, to be relatively large as well. Made up largely of fat-

free tissues, the brain may also be considered an FFM component: it is comprised 

mainly of water (~78%), whilst proteins are 8% of its weight (McIlwain and 

Bachelard, 1985). The brain does not, however, fit the pattern of close 

relationships seen for FFM tissues of the body. 

 

Plots are given below of composite brain against FFM, SM, composite organ, and 

liver volume. As shown, these outcomes are not significantly correlated, however 

the relationships are relevant to the trade-offs discussed in Chapter 7.  



 170 

 

Figure 5-11 Composite brain volume against FFM. 
r2 = 0.03, p = 0.18; n = 70 
 

 

Figure 5-12 Composite brain volume against SM. 
r2 = 0.02, p = 0.29; n = 70 
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Figure 5-13 Composite brain against composite organ. 
r2 = 0.02, p = 0.22; n = 67 
 
 

 

Figure 5-14 Composite brain volume against liver volume. 
r2 = 0.008, p = 0.45; n = 70 
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5.4 Brain component volume outcomes 
This section looks in more detail at specific components of the brain, to ascertain 

how they relate to weight, height, body tissues, and one another. In Chapter 7 I 

test whether, beyond composite brain, these specific brain volumes demonstrate 

trade-offs with body tissues.  

 

Table 5.9 first gives descriptive statistics for each component, and a measure of 

their variability, indicated by the CVs. White matter brain volumes appear to be 

more variable than their gray matter counterparts. The amygdala, the smallest of 

the subcortical structures, demonstrates a relatively large CV in comparison to the 

hippocampus and striatum. For all variables, n = 70. 

Table 5.9 Raw values and coefficients of variation for brain 
volume measures 
Brain components, cm3 Mean±SD Range CV % 

Gray matter 458±35 384-535 7.7 

White matter 410±43 299-509 10.4 

Cerebellum 127±11 102-154 8.7 

   Cerebellum cortex 96.4±8.4 78.5-117.7 8.7 

   Cerebellum white matter 31.0±4.1 21.9-42.1 13.1 

Subcortical structures    

   Amygdala  2.5±0.3 1.8-3.2 11.7 

   Hippocampus 7.3±0.5 5.8-9.1 7.3 

   Striatum  18.0±1.5 15.4-21.6 8.2 

 

 

Table 5.10 below shows correlations of brain component volumes with weight and 

height. Consistent with the relationship seen for composite brain above, three brain 

components correlate with height. The larger coefficients are found for gray and 

white matter, although the coefficient for cerebellum white matter is similar in size. 

Cerebellum white matter was the only component also related to weight.  
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Table 5.10 Pearson correlation coefficients for brain component 
volume measures with weight and height 
Brain components, cm3 Weight  

r, p 
Height 

r, p 

Gray matter -0.05, 0.70 0.34, 0.004 

White matter 0.08, 0.52 0.39, <0.001 

Cerebellum cortex 0.06, 0.64 0.21, 0.08 

Cerebellum white matter 0.26, 0.03 0.30, 0.01 

Amygdala  0.14, 0.24 0.09, 0.47 

Hippocampus -0.05, 0.66 0.09, 0.44 

Striatum  0.02, 0.88 0.20, 0.10 

 

 

Plots are given below of cerebellum white matter on weight, and of gray matter, 

white matter, cerebellum cortex, and cerebellum white matter on height. I do not 

show plots of the remaining relationships, which are highly non-significant.  

 

Figure 5-15 Cerebellum white matter against weight. 
r2 = 0.07, p = 0.03; n = 70 
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Figure 5-16 Gray matter volume against height. 
r2 = 0.12, p = 0.004; n = 70 
 
 

 

Figure 5-17 White matter volume against height. 
r2 = 0.15, p < 0.001; n = 70 
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Figure 5-18 Cerebellum cortex volume against height. 
r2 = 0.04, p = 0.08; n = 70 
 
 

 

Figure 5-19 Cerebellum white matter against height. 
r2 = 0.09, p = 0.01; n = 70 



 176 

In Section 5.3, I found that composite brain volume was not significantly related to 

any body composition variables. Table 5.11 below shows correlations of brain 

volume components with FM, FFM, SM and body organs. Consistent with the 

results for composite brain, there is a lack of association in most cases. The 

majority of brain components, including gray matter, cerebellum cortex, the 

amygdala, hippocampus and striatum, are not correlated with any body 

composition variables.  

 

In contrast, cerebellum white matter is related to FFM (p = 0.02) and kidney volume 

(p = 0.03), and its relationship with SM approaches significance (p = 0.06). A 

significant, positive association is also found between kidney volume and white 

matter volume (p = 0.03). In each case, the correlation is positive.  

Table 5.11 Pearson correlation coefficients for brain component 
volume measures with FM, FFM, SM and body organs 
 FM FFM SM Heart Liver Kidney  Spleen 
Gray matter -0.15 0.09 0.04 0.01 0.03 0.04 -0.06 

White matter -0.03 0.18 0.17 0.05 0.13 0.271 0.10 

Cerebellum cortex 0.02 0.06 0.05 0.03 -0.01 0.06 -0.03 

Cerebellum white 
matter 

0.16 0.271 0.22 0.06 0.14 0.261 0.20 

Amygdala  0.12 0.09 0.07 0.01 0.06 0.18 -0.15 

Hippocampus -0.04 -0.06 -0.02 -0.13 -0.01 0.11 -0.08 

Striatum  -0.02 0.05 -0.004 -0.01 0.02 0.21 -0.01 
 1p < 0.05, all other correlations non-significant; FM, FFM and SM are in kg units; brain    
  volumes and body organs are in cm3 
 
 
The following figures (5-20 to 5-22) are plots of the significant relationships shown 

in Table 5.11. 
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Figure 5-20 Cerebellum white matter against FFM. 
r2 = 0.07, p = 0.02; n = 70 
 
 

 

Figure 5-21 Cerebellum white matter against kidney volume. 
r2 = 0.07, p = 0.03; n = 70 
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Figure 5-22 White matter volume against kidney volume. 
r2 = 0.07, p = 0.03; n = 70 
 

 

The correlation matrix given in Table 5.12 shows relationships among brain 

components. I include composite brain to show how specific brain volumes are 

related to the larger whole. Perhaps unsurprisingly, the two largest brain tissue 

volumes – gray and white matter – correlate strongly with composite brain, and 

fairly strongly with each other. Both gray and white matter are also significantly 

correlated with each of the subcortical structures, but with smaller coefficients. 
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Table 5.12 Matrix of Pearson correlation coefficients among brain 
components 
 GM WM CCortex CWM Amygdala Hippo Striatum 

WM 0.721       

CCortex 0.332 0.21      

CWM 0.293 0.293 0.531     

Amygdala 0.322 0.312 0.20 0.17    

Hippo 0.511 0.561 0.19 0.05 0.551   

Striatum 0.531 0.541 0.23 0.303 0.461 0.491  

Composite brain 0.911 0.921 0.401 0.411 0.362 0.581 0.601 

 1p < 0.001, 2p < 0.01, 3p < 0.05; all others non-significant; all variables are in cm3; GM  
  = gray matter; WM = white matter; CCortex = cerebellum cortex; CWM = cerebellum  
  white matter 
 

 

Gray matter, white matter and subcortical volumes, which comprise the cerebrum, 

generally correlate less strongly with cerebellum outcomes. The cerebellum, with 

its white matter underlying a gray matter cortex, similar to the cerebrum, is the 

‘hindbrain’ situated posteriorly, underneath the cerebrum (Figure 5-23 below).  

 

The cerebrum and cerebellum can be partitioned into separate structures (i.e. with 

their own values for gray and white matter quantified by FreeSurfer), however the 

gray matter of the cerebral cortex and the cerebellum are in fact ‘extensively 

interconnected’ (Rilling, 2006), which renders their relatively weak association 

somewhat surprising. This is discussed further in the final section of the chapter. 
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Figure 5-23 A sagittal view of the brain with the cerebellum 
highlighted. 
 

 

As seen in Table 5.12, associations among the subcortical structures are all highly 

significant, with that between the amygdala and hippocampus demonstrating the 

largest coefficient. In comparison to the hippocampus and striatum, the amygdala 

correlates more weakly with the composite brain variable.  

 

These findings show that a majority of the brain volume variables correlate 

positively with one another, and thus, as seen within the body, a larger brain 

component in adulthood tends to be associated with other relatively large brain 

components. However, there is variation within this broad pattern, and the 

relationships seen among specific brain volumes are overall fewer and somewhat 

weaker than those observed among body outcomes.   
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5.5 Potential confounders 
In this section, I examine whether place of birth, physical activity and menstrual 

cycle variables are appropriate to include in main analyses as potential 

confounders.  

 

5.5.1 Place of birth  

A potentially confounding variable is associated with both the outcome and the 

predictor of interest. Birthplace is a binary variable, thus I cannot meaningfully test 

for associations between it and body/brain components. Instead, I use 

independent sample t-tests to determine whether my main variables of interest 

significantly differ between those subjects born in South Asia, and those born 

elsewhere. Table 5.13 below shows means and p values for each test. Birthplace 

codes subjects born in South Asia as 0, and subjects born elsewhere as 1.  
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Table 5.13 Results of independent t-tests comparing body/brain 
variable means for subjects born in South Asia, and subjects born 
elsewhere 
Body/brain variables Mean  

(South Asia) 
Mean 

(elsewhere) 
p value 

FM, kg 21.3 19.3 0.22 

FFM, kg 37.3 37.8 0.68 

SM, kg 15.3 15.3 0.89 

Heart volume, cm3 495.5 501.8 0.77 

Liver volume, cm3 1154 1126 0.58 

Kidney volume, cm3 278.3 275.5 0.81 

Spleen volume, cm3 136.8 127.8 0.44 

Gray matter, cm3 463.7 452.4 0.18 

White matter, cm3 412.4 407.9 0.66 

Cerebellum cortex, cm3 98.5 94.4 0.04 

Cerebellum white matter, cm3 32.0 30.1 0.05 

Amygdala, cm3 2.5 2.4 0.15 

Hippocampus, cm3 7.3 7.2 0.64 

Striatum, cm3 18.3 17.8 0.14 

 

 

The t-test results are, in general, highly non-significant for differences related to 

place of birth. The only variables deviating from this pattern are cerebellum cortex 

and cerebellum white matter: the former test is just significant, and the latter is 

borderline.  

 

REE is another key variable in this study; Chapter 6 explores associations of body 

and brain components with REE, and tests the hypothesis that tissues vary in their 

energy expenditure. I have not discussed REE in the current chapter, however I 

include it in this section in order to make a determination regarding the inclusion 

of confounders. A t-test shows that REE is not significantly different by place of 

birth (p = 0.97).  
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Based on these results, I did not consider place of birth a potential confounder in 

my analyses.  

 

5.5.2 Physical activity 

Physical activity variables (PA1 and PA2) are continuous numeric variables, thus 

I was able to explore whether they correlated with the study’s main outcomes of 

interest. As described in Chapter 4, Section 4.7.3.2, PA1 was derived after 

removing an extreme outlier from the dataset. PA2 was derived by removing data 

from 10 further individuals whose questionnaire responses I considered potentially 

spurious. Specifically, my concern was over-reporting of physical activity, which 

has been reported in previous studies where IPAQ findings were compared with 

accelerometer results (e.g. Boon et al., 2010; Cerin et al., 2016).   

 

Descriptive statistics are given in Table 5.14. Variability in PA1 and PA2 is high, 

as shown by the CVs. Mean PA in kcal/week is reduced for PA2, relative to PA1.  

Table 5.14 Descriptive statistics for PA variables 
 n Mean  SD Range CV % 

PA1 (kcal/week) 68 3458 2218 476-9874 64 

PA2 (kcal/week) 58 2897 1727 476-7748 60 

 

 

Correlation coefficients for PA1 and PA2 with brain and body volumes are given in 

Table 5.15. REE is added in the table. 
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Table 5.15 Pearson correlation coefficients for brain and body 
outcomes with PA variables 
Body/brain variables PA1 

r, p 
PA2 

r, p 
FM, kg 0.34, 0.004 0.41, 0.001 

FFM, kg 0.30, 0.01 0.35, 0.006 

SM, kg 0.31, 0.01 0.40, 0.002 

Heart, cm3  0.35, 0.004 0.42, 0.001 

Liver, cm3  0.27, 0.02 0.37, 0.004 

Kidney, cm3 0.23, 0.06 0.22, 0.09 

Spleen, cm3  0.35, 0.004 0.23, 0.08 

Composite organ, cm3 0.34, 0.006 0.42, 0.001 

Gray matter, cm3 0.02, 0.85 0.02, 0.89 

White matter, cm3 -0.02, 0.85 -0.03, 0.81 

Cerebellum cortex, cm3 0.01, 0.94 0.07, 0.59 

Cerebellum white matter, 
cm3 

0.08, 0.51 0.02, 0.90 

Amygdala, cm3 -0.06, 0.65 -0.02, 0.87 

Hippocampus, cm3 0.05, 0.70 -0.03, 0.81 

Striatum, cm3 0.18, 0.13 0.08, 0.56 

REE, kcal/24hr 0.24, 0.05 0.40, 0.002 

 

 

PA1 is significantly related to FM, FFM, SM and all body organs except the 

kidneys. PA2 demonstrates a similar pattern, although this variable shows no 

relationship with spleen volume. Neither PA variable is related to any of the brain 

volume outcomes. With regard to REE, PA1 is borderline significant, whilst PA2 

demonstrates a stronger relationship.  

 

As I show in Chapter 6, REE is strongly correlated with FFM, and I suspect the 

correlations between REE and PA may be confounded by variability in FFM. To 

test this, I take the residuals of REE on FFM to derive a new variable where 
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variability attributable to FFM has been adjusted out. This REE-residual variable is 

not associated with PA1 (r = 0.04, p = 0.75) or PA2 (r = 0.21, p = 0.11), which 

suggests the relationships seen above for REE and the PA variables are artefacts 

of REE’s association with FFM.  

 

Although PA1 and PA2 correlate with several body tissue outcomes, their lack of 

correlation with REE once FFM is controlled for indicates PA is not a relevant 

potential confounder in the Chapter 6 analyses of REE and body/brain variables. 

Likewise, the finding that PA does not relate to any brain measures obviates the 

need to control for this variable when testing tissue trade-offs in Chapters 7 and 8, 

where brain measures are set as the outcome in all models.  

 

5.5.3 Menstrual cycle 

The three menstrual cycle variables I described in Chapter 4, Section 4.7.3.3 are 

distinguished by length of cycle, as determined by subjects’ reported first day of 

last menstruation prior to data collection. Correlations among these variables and 

my primary study outcomes are shown in Table 5.16 below.  

 

MC variables are not related to FM, FFM or SM, but MC1 and MC2 correlate with 

the liver and composite organ (MC3 is borderline significant for the liver). MC1 is 

just significant with spleen volume, at p = 0.04. Several additional positive 

associations are found among MC variables and brain components, including gray 

matter, white matter, cerebellum cortex, hippocampus, striatum and composite 

brain. REE is not significantly associated with MC1, MC2 or MC3.  
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Table 5.16 Pearson correlation coefficients for brain and body 
outcomes with menstrual cycle variables 
Body/brain variables MC11 

r, p 
MC2 

r, p 
MC3 

r, p 
FM, kg 0.01, 0.94 0.12, 0.37 0.09, 0.52 

FFM, kg 0.16, 0.26 0.16, 0.23 0.10, 0.48 

SM, kg 0.17, 0.24 0.22, 0.11 0.17, 0.20 

Heart, cm3 0.14, 0.34 0.09, 0.52 -0.01, 0.94 

Liver, cm3 0.35, 0.02 0.31, 0.02 0.26, 0.05 

Kidney, cm3 0.25, 0.09 0.25, 0.07 0.17, 0.21 

Spleen, cm3  0.30, 0.04 0.22, 0.12 0.09, 0.50 

Composite organ, cm3 0.39, 0.008 0.33, 0.02 0.23, 0.10 

Gray matter, cm3 0.26, 0.07 0.24, 0.08 0.29, 0.03 

White matter, cm3 0.32, 0.03 0.35, 0.009 0.42, 0.001 

Cerebellum cortex, cm3 0.31, 0.03 0.24, 0.08 0.26, 0.05 

Cerebellum white matter, 
cm3 

0.25, 0.08 0.25, 0.06 0.20, 0.14 

Amygdala, cm3  0.12, 0.43 0.25, 0.07 0.18, 0.18 

Hippocampus, cm3 0.26, 0.07 0.37, 0.006 0.38, 0.003 

Striatum, cm3  0.41, 0.004 0.43, 0.001 0.38, 0.003 

Composite brain, cm3 0.35, 0.01 0.35, 0.01 0.41, 0.001 

REE, kcal/24hr 0.22, 0.13 0.24, 0.08 0.24, 0.08 
1MC1: menstrual cycle range 21-35 days, n = 48; MC2: cycle range 21-41 days, n = 54;  
  MC3: cycle range 21-45 days, n = 58 
 

 

I initially considered that variation in menstrual cycle phase at data collection might 

impact on the REE measurement in particular, following reports of intra-individual 

variation in REE over the course of a cycle in women (Soloman et al., 1982; Henry 

et al., 2003). My MC variables are a relatively crude index of cycle phase, however 

their lack of association with REE does suggest REE was not significantly 

impacted by variability associated with menstruation in my sample. For this reason, 
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I conclude it is not necessary to control for MC variables as potential confounders 

in my Chapter 6 analysis of body/brain composition and REE.  

 

MC variables do, however, demonstrate associations with the liver, composite 

organ and several brain components, including composite brain, which was 

unexpected. Why day-of-cycle at the data collection visit would correlate with body 

organ volumes is unclear, however, as noted in Chapter 4, recent studies have 

suggested hormonal fluctuations over the menstrual cycle are related to brain 

structural changes, for example in the hippocampus (Lisofsky et al., 2015). As I 

test for tissue trade-offs in Chapter 7, I treat MC variables as potential confounders 

where they associate with both the predictor and outcome variable in the model.  

 

5.6 Discussion of findings in this chapter  
The results detailed in Sections 5.3 and 5.4 above support part (iv) of my second 

hypothesis, as set out in Chapter 2. This predicted 1) that organs and tissues in 

the body are positively related to one another; 2) that specific volumes of the brain 

are likewise positively related; and 3) that, in contrast, positive associations 

between brain and body tissues are fewer and weaker in magnitude. With respect 

to the second prediction, I found support, although the pattern was less consistent. 

 

With respect to body components, findings suggest that an individual with greater 

weight and taller height has more FFM, including larger organs and greater SM 

mass. Greater body weight is also strongly associated with increased FM, although 

FM is relatively independent of height. Indeed, FM demonstrates a high degree of 

variability, as indicated by a CV of 32.9%. The CV for FFM is just 11.4%, although 

there is more variability amongst FFM components: for the heart, kidneys and liver 

the CV is approximately 17%, whilst for the spleen it is even higher than FM at 

34.9%. For SM, the CV is somewhat higher than overall FFM (14.2%). Thus, 

variability in FM as a component of weight is apparently distributed relatively 

uniformly across the range of stature. FFM scales more closely with stature, 
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however within the FFM compartment SM and organs appear to vary to a greater 

extent with body size (see below). 

 

That tissues and organs are generally strongly related to body weight is 

unsurprising, as the former are components of the latter. At the same time, the 

associations I observed amongst FFM, FM and height have been shown before. 

For example, in a multi-ethnic sample of children and adults, Wang and coworkers 

(2012) also found FM to be highly variable (CV >30%), and not strongly related to 

height. The opposite was seen for FFM, which increased significantly with 

increasing height, as I saw in my data. These associations are consistent with the 

notion that FFM represents the ‘body core’, wherein components including SM and 

organs are more stable aspects of physique than FM, which demonstrates greater 

plasticity over time (Wang et al., 2012).  

 

Further evidence suggests a relatively strong association between height and lean 

mass is present from birth. For example, birth weight has been widely found to 

associate with later lean mass, but to a lesser degree with later FM (Wells et al., 

2007; Kuzawa et al., 2012), while both birth weight and birth length correlate with 

adult height (Sørensen et al., 1999). As discussed in Chapter 1, components of 

lean mass are canalized following sensitive periods in fetal life and/or infancy so 

that they track into adulthood. Linear growth similarly becomes canalized under 

the influence of growth hormone, so that organs develop in tandem with stature 

(Wells, 2016). Autopsy and imaging studies have shown that organ size correlates 

positively with stature in adults (e.g. de la Grandmaison et al., 2001; Sheikhazadi 

et al., 2010; Davis et al., 2015).  

 

My findings suggest that measured body organs scale to a variable degree with 

height, weight and other body tissues. Despite their difference in size, the heart, 

liver and kidneys scale similarly to height and weight, whilst the spleen’s 

association with body size is weaker. A similar pattern is found with respect to 

organ correlations with FM, FFM and SM, whereby coefficients for the spleen are 
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smaller than those observed for the heart, liver and kidneys. In de la Grandmaison 

et al.’s (2001) autopsy dataset, the liver weight of females correlated most strongly 

with height, followed by the kidneys, whilst the spleen was more weakly associated 

(heart weight was significantly correlated with BMI, but not height).  

 

Indeed, in my dataset all lean body outcomes were significantly, positively related 

to one another. Prior studies have reported similar findings. Using MRI, Gallagher 

et al. (1998) found strong correlations among heart, liver, kidneys, SM, and a 

measure of AT-free mass, which is comparable to FFM. Similar results were shown 

by Illner et al. (2000) using MRI and DXA in a mixed-sex cohort, and also by Bosy-

Westphal and colleagues (2004), who used equivalent methods to measure body 

composition in underweight, normative weight, and obese adults. However, there 

is some variation between the size of the coefficients I observed in my sample, 

and those reported in these studies. For example, for associations amongst organs 

I saw coefficients in the range 0.34 – 0.64. The results of Illner et al. (2000) were 

similar to my own (0.44 – 0.71), however those of Bosy-Westphal et al. (2004) 

were higher (0.67 – 0.83). With respect to associations amongst SM and organs, 

the range of coefficient values reported by Gallagher et al. (1998; 0.75 – 0.85) was 

higher and did not overlap with my sample range (0.42 – 0.72).  

 

With respect to FM, Gallagher et al. (1998) and Illner et al. (2000) found no 

significant associations with lean body organs and tissues. In contrast, I found that 

FM was significantly associated with FFM, SM and organs, although the 

coefficients were somewhat weaker than those observed among lean 

components, with a range of 0.36 – 0.44. The variation in findings among studies 

could potentially be explained by methodological differences, despite the common 

use of MRI and DXA, or the fact that the above authors’ samples were comprised 

of both men and women of European ethnicity. Variation in findings may owe in 

part to the fact that the allometric relationship between FM and FFM is complex, 

not linear; it may also vary among populations, and in association with factors such 

as nutritional status (Wells and Victora, 2005).  
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With respect to the brain, the composite brain volume variable demonstrated a 

different pattern than other non-FM components in my sample. First, the brain was 

less variable, with a CV of 7.5%. Although it appeared to scale to some extent with 

height, the brain appeared not to vary in association with body mass. It was not 

significantly related to FFM, SM, body organs, or FM, thus appearing not to scale 

with fat or fat-free body tissues. Relatively weak relationships between the brain 

and components of the body were also shown by Gallagher et al. (1998), Illner et 

al. (2000), and Bosy-Westphal et al. (2004). In each case, organs, SM and FFM 

were more closely related to one another than they were to the brain.  

 

Reported associations of brain mass with body weight and height are ‘weak and 

inconsistent,’ according to Heymsfield et al. (2012b). These authors have shown 

that brain mass scales hypoallometrically with both height and FFM, so that brain 

mass represents a smaller proportion of FFM with increasing height (Heymsfield 

et al., 2012a,b). This is consistent with the relatively small brain CV: relative to, for 

example, the heart or liver, the brain is not expected to demonstrate as much 

variation amongst individuals of differing height or body size. Indeed, Heymsfield 

et al.’s (2012b) comparative analysis of the brain and liver, which are similar to one 

another in size and metabolic rate, found that the liver scaled to height with a power 

similar to FFM, in contrast to the brain’s scaling with height at a lower power. Liver 

mass also correlated more strongly with FFM than brain mass, which I found in the 

present analysis. In my sample, the FFM-liver coefficient was r = 0.71, relative to 

the FFM-brain coefficient of r = 0.16, which was non-significant.  

 

As with the composite brain variable, I found that the brain’s component parts were 

largely uncorrelated with organs and tissues in the body. The only significant 

relationships, which demonstrated moderate effect sizes, were seen for 

cerebellum white matter (with FFM and kidney volume) and white matter (with 

kidney volume). White matter and cerebellum white matter in fact demonstrated a 

greater degree of variability than most brain components (excepting the 

amygdala), with CVs of 10.4% and 13.1%, respectively, whilst their gray matter 
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counterparts had CVs more similar to composite brain (7.5%). It is difficult to 

interpret the specific findings relating white matter to FFM and kidney volume, 

however they suggest that testing for somatic trade-offs using a global brain 

outcome alone might obscure underlying relationships. Overall, however, the 

results indicate that knowing the size of body organs and tissues has limited utility 

for predicting the size of specific volumes of the brain, or total brain size.  

 

As I predicted in Hypothesis 2, despite weak links with body tissues, brain 

components did tend to correlate with one another, which is consistent with the 

idea that there is a common developmental process underlying their growth (Finlay 

and Darlington, 1995; Clark et al., 2001). However, the brain component 

correlations themselves were not particularly strong. An exception was gray and 

white matter volumes with composite brain (r > 0.90), which was expected, as gray 

and white matter are the largest components of the composite brain variable. 

However, the r-value for gray and white matter was 0.72, indicating that the 

variance in one explains only ~50% of the variance in the other. This may be 

related to the fact that, although individuals with more gray matter tend to have 

more white matter, the volumes do not scale equally with brain size: as brain size 

increases, white matter must make longer-range connections between more 

distant cortical regions, and thus tends to increase in volume more quickly than 

gray matter (Zhang and Sejnowski, 2000).  

 

Within the brain, correlations were weakest for the cerebellum. For example, 

cerebellum cortex and cerebellum white matter volumes demonstrated r-values of 

only ~0.40 with composite brain, and were even more weakly correlated with gray 

and white matter (r = 0.21 – 0.33). They demonstrated largely non-significant 

relationships with subcortical structures. This may again relate to scaling 

differences. While the cerebrum and cerebellum are both absolutely larger in larger 

brains, the cerebrum is relatively large with increasing brain size, while in contrast 

the cerebellum represents a constant proportion of the total brain (Clark et al., 

2001; Herculano-Houzel, 2010). The cerebellum is recognized to play an important 
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role in cognitive and motor-related brain function, and as noted above, it is highly 

interconnected with cerebral gray matter (Leiner et al., 1989; Rilling, 2006, 2008; 

Ramnani, 2006), however this is not reflected by the results of simple correlations 

in my sample.  

 

Although components within the body and those within the brain generally show 

significant, positive correlations, as I predicted, it is notable that the relationships 

are far from direct. The same is true for associations of body and brain components 

with height and weight, suggesting that a considerable amount of variation in organ 

and tissue size is unexplained by overall body size. The largest correlation 

coefficient among body organs and tissues was 0.72 for SM and liver (excepting 

SM and FFM, which were predictably closely related), which indicates that the 

variance in the size of one tissue explained by variance in another in my dataset 

does not exceed ~50%. With respect to brain components, the highest r-value is 

likewise 0.72 (between gray and white matter, as described above). Correlations 

were generally somewhat weaker for the brain than those seen for body 

components, and there were fewer significant findings within the brain.  

 

Species are characterized by a common ‘bauplan’ or ‘blueprint’ for the body’s 

development (Shingleton, 2010) and common mechanisms are recognized to 

underlie the growth of the brain and body (Netchine et al., 2011). Nevertheless, 

the current findings indicate that a given increase in one body or brain variable 

does not correlate with the same degree of increase in another. This suggests that 

there is considerable variation in the way the body and brain are built, which may 

be explained by the influence of environmental factors during development, or the 

effect of genes on the relative growth of different body components.  
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6 REE and the metabolic cost of organs and 
tissues 

 

In Chapter 5 I described patterns of association amongst brain and body 

composition outcomes in my dataset. In this chapter, I test the hypothesis that the 

brain, body organs, SM and FM are differentially metabolically costly. This was 

designated Hypothesis No. 1 in Chapter 2. I briefly introduced REE and the notion 

that organs and tissues have different SMRs (specific metabolic rates) in Chapter 

1. Here, Section 6.1 provides additional background on the assessment of 

variation in tissue energy expenditure by previous authors.  

 

Section 6.2 describes relevant statistical methods for this chapter, and Section 6.3 

demonstrates how REE associates with body and brain variables. Section 6.4 

employs two different methods to investigate tissue-specific metabolic rate values, 

after which these values are used to calculate each tissue’s contribution to the 

overall energy budget. In Section 6.5, I explore whether brain sub-structures 

appear to differentially contribute to REE. Finally, in Section 6.6 I show the best-fit 

multivariable model for REE on organ/tissue outcomes, and offer a summary of 

the chapter’s findings in Section 6.7. 

 

6.1 Background: assessing the REE of specific organs 
and tissues 

Accessible measures of height and weight were employed in early studies on the 

link between body size and metabolism (e.g. Kleiber, 1932; Heusner, 1985; see 

review of Heymsfield et al., 2012a). With the development of methods that could 

partition the body into its component parts (several of which I described in Chapter 

3), researchers built on the knowledge that body size determines REE, finding that 

not all components contributed equally to the body’s resting energy budget. It was 

recognized that “there are in the body various kinds of cells, differing in the rate of 

oxygen consumption” (Brozek and Grande, 1955, pg. 22). Keys and Brozek (1953) 
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differentiated between metabolically ‘active’ and ‘inert’ components of mass, with 

the former including brain and body organs, and the latter adipose tissue and fat.  

 

Measuring cerebral blood flow using a nitrous oxide method, in 1945 Kety and 

Schmidt estimated the mass-specific oxygen consumption (i.e. SMR) of the brain 

in a cohort of adult males. Their results suggested an SMR of 260 kcal/kg/day, 

which is similar to values reported subsequently (Heymsfield et al., 2012a). In 

1950, Drabkin estimated the level of oxygen consumption for additional tissues, 

including SM, heart, liver, and kidneys. Holliday and colleagues (1967) and Elia 

(1991, 1992) compiled existing data to further describe variation in tissue SMRs in 

children across developmental stages, and in adults.  

 

A key finding by the above authors and others was that the brain and a small 

number of internal organs comprising approximately 5-7% of adult body weight 

account for >60% of whole-body REE. At the same time, SM and AT, which 

represent much larger masses in the body, have comparatively low mass-specific 

energy turnover (Brozek and Grande, 1955; Holliday et al., 1967; Elia, 1991, 1992). 

Elia’s (1992) publication of SMR values for organs, as well as SM, AT and a 

miscellaneous compartment (‘Residual mass’), has been widely cited in 

subsequent REE-body composition investigations, as developed below.  

 

The SMRs of organs and tissues (referred to as ‘Ki’ values) can be estimated 

directly in vitro or in vivo, however the former may yield poor estimates, and the 

latter employs methods involving arteriovenous (A-V) oxygen concentration and 

blood flow measurements, which are technically difficult (Elia, 1991, 1992; Wang 

et al., 2010). A-V studies were used to establish the Ki values Elia published in 

1991 and 1992, and have been used by other authors (e.g. Zurlo et al. (1990) for 

SM). Subsequently, several researchers have developed REE-body composition 

models utilizing Elia’s values, testing their applicability for estimating whole-body 

REE from MRI-measured body organs and tissues. With data from MRI, DXA and 

IC, I follow the methods set out by these authors to assess tissue energy 
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expenditure in my own sample (described in the following sections), as the more 

direct estimation of Ki values by A-V methods was not feasible.  

 

One of the first studies to use MRI and REE data alongside Elia’s Ki values – which 

he gave for brain, heart, kidney, liver, SM, AT and residual mass – was that of 

Gallagher and colleagues (1998). They quantified AT, SM, the liver, kidneys, and 

brain by MRI, measured the heart by echocardiography, and REE by IC. They 

derived residual mass by subtracting the sum of the remaining six components 

from body weight, and multiplied the mass of each organ or tissue by Elia’s 

published Ki values. The sum of these products gave ‘calculated’ REE, which the 

authors observed was strongly correlated with measured REE (r = 0.94). These 

findings suggested both that REE could be predicted in vivo using organ and tissue 

measurements, and also that Elia’s Ki values were accurately applied in the 

authors’ study cohort.  

 

A subsequent investigation in an independent, larger sample produced consistent 

findings (Illner et al., 2000). Using very similar methodology, Illner and coworkers 

(2000) also calculated REE from imaging-derived organ/tissue masses and Elia’s 

values, and likewise found a strong association with measured REE (r = 0.92). 

Similar results were reported for studies carried out by Heymsfield et al. (2002), 

Bosy-Westphal et al. (2004), and Midorikawa et al. (2007). Altogether, these 

various findings suggested the applicability of Elia’s values across young, healthy 

men and women (Wang et al., 2010; Heymsfield et al., 2012a), although the range 

of populations in which such studies have been carried out remains limited. With 

respect to the ethnic background of the subjects in the studies cited here, the 

cohort of Heymsfield et al. (2002) was comprised of African American, white, Asian 

and Hispanic men and women recruited in the United States; Midorikawa et al. 

(2007) undertook their study in Japanese individuals; and the remainder appear to 

have recruited individuals of European ethnicity (Gallagher et al., 1998; Illner et 

al., 2000; Bosy-Westphal et al., 2004; Wang et al., 2010).  
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Several of the above authors also explored using stepwise multiple regression to 

explain the variance in measured REE using brain, heart, liver, kidney, AT, SM 

and residual masses in their samples. Different combinations of organs and tissues 

emerged as significant predictors in different models, for example brain mass and 

SM (Gallagher et al., 1998); liver mass and SM (Illner et al., 2000; Bosy-Westphal 

et al., 2004); and brain, liver, SM, AT and residual mass (Heymsfield et al., 2012a). 

The outcomes in each case represent a mix of both low and high metabolic rate 

tissues, as per Elia’s (1992) published values.  

 

In a 2010 study, Wang and coworkers measured REE by IC, and organs and 

tissues by MRI and DXA. They developed a univariable regression method with 

which they demonstrated further evidence of the applicability of Elia’s values 

across young adults (results were less consistent in individuals > 50 years of age). 

I describe the method of Wang et al. (2010) in more detail in Section 6.4, where I 

employ the same approach to assess the applicability of Elia’s Ki values in my own 

sample. First, Section 6.2 describes general statistical methods, and Section 6.3 

gives descriptive statistics for REE and describes its association with body and 

composite brain outcomes. 

 

6.2 Statistical methods 
In this chapter, variables were used in their raw form rather than log-transformed 

following previous authors (e.g. Wang et al., 2000; Heymsfield et al., 2002; Later 

et al., 2008; Javed et al., 2010; Heymsfield et al., 2012a). Kleiber described a 

nonlinear relationship between REE and body mass in mature mammals, however 

Wang and coworkers (2000) demonstrated that while the relationship between 

REE and FFM is curvilinear, it can be linearly modeled when FFM variation is within 

the range of 40-80 kilograms. Later and colleagues (2008) found no evidence that 

Ki values vary in relation to body size in humans across a wide range of body mass, 

which suggests modelling raw REE and brain/body composition data in the current 

study is tenable.  
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Pearson correlation coefficients were calculated for REE with brain and body 

variables, with plots given to demonstrate associations. REE-body composition 

regression models were employed to test the hypothesis that organs and tissues 

are variable in their metabolic expense. For clarity, the specific details of the 

various regression models are described further in relevant sections below.  

 

6.3 Associations among REE, body composition and 
brain volume outcomes 

As described in previous chapters, REE is the number of kilocalories used over 24 

hours to carry out several essential bodily functions, and I used IC to obtain the 

measurement in my sample. Table 6.1 gives descriptive statistics for REE. Two 

participants missed the IC measurement due to scheduling conflicts, thus the 

sample size for this outcome is 68.  

Table 6.1 REE descriptive statistics 
 n Mean  SD Range CV % 
REE (kcal/24hr) 68 1,337 184 993-2034 13.8 

 

 

REE is significantly correlated with both weight (r = 0.73, p < 0.001) and height (r 

= 0.45, p < 0.001), with a relatively strong association with weight, as shown in 

Figures 6-1 and 6-2 below.  
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Figure 6-1 REE against weight for 68 subjects. 
r2 = 0.53, p < 0.001 
 

 

Figure 6-2 REE against height for 68 subjects. 
r2 = 0.20, p < 0.001 
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After demonstrating above that REE correlates with weight, Table 6.2 shows more 

nuanced associations among REE and components of body weight, i.e. organs 

and tissues of the body, and the composite brain variable. Volumes are converted 

to mass for analyses later in this chapter, however here correlations and plots with 

raw organ and tissue volumes are given. The association of REE with specific brain 

components is explored further in Sections 6.5 and 6.6.  

Table 6.2 Pearson correlation coefficients of REE with raw body 
composition outcomes 
Body composition 
outcomes 

REE, kcal/24hr 
r, p 

FM, kg 0.53, <0.001 

FFM, kg 0.76, <0.001 

SM, kg 0.77, <0.001 

Organ volumes, cm3  

   Heart  0.70, <0.001 

   Liver  0.67, <0.001 

   Kidney 0.61, <0.001 

   Spleen  0.32, 0.008 

   Composite organ 0.74, <0.001 

Composite brain 0.21, 0.08 

 
 

All body outcomes are positively correlated with REE, with highly significant p-

values. However, composite brain demonstrates no such association, appearing 

once again to deviate from the pattern found for body tissues, as observed in 

Chapter 5. Here, the largest coefficients are seen for REE with FFM and SM. 

Among the single organs, heart volume demonstrates the largest coefficient 

(although the liver coefficient is similar in size), and spleen volume is the smallest. 

The correlation of composite organ volume with REE approaches the strength of 

the correlations seen for REE with FFM and SM. Plots below visualize the 

relationships among REE and brain/body outcomes detailed in Table 6.2. 
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Figure 6-3 REE against FM. 
r2 = 0.28, p < 0.001; n = 68 
 
 

 

Figure 6-4 REE against FFM. 
r2 = 0.58, p < 0.001; n = 68 
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Figure 6-5 REE against SM. 
r2 = 0.59, p < 0.001; n = 68 
 

 

Figure 6-6 REE against heart volume. 
r2 = 0.49, p < 0.001; n = 67 
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Figure 6-7 REE against liver volume. 
r2 = 0.45, p < 0.001; n = 68 
 
 

 

Figure 6-8 REE against kidney volume. 
r2 = 0.37, p < 0.001; n = 68 
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Figure 6-9 REE against spleen volume. 
r2 = 0.10, p = 0.008; n = 66 
 
 

 

Figure 6-10 REE against composite organ volume. 
r2 = 0.55, p < 0.001; n = 65 
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Figure 6-11 REE against composite brain volume. 
r2 = 0.04, p = 0.08; n = 68 
 

 

6.4 Assessing variation in tissue-specific metabolic rate 
As described, a tissue’s SMR, or Ki value, indicates its metabolic expense relative 

to other tissues in kcal/kg/day. In this section, I explore two methods for assessing 

the Ki values of organs and tissues measured in my sample. The first is the 

univariable method employed by Wang and colleagues (2010), which I introduced 

in Section 6.1, although I employ my measure of FM in place of AT. The second is 

a multivariable method, whereby the same 7 components used in the univariable 

method – brain, liver, kidney, heart, SM, FM and residual masses – are entered 

into a regression model to predict REE. It is recognized from the outset that both 

methods have limitations, which I discuss further in Section 6.7.  
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6.4.1 Assessing Ki values with a univariable regression 
method 

In previous research (e.g. Gallagher et al., 1998; Illner et al., 2000; Bosy-Westphal 

et al., 2004; Midorikawa et al., 2007; Wang et al., 2010), body mass (BM) has been 

treated as the sum of seven body components:  

 

(6-1)     BM = 𝑀|p%rq + 𝑀tn%p* + 𝑀}r(qnH+ + 𝑀~r�np + 𝑀�` + 𝑀�` +

																																																𝑀pn+r(o%~ 

 

where M is mass of the specific body component. Residual mass comprises 

tissues including blood, bone, skin, stomach and intestines, connective tissue, and 

the lungs (Gallagher et al., 1998; Wang et al., 2010). It is calculated as total body 

mass minus summed brain, heart, liver, kidneys, SM and FM. 

 

REE is considered the sum of the products of each body component mass and its 

corresponding individual resting metabolic rate: 

 

(6-2)   REE = 	∑(𝐾r ∗ 𝑀r) 
 

where Ki is the specific resting metabolic rate in kcal/kg/day for the individual body 

component (‘i’), and Mi is the mass of the component in kilograms. 

 

As described in Section 6.1, several studies have used Ki values reported by Elia 

(1992) for the 7 organs and tissues in Equation 6-1 (see Table 6.3 below). The Ki 

values vary in size; those for brain and liver are about half the size of those 

estimated for the heart and kidneys. Values for SM and FM are 1/34 and 1/98 the 

size of the heart and kidneys, respectively.  
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Table 6.3 Elia’s Ki values 
Organ/tissue Elia’s Ki value (kcal/kg/day)1 

Brain 240 

Heart 440 

Kidneys 440 

Liver 200 

SM 13 

FM 4.5 

Residual 12 
 1Ki values from Elia, 1992 

 

 

Incorporating Elia’s tissue-specific metabolic rate values into Equation 6-2, whole-

body REE is calculated thus:  

 

(6-3)          REE = 240𝑀|p%rq + 440𝑀tn%p* + 440𝑀}r(qnH+ + 200𝑀~r�np +

																																								13𝑀�`	 + 4.5𝑀�` + 12𝑀pn+r(o%~ 
 

To evaluate the applicability of Elia’s Ki coefficients across adults, Wang et al. 

(2010) developed a statistical approach which included the following steps:  

 

An REE value for each organ or tissue was calculated by holding the remaining 

organs and tissues at Elia’s Ki values, for example:  

 

(6-4)															REE~r�np = REE − (240𝑀|p%rq + 440𝑀tn%p* +

																																				440𝑀}r(qnH+ + 13𝑀�` + 	4.5𝑀�` + 12𝑀pn+r(o%~) 

 

Least-squares univariable regression was then carried out as:  

 

(6-5)    REE~r�np = 𝐾~r�np ∗ 𝑀~r�np 
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where the regression coefficient of REEliver on liver mass is the Ki value for liver.  
 

These steps were repeated for each of the remaining organs and tissues to derive 

their Ki values and CIs. Equation 6-5 contains no intercept, indicating Wang and 

colleagues forced the regression through the origin. Using this method, the authors 

derived Ki values relatively similar to those of Elia; Elia’s values fit within the 95% 

CIs constructed around Wang et al.’s sample coefficients. Using my dataset, I 

followed the steps outlined in Equations 6-4 and 6-5 for each of the 7 components 

to test whether I might similarly find Ki values similar to Elia’s. 

 

First, I converted my measured volumes to mass using known tissue density 

values (Duck, 1990; Table 6.4). These were multiplied by organ volumes, and 

mass in grams was converted to kilograms. I used the composite brain variable. 

Table 6.4 Organ density values and descriptive statistics for 
organ mass 

Organ Density (g/cm3)1 Mass (kg), 
Mean±SD 

Mass (kg), 
Range 

Brain 1.036 1.1±0.08 0.88-1.25 

Heart 1.06 0.5±0.09 0.35-0.83 

Kidneys 1.05 0.3±0.05 0.21-0.48 

Liver 1.06 1.2±0.21 0.76-1.7 
 1Density values from Duck, 1990 

 

 

Of the remaining components, FM and SM were originally measured in kilogram 

units. I calculated residual mass as described above, obtaining a mean of 19.2 kg 

(SD = 2.13; range 14.7-26.3). 
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Following Wang et al.’s univariable analysis, I obtained the Ki values shown below. 

They are accompanied in Table 6.5 by their associated SEs and 95% CIs, and 

Elia’s values for comparison.  

Table 6.5 Ki values calculated in the present sample following the 
univariable method of Wang et al. (2010) 
Organ/ 
tissue 

Elia’s 
Ki 
values 

Ki values 
– this 
study 

SE 95% CI Absolute 
difference, 
mine vs. 
Elia 

% 
Difference, 
mine vs. 
Elia 

Heart 440 362 23.8 314.5, 409.3 78 -20 

Kidneys 440 295 42.6 209.7, 379.9 145 -40 

Brain 240 201 11.7 177.5, 224.3 39 -18 

Liver 200 165 10.3 144.1, 185.2 35 -19 

SM 13 10 0.8 8.7, 12.0 3 -23 

FM 4.5 2.6 0.6 1.4, 3.8 1.9 -54 

Residual 12 10 0.7 8.5, 11.1 2 -20 

 

 

Each of the values derived in my sample are smaller than Elia’s, with percentage 

differences ranging from 17.7 for brain, to 53.5 for FM. The boxplot in Figure 6-12 

below shows my coefficients and their associated SEs alongside Elia’s values. 
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Figure 6-12 Coefficients and their error (gray bars) derived from 
univariable regression, and Elia’s values. 
 

 

The variation in findings suggests Wang et al.’s (2010) method of setting tissues 

to Elia’s values (see Equation 6-4) may be problematic if these values are not in 

fact applicable across study samples. Nevertheless, the ranking of tissues by Ki 

value-size shows consistency: for both Elia’s and my derived sample coefficients, 

the largest values correspond to the heart and kidneys, followed by the brain and 

liver, and finally SM, residual mass, and FM.  
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6.4.2 Assessing Ki values with a multivariable regression 
method 

A more straightforward analysis may involve fitting a single multivariable 

regression model, where measured REE is entered as the dependent variable, the 

7 organ/tissue masses are predictors, and the multivariable regression coefficients 

are interpreted to reflect organ/tissue Ki values. This approach avoids the 

assumption that tissue-specific metabolic rates in a given sample are in fact equal 

to Elia’s values. I carried out this analysis for comparison with Wang’s univariable 

method (Equations 6-4 and 6-5), and the results are shown in Table 6.6.  

Table 6.6 Ki values calculated in the present sample from 
multivariable regression of REE on the masses of 7 body 
components 
Organ/ 
tissue 

Elia’s 
Ki 
values 

Ki values 
– this 
study 

SE 95% CI Absolute 
difference, 
mine vs. 
Elia 

% 
Difference, 
mine vs. 
Elia 

Heart 440 475 201 73.9, 875.8 35 8 

Kidneys 440 196 359 -522.0, 914.2 244 -77 

Brain 240 270 97.1 75.3, 463.7 30 12 

Liver 200 78 95.4 -113.1, 268.4 122 -88 

SM 13 34 11.4 11.4, 57.2 21 90 

FM 4.5 5.1 2.2 0.7, 9.6 0.6 13 

Residual 12 1.0 9.1 -17.3, 19.3 11 -169 

 

 

Based on the form of Equation 6-2, and to maintain consistency with the 

univariable approach, I forced the multivariable regression through the origin. 

Unlike the univariable method, overall this has a negligible effect on the coefficients 

and SEs, so that error is generally large and 95% CIs are correspondingly very 

wide. For liver, kidneys, and residual mass, the error exceeds the size of the 

coefficient. The boxplot in Figure 6-13 shows the multivariable method-derived 

coefficients and their associated error, alongside Elia’s values for comparison.  
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Figure 6-13 Coefficients and their error derived from multivariable 
regression, and Elia’s values. 
 

 

Given the high degree of error, three of the coefficients are quite close (heart, brain 

and FM), and ranking by size is generally consistent. However, next to Elia’s 

values my coefficients for the kidneys and liver are much lower, and considering 

its size, the coefficient for SM is considerably higher.  

 

6.4.3 Proportional contributions of tissues to whole-body 
REE 

Following the analyses described above, I have three sets of Ki values: 1) Elia’s 

values; 2) coefficients derived in my sample following the univariable regression 

method of Wang et al. (2010); and 3) coefficients derived in my sample using 
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multivariable regression analysis, where I set 7 tissues as predictors of REE in a 

single model.  

 

The three sets of values give three different calculations for whole-body REE in 

my sample. For reference, as described at the beginning of this chapter, average 

REE measured by IC in my sample was 1,337 (SE = 184, range = 993-2034). I 

refer to this as REEm. 

 

Equation 6-6 shows the products of my sample’s measured mean organ/tissue 

masses and Elia’s Ki values. Each product is labelled to identify the organ or tissue 

to which it corresponds. With this model, average REE is 1,382 kcal/day. This 

differs from REEm by 45 kcal/day.  

 

(6-6) REE = 259.2|p%rq + 232.76tn%p* + 128.04}r(qnH+ + 241.4~r�np +

																																									198.9�` +	 	91.35�` + 229.92pn+r(o%~  
 

The values shown in Equation 6-7 are the products of average tissue masses in 

my sample and my univariable regression-obtained Ki coefficients. Again, each 

value is labelled. Here, average REE is 1,091 kcal/day, which differs from REEm 

by 246 kcal/day. 

 

(6-7)     REE = 216.97|p%rq + 191.45tn%p* + 85.79}r(qnH+ + 198.67~r�np +

																																							157.59�` +	52.78�` + 187.77pn+r(o%~ 
 

Finally, Equation 6-8 below shows the products of my sample’s average tissue 

masses and multivariable regression-obtained Ki coefficients. In this model, REE 

= 1,340 kcal/day. As one would expect, this value is nearly identical to REEm. 
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(6-8)   REE = 291.06|p%rq + 251.17tn%p* + 57.07}r(qnH+ + 93.66~r�np +

																																								524.79�` +	103.53�` + 18.97pn+r(o%~ 
 

With whole-body REE calculated using Ki values and mass, it is possible to assess 

the proportional contribution of each individual organ or tissue to REE (see Figure 

6-14). Using the Ki coefficients I obtained following the univariable method, 

percentage contributions of tissues are similar to those obtained using Elia’s 

coefficients. In contrast, the findings are notably dissimilar for several tissues when 

the multivariable method-derived values are used. 

 

 

Figure 6-14 Percentage contributions of 7 tissues to REE. 
 

 

The calculated contributions of the brain and heart to REE demonstrate the most 

stability across the three models. However, the contribution of SM increases 

substantially in the multivariable model, where the SM coefficient (34) is more than 

double Elia’s SM Ki value (13) or my univariable value (10). For residual mass the 

reverse is true, and percentage contributions of kidney and liver masses also 
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decrease. The increased contribution of FM suggests in the multivariable model 

that relatively inexpensive fat tissue accounts for a greater proportion of REE than 

the kidneys or liver, which would contradict the conventional wisdom.  

 

6.5 Exploratory analysis: correlations of brain 
components with REE 

I noted in Section 6.1 that previous authors with similar data to mine have fitted 

models predicting REE from both brain and body components. I carry out a similar 

analysis in Section 6.6. It appears, however, that the question of whether brain 

sub-structures differentially correlate with measured REE has not been tested. I 

examine this in this section with a small exploratory analysis.  

 

It may be predicted that the components of the brain, a high metabolic rate organ, 

would correlate significantly with REE (although this prediction is less tenable 

following the demonstration in Section 6.3 of a non-significant relationship between 

REE and composite brain). If correlations are observed, it may further be predicted 

that components demonstrating relatively strong correlations make a greater 

contribution to REE (although see Brozek and Grande, 1955). First, Table 6.7 

shows correlations of REE with raw brain component volumes.  

Table 6.7 Pearson correlation coefficients of REE with raw brain 
volume outcomes 
Brain volumes, cm3 REE, kcal/24hr 

r, p 

Gray matter 0.11, 0.37 

White matter 0.22, 0.07 

Cerebellum cortex 0.27, 0.02 

Cerebellum white matter 0.22, 0.07 

Amygdala  0.23, 0.06 

Hippocampus 0.13, 0.31 

Striatum  0.05, 0.71 
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In contrast to the generally strong associations found among REE and body 

composition variables (Table 6.2), only the cerebellum cortex is significantly 

related to REE, with a relatively small coefficient. White matter, cerebellum white 

matter, and amygdala volumes approach significance. The following selected plots 

(Figures 6-15 to 6-18) show correlations of REE with raw brain component 

volumes. I do not show plots of the highly non-significant relationships.  

 

 

Figure 6-15 REE against cerebellum cortex volume. 
r2 = 0.07, p = 0.02; n = 68 
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Figure 6-16 REE against white matter volume.  
r2 = 0.05, p = 0.07; n = 68 
 
 

 

Figure 6-17 REE against cerebellum white matter volume. 
r2 = 0.05, p = 0.07; n = 68 
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Figure 6-18 REE against amygdala volume. 
r2 = 0.05, p = 0.06; n = 68 
 

 

The lack of significant associations between REE and brain volumes suggests the 

latter will not explain a substantial amount of variance in the former in a larger 

model. However, to continue the exploratory analysis, I fit a multivariable REE 

prediction model to investigate the results for each brain volume, holding constant 

for the others.  

 

In general, tissue mass, not volume, is considered to have a metabolic cost. For 

this reason, in the rest of this section and the next I again utilize volume-to-mass 

conversions. I described the conversion for composite brain in Section 6.4. Here, 

I convert specific brain component volumes to mass using specific density values 

for gray (1.039) and white matter (1.043; Duck, 1990).  

 

Brain volumes including cerebellum white matter, amygdala, hippocampus and 

striatum become very small when converted to kilograms, thus I converted all 
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volumes to grams for this analysis, including composite brain (used in Section 6.4 

in kilogram units). Table 6.8 shows descriptive statistics for the composite brain 

variable and each brain component in grams. For all variables, n = 70.  

Table 6.8 Descriptive statistics for composite brain and brain 
components converted to mass in grams 

Brain outcome Density 
(g/cm3)1 

Mass (g),  
Mean±SD 

Mass (g),  
Range 

Composite brain 1.036 1079±81 881-1254 

Gray matter 1.039 476±37 399-556 

White matter 1.043 428±44 312-531 

Cerebellum cortex 1.039 100±9 82-122 

Cerebellum white matter 1.043 32.3±4.2 22.8-43.9 

Amygdala 1.039 2.6±0.3 1.8-3.3 

Hippocampus 1.039 7.5±0.6 6.0-9.5 

Striatum 1.039 18.7±1.5 16.0-22.4 
1Density values from Duck, 1990 

 

 

I assume that the gray matter density value is broadly applicable across different 

gray matter regions (gray matter, cerebellum cortex, amygdala, hippocampus and 

striatum variables), and that the white matter value applies to white matter and 

cerebellum white matter. Even if incorrect, the use of these standard values for 

conversion means that variability in outcomes among subjects will be maintained. 

 

In the model shown in Table 6.9 below, I set REE as the dependent variable, and 

enter all brain component mass variables as predictors.  
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Table 6.9 REE = gray matter + white matter + cerebellum cortex + 
cerebellum white matter + amygdala + hippocampus + striatum 
 Coefficient  SE p R2 
Intercept 788.5 379.9 0.04 0.10 

Gray matter -1.1 0.9 0.25  

White matter 1.6 0.8 0.04  

Cerebellum cortex 5.1 2.9 0.09  

Cerebellum white matter 3.5 6.2 0.57  

Amygdala  173.7 91.4 0.06  

Hippocampus  -22.4 55.4 0.69  

Striatum -29.4 18.6 0.12  

 

 

With all brain variables entered in the model, cerebellum cortex is non-significant 

(although with p < 0.1), whilst amygdala mass remains borderline significant. White 

matter is now just significant at p = 0.04. The model explains 10% of the variance 

in REE.  

 

In Table 6.10, highly non-significant predictors from the previous model are 

removed. Here, only cerebellum cortex approaches significance, and model R2 is 

slightly reduced. 

Table 6.10 REE = white matter + cerebellum cortex + amygdala 
 Coefficient  SE p R2 
Intercept 403.0 312.5 0.20 0.08 

White matter 0.53 0.5 0.31  

Cerebellum cortex 4.7 2.5 0.07  

Amygdala  92.5 75.9 0.23  
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In both models, few outcomes are significant and R2 is small. Overall, the 

preceding exercise suggests that variability in brain components does not 

significantly explain variability in the body’s resting energy budget.  

 

6.6 Explaining REE variability with brain and body 
components  

Although the prediction of REE by brain components alone was largely 

unsuccessful, I examine in the current section which components may emerge as 

significant when brain and body variables are entered in an REE-prediction model 

together. As I noted in Section 6.1, researchers have found variable results using 

stepwise, multivariable regression to fit models predicting REE from brain and 

body composition outcomes. The analysis in the current section differs from the 

multivariable model in Section 6.4, as here I include specific brain components and 

spleen mass, but not residual mass.  

 

My aim is to make straightforward comparisons of cost amongst different tissues, 

and for this reason it is important that all variables be expressed in the same units. 

Incorporating both body and brain masses, a larger range of size necessitated a 

choice between converting the much larger masses to grams, or the much smaller 

masses to kilograms. I chose to use all brain/body variables in kilogram units for 

the present analysis.  

 

As noted above, an additional variable, spleen mass, is incorporated in this 

section. The spleen is less often tested for its contribution to REE, although some 

authors have investigated it in this context (Javed et al., 2010; Heymsfield et al., 

2012a). Similar to the other organs, MRI-measured spleen volume was converted 

to mass with the density value given by Duck (1990); descriptive statistics are 

given in Table 6.11 below. Descriptive statistics for the heart, liver and kidneys 

were given in Section 6.4 (Table 6.4). Density values for brain components were 

given in the preceding section (Table 6.8).  
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Table 6.11 Descriptive statistics and density value for the spleen 
Tissue n Density  

(g/cm3)1 
Mass (kg),  
Mean±SD 

Mass (kg),  
Range 

Spleen  68 1.054 0.14±0.05 0.08-0.33 
1Density value from Duck, 1990 

 

Model 1 below demonstrates REE regressed on FFM, described by Heymsfield as 

the ‘traditional REE model’ (Heymsfield et al., 2012a). In my sample, FFM is a 

highly significant, positive predictor of REE. FFM alone explains 57% of the 

variance.  

Table 6.12 Model 1: REE = FFM 
 Coefficient  SE p r2 
Intercept 119.5 129.0 0.36 0.57 

FFM 32.4 3.4 <0.001  

 

 

In Table 6.13, Model 2 incorporates FM, which also positively predicts REE, 

although with a smaller coefficient than FFM. FFM’s coefficient is somewhat 

reduced with the addition of FM, although model R2 has increased so that 62% of 

the variance is explained.  

Table 6.13 Model 2: REE = FFM + FM 
 Coefficient  SE p R2 
Intercept 148.8 121.6 0.23 0.62 

FFM 27.9 3.5 <0.001  

FM 7.0 2.3 0.003  

 

 

As I have described, FFM is a heterogeneous compartment made up of several 

distinct tissues including SM and organs, and Model 3 on the following page begins 

to break FFM down into these constituent parts. With an aim to investigate which 
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specific fat-free tissues in the body significantly predict REE, the FFM variable is 

removed, and SM and body organ volumes are added in its place. FM remains in 

the model.  

 

Model 3 demonstrates a further increase in R2. FM remains significant, though less 

so, and its coefficient is smaller. Of the added fat-free tissue components, heart 

mass shows the largest coefficient, and SM also emerges as a highly significant 

predictor of REE. The liver and kidneys are not significant. The spleen coefficient 

is negative and non-significant.  

Table 6.14 Model 3: REE = FM + SM + heart mass + liver mass + 
kidney mass + spleen mass 
 Coefficient  SE p R2 
Intercept 254.9 97.6 0.01 0.67 

FM 4.8 2.3 0.04  

SM 36.5 10.1 <0.001  

Heart mass 524.9 212.3 0.02  

Liver mass 89.9 99.7 0.37  

Kidney mass 366.8 372.1 0.33  

Spleen mass -463.0 320.7 0.15  

 

 

In Model 4 below, non-significant liver, kidney and spleen masses are removed 

and brain component volumes are added.  
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Table 6.15 Model 4: REE = FM + SM + heart mass + gray matter + 
white matter + cerebellum cortex + cerebellum white matter + 
amygdala + hippocampus + striatum 
 Coefficient  SE p R2 
Intercept -315.4 236.9 0.19 0.72 

FM 5.1 2.2 0.02  

SM 42.2 8.2 <0.001  

Heart mass 541.3 192.1 0.007  

Gray matter -69.3 531.1 0.90  

White matter 231.0 464.4 0.62  

Cerebellum cortex 4860.8 1675.4 0.005  

Cerebellum white matter -4232.6 3813.1 0.27  

Amygdala  55660.2 52964.6 0.30  

Hippocampus 33081.3 32186.2 0.31  

Striatum -10062.4 10709.2 0.35  

 

 

Of the brain components, only the cerebellum cortex is significant. This is 

consistent with Pearson correlations given in the previous section’s analysis of 

brain components and REE, where the cerebellum cortex was the only component 

which appeared to significantly associate with REE, albeit weakly. Here, the 

coefficient is large and highly significant.  

 

FM, SM and heart mass remain significant, and model R2 increases to 0.72. Of the 

variables which demonstrate significance in the model, the coefficient for 

cerebellum cortex is the largest, followed by the heart, SM and finally FM.  

 

Model 5 removes non-significant predictors from Model 4, with R2 decreasing 

slightly from 0.72 to 0.71. Based on the Ki value analysis in Section 6.4, the final 

model is observed to include both high and low metabolic rate components.  
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Table 6.16 Model 5: REE = FM + SM + heart mass + cerebellum 
cortex volume 
 Coefficient  SE p R2 
Intercept -112.8 161.1 0.49 0.71 

FM 4.9 2.1 0.02  

SM 42.2 7.6 <0.001  

Heart mass 533.5 183.6 0.005  

Cerebellum cortex 4249.9 1415.6 0.004  

 

 

6.7 Discussion of findings in this chapter 
This chapter addressed my first hypothesis, which predicted that organs and 

tissues would be seen to demonstrate variability in metabolic expense, assessed 

by SMR, or Ki, values in kcal/kg/day units. I also hypothesized that I would find Ki 

values similar to those reported in previous analyses in non-South Asian cohorts, 

as Ki values are apparently generally conserved across development and across 

healthy adult individuals (Elia, 1992; Wang et al., 2001). Although there has been 

some indication that the values reported by Elia (1992) are not applicable in older-

aged individuals (Gallagher et al., 2000; Bosy-Westphal et al., 2003; Wang et al., 

2010), this was not a concern in the current study of individuals aged 20-28 years.  

 

The results of my Ki value assessment in Section 6.4 suggested that brain and 

body components are indeed differentially metabolically costly, providing support 

for the first part of my hypothesis, however there was variation in findings between 

the two methods I employed. My derived values did not match as closely with Elia’s 

values as did those of Wang et al. (2010) using similar methods; therefore, there 

was less support for my prediction that the values derived in my sample would 

match the findings reported in non-South Asian cohorts. 

 

Although it would have been ideal to utilize A-V methods and assess organ/tissue 

Ki values more directly, such methods were not available in the current study, as I 
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noted in Section 6.1. The univariable and multivariable methods I described in 

Section 6.4 allowed me to utilize the data I collected to assess the differential 

expense of body components, however these statistical methods are indirect and 

both are arguably flawed. The univariable method of Wang et al. (2010) assumes 

that Elia’s Ki values can be accurately applied to each of the 7 components 

included in the REE/body composition model. The method is somewhat circular, 

constraining the possible outcome for a given organ or tissue component as the 

remaining components are held at Elia’s values. This is especially problematic if 

Elia’s values are not in fact universally applicable, for example across groups 

varying by age, developmental experience (see Criscuolo et al., 2008), or ethnicity. 

When Wang and coworkers applied this method in their 2010 paper, their derived 

values agreed with Elia’s within very narrow confidence intervals. The values I 

derived in my dataset with the same method were consistently lower than Elia’s or 

those found by Wang et al. (2010). One possible explanation for these differences 

is that Ki values are more variable across populations than has previously been 

recognized. The sample analyzed by Wang et al. (2010), for example, was 

comprised of Europeans recruited in Germany.  

 

The multivariable method I employed appeared more straightforward and avoided 

the assumption that Elia’s values were in fact ‘true’ values for each body 

component. However, the multivariable regression model similarly constrained the 

outcomes for each component, as each ‘Ki value’ (i.e. each of the regression 

coefficients) was calculated holding the remaining variables constant. 

Furthermore, the use of statistical versus physiological methods (i.e. the 

measurement of organ oxygen uptake in vivo) to estimate Ki values has been 

criticized previously. In an early paper, Brozek and Grande (1955) argued that it 

was improper to claim that a statistical regression coefficient reflected the oxygen 

consumption rate of an organ or tissue. They drew the distinction between direct 

measures and the R2 value in a multivariable regression, which if conflated, 

spuriously switches the argument “from a statistical into physiological accounting, 
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from the analysis of covariation in body structure and basal metabolism to the 

partitioning of basal oxygen consumption” (Brozek and Grande, 1955, pg. 25).  

 

The argument of Brozek and Grande (1955) helps to explain the lack of agreement 

between the univariable and multivariable method outcomes in my analysis. For 

example, the coefficient for SM in the multivariable model in Section 6.4 was more 

than double both Elia’s SM Ki value, and the value I derived for SM using the 

univariable method. SM significantly explains a portion of the variance in REE, a 

finding which similarly emerged from my analysis in Section 6.6, however this does 

not accurately reflect its Ki value in kcal/kg/day. In the multivariable model there 

are several additional predictor variables, e.g. organs, with which SM correlates 

positively, so that the SM coefficient may reflect effects of these variables. 

Considering this, it is surprising that there in fact was some consistency in the 

coefficients estimated with the univariable and multivariable methods. There was 

considerable error associated with the estimates in the multivariable model, 

however coefficients were similar between methods for the heart, brain and FM, 

and in both models the brain and organs demonstrated the larger coefficients.  

 

Multivariable regression is thus most profitably used to examine which brain or 

body components, when they vary, contribute the most to variation in REE. 

Although imperfect, the univariable method of Wang and coworkers (2010) is 

preferable to the multivariable method if one’s intention is to statistically assess 

relative organ/tissue metabolism. Indeed, although the Ki values derived in my 

sample following Wang’s method did not match Elia’s, they followed a very similar 

pattern. The current analysis thus demonstrates, consistent with prior literature, 

that the brain, heart, liver and kidneys have higher energy expenditure per kilogram 

of tissue than SM or FM. Values are higher for the heart and kidneys than they are 

for the brain and liver, and the value for SM is larger than that seen for FM. 

Classically, the brain, heart, kidneys and liver have been designated high 

metabolic rate organs in comparison to low metabolic rate SM and FM, yet it 

appears they could be further delineated: based on the Ki values, the heart and 
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kidneys are the most expensive per kilogram of tissue, followed by the brain and 

liver, which are intermediate, and finally, SM and FM, where each kilogram of 

tissue is relatively cheap.  

 

However, a different pattern is observed for the percentage contributions of organs 

and tissues to whole-body REE, as this depends both on the Ki value and 

tissue/organ mass. In Chapter 1 (Figure 1-4, Section 1.1.5), I included a figure 

which showed the percentage contributions of the brain, heart, kidneys, liver, SM, 

AT and residual mass to REE based on data from the reference female, as 

reported by Elia (1992). Contributions of the brain and liver (the ‘intermediately’ 

expensive tissues) to REE were both 21%, whilst those of the heart and kidneys 

were just 8% and 9%, respectively, due to their relatively smaller masses. Due to 

its relatively large mass, the proportional contribution of SM to REE was 16%, 

which is larger than the figures seen for the heart and kidneys, despite muscle 

being one of the relatively cheap body tissues.  

 

In my sample, in the current chapter (see Figure 6-14 in Section 6.4 above), I used 

Elia’s values and my univariable method-derived Ki values to calculate the 

proportional contribution of body components to total REE. Comparing my results 

with the calculations based on data for the reference female illustrates both 

similarities and differences. For example, in my cohort, the brain accounts for 

~20% of the resting energy budget, which is close to Elia’s (1992) calculation for 

the reference female (21%), and which has been cited by various authors as the 

proportional contribution of brain metabolism to overall REE in adult humans (e.g. 

Clarke and Sokoloff, 1999; Raichle, 2006). I calculated the percentage contribution 

of liver metabolism to total REE as ~17%, somewhat lower than the 21% Elia 

(1992) reported for the reference female. However, my results for the heart were 

also ~17%, which is much higher than the 8% reported for the reference female 

(Elia, 1992).  
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This difference owes to the larger average heart mass in my study sample, which 

is 0.53 kilograms compared to 0.24 kilograms in the reference female (Snyder et 

al., 1975; Elia, 1992). This discrepancy in average size may be explained by a 

number of factors, including that the reference female data used by Elia in 1992 is 

relatively old, having been published in 1975 by Snyder and colleagues. 

Additionally, the dataset was comprised of numerous studies undertaken in various 

populations at different times, wherein methodology likely differed. However, it 

appears unlikely that the difference in average heart mass is explained by differing 

age or body size; in fact, the average age, height, weight, and BMI of my cohort is 

virtually the same as that reported for the reference female (Later et al., 2010).  

 

The apparently large average heart size in my sample of South Asian women is a 

surprising finding, as previous autopsy evidence showed that heart mass was 

reduced by ~30% in Indians, relative to French individuals (Wells et al., 2016). A 

more recent autopsy study in Indians reported an average heart mass of 0.24 

kilograms for females similar in age to my study cohort (Singh et al., 2004). It is 

possible that imprecision in separating the heart from surrounding blood vessels 

or pericardial fat during segmentation from MR images led to error in my estimate. 

A recent imaging study reported an average heart mass of 0.42 kilograms in 

women of small body size (Davis et al., 2015), which is closer to my results.  

 

Beyond the Ki value analysis, brain and body variables appeared to demonstrate 

different patterns of association, similar to the results seen in Chapter 5. 

Correlation analyses showed that REE was associated with all body composition 

variables, but not composite brain. Within the brain, REE was only weakly 

correlated with cerebellum cortex volume. A recurring finding in the literature is that 

FFM is the main determinant of REE (e.g. Zurlo et al., 1990; Sparti et al., 1997; 

Gallagher et al., 1998; Illner et al., 2000; Müller et al., 2002; Javed et al., 2010). 

Indeed, FFM, SM and the composite organ variable showed the strongest 

relationships with REE in my sample (all r > 0.70), and I found that FFM alone 

explained 57% of the variance in REE. With respect to the brain, Gallagher et al. 
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(1998) found a correlation between brain mass and REE in their sample, however 

Illner et al. (2000) reported a non-significant correlation between the brain and REE 

in the female portion of their study cohort.  

 

Finally, my exploratory analysis in Section 6.5 suggested that brain volumes alone 

are largely unable to account for variance in whole-body REE. This may owe in 

part to the brain’s relatively low variability in comparison to both fat and lean body 

components, as shown in Chapter 5 by the relative size of CVs. In a regression 

model, the brain and its component volumes are thus better able to account for the 

variance in REE once additional variability is accounted for by body outcomes. I 

observed this in Section 6.6, where the previously weak relationship of cerebellum 

cortex volume with REE was strengthened in a multivariable model with FM, SM 

and organs. This analysis showed that FM, SM, the heart, and the cerebellum 

cortex were significant predictors of REE.  

 

As I described in Section 6.1, other authors have reported differing results of 

multivariable REE-body composition prediction models, however most have found 

that both high- and low-metabolic rate tissues predict REE (e.g. Gallagher et al., 

1998; Illner et al., 2000; Bosy-Westphal et al., 2004; Heymsfield et al., 2012a), 

which is consistent with my findings. In each of the previously published studies 

cited here, SM explained a portion of the variance in REE, whilst the brain or other 

body organs were not significant in the model. SM has a much lower Ki value than 

the brain and organs, and is not classically considered an ‘active’ tissue in the 

resting state (Brozek and Grande, 1955). In my own model, FM, which has the 

lowest Ki value relative to the other tissues, significantly predicted REE whilst 

kidney and liver volumes did not. As I noted above for SM, positive correlations of 

SM or FM with other model variables could result in SM or FM reflecting effects of 

the other variables, or potentially displacing them in the model.  
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7 Trade-offs I. Brain and lean body components 
 

In Chapter 5, I described a pattern of moderate, positive associations amongst 

most components within the body, and a somewhat weaker pattern amongst 

comparatively fewer components within the brain. I found virtually no significant 

associations between brain and body variables, and overall there was no evidence 

for significant negative correlations. In Chapter 6, I found evidence to suggest that 

organs and tissues in the body are indeed variably costly.  

 

In this chapter, I test the hypothesis that negative correlations, indicating trade-

offs, are observable between the brain and metabolically expensive organs, and 

between the brain and less-metabolically expensive SM, once body size and head 

size are taken into account. (I also test for trade-offs between the brain and the 

FFM variable, as a more global measure of lean mass.) Beyond composite brain 

volume, I test whether specific brain volumes trade off with organs and/or SM. I 

predicted in Chapter 2 that gray matter may be more likely than white matter to 

demonstrate trade-offs, owing to its relatively high energy expenditure.  

 

This chapter’s sections are organized with respect to the lean body component 

being tested against the brain. After I describe statistical methods in Section 7.1, 

Section 7.2 gives results for brain volume trade-offs with FFM, Section 7.3 gives 

results for the brain against SM, and Section 7.4 shows findings relating to the 

brain and body organs. In Section 7.5 I offer a discussion of the findings. I describe 

results of analyses testing for a trade-off between the brain and FM in Chapter 8.  

 

7.1 Statistical methods 
All variables were natural log-transformed to capture allometric relationships and 

a series of multivariable regression models were fitted. My overall approach was 

to set a brain component as the dependent variable in each model, and a body 

organ or tissue variable as the predictor of interest. I included height and TIV (total 



 231 

intracranial volume) in each model. TIV was described in Chapter 4; it is part of the 

standard FreeSurfer output. The addition of height served to control for body size, 

and TIV was added to each model to control for head size. As described in Chapter 

2, controlling for body and head size was predicted to allow for the detection of 

more subtle relationships among traits that otherwise may demonstrate a 

significant positive correlation, or no correlation. 

 

Height was chosen rather than weight to control for body size because FM, FFM 

and SM masses are components of weight, which would have resulted in their 

appearing twice in a given model. TIV is commonly used in volumetric imaging 

studies to control for variation in head size, which represents a significant source 

of variation otherwise unaccounted for (Buckner et al., 2004; Sanfilipo et al., 2004; 

Bickart et al., 2011; Malone et al., 2015).  

 

7.2 Trade-offs among brain components and FFM 
In my first model, shown in Table 7.1, I set composite brain volume as the 

dependent variable. FFM was added as the predictor of interest along with height 

and TIV. Controlling for height and TIV, FFM is significantly, negatively related to 

composite brain volume. 

Table 7.1 Model 1: Composite brain = FFM + height + TIV 
 Coefficient  SE p 
Intercept -0.36 0.59 0.54 

FFM  -0.11 0.04 0.016 

Height 0.35 0.13 0.006 

TIV 0.82 0.06 <0.001 

 

 

In order to visualize the trade-off by plotting composite brain against FFM, I sought 

to make new variables where FFM was adjusted for height, and where composite 

brain volume was adjusted for TIV. This can be carried out using log-log regression 
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(see e.g. Wells et al., 2002; Wells and Victora, 2005). Regressing natural log-

transformed variable X on a similarly transformed variable Y, the slope represents 

the power (P) by which Y should be raised to calculate X/Yp – this is an index which 

is uncorrelated with the denominator Y (Wells et al., 2002). Following these 

methods, I regressed log FFM on log height, and then calculated FFM/(height1.53), 

where 1.53 is the coefficient of log FFM on log height. I then regressed log 

composite brain on log TIV, and calculated the index as composite brain/(TIV0.85). 

This allowed me to completely adjust FFM for height, and composite brain for TIV. 

Figure 7-1 shows the plot of these adjusted variables.   

 

 

Figure 7-1 Trade-off between adjusted composite brain and 
adjusted FFM. 
r2 = 0.07, p = 0.016 
 

 

A principal goal of my analysis is to look in more detail at how brain components 

may trade off with body composition variables. For example, is there evidence that 

specific parts of the brain underlie the brain-FFM trade-off suggested in Model 1? 
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Previous investigations of brain-body relationships have largely focused on a 

global brain measure, i.e. overall volume or mass.  

 

Tables 7.2 – 7.5 show the next set of models. These were fitted identically to Model 

1, except that I included more specific brain components – gray matter, white 

matter, cerebellum cortex and cerebellum white matter – rather than composite 

brain volume as the dependent variable.  

Table 7.2 Model 2: Gray matter = FFM + height + TIV 
 Coefficient  SE p 
Intercept -0.66 0.72 0.37 

FFM  -0.14 0.05 0.010 

Height 0.30 0.15 0.056 

TIV 0.80 0.07 <0.001 

 

Table 7.3 Model 3: White matter = FFM + height + TIV 
 Coefficient  SE p 
Intercept -3.07 1.10 0.01 

FFM -0.10 0.08 0.24 

Height 0.45 0.23 0.06 

TIV 0.99 0.10 <0.001 

 

Table 7.4 Model 4: Cerebellum cortex = FFM + height + TIV 
 Coefficient  SE p 
Intercept 0.39 1.38 0.78 

FFM -0.08 0.10 0.42 

Height 0.28 0.29 0.34 

TIV 0.42 0.13 0.002 
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Table 7.5 Model 5: Cerebellum white matter = FFM + height + TIV 
 Coefficient  SE p 
Intercept -2.87 2.06 0.17 

FFM 0.14 0.15 0.37 

Height 0.41 0.44 0.35 

TIV 0.52 0.20 0.01 

 

 

Consistent with the findings in Model 1, FFM demonstrates a negative coefficient 

for gray matter, white matter, and cerebellum cortex, although FFM is only 

significant in predicting gray matter volume. Figure 7-2 shows the gray matter-FFM 

relationship. I made a new variable where gray matter volume was adjusted for 

TIV using the log-log regression method described above. Log gray matter was 

regressed on log TIV, and the index was calculated as gray matter/(TIV0.81). 

 

 

Figure 7-2 Trade-off between adjusted gray matter volume and 
adjusted FFM. 
r2 = 0.08, p = 0.01 
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Tables 7.6 – 7.8 show further models where the amygdala, hippocampus and 

striatum are set as dependent variables. Relationships among these structures 

and FFM are not significant, although the p-value associated with the FFM 

coefficient in the hippocampus model is <0.1.  

Table 7.6 Model 6: Amygdala = FFM + height + TIV 
 Coefficient  SE p 
Intercept -1.45 2.03 0.48 

FFM 0.04 0.15 0.78 

Height -0.04 0.43 0.92 

TIV 0.34 0.19 0.09 

 

Table 7.7 Model 7: Hippocampus = FFM + height + TIV 
 Coefficient  SE p 
Intercept -1.41 1.06 0.19 

FFM -0.14 0.08 0.088 

Height -0.0003 0.23 0.999 

TIV 0.54 0.10 <0.001 

 

Table 7.8 Model 8: Striatum = FFM + height + TIV 
 Coefficient  SE p 
Intercept -1.44 1.25 0.25 

FFM -0.09 0.09 0.33 

Height 0.18 0.27 0.50 

TIV 0.52 0.12 <0.001 

 

 

Findings thus far demonstrate that somatic trade-offs are observable, with a global 

measure of fat-free tissue appearing to trade off with both composite brain and 
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gray matter variables. In the next two sections I test the hypothesis, set out in 

Chapter 2, that the brain trades off with SM and body organs. 

 

7.3 Trade-offs among brain components and SM 
In this section, I fit models similar to those in Section 7.2, however now SM is 

entered as the predictor of interest. A given brain variable is once again added as 

the dependent variable in each model. Height and TIV are again included to control 

for body and head size, respectively.  

 

Tables 7.9 and 7.10 show that SM is significantly, negatively related to composite 

brain volume and gray matter volume.  

Table 7.9 Model 9: Composite brain = SM + height + TIV 
 Coefficient  SE p 
Intercept -0.41 0.60 0.50 

SM -0.08 0.03 0.017 

Height 0.33 0.12 0.008 

TIV 0.82 0.06 <0.001 

 

Table 7.10 Model 10: Gray matter = SM + height + TIV 
 Coefficient  SE p 
Intercept -0.81 0.72 0.27 

SM -0.12 0.04 0.004 

Height 0.30 0.15 0.05 

TIV 0.80 0.07 <0.001 

 

 

Figures 7-3 and 7-4 below show plots to visualize the above relationships. I once 

again used the log-log regression method to make a new variable for use in plotting 
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these relationships. Here, I adjusted SM for height by regressing log SM on log 

height, deriving the index SM/(height1.74). 

 

 

Figure 7-3 Trade-off between adjusted composite brain volume 
and adjusted SM. 
r2 = 0.06, p = 0.017 
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Figure 7-4 Trade-off between adjusted gray matter volume and 
adjusted SM. 
r2 = 0.10, p = 0.004 
 

 

SM was not significant in predicting the remaining brain volume outcomes. Table 

7.11 consolidates the results from these models, demonstrating coefficients, SEs 

and p-values for the SM predictor variable.  

Table 7.11 Non-significant findings for SM as predictor of brain 
volume outcomes 
Brain variable SM coefficient  SE p 

White matter -0.06 0.06 0.38 

Cerebellum cortex  -0.06 0.08 0.47 

Cerebellum white matter 0.07 0.12 0.56 

Amygdala 0.02 0.11 0.89 

Hippocampus -0.07 0.06 0.28 

Striatum -0.10 0.07 0.17 
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7.4 Trade-offs among brain components and organs 
Finally, in this section I test whether body organs trade-off with composite brain 

volume and/or brain components.  

 

Table 7.12 shows an initial model where composite brain is regressed on the 

composite organ variable, controlling for height and TIV.  

Table 7.12 Model 11: Composite brain volume = composite organ 
volume + height + TIV 
 Coefficient  SE p 
Intercept 0.14 0.55 0.81 

Composite organ volume -0.07 0.03 0.034 

Height 0.33 0.12 0.010 

TIV 0.79 0.06 <0.001 

 

 

Consistent with results seen for FFM and SM in preceding sections, composite 

organ volume is negatively related to composite brain volume, however the p-value 

is somewhat larger. Figure 7-5 below shows the relationship between composite 

brain volume adjusted for TIV, and composite organ volume adjusted for height. 

The calculation to derive composite organ volume adjusted for height was: 

composite organ/(height2.03). 

 



 240 

 

Figure 7-5 Trade-off between adjusted composite brain volume 
and adjusted composite organ volume. 
r2 = 0.05, p = 0.034 
 

 

Composite brain and composite organ variables were both significantly related to 

potentially confounding menstrual cycle variables (MC1 and MC2) in Chapter 5, 

Section 5.5.3. Thus, I added MC1 and MC2 variables independently to Model 11 

to assess their effect on the composite brain-composite organ association. MC1 

and MC2 were highly non-significant in the models (data not shown).  

 

Below, Table 7.13 shows gray matter regressed on composite organ, controlling 

for height and TIV. The observed trade-off is shown in Figure 7-6. 
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Table 7.13 Model 12: Gray matter volume = composite organ 
volume + height + TIV 
 Coefficient  SE p 
Intercept -0.21 0.70 0.76 

Composite organ volume -0.11 0.04 0.007 

Height 0.30 0.16 0.059 

TIV 0.79 0.07 <0.001 

 

 

 

Figure 7-6 Trade-off between adjusted gray matter volume and 
adjusted composite organ volume. 
r2 = 0.09, p = 0.007 
 

 

Once again, I consolidate findings from the remaining models. Table 7.14 shows 

coefficients, SEs and p-values for the composite organ volume predictor variable 

where results were non-significant. Coefficients for height and TIV are not shown.  
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Table 7.14 Non-significant findings for composite organ volume 
as predictor of brain volume outcomes 
Brain variable Composite organ 

volume coefficient  
SE p 

White matter -0.03 0.06 0.60 

Cerebellum cortex  -0.07 0.08 0.35 

Cerebellum white matter 0.02 0.11 0.86 

Amygdala 0.02 0.11 0.85 

Hippocampus -0.04 0.06 0.46 

Striatum -0.05 0.07 0.49 

 

 

Models which demonstrate significant relationships between brain outcomes and 

specific organs are given below. All remaining regressions of brain outcomes on 

organ volumes were non-significant.  

 

First, Table 7.15 demonstrates a significant, negative relationship between 

composite brain and liver volume (also see Figure 7-7; the calculation to derive 

liver volume adjusted for height was liver volume/(height1.99). Composite brain and 

liver were associated with menstrual cycle variables MC1 and MC2, therefore I 

fitted additional models to test the impact of these potential confounders on the 

liver volume coefficient. Once again, MC1 and MC2 coefficients were very small 

and highly non-significant in the models, and the data are not shown.  

Table 7.15 Model 13: Composite brain volume = liver volume + 
height + TIV 
 Coefficient  SE p 
Intercept -0.16 0.55 0.77 

Liver volume -0.08 0.03 0.004 

Height 0.35 0.12 0.004 

TIV 0.82 0.05 <0.001 
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Figure 7-7 Trade-off between adjusted composite brain volume 
and adjusted liver volume. 
r2 = 0.10, p = 0.004 
 

 

Of the remaining organs and brain components, only gray matter on liver and gray 

matter on kidney volume demonstrated significant relationships. Consistent with 

results shown so far, the relationships are negative. The models are given below 

in Tables 7.16 and 7.17, followed by corresponding plots (Figures 7-8 and 7-9). 

Using the log-log regression method, the calculation to derive kidney volume 

adjusted for height was kidney volume/(height1.74).  

Table 7.16 Model 14: Gray matter = liver volume + height + TIV 
 Coefficient  SE p 
Intercept -0.38 0.68 0.58 

Liver volume -0.10 0.03 0.004 

Height 0.28 0.15 0.058 

TIV 0.80 0.07 <0.001 
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Table 7.17 Model 15: Gray matter = kidney volume + height + TIV 
 Coefficient  SE p 
Intercept -0.41 0.69 0.55 

Kidney volume -0.10 0.03 0.004 

Height 0.25 0.14 0.08 

TIV 0.81 0.07 <0.001 

 

 

 

Figure 7-8 Trade-off between adjusted gray matter volume and 
adjusted liver volume. 
r2 = 0.11, p = 0.003 
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Figure 7-9 Trade-off between adjusted gray matter volume and 
adjusted kidney volume.  
r2 = 0.10, p = 0.004 
 

 

7.5 Discussion of findings in this chapter  
The results detailed above provide support for parts (i), (ii), and (iii) of my second 

hypothesis, as described in Chapter 2. I found that trade-offs were observable 

between composite brain and organs, between composite brain and SM, and also 

between composite brain and FFM, controlling for body and head/skull size. With 

respect to organs, composite brain demonstrated a negative relationship with 

composite organ and liver volume variables.  

 

When specific brain components were tested against body variables, gray matter 

was significantly, negatively related to FFM, SM, composite organ, liver volume, 

and kidney volume. As predicted, trade-offs were not observed for white matter 

brain components, however they were also not observed for other components of 

gray matter in the brain, i.e. cerebellum cortex or subcortical structures. Overall, 
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the results demonstrated a pattern whereby composite brain and gray matter both 

appeared to trade off against lean organs and tissues in the body, however the 

associations for gray matter were stronger. This suggests that gray matter may be 

the principal brain component driving the composite brain-lean tissue trade-offs. 

The implication is that in my sample, having more or less gray matter occurs in 

association with having less or more of FFM, SM, and certain organs. These 

findings are the first, to my knowledge, to demonstrate such relationships in 

humans at the level of detail provided by this study’s methods of measurement. 

 

I discussed earlier in the thesis that Aiello and Wheeler’s ETH proposed an 

evolutionary gut-brain trade-off, whereby the brain came to account for a greater 

proportion of the energy budget as it increased in size over time, concomitant with 

the gut becoming smaller and less complex. Hales and Barker’s TPH proposed 

that during development the brain may compete for energy resources with other 

organs such as the pancreas, resulting in differential growth of these organs. 

Although I was not able to test these ideas directly without data on the size of the 

gastrointestinal tract and pancreas, my results provide broad support for the 

prediction that the brain and metabolically expensive organs in the body compete 

for resources, and thus may exhibit trade-offs. My findings in Chapter 6 were 

consistent with the notion that organs are more energetically expensive per 

kilogram tissue mass than SM or FM.  

 

As I detailed in Chapter 1, support had previously been found for the ETH, however 

this was largely in non-human animals. The brain and the gut were observed to 

trade off against one another in fish (Kaufman, 2003; Kotrschal et al., 2013; Tsuboi 

et al., 2015) and amphibians (Liao et al., 2016), but not in bats (Jones and 

MacLarnon, 2004). Despite organs being recognized to have relatively high energy 

expenditure, evidence for trade-offs between the brain and organs other than the 

gut is lacking in non-humans. The study of bird species carried out by Isler and 

van Schaik (2006), which I return to below in discussing SM, detected no negative 

relationships between the brain and organs, including the heart, liver, and kidneys. 
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In their later test of somatic trade-offs in mammal species, the same authors 

similarly reported that negative relationships were not detected between brain size 

and organs including the heart, liver, kidneys and spleen (Navarette et al., 2011). 

These findings stand in contrast to mine, as I found that the liver and kidneys do 

appear to trade-off against the brain. However, the cross-species analyses carried 

out by Isler, van Schaik and colleagues in birds and mammals tested for evolved, 

genetic trade-offs. The trade-offs I observed in my sample might have a genetic 

contribution, but it is equally, if not more, likely that my within-species analysis has 

elucidated trade-offs shaped through life course plasticity. 

 

I also described in Chapter 1 several studies in both humans and non-humans 

which provided support for the prediction that internal organs including, but not 

limited to, the pancreas may be reduced in the face of early-life energy stress within 

the life course. However, several of these studies in humans provided more 

indirect support, for example using external anthropometric methods of 

measurement which served as a proxy for organ size (e.g. Campbell and Thoms, 

1977; Barker et al., 1993; Yajnik et al., 2003) rather than quantifying organ size 

with the use of imaging. The study I described by Latini and colleagues (2004) 

used ultrasonography to measure and compare organ size in SGA and AGA 

infants, finding that organs including the liver and kidneys were comparatively 

reduced in the former group. However, they did not investigate potential 

relationships between the organs and brain. Here, I show that the size of the brain 

is negatively related to the size of the kidneys and liver in adults, however my data 

cannot determine which tissues are relatively reduced or increased.  

 

It is difficult to determine the direction of causality in these trade-offs, but it is 

arguably more likely that the kidneys and liver, rather than the brain, are the 

components that respond by varying in size. Several lines of evidence suggest that 

non-brain tissues demonstrate a greater degree of plasticity than the relatively 

canalized brain. First, I showed in Chapter 5 that in my dataset the CV for 

composite brain is 7.5%, whilst that for the liver and kidneys is ~17.5%, indicating 
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the comparatively greater variability of the organs. Second, and consistent with the 

brain’s relatively low CV, head size, a proxy for brain size, has been shown to be 

highly heritable (Smit et al., 2010; Silventoinen et al., 2011). Third, I reviewed in 

Chapter 1 evidence for brain-sparing growth; for example, asymmetric IUGR, the 

most common type of IUGR, is characterized by decreased abdominal size and 

relatively preserved head size (Brodsky and Christou, 2004). Fourth, head 

circumference appears to be the least variable body component across 

populations, as suggested by a large study including individuals from the UK, India, 

Sri Lanka, and Jamaica (Leary et al., 2006). Thus, my data are not inconsistent 

with the suggestion by previous authors that organ size is reduced whilst brain size 

is relatively preserved in South Asians facing competition for energy resources in 

early life (Yajnik et al., 2003; Yajnik, 2004).  

 

The results I have presented similarly support the prediction that, in addition to 

organs, SM is traded off against the brain in South Asians (Yajnik et al., 2003; 

Wells et al., 2016). As I overviewed in Chapter 1, it is well-established that South 

Asian individuals demonstrate decreased muscle mass, with evidence largely 

coming from less-comprehensive body composition assessments and 

comparisons with other populations (e.g. Chowdhury et al., 1996; Rush et al., 

2007; Unni et al., 2009). Using simpler techniques, Baker and coworkers 

demonstrated evidence for the preservation of head girth (a proxy for brain growth) 

at the expense of an anthropometric proxy for arm muscle growth in US children 

with low birth weight (Baker et al., 2010). However, the current study is the first to 

my knowledge to measure brain and muscle tissue in South Asians and test for a 

brain-SM trade-off relationship directly. With respect to non-human animal studies, 

Isler and van Schaik (2006) found in birds a negative relationship between brain 

mass and pectoral muscle mass, which powers flight, however these results were 

observed across rather than within species, suggesting a genetic basis.  

 

Muscle mass is relatively metabolically inexpensive compared to organs, owing to 

a relatively low degree of energy turnover per kilogram of tissue at rest. This 
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knowledge led Aiello and Wheeler (1995) to argue that a decrease in muscle mass 

would not have provided enough additional energy to fund the larger hominin brain. 

However other authors, noting that humans are relatively ‘undermuscled’ 

compared to non-human primates of similar body size, suggested that 

systematically building less muscle may have facilitated hominin brain 

enlargement (Leonard et al., 2003; Snodgrass et al., 2009; Muchlinski et al., 2012). 

My results suggest somatic trade-offs involving tissues of both greater and lesser 

metabolic expense exist, and may occur concomitantly, within the same 

individuals. Although with my dataset I cannot distinguish genetic from 

environmental/developmental mechanisms underlying observed trade-offs, my 

findings are nevertheless consistent with the predictions of both Aiello and 

Wheeler, and Leonard, Snodgrass and colleagues, that trade-offs between the 

brain and organs, or the brain and SM, may represent evolved aspects of human 

body composition.  

 

With respect to part (iii) of my second hypothesis, I showed that among brain 

component volumes gray matter exhibited detectable trade-off relationships with 

lean body tissues. As noted above, the negative relationships between gray matter 

and organs, SM and FFM were stronger than those seen between composite brain 

and body variables. In setting out my hypothesis, I predicted that trade-offs would 

be observed involving gray matter, but not white matter. This prediction was based 

on research which has shown that gray matter has a higher energy expenditure 

than white matter (Hofman, 1983; Karbowski, 2007; Zhu et al., 2012), which I 

suggested may render it more likely to trade off against other tissues due to 

increased competition for energy resources. Specifically, gray matter metabolism 

is greater than that of white matter by a factor of three (Karbowski, 2007), and 

indeed, I found no trade-off relationships involving white matter volumes.  

 

However, considering the findings for gray matter, it is somewhat surprising that I 

did not observe trade-offs between the cerebellum cortex, which is the gray matter 

portion of the cerebellum, and lean body variables. The cerebral cortex is relatively 
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large in volume, but the cerebellum contains a considerable proportion of the 

human brain’s neurons: roughly half by one estimate (Ramnani, 2006), and as 

much as 80% by another (Herculano-Houzel 2010). This is notable as 

considerable energy is expended related to neuronal signaling, and also in the 

maintenance of neurons at rest (Niven and Laughlin, 2008). As I discussed in 

Chapter 5, the cerebellum is recognized to play an essential role in myriad 

functions via its connections with the cerebral cortex (Leiner et al., 1989; Rilling, 

2006; Ramnani, 2006; Bostan et al., 2013), and these brain components have 

been proposed to have experienced coordinated evolution (Barton and Harvey, 

2000; Herculano-Houzel, 2010; Balsters et al., 2010). If this is the case, an 

interesting proposition is that the cerebellum cortex is indeed the more 

energetically expensive brain component, however it is the cerebral gray matter 

that trades off a portion of its larger mass against body tissues in the face of 

somatic competition for energy resources. In Chapter 6, the cerebellum cortex was 

the only brain component found to be significant in explaining a portion of the 

variance in REE, although as I discussed, this may not directly reflect the relative 

size of the tissue’s Ki value.  

 

Few previous studies have looked within the brain in the course of investigating 

somatic trade-offs. However, in line with my findings, a recent imaging study found 

that regional gray matter brain volumes were negatively associated with FFM 

(Weise et al., 2013). The authors were in fact investigating relationships between 

brain and body composition in the context of obesity, although they reported that 

their sample was comprised of healthy adults. They found negative associations 

among gray matter brain regions and FM, however these were not significant with 

FFM adjustment. In the next chapter, I investigate whether negative associations 

are observable between the brain and FM in my study sample.  

 

 

 



 251 

8 Trade-offs II. Brain and FM 
 

In Chapter 7, I showed that composite brain and gray matter volumes traded off 

against lean body components including FFM, SM and organs. Here, I test if a 

similar trade-off is observed amongst brain volumes and FM. The motivation to 

test for this largely came from results reported by Navarette and coworkers (2011). 

The authors’ investigation of somatic trade-offs across mammal species identified 

a negative relationship between adipose depots and brain volume (i.e. the capacity 

to store energy, or leverage increased cognition to acquire it; Kaplan et al., 2000; 

Wells, 2016). However, this association was largely found in the non-primate 

mammal portion of their sample. Results for primates were more equivocal, and 

the notion of an evolutionary brain-fat trade-off remains untested within a species, 

or more specifically, within humans.  

 

Section 8.1 describes statistical methods for the chapter, Section 8.2 gives results 

of brain-FM regression models, and I discuss the findings in Section 8.3.  

 

8.1 Statistical methods  
Once again, all variables were natural log-transformed to capture allometric 

relationships. A series of multivariable regression models were fitted where a given 

brain component was entered as the dependent variable, and FM was added as 

the predictor of interest. In each model, height and TIV are entered to control for 

body and head size, respectively.  

 

8.2 Trade-offs among brain components and FM 
Table 8.1 below shows the first model. Composite brain volume is entered as the 

dependent variable, with FM as predictor. The FM coefficient is negative, but not 

significant.  
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Table 8.1 Model 1: Composite brain volume = FM + height + TIV 
 Coefficient  SE p 
Intercept 0.12 0.58 0.83 

FM -0.002 0.01 0.87 

Height 0.20 0.11 0.08 

TIV 0.81 0.06 <0.001 

 

 

As in Chapter 7, I next look in more detail within the brain. The highly non-

significant relationship between FM and composite brain seen in Model 1 suggests 

that the brain’s component volumes will likewise be uncorrelated with FM. I 

demonstrate the results for gray matter, white matter, cerebellum, and subcortical 

structures against FM in Tables 8.2 – 8.8 below.  

Table 8.2 Model 2: Gray matter volume = FM + height + TIV 
 Coefficient  SE p 
Intercept -0.02 0.71 0.98 

FM  -0.02 0.02 0.22 

Height 0.13 0.14 0.38 

TIV 0.78 0.07 <0.001 

 

Table 8.3 Model 3: White matter volume = FM + height + TIV 
 Coefficient  SE p 
Intercept -2.64 1.05 0.01 

FM  0.01 0.02 0.77 

Height 0.30 0.21 0.16 

TIV 0.99 0.11 <0.001 
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Table 8.4 Model 4: Cerebellum cortex volume = FM + height + TIV 
 Coefficient  SE p 
Intercept 0.76 1.31 0.56 

FM  0.01 0.03 0.71 

Height 0.15 0.26 0.57 

TIV 0.42 0.13 0.002 

 

Table 8.5 Model 5: Cerebellum white matter = FM + height + TIV 
 Coefficient  SE p 
Intercept -3.52 1.93 0.07 

FM  0.07 0.04 0.13 

Height 0.52 0.38 0.18 

TIV 0.57 0.20 0.005 

 

Table 8.6 Model 6: Amygdala volume = FM + height + TIV 
 Coefficient  SE p 
Intercept -1.66 1.89 0.39 

FM  0.05 0.04 0.23 

Height -0.06 0.38 0.88 

TIV 0.38 0.19 0.06 

 

Table 8.7 Model 7: Hippocampus volume = FM + height + TIV 
 Coefficient  SE p 
Intercept -0.80 1.03 0.44 

FM  0.01 0.02 0.79 

Height -0.21 0.20 0.32 

TIV 0.53 0.10 <0.001 
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Table 8.8 Model 8: Striatum volume = FM + height + TIV 
 Coefficient  SE p 
Intercept -1.04 1.18 0.38 

FM  0.005 0.03 0.87 

Height 0.04 0.24 0.85 

TIV 0.52 0.12 <0.001 

 

 

Consistent with the results in Model 1, the remaining models demonstrate that no 

brain component volumes are significantly related to FM. With the exception of 

composite brain and gray matter, all coefficients are positive. All p-values are 

highly non-significant.  

 

8.3 Discussion of findings in this chapter 
The findings above are in line with my prediction (set out in Hypothesis No. 2, part 

(ii)) that FM would not be observed to trade off against the brain in my sample of 

human subjects. Thus, the current results do not support in humans the findings 

reported by Navarette et al. (2011) across mammal species.  

 

Navarette and coworkers (2011) suggested that the mammals in their sample 

traded off fat against the brain, rather than investing in both starvation-buffering 

strategies. As I described in Chapter 1, Heldstab et al. (2016) found in a follow-up 

study that a body fat proxy measure was negatively correlated with brain size, 

although this was apparent in arboreal, not terrestrial species. 

 

An evolutionary trade-off between brain volume and FM in humans appears 

unlikely as, in addition to a pattern of terrestrial locomotion, Homo sapiens are 

positive outliers for both adiposity and brain size relative to body size (Wells, 

2012d; Heldstab et al., 2016). Adult males and females from non-western 

populations are fatter than other primates (Heldstab et al., 2016). For example, 

Hadza female foragers have been found to demonstrate on average 20% of weight 
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as fat (Sherry and Marlowe, 2007; Pontzer et al., 2012) in comparison to Pan 

paniscus females (<10% fat; Zihlman and Bolter, 2015), and wild toque macaque 

(Macaca sinica) females (~3% fat on average; Dittus, 2013). Human infants are 

likewise fatter than infants of most other ape species, which has been argued to 

have facilitated increased brain size (e.g. Kuzawa, 1998; Cunnane and Crawford, 

2003), although increased infant adiposity may have evolved first (Wells, 2012a).  

 

Taking a life course perspective, the brain and FM may be less likely to trade off 

due to differences in their developmental trajectories. Normative structural brain 

changes are documented into adolescence and adulthood (Sowell et al., 2003; 

Gogtay et al., 2004), however similar to body organs, fetal life and early infancy 

are recognized as critical periods for brain development (Fox et al., 2010; Stiles 

and Jernigan, 2010). As noted above, human infants typically display high 

adiposity at birth, however several studies have found inconsistent correlations 

between birth weight and later fatness (Wells et al., 2007). During puberty, 

hormones are a key driver of fat deposition (Wells, 2007b), and as FM remains 

relatively plastic across the life course, factors such as diet and physical activity 

also impact adiposity. Thus, the brain and FM may not experience a high degree 

of direct competition for energy in relation to tissue accretion, whilst the 

maintenance costs of fat are also very low, suggesting that a trade-off between 

these two organs over ongoing ‘running costs’ is similarly unlikely. Alternatively, 

pubertal and/or adult lifestyle effects on FM might render a trade-off less likely to 

be observed. 

 

In fact, prior imaging studies investigating the impact of obesity and visceral fat on 

brain structure and function have demonstrated negative brain-adiposity 

relationships in humans. For example, BMI and measures of visceral fat were 

associated with reduced gray matter volume and reduced integrity of the brain’s 

white matter tracts (Debette et al., 2010; Stanek et al., 2011; Veit et al., 2014). 

However, a negative correlation between brain volume and adiposity in this context 

indicates brain tissue atrophy associated with a pathological level of fat 
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accumulation (Willette and Kapogiannis, 2015), rather than an evolved trade-off 

between fat stores and brain tissue in competition for energy resources. The 

negative associations observed in these imaging studies apparently emerge within 

the life course, however I did not detect evidence of such relationships in the 

current analysis.  
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9 Does early-life development shape trade-offs? 
 

Several trade-offs among brain and lean body components were demonstrated in 

Chapter 7. In this chapter, I use the variables birth weight and tibia length to 

investigate whether I can detect an influence of early-life development on the 

observed trade-off relationships. First, Section 9.1 describes statistical methods 

for the chapter. Next, Section 9.2 gives descriptive statistics for birth weight and 

tibia length, and describes their relationships to brain and body composition 

variables.  

 

In Section 9.3, I revisit the regression models from Chapter 7 where significant, 

negative correlations were identified. I add birth weight and tibia length to the 

models to assess their potential impact on the trade-off relationships therein. 

Finally, I discuss the findings in Section 9.4.  

 

9.1 Statistical methods 

As described in Chapter 4, I obtained data on birth weight and gestational age from 

study participants. This allowed me to adjust birth weight for gestational age by 

calculating birth weight SDS. Birth weight SDS were derived using UK-WHO 

reference birth centiles (Cole et al., 2011).  

 

Brain and body variables, including tibia length, were natural log-transformed. 

Pearson correlations were utilized to explore relationships among birth weight 

SDS, tibia length, height-residual (see below), and brain and body components. 

Data were plotted to visualize significant associations.  
 

Birth weight SDS and tibia length were added to the regression models from 

Chapter 7 which demonstrated significant brain-body trade-offs. Birth weight SDS 

was uncorrelated with tibia length (r = 0.04, p = 0.72), thus these variables 
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functioned as independent proxies of fetal weight gain and linear growth, 

respectively, with previous research emphasizing that the majority of variability in 

limb proportions develops in postnatal life (e.g. Jantz and Jantz, 1999; Cole, 2000; 

Bogin and Varela-Silva, 2010; Pomeroy et al., 2014).  

 

In Chapter 7, height was added to each model to control for variability in body size, 

and I also sought to control for the effects of body size in the current analysis. 

However, adding both height and tibia length variables to a given model would 

result in tibia length appearing twice, as tibia length contributes to total height. This 

could potentially upset the models and generate spurious results.  

 

Thus, I derived a new variable for use in regression analyses in the current chapter. 

Specifically, height was regressed on tibia length and the residuals taken to obtain 

a ‘height-residual’ variable that is independent of variability in tibia length. This 

allowed me to utilize tibia length as a developmental marker, and also control for 

body size without entering tibia length into the model twice.  

 

9.2 Associations of developmental variables with 
brain/body outcomes 

Table 9.1 below shows descriptive statistics for birth weight, gestational age, birth 

weight SDS, and tibia length. One subject did not report her birth weight, whilst the 

same subject plus two others were not able to obtain their gestational age. I am 

thus missing birth weight SDS data for three subjects, as reflected in the table.  

 

As noted in my inclusion criteria in Chapter 4, I aimed to include in the study only 

women who had been born at term (gestational age >37 weeks). Early in 

recruitment a miscommunication regarding this information led to one subject 

being recruited and measured who subsequently reported a gestational age of 34 

weeks. All other subjects ranged from 37-42 weeks’ gestation. 
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Table 9.1 Raw values for developmental variables 
 n Mean±SD Range 

Birth weight, kg 69 3.2±0.5 2.0-4.5 

Gestational age, wks 67 39.3±1.5 34.0-42.0 

Birth weight SDS 67 -0.3±1.1 -2.9-2.6 

Tibia length, mm 70 368±25 300-429 

 

 

Table 9.2 below shows correlations of birth weight SDS, tibia length, and also 

height-residual with brain and body composition outcomes. Birth weight SDS is not 

significantly correlated with weight or height, nor any brain or body components.  

 

In contrast, tibia length is positively correlated with all body organs/tissues except 

FM, and also with gray matter, white matter, cerebellum white matter, and 

composite brain volumes. Tibia and height are predictably strongly related, as tibia 

is a component of height. Beyond this, with respect to body variables, the largest 

coefficients are found for tibia length with FFM, SM, heart and composite organ. 

For brain outcomes, the relationship between tibia and composite brain has the 

largest coefficient, followed by that seen with white matter. However, coefficients 

are broadly similar in size for significant outcomes within the body, and for those 

within the brain. Although the correlations appear somewhat stronger for body 

relative to brain outcomes with tibia, there is overlap in the size of the coefficients. 

The pattern of significant findings and the size of the tibia coefficients (i.e. their 

ranking in size across the different outcomes) are consistent with results shown in 

Chapter 5 (Tables 5.7 and 5.10) for brain and body variables against total height. 

 

With respect to the height-residual variable, no findings are significant with brain 

volumes, and significant coefficients with body variables are fewer. Of the latter, 

coefficients are generally smaller than those seen with tibia length, however weight 

and FM are positively associated with height-residual. Overall, tibia length as a 

component of height may better explain variability in brain and body outcomes.  
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Table 9.2 Pearson correlation coefficients of birth weight SDS, 
tibia length and height-residual with brain and body composition 
outcomes 
 Birth weight 

SDS 
r, p 

Tibia length 
r, p 

Height-residual 
r, p 

Weight, kg 0.04, 0.76 0.18, 0.14 0.38, 0.001 

Height, cm 0.11, 0.36 0.88, <0.001 --  

FM, kg -0.01, 0.96 -0.01, 0.96 0.26, 0.03 

FFM, kg 0.09, 0.47 0.41, <0.001 0.39, <0.001 

SM, kg 0.02, 0.87 0.40, <0.001 0.29, 0.01 

Organ volumes, cm3    

   Heart  0.11, 0.40 0.43, <0.001 0.26, 0.03 

   Liver  0.08, 0.51 0.36, 0.002 0.29, 0.02 

   Kidney 0.11, 0.37 0.37, 0.002 0.19, 0.11 

   Spleen  0.06, 0.65 0.30, 0.01 0.11, 0.39 

   Composite organ 0.14, 0.28 0.43, <0.001 0.30, 0.01 

Brain volumes, cm3    

   Gray matter 0.06, 0.62 0.31, 0.008 0.13, 0.27 

   White matter 0.07, 0.60 0.35, 0.003 0.17, 0.16 

   Cerebellum cortex -0.10, 0.41 0.18, 0.13 0.11, 0.38 

   Cerebellum white    
   matter 

0.03, 0.84 0.28, 0.02 0.12, 0.33 

   Amygdala  -0.05, 0.71 0.06, 0.63 0.08, 0.53 

   Hippocampus -0.07, 0.55 0.13, 0.28 -0.04, 0.72 

   Striatum  0.05, 0.67 0.20, 0.09 0.05, 0.71 

   Composite brain 0.06, 0.64 0.37, 0.001 0.17, 0.17 

 

 

Plots below demonstrate the significant relationships found between the tibia and 

brain/body variables. 
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Figure 9-1 FFM against tibia length. 
r2 = 0.17, p < 0.001; n = 70 
 
 

 

Figure 9-2 SM against tibia length.  
r2 = 0.16, p < 0.001; n = 70 
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Figure 9-3 Heart volume against tibia length.  
r2 = 0.18, p < 0.001; n = 69 
 

 

Figure 9-4 Liver volume against tibia length. 
r2 = 0.13, p = 0.002; n = 70 
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Figure 9-5 Kidney volume against tibia length.  
r2 = 0.14, p = 0.002; n = 70 
 
 
 

 

Figure 9-6 Spleen volume against tibia length. 
r2 = 0.09, p = 0.01; n = 68 
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Figure 9-7 Composite organ volume against tibia length. 
r2 = 0.18, p < 0.001; n = 67 
 
 

 

Figure 9-8 Gray matter volume against tibia length. 
r2 = 0.10, p = 0.008; n = 70 
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Figure 9-9 White matter volume against tibia length.  
r2 = 0.12, p = 0.003; n = 70 
 
 
 

 

Figure 9-10 Cerebellum white matter volume against tibia length. 
r2 = 0.08, p = 0.02; n = 70 
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Figure 9-11 Composite brain volume against tibia length.  
r2 = 0.14, p = 0.001; n = 70 
 

 

9.3 Testing for a developmental signature 
In this section, I add birth weight SDS and tibia length variables to the regression 

models from Chapter 7 where trade-offs between brain and lean body components 

were observed. It would suggest that early developmental periods shaped the 

observed trade-offs if birth weight SDS and tibia length are shown to be significant 

in the models and the coefficient for the predictor of interest is attenuated. This 

effect for birth weight would suggest trade-offs were shaped in utero, whilst for tibia 

length, the effect would suggest an impact of postnatal growth, indexed by 

variability in the lower leg.  

 

TIV remains in the models to control for variation in head size, however as I 

discussed above, height-residual is entered to control for body size, in place of the 

raw height variable.  
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Models 1 and 2 below correspond to Models 1 and 2 (Tables 7.1 and 7.2) in 

Chapter 7. The results from the Chapter 7 models are included underneath the 

results for the current model. This is done throughout this section so that results 

are more easily comparable.  

 

In Model 1, composite brain volume is entered as the dependent variable, and FFM 

as the main variable of interest. In Model 2 at the top of the following page, gray 

matter volume is entered as the dependent variable against FFM.  

Table 9.3 Model 1: Composite brain = FFM + height-residual + TIV 
+ birth weight SDS + tibia length 
 Current model (R2 = 0.80) 
 Coefficient SE p 

Intercept 0.29 0.46 0.54 

FFM -0.11 0.04 0.017 

Height-residual 0.40 0.25 0.11 

TIV 0.83 0.06 <0.001 

Birth weight SDS -0.001 0.004 0.78 

Tibia length  0.19 0.07 0.01 

 

 Chapter 7 model (R2 = 0.80) 
 Coefficient SE p 

Intercept -0.36 0.59 0.54 

FFM -0.11 0.04 0.016 

Height 0.35 0.13 0.006 

TIV 0.82 0.06 <0.001 
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Table 9.4 Model 2: Gray matter volume = FFM + height-residual + 
TIV + birth weight SDS + tibia length 
 Current model (R2 = 0.70) 
 Coefficient SE p 

Intercept -0.03 0.58 0.95 

FFM -0.15 0.06 0.012 

Height-residual 0.38 0.31 0.22 

TIV 0.81 0.07 <0.001 

Birth weight SDS -0.0001 0.005 0.98 

Tibia length  0.14 0.09 0.12 

 

 Chapter 7 model (R2 = 0.70) 
 Coefficient SE p 

Intercept -0.66 0.72 0.37 

FFM -0.14 0.05 0.010 

Height 0.30 0.15 0.056 

TIV 0.80 0.07 <0.001 

 

 

Model 1 demonstrates that the addition of birth weight SDS and tibia length have 

little impact on the results for the FFM predictor. Birth weight SDS is not significant 

in the model. Although tibia length is significant, its addition does not change the 

results for FFM. In Model 2, birth weight SDS and tibia length are both non-

significant. 

 

Below, Models 3 and 4 correspond to Models 9 and 10 (Tables 7.9 and 7.10) in 

Chapter 7, where significant negative relationships were found for composite brain 

and gray matter volumes with SM.  
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Table 9.5 Model 3: Composite brain volume = SM + height-residual 
+ TIV + birth weight SDS + tibia length 
 Current model (R2 = 0.80) 
 Coefficient SE p 

Intercept 0.14 0.47 0.77 

SM -0.09 0.03 0.014 

Height-residual 0.33 0.24 0.17 

TIV 0.82 0.06 <0.001 

Birth weight SDS -0.002 0.004 0.66 

Tibia length  0.19 0.07 0.01 

 

 Chapter 7 model (R2 = 0.80) 
 Coefficient SE p 

Intercept -0.41 0.60 0.50 

SM -0.08 0.03 0.017 

Height 0.33 0.12 0.008 

TIV 0.82 0.06 <0.001 
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Table 9.6 Model 4: Gray matter volume = SM + height-residual + 
TIV + birth weight SDS + tibia length 
 Current model (R2 = 0.70) 
 Coefficient SE p 

Intercept -0.25 0.59 0.67 

SM -0.12 0.04 0.005 

Height-residual 0.31 0.29 0.29 

TIV 0.81 0.07 <0.001 

Birth weight SDS -0.001 0.005 0.84 

Tibia length  0.16 0.09 0.09 

 

 Chapter 7 model (R2 = 0.71) 
 Coefficient SE p 

Intercept -0.81 0.72 0.27 

SM -0.12 0.04 0.004 

Height 0.30 0.15 0.05 

TIV 0.80 0.07 <0.001 

 

 

Tibia length emerges as a significant, positive predictor of composite brain volume 

in Model 3, although the results for SM remain largely unchanged. In Model 4, 

neither birth weight SDS nor tibia length are significant.  

 

Models 5 and 6 below correspond to Models 11 and 12 (Tables 7.12 and 7.13) in 

Chapter 7, where significant negative relationships were identified for composite 

brain and gray matter volumes against composite organ volume.  

 

 

 

 



 271 

Table 9.7 Model 5: Composite brain volume = composite organ 
volume + height-residual + TIV + birth weight SDS + tibia length 
 Current model (R2 = 0.80) 
 Coefficient SE p 

Intercept 0.64 0.45 0.16 

Composite organ 
volume 

-0.06 0.03 0.04 

Height-residual 0.24 0.23 0.30 

TIV 0.79 0.06 <0.001 

Birth weight SDS -0.003 0.004 0.52 

Tibia length  0.20 0.07 0.01 

 

 Chapter 7 model (R2 = 0.80) 
 Coefficient SE p 

Intercept 0.14 0.55 0.81 

Composite organ 
volume 

-0.07 0.03 0.034 

Height 0.33 0.12 0.010 

TIV 0.79 0.06 <0.001 
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Table 9.8 Model 6: Gray matter volume = composite organ volume 
+ height-residual + TIV + birth weight SDS + tibia length 
 Current model (R2 = 0.69) 
 Coefficient SE p 

Intercept 0.30 0.58 0.61 

Composite organ 
volume 

-0.11 0.04 0.01 

Height-residual 0.21 0.30 0.47 

TIV 0.79 0.07 <0.001 

Birth weight SDS 0.001 0.005 0.80 

Tibia length  0.16 0.09 0.09 

 

 Chapter 7 model (R2 = 0.70) 
 Coefficient SE p 

Intercept -0.21 0.70 0.76 

Composite organ 
volume 

-0.11 0.04 0.007 

Height 0.30 0.16 0.059 

TIV 0.79 0.07 <0.001 

 

 

The results follow the same pattern seen in the models above. In Model 5, the tibia 

coefficient is significant, but the results for the composite organ coefficient are only 

somewhat attenuated. Neither tibia length nor birth weight SDS are significant in 

Model 6, and results for the composite organ coefficient are again similar to the 

original model.  

 

Finally, Models 7-9 below correspond to Models 13-15 (Tables 7.15 to 7.17) in 

Chapter 7, which demonstrated trade-offs among brain, liver and kidney volumes.  
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Table 9.9 Model 7: Composite brain volume = liver volume + 
height-residual + TIV + birth weight SDS + tibia length 
 Current model (R2 = 0.81) 
 Coefficient SE p 

Intercept 0.46 0.45 0.32 

Liver volume -0.08 0.03 0.005 

Height-residual 0.34 0.23 0.14 

TIV 0.82 0.06 <0.001 

Birth weight SDS -0.001 0.004 0.81 

Tibia length  0.19 0.07 0.01 

 

 Chapter 7 model (R2 = 0.81) 
 Coefficient SE p 

Intercept -0.16 0.55 0.77 

Liver volume -0.08 0.03 0.004 

Height 0.35 0.12 0.004 

TIV 0.82 0.05 <0.001 
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Table 9.10 Model 8: Gray matter volume = liver volume + height-
residual + TIV + birth weight SDS + tibia length 
 Current model (R2 = 0.70) 
 Coefficient SE p 

Intercept 0.19 0.58 0.75 

Liver volume -0.10 0.03 0.006 

Height-residual 0.29 0.29 0.32 

TIV 0.81 0.07 <0.001 

Birth weight SDS <0.001 0.005 0.99 

Tibia length  0.14 0.09 0.13 

 

 Chapter 7 model (R2 = 0.71) 
 Coefficient SE p 

Intercept -0.38 0.68 0.58 

Liver volume -0.10 0.03 0.003 

Height 0.28 0.15 0.057 

TIV 0.80 0.07 <0.001 
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Table 9.11 Model 9: Gray matter volume = kidney volume + height-
residual + TIV + birth weight SDS + tibia length 
 Current model (R2 = 0.70) 
 Coefficient SE p 

Intercept 0.04 0.57 0.95 

Kidney volume -0.10 0.03 0.006 

Height-residual 0.19 0.28 0.49 

TIV 0.82 0.07 <0.001 

Birth weight SDS <0.001 0.005 0.88 

Tibia length  0.13 0.09 0.14 

 

 Chapter 7 model (R2 = 0.71) 
 Coefficient SE p 

Intercept -0.41 0.69 0.55 

Kidney volume -0.10 0.03 0.004 

Height 0.25 0.14 0.08 

TIV 0.81 0.07 <0.001 

 

 

Consistent with the previous results in this chapter, the tibia length variable is 

significant in predicting composite brain volume, but not gray matter volume. Also 

consistent with the prior results, the addition of tibia length does not appear to 

impact the results for the main predictor of interest. In Model 7, results for liver 

volume remain virtually unchanged from the original model.  

 

9.4 Discussion of findings in this chapter 
My third hypothesis predicted that markers of fetal and infant growth variability 

would be observed to mediate brain-body trade-off relationships. Overall, the 

results described above did not support this hypothesis. Birth weight SDS was not 

significant in any of the models, thus failing to offer evidence for a fetal growth 
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effect on trade-offs, and where tibia length was significant, the coefficient for the 

predictor of interest was not attenuated. However, the tibia’s significance in the 

composite brain models, taking into account the association of FFM, SM, or organs 

with the brain, suggests that tibia length makes a further predictive contribution to 

explaining variability in brain size. As described, evidence indicates the tibia is the 

part of the leg most sensitive to environmental circumstances in early life (Jantz 

and Jantz, 1999; Pomeroy et al., 2012, 2013). Therefore, the positive tibia-

composite brain associations suggest growing well in early life is correlated with 

growing a larger brain, however this appears in turn to be associated with 

decreased FFM, SM, kidneys or liver in my sample. Indeed, the tibia appears to 

be the part of the leg demonstrating the strongest association with the brain, as 

tibia length and overall height correlated with several brain outcomes, but height-

residual (the component of height minus the tibia) did not.  

 

Nevertheless, as noted above, there was no evidence per se that fetal or postnatal 

experience mediated the trade-offs observed among the brain, FFM, SM and 

organs. This is surprising, as organs and tissues measured in adult individuals 

have passed through earlier developmental phases, each of which must have 

contributed to their current size. As discussed, fetal life and infancy are recognized 

as particularly critical growth periods, after which many organs and tissues 

demonstrate decreased plasticity so that aspects of their size and composition 

track on into adulthood (Lucas, 1991; Barker, 2007; Gluckman et al., 2008; Wells, 

2016). A lack of support for the impact of early growth on somatic trade-offs 

observed in my adult subjects could plausibly be explained by poor sensitivity of 

the growth markers used.  

 

For example, relying on subject recall to collect data on birth weight and gestational 

age is not ideal, and the ability of the birth weight SDS variable to index fetal 

experience in the current study may have suffered from poor data recall. Although 

not definitive, the limitations of the birth weight variable are suggested by the 

results of correlation analyses, shown above in Section 9.2. The highly non-
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significant associations of birth weight SDS with all brain and body variables are 

unexpected, as many previous studies have reported significant links between 

birth weight and later body composition (Wells et al., 2007; Kuzawa et al., 2012). 

Several studies, for example, have identified associations of birth weight with later 

lean mass and adult height (Sørensen et al., 1999; Gale et al., 2001; Loos et al., 

2002; Li et al., 2003; Wells et al., 2005; Sachdev et al., 2005), suggesting that 

growth in utero plays an important role in shaping later phenotype. At the same 

time, FM has been shown to vary considerably as a component of birth weight 

(Catalano and Kirwan, 2001), so that any given birth weight potentially 

encompasses a large range of lean mass. This could engender difficulty in using 

birth weight to index lean mass, and perhaps particularly in South Asian 

populations, wherein increased adiposity has been identified at birth (Yajnik et al., 

2003; Modi et al., 2009).  

 

This may help to explain the lack of a signal for birth weight in the present models, 

even as the South Asian ‘thin-fat’ phenotype (i.e. increased fat mass alongside 

decreased lean) has been shown to emerge in fetal life (Yajnik et al., 2003; Modi 

et al., 2009; Stanfield et al., 2012). I discussed the notion that the thin-fat 

phenotype may represent a population-level ‘thrifty phenotype’ which has 

developed over time in association with chronic nutritional stress in South Asia 

(Hardikar et al., 2015; Wells et al., 2016). Underlying mechanisms might extend 

beyond physiological plasticity; for example, inter-generational epigenetic effects 

may play a role. This was suggested by the recent study of Hardikar and coworkers 

(2015), wherein body composition changes over 50 generations in nutritionally-

stressed rodents involved epigenetic modifications that were not reversed upon 

nutritional recuperation. The findings of this preliminary investigation in rodents 

can only be extended to humans with caution. However, epigenetic influences may 

add to the complexity of the establishment of phenotype in early life and render it 

more difficult to detect developmental signals using relatively crude indices of 

growth variability.  

 



 278 

Beyond the associations demonstrated between the tibia and composite brain, 

which I discussed above, the tibia length variable may have been insufficiently 

sensitive to index early-life effects on brain-body trade-off relationships. For 

example, it may have lacked specificity to index the postnatal infant period. 

Alternatively, it is possible that the key period(s) in which observed somatic trade-

off relationships developed occurred following infancy. It appears less likely that 

brain-organ or brain-SM trade-offs would develop post-infancy, when the growth 

of these tissues is less sensitive to environmental and nutritional stimuli, however 

this possibility cannot be discarded definitively. At the same time, genetic effects 

cannot be ruled out, which presents another potential explanation for the lack of 

findings associated with birth weight and tibia length variables in the current study. 

Long-term environmental factors influencing body composition variability in South 

Asian populations may have led to genetic adaptation that researchers have yet to 

elucidate. The recent study of Wells et al. (2016b) on Indian body composition, for 

example, described a trend for decreasing stature in India over a 10,000-year time 

span. Human genetic evolution within this time frame has indeed been 

documented, such as the classic example of genetic adaptation enabling lactose 

digestion post-weaning (Tishkoff et al., 2007).  
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10  General discussion 
 

In this thesis, I set out to test the notion that tissues in the body are in competition 

for energy resources, an idea put forward by the influential hypotheses of Aiello 

and Wheeler (1995) and Hales and Barker (1992). I initially overviewed the 

predictions of the expensive-tissue hypothesis and the thrifty phenotype 

hypothesis, and demonstrated that they are each consistent with one of the central 

tenets of evolutionary life history theory: namely, that the finite nature of energy 

resources necessitates differential allocation to competing traits, or trade-offs.  

 

The review of the literature in Chapter 1 showed that there is evidence for somatic 

trade-offs in both humans and non-human animals. The evidence base in humans 

has largely come from tests of Hales and Barker’s TPH, where studies have 

supported the prediction that organs and tissues experience differential growth 

under adverse environmental circumstances in early development (e.g. Barker et 

al., 1993; Baker et al., 2010; Pomeroy et al., 2012). In the anthropological 

literature, support for Aiello and Wheeler’s (1995) ETH has largely emerged from 

studies in fish and amphibians, although trade-offs between tissues beyond the 

brain and gut have been supported in other animals (e.g. Isler and van Schaik, 

2006; Pitnick et al., 2006; Navarette et al., 2011). 

 

The recognition that somatic trade-offs had yet to be directly tested in humans 

stimulated the central aim of this thesis: to collect comprehensive, high-quality 

brain and body composition data in a human cohort and investigate whether 

negative statistical relationships were observable between brain and body organs 

and tissues. The use of MRI, DXA, and the 4C model of body composition 

assessment allowed for a higher degree of resolution than external measures such 

as anthropometry, and in the case of the 4C model, increased accuracy over 

simpler 2C models.  
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Despite the high quality of the dataset, the segmentation of the gastrointestinal 

tract and pancreas from MR images was unfeasible; this meant that the original, 

specific predictions of the ETH and TPH – trade-offs between the brain and gut, 

and between the brain and pancreas, respectively – could not be tested. However, 

relationships with additional organs and tissues were tested, including FM, SM, the 

heart, kidneys, liver and spleen, and for the first time, relationships with specific 

brain components were explored.  

 

The results provided broad support for the prediction that somatic trade-offs occur 

in humans, and that such trade-offs may occur between the brain and visceral 

organs such as the liver and kidneys, but also between the brain and SM. To my 

knowledge, this study is both the first direct test of the general predictions of the 

ETH and TPH in humans, and the first to demonstrate evidence in humans in 

support of somatic trade-offs at a high level of brain-body composition detail.  

 

10.1 Main study findings 
Prior to testing for trade-offs, I tested for associations amongst tissues within the 

body, and within the brain, which I predicted would be positive. The results showed 

that associations were indeed positive, however they demonstrated moderate to 

low effect sizes, with no body or brain component explaining more than ~50% of 

the variation in another. The indication is that there is substantial variability in the 

way bodies and brains are built, rather than a common scenario whereby an 

increase in one component is directly related to an increase in another component. 

Genetics may contribute to the relative growth of various brain and body 

components. It is similarly likely, however, that environmental influences during 

development interact with genes to produce a range of brain and body composition 

phenotypes, so that the size of components recognized to be linked structurally 

and functionally, such as the cerebellum and cerebral gray matter, may not be 

strongly statistically correlated.  
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Despite some variation between my results and those of previous authors, the REE 

analysis in Chapter 6 confirmed that organs and tissues are differentially 

metabolically costly. The brain, predicted by the ETH and TPH to be augmented 

or preserved at the expense of other organs in the face of finite energy resources, 

indeed demonstrated one of the largest Ki values, however those of the kidneys 

and heart were even larger. Nevertheless, in calculating the proportional 

contributions to total REE for these organs, the brain’s contribution was larger than 

the kidneys and heart owing to its relatively larger mass. On a per kilogram tissue 

basis the brain may be designated an ‘intermediately’ expensive organ, however 

the focus on its cost in the literature is understandable given its increase in size in 

the human lineage and apparent importance for human survival, which is 

suggested by its tendency to be relatively ‘spared’ when resources are constrained 

in early development (Barker, 2004; Giussani, 2011). Indeed, there is evidence 

that decreased brain growth is associated with substantial penalties, such as 

adverse cognitive outcomes. For example, MacKay and colleagues (2010) showed 

that children born early (with optimal prenatal brain growth potentially truncated) 

had a higher risk of developing learning difficulties, and this presented as a dose-

dependent association across a wide range of gestational age.  

 

As I described in Chapter 1, Aiello and Wheeler (1995) were not the only 

researchers to approach the question of human brain evolution from an energetics 

perspective, however their proposition that the larger hominin brain was funded by 

a reorganization of energy use within the body was novel. Beyond the gut, the 

authors were less persuaded that other organs or tissues may have traded off with 

the brain. They considered, for example, that evolutionary changes in the size of 

the liver or kidneys may have been constrained relative to the gut, rendering it less 

likely that either of these organs traded off against the brain and facilitated its 

expansion. This argument centered on the important role of the liver in supplying 

the brain with glucose, and the similarly essential role of the kidneys in filtering 

blood and concentrating urine (Aiello and Wheeler, 1995).  
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The results of the current study, however, suggest that somatic trade-offs between 

the brain and liver, and between the brain and kidneys, are indeed possible among 

individual humans. As discussed in Chapter 7, the current study methods could 

not distinguish between the contribution of genetics and developmental plasticity 

to these trade-offs, although it is likely that they were shaped at least in part by 

developmental plasticity in my study cohort, and thus are likely indicative of life 

course adaptation. If such trade-offs were to persist over multiple generations and 

incorporate genetic effects over time, organ-size ratios could potentially reach a 

new optimum, representing an evolutionary adaptation. Indeed, it is likely that any 

long-term physiological or biological trade-off which was eventually fixed 

genetically in hominins (e.g. a trade-off between the gut and brain, which remains 

a possibility) first arose through plasticity as organs and tissues competed for 

energy within life course development.  

 

My trade-off analysis similarly lent support to the prediction of Leonard, Robertson, 

Snodgrass and colleagues, that a systematic reduction in average muscle mass in 

humans over time may have played a role in facilitating brain expansion (Leonard 

et al., 2003; Snodgrass et al., 2009; Muchlinski et al., 2012). This suggests that 

brain-liver, brain-kidney, or brain-SM trade-offs may have been ‘options’ for 

funding an increasingly large and expensive brain within the constraints of the 

hominin energy budget. Although it is not inevitable that trade-offs arising via 

phenotypic plasticity would be the same as evolutionary trade-offs, they arguably 

represent viable somatic energy allocation scenarios. This is indicated by the fact 

that I detected such trade-offs in healthy, normally-functioning adults, which further 

suggests that similar phenotypes could have been stabilized over time through 

genetic adaptation.  

 

Considering the trade-off and REE analyses together highlights that both high- and 

low-metabolic rate tissues may trade off against the brain. As I showed in Chapter 

6, the Ki value of SM is relatively low. However, SM is relatively large in mass and 

therefore accounts for a larger percentage of the total energy budget than some 
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internal organs. Considering the increased cost of SM beyond the basal state (i.e. 

during physical activity), it is possible that SM would, like the higher-Ki value 

organs, be a target for energy competition with the brain. Due to its lower Ki value, 

a decrease in SM mass alone may not be expected to have freed up a considerable 

amount of energy to fund the brain, however I have shown that it is possible for 

trade-offs amongst different tissues to occur simultaneously, within the same 

individuals. It thus appears feasible that trade-offs between the brain and both low- 

and high-metabolic rate tissues in the body may have constituted concomitant 

adaptations in the energetic strategy of hominins.  

 

Previous studies which tested for somatic trade-offs involving the brain have 

reported using only a whole-brain volume or mass measurement. This study took 

a novel approach by segmenting the brain into several component volumes. It was 

thus a novel finding of the current study that the brain’s gray matter volume, beyond 

the composite brain measure, was seen to demonstrate trade-offs with lean body 

components. In testing the hypothesis of a brain-fat trade-off, however, neither 

composite brain, gray matter, nor any of the remaining brain components showed 

negative relationships with FM. These results suggested that the findings of 

Navarette and coworkers (2011) describing such trade-offs across 100 mammal 

species do not manifest within the human species, and that a brain-fat trade-off is 

unlikely to help explain the evolution of the human brain. Indeed, it has been 

argued that the increased adiposity of humans is an important component of an 

evolved life history strategy which facilitated hominin brain expansion (e.g. 

Kuzawa, 1998; Wells, 2016).  

 

As acknowledged, Aiello and Wheeler’s (1995) prediction that hominin brain 

expansion was facilitated by a somatic trade-off is one of several hypotheses which 

sought to explain human brain evolution from an energetics perspective. The ETH 

highlighted the importance of dietary changes, which, as I described in Chapter 1, 

were similarly proposed by others to have been integral to changes in brain size 

(e.g. Foley and Lee, 1991; Leonard and Robertson, 1992). Cooperative breeding 
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is argued to have been a prerequisite for the evolution of a larger, more expensive 

brain (Hrdy, 2009; Isler and van Schaik, 2012). The ‘expensive brain’ framework 

of Isler and van Schaik (2009) predicts that energy allocation may have been 

redistributed from tissues such as the gut and SM, and also from functional areas 

of growth and reproduction. Aiello and Wells (2002) similarly favored the idea that 

the increased energy costs faced by hominins were covered by not one, but 

several adaptations. The findings of this study – trade-offs which were statistically 

significant, but not of substantial magnitude; and which were identified between 

the brain and various tissues – are consistent with the idea that a strategy for 

funding the brain involved shifts in energy allocation among several areas. If trade-

offs similar to those I have identified occurred in hominins, they appear likely to 

have represented just one component of a more complex energetic strategy. 

Importantly, moderate trade-offs such as those observed here may have 

represented the most plausible scenario to maintain the brain and body organ 

function of individuals, with selection acting on relatively small differences to 

potentially drive phenotypic change over time.  

 

Shifting from an evolutionary to a life course, population-level perspective, the 

brain-tissue trade-offs I observed are consistent with prior studies showing 

reduced average muscle mass and visceral organ size in South Asian individuals 

(Rush et al., 2007; Unni et al., 2009; Wells et al., 2016). As described, these 

aspects of the characteristic South Asian body composition phenotype were 

predicted by Yajnik and coworkers (Yajnik et al., 2003; Yajnik, 2004) to arise as a 

result of brain-sparing growth in a nutritionally-poor environment. For the first time, 

this study provides direct evidence that brain size is negatively related to SM and 

organ size in South Asian women, thus supporting Yajnik and the general brain-

sparing prediction of Hales and Barker’s (1992) TPH. Although the direction of 

causality cannot be confirmed, I discussed in Chapter 7 that several lines of 

evidence suggest the kidneys, liver or SM would be more likely to vary in size than 

the relatively canalized brain. Nevertheless, the lack of evidence for a 

developmental signature underlying the observed trade-offs, as described in 
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Chapter 9, precludes the current study from offering stronger support for the TPH; 

namely, its prediction that the differential growth of organs and tissues occurs in 

fetal and/or infant life. It remains a possibility that the trade-offs identified in my 

sample developed outside of these specific periods. 

 

10.2 Strengths, limitations and future work 
The principal strengths of this study are associated with its methods of recruitment 

and measurement. Potentially confounding factors were limited by recruiting 

individuals of one sex, of a relatively focused ethnic background, and within a 

narrow age range situated after the pubertal growth period, but likely before the 

start of brain/body composition changes associated with aging. Further variability 

in body composition was limited by including nulliparity as an inclusion criterion, 

and avoiding the recruitment of individuals at the extremes of the BMI range. This 

meant that it was unnecessary to add a large number of variables to statistical 

models to control for extra sources of variability.  

 

The majority of the measurement methods used to gather data were of the highest 

possible quality. MRI allowed for accurate in vivo determinations of brain gray and 

white matter volumes and organ volumes, whilst the 4C body composition model 

is the criterion for quantifying FFM and FM. Using MRI, DXA and the 4C model to 

measure different outcomes allowed me to derive independent measures of FFM, 

FM, SM and brain/body organs, and avoid correlated error. This is not the first 

study to combine MRI and the 4C model, but to my knowledge it is the first to do 

so in South Asian women, and it is the first to do so in order to test for somatic 

trade-offs, thus addressing an interesting and influential evolutionary question with 

several advanced biomedical techniques. The sample size of 70 may seem small 

by epidemiological standards (for example, the studies of Barker and colleagues 

routinely involved hundreds or thousands of subjects), however a sample size of 

70 is larger than that found in many MRI studies.  
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I was not able to measure tissue-specific metabolic rates directly in my sample; 

the technical difficulty of the methods required to do so is indicated by the 

continued use of Elia’s (1992) Ki values in the literature, and no new reports 

emerging from more recent studies. However, I was able to measure REE in my 

subjects and assess both the question of relative organ/tissue cost, and whether 

tissue trade-offs were observable among more or less ‘expensive’ tissues, within 

the same cohort.  

 

There were some limitations associated with my methodology as well. As 

described in Chapter 4, I dealt with missing body organ data by measuring organs 

on different sets of MR images, and correcting for this with generated regression 

equations. This may have introduced error, although the process was carried out 

for a small number of subjects, and it did avoid further missing data for body 

organs, which were an important study outcome. Error may also have been 

introduced more generally through the manual measurement of organs using the 

OsiriX workstation. Although I received instruction from an experienced radiologist 

prior to undertaking body organ segmentation in my dataset, I do not have 

extensive prior experience extracting organs and tissues from MR images. A 

benefit, however, in carrying out all segmentations myself is that any error is likely 

to be similar across subjects, so that the ranking of organ size is unlikely to have 

been affected in the final dataset.  

 

The selection of control variables in brain-organ trade-off models was less than 

straightforward, particularly involving the question of whether it was appropriate to 

control for head/skull size using TIV. A literature search revealed that in imaging 

studies, individual variation in head size is recognized as a source of variability for 

inter-subject whole and regional brain volume outcomes. It is thus common 

practice to obtain a measure of the cranial cavity to control for overall head size in 

MRI volumetric analyses (Whitwell et al., 2001; Buckner et al., 2004; Sanfilipo et 

al., 2004; Malone et al., 2015). These methods have been employed to investigate 

brain volume change over the adolescent period (Herting et al., 2014), 
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associations of brain volume with physical activity (Jochem et al., 2017), cortical 

changes in schizophrenia (Goldstein et al., 1999), the relationship between social 

network size and amygdala size in humans (Bickart et al., 2011) and brain volume 

differences between the sexes (Lüders et al., 2002). According to Mathalon et al. 

(1993, p. 122), variability in head size inserts “‘noise’ into quantitative brain data,” 

and without adjustment, this source of variability remains unexplained in statistical 

models and may decrease power (Barnes et al., 2010; Peelle et al., 2012). 

Furthermore, if TIV is associated with the main variable(s) of interest (composite 

brain and brain component volumes in my study), it represents a potentially 

important confounder (Malone et al., 2015). Beyond this, in consultation with a 

statistician, I was advised to include both height and TIV as control variables in my 

trade-off analyses. However, the novel nature of the current PhD analysis makes 

it difficult to determine whether the logic of including TIV as a control variable in 

previous imaging studies extends to my study. Therefore, the appropriateness of 

including TIV in trade-off models remains an open question.  

 

As I noted in Chapter 9, the developmental variables I employed may not have 

been sensitive enough to detect an early-life developmental effect on tissue trade-

offs. The birth weight variable may have been particularly problematic, as birth 

weight data (and also data on gestational age, which were used to generate SDS) 

were obtained from subjects by recall.  

 

Finally, I was able to test both Aiello and Wheeler’s (1995) ETH, which predicts an 

evolutionary somatic trade-off, and Hales and Barker’s (1992) TPH, which predicts 

somatic trade-offs within the life course. However, my methods were not able to 

distinguish between the effects of genetics and phenotypic plasticity, both of which 

may contribute to the development of observed trade-offs, as I noted in Chapter 7, 

and also above. At the same time, I cannot conclude with certainty the direction of 

causality in the brain-organ and brain-SM trade-off relationships identified, nor 

whether competition between tissues for energy resources occurs in relation to 
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tissue accretion, or the metabolic costs associated with the long-term functioning 

of organs and tissues.   

 

Some of the limitations of the present study suggest potential avenues for future 

research. For example, a future study could employ methods to more directly test 

the possible contribution of genetic variation to body and brain composition, and 

potential trade-off relationships therein. One possible avenue for testing this would 

be a twin study, where variability associated with genetics and maternal 

environment can be controlled (e.g. Loos et al., 2002). Similarly in need of further 

exploration in humans is the potential role of epigenetic modifications in shaping 

body composition phenotypes, in particular following the recent work of Hardikar 

et al. (2015), which suggested that epigenetic changes are associated with 

differential tissue growth across generations in a rodent model.  

 

With respect to the present dataset, further, more refined statistical analyses could 

potentially yield additional information. For example, the use of structural equation 

modeling (SEM), also referred to as causal modeling or causal analysis, could be 

explored. SEM allows for the examination of complex relationships, wherein “the 

phenomena of interest are complex and multidimensional” (Ullman and Bentler, 

2013, p. 663). This characterization clearly applies to organs and tissues in the 

body and their relationships to one another, and SEM could allow for causality in 

tissue/organ relationships to be elucidated more fully. Similarly, hierarchical or 

multi-level modeling could possibly be employed. These analyses are typically 

utilized when datasets contain variables with a nested structure, e.g. specific 

organs or brain components nested within fat-free mass or composite brain, 

respectively. Sub-models allow for relationships and residual variability to be 

accounted for at different levels in the overall model (Raudenbush et al., 2004), 

which may better fit the data and result in more robust conclusions. 

 

Following the largely negative results in the current study in relation to early-life 

development, the question of whether trade-offs between the brain and lean body 
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tissues arise in fetal and/or infant life is in need of additional investigation. Further 

research could employ similar body composition methods to those used here in 

adults, but with more sensitive developmental proxy measures. Alternatively, and 

perhaps more robustly, brain and body composition could be measured in infants 

or children at a level of detail similar to that employed here, although it is 

recognized that such a study would be practically difficult, perhaps especially in 

healthy individuals. To limit the number of measurements necessary, however, 

imaging could be used alone to collect data on the brain, body organs and SM.  

 

Trade-offs identified in this study were not large in magnitude, however a clear 

pattern was seen whereby either composite brain or gray matter volume was 

negatively correlated with FFM, SM, or organs. It would be interesting to carry out 

a similar study in individuals from a different population, or in male subjects, and 

investigate whether the same pattern of trade-off relationships might be observed. 

Finally, a future imaging study might measure the brain, the gastrointestinal tract, 

and the pancreas in humans to test the specific predictions of the ETH and TPH.  

 

This study set out to test whether competition between organs and tissues in the 

body, as predicted by Aiello and Wheeler’s ETH and Hales and Barker’s TPH, 

could be observed using gold-standard measurements in adult humans. Although 

results were more equivocal for the TPH, my findings constitute the first direct 

evidence for the general predictions of the ETH within humans. It is hoped that the 

current results will stimulate the field, both to carry out further studies of somatic 

trade-offs, and also to recognize the utility of body composition and biomedical 

techniques for addressing evolutionary questions.  
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Appendix: Recruitment/data collection materials 
 
Appendix Figure 1: Study recruitment poster 
 

 
 

 
 

Version 1.01, dated 04.08.14 

We would like to invite women of Indian, Pakistani, 
Bangladeshi and Sri Lankan ancestry between the ages of 

20-28 to take part in a research study on body composition  
If you’re interested, please contact us for further information (contact details found below) 

 
 

The aim of the study: to gain an understanding of the relationships between lean and fat 
tissues, and whether these relationships are influenced by growth and nutrition in early life 
– this will shed light on factors which may make individuals susceptible to certain conditions 
and diseases (e.g. obesity, type II diabetes, cardiovascular disease)  
 

If you agree to take part, we will conduct a series of measurements as you visit the UCL 
Institute of Child Health/Great Ormond Street Hospital for Children for one half day (approx. 
4.5 hours with breaks for food and drink, which will be provided to you) or on two separate, 
shorter visits at your convenience. We will offer you £30 for your time and any 
travel costs will be paid back to you. Weekends and bank holidays are a 
possibility if preferable to a weekday. 
 

 

  
 

Researcher contact details: 
 
 Ms Meghan Shirley   Professor Jonathan Wells  
 UCL Institute of Child Health   UCL Institute of Child Health  
 30 Guilford Street    30 Guilford Street  
 London WC1N 1EH   London WC1N 1EH 
 Tel: 07923691733   Tel: 02079052104 
 Email: meghan.shirley.13@ucl.ac.uk Email: jonathan.wells@ucl.ac.uk 
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Appendix Figure 2: Study consent form 
 

 
 
 

 
 

PARTICIPANT CONSENT FORM v1.02, dated 7.10.14 

Assessing relationships between organs and tissues in women of South Asian ancestry 

Sponsor Protocol No: 14NT03            Investigators: Miss Meghan Shirley, Professor Jonathan Wells 

Contact details: Tel: 07923691733        Email: meghan.shirley.13@ucl.ac.uk 

Subject Identification No for this study: _______________ 

Please carefully read each of the following statements and place your initials in the boxes on the right 
to indicate agreement before signing the form.  

 
1 

I confirm that I have read and understood the information sheet (v1.02 dated 
03.10.14) pertaining to the above study. I have had the opportunity to 
consider the information, and have had any and all questions answered. 

 

2 
I confirm that I am not currently pregnant.  

 

3 
 
I consent to have an MRI scan and a DXA scan, and also to have saliva 
samples taken.  

 

4 
 
I understand that my participation in this study is completely voluntary and 
that I am free to withdraw at any time, and without giving any reason. 

 

5 
 
In the event of incidental findings, I consent for my GP to be informed of my 
participation in this study and the results of the MRI. 

 

 
6 
 I agree to take part in this research study. 

 

 

_______________________________         ____________           _________________________ 

Name of Participant (Print)    Date              Signature of Participant 

_______________________________          ____________          _________________________  

Name of Researcher     Date            Signature of Researcher  

_______________________________ ______________      _____________________________ 

Name of GP and/or GP practice  Phone          Address 

Only the researchers will have access to the data collected during this study. Information 
regarding measurements and results will be completely confidential, identified by a number 
only.  
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Appendix Figure 3: Study information sheet 

 

!
!

Participant!Information!Sheet!Version!1.02,!dated!03.10.14!
!

1!

Participant Information Sheet v.1.02 – October 2014 

Assessing relationships between organs and tissues in women of South Asian ancestry  

You are being invited to take part in a research study which will take place at the University College 
London Institute of Child Health and Great Ormond Street Hospital for Children.  

Before you agree to participate, however, we would ask that you carefully read the following 
information (and discuss it with others if you wish) so that you understand why the study is being 
done and what it will involve for you. If you would like information additional to what is included 
here, or if anything is unclear, please do contact the researchers.  

To find out more about the research being conducted at the UCL Institute of Child Health, please visit 
www.ucl.ac.uk/ich/research.  

 

What is the aim of the study? 

The aim of this study is to gain an understanding of the relationships between three distinct parts of 
the body: the brain, lean tissue (i.e. organs and skeletal muscle) and fat tissue. Also, the study aims to 
find out whether these organ/tissue relationships are influenced by growth and nutrition in early life.  

Why is the study being done?  

Human health is affected by the size and composition of organs and tissues in the body. How the 
brain, lean tissue and fat relate to one another, however, is largely unknown; research which considers 
how tissues are different both within and between people most often looks at the brain and other 
organs of the body separately. Knowledge of tissue relationships within individuals – and how they 
might have been shaped during development – will add to our understanding of how the size and 
composition of tissues could render some people more susceptible to certain diseases.  

Why am I being invited to take part?  

For this study we are recruiting women of South Asian (Indian, Pakistani, Bangladeshi, Sri Lankan) 
ancestry who are healthy, aged 20-28 years, have a body mass index (BMI) in the range 17 – 28, were 
not born pre-term, have not previously been pregnant, and who have not been diagnosed with any 
conditions that could affect brain/body composition or metabolism (e.g. polycystic ovary syndrome, 
diabetes, mental health disorders, hypothyroidism). More research is needed to understand why, for a 
given BMI, individuals of South Asian ancestry tend to have more central fat and lower muscle mass 
compared to those in other populations; this information will be important in addressing the 
increasing epidemic of type II diabetes and cardiovascular disease impacting Asian men and women.  

Do I have to take part? 

It is fully up to you to decide whether or not you would like to take part in this study. If you do decide 
to join the study, we will ask you to sign a consent form: one copy will be given to you and the other 
we will keep for our records. If you do decide to take part, please be aware that you will remain 
absolutely free to withdraw at any time and without giving a reason.  
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What will I experience if I take part in the study?  

If you agree to take part, we will ask you to fill out two short questionnaires at home with information 
on your health, physical activity, birth weight, birth order, education and profession. We will ask you 
to bring these questionnaires with you to an appointment that we will schedule at your convenience. 
You will be asked to fast overnight prior to the appointment, so that you will arrive at the Institute of 
Child Health (ICH) early the following morning having not eaten breakfast. After we address any 
questions you have, we will ask you to sign a consent form in the office at ICH. Once you have signed 
the consent form, we will walk across to Great Ormond Street Hospital (GOSH), which is connected 
to ICH. We will then do the following measurements:  

 
Resting energy expenditure (REE): It is for this 
measurement that we will ask you to fast overnight, 
therefore we will complete this before any of the other 
measures. REE is the number of kilocalories the body 
uses over a 24-hour period for basic functions like 
breathing and maintaining its temperature. We will 
ask you to lie on a bed under a ventilated plastic 
canopy for 25 minutes (see photo at right). Following 
this measurement, a light breakfast will be provided to 
you. If you have any special dietary requirements 
please let us know when you book your appointment.  

 

Total body water: To measure the amount of water in your body we will ask you to drink some water 
containing heavy hydrogen molecules, which occur naturally in all of us in small amounts. These 
molecules are not radioactive, they simply weigh more than most of the hydrogen molecules found in 
our bodies. The drink is clear, tasteless, and is not harmful to you. We will collect two saliva samples 
with a cotton swab, one before the drink and another ~4 hours later. These samples will be analysed 
by a member of the study team at ICH, after which they will be disposed of.  

Hand symmetry: We will make images of your hands using a standard photocopy machine in order 
to measure the area of your hand, the symmetry of your fingers and the ratio of your ring to your 
index finger.  

Body volume: For this we use a machine called 
the BodPod (see photo at right). We will ask you 
to change into close-fitting underwear or a 
swimming costume, wear a swimming hat that we 
will provide, and sit inside the BodPod whilst 
room air is blown gently around you. The door is 
shut for less than a minute at a time and usually 
takes between 4-6 cycles.  
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Anthropometric measures: We will measure your height, sitting height, and the lengths of your 
shinbone and foot. We will also collect data on your weight, the circumferences of your arm, leg and 
head, and the size of skinfolds at four points on your upper body. Skinfolds are measured by gently 
raising the fat on the front and back of your upper arm, lower shoulder and at a spot above your 
hipbone, and do not hurt.  

Grip strength: We will ask you to squeeze a handheld device called a dynamometer. 

Lung function test: This test entails taking a deep breath in and then blowing through a mouthpiece 
as hard and fast as possible. 

 

Bioelectrical impedance: We will ask you to lie on a bed, and 
we will place electrodes on one of your hands and one of your 
feet (see right). A small electrical signal (far too weak to be 
felt) will be passed through your body to measure your body 
composition. The test is harmless and painless.  

 

Blood pressure: We will ask you to sit up for this measure, which will be taken three times. We will 
place a cuff around your upper arm, and there may briefly be a little discomfort due to the pressure 
when it inflates.  

Body shape: We will ask you to wear close-fitting underwear or a swimming 
costume as you stand inside a 3D body scanner, which looks like a large photo 
booth and projects light onto the surface of your body. This takes a matter of 
seconds, you will not experience any physiological risk, and the images 
acquired (example at right) will be stored securely to ensure your privacy.  

 

Bone scan: For this we will ask you to lie on a bed for about 5 minutes as an arm passes above you 
taking a picture of your skeleton (below right). The DXA machine measures the amount of bone, fat 
and lean tissue in your body. It involves a very small amount of radiation, which is less than 1/10 the 
radiation you would encounter during a flight across the Atlantic, and less than one day’s background 
radiation in the UK.   
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Magnetic resonance imaging (MRI): During the scan you will lie 
on a padded table which will be moved to the centre of the MRI 
magnet (see photo at left). This space is a narrow tube open at both 
ends. If you are bothered by the confined space or have any other 
concerns during the scan you can stop at any time by letting the 
MRI staff know. The scan will take approximately 60 minutes. 
MRI will let us see detailed images of your brain and the organs of 
your body, such as the heart, liver and kidneys. To create the 
images MRI uses radio signals and magnetic fields, which you 
cannot feel, but which will cause the machine to make loud noises.  

 

We expect these measurements to take approximately 4 hours altogether. This includes breaks for 
food and drink, as well as factoring in time to walk between ICH and GOSH, and between a few 
different rooms in the hospital where different measurements will be taken. If you find it more 
convenient, we could arrange to complete the measurements over two separate, shorter visits to 
ICH/GOSH. 

 

What are the possible disadvantages and risks of taking part?  

None of the measurements will cause you any pain or harm. As mentioned, the radiation involved in 
the DXA scan is minimal compared with daily background levels of exposure and that which is 
experienced on a trans-Atlantic flight. However, if there is any possibility you might be pregnant we 
will not do the scan.  

A great deal of research has been done on the potential effects of the radio signals and magnetic fields 
associated with an MRI scanner: there are no known significant risks in having an MRI scan. 
However, the scanner is a strong magnet, therefore a risk of accidental injury does exist relating to the 
sudden movement of metallic objects. Considerable precaution is taken to prevent this from occurring 
as every person is screened and checked before entering the scanner room. It is important that you tell 
the researcher and MRI staff if you have had any surgery or if there is any metal in your body, such as 
piercings. You will not be able to participate in this study if you have implanted electronic or metallic 
devices.  

Additionally, you may be disturbed by the magnet’s noise (though ear protection will be provided). 
Other risks are that you may feel confined (claustrophobic) or uncomfortable due to the length of the 
MRI scan.  

What are the potential benefits of taking part?  

As a participant in this study you will receive, if you would like, information about your BMI, blood 
pressure, % body fat and % non-fat lean mass. However, it is important you’re aware that taking part 
in this study is not a clinical assessment, and it is important to consult your GP if you have any 
specific health concerns.  
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In the long-term, we hope that the data collected in this study will add important, novel information to 
our understanding of human anatomy and biology, and also potentially inform public health 
interventions with regard to chronic disease, obesity and other disorders relating to metabolism. The 
generation of such information could be beneficial to both science and the general public.  

What happens at the end of the study? 

Once you have undergone data collection at ICH/GOSH (including body composition measurements 
and MRI), and completed the two short questionnaires, your commitment to the study will have ended 
and you will be reimbursed £30 for the time you’ve dedicated to the study. Once the analysis is 
complete, we will send you a newsletter to tell you the results of the whole group.  

Who will have access to the research data?  

All of the data collected during this study will be anonymised with an assigned participant number, so 
that your name will not appear in the same place as the measurements we’ve recorded. In this way, all 
information will remain completely confidential, and only the researchers on the study will have 
access to it. Any materials containing your personal identifiers will be stored in locked filing cabinets 
within a secure building (ICH) and/or on password-protected computers and memory sticks. Only 
members of the research team will have access to the data, and they will analyse it at UCL, and 
possibly the University of Cambridge.  

We will ask you for your GP details. We will not routinely inform them of your participation in this 
study, but we will ask for your permission to contact them in the first instance in the unlikely event of 
incidental MRI findings. If your blood pressure is high we will encourage you to inform your GP and 
have it rechecked. 

What will happen to the results of the research study? 

The data collected in this study will be published in scientific journals and presented at scientific 
meetings or conferences. The information may also be used for educational purposes. However, all 
data will remain anonymised so that no one reading the research will be able to identify you in any 
way.  

What if something goes wrong?  

This study has been reviewed and approved by an Independent Research Ethics Committee. This 
means that a group of individuals whose priority is your safety and well-being believe the research is 
of minimal risk to you. However, no research project is completely immune to unforeseen risks. It is 
important for you to know that you have the right to claim damages in a court of law in the unlikely 
event any harm should occur as a result of you taking part in this study. In this instance, you would be 
required to prove fault on the part of ICH/GOSH.  

Who is funding the research study? 

This study has funding from the Wenner-Gren Foundation for Anthropological Research, and the 
study sponsor is the UCL Institute of Child Health.  
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Who do I speak to if problems arise, or if I have further questions about the study?  

Please contact, in the first instance, the researchers on this study if you have any questions or indeed 
any complaints about the way the research is conducted. If the issues are not resolved, or if you wish 
to ask questions or comment in any other way, please contact research-incidents@ucl.ac.uk, or the 
Patient Advice and Liaison Service (PALS) at GOSH via telephone (02078297862) or email 
(pals@gosh.nhs.uk).  

 

Details of how to contact the researchers: 

Ms Meghan Shirley     Professor Jonathan Wells  
UCL Institute of Child Health     UCL Institute of Child Health  
30 Guilford Street      30 Guilford Street  
London WC1N 1EH     London WC1N 1EH 
Tel: 07923691733     Tel: 02079052104 
Email: meghan.shirley.13@ucl.ac.uk   Email: jonathan.wells@ucl.ac.uk 
!
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