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Abstract 

The isolation of graphene in 2004, and subsequent Nobel Prize for Physics being 
awarded to Andre Geim and Konstantin Novoselov in 2010, has sparked a renewed 
interest in graphene around the world due to graphene’s remarkable physical properties 
such as mechanical stability, optical transparency, impermeability and electrical and 
thermal conductivity. Graphene Oxide (GO), the oxidised analogue of graphene, has 
also received much attention owing to its hydrophilic nature. This has made GO a very 
promising material for aqueous processing, giving it a significant advantage over 
graphene. In this way, GO has been used in many composite materials, involving 
biological molecules, metal-organic-frameworks (MOFs) and other hybrid systems. 
Unfortunately, much uncertainty surrounds the chemical nature of GO, and therefore its 
chemistry, thus creating a lot of controversy in the literature. Similarly, the preparation of 
GO also results in lengthy procedures and toxic by-products. To address these issues, 
this thesis describes the preparation of alternative carbon nanomaterials, as a potential 
substitute to GO, which have well-defined structures and chemistry and/or reduce the 
toxic waste produced. The chemistry and applications of these new materials are 
explored and benchmarked against conventional GO, which is prepared via 
permanganate oxidation (PM-GO).  

The preparation of three novel carbon materials, carboxylated graphene nanoflakes (cx-
GNFs), nano-graphene oxide (nGO) and GO prepared via dichromate oxidation (DC-
GO) are initially reported, along with extensive characterisations. The cx-GNFs are a 
highly soluble (~100 mg mL-1) and well-defined material consisting of carboxyl groups 
and unoxidised sp2 carbon only. nGO is prepared via an eco-friendly procedure 
producing nano-sized GO and DC-GO was prepared in order to elucidate its chemical 
structure which remains uncertain in the literature.  

The thermal annealing behaviour of the materials are reported next and the cx-GNFs 
and the nGO are shown to form carboxylic anhydrides in yields up to 81%, which is the 
first experimental evidence for this functional group at the graphene edge. The existence 
of carboxylic anhydrides in dynamic equilibrium with carboxylic acids in water was 
demonstrated at room temperature for the cx-GNFs, and was consequently exploited for 
room temperature chemical functionalisations with well-known amines such as 
ethylenediamine and cysteamine. These functionalised materials were then explored in 
the context of tagging gold nanoparticles and changing the zeta potential of the native 
cx-GNFs. The application of these novel materials in heavy-metal extraction is also 
presented and found to greatly exceed the capacity of PM-GO - by up to six times. 
Collaborations with other research groups in the field of nano-sensors, ice-nucleation 
and electrochemistry, revealed the cx-GNFs to be a particularly promising material. 
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Impact Statement 

This thesis describes the preparation, characterisation, chemistry and applications of 

novel carbon nanomaterials. The materials presented constitute significant advances 

over other carbon materials in the literature. In this regard, well-defined materials in terms 

of structure and chemistry have been presented, allowing for easier interpretation of the 

reaction products. From an academic and industrial perspective, this allows for easier 

structural comparisons between materials before and after chemical processing. Some 

of the chemistry taking place occurs via carboxylic anhydrides, which are native to the 

materials, allowing for click-chemistry reactions to occur under environmentally-friendly 

conditions. In general, the existence of carboxylic anhydrides on the graphene edge was 

experimentally proven for the first time using these materials. 

Detailed discussions on the structural nature of the various materials produced under 

different oxidation regimes will be beneficial to ascertain the mechanisms by which 

carbon materials undergo oxidation, which remains largely unknown.  

The materials reported here have been utilised in various applications with a number of 

other research groups in collaboration. For instance, the first experimental evidence 

demonstrating that carbon nanomaterials can nucleate ice was reported, which can have 

profound implications in atmospheric chemistry. The use of these materials in the 

extraction of heavy-metals from water was also presented and shown to exceed the 

capacities of conventional carbon materials by up to six times. The potential impact of 

this is significant in the context of wastewater management and the purification of 

drinking water. 

It is expected that these materials will find their uses in a wide range of applications, both 

academic and industrial.  
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Chapter: 1 Introduction 

 

1.1 Carbon materials 

All elements have their own unique properties, but carbon stands out as being particularly 

special. It constitutes the backbone of all of organic chemistry, and life itself is dependent 

on its unique ability to form multiple strong bonds with itself and many other elements. It is 

because of this that all life on Earth is carbon based. Carbon also exhibits a wide variety of 

stable allotropes, including cubic and stacking-disordered diamond, carbon nanotubes-

which may be single or multiwalled, fullerenes, graphite and of course graphene. With the 

exception of diamond, all of these carbon allotropes have at least some degree of sp2 

hybridised character (if not entirely) and therefore have highly delocalised electrons, giving 

the materials unique properties such as very high electrical conductivity (1-4). Fig. 1.1 

illustrates how graphene, which is a single sheet of hexagonally arranged sp2 hybridised 

carbon, can be hypothetically used as a template for the synthesis of the other sp2 carbon 

allotropes. 

 

Fig. 1.1 Graphene is a 2D building material for carbon materials of all other dimensionalities. It 

can be wrapped up into 0D buckyballs, rolled into 1D nanotubes or stacked into 3D graphite. 

Reproduced from ref. (5) by permission from Macmillan Publishers Ltd (5). 
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Fullerenes, shown in green in Fig. 1.1, are often referred to as 0 dimensional (0D) 

materials. They can be schematically ‘wrapped’ up from graphene to form a ball 

consisting of five and six membered carbon rings. In the case of C60 (a fullerene 

containing 60 carbon atoms), each 5- membered ring is surrounded by only 6- membered 

carbon rings. Interestingly, C60 itself is not super-aromatic like other planar sp2 structures 

(6). Similarly, carbon nanotubes (CNTs, referred to as 1D materials) shown in purple in 

Fig. 1.1, can be rolled up from a single sheet of graphene (to form single walled carbon 

nanotubes, SWCNTs) or from multiple sheets to form multiwalled carbon nanotubes, 

MWCNTs. The properties of carbon nanotubes can vary drastically depending on how 

they have been ‘rolled’ up. Typically, two categories of CNT arise, those with semi-

conducting properties and those with metallic behaviour (7). Finally, graphite (shown in 

dark blue in Fig. 1.1), is denoted as ‘3D’ and is simply the stacking of two dimensional 

graphene into a regular lattice; although stacking disordered graphite has been observed 

as well (8; 9). The layers of graphite (i.e. graphene) are held together by relatively weak 

van der Waals dispersion forces, but the delocalisation of electrons remains within the 

layers.  

 

1.2 The rise of Graphene  

For many years graphene was considered a thermodynamically unstable allotrope of 

carbon and its isolation was thought to be impossible (10). However in 2004 a research 

group at the University of Manchester, UK, successfully isolated the material by the 

simple mechanical exfoliation of graphite using scotch tape (11). Not only was the 

graphene found to be stable, but it also exhibited the remarkable physical properties it 

was predicted to have, such as high electron mobility (1) and thermal conductivity (12), 

elasticity, high impermeability (13) as well as being incredibly strong (14). The potential 

of graphene was immediately realised and in 2010 the Nobel Prize for Physics was 

awarded to Andre Geim and Konstantin Novoselov. Since then there has been a huge 

surge in graphene related research across the globe. 

 

1.2.1 Structure of Graphene 

In its idealised form, graphene is a single sheet of sp2 hybridised carbon atoms arranged 

into hexagons; is defect free, and the carbon atoms at the edges of the sheet all have an 

unpaired electron, which is stabilised by the electron delocalisation that occurs 

throughout the sheet. In reality however, the structure of graphene is far more 
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complicated (15-21). The graphene sheet will contain defects, including holes (22), 

carbon rings of various sizes (23)-most notably Stone-Wales defects (5- and 7- 

membered rings formed from two 6- membered rings) (23; 24), triple bonds (25), 

dangling bonds (26), C-H bonds (27) and more (28).  The high resolution transmission 

electron microscopy image (HRTEM) in Fig. 1.2 illustrates the various defects which can 

be found on the graphene sheet (23). 

 

Fig. 1.2 Metastable defects found in HRTEM image sequences. (a-d) Stone-Wales (SW) defect: 

(a) unperturbed lattice before appearance of the defect, (b) SW defect (c) same image with 

atomic configuration superimposed, (d) relaxation to unperturbed lattice (after ca. 4 s). (e-g) 

Reconstructed vacancy: (e) original image and (f) with atomic configuration; a pentagon is 

indicated in green. (g) Unperturbed lattice, 4 s later. (h and i) Defect image and configuration 

consisting of four pentagons (green) and heptagons (red). Note the two adjacent pentagons. (j 

and k) Defect image and configuration consisting of three pentagons (green) and three 

heptagons (red). This defect returned to the unperturbed lattice after 8 s. In spite of the odd 

number of 5-7 pairs, this is not a dislocation core (it is compensated by the rotated hexagon 

near the center of the structure). All scale bars are 2 Å. Adapted with permission from ref. (23). 

 

It is not just the basal plane of the graphene sheet which suffers from defects but also 

the edge sites. Classically, the edges of graphene are thought to consist of ‘zig-zag’ (ZZ) 

or ‘armchair’ (29) (AC) type configurations as depicted in Fig. 1.3. 
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Fig. 1.3 Schematic Representation of Reactive Sites in Graphene Sheets: Surface Faces, 

Edges and Defects.(30) Adapted with permission from ref. (30). 

 

Zig-zag edges are thought to be polycarbenes (19; 31), whilst in the armchair 

configuration it is considered that a triple bond exists between the two open edge carbon 

atoms (32). In reality, this is just a common generalisation and many stable (or 

metastable) edge configurations may exist (33). Indeed, it has been shown in real-time 

HRTEM that edge carbon atoms can literally move freely across the edge sites reversibly 

forming 5- and 7- membered carbon rings from 6-membered rings, as can be seen in 

Fig. 1.4 (26). 
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Fig. 1.4 (a–e) A time series of TEM images of graphene edge. Each image is apart from each 

other by five frames. The left (right) segments have the ZZ (AC) edge configuration. Scale bar, 

0.5 nm. (f–j) The same sequential TEM images with edge representations. The red arrow 

indicates a heptagon ring. The blue solid and red dotted lines represent 6–6 ZZ and 5–7 

reconstructed ZZ edges, respectively. The yellow dashed lines show AC edge configuration. 

The green arrow in j shows a vacancy defect. Adapted from ref. (26) with permission. 

 

The structure of graphene, particularly at the edge, is clearly dynamic in nature 

(assuming no influence from the electron beam), and therefore a lot more research will 

be required to fully appreciate the complexity of this material. Interestingly, however, the 

defective nature of graphene provides for richer chemistry and catalysis, particularly in 

the field of electrochemistry (34; 35). 

 

1.2.2 Production of Graphene 

The large scale preparation of high purity graphene remains challenging (36), and 

currently only small scale approaches to the production of high quality graphene exist. 

Nonetheless, graphene can be produced in a number of ways, including mechanical 

exfoliation (11), chemical vapour deposition (CVD) (37-45), reduction of graphene oxide 

via chemical/electrochemical (46; 47) means or disproportionation through heat 
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treatment (48), liquid phase exfoliation (49-55), epitaxial growth (56), ion intercalation 

(57; 58) and bottom-up organic synthesis (59; 60).  

The CVD synthesis of graphene is becoming the preferred method for electronic related 

applications which require defect-free graphene (61; 62). In this process, graphene is 

formed on the surface of a substrate-typically a transition metal (Cu, Pt, Pd, Ni or Ir) from 

a carbon source such as methane under high temperatures, light or electrical discharge 

(38-42; 63; 64). Copper is emerging as the most favourable substrate owing to its low 

cost and tendency to produce larger sheets of graphene (41; 65). One of the main 

drawbacks of using CVD approaches is the lack of control over the growth mechanism, 

which remains poorly understood (66). Furthermore, removal of graphene from the 

substrate is also an inconvenience.       

 

1.3 Graphene and Graphite Oxide 

As the name suggests, graphene oxide (GO) is the oxidised analogue of graphene; if 

multiple layers of graphene oxide are stacked then 3D graphite oxide is produced.  

 

1.3.1 History 

The very first reported preparation of graphite oxide dates back to 1859 with Brodie (67), 

who oxidised flake graphite using potassium chlorate (KClO3) in fuming nitric acid 

(HNO3). The preparation was later modified by Staudenmaier in 1898 who increased the 

equivalents of KClO3 and used a mixture of fuming HNO3 and sulfuric acid (H2SO4) to 

increase the acidity of the mixture (68). The procedure was significantly improved on 

later by Hummers and Offeman by replacing KClO3 and fuming HNO3 with potassium 

permanganate (KMnO4) and potassium nitrate (KNO3) in concentrated H2SO4 (69). The 

‘Hummers method’, as this procedure is now known, is the most commonly employed 

method for preparing GO owing to its safer (i.e. the almost complete removal of NOx 

fumes and explosive KClO3), and overall more efficient approach. For the sake of 

transparency, it is noteworthy that the original use of a KMnO4/H2SO4 mixture to oxidise 

graphite was first reported by Charpy (70), some fifty years before Hummers. 

Unfortunately, this fact has not been fully realised in the literature.  

Nowadays, there are many ‘spin-off’ approaches to the preparation of GO including 

modified Hummers methods which remove KNO3 entirely from the synthesis (71-73) and 
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the ‘Tour’ method (74); as well as more unique approaches such as potassium 

dichromate (K2Cr2O7) and NaNO3 in H2SO4 (75), potassium ferrate (K2FeO4) in H2SO4 

(76) and more (77; 78).  

In the ‘Tour’ method, KMnO4 is combined with a mixture of 9:1 H2SO4/H3PO4 in the 

absence of KNO3.The use of H3PO4 was based on the group’s previous work with 

graphene nanoribbon (GNR) synthesis, which showed that the use of H3PO4 resulted in 

GNR with more intact basal planes (79). Consequently, it was believed that H3PO4 will 

reduce the number of defects on the GO sheets. The use of H3PO4 is also less 

exothermic compared with conventional Hummers methods (74). It is also noteworthy 

that twice the amount of KMnO4 is used in the ‘Tour’ method than the original Hummers 

method, in order to obtain a higher degree of oxidation (74). 

The use of K2Cr2O7 as an alternative to KMnO4 has also been reported but the nature of 

the final GO product obtained remains unclear. There has been some speculation that 

the resulting GO is over-oxidised resulting in its decomposition (80). However, in chapter 

3 of this thesis, the chemical nature of this material is elucidated.  

The recently reported use of K2FeO4 in H2SO4 as an alternative to Hummers has gained 

some interest. This is because it is the first potentially viable option to industrial scale 

GO synthesis, since reactions rates are fast and there is no need to dispose of Mn waste. 

The reaction media has also been shown to be recyclable many times over (>10 

times).(76) Unfortunately, K2FeO4 is not currently produced on an industrial scale, is 

moisture sensitive and readily decomposes in water (81). 

 

1.3.2 Mechanism of GO formation 

There still remains a lot of uncertainty surrounding the oxidation mechanism of GO (82; 

83). however it is generally regarded that the mechanism can be sub-divided into three 

main intermediate steps (83). In the first step, sulfuric acid initiates the reaction by 

intercalating within the graphite layers forming a sulfuric acid-graphite intercalation 

compound (H2SO4-GIC) (84-86). The initial formation of a GIC is always the first step 

regardless of the oxidation protocol used, only the identity of the intercalant will be 

different (83). The resulting intercalation increases the interlayer spacing between the 

graphite sheets allowing access to the active oxidising species (see step 2). It is 

noteworthy that this first step in the oxidation mechanism is the fastest step, taking only 

a few minutes-but will be dependent on the flake size (83). 



Chapter 1: Introduction 

38 
 

In stage 2 of the mechanism, the active oxidising species inserts in between the graphite 

sheets and subsequently oxidises the graphite (83). In all cases, the identity of the active 

oxidising species remains elusive, however it has been suggested for the Hummers 

procedure that the permanganyl cation (MnO3
+) (83; 87; 88) and/or dimanganese 

heptoxide (Mn2O7) (89) are the active species in the oxidation of graphite (90). The 

reaction scheme below shows how the formation of these species might occur: 

MnO4
-
 + 3 H2SO4 → MnO3

+ + H3O+ + 3 HSO4
- [1] 

MnO3
+   +  MnO4

- → Mn2O7     [2] 

Since this second step involves the diffusion of the active oxidising species in between 

the graphite layers, it is the rate limiting step in the reaction.  

In the third and final stage, water is added to the reaction mixture which reacts with the 

various manganese species, effectively quenching the reaction. Subsequent washing 

with water results in the exfoliation of graphite oxide to GO. There is also evidence to 

suggest that water also reacts with the graphite oxide-initially it is believed that cyclic 

sulphate groups exist on graphite oxide which then hydrolyse to form tertiary alcohols 

which are observed in the final GO product (72; 91; 92).  

 

1.3.3 Structure of GO 

The proposed structural models of GO date back to the 1930s (93; 94),  with the most 

notable models being those of Lerf-Klinowski (LK) in 1998 (95) and Szabo-Dekany (SD) 

in 2006 (96). In the LK model, GO is defined as a sheet of randomly distributed intact sp2 

domains mixed with oxidised sp3 regions. The functional groups constituting the oxidised 

sp3 regions are epoxides and hydroxyls (tertiary alcohols) which are found on the basal 

plane; carboxylic acids and hydroxyls are suspected of decorating the edges (95). The 

SD model by contrast, consists of a periodic array of aromatic and cyclohexane rings, 

with the cyclohexane rings functionalised with hydroxyls and 4-membered ring ethers. 

The model also suggests that at the points of C-C bond cleavage, ketones and quinones 

exist (96). Fig. 1.5 shows the differing structures of the two models. It is noteworthy that 

the models proposed by LK and SD are adaptations of the first models devised by Reuss, 

Clauss, Hofmann, Scholz and Boehm (97; 98). 
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Fig. 1.5 The LK and SD proposed structural models of GO 

 

Nowadays, the LK model is the most widely accepted model for the structure of GO. 

Indeed, the randomly distributed domains of sp2 and sp3 hybridised carbon have been 

confirmed by HRTEM by Erickson et al (99). 

One of the major controversies surrounding the LK model is that it is unable to account 

for the acidity of GO in aqueous media (100). The only (significantly) acidic functional 

groups predicted by the LK model are carboxylic acids which are only present in small 

quantities at the graphene edges. Recently, Dimiev et. al. suggested that the origin of 

this acidity could be accounted for by considering the structure of GO in solution as 

dynamic, readily reacting with water to generate acidic species (100). In this model, C-C 

bond cleavage occurs between adjacent hydroxyl groups after water deprotonates one 

of the hydroxyls. The deprotonation results in the formation of acidic functional groups 

such as enols and vinylogous carboxylic acids (see Fig. 1.6) (100). The acidity is further 

enhanced under basic conditions since hydroxide is a much stronger base than water 

and able to initiate the process more effectively. Dimiev et. al. also propose that highly 

acidic organosulfate groups exist on GO in significant enough quantities to also 

contribute to the acidity of GO (100). 
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Fig. 1.6 Formation of a vinylogous carboxylic acid by ionization of a tertiary alcohol and 

C-C bond cleavage. In 6 the C-C bond to be cleaved is represented in red. Structure 7 

contains a ketone and a vinylogous carboxylic acid formed as result of C-C bond 

cleavage. Structure 8 is an ionized form of 7, showing the vinylogous carboxylate. 

Reprinted with permission from ref (100). 

A drastically different model was proposed by Rourke et. al. in 2011 in which GO is 

treated as a two-component model, in stark contrast to all the previously reported one- 

component models (101; 102). In this model, GO is actually comprised of a relatively 

unoxidised graphenic backbone (first component) upon which highly oxidised organic 

fragments, which they term oxidative debris, OD, (second component), is adsorbed onto 

(101), see Fig. 1.7. It is suggested that a lot of the spectroscopic features observed for 

GO are actually due to OD, such as the absorption bands in UV-Vis and IR as well as 

the photoluminescence properties (103). A number of recent research articles have also 

analysed their findings on the ‘factual’ basis of the two-component model to explain the 

luminescence (104), chemistry (105), electroactivity (106) and adsorption (107) 

behaviour of GO. It should be noted that the notion of OD is not new in the carbon 

literature, and it has been demonstrated that OD is present on CNTs after acidic 

oxidation (108; 109). However, in these cases the OD can be justified since CNTs often 

contain amorphous carbon or defective CNTs which can be easily broken down into 

small fragments (108-110). Graphite on the other hand, is by definition pristine and 

therefore does not contain any amorphous carbon from which OD could be formed.   

Although the two-component model of GO cannot be completely proven nor disproven, 

it has probably created the greatest degree of controversy in the GO literature to date 

(110-116). Indeed, all of the alleged findings of the two-component model can be 

explained in terms of a one-component model (110).  
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Fig. 1.7 Large oxidatively functionalized graphene-like sheets with surface-bound debris. Note 

that the graphene-like sheets extend further than depicted. Reprinted with permission from ref 

(102). 

 

 

1.3.4 Applications of GO 

The applications of GO are extensive, including energy storage (117), electronic (118) 

and biomedical (119) applications, desalination (120), gas sorption (121), extraction of 

heavy metals (122), a precursor to graphene (48; 123) and more (124). In fact, a recent 

review article hinted that the potential of GO may even exceed that of graphene (21).   

 

1.4 Objectives 

The primary aims of this thesis are three-fold: (1) to prepare novel (graphenic) carbon 

nanomaterials as an alternative to conventional GO prepared via permanganate 

oxidation (PM-GO); (2) to understand their structure and chemistry and (3) to explore 

their potential applications. Overall, it is expected that the investigation into the 

preparation, characterisation and chemistry of these materials will provide further insight 

into the structure of carbon materials in general, and even contribute towards the current 

knowledge on the structure of PM-GO.  

The breakdown of this thesis is as follows: In chapter 2, the various characterisation 

techniques used to characterise the carbon materials are outlined. Chapters 3 to 6 

constitute the work undertaken in this thesis; and for each of these chapters, a short 
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literature review sets the work in context. Chapter 3 is dedicated to the preparation and 

characterisation of these nanomaterials, whilst chapter 4 examines the thermal 

annealing behaviour of the materials, which is becoming increasingly relevant in the 

context of graphene synthesis. Chapter 5 will explore the chemistry of the most promising 

of these materials, in particular towards nucleophiles such as amines; and likewise 

chapter 6 will look into the potential applications of the material, such as heavy-metal 

extraction, which is a hot topic in the literature. Lastly, chapter 7 summarises the work 

conducted in this thesis and chapter 8 describes the experimental procedures. 
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Chapter 2: Characterisation Techniques 

In this chapter a brief description of the techniques used to characterise carbon 

nanomaterials is reported. These include spectroscopic and non-spectroscopic 

techniques as well as imaging methods, and are mentioned in the order in which they 

appear in the upcoming results chapters of this thesis. 

 

2.1 X-ray Photoelectron Spectroscopy (XPS) 

XPS is an ionisation, surface-sensitive technique in which monochromatic X-rays, 

typically from an AlKα source (λ = 1486.6 eV), are directed at a sample resulting in the 

emission of its electrons (photoelectrons) which are then detected c.f. Fig. 2.1(a)). From 

this, the elemental composition (excluding hydrogen and helium) and oxidation states of 

those elements can be determined.   

If an X-ray photon interacts with one of the sample’s electrons, exceeding its ionisation 

energy, the electron will be ejected and the difference in energy between the energy of 

the photon and the binding energy (B.E.) of the electron will be the kinetic energy (K.E.) 

which is conferred to the electron. This is described by equation 2.1. Note that a small 

correction (ϕspectrometer) needs to be made to correct for the slight loss in K.E. that occurs 

when the photoelectron interacts with the detector (1).  

                        EK.E. = hѵ – EB.E. – ϕspectrometer     [2.1]

     

Electrons which are situated closer to the nucleus will have higher B.E. (and therefore 

lower K.E.), hence the exact orbital from which electrons have emanated from will be 

known. Likewise, the B.E. of electrons in the same orbital will be different for different 

elements as a consequence of the effective nuclear charge. By consideration of the 

relative sensitivity of the photoelectrons (which will be dependent on factors such as the 

element’s cross section and orbital type), elemental quantification is made possible. 

Furthermore, given that the B.E. of an electron is influenced by the oxidation state of the 

element it resides in, the oxidation state of the element can also be determined by 

analysing the high resolution spectrum of the element in question (2).   
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Although the XPS spectrum is mainly built up from incident electrons (which can be either 

elastically or inelastically scattered, c.f. Fig. 2.1), secondary electrons emitted during a 

photoelectron event are also very common. The most notable of which are Auger 

electrons (Fig. 2.1(b)) which occur when a vacancy left behind by an exiting 

photoelectron is filled by a higher energy electron, resulting in the simultaneous transfer 

of this energy difference to a third electron (Auger electron), resulting in its emission. The 

K.E. of this Auger electron is hence independent of the X-ray photon, and is equal to the 

difference between the energy transferred to it and its own B.E (1). 

 

Fig. 2.1(a) ejection of a photoelectron whose K.E. is dependent on the energy of the photon and 

(b) emission of an Auger electron whose K.E. is independent on the energy of the photon 

 

It was mentioned earlier that XPS is a surface sensitive technique. Whilst X-rays are well 

known to penetrate deeply into a sample, the inelastic mean free path (IMFP) of an 

electron is much shorter < 10 nm. Hence there will be a significantly stronger contribution 

from electrons exiting from the surface than in the bulk. The consequence of this is that 

surface contaminants are strongly enhanced in XPS. This is typically overcome by 

etching away the surfaces of samples (i.e. with Ar+ ions) to reveal the true identity of the 

sample beneath.  

In this thesis, XPS measurements were carried out on a Thermo Scientific K-Alpha XPS 

machine with a monochromated Al Kα source (E=1486.6 eV), a double focusing 180 
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degree hemisphere analyser of ~125 mm radius and detected with a 18 channel position-

sensitive detector. A dual-beam flood gun (electrons and argon ions) was used to 

compensate for charge accumulation on the measured surfaces. All carbon samples 

were pressed onto an indium substrate before analysis to ensure no other background 

contributions from other carbon sources. Survey scans (which refers to the full scan 

range, encompassing all the potential elements present), were collected 3 times and 

coadded with a resolution of 1 eV and pass energy of 200 eV. High-resolution elemental 

regions were scanned 10 times with a resolution of 0.1 eV and pass energy of 50 eV. 

Both the survey and elemental scans were recorded with a 50 ms dwell time and 400 

µm spot size. To ensure the spectrometer was calibrated, graphite flakes and elemental 

gold were measured and the C1s and Au4f7/2 peaks were centered at 284.5 and 84.0 eV 

respectively. 

Survey spectra were utilised for the relative elemental quantification of the samples. An 

example XPS survey spectrum of carboxylated graphene nanoflakes (cx-GNFs) treated 

with Pb2+ cations resulting in the precipitation of Pb2+@GNFs can be shown in Fig. 2.2. 

 

Fig. 2.2 XPS survey spectrum of Pb2+@GNFs 

In the case of Pb2+@GNFs in Fig. 2.2, peaks corresponding to photoelectrons emitted 

from their respective element and orbital can be clearly seen and readily assigned. Auger 

peaks from carbon (CKLL) and oxygen (OKLL) can also be observed at higher binding 

energies. For clarity, the spectral background constituting the inelastic processes is also 

assigned. The intensities of the peaks are related to the relative sensitivities of the 
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elements/orbitals and hence the Pb4f peaks is the most sensitive to XPS (22.7 times 

more sensitive than C1s!). Using CASAXPS software (3), the ratios of the elements 

present can be determined by consideration of these sensitivities. In this way, the Pb/C 

elemental ratio from the survey spectrum in Fig. 2.2 was found to be 0.16.  

XPS high-resolution spectra of the elemental regions are also analysed to gain 

information on the oxidation states of these elements. In particular, the C1s region is 

routinely deconvoluted in order to deduce the functional groups present on the material 

(which correspond to a particular oxidation state). In this work, the elemental regions 

were initially calibrated against the C-C/C=C peak position at 285.0 eV from the C1s 

high-resolution spectrum before being deconvoluted using XPSPEAK version 4.1 

software (4), using Shirley background functions and Voigt functions for the peak fitting, 

respectively. Typically, the Voight functions were initially constrained by fixing the 

Gaussian-Lorentzian (GL) ratio (70% Gaussian) and fixing the peak positions (binding 

energies) of the peaks. Once the number of peaks has been decided, an iterative 

process is used to minimise the difference between the sum of the theoretically fitted 

peaks and experimental area sum respectively (i.e. reduce the chi-squared value, to as 

close to zero as possible). This iteration firstly considers the fitted peak areas and full 

width at half maximum (FWHM) only. Next, the GL ratio constraint of the fitted peaks is 

removed and the iterative process is repeated once again to obtain the lowest chi-

squared value. This is repeated one last time but now the binding energy constraint has 

been removed. This order was chosen because the peak positions of the functional 

groups are the least subjective out of all the other parameters. Hence, fitting should 

always be considered from most to least known. Once a good fit has been obtained, the 

parameters are kept for future fits of a similar nature, in order to reduce error. 

In the case of Pb2+@GNFs, the XPS high-resolution C1s region can be seen in Fig. 2.3 

and has been deconvoluted into three peaks, which can be assigned to the unoxidised 

sp2 carbon of the cx-GNFs (285.0 eV) and the Pb-π interaction (286.7 eV) and the Pb-

carboxylate interaction (288.2 eV) between the Pb2+ cations and the cx-GNFs 

respectively. Integration of the peaks can be made to quantify the relative amounts of 

each species, however there will always be some degree of error due to the subjective 

nature of peak-fitting. In this case, a qualitative description will suffice.    
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Fig. 2.3 High-resolution XPS C1s spectrum of Pb2+@GNFs. The crosses are the experimental 

data, grey lines are the fitted peaks, black line is the Shirley background function and the blue 

line is the peak sum respectively.  

 

2.2 13C solid-state Nuclear Magnetic Resonance (ssNMR) 

Spectroscopy  

In NMR spectroscopy, a sample is subjected to an external magnetic field causing its 

NMR active nuclei to align either with (low energy) or against (high energy) the magnetic 

field, resulting in an energy difference. Consequently, an induced magnetic field is 

created which can shield or de-shield the nucleus from the applied magnetic field, the 

extent to which is dependent on the chemical bonding environment (5). For instance, in 

a C-O bond the more electronegative oxygen atom polarises the electrons in the covalent 

bond towards itself, resulting in an electron deshielded carbon nucleus and a more 

shielded oxygen nucleus. These differences in nuclear shielding are detected by NMR, 

thus providing information on the binding environment of the nucleus and thus the 

element to which it corresponds to. Furthermore, NMR active nuclei which are near other 

active nuclei, either through chemical bonds or through space, can interact with each 

other providing characteristic peak splitting patterns which can be used to elucidate the 

immediate environment around the nucleus.  
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NMR relies on the isotropic averaging of spin interactions (6). Whilst this is not an issue 

for small molecules in solution (due to their rapid tumbling), larger molecules (> 10 kDa) 

suffer from slow tumbling rates and therefore spin anisotropy results. To perform NMR 

on these larger molecules, such as the carbon nanomaterials utilised in this thesis, solid 

state NMR is required. The spin interactions in ssNMR are of course orientation 

dependent, however the anisotropy can be removed by spinning the sample at a specific 

angle (known as the magic angle) which is 54.7°. So long as the spinning frequency 

exceeds the magnitude of anisotropy, the anisotropic effects can be negated (7).  

Since carbon materials such as graphene oxide exhibit broad peaks in the 13C ssNMR 

spectra (due to their amorphous nature), proton decoupling is often employed to remove 

any 13C-1H interactions which can further complicate the spectra. In this thesis, magic 

angle spinning (MAS) and high power proton decoupling (HPDEC) were used to acquire 

13C ssNMR spectra.  

A major advantage of 13C-ssNMR over XPS is that NMR allows the type of functional 

groups to be more readily determined than in XPS, which only gives information 

regarding the oxidation states of the elements. For instance, NMR can readily 

differentiate between sp2 and sp3 unoxidised carbon, as can be seen in the NMR 

spectrum of the cx-GNFs in Fig. 2.4. The 13C-ssNMR spectra of the cx-GNFs exhibits 

two peaks, one for unoxidised sp2 carbon at ~130 ppm and the other for carboxylic acids 

at ~170 ppm. If there had been sp3 unoxidised carbon present, peaks would appear <50 

ppm in the spectrum, which in the case of the cx-GNFs is not observed. XPS on the other 

hand, cannot differentiate between the two, since the unoxidised carbon atoms in each 

case are in the C(0) oxidation state.  

 

Fig. 2.4 13C-ssNMR spectra of cx-GNFs 
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Although ssNMR is incredibly powerful at functional group elucidation, typically ~100 mg 

of carbon material is required to record a spectrum which can take between 1-3 days to 

acquire. Furthermore, specialist knowledge of the instrument is necessary to carry out 

the measurements, making ssNMR a relatively challenging technique. For instance, a 

typical 13C-ssNMR experiment used in this thesis can be described as follows:  

A Bruker Avance 300 spectrometer with 7.05 T wide-bore magnet at ambient probe 

temperature was used to perform all 13C-solid-state measurements. High-resolution 13C 

solid-state NMR spectra were recorded at 75.5 MHz with a Bruker 4 mm double-

resonance magic-angle spinning (MAS) probe using high-power proton decoupling 

(HPDEC). Typical operating conditions were a 13C 90°C pulse with a 3.7 μs delay; recycle 

delay of 120 s with 908 transients. The samples were packed into zirconia rotors of 4 

mm external diameter and spun at 12 kHz MAS frequency with a stability greater than 

±3 Hz. The 13C chemical shifts are reported with respect to tetramethylsilane (TMS) 

which was calibrated against an aqueous solution of 4,4-dimethyl-4-silapentane-1-

sulfonic acid (DSS, 0 ppm), and glycine (176.46 ppm) respectively. 

  

2.3 Fourier-Transform Infrared (FT-IR) Spectroscopy 

FT-IR spectroscopy relies on the interaction of infrared radiation in the region of 4000 to 

400 cm-1 with matter. The absorption of infrared radiation at these wavelengths results 

in the excitation of fundamental vibrations which can be attributed to specific functional 

groups. Quantification of a particular functional group is possible by consideration of the 

number of photons that is absorbed, analogous to the Beer-Lambert law.  

In order for a functional group to be IR-active, there must be a change in dipole-moment 

(8). In its simplest form, bond vibrations can be described using a simple harmonic 

oscillator and the fundamental vibrational frequency can be defined by equation 2.2: 

                                         ѵ = 
1

2𝜋𝑐
√

𝑘

µ
     [2.2] 

          

where k is the force constant and µ is the reduced mass of the bond between two atoms 

of mass m1 and m2 respectively: 

       µ = 
𝑚1.

𝑚1+

𝑚2

𝑚2
                                              [2.3] 
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From equations 2.2 and 2.3 it can be seen that the vibrational frequency of a fundamental 

vibration increases with k (which is directly proportional to the bond strength) and 

decreases with µ. Hence strong bonds (double and triple bonds) and bonds between 

lighter elements will be observed at higher frequencies than single bonds/bonds between 

heavier elements.  

For oxidised carbon nanomaterials, the polar functional groups, notably carbon-oxygen 

functionality, can be readily probed by IR spectroscopy. Although there is a lot of overlap 

between functional groups in IR spectra, particularly in the fingerprint region (1500 to 

500 cm-1), outside of this region some functional groups can be unequivocally assigned. 

An example of this are the carboxylic anhydrides which are formed when cx-GNFs are 

annealed under high-vacuum conditions, c.f. Fig. 2.5. The dashed lines represent the 

carboxylic anhydride functional group (~1780 and 1840 cm-1) which is characteristic at 

these frequencies (9). This functional group cannot be readily assigned using XPS or 

NMR techniques.  

 

Fig. 2.5 FT-IR spectra of cx-GNFs annealed to 285°C under high-vacuum conditions. Dashed 

lines illustrate the peak positions of the carboxylic anhydride functional group. 

 

In the work conducted in this thesis, all FT-IR spectra were collected on a Bruker Tensor 

27 FTIR spectrometer using the attenuated total reflectance infrared spectroscopy mode 

(ATR-IR) fitted with a room temperature DLaTGS detector at 4 cm−1 resolution and a 

diamond crystal as the internal reflection element. A background spectrum was allowed 

to run for 256 scans before recording each sample measurement which were then 

recorded for the same length of time. 
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2.4 Raman Spectroscopy 

Raman spectroscopy is a light scattering technique which complements FT-IR 

spectroscopy. Whilst FT-IR relies on a change in dipole-moment, the selection rules for 

Raman spectroscopy require a change in the polarisability of the molecule (10).  

Typically, monochromatic light from the visible region of the electromagnetic spectrum is 

used in Raman lasers. This results in the excitation of vibrational modes (amongst other 

processes) to a virtual or non-virtual energy state, which then relaxes back down with 

the emission of a photon (11). In the vast majority of cases (99.9999%), the emitted 

photon will be of the same energy as the incident photon (i.e. the Raman laser). Hence, 

mainly elastic processes occur, which are known as Rayleigh scattering. However, in the 

remainder of cases (0.0001%), inelastic scattering occurs and this is what Raman 

spectroscopy is concerned with. At room temperature, nearly all molecules are in the 

ground (v=0) vibrational state, with a minority populating the v=1 vibrational state. This 

means when inelastic scattering takes place, the molecule will almost always be 

vibrationally excited from the v=0 level to a virtual (or real) energy state, and relax back 

down to an excited vibrational level (typically the v=1 state). Thus, the photon emitted 

will be of lower energy (lower frequency). This is demonstrated in Fig. 2.6, and is referred 

to as Stokes Raman scattering. The small minority of molecules occupying excited 

vibrational energy states such as the v=1 level will relax back to the ground state, emitting 

a photon of higher frequency than was absorbed (known as anti-Stokes Raman 

scattering) –Fig. 2.6. Note that if the molecule relaxed back down to the v=1 level, the 

photon would be of the same frequency as the one absorbed, and would also be 

considered Rayleigh scattering.  
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Fig. 2.6 Energy level diagram showing the various transitions that occur during elastic and 

inelastic light scattering. 

Raman spectroscopy measures the change in wavelength between the incident photon 

and the emitted photon which is known as the Raman shift. Since most of these 

processes will involve Stokes Raman scattering, Raman spectroscopy essentially 

probes the Stokes Raman shift. These shifts are very characteristic of specific vibrations 

(due to the specific energies of vibrational quantum states), and can be assigned to 

particular functional groups. Hence, Raman spectroscopy can be used to elucidate the 

functional groups present in a molecule. The true potential in Raman spectroscopy is its 

ability to compliment FT-IR. Some functional groups are Raman active but not FT-IR 

active, and vice versa; therefore with a combination of both techniques a more accurate 

description of the sample can be made. It is noteworthy that Raman spectroscopy only 

works well with non-fluorescent samples. When a sample undergoes fluorescence, the 

radiative pathway changes and hence the emitting photon will be of a different energy, 

and although a peak will be observed in the Raman spectrum, it will not correspond to a 

Raman shift.  

In the context of carbon materials, graphene oxides exhibit at least two Raman active 

bands at ~1350 and 1600 cm-1 known as the D and G bands respectively (12). For the 

Raman spectrum of the cx-GNFs in Fig. 2.7, these can be clearly seen. Moreover, 

fluorescence, contributing to the relatively high spectral background, can also be 

identified. The other Raman active bands such as the 2D peak, which is the overtone of 

the D band, are usually too weak to be observed.   
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Fig. 2.7 Raman spectrum of cx-GNFs. 

In this thesis, all Raman measurements were carried out on a Renishaw Ramascope 

using a 632.8 nm laser using 50-fold magnification objectives. Each spectrum was 

scanned for 20 seconds and collected 4 times. The acquired spectra were then calibrated 

against a Ne discharge lamp.  

 

2.5 Atomic Force Microscopy (AFM) 

AFM is a very high resolution imaging technique which provides topographical 

information of the sample, including its dimensions (vertical and horizontal) and surface 

roughness.  

AFM is typically employed in either contact or tapping mode. In contact mode, a 

cantilever with a sharp tip (2-12 nm) at the end is brought into contact with the sample 

surface. A laser is reflected of the back of the cantilever and a feedback loop ensures 

that the optical path remains constant. The cantilever then scans along the sample 

surface and the optical path is maintained constant by displacing the sample w.r.t the 

cantilever. The extent of displacement of the sample allows a topographical image to 

develop.  

An issue with contact mode is that the tip is always in contact with the sample which can 

cause tip and sample damage, resulting in lower quality images. The alternative, tapping 
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mode, minimises the contact time between the tip and the sample (by simply tapping the 

sample), thus minimising damage. In tapping mode, the cantilever is instead oscillated 

near to its resonant frequency and the sample is brought into contact with the cantilever. 

At the point of contact the frequency of oscillation will be dampened as a result of 

interatomic forces (van der Waals, dipole-dipole, electrostatic etc.). This change in 

oscillation is fed back into a feedback loop which controls the height of the cantilever 

above the sample to ensure a constant oscillation amplitude.  

Given the strong adhesive forces between carbon materials and cantilever tips (13), 

which is in part due to adsorbed layers of water (as a consequence of recording AFM 

under ambient conditions), tapping mode was utilised in all AFM measurements in this 

thesis. This was performed using a digital instruments multimode 8 nanoscope scanning 

probe microscope with a Bruker nanoscope IV controller using an ‘E’ scanner. Sample 

preparation typically involved one drop of a ~0.2 mg/mL aqueous dispersion of the 

carbon nanomaterial being spin coated onto freshly cleaved ‘highly oriented pyrolytic 

graphite’ (HOPG) using a Laurell Technologies WS-650 spin-coater (5000 rpm).  

An example AFM image of the cx-GNFs deposited onto a HOPG substrate can be seen 

in Fig. 2.8(a). The height and size distribution of the flakes shown in Figs. 2.8(b)-(c) 

respectively can be determined from line profiles such as the one in Fig. 2.8(d), which 

measures a small section of the AFM image in Fig. 2.8(a). AFM line profiles are used 

throughout this thesis to obtain height and size distributions. Similarly, all AFM analysis 

in this work was carried out using NanoScope analysis version 1.7 software, and all the 

recorded raw AFM images were initially ‘flattened’ with either a first or second order 

polynomial before performing any analysis on the images. In some cases, the roughness 

of the AFM image was considered by calculating the image Ra, image Rq and image 

Rmax, which represent the average, root mean square (RMS) and maximum depth 

roughness of the entire image respectively. 
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Fig. 2.7 (a) AFM image of cx-GNFs spin coated onto HOPG, (b) height and (c) diameter 

distribution and (d) line profile of the cx-GNFs taken from the blue line in (a). 

 

2.6   Transmission Electron Microscopy (TEM) 

TEM works in a similar way to an optical microscope, using various lenses to focus a 

beam of electrons (as opposed to light) through a sample. The main advantage of TEM, 

and electron microscopes in general, over optical microscopes is the shorter de Broglie 

wavelength of electrons compared with most wavelengths of light. This means that 

significantly higher resolutions can be achieved with TEM, with the most powerful TEM 

microscopes able to image individual atoms (14).  

However, in order to obtain such high resolution images, TEM is conducted under ultra-

high vacuum (UHV) conditions, and must be regularly maintained. Indeed, TEM is 

amongst the most expensive characterisation methods available to the materials 

scientist. Furthermore, due to the very high resolution, only small sample sizes can be 

measured at a time, requiring for a lot of images to be taken to ensure a representative 

depiction of the sample. Another issue with TEM is that the interaction of electrons with 

a sample can cause sample damage, which is well known to occur with carbon materials 

(15).  
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TEM relies on electrons being absorbed (scattered, diffracted or otherwise) by a sample 

in order to generate an image (16). The denser the sample, the fewer the electrons which 

are transmitted through the sample and detected. Hence, these dense samples appear 

as dark objects in the TEM image, whilst less dense structures appear lighter. In other 

words, the quality of the image (in terms of contrast) relies on strongly electron absorbing 

samples. This is of concern where monolayer graphene is concerned since only a 

relatively small number of electrons will be absorbed by the sample-almost all the 

electrons transmit through the sample. Hence, good quality images of 2D carbon 

materials is challenging with TEM alone which is why other imaging techniques such as 

AFM and SEM are used to back up the images collected by TEM.     

For TEM imaging in this thesis, one drop of a ~0.2 mg/mL aqueous dispersion of the 

carbon nanomaterial was drop coated onto a lacy carbon TEM grid. The TEM 

measurements were then performed on a Jeol CX100 TEM at 100 kV with a tungsten 

filament and a Gatan Erlanshen ES500W camera. An example TEM image showing a 

couple of cx-GNFs can be seen in Fig. 2.9(a). Just like with AFM, line profiles can be 

used to determine size distributions, c.f. Fig. 2.9(b). In this case, Gatan digital micrograph 

software was used for the data analysis.  

 

Fig. 2.9 (a) TEM image of two cx-GNFs highlighted by red arrows and (b) diameter distribution 

of the cx-GNFs as seen in TEM. 
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2.7 Optical absorbance spectroscopy 

Optical absorbance spectroscopy, also commonly referred to as ultraviolet-visible (U.V.-

Vis) spectroscopy is the interaction of light in the visible and ultraviolet region with matter. 

Electromagnetic radiation at these wavelengths has sufficient enough energy to excite 

the electrons in a sample from the highest occupied molecular orbital (HOMO) to the 

lowest unoccupied molecular orbital (LUMO) (17). Since electronic states are highly 

quantised, transitions of this nature occur at very well defined energies, allowing for 

specific assignments to be made. Under ideal conditions, the absorption of a particular 

wavelength of light by a sample is directly proportional to the concentration of the sample 

as described by the Beer-Lambert law, in equation 2.4: 

                              𝐴 = log
𝐼0

𝐼
 = 𝜀𝑐𝑙                       [2.4]                                              

where A is the absorbance, I0 and I are the intensity of the incident and transmitted light 

respectively (of a particular wavelength), ε is the molar extinction coefficient, c the 

concentration and l the path length.    

Optical absorbance spectroscopy is therefore commonly employed in the quantification 

of samples of unknown concentration, where the absorbance at a specific frequency of 

light is known. Graphenic materials absorb strongly in the visible, and particularly the 

U.V. region of light due to the highly conjugated electrons (and thus overlapping orbitals) 

which create a multitude of electronic quantum states. Therefore, quantification of 

graphenic concentrations could (in theory) be calculated readily from any frequency of 

light. 

In this thesis, for example, optical absorbance spectra were used to quantitatively 

determine the concentration of lead ions extracted by carbon materials. Fig. 2.10 shows 

the optical absorbance spectrum of the remaining (excess) lead ions after extraction with 

the cx-GNFs. Given that the concentration of lead ions initially added to the cx-GNFs is 

known, then the differences in absorbances and thus concentrations, can be related back 

to a calibration curve which obeys the Beer-Lambert law, and thus the extraction 

capability of the cx-GNFs can be determined.  
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Fig. 2.10 Optical absorbance spectra of lead ions before (black) and after (red) extraction with 

cx-GNFs. A chelating agent was used to colour the lead solutions before absorbance 

measurements and the pH was kept constant with dilute HCl. Absorbance values at λ = 400 nm 

were found to obey the Beer-Lambert equation. 

 

For all optical absorbance spectra undertaken in this thesis, the spectra were recorded 

in quartz cuvettes (path length = 10 mm) on a PerkinElmer Lambda 365 UV/VIS 

spectrophotometer at data intervals of 1.0 nm and scan rate of 100 nm min-1. 

 

2.8 Scanning Electron Microscopy (SEM) 

SEM, like TEM, is an electron microscopic technique but differs from TEM in that the 

electron beam is focussed to a tiny point which is then raster scanned across the sample 

surface. When the electrons interact with the sample, many scattering processes may 

occur, the detection of which will be dependent on the penetration depth. Secondary 

electrons, for instance, have short IMFP and therefore only those within a few nm of the 

surface will be detected (18). These electrons will provide topographical information, as 

well as surface atomic composition since some these electrons will be Auger electrons. 

Deeper within the sample, tens of nanometers deep, secondary electrons are no longer 
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detected and backscattered electrons (BSE) predominate. These provide information 

regarding the different elements present-heavier elements appearing brighter than 

lighter elements (19). At depths > 100 nm to several µm, X-rays will still be detected and 

can provide details on the bulk atomic composition of the sample (i.e. EDX), as well as 

(in some cases) cathodoluminescence (19). For this reason, most SEM instruments have 

EDX mapping built into them.  

SEM has advantages over TEM in that its overall handling and mechanics are much 

simpler and convenient to use. Samples are also less susceptible to beam damage since 

the beam is not focussed continuously at one point in the sample. However, SEM 

samples need to be electrically conducting, otherwise scanning faults may arise as well 

as artifacts. To overcome this issue with non-conducting samples (such as graphene 

oxide), gold sputters are used to coat the samples with gold nanoparticles, which serve 

to increase the conductive properties.  

An example SEM image of both amorphous (a-GNFs) and turbostratic GNFs (t-GNFs) 

can be seen in Fig. 2.11(a) and (b) respectively. Just from a qualitative perspective, it is 

clear that the morphology of each material is completely different, despite the chemical 

composition of both materials being identical.  

  

Fig. 2.11 SEM images of (a) a-GNFs and (b) t-GNFs. 

 

It is noteworthy that in this thesis, SEM measurements were carried out on a Jeol JSM-

6700F Field emission scanning electron microscope using secondary electron ionisation 

(SEI). Secondary electrons, backscattered electrons and X-rays are all detected.  
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2.9 Powder X-ray diffraction (PXRD) 

X-ray diffraction is typically employed to elucidate the crystal structure of crystalline 

materials. The technique relies on utilising monochromatic X-rays of a wavelength similar 

to the interatomic spacing of lattice planes. As the X-rays interact with the sample, 

various diffraction processes can occur, but since atoms are regularly arranged in a 

crystal, specific reflections can take place which can be detected and assigned to a 

specific lattice plane (20). In order for the reflections to take place, constructive 

interference between the adjacent lattice planes needs to occur. Given that the spacing 

between particular planes in a crystal is constant (since crystals are by definition regular 

in structure), then constructive interference can be defined by equation 2.5, known as 

Bragg’s law.  

                                              𝑛𝜆 = 2𝑑𝑠𝑖𝑛𝜃                        [2.5] 

where n is an integral multiple of the wavelength λ, d is the interatomic spacing and θ is 

the angle of the incoming X-ray.  

Fig. 2.12 illustrates how equation 2.5 is derived. In order for both X-rays (shown in blue) 

reflecting of adjacent planes to interfere constructively, the X-ray penetrating deeper into 

the sample must travel an additional distance equal to 2dsinθ. Where dsinθ (indicated 

by the red bars) is the additional distance the X-ray have travelled to reach the plane 

below, and hence the same extra distance again is required to leave the plane.  

 

Fig. 2.12 In order for both X-Rays to interfere constructively the X-ray penetrating deeper into 

the sample must traverse the extra distance equal to 2dsinθ (21). Figure reprinted with 

permission from reference 19. 

 

It should be noted that in oxidised carbon materials, the disorder produced within the 

graphenic framework as a direct result of the oxidation, often results in only the peak 
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associated with the interplanar distance being observed. In this thesis, X-ray diffraction 

is employed to differentiate between amorphous and turbostratic materials. Turbostratic 

materials have a permanent rotational and translational misalignment between adjacent 

layers, yet there exists enough order for broad peaks to be observed in the XRD pattern 

(22). Fig. 2.13 illustrates the difference between amorphous (a-GNFs) and turbostratic 

(t-GNFs) cx-GNFs. In the case of t-GNFs, two broad peaks are clearly observed which 

are absent in the pattern of the a-GNFs. Hence the t-GNFs have some degree of long 

range order (or pseudo-crystallinity) unlike the a-GNFs.  

 

Fig. 2.13 X-ray diffraction patterns of a-GNFs and t-GNFs. 

 

In this work, all XRD measurements were carried out on powder samples using a Bruker 

D4 Endeavor instrument.  

 

2.10 Brunauer-Emmett-Teller (BET)  

BET is widely employed to determine the surface areas of materials. This is done by first 

degassing the sample (usually above room temperature) and then passing molecular 

nitrogen gas through the sample at the boiling temperature of liquid nitrogen (77 K). The 

principle of the technique relies on the nitrogen gas adsorbing and filling all the surface 

sites (including cavities) within the material (23). The concept itself, is an extension of 

Langmuir theory, extended to include multilayer adsorption. In this way, 1 / v[(p0/p) -1] 
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can be plotted against (p/p0), where v is the volume of gas adsorbed, and p0 and p are 

the equilibrium and saturation pressures of the adsorbates at the temperature of 

adsorption (24). The gradient and intercept can then be utilised to calculate the specific 

surface area (or BET area) of the material. Fig. 2.14 shows an example BET surface 

area plot of low surface area carbonised cx-GNFs. 

 

Fig. 2.14 BET surface area of carbonised cx-GNFs. 

 

The BET measurements carried out in this thesis were performed using N2 in a 

Micrometrics ASAP 2020 Automatic High Resolution Micropore Physisorption Analyser. 

The samples were degassed at 80°C (12 h) under vacuum before measurements. The 

data collected automatically plotted 1 / v[(p0/p) -1] against (p/p0), where the P/P0 values 

between 0.05 and 0.35 are representative of the linear regime.  

 

2.11 Thermogravimetric Analysis (TGA) 

TGA involves the precise measurement of the change in a sample’s mass as a function 

of temperature (25). These measurements are usually performed at a constant heating 

rate (< 10°C.min-1), and can be under inert or reactive conditions. TGA is often employed 

in carbon composite materials to calculate the degree of chemical functionalisation from 

the mass loss in the TGA data; and this is what this thesis is concerned with. Other 

information on physical properties such as phase transitions and sorption processes can 

also be deduced from TGA. An example TGA plot of the cx-GNFs is shown in Fig. 2.15. 
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Mass loss over the temperature range initially corresponds to the removal of physisorbed 

water, followed by the decomposition of the functional groups on the cx-GNFs. 

 

Fig. 2.15 TGA plot of cx-GNFs. 

 

TGA in this thesis was performed in air or oxygen at a heating rate of 3°C or 10°C min-1 

at a flow rate of 100 mL.min-1 on a SETARAM SETSYS 16/18 instrument.  

 

2.12 Mass spectrometry (MS) 

MS involves bombarding a chemical species with electrons resulting in its ionisation via 

the stripping of its electrons, typically resulting in monovalent cations. These cations are 

then accelerated through an electric field and then deflected using a magnetic field (26). 

Given that the extent of deflection depends on the mass and charge of the species, a 

pattern of mass / charge or m/z can be produced. MS is particularly useful in sorting out 

isotopes of atoms which differ only by mass. Similarly, high-resolution MS can 

differentiate between molecules of very similar molecular weight, i.e. CO and N2. MS 

also has its uses in organic chemistry. Complex molecules will give characteristic 

fingerprint MS patterns as a result of specific fragmentation processes.  

In functionalised carbon materials, MS can be used to elucidate the nature of the 

desorbing gaseous species when the materials are annealed. This will provide insight 

into the mechanisms which are at play along with the nature and relative stoichiometry 

of the functional groups present. Fig. 2.16 shows the MS pattern of the gaseous 

desorbing species when the cx-GNFs are annealed under high-vacuum conditions. The 
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m/z values at 18, 28 and 44 are characteristic of desorbing H2O, CO and CO2 

respectively. 

 

Fig. 2.16 In-situ MS pattern of the desorbing gaseous species when the cx-GNFs are annealed 

under high-vacuum conditions. 

 

In this work, all MS measurements were carried out on a HAL RC 201 mass spectrometer 

from Hiden Analytical using a Faraday Cup as the detector. Samples were placed inside 

a quartz tube under high vacuum conditions (<1.5 x 10-5 mbar) using a molecular turbo 

and a double stage rotary vane pump as the backing pump. The sample under vacuum 

is then placed inside a Carbolite MTF 1200 horizontal tube furnace and heated at 

10°C.min-1 from ambient temperature to 900°C. The total pressure increases resulting 

from desorbing gas were monitored in-situ as a function of temperature using a PTR225 

cold cathode pressure gauge from Leybold. The nature of the gaseous species were 

analysed with a HAL RC 201 mass spectrometer from Hiden Analytical using a Faraday 

Cup as the detector by scanning along the 1 to 200 a.m.u mass range every 5°C from 

room temperature to 900°C. If ex-situ IR spectra were also collected then the samples 

were heated from room temperature to the desired temperature and then immediately 

cooled back down to room temperature under ambient conditions. IR was then recorded 

on the sample immediately afterwards.  

 

2.13 Zeta potential  

Charged particles in solution exhibit an electrochemical potential which is significantly 

different from the bulk. The zeta potential, also known as the electrokinetic potential, 
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quantifies this difference and is defined as the potential difference of the slipping plane 

of a particle (see Fig. 2.17) relative to the bulk solution (which is considered 

electrochemically neutral). Typically the zeta potential is measured by applying an 

electric field across a dispersion, resulting in the migration of the charged particles 

towards the electrode of opposite charge (27). The velocity at which the particles migrate 

towards the electrode is proportional to its charge (i.e. zeta potential) (27), and since the 

measured velocity is directly proportional to the particle’s (electrophoretic) mobility as 

described by equation 2.6, then the zeta potential can be calculated from the 

electrophoretic mobility by rearranging equation 2.7 (27). 

 

                                                        v = ʋ.E                                                          [2.6]    

where v is the velocity, ʋ is the electrophoretic mobility and E is the electric field strength. 

                                               ʋ =
4𝜋𝜀0𝜀𝑟𝜁(1+𝜅𝑟)

6𝜋𝜂
                                              [2.7] 

where ε0 and εr are the permittivity of the vacuum and the relative dielectric constant 

respectively, ζ is the  zeta potential, η is the viscosity of the medium, r is the particle 

radius and κ is the Debye-Huckel parameter which is defined in equation 2.8: 

                                           𝜅 =  (
2𝑛0𝑧2𝑒2

𝜀0𝜀𝑟𝑘𝐵𝑇
)

1

2
                                              [2.8] 

where n0 is the bulk ionic concentration, z is the charge on the ion, e is the charge of the 

electron, kB is the Boltzmann constant and T is the temperature.  
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Fig. 2.17 Zeta potential of a particle in dispersion.(28) Figure reprinted with permission from 

reference 26. 

Zeta potential is often employed to determine the stability of a colloidal dispersion. 

Typically, values exceeding ± 40 mV indicate the colloid is well dispersed, whilst values 

lower than this suggest the dispersion is less stable and could be prone to aggregation 

and precipitation (29; 30). Since dispersed carbon materials are colloids, zeta potential 

can hence be used as a measure of the dispersion’s stability. The zeta potential of an 

aqueous dispersion of 0.1 mg/mL cx-GNFs, shown in Fig. 2.18, was found to be ~-45 

mV, illustrating their excellent dispersibility in water. The negative zeta potential is 

expected due to the many negatively charged carboxylate groups present on the cx-

GNFs.  

 

Fig.2.18 Zeta potential distribution of a 0.1 mg/mL aqueous dispersion of cx-GNFs. 

-60 -40 -20

cx-GNFs

zeta potential / mV

c
o
u
n
ts



Chapter 2: Characterisation Techniques 

75 
 

 

In this thesis, zeta potential measurements were carried out on a Malvern Zetasizer Nano 

(ZEN3600) machine using disposable DTS 1060C plastic cuvettes. All dispersions were 

diluted to 0.1 mg.mL-1 for measuring.  
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Chapter 3: Preparation of Novel Carbon 

Nanomaterials 

 

3.1 The limitations of GO 

As noted earlier in the introduction, there are as many protocols for preparing graphene 

oxide, GO, (using permanganate or otherwise), as there are structural models. Clearly, 

therefore, the controversy surrounding the chemical structure of GO cannot be 

overstated (1; 2). In essence, there are two major issues surrounding GO that need to 

be addressed. The first is that a full comprehension of the mechanism of GO oxidation 

and preparation needs to be established amongst the scientific community. The 

utilisation of drastically different oxidising conditions, as well as different forms of 

graphite, inevitably leads to GOs of variable degrees of oxidation, structure, chemistry 

and sizes (3-9). The consequence of which is that almost all GO studies are not directly 

comparable. Even if the same oxidation protocol is used, differing workup and/or isolation 

procedures can lead to GOs of variable integrity (3). The second issue which needs to 

be addressed is the absolute structure of GO, regardless of whether its nature is dynamic 

or not, its structure needs to be fully appreciated. It is noteworthy that different types of 

GO will have their uses and niches in different applications, and this should not be 

discouraged, but a clear understanding of how each one is made and what constitutes 

each material, in terms of functionality, is paramount.  

In the near future, the industrial scale preparation of GO will have to be rationalised. 

Currently there are no (realistic) protocols employed in the literature (in the author’s 

opinion) than can meet this demand. The bottleneck in the workup is the cause for most 

concern. Repetitive washing, centrifugation, filtration and/or dialysis are required to purify 

GO, which can then only be isolated (successfully) via lyophilisation or vacuum drying. 

On an industrial scale, most of these steps would ideally have to be excluded. Another 

concern for industrial scale GO preparation is the sheer amount of toxic manganese (or 

other) waste that will have to be disposed of. Indeed, one of the most commonly 

employed preparation protocols in the literature quotes 6 equiv. of permanganate per 

mass equiv. of graphite (6). 
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Another area which is increasing in popularity is nano-graphene oxide (nGO), i.e. GO 

but with lateral dimensions below 100 nm. The interest in nGO has arisen for its potential 

application in therapeutics (10), cellular imaging and drug delivery,(11) desalination(12) 

and lithium ion batteries (13). Just like GO, its shortcomings lie in the preparation 

procedure and the uncertainty of its chemical nature. In fact, the preparation of nGO is 

even lengthier than conventional GO since GO is often used a precursor to nGO. The 

nGO is therefore typically synthesised via the ultrasonic breakdown of GO which is then 

centrifuged and decanted to isolate the nGO material (14). In some cases, a pre-

oxidation step of the carbon source is initially required (15). Similarly, since the structure 

of GO remains elusive, the structure of nGO is also a matter of debate amongst the 

scientific community.   

 

3.2 Outline of chapter 

The exploration of new methodologies and top-down approaches towards the 

preparation of novel carbon nanomaterials are reported in this chapter. In this regard, 

the preparation and characterisation of three novel carbon nanomaterials are described 

and benchmarked against conventional permanganate oxidised GO (PM-GO). These 

are (1) carboxylated graphene nanoflakes (cx-GNFs), a well-defined and less structurally 

controversial material compared with PM-GO (2); nGO, a nano graphene-oxide which is 

prepared via an eco-friendly protocol and (3) DC-GO, prepared by dichromate oxidation 

(of graphite) to structurally compare against PM-GO. A schematic illustrating the 

preparation of each material is shown on in Fig. 3.1, followed by a proposed structural 

model. The four materials are characterised alongside each other using various 

spectroscopic and imaging techniques to justify these models. Lastly, individual sections 

specific to each material are discussed, highlighting the unique nature of each material 

as well as a more in depth discussion regarding its preparation.  

 

 

 

 

  



 

Fig. 3.1 The top-down preparation of carbon nanomaterials and approximate structural models (not to scale), representing the functional groups present. 
Evidence supporting these structural models will be presented in this chapter.
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3.3 Characterisation of novel carbon nanomaterials 

A schematic representation showing the top-down preparation of the four carbon 

materials is shown in Fig. 3.1. The formation of highly carboxylated graphene nanoflakes 

(cx-GNFs) is the most notable of all the structures. In general, the number of carboxylic 

acid groups decreases in the order cx-GNFs >> nGO > DC-GO > PM-GO. In the case of 

the cx-GNFs and the nGO, the intramolecular formation of carboxylic anhydrides is also 

possible owing to their highly carboxylated nature; this is discussed in detail in Chapter 

4. The cx-GNFs are the only material to solely contain unoxidised carbon i.e. C(0), and 

carboxylic acids/anhydrides i.e. C(III) species, whilst the other materials display a 

distribution of carbon in oxidation states between 0 and 3. This makes the cx-GNFs one 

of the most unique materials in the carbon literature. 

 

3.3.1 Characterisation of carbon materials by XPS and 13C ssNMR 

spectroscopy 

The purity of the four carbon materials is illustrated by the XPS survey spectra in Fig. 3.2 

which shows carbon and oxygen as the only elements present; as indicated by the C1s 

and O1s binding energies (B.E.) at ~285 and ~530 eV respectively, as well as their 

corresponding Auger peaks at 1224 and 984 eV.  

 

Fig. 3.2 XPS survey spectra of cx-GNFs (magenta), nGO (blue), DC-GO (green) and PM-GO 

(red). The peak represented by the asterisk is due to the indium substrate. 
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The high-resolution XPS C1s regions are shown in Fig. 3.3. As expected, the spectrum 

of the cx-GNFs (magenta) can be deconvolved into two peaks, one corresponding to sp2 

carbon at ~285 eV and the second to C(III) species at ~289 eV, which we attribute to 

carboxylic acid groups (16-18). By comparison, the other three carbon materials also 

show these peaks in varying degrees but also clearly exhibit a third peak at ~287 eV 

which is typically assigned to C(I) species such as alcohols and epoxides (19). The 

presence of C(II) species such as aldehydes and ketones which appear at ~288 eV are 

also likely to present on these three carbon materials but not on the cx-GNFs.  

 

Fig. 3.3 XPS C1s spectra of cx-GNFs (magenta), nGO (blue), DC-GO (green) and PM-GO 

(red). The crosses represent the experimental data whereas the black, grey and coloured lines 

are the Shirley background functions, fitted peaks and peak sums, respectively. 

It is noteworthy that the interpretation of the XPS C1s region can be subjective, 

particularly where peak fitting is concerned (20). For instance, C(II) species readily 

overlap with C(I) and C(III) functionality in the peak fitting process, making it difficult to 

ascertain their presence with any degree of certainty, let alone concentration. Similarly, 

carbon bonded to itself in either a sp2 or sp3 fashion cannot be distinguished by XPS. In 

fact, there is increasing evidence to suggest that these assignments are often incorrect 

in the carbon literature (21). In order to complement XPS, 13C ssNMR spectroscopy was 

employed to confirm the functional groups present on each carbon material. Fig. 3.4 

illustrates the 13C ssNMR spectra of each of the four materials respectively.  

290 288 286 284 282

cx-GNFs

C=C/C-C

nGO

PM-GO

DC-GO

n
o

rm
a

lis
e

d
 i
n
te

n
s
it
y

C=O
C-O-C

C-OH

 

binding energy / eV

COOH



Chapter 3: Preparation of Novel Carbon Nanomaterials 
  

82 
 

 

Fig. 3.4 13C ssNMR spectra of cx-GNFs (magenta), nGO (blue), DC-GO (green) and PM-GO 

(red). 

 

The 13C ssNMR spectra are in good agreement with the XPS data. The cx-GNFs show 

two intense peaks at 130 and 170 ppm which can be attributed to unoxidised sp2 carbon 

and carboxylic acids respectively (22). The absence of any peak at 60 or 70 ppm is a 

strong indication that C(I) species (alcohols and epoxides), and hence basal plane 

functionality, are not present (22). Furthermore, there is no significant feature at 190 ppm 

suggesting that C(II) species (aldehydes and ketones) are not present in appreciable 

quantities, if at all. Similarly, the 13C ssNMR spectra of the other three materials agree 

with the XPS data surprisingly well by the fact that the relative intensities of each feature 

in 13C ssNMR is reflected in the XPS spectra. Confirmation of C(I) species is certain in 

these three materials, whilst C(II) and C(III) are not noticeably observed for the PM-GO 

but apparent in the DC-GO and less significantly in the nGO, as expected. The results 

align quite nicely with the LK structural model of GO since nGO and DC-GO have 
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3.3.3. For instance, the LK model suggests that species such as carboxylic acids and 

ketones are situated on the flake edge whilst epoxides and hydroxyls are mainly located 

on the basal plane. Hence the smaller flake size of the nGO and DC-GO would implicate 

a higher ratio of carboxylic acids/ketones to epoxides/hydroxyls, on account of these two 

materials having significantly higher edge to basal plane ratios than PM-GO; and this is 

what is observed.(23) Hence the structural models proposed in Fig. 3.1. 

 

3.3.2 Characterisation of carbon materials by FT-IR and Raman 

spectroscopy 

The IR spectra of the four carbon materials are shown in Fig. 3.5. 

 

Fig. 3.5 IR spectra of cx-GNFs (magenta), nGO (blue), DC-GO (green) and PM-GO (red). 
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cm-1 respectively (26; 27). The broad peak at ~1590 cm-1 will have contributions from O-
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an additional feature at ~1050 cm-1, which can be ascribed to C-O stretching i.e. from 

hydroxyls/epoxides (28). The feature at ~1200 cm-1 may also contain a contribution from 

epoxides for these three materials (28).  

 

The Raman spectra of all four carbon materials are illustrated in Fig. 3.6. 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         

Fig. 3.6 Raman spectra of cx-GNFs (magenta), nGO (blue), DC-GO (green) and PM-GO (red). 
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band observed for defect-free graphene (29). In the case of the carbon materials in Fig. 

3.6 it is not appreciably observed. It is noteworthy that the regular wave-like humps seen 

in the Raman spectra of the cx-GNFs is most likely the result of fluorescence.  

 

3.3.3 Characterisation of carbon materials by AFM and TEM 

An AFM image of cx-GNFs spin coated onto a highly oriented pyrolytic graphite (HOPG) 

substrate, along with the corresponding height and size distributions are shown in Fig. 

3.7(a)-(c) respectively. 

 

Fig. 3.7 (a) AFM image of cx-GNFs spin coated onto HOPG, (b) height and (c) diameter 

distribution and (d) line profile of the cx-GNFs taken from the blue line in (a). 

 

Several AFM images of the cx-GNFs such as the one on Fig. 3.7(a) were recorded and 

the average heights and lengths of the cx-GNFs were determined using line profiles such 

as the one in Fig. 3.7(d). The average height of the cx-GNFs was determined to be (0.5 

± 0.1) nm, in good agreement with oxidised monolayer graphene (18), see Fig. 3.7(b). 

This value and associated error was calculated by taking 116 measurements of 91 

individual flakes, and represents the mean and 1.s.d. about the mean respectively. The 
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fact that there are more measurements than flakes are due to some of the flakes having 

a small step in their height profile, possibly due to adsorbed fragments, and this is 

therefore also taken into consideration. This is discussed in detail shortly, in the context 

of nGO. Furthermore, given the roughness of the AFM image, one would expect an error 

of at least 0.1 nm. Similarly, the average lateral dimensions of the cx-GNFs were 

measured to be (22 ± 4) nm and (31 ± 5) nm for the shortest (blue) and longest (red) 

lengths respectively, c.f. Fig. 3.7(c). The shortest and longest lengths were considered 

as a consequence of the asymmetry of the flakes, which naturally resulted in one side 

being longer than the other. In both cases, the value and reported error reflect the mean 

and 1.s.d. of the 91 measured individual cx-GNFs. Similar results were also obtained by 

TEM (see Fig. 3.8), where the shortest and longest lateral lengths of the cx-GNFs were 

calculated to be (15 ± 4) nm and (23 ± 6) nm respectively. Once again, the value and 

error represent the mean and 1.s.d. of 18 measured cx-GNFs. Just like AFM, the 

dimensions of the cx-GNFs measured by TEM were done so using line profiles.  

 

Fig. 3.8 (a) TEM image of two cx-GNFs highlighted by red arrows and (b) diameter distribution 

of the cx-GNFs as seen in TEM. 

 

Likewise, the AFM image of nGO and its corresponding height and lateral size 

distribution, and line profile can be seen in Fig. 3.9(a)-(d) respectively. Complementary 

TEM is also shown in Fig. 3.10. 
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Fig. 3.9 (a) AFM image of nGO spin coated onto HOPG, (b) height and (c) diameter distribution, 

and (d) line profile of the nGO taken from the blue line in (a). Modified from reference (23) with 

permission from Elsevier. 

 

 

Fig. 3.10 (a) TEM image of an nGO flake highlighted by the red arrow and (b) diameter 

distribution of the nGO as seen in TEM. Reprinted from ref (23) with permission from Elsevier. 
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Interestingly, the size distributions of the nGO were found to be very similar to those of 

the cx-GNFs, (24 ± 6) nm and (29 ± 6) nm for the shortest (blue) and longest (red) lengths 

respectively, according to the analysis of 63 individual nGO flakes from multiple AFM 

images, such as the one in Fig. 3.9, which is representative of the sample. Similar results 

were obtained by TEM analysis, whereby the size distribution of 24 nGO flakes, 

determined from line profiles of TEM images such as the one in Fig. 3.10(a), resulted in 

lateral dimensions of (27 ± 9) nm and (40 ± 15) nm for the shortest (blue) and longest 

(red) lengths respectively. A significant difference between the nGO flakes and the cx-

GNFs however, is that the nGO flakes had noticeable dome-like features (see AFM Fig. 

3.9 (a)) suggesting that smaller flakes had adsorbed onto the larger nGO flakes. The 

average height of 78 measurements of 63 nGO flakes was (2.6 ± 0.5) nm, most likely 

due to these smaller adsorbed fragments. Indeed, the adsorption of smaller graphenic 

fragments onto a larger nGO flake has also been shown by AFM in other nano-GO 

literature (11). It should be noted that all values and associated errors determined using 

AFM/TEM were calculated in the same way as the cx-GNFs.   

A representative AFM image of DC-GO can be seen in Fig. 3.11(a). Height analysis of 

the DC-GO flakes in Fig. 3.11(b) revealed that the flakes were (1.8 ± 0.8) nm high, 

corresponding to ~1-3 GO layers. In contrast to the cx-GNFs and the nGO, the DC-GO 

showed significant variation in flake size- (32 ± 15) nm and (47 ± 25) nm for the shortest 

(blue) and longest (red) lengths respectively, as evidenced by the AFM image in Fig. 

3.11(c). The large size distribution is suggestive that larger flakes are not stable and 

readily break down into smaller fragments. It is noteworthy that all the values were 

calculated in the same way as previously described for the cx-GNFs and the nGO, using 

line profiles such as the one in Fig. 3.11(d), except that 133 and 70 measurements were 

determined for the heights and lengths, respectively.  
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Fig. 3.11 (a) AFM image of DC-GO spin coated onto HOPG, (b) height and (c) diameter 

distribution, and (d) line profile of the DC-GO flakes taken from the blue line in (a).  

 

An AFM image of PM-GO is shown in Fig. 3.12(a). Height analysis of the PM-GO flakes 

in Fig. 3.11(b) indicates that the average flake is a single sheet-(0.8 ± 0.2) nm, in good 

agreement with GO produced via Chen et. al.(34) On the other hand, PM-GO displayed 

much larger flakes sizes compared to the previous nanomaterials, (220 ± 110) nm and 

(330 ± 160) nm for the shortest (blue) and longest (red) lengths respectively, according 

to the size distribution in Fig. 3.12(c). This suggests that the PM-GO flakes are more 

structurally stable w.r.t DC-GO, given that both are prepared from the same type of 

graphite. Analysis of both height and size distributions of PM-GO was performed by 

analysing 73 individual PM-GO flakes, over multiple AFM images using line profiles such 

as the one in Fig. 3.12(d). Statistics were performed as described previously for the other 

nanomaterials.  
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Fig. 3.12 (a) AFM image of PM-GO spin coated onto a mica substrate, (b) height and (c) 

diameter distribution, and (d) line profile of a PM-GO flake taken from the blue line in (a). 
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In this section the optimised preparation of cx-GNFs is discussed as well as a more 

detailed outlook on the materials used and the by-products of the reaction mixture. The 
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3.4.1 Preparation of cx-GNFs 
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Fig. 3.13 Schematic illustration of the preparation of cx-GNFs. 

 

The precursor to cx-GNFs are MWCNTs. In this work, MWCNTs (CVD) from Bayer 

Materials Science were used. However, we have shown (Appendix Fig. A3.1) that 

MWCNTs from alternative sources such as Elicarb CVD MWCNTs (Thomas Swan Ltd.) 

can also be utilised, obtaining a very similar product (35). These MWCNTs are refluxed 

in a 3:1 mixture of H2SO4 and HNO3 acid for 2 h at 100°C. Typically, 10 mg of MWCNTs 

can be processed per mL of acid mixture. It should be noted that the treatment of 

MWCNTs with this acid mixture is well documented in the literature, resulting in the 

oxidation of the MWCNTs as well as the introduction of various types of defects.(36-38) 

However, in this case we are concerned with the over-oxidised and broken down 

MWCNTs, resulting in the formation of the cx-GNFs.  

After the reaction, a brown-black dispersion of cx-GNFs and unreacted MWCNT 

precipitate (termed residue) is observed which is diluted three-fold with deionised water 

and filtered to separate the residue from the cx-GNFs (35). The conditions used in the 

preparation were chosen because after 2 h of acid treatment the optical absorbance of 

the cx-GNF dispersion began to decrease, as shown in Fig. 3.14, suggesting the 

breakdown of the material into quantum dots (QD).(39) Similarly, the use of a 3:1 mixture 

of H2SO4 to HNO3 acid resulted in a higher yield of cx-GNFs compared with a 1:1 mixture. 

It should be noted that the absorbance of the cx-GNF dispersion will be influenced by 

the presence of CNTs which will scatter the incoming light and give misleading results. 
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measurements. Furthermore, the absence of CNTs from the recorded AFM images of 

the cx-GNFs confirms this to be true. 

 

Fig. 3.14 Optical absorbance spectra of the filtered reaction mixtures after oxidation in (i) 3:1 

H2SO4/HNO3 after 1 hour (black dashed), 2 hours (black solid) and 4 hours (black dotted) and 

(ii) 1:1 H2SO4:HNO3 after 2 hours (red solid), 4 hours (red dashed) and 8 hours (red dot-

dashed). (b) Absorbance values of the spectra in (a) at 500 nm 

After filtration, the cx-GNF dispersion is then neutralised by the slow addition of KOH 

pellets which results in a super-saturated salt solution, causing the precipitation of K2SO4 

and some KNO3. Fascinatingly, the cx-GNFs remain dispersed in solution (c.f. 

photographic image in Fig. 3.13 despite the presence of highly soluble inorganic salts, 

illustrating just how hydrophilic the material is. In fact, the cx-GNFs have never been 

known to precipitate out from an aqueous solution, even after a couple of years. The cx-

GNFs are then removed from the precipitated salts by filtration once again and the 

remaining cx-GNF dispersion is dialysed against deionised water to remove the 

remaining dissolved salts. The cx-GNFs are isolated from solution via lyophilisation, 

yielding an amorphous brown powder in ~16% yield by mass. Further details on the 

preparation of cx-GNFs can be found in the experimental section chapter 8 section 8.1.   

A major advantage of the cx-GNF preparation over conventional PM-GO is the absence 

of KMnO4 from the reaction mixture, hence removing manganese as a toxic by-product 

of the synthesis. Furthermore, the formation of cx-GNFs occurs within 2 h which is 

significantly shorter than most oxidation protocols (5; 6). There is also no need for a 

second exfoliation step or repeated washing via centrifugation/sonication (3; 5; 6). 
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3.4.2 Comparison of cx-GNFs with the residue and MWCNTs 

Comparison of the MWCNT starting material, residue and cx-GNFs by XPS are shown 

in Fig. 3.15. The increase in oxidised carbon is apparent in both the XPS survey and C1s 

regions, increasing in the order MWCNTs < residue < cx-GNF. In the MWCNTs, virtually 

no oxygen is present and the typical asymmetric line shape of sp2 carbon is observed in 

the C1s region at ~284.5 eV, see Fig. 3.15. The π-π* feature is also just noticeable above 

the background at ~291 eV (40). Similarly, the residue also exhibits significant 

asymmetry in the C1s region (green spectrum), suggesting that the residue consists of 

mainly CNTs, which have been oxidised but not broken down, as indicated by the feature 

at ~289 eV which can be attributed to C(III) species such as carboxylic acids (40). 

Alternatively, it is possible that the CNTs in the residue have remained almost intact and 

are instead coated by the cx-GNFs, preventing their oxidation (41). This is analogous to 

the OD seen on oxidised CNTs as previously reported by Salzmann et. al., and 

discussed earlier in the introduction. The possibility of C(I) and C(II) species on the 

residue (286-288 eV) can also not be ruled out. The final oxidised product, the cx-GNFs 

is a highly carboxylated material as described earlier in section 3.3.1.   

  

Fig. 3.15 XPS survey and (b) C1s regions of cx-GNFs (magenta), residue (green) and 

MWCNTs (red). 

The difference between the three materials is also highlighted in the Raman spectra in 
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the average separation between two defects (LD) is ~ 1 nm (42; 43). However, this strictly 

only holds true for single-layer graphene and caution must be taken when assigning 

other carbon materials. Nonetheless, this approach has also been successfully applied 

to rGO (42). Furthermore, the gradual disappearance of the 2D band indicates the loss 

of graphenic structure as the MWCNTs are oxidised to cx-GNFs (44).  

 

Fig. 3.16 Raman spectra of cx-GNFs (magenta), residue (green) and MWCNTs (red). 
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flakes (t-GNFs). The SEM and photographic images in Fig. 3.17 illustrate the differences 
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the constituents of these bulk materials.  
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Fig. 3.17 Optical (a) and (b), and SEM (c) and (d) images of a-GNFS and t-GNFs respectively. 

. 

The cx-GNFs as prepared in Fig. 3.13 are amorphous like the a-GNFs depicted in Fig. 

3.17(a/c).The amorphous nature arises as a result of the freeze-drying process which 

freezes the cx-GNFs in a highly disordered state without the opportunity to re-order. 

Alternatively, instead of freeze-drying, the aqueous dispersion of cx-GNFs after dialysis 

can be left to stand in air to slowly allow the water to evaporate. This is analogous to 

crystallisation where the dissolved species (in this case cx-GNFs) are able to re-order 

themselves into a thermodynamically stable state, typically forming a crystalline 

structure. The t-GNFs produced in this way display a turbostratic morphology as depicted 

in Fig. 3.17(b,d), and evidenced by the XRD pattern (red) in Fig. 3.18(a) and respective 

d-spacing in (b) (45). By contrast, the a-GNF (blue) does not show any features in the 

XRD pattern.  

(a)

(c)

(b)

(d)
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Fig. 3.18 Powder XRD patterns of (a) raw data a-GNFs (blue) and t-GNFs (red) and (b) d-

spacing of a-GNFs (blue) and t-GNFs (red) converted from (a). 

 

In turbostratic materials, there is a permanent rotational and translational misalignment 

between adjacent layers (46). In the case of graphitic-like materials such as the t-GNFs, 

this means that the 001 reflection is observed as well as the conventional 002 reflection 

seen in graphite. By comparison with GO, only the 001 reflection is observed due to the 

extensive oxidation of the graphenic basal plane which results in an increase in d-

spacing between the  adjacent sheets (47).  

The t-GNFs in Fig. 3.17(d) were mechanically exfoliated using scotch tape (48) and 

imaged by AFM-Fig. 3.19(a). The flakes were found to be flat to within 3 nm as indicated 

by the height profile in Fig. 3.19(c).However, there were very apparent hole-defects in 

the sample or ‘nano-cavities’ in the flake (as indicated by the red arrows in Fig. 3.19(a)). 

It is speculated that at these regions there is an absence of carboxylic acid groups and 

therefore the ‘propagation’ process between adjacent hydrogen bonded cx-GNFs ends 

or ‘terminates’, thus resulting in these cavities.  

The t-GNFs were then carbonised under vacuum to 900°C (now referred to as carb-

GNFs), re-exfoliated using scotch tape, and imaged once more with AFM (Fig. 3.19(b)). 

Interestingly, after carbonisation the roughness of the flake increased substantially, as 

shown by the height profile in Fig. 3.19(d). The image Ra, image Rq and image Rmax of 

the carb-GNFs increased to 2.44, 3.09 and 24.3 nm respectively, compared to the image 

Ra, image Rq and image Rmax of the t-GNFs which were found to be 0.53, 0.82 and 
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12.8 nm respectively. The ‘nano-cavities’ observed earlier in the t-GNFs are less 

apparent and individual flakes (indicated by the red arrows) can now be seen.  

  

  

Fig. 3.19 AFM image of the surface of a t-GNFs (a) before and (b) after carbonising and (c)-(d) 

height profiles of (a) and (b) indicated by the blue lines respectively. Red arrows indicate in (a) 

holes and (b) individual carb-GNFs respectively. 

 

BET surface area measurements were carried out on the carb-GNFs (see appendix Fig. 

A3.2) and the surface area was determined to be only 36 m2/g compared with the 

theoretical value of 2600 m2/g for graphene (49). By comparison, the a-GNFs in Fig. 

3.17(a) were carbonised and a BET surface area of ~600 m2/g was determined 

(appendix Fig. A3.2), illustrating the variation in morphology the cx-GNFs can adopt.   
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3.5 A closer look at nGO 

In this section the eco-friendly preparation of nGO is discussed as well as a closer look 

at the material itself and reaction by-products.  

 

3.5.1 Preparation of nGO 

The preparation of nGO is illustrated in Fig. 3.20. 

 

Fig. 3.20 Schematic illustration of the preparation of nGO. Reprinted from ref (23) with 

permission from Elsevier. 

The as produced SWCNTs, as specified by Materials and Electrochemical Research 

(MER) corporation, from where they were purchased, are derived from an arc-discharge 

carbon source (ADC) consisting of SWCNTs (12+ w/w), fullerenes (10 w/w), metal 

catalyst (25 w/w), MWCNTs and other graphitic carbon (10 w/w) and amorphous carbon 

(43 w/w), is the raw material used in the preparation of nGO. The carbonaceous mixture 

is initially ultrasonicated in 8 M HNO3 for 30 min before refluxing at 100°C for 20 h. The 

preparation can be scaled up proportionately with current GO protocols with 50 mL of 8 

M HNO3 able to process one gram of ADC material. The resulting mixture of dispersed 

nGO and unreacted black residue is diluted three-fold with deionised water and filtered 

to separate the nGO from the residue. Neutralisation of the acidic mixture with NaOH 

results in the precipitation of the sodium salt of the nGO which can be isolated by simple 

filtration. Removal of the Na+ from the nGO is readily accomplished by ion exchange or 

dialysis on re-dispersing the nGO in deionised water. Freeze-drying isolates the nGO 
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material in the same way as the cx-GNFs in ~21% yield by mass (23). Further details of 

the experimental procedure can be found in chapter 8 section 8.2. 

This unique procedure in preparing nGO has many advantages over conventional nGO 

synthesis in the literature. For instance, the standard KMnO4/H2SO4 oxidation protocol is 

replaced with 8 M HNO3 (which actually contains more water than it does acid), and is 

not only less oxidising/explosive but relatively cleaner (although there is still some way 

to go before the process itself can be considered environmentally friendly or ‘green’). 

The use of KMnO4 results in a huge amount of manganese waste which has to be 

reduced to Mn(II), typically with peroxide, before disposal as a hazardous waste 

substance. By contrast, the only by-products of the nGO synthesis are unreacted carbon 

(relatively benign) and aqueous sodium nitrate which is significantly less toxic. The metal 

catalyst is expected to be removed during the filtration and dialysis steps, however the 

ADC can be readily pre-treated beforehand to remove the metal catalyst entirely. 

Similarly, many treatment methods for the removal of NOx fumes are already available 

on an industrial scale (50). It may even be possible to recycle the NOx gas back into nitric 

acid. Nonetheless, the major advantage in the preparation of nGO is that repeated 

sonication and centrifugation steps are not required to wash and breakdown the material 

into nano-sized flakes, as is the case when GO is used a precursor.   

 

3.5.2 Comparison of nGO with the residue and ADC 

The XPS survey and C1s regions in Fig. 3.21 illustrate the differences between the nGO, 

the residue and ADC material.  

  

Fig. 3.21(a) XPS survey and (b) C1s regions of nGO (blue), residue (green) and ADC 

(red).Peaks denoted by the asterisk are due to the indium substrate. 
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The C/O ratios extracted from the XPS survey spectra of the three materials in Fig. 

3.21(a) are shown in Table 3.1. The analysis was carried out by integration of the carbon 

and oxygen peaks with consideration given to the relative sensitivity factors of carbon 

and oxygen. For statistics, three samples of nGO were prepared and each sample was 

measured three times. For the residue, two samples were prepared and each sample 

was measured twice. The as-received ADC was measured three times. The error was 

considered by calculating 1.s.d. about the mean of the combined measurements. From 

the results, it can be seen that the C/O atomic ratio decreases in the order ADC > residue 

> nGO in line with an increasing degree of oxidation. Just like the residue of the cx-GNFs, 

the residue of the nGO is likely to be coated with adsorbed nGO flakes (41), resulting in 

the nGO and residue exhibiting similar XPS C1s spectra as seen in Fig. 3.21(b).  

Table 3.1 Quantification of the XPS survey C/O ratio of nGO, residue and ADC. 

Carbon material C/O ratio 

nGO 2.2 ± 0.1 

residue 3.3 ± 0.6 

ADC                         17.7 ± 0.8 

 

A similar conclusion can be reached by comparing the IR and Raman spectra of the 

three materials in Fig. 3.22(a)-(b). In the IR spectra (Fig. 3.22(a)), the relatively weak 

absorbance of the ADC suggests that little oxygen functionality is present. Likewise, the 

residue exhibits the same features as the nGO albeit at lower intensities, further 

suggesting that the residue constitutes adsorbed nGO flakes. From the Raman spectra 

in Fig. 3.22(b), the presence of radial breathing modes (RBM) below 200 cm-1 and the 

splitting of the G band (~1590 cm-1) into G+ and G- components in the ADC spectrum 

confirm that the starting material is rich in carbon nanotubes (51; 52). The broad and 

intense D band (~1306 cm-1) in the ADC spectrum gives rise to an ID/IG peak intensity 

ratio of 0.46 ± 0.07 indicating a significant amount of structural defects (51-54).  A similar 

case can be made for the broad 2D peak (~2618 cm-1) which is usually more intense for 

high-quality SWCNTs (54). After oxidation of the ADC material, the RBM and 2D modes 

can still be seen in the Raman spectrum of the insoluble residue albeit at lower 

intensities. The G band splitting is no longer clearly seen, and the D band has grown 

more intense (ID/IG = 0.74 ± 0.02) and is shifted to higher wavenumbers (~1347 cm-1), 

which further indicates that the residue contains oxidised CNTs. This is confirmed by 

TEM analysis of the residue shown in Fig. 3.22(c), in which CNTs are clearly seen. 

Carbon onions in the TEM image are also present (indicated by the red arrows) which 

arise as result of dissolved metal particles, leaving behind their carbon coated shell. In 
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the final oxidised product, the nGO, only G and D bands are observed in the Raman 

spectrum, evidencing the complete breakdown/removal of the CNTs. It should be noted 

that the calculation of the ID/IG ratio is typically determined by calculating the mean and 

1.s.d. of three different spots on a sample.  

 

 

Fig. 3.22(a) FT-IR and (b) Raman spectra of nGO (blue), residue (green) and ADC (red). (c) 

TEM image of the residue. The red arrows indicate the carbon onions. Reprinted from ref (23) 

with permission from Elsevier. 
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percentage (~43%) of this material. MWCNTs and fullerenes are not suspected since 

MWCNTs are not readily broken down under these conditions (as evidenced by the TEM 

image of the residue in Fig. 3.22(c)), and fullerenes are too small to form the nGO in the 

first place. To understand the nature of ADC, TGA was carried out on the material and 

the results are shown in Fig. 3.23(a). The TGA data shows a sharp mass loss centered 

at 310°C, which is attributed to the burning of the amorphous carbon. The second mass 

loss, centered at 365°C, is due to the rest of the carbon material such as the CNTs. The 

relatively low temperature required to burn off the CNTs illustrates just how defective the 

material is (55). In order to determine the precursor to nGO, the ADC material was heated 

in air to 325 °C to burn off all the amorphous carbon before being treated with 8 M HNO3 

in the same way as described earlier in section 3.5.1. The absorbance of the resulting 

filtrate (containing dispersed nGO) was measured via UV-Vis spectroscopy and 

compared against the filtrate of the 8 M HNO3 treated ADC which had not undergone 

heat treatment. The results shown in Fig. 3.23(b) show that the absorbance of the heat 

treated ADC filtrate (black) was only 28% of the value of the non-heat treated dispersion 

(blue) at λ = 500 nm. The results therefore strongly indicate that the amorphous carbon 

plays a significant role in the formation of the nGO. The remaining 28% could be 

accounted for by the SWCNTs or more thermally stable amorphous carbon. 

  

Fig. 3.23 (a) TGA of the as-received ADC material upon heating in air at 3°C min-1. (b) Optical 

absorbance spectra of the filtrates after the 20 hour reactions with 8 M nitric acid of (1) ADC 

without heat treatment and (2) the ADC material after heating to 325°C at 3°C min-1 in air. Both 

filtrates were diluted twenty-fold with deionised water before recording the absorbance spectra. 

The red dashed line illustrates an absorbance value of zero across the wavelength range. 

Reprinted from reference (23) with permission from Elsevier. 
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3.5.4 Comparison of amorphous (a-nGO) and turbostratic (t-nGO) nGOs 

Similar to the cx-GNFs, the nGO also displays turbostratic like qualities when subjected 

to the same slow evaporation treatment as outlined earlier in section 3.4.3. By contrast 

however, the XRD pattern of the t-nGO is incredibly broad and no distinct features can 

be observed suggesting that the material is highly disordered (c.f. appendix Fig. A3.3). 

Nonetheless, AFM analysis of the roughness of the mechanically exfoliated flakes (Fig. 

3.24(a)) showed the t-nGO to be reasonable flat, with the image Ra, image Rq and image 

Rmax determined to be 0.79, 1.07 and 12.3 nm respectively. Interestingly, after 

annealing (Fig. 3.24(b)), the roughness only increased slightly, with image Ra, image Rq 

and image Rmax values of 0.88, 1.13 and 12.8 nm respectively. This was very different 

compared to the cx-GNFs after annealing which increased surface roughness 

considerably (c.f. Fig. 3.19). However, similar to the cx-GNFs after annealing, the 

individual nGO flakes (carb-nGOs) can also be seen as indicated by the red arrows in 

Fig. 3.24(b). 

  

  

Fig. 3.24 AFM image of the surface of a t-GNFss (a) before and (b) after carbonising 

and (c)-(d) height profiles of (a) and (b) indicated by the blue lines respectively. Red 

arrows indicate in (b) individual carb-nGOs respectively. 
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3.6 A closer look at DC-GO 

Chandra et.al. first reported the preparation of GO from expandable graphite using 

dichromate in 2010 (4). In their work, graphite is left stirring in a dichromate/sulfuric acid 

mixture for 5 d at room temperature before finally being exfoliated with water and 

subsequent workup procedures. Despite this very interesting route to GO, the chemical 

nature of the material remains elusive, largely due to the limited characterisation 

techniques used, in particular the lack of XPS and 13C ssNMR data. In this section, an 

optimised preparation of DC-GO is reported as well as a discussion on the nature of the 

material.  

 

3.6.1 Optimised preparation of DC-GO 

The optimised preparation of DC-GO is illustrated in Fig. 3.25. 

 

Fig. 3.25 Schematic illustration of the preparation of DC-GO. 

 

In the optimised preparation of DC-GO, graphite flakes are combined with 7.5 mass 

equiv. of K2Cr2O7 in conc. sulfuric acid and heated at 45°C for 20 h with stirring. The 

increase in temperature from room temperature (as reported by Chandra et. al.) to 45°C 

allowed the reaction time to be significantly reduced from 5 d to 20 h. Furthermore, the 

use of sodium nitrate originally employed by Chandra et. al. was omitted from this 
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optimised procedure, since it was found to be unnecessary. The subsequent exfoliation 

step with 5% v/v H2SO4 in water was left unchanged, however the workup was slightly 

improved. Firstly, a few drops of H2O2 was added to the mixture before the washing step 

to ensure that any excess Cr(VI) species was reduced to the significantly less toxic 

Cr(III). The GO mixture was then centrifuged and washed three times with dilute HCl to 

remove the Cr(III) before being washed with deionised water, which resulted in a 

dispersion of GO due to the increase in pH. The dispersed GO was then dialysed against 

deionised water for further purification and isolated via freeze-drying. 

To ensure that the DC-GO material produced by the optimised method was the same as 

that produced by Chandra et. al. (and indeed to elucidate the material by Chandra et. 

al.), both materials were fully structurally characterised. DC-GO prepared by the Chandra 

and optimised procedures are now referred to DC-GO (Chandra) and DC-GO (optimised) 

respectively (c.f. experimental sections in chapter 8 sections 8.3 and 8.4). The XPS and 

13C ssNMR of the two materials are shown in Fig. 3.26 and Fig. 3.27 respectively. 

Similarly, characterisation by FT-IR and Raman spectroscopy as well as AFM are also 

shown in appendix Figs. A3.4(a) and A3.4(b). It is important to note that the DC-GO 

characterised at the beginning of this chapter and up until now, refers exclusively to DC-

GO (optimised).  

   

Fig. 3.26 XPS Survey (outset) and C1s regions (inset) of (a) DC-GO (optimised) and (b) DC-GO 

(Chandra). The crosses represent the experimental data whereas the grey, blue, green, red and 

black lines are the Shirley background functions, C(0), C(I) and C(III) fitted peaks and peak 

sum, respectively. 
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As can be seen in Fig. 3.26, the XPS survey (outset) and C1s regions (inset) of DC-GO 

(optimised) and DC-GO (Chandra) are very similar. The XPS C1s regions of the two 

materials were deconvoluted as described earlier in chapter 2 section 2.1, and the results 

are shown in Table 2.2. For statistics, two separate batches of each material were made, 

and each batch was measured three times. The data in Table 2.2 therefore represents 

the average and 1.s.d. of the combined measurements of both batches. As expected, all 

of the deconvoluted regions are within error of each other.  

Table 3.2 Quantification of the deconvoluted XPS C1s regions of DC-GO (optimised) and DC-

GO (Chandra). 

Carbon Material C(III) / % C(I) / % C(0) / % 

DC-GO (optimised) 16.8 ± 0.8 38.9 ± 1.1 44.3 ± 1.6 

DC-GO (Chandra) 16.2 ± 0.2 40.8 ± 1.2 43.1 ± 1.3 

 

To further corroborate the XPS data, the 13C ssNMR spectra of both materials were 

recorded and are shown in Fig. 3.27. Just like XPS, the 13C ssNMR spectra reveal the 

two materials to be very similar.  

 

Fig. 3.27 13C ssNMR spectra of DC-GO (optimised) in green and DC-GO (Chandra) in black. 

. 

Similarities in the FT-IR and Raman spectra between the two DC-GO materials can also 

be seen in Fig. A3.4 (appendix). AFM of DC-GO (Chandra) in Fig. A3.5 (appendix) 

revealed a large distribution of flake sizes, in good agreement with DC-GO (optimised), 

c.f. Fig. 3.11). 
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In order to determine the optimised conditions required for the preparation of DC-GO 

(optimised), the temperature, equivalents of K2Cr2O7 and reaction time were investigated 

w.r.t yield and oxidation degree of the material. Initially, the reaction time was decreased 

from 5 d to 20 h, under the same conditions employed by Chandra et. al. i.e. at room 

temperature (20°C), 75 vol. equiv. of H2SO4, 7.5 mass equiv. of K2Cr2O7 and 0.75 mass 

equiv. of NaNO3 per mass equiv. of graphite. However this resulted in a low yielding 

(18%), slightly less oxidised DC-GO material (appendix Fig. A3.6(a)). On increasing the 

temperature to 45°C and omitting the NaNO3 from the procedure (in line with current 

Hummers based oxidation protocols), but retaining the 7.5 equiv. of K2Cr2O7, a highly 

oxidised and high yielding (94%) DC-GO material was produced in only 20 h (c.f. 

appendix Fig. 3.6(b)). This material was found to be similar to the DC-GO prepared by 

Chandra et. al., and in fact turned out to be the optimised method for preparing DC-GO 

and is analogous to the material characterised in Fig. 3.26(a), i.e. DC-GO (optimised). 

To investigate the new procedure more thoroughly, the number of K2Cr2O7 equivalents 

was varied whist keeping the temperature (45°C) and reaction time (20 h) constant. The 

yield of DC-GO was calculated and its oxidation degree was determined by deconvolving 

the XPS C1s regions. The results are shown in Fig. 3.28 and the C1s regions in appendix 

Fig. A3.7 respectively.   

  

Fig. 3.28 The effect of K2Cr2O7 equivalents on the (a) yield and (b) oxidation degree of DC-GO. 
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results not only in an increase in yield, but also an increase in oxidation degree. This is 

evidenced by the increase in C(I) and C(III) species described by the green and red fitted 

peaks in Fig. 3.28 (b) respectively. Note that since C(II) species overlap between the C(I) 

and C(III) regions, there will be a C(II) contribution to both the C(I) and C(III) fitted peaks; 
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but this cannot be accurately quantified. Interestingly, increasing the equivalents further 

results in a decline in oxidation degree and yield. It is speculated that this may be due to 

over-oxidation of the material which can result in its decomposition (20). It could also 

explain why DC-GO exhibits such a large distribution of flake sizes, i.e. the fragmentation 

of larger flakes into smaller ones as a consequence of over-oxidation. It should be noted 

however, that over-oxidation is not unique to dichromate oxidised GO and can occur 

under Hummers conditions-see next section on PM-GO. Nonetheless, the results are 

suggestive that 7.5 equiv. of K2Cr2O7 is optimal in achieving highly oxidised GO in high 

yields.  

The preparation of DC-GO was also investigated within a 40 h time period. The optimised 

7.5 equivalents of K2Cr2O7 was kept constant along with the reaction temperature of 

45°C. Once again the yield was calculated and the oxidation degree of each DC-GO 

sample was determined by deconvolving the XPS C1s region (c.f. appendix Fig. A3.8). 

The results are shown in Fig. 3.29. 

  

Fig. 3.29 The effect of time on the (a) yield and (b) oxidation degree of DC-GO 

 

It is apparent from Fig. 3.31(a) that a reaction time under 8 h results in little or no yield 

of DC-GO. Interestingly, the yield rises sharply at 20 h and decreases once again at 40 

h. However, it is also clear that oxidation of graphite to DC-GO takes place after only a 

few hours as evidenced by the reasonably well oxidised DC-GO after 4h (see Fig. 

3.29(b)) and appendix Fig. A3.8 (a)). At 8 h the oxidation degree of DC-GO reaches its 

maximum and remains just as oxidised at 20 h, albeit a much higher yield is obtained at 

20 h. At 40 h the DC-GO is less oxidised and the yield has decreased markedly which 

may be due to over-oxidation, as discussed earlier. Hence the results indicate that DC-
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GO is optimally prepared via 7.5 equiv. of K2Cr2O7 (per mass equiv. of flake graphite) at 

45°C for 20 h.  

It is noteworthy that there have been attempts to characterise the DC-GO prepared by 

Chandra et. al. by other research groups using XPS, but they report a highly reduced 

material compared with the material reported here (8; 56). We speculate that this is due 

to the significantly lower equivalents of K2Cr2O7 employed and reduced reaction times. 

In other cases the DC-GO was isolated not through freeze drying, but via thermal 

treatment at 100°C (56), which we show in chapter 4 section 4.6 results in the thermal 

disproportionation of the material. We therefore conclude that the highly oxidised nature 

of DC-GO prepared here has not been realised in the literature.  

 

3.7  A closer look at PM-GO 

As outlined in the introduction, there are many reported procedures for the preparation 

of GO using KMnO4 which are based of the original Hummers method (3; 5; 6; 34). The 

method employed in this work is an eco-friendly modified Hummers method which was 

reported by Chen et. al. in 2013 (34). The procedure was specifically chosen for its short 

and efficient reaction times of 30 and 15 min for the oxidation and exfoliation step 

respectively, whilst still producing high quality, highly oxidised GO. The procedure also 

boasts lower equivalents of KMnO4 (3 equiv.) and no NaNO3. Full details of the 

experimental procedure can be found in chapter 8 section 8.5. 

Comparison of PM-GO with DC-GO (optimised) in section 3.3 earlier showed the two 

materials to be completely different. DC-GO (optimised) for instance displayed a large 

distribution of flake sizes and was shown to be overall far more oxidised. Nonetheless, 

the oxidation extent of GO depends on the conditions employed in the synthesis. For 

illustrative purposes, PM-GO was prepared using the same conditions required to 

synthesize DC-GO, both via our optimised procedure and by Chandra et. al.’s protocol; 

the exception of course being that K2Cr2O7 was replaced with KMnO4. The PM-GOs 

prepared in this way are now referred to PM-GO (optimised) and PM-GO (Chandra) 

respectively (see chapter 8 section 8.6 for full details). Similarly, the original PM-GO 

prepared using Chen et. al.’s protocol is now denoted as PM-GO (Chen).   

The XPS spectra of PM-GO (optimised) and PM-GO (Chandra) are shown in Fig. 3.30 

(b) and (d) respectively.  For comparison, the spectra of DC-GO (optimised) and DC-GO 

(Chandra) are also shown in Fig. 3.30 (a) and (c) respectively.  
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Fig. 3.30 XPS survey (outset) and C1s regions (inset) of DC-GO and PM-GO prepared the 

optimised DC-GO procedure (a) and (b) and via Chandra et. al. procedure (c) and (d) 

respectively. The crosses represent the experimental data whereas the grey, blue, green, red 

and black lines are the Shirley background functions, C(0), C(I) and C(III) fitted peaks and peak 

sum, respectively. 

 

From Fig. 3.30 (b) and (d) it is apparent that PM-GO prepared under these conditions is  

more oxidised than the PM-GO (Chen), (c.f. XPS Fig. 3.3 in section 3.3.1 and Table 3.3 

on the next page). The 13C ssNMR spectra (red) in Fig. 3.31 further corroborates the 

highly oxidised nature of PM-GO prepared in this way. In particular, the intense feature 

between 60 and 70 ppm (assigned to C(I) species), and the clear formation of carboxylic 

acids at 170 ppm, mirrors the XPS C1s spectra in Fig. 3.30 (b) and (d).  Another intriguing 
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PM-GO (optimised), in the same way as there was little difference between the two DC-

GO methodologies. 

Direct comparison of the XPS C1s regions of DC-GO and PM-GO (optimised/Chandra) 

in Fig. 3.30 via deconvolution of the fitted peaks (as discussed previously in chapter 2 

section 2.1), revealed the DC-GO to be slightly more carboxylated and more graphenic 

than PM-GO regardless of the procedure (optimised/Chandra et. al.) employed. 

Conversely, PM-GO was shown to contain far more C(I) species. These results are 

summarised in Table 3.3 and confirmed by 13C ssNMR in Fig. 3.31. The oxidation degree 

of PM-GO (Chen) is also shown in Table 3.3 for a full comparison. For PM-GO (Chen), 

the data in Table 3.3 represents the average and 1.s.d. of nine measurements-three 

separate batches, and each batch measured three times. PM-GO (optimised) and PM-

GO (Chandra) statistics represent the average and 1.s.d. of two and three 

measurements from a single batch respectively. The data for both DC-GO materials are 

the same as those reported in Table 3.2. 

  

Fig. 3.31 13C ssNMR of (a) DC-GO (optimised) and PM-GO (optimised) in red and green 

respectively and (b) DC-GO (Chandra) and PM-GO (Chandra) in back and red respectively. 

 

Table 3.3 Quantification of the XPS C1s deconvolved regions of various carbon materials. 

Carbon Material C(III) / % C(I) / % C(0) / % 

DC-GO (optimised) 16.8 ± 0.8 38.9 ± 1.1 44.3 ± 1.6 

DC-GO (Chandra) 16.2 ± 0.2 40.8 ± 1.2  43.1 ± 1.3 

PM-GO (optimised) 15.0 ± 0.3 47.5 ± 0.1 37.5 ± 0.3 

PM-GO (Chandra) 15.2 ± 0.4 48.0 ± 0.3 36.8 ± 0.1 

PM-GO (Chen) 11.6 ± 1.5 45.2 ± 3.5  43.2 ± 4.9 

 

Given the highly oxidised nature of PM-GO (optimised) and PM-GO (Chandra), it raised 

the question of whether these materials still showed the same flake size distribution as 
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PM-GO (Chen), previously illustrated in Fig. 3.12 in section 3.3, or exhibited a distribution 

of flake sizes similar to DC-GO. Consequently, AFM was performed on PM-GO 

(optimised) and PM-GO (Chandra) and the images are shown in appendix Fig. A3.9 and 

A3.10 respectively.   

Several high-resolution images, including those in Figs. A3.9 and A3.10, revealed that 

the conditions utilised in PM-GO (optimised) and PM-GO (Chandra) results in significant 

flake fragmentation. In fact, when analysing the individual flakes, it became clear that 

even the smaller flake sizes were often composed of lots of smaller flakes, overlapping 

with each other. Hence, to accurately determine a size distribution is difficult. Therefore, 

it can be concluded that these PM-GO conditions results in the over-oxidation and 

decomposition of the material.  

 

3.8 Conclusions 

The preparation and characterisation of three novel carbon nanomaterials (cx-GNFs, 

nGO and DC-GO (optimised)) are reported and benchmarked against conventional GO 

(PM-GO). Each are prepared via unique methodologies and starting materials, and 

display remarkably different degrees of oxidation. The cx-GNFs for instance display only 

carboxylic acids (and some carboxylic anhydrides) as the only oxygen-containing 

functional group, allowing for facile and non-controversial chemical functionalisation (as 

will be shown in Ch.5). The nGO is prepared via an eco-friendly process which rules out 

permanganate entirely from the synthesis. The ‘bottle-neck’ workup and purification of 

conventional nGO preparation in the literature is discarded and replaced with a simple 

neutralisation and filtration step, yielding only aqueous sodium nitrate and unreacted 

carbon as the only impurities in the process. DC-GO (optimised/Chandra) is shown for 

the first time to be a highly oxidised carbon material with more C(III) species than PM-

GO, which could constitute an advantage in chemical processing. In essence, it is hoped 

that the novel carbon materials presented in this chapter will contribute towards the 

current knowledge and understanding of carbon materials in the literature, in terms of 

preparation and unique chemical oxidation. In the next chapter, the thermal annealing 

behaviour of the materials is investigated-another area of great interest and discussion 

in the carbon literature, owing to the formation of reduced graphene-oxide as an 

alternative to graphene.  
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Chapter 4: Formation of Carboxylic Anhydrides 

at the Graphene Edge 

 

4.1 The thermal annealing of GO 

In 1965 Boehm and Scholz demonstrated that the thermal decomposition of graphene 

oxide (GO) varied significantly between samples, particularly if metal salts were present 

which decreased the thermal stability of GO (1). More recently, it has been demonstrated 

that GOs contaminated with potassium salts are highly flammable and a serious cause 

for concern should scaling up production of GO (using KMnO4) reach an industrial level 

(2). 

Despite the variation between different GOs, the thermal annealing of GO under inert 

conditions can be considered a three-stage process. In the first stage, physisorbed water 

is removed below 120°C (3-9). This is accompanied by a sharp exfoliation step in the 

second stage, centered at ~200°C, in which a large volume of gas is produced and 

constitutes the removal of most of the oxygen containing functional groups (oxo-groups) 

on GO (3-9). In the third and final stage, the removal of the remaining more thermally 

stable oxo-groups occurs, followed by the graphitisation of GO to defective 

graphene/graphite (10; 11). It is noteworthy that the rate at which GO is annealed has a 

strong influence on the TGA profile. This is clearly illustrated in Fig. 4.1 which compares 

the annealing of GO at 1°C and 5°C min-1 respectively under a nitrogen atmosphere (100 

mL.min-1). For comparison, the TGA curve of reduced GO (rGO) is also shown. As 

expected, annealing GO results in a sharp mass loss at ~200°C, however at the faster 

annealing rate of 5°C min-1 the mass loss is far more pronounced, resulting in the loss of 

all oxygen functionality. Conversely, at 1°C min-1 the more thermally stable oxygen 

functional groups remain after the initial exfoliation step at ~200°C and are gradually 

removed afterwards. RGO by contrast, exhibits no significant mass loss features as 

predicted, due to the absence/small quantities of oxygen functionality.   
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Fig. 4.1 Normalised TGA plots for GO and reduced GO. The downward slopes are due to 

normal instrument drift. Reprinted from reference [8] with permission from Elsevier. 

The rapid exfoliation of GO at ~200°C can occur in an explosive or non-explosive fashion 

(2; 12). In the former case, the decomposition rate of the oxo-groups (mainly epoxides 

and hydroxyls) exceeds the diffusion/mass transport rates of the evolved gasses out of 

GO (2; 12; 13). Once the pressure build-up between the GO layers overcomes the van 

der Waals forces, rapid exfoliation (explosion) ensues (2; 12; 13). Furthermore, the highly 

exothermic nature of the thermal decomposition (1.6 kJ.g-1) creates a thermal runaway 

via the creation of local hotspots, which further catalyses the explosive decomposition. 

(2; 12). It is also predicted that the mass and dimensions of GO play a deciding role in 

whether GO undergoes an explosive or non-explosive annealing behaviour (2). In 

particular, multilayer structures of GO have been shown to undergo explosive thermal 

decomposition, in contrast to thin films of GO which are non-explosive (2). The non-

explosive thermal annealing behaviour of GO occurs when the diffusion rate of the 

decomposition gases does not reach the critical pressure required to overcome the van 

der Waals forces between the GO sheets (2; 13). Furthermore, the heat released from 

the decomposition dissipates at a faster rate than is required to form local hot spots, so 

a thermal runaway does not occur (2). 

It is important to stress that GO is typically annealed as a powder or as a multi-

layered film and therefore does not represent a true monolayer of GO. 
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The role of water in the thermal annealing of GO has also been the subject of debate in 

the literature (2; 13). Water is known to be present in GO in large quantities, particularly 

in between the layers (14-16), and therefore might be expected to play role in the rapid 

thermal exfoliation of GO. Interestingly however, it has been shown that the absence of 

interstitial water can still result in the explosive thermal decomposition GO(2). 

Conversely, Acik et. al. have utilised FT-IR spectroscopy to show that interstitial water is 

directly responsible for the formation of hole defects in the GO sheet, which subsequently 

results in the formation of carbonyl species such as ketones and esters (13). They also 

demonstrate that in single layer GO films the effect is up to four times less pronounced 

than in multi-layer GO, due to significantly less water present (13).  

In 1934, U. Hofmann et. al. were the first to propose that GO releases CO and CO2 gas 

during its thermal decomposition as opposed to O2, on the basis that the formation of 

highly reactive oxygen atoms will react with the GO basal plane (17). Indeed, the 

formation of CO and CO2 (and absence of O2) during the thermal annealing of GO has 

since been confirmed by other research groups (9; 12; 18; 19). Even so, the exact 

mechanism, nature and composition of all the species evolved during the thermal 

annealing of GO remains elusive, despite the fact that GO has been known to be 

thermally unstable since 1859 (20).  

Although TGA and MS have shown H2O, CO and CO2 to be the most abundant 

decomposition products of thermally annealed GO (9; 18; 19; 21), recent gas 

chromatography-mass spectrometry (GC-MS) investigations into the thermal 

decomposition of GO have demonstrated the evolution of many other organic species 

(19). Fig. 4.2 illustrates the various species which have been detected by GC-MS. 

 

Fig. 4.2 The decomposition products of thermally annealed GO under nitrogen gas elucidated 

by GC-MS. Adapted from reference [19] with permission from the American Chemical Society. 
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From Fig. 4.2 it can be seen that a myriad of aromatic hydrocarbons are also produced 

during the thermal annealing of GO (19). These species are also volatile organic 

compounds (VOC) and therefore constitute a major health problem in the scaling up of 

GO as a precursor to graphene (19). The authors note that the large array of VOC 

produced is suggestive of a radical chain mechanism being a significant decomposition 

pathway during the annealing of GO. Interestingly, sulfur species such as SO2 were also 

observed, indicative of organosulfate groups, whilst the formation of carbon disulphide 

(CS2) is further evidence of a radical mechanism involving radical carbon species (19). 

It is noteworthy that the formation of SO2 as a thermal decomposition product of GO was 

first proposed by Boehm and Scholz in 1966 (22). Eigler et. al. later demonstrated using 

TGA-MS that organosulfate groups are cleaved from GO at annealing temperatures 

between 200 and 300°C, whilst inorganic sulfate is removed at much higher 

temperatures, typically between 700 and 800°C (9). The TGA-MS data in Fig. 4.3 shows 

the major gasses evolved during the thermal annealing of GO (9). As expected, 

physisorbed H2O (m/z 18) is initially observed followed by the concerted evolution of 

H2O, CO (m/z 28) and CO2 (m/z 44) centered at ~180°C. Above this temperature the 

decomposition of the more thermally stable oxo-groups occurs, producing a similar 

gaseous mixture. However, the formation of SO2 (m/z 64) is also detected in small 

quantities at ~250°C corresponding to organosulphate (9). Although the desorption peak 

for SO2 appears small in the TGA plot, TGA-IR analysis reveals that up to 15% of the 

mass loss can be attributed to this species (9). Note that in this instance, the formation 

of inorganic sulphates are not present.  

 

 

Fig. 4.3 TGA-MS of GO under He gas (80 mL.min-1) at 10°C.min-1; m/z 18, H2O; m/z 28, CO; 

m/z 44, CO2; m/z 64, SO2. Adapted from reference [9] with permission from Wiley and Sons. 
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The notion of a radical chain reaction occurring during the thermal annealing of GO has 

also been suggested by Acik et. al (23). In this work, it is proposed that H2O initiates a 

radical chain reaction which propagates using the existing oxygen functionality present 

on GO. This in turn generates various oxo-radicals, the nature and composition of which 

are dependent on the initial ratio of the native oxygen functionality present on GO. Hence 

the desorption patterns of GO will vary according to this ratio (23). 

Undoubtedly, the nature of GO during and after thermal annealing remains controversial 

(13; 23-26). The concerted evolution of gases in particular makes it difficult to assign 

evolved gases to a specific functional group. Furthermore, the degree of oxidation on 

GO will play a deciding role in its decomposition (23; 26). For instance, the conversion 

of hydroxyl groups into epoxides during longer oxidation times has been demonstrated 

(26), and therefore the stoichiometry between these two groups will vary significantly. 

Similarly, the size of the GO flake (as will be demonstrated later in this chapter) can 

considerably change the annealing behaviour (18; 21). The number of GO layers is also 

another variable to consider (13). After annealing, the oxo-groups remaining on GO has 

been suggested to include ethers (23), carbonyls (23) and phenolic groups (24; 25).  

The mechanistic details underlying the thermal annealing of GO remains challenging and 

therefore the application of novel, less structurally controversial carbon nanomaterials 

are desired. In the next section, the thermal annealing behaviour of such materials are 

eloquently demonstrated, yielding surprising and opportunistic results.   

 

4.2 Outline of chapter 

In this chapter the thermal annealing behaviour of carboxylated graphene nanoflakes 

(cx-GNFs), nano graphene-oxide (nGO) and dichromate oxidised GO (DC-GO) under 

vacuum are described and benchmarked against conventional permanganate oxidised 

GO (PM-GO). The formation of carboxylic anhydrides at the graphene edges of cx-GNFs 

and nGO is demonstrated experimentally for the first time using FT-IR spectroscopy and 

in-situ mass spectrometry. The mechanism during the thermal annealing of cx-GNFs is 

fully appreciated and described in detail, as well as the stability of the intermediate 

products in air and in water.  
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4.3 The thermal annealing of cx-GNFs 

The unique nature of cx-GNFs enables the unambiguous exploration of the chemical 

properties of COOH groups at the graphene edge. Here we demonstrate that they can 

transform to the corresponding carboxylic anhydrides with the elimination of water upon 

heating in vacuum according to the reaction scheme shown in Fig. 4.4(a). 

 

Fig. 4.4 Formation of carboxylic anhydrides upon heating cx-GNFs in high vacuum. (a) Reaction 

scheme of the anhydride formation. (b) FT-IR spectra of cx-GNFs after heating to the indicated 

temperatures. (c) In-situ mass spectrometry of desorbing gas species upon heating. 
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The formation of carboxylic anhydrides is illustrated by the FT-IR spectra in Fig. 4.4(b). 

The as-made cx-GNFs show an intense peak centered at ~1700 cm-1 which is the 

expected value of the C=O stretching mode of COOH groups (27; 28). Upon heating in 

vacuum, new C=O stretching peaks emerge at 1781 and 1844 cm-1 at the expense of 

the COOH peak. These two frequencies are indicative for cyclic carboxylic anhydrides 

and correspond to the asymmetric and symmetric C=O stretching modes, respectively 

(27; 29-31). Furthermore, the formation of a new peak at ~925 cm-1 has also been 

previously assigned to the C-O-C stretching mode of carboxylic anhydrides (29-31). 

Interestingly, little is known regarding the less intense bands at ~725 and ~625 cm-1 

which are also observed during anhydride formation. The conversion of the COOH 

groups to the anhydride is, however, not fully quantitative which may be due to geometric 

constraints at the graphene edge such as ‘stranded’ COOH groups located either 

between anhydride groups or spatially too distant from other COOH groups so that cyclic 

anhydrides cannot form. The intensity of the COOH peak decreases markedly above 

250°C. However, this does not lead to a further increase of the intensities of the 

anhydride peaks and is therefore correlated with the thermal decomposition of the 

‘stranded’ COOH groups. The anhydride groups are thermally more stable. However, 

heating to 460°C leads to almost the complete disappearance of the anhydride C=O 

stretching peaks as well as the peaks characteristic for anhydrides in the 500 to 1000 

cm-1 range. At 900°C no appreciable features are observed in the FT-IR spectrum, 

consistent with the complete removal of polar functional groups.  

Close inspection of the FT-IR spectra in Fig. 4.4(b) reveals that the as-made cx-GNF 

material also displays a weak intensity of the lower wavenumber C=O stretching peak 

characteristic for anhydrides (1781 cm-1). This suggests that a small fraction of the 

COOH groups already form anhydrides under ambient conditions before the equilibrium 

is shifted by heating under vacuum. In chapter 5 we demonstrate how this equilibrium 

can be exploited to readily chemically functionalise the cx-GNFs. 

MS data recorded upon heating cx-GNFs in vacuum corroborate the results from FT-IR 

spectroscopy (Fig. 4.4(c)). Water is released first upon heating-detailed analysis of the 

H2O desorption profile in Fig. 4.5(a) suggests that ~93% of the desorbing water is 

physisorbed. A second water loss, accounting for the remaining ~7%, is centered at 

255°C and is attributed to anhydride formation. (Fig. 4.5(a)). Note that this is in very good 

agreement with the FT-IR data, placing the anhydride maxima between 250 and 285°C. 

This is followed by two separate decarboxylation processes centered at about 280 and 

440°C, respectively. According to the FT-IR measurements, the first corresponds to the 
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decarboxylation of the ‘stranded’ COOH groups and the second to the release of CO2 

due to thermal decomposition of carboxylic anhydrides. Peak fitting of the CO2 desorption 

profile shows that about 33% of the CO2 desorbed is due to stranded COOH groups 

whilst the remaining 67% is attributed to anhydride decomposition (Fig. 4.5(b)). From this 

it can be calculated that ~81% of COOH groups on the cx-GNFs can be transformed into 

carboxylic anhydrides. This value is determined through knowledge of the fact that two 

carboxylic acids are required to form a single carboxylic anhydride, yet the anhydride 

itself only undergoes a single decarboxylation step. Hence, from Fig. 4.5(b) the 

percentage of COOH groups that form anhydrides can be calculated as [(2 x 67.4)/(2 x 

67.4) + 32.6] x 100. In the final stage, decarbonylation, the loss of CO, takes place which 

is consistent with the thermal decomposition pattern of other carboxylic anhydrides (32). 

Furthermore, analysis of the desorption pattern at m/z 64 (Fig. 4.5(c)), attributed to SO2 

formation from organosulfate groups, is absent during the annealing of the cx-GNFs. 

Once again confirming that the cx-GNFs consist solely of COOH groups and a small 

proportion of the corresponding carboxylic anhydride.  

  

 

Fig. 4.5 Thermal desorption patterns of cx-GNFs at (a) m/z 18, H2O; (b) m/z 44, CO2; and (c) 

m/z 64, SO2. The area percentages of the individual components are given in the legend. 
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In general, the thermal decomposition pattern of cx-GNFs is consistent with what has 

been observed for aromatic polycarboxylic acids (33). For example, benzene-1,2,3-

tricarboxylic acid releases water at 190°C due to anhydride formation followed by 

decarboxylation of the remaining COOH group at 300°C to give phthalic anhydride. It is 

noteworthy that the formation and decomposition reactions of carboxylic anhydrides 

have previously been discussed in the context of chemically functionalised activated 

carbons (34; 35). However, these investigations were complicated by the chemically 

diverse nature of activated carbons.  

The chemical stability of the anhydride groups (an-GNFs) formed as a result of the 

thermal desorption of H2O after heating the cx-GNFs to 285°C was determined by 

dispersion of an-GNFs in water and exposing an-GNF powder to air. The FT-IR spectra 

in Fig. 4.6 show that the dispersion in water and exposure to air for 14 days reduced the 

amount of anhydride groups to the small amount that is present in the as-made material.  

 

Fig. 4.6 (a) FT-IR spectra of an-GNFs before (black) and after (blue) exposure to liquid water. 

(b) FT-IR spectra illustrating the hydrolysis of an-GNFs (black) to cx-GNFs upon prolonged 

exposure to air as indicated by the gradual decrease in the symmetric and asymmetric 

anhydride stretching modes centered at 1844 cm-1 and 1781 cm-1 (vertical dashed lines). 

For completion, it is also demonstrated that carboxylic anhydride formation can be 

suppressed. This is achieved with Al3+ cations which are known to form some of the 

strongest complexes with carboxylates (36), and hence should prevent anhydride 

formation. To do this, a solution of aqueous aluminium chloride (10 mL, 0.1 M) was added 

to the cx-GNFs (10 mg) and the mixture ultrasonicated for 10 min. After this, the 

aluminium-chelated GNFs (Al-GNFs) precipitated out of dispersion and were allowed to 

settle. The mixture was then filtered under reduced pressure through a 0.2 μm track-

edged polycarbonate membrane. The Al-GNFs on the membrane were washed with 

deionised water to remove any excess aluminium chloride before being left to dry on the 

membrane under reduced pressure. The Al-GNFs were then heated under vacuum to 
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285°C, in the same way as before with the cx-GNFs, and the ex-situ IR was recorded 

(Fig. 4.7). From the IR spectrum of the Al-GNFs below, it is clear that the formation of 

carboxylic anhydrides has been suppressed, due to the absence of the anhydride 

stretching modes at ~1780 and 1840 cm-1 respectively. A detailed discussion on the 

interaction of cx-GNFs with metals is outlined later in Chapter 6. 

 

Fig. 4.7 FT-IR spectra of Al-GNFs before and after thermal treatment in vacuum at 285°C. 
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4.4 The thermal annealing of nGO 

The FT-IR spectra and in-situ MS pattern representing the thermal annealing behaviour 

of nGO is shown in Fig. 4.8. Some similarities can clearly be seen between the nGO and 

the cx-GNF thermal decomposition patterns, whilst some differences are also apparent.  

 

 

Fig. 4.8 Thermal annealing of nGO under high-vacuum conditions. (a) ATR-IR spectra recorded 

at room temperature after heating to the indicated temperatures and (b) In situ mass 

spectrometry pattern. 

 

 

4000 3000 2000 1500 1000

COOH


s
C-O

(O-H)

100°C

275°C


s
C=C

700°C

500°C

350°C

900°C

200°C

20°C


s
C-O


s
C-O


s
COO

–


as

COO
–

(H
2
O)

 

 

a
b

s
o

rb
a

n
c
e

wavenumber / cm
-1


s
C=O

anhydride

(a)

10 20 30 40 50

100

200

300

400

500

600

700

800

900
CO

2CO

m / z

T
 /
 °

C

H
2
O

3

12

p
 /

 1
0

-6
 t

o
rr

(b)



Chapter 4: Formation of Carboxylic Anhydrides at the Graphene Edge 
 

128 
 

The FT-IR spectra of the annealed nGO (Fig. 4.8(a)) reveals that cyclic carboxylic 

anhydrides are also formed during thermal annealing in a similar fashion to the cx-GNFs, 

albeit to a lesser extent. As expected, the MS pattern in Fig. 4.8(b) confirms that H2O 

(m/z 18) is removed first upon heating and is attributed initially to the removal of 

physisorbed water and later to anhydride formation, as well the potential decomposition 

of other oxo-groups such as hydroxyls and epoxides. Similarly, the origin of the CO2 and 

CO peaks in the MS pattern above 200°C will have contributions from stranded COOH 

groups and later on anhydrides, as discussed earlier in the context of cx-GNFs. However, 

unlike the cx-GNFs, nGO has several other oxygen functionality present such as 

ketones/aldehydes, epoxides and hydroxyls (as confirmed in the previous chapter). 

Hence the thermal annealing of nGO is more complicated than the cx-GNFs and thus 

these species will also contribute towards the detection of CO and CO2 by MS. Note that 

since nGO is not prepared in H2SO4 media, the formation of organosulfate groups is not 

possible. 

The very fact that nGO can form cyclic anhydrides provides strong evidence for presence 

of COOH groups in significantly large quantities at the graphene edge, consistent with 

earlier XPS and ssNMR analysis in chapter 3. It is noted that hydroxyl groups, which may 

also be present at the graphene edge, could in principle react with carboxylic acids to 

form lactones and partially contribute towards the lower frequency C=O stretching mode 

of the anhydride (37). Nonetheless, the presence of the higher frequency C=O mode at 

~1840 cm-1 certainly confirms the presence of carboxylic anhydrides.  

Above 480°C in the MS plot, CO2 release has declined substantially and is therefore 

suggestive that all decarboxylation processes have taken place. This is in good 

agreement with the FT-IR spectrum recorded after heating to 500°C (cf. Fig. 4.8(a)) 

which shows a significant loss of O-H stretching between 3600 cm-1and 2500 cm-1, as 

well as the complete disappearance of the anhydride peaks. Interestingly, the retention 

of a weak but significant peak at ~1720 cm-1, which later disappears after heating to 

700°C, suggests that this carbonyl stretching mode is associated with a functional group 

which cannot undergo decarboxylation, such as ketones. Furthermore, MS shows a 

sharp loss of CO between 500 and 700°C, which therefore strongly suggests that the 

functional groups indicated by the 1720 cm-1 peak are ketones and/or aldehydes. 

The most intriguing peak in the FT-IR spectrum of thermally annealed nGO is the broad 

peak centered at ~1587 cm-1, which has been the source of some controversy in the GO 

literature (38-42). This peak has commonly been assigned to C=C stretching modes as 

well as the asymmetric stretching mode of carboxylate (38). However, a deuteration 
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experiment of GO has revealed this peak to shift by ~21/2 wavenumbers to lower 

frequency which unambiguously means that this peak is associated with the bending 

mode of water (38). This is understandable for GO which has a relatively low 

concentration of carboxyl groups and the C=C bonds present are not particularly IR 

active. Interestingly, heating nGO to 700°C shows that this peak is still present. One can 

therefore conclude that in case of nGO this peak should mainly be attributed to C=C 

stretching near the vicinity of polar groups, since water has been removed and COOH 

groups have decarboxylated at this temperature. This is also consistent with the ssNMR 

of nGO (chapter 3) which has a larger contribution from sp2 carbon than GO.  

The continuous removal of CO above 700°C in the MS pattern of nGO is consistent with 

the earlier literature reported by Ganguly et. al. (24) and Acik et. al. (23) who demonstrate 

that C-O species such as phenols and ethers are the last to be removed. Indeed, the 

TGA-MS annealing of GO in Fig. 4.3 illustrates the continual loss of CO even up to 

900°C. 
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4.5 The thermal annealing of PM-GO (Chen), DC-GO 

(optimised) and PM-GO (optimised) 

The MS pattern and corresponding desorption pattern of PM-GO (Chen) during thermal 

annealing is displayed in Fig. 4.9(a) and (b) respectively.  

 

 

Fig. 4.9 Thermal annealing of PM-GO (Chen) under high-vacuum conditions. (a) In-situ MS and 

(b) corresponding desorption profile showing the major desorbed species. The dashed grey line 

indicates zero pressure. 
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same time as the main desorption peak in PM-GO (Chen), in contrast to Eigler et. al. 

where SO2 is formed later. The second gaseous desorption, corresponding to the more 

stable oxo-groups is broader in the case PM-GO (Chen), whilst Eigler et. al. demonstrate 

a well-defined mass loss at ~250°C. Remarkably, in both cases the loss of CO continues 

to increase throughout the thermal treatment, again corroborating the idea that C-O 

species are the last to be removed (21; 23; 24). The results suggest that whilst the 

general thermal decomposition pattern of PM-GOs are similar, there are nevertheless 

differences in functional group composition, flake size etc. that will have an influence on 

the annealing process. Note that to ensure comparable annealing rates, PM-GO (Chen), 

and hence all the thermally treated materials reported here, were heated at 10°C.min-1, 

in the same way as Eigler et. al. However, high vacuum conditions were employed as 

opposed to inert gas which could influence the rate and temperature at which GO 

decomposes.  

The thermal annealing of DC-GO (optimised) is represented by (a) the MS pattern and 

(b) corresponding desorption pattern in Fig. 4.10 respectively. 
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Fig. 4.10 Thermal annealing of DC-GO (optimised) under high-vacuum conditions. (a) In-situ 

MS and (b) corresponding desorption profile showing the major desorbed species. 
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Fig. 4.11 Thermal annealing of PM-GO (optimised) under high-vacuum conditions. (a) 

In-situ MS and (b) corresponding desorption profile showing the major desorbed 

species. 
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4.6 Thermal annealing of DC-GO (Chandra) in air 

In the last chapter, in section 3.6.1, it was discussed that there had been attempts by 

other research groups to characterise DC-GO (Chandra) using XPS, which yielded 

controversial results (43; 44). These materials were found to be significantly reduced 

compared with the DC-GO (Chandra) reported here. In one case, the material was 

prepared through identical conditions to ours, yet isolation of the material was achieved 

through thermal treatment at 100°C (for an unspecified duration), as opposed to 

lyophilisation (43). Here it is demonstrated that thermal treatment of DC-GO (Chandra) 

over time results in the annealing of the material, leading to a far more reduced material.   

The XPS C1s spectra of the thermally isolated DC-GO (Chandra) in reference (43) is 

reproduced with permission in Fig. 4.12. A keen eye would soon realise that not only is 

the material highly reduced in comparison with the material we report, but the assignment 

of the C=O group is also incorrect. Functional groups such as C=O are well known to be 

observed in the ~288 eV region (45). The feature which they attribute to C=O at ~285.5 

eV is more likely to be due to asymmetry of the main C-C peak, or perhaps even C(I) 

species such as hydroxyls. The C=O group is therefore unlikely to be present.  

 

Fig. 4.12 XPS C1s spectrum of DC-GO (Chandra) as reported by Sitko et. al. Adapted from 

reference (43) with permission from The Royal Society of Chemistry.  

 

In order to demonstrate that DC-GO (Chandra) decomposes in air at 100°C, the material 

was left in an oven at 100°C in air for 16 h, 3 d, and 30 d respectively. Characterisation 

of the resulting materials by XPS (Fig. 4.13 (b)-(d)) and FT-IR (Fig. 4.14 (b)-(d)) 

spectroscopy reveal that they are significantly less oxidised compared with the as-made 

material.  
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Fig. 4.13 XPS Survey (outset) and C1s regions (inset) of DC-GO (Chandra) after heating at 

100°C in air for (a) 0 h, (b) 16 h, (c) 3 d, and (d) 30 d. The crosses represent the experimental 

data whereas the grey, blue, green, red and black lines are the Shirley background functions, 

C(0), C(I) and C(III) fitted peaks and peak sum, respectively. 

 

The XPS C1s regions in Fig. 4.13 show a gradual decrease in oxidised carbon species 

(red and green fitted peaks) with respect to unoxidised carbon (blue) as D-GO (Chandra) 

is heated for longer times. Quantification of the C1s regions in Fig. 4.13 is shown in Table 

4.1 along with the percentage mass loss of the materials after heat treatment in air at 

100°C. Interestingly, the C(I) species are removed at a much faster rate than the C(III) 

functional groups with the C(I)/C(III) ratio decreasing from ~2.6 before heating to ~1.6 

after heating for 16 h. The rapid decline in the C(I) functional groups could explain the 

XPS C1s spectrum reported by Sitko et. al. in Fig. 4.12, where no apparent C(I) species 

are present yet C(III) functionality remains (43). It should be noted that the values 
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reported for 0 and 3 d in Table 4.1 reflect the mean and error (1.s.d) of three and two 

measurements, respectively.  

Table 4.1 Mass loss and quantification of the functional group changes in the XPS C1s regions 

of heat-treated DC-GO (Chandra) at various time intervals. 

DC-GO (Chandra) 
100°C 
time / t 

Mass loss / % C(III) / % C(I) / % C(0) / % 

0 n/a 16.2 ± 0.1 41.9 ± 0.3 41.9 ± 0.3 

16 h 16.4 18.3 28.7 53.0 

  3 d 23.3 16.2 ± 0.6 30.1 ± 0.4 53.7 ± 1.0 

30 d 38.6 14.1 21.5 64.4 

 

Similar to the XPS data, the FT-IR spectra of the heat treated DC-GO (Chandra) in Fig. 

4.14  reveals that the C=O stretching frequency at ~1720 cm-1 remains intense w.r.t the 

C=C/δ(H2O) peak at ~1580cm-1, suggesting that C(III) species such as carboxylic acids 

are fairly stable at 100°C. In particular, there is little difference in the ratio between these 

peaks at 16 h of heat treatment. However, it should be noted that the intensity of the 

1580cm-1 peak would be expected to decrease in intensity as a result of the removal of 

H2O upon heating. The sharp increase in the peak at ~1200cm-1 with increasing heating 

time is also typically associated with carboxylic acids-c.f. cx-GNFs in chapter 3 section 

3.3.2. 
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Fig. 4.14 FT-IR spectra of DC-GO (Chandra) after heating at 100°C in air for (a) 0 h (black), (b) 

16 h (orange), (c) 3 d (blue), and (d) 30 d (red).   

 

4.7 Conclusions 

The formation of carboxylic anhydrides at the graphene edge has been demonstrated 

experimentally for the first time. Highly carboxylated carbon nanomaterials such as cx-

GNFs and nGO have been shown to readily form carboxylic anhydrides upon vacuum 

annealing. The more thermally stable anhydride groups decompose at significantly 

higher temperatures than the corresponding acids, giving rise to unique desorption 

patterns. GO, by contrast undergoes a sharp exfoliation step, resulting in the concerted 

evolution of gases as the major decomposition pathway. The formation of highly reactive 

carboxylic anhydrides provides a scope for facile functionalisation with purpose-specific 

nucleophiles such as amines. In the next chapter, the dynamic equilibrium between the 

carboxylic acids and anhydrides on cx-GNFs is demonstrated, and fully exploited in the 

context of chemical functionalisation with well-known amines.  
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Chapter 5: The Chemistry of Carboxylic 

Anhydrides at the Graphene Edge 

 

5.1 The covalent functionalisation of GO 

The chemical functionalisation of graphene oxide (GO) has widespread use in the 

literature for photovoltaics (1), optics (2), drug/gene delivery (3; 4), metal sorption (5), 

sensors (6), Li-ion batteries (7), supercapacitors (8), energy storage (9) and more (10-

13). Given the chemically diverse nature of GO, chemical modification may occur via 

basal plane functionalisation (typically through epoxides or hydroxyls) or at the flake 

edge which harbours a large array of oxygen functionality (oxo-groups), including 

carboxylic acids and ketones (14; 15). It is noteworthy that in the context of GO, edges 

are not exclusive to the flake perimeter but also encompass the edges at defect sites. 

As the GO flake size decreases, the significance of edge functionality will increase, 

particularly so in the case of nGOs.  

The covalent modification of GO is usually achieved through activating GO with more 

reactive functionality (1-6; 16; 17). although this is not always the case.(18-20). 

Interestingly, despite hydroxyl and epoxide groups constituting (by far) the majority of the 

oxo-groups on GO, a lot of emphasis is placed on reactions involving the carboxylic acids 

(1-6; 16; 17). Typically, the COOH groups on GO are activated using thionyl chloride, (1; 

2; 16; 17) oxalyl chloride (21; 22), N-hydroxysuccinimide (NHS) (3; 4; 6) or carbodiimides 

(5; 17; 23-25) and subsequently treated with the required amine (or other species) to 

yield the desired modified GO product. Although this type of chemical processing is 

perfectly reasonable in an organic chemistry context (15), it has a number of 

insurmountable contradictions w.r.t. GO. Firstly and most obviously, there are not that 

many COOH groups present on GO (15; 26; 27). An estimate of about 1-2% of COOH 

groups (of the total carbon content) can be calculated (15; 26; 27) if XPS and 13C-ssNMR 

are to be taken literally. Consequently, the extent of functionalisation will be limited by 

this fact, and higher yields are simply impossible. Secondly, epoxides are well known to 

react directly with amines under mild conditions (14; 28-34). Furthermore, hydroxyls can 

also potentially react with any of the aforementioned activating reagents (especially 

thionyl chloride), giving rise to highly reactive functional groups which can then compete 

with the activated COOH groups (15). It should be noted that hydroxyls and epoxides 
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constitute approximately half of all the carbon species (including unoxidised carbon) 

found on GO (15). Finally, modification of the GO sheet is often accompanied by 

unintentional reduction (17; 20; 35), which is probably due to the harsh conditions 

employed during the synthesis (36). For instance, the preparation of GO functionalised 

with amines typically involves a 24 h reflux (or longer) at temperatures of up to 140°C (2; 

5; 17; 20). During such a protocol, one cannot expect the stoichiometry of the functional 

groups on GO to resemble the native structure. Indeed, in the earlier chapter it was 

demonstrated that GO is not stable to heat treatment in air at 100°C let alone to refluxing 

in a concoction of chemicals.  

Recently, Vacchi et. al. demonstrated using 13C ssNMR spectroscopy that epoxide 

groups on GO readily react with amines at room temperature in DMF without the 

requirement of any activating agents (27). Fig. 5.1 shows how GO was treated with Boc 

mono-protected triethylene glycol (TEG) diamine as the nucleophile in one of their 

experiments.  

 

Fig. 5.1 Derivatization of GO via nucleophilic epoxy ring opening by the TEG diamine derivative. 

For the sake of clarity, only one epoxide group is shown. 

 

The GO was then characterised before (black) and after (red) functionalisation by 13C 

ssNMR spectroscopy. The results are shown in Fig. 5.2. 
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Fig. 5.2 13C ssNMR of GO before (black) and after (red) functionalisation. Adapted from 

reference (27) with permission from the Royal Society of Chemistry. 

A significant decrease in the intensity of the peak situated at ~60 ppm, attributed to 

epoxide species, can be seen in the 13C ssNMR spectrum of the functionalised GO (red) 

w.r.t the unmodified GO (black) in Fig. 5.2. At the same time, an increase in the intensity 

of the peak at 70 ppm is also observed along with the formation of a new peak at ~40 

ppm. This is in good agreement with the opening of the epoxide ring resulting in the 

formation of new C-N and C-O bonds (both of which appear at ~70 ppm). The presence 

of methylene groups on the amine are the consequence of the new feature at ~40ppm. 

The decrease in sp2 carbon at ~130 ppm in the functionalised GO is also expected since 

sp2 C=C bonds are not present in the amine and therefore there will be less overall sp2 

C=C species present in the modified GO. It should be noted that since epoxide/hydroxyl 

groups are present on both sides of the basal plane of GO, it can result in the steric 

hindrance of some of these groups towards nucleophilic attack via the SN2 mechanism. 

Hence the complete conversion of epoxides to C-N/C-O species is unlikely (15).  

Vacchi et. al. also show that activating the COOH groups with carbodiimides followed by 

reacting with amines results in the functionalisation of both the activated COOH groups 

to amides and the epoxide groups to C-N species respectively (27). It was therefore 

concluded that selective functionalisation of the COOH groups was not possible. Another 

important observation is that the reduction of GO does not take place after 

functionalisation, as is often the case (27). This is strong evidence that the reduction of 

GO is likely to be due to the harsh reaction conditions employed as opposed to the result 

of chemical modification.  

Alternatively, Mungse et. al. (37) attempted to selectively functionalise the COOH groups 

on GO by first reducing GO with hydrazine to remove most of the functionality (in 

particular epoxides) and then treat the subsequent reduced graphene oxide (rGO) with 

HNO3, which is known to introduce COOH into the carbon framework (22). The GO is 
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then treated with thionyl chloride to activate the COOH groups to the more reactive acid 

chloride before treatment with octadecylamine (ODA), which yields the corresponding 

amide (37). A schematic illustrating each of these steps is highlighted in Fig. 5.3. 

 

Fig. 5.3 Schematic model of GO before (a) and after (b) reduction with hydrazine, illustrating the 

distribution of various oxygen functionalities in the basal plane and at edges of sheets, (c) mild 

oxidation of rGO selectively introduces carboxylic groups at the edges and defects sites of 

sheets, and (d) ODA-functionalized rGO, prepared by amide linkage on the carboxyl sites of 

rGO sheets. Adapted from reference (37) with permission from the American Chemical Society. 

 

Although the research conducted by Vacchi and Mungse et. al. describe a systematic 

approach to the covalent functionalisation of GO, they (like most other GO 

functionalisation literature) have one very serious shortcoming. They cannot 

(conclusively) prove they have covalently modified GO. In the latter case with Mungse 

et. al. only XPS and FT-IR data was reported, both of which can be subjective, if analysis 

of the data is not carefully considered (15; 37). Similarly, even though Vacchi et. al. utilise 

13C ssNMR spectroscopy, it doesn’t actually prove that C-N or C(O)N bonds have been 

formed. In fact, it is entirely possible that in both cases no new covalent bonds have 

formed and only electrostatic interactions exist. Instead of C-N bonds there can be C-O- 

+NR3 interactions instead, similarly amide bonds can be replaced with C(O)O- +NR3 salt 

N2H4

HNO3

(1) SOCl2

(2) ODA

(a) (b)

(c)(d)
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bridges (15). The changes observed in the 13C ssNMR spectrum of Vacchi et. al. is also 

consistent with the adsorption of the BOC amine onto the GO sheet. The apparent 

decrease in the epoxide peak may not have decreased at all, it’s just that the C-O and 

C-N species present on the amine will contribute to the feature at 70 ppm; just like the 

apparent reduction in the sp2 C=C peak intensity after chemical modification. To be 

completely certain of chemical modification, the authors could have also utilised 15N 

ssNMR spectroscopy which would clearly distinguish between nitrogen present in an 

amide bond (100-150 ppm) and nitrogen involved in a salt bridge (<100 ppm) (38).  

A reasonable undertaking to provide conclusive covalent functionalisation of GO using 

15N ssNMR spectroscopy was described by Eigler et. al.(36) who demonstrated the 

formation of direct C-N bonds when GO is treated with 15N14N2 labelled sodium azide 

(NaN3) (36). In this work, N3
- reacts with epoxide groups forming C-N bonds via the SN2 

mechanism as expected. However, given that one of the terminal nitrogen atoms is 15N 

labelled, one can deduce that the formation of C-15N-14N-14N and C-14N-14N-15N bonds 

are equally likely and therefore expect the presence of two peaks in the 15N ssNMR 

spectrum. Indeed, the 15N ssNMR spectra identified two peaks at 91 and 224 ppm which 

Eigler et. al. assign to the directly and indirectly 15N labelled C-N3 bond respectively (36). 

Interestingly, ab initio methods predicted the C-15N-14N-14N peak to appear at 107.4 ppm 

not the 91 ppm which was experimentally observed.(36) Although the authors state this 

is in good agreement with their experimental value, it doesn’t actually rule out the 

possibility of salt formation, or even unreacted sodium azide (39). The result is therefore 

arguably inconclusive.  

In summary, the covalent functionalisation of GO has proven to be very challenging, 

which is largely due to its complex nature. Even with multiple characterisation methods 

it can be difficult to definitively determine whether a reaction has taken place. One way 

to remove this controversy is to work with well-defined carbon nanomaterials such as 

carboxylated graphene nanoflakes (cx-GNFs) whose native structure is well understood.    

 

5.2 Outline of chapter  

In this chapter the facile chemical functionalisation of cx-GNFs with amines such as 

ethylenediamine and cysteamine is demonstrated via the dynamic equilibrium that exists 

between the carboxylic acids and carboxylic anhydrides in aqueous media. Evidence of 

covalent modification is proposed by consideration of physical properties such as 

solubility, which are often overlooked in the literature. The functionalised materials are 
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then shown to interact strongly with gold nanoparticles as well as display a change in 

zeta potential.  

 

5.3 Direct functionalisation of cx-GNFs with amines  

In the previous chapter, it was suggested that carboxylic acids and carboxylic anhydrides 

on the cx-GNFs exist in a dynamic equilibrium before vacuum annealing. The evidence 

for this was based on close inspection of the FT-IR spectra of the as-made cx-GNFs  as 

well as the hydrolysed an-GNFs which displayed a weak intensity for the lower 

wavenumber C=O stretching peak characteristic for carboxylic anhydrides (40). To test 

whether this hypothesis was correct, the cx-GNFs were treated with either 

ethylenediamine or cysteamine in aqueous media under ambient conditions  (40). Should 

carboxylic anhydrides exist in equilibrium, the chemical functionalisation of cx-GNFs with 

amines should take place spontaneously, yielding the corresponding amide plus a free 

COOH group which could then in principle react with an adjacent COOH group forming 

another anhydride, leading to a ‘cascade of chemical functionalisation’ along the 

carboxylated graphene edge (40). 

Hence, in a typical experiment, 20 g of 5 wt % ethylenediamine or cysteamine in 

deionised water was added to 5 mg of cx-GNFs and the mixtures were allowed to react 

for one hour at room temperature with occasional swirling. Subsequently, the brown 

dispersions of eth-GNF or cys-GNF were filtered through a 0.2 μm Whatman 

polycarbonate membrane to remove any trace of cross-linked flakes. The filtrate was 

collected, dialysed against deionised water and then freeze dried to yield the 

functionalised GNF materials.  

Fig. 5.4 schematically illustrates the reaction of cx-GNFs with ethylenediamine and 

cysteamine via the formation of the carboxylic anhydride.  
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Fig. 5.4 Chemical functionalisation of cx-GNFs with ethylenediamine or cysteamine in aqueous 

media under ambient conditions via the formation of the carboxylic anhydride. 

 

Evidence suggesting the chemical transformation of cx-GNFs into the corresponding 

amides is illustrated by the XPS and FT-IR data in Fig. 5.5(a)-(d) respectively.  

 

Fig. 5.5 XPS survey spectra of (a) eth-GNFs (green) and cys-GNFs (red). XPS elemental 

regions of (b) eth-GNFs and (c) cys-GNFs showing C1s regions (outset) and N1s/S2p regions 

(inset). The crosses represent the experimental data, blue line the background, grey lines the 
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fitted peaks and the peak sum is shown in red. (d) FT-IR spectra of eth-GNFs (green) and cys-

GNFs. 

 

The XPS survey spectra of eth-GNFs in Fig. 5.5(a) confirms the presence of nitrogen 

species along with carbon and oxygen. A N/C ratio of 0.151 ± 0.007 was determined by 

measurement of two separate samples which were measured three and two times 

respectively. The ratio and error reflect the mean and 1.s.d. about the mean respectively. 

Analysis of the high resolution XPS elemental regions in Fig. 5.5(b) reveals the formation 

of a third peak in the C1s region at ~286.4 eV which can be attributed to C-N bonds on 

the ethylenediamine chain (41-43). The shift in the C(III) binding energy from 289.3 eV 

(in the case of COOH groups on the cx-GNFs) to ~288.2 eV is also consistent with the 

formation of an amide bond (43). Similarly, the N1s region can be deconvolved into two 

peaks at ~401.5 and ~399.5 eV corresponding to amide and amine functionality 

respectively (40). Likewise, the COOH stretching mode in the FT-IR spectrum of eth-

GNF (Fig. 5.5(d)) is almost absent and is replaced by a large spectral intensity between 

1650 and 1500 cm-1, typical of amide (C=O) stretching and N-H bending modes 

respectively (44). A similar case can be made for the cys-GNFs, with the exception that 

sulfur species are also present and thus the N/C ratio is lower (0.09 ± 0.01). Note that 

this ratio (and associated error) was calculated in the same way as the eth-GNFs, using 

two samples and measuring them three and two times respectively. The XPS N1s region 

of cys-GNF can be fitted with a single peak at 401.5 eV corresponding to the amide bond 

and the terminal thiol group can be attributed to the S2p3/2 peak at ~163.5 eV (43; 45). 

Note that the N/S ratio in the XPS survey spectra is ~1:1 (0.92 ± 0.06) as expected.  

In reality, however, a similar situation to GO functionalisation arises. It cannot be 

conclusively proven that covalent modification has taken place on the eth/cys-GNFs let 

alone amide functionalisation. In fact, the most suggestive evidence for covalent 

modification comes from the FT-IR spectra of the cys-GNFs which exhibits a small 

shoulder at ~1770 cm-1 which could be attributed to 5-membered cyclic imides (41; 46). 

Otherwise, all of the aforementioned XPS and FT-IR data is completely speculative. For 

instance, the formation of primary ammonium salts are also consistent with the XPS and 

FT-IR data (47; 48). Other types of covalent modification such as cyclic imides and 

thioesters are also possible (41; 46; 49-52). Hence the exact nature of eth/cys-GNFs 

cannot be known for sure. Note, however, that if GO were being considered here, the 

situation would be even more complicated due to the side reactions which may take 

place on the basal plane, as discussed earlier.  
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The dynamic nature of the cx-GNFs is illustrated in Fig. 5.6 and the various scenarios 

that are possible when cx-GNFs are treated with amines such as ethylenediamine and 

cysteamine are represented in Fig. 5.7(a) and (b) respectively.  

 

Fig. 5.6 3D geometry optimisation of the cx-GNFs from (a) top view and (b) side view carried 

out with Discovery Studio visualiser software, using a Dreiding-like forcefield developed by 

Hahn (53). Carbon, oxygen and hydrogen atoms are shown in black, red and white respectively. 

Armchair and zig-zag edges, and anhydrides along the flake perimeter are labelled respectively. 

 

It should be noted that the 3D models in Figs. 5.6 and 5.7 are geometry optimisations 

based on a Dreiding-like forcefield developed by Hahn (53). In this model, the element, 

bond order, number of bonds and valence are considered, which is based on general 

force constants and geometry considerations as opposed to individual values. The 

values used are based on simple hybridisation considerations. In this work, only single 

molecular structures are considered and therefore van der Waals interactions between 

adjacent molecules are not taken into consideration.   

From Fig. 5.6 it is clear that many permutations of chemical functionality can exist along 

the flake perimeter. Carboxylic acids can be found at armchair or zig-zag edges and form 

the corresponding 5- or 6- membered cyclic carboxylic anhydrides respectively. 

Interestingly, after performing geometry optimisation, the COOH groups at the zig-zag 

edge (more clearly seen in Fig. 5.6 (a)) are tilted significantly w.r.t to the graphenic basal 

plane, but are not perpendicular as might be expected for a densely packed structure. 

Similarly, at alternating armchair edges, COOH groups are directed above and below the 

basal plane (c.f. Fig. 5.6(b)). For simplicity, defects have been excluded from the cx-GNF 

lattice, yet are expected to exist and also harbour carboxylic acids (and anhydrides). The 

chemical modification of cx-GNFs with amines can therefore take place via anhydrides 
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or carboxylic acids, as represented in Fig. 5.7. The possibility of physisorption onto to 

the cx-GNF basal plane can also not be ruled out.       

 

Fig. 5.7 3D geometry optimisations of (a) eth-GNFs and (b) cys-GNFs showing the various 

possible chemical transformations, carried out with Discovery Studio visualiser software, using a 

Dreiding-like forcefield developed by Hahn (53). Carbon, oxygen, hydrogen, nitrogen and sulfur 

atoms are shown in black, red, white, blue and yellow respectively.   

 

In the case of eth-GNFs in Fig. 5.7(a), all of the possible chemical functionalisations 

depicted are indistinguishable by XPS C1s regions alone (43; 54; 55). The XPS N1s 

region can differentiate between the different nitrogen species, however the subjective 

nature of peak fitting and the variation in peak assignments in the literature results in a 

high degree of uncertainty (15; 41-43; 51; 54; 56). In general, amine groups are typically 

found <400.0 eV, whilst amides, imides and ammonium-carboxylate salts are observed 

>400.0 eV (20; 43; 51; 57; 58). Hence, the combined contribution of these last three 

functional groups results in the observed higher peak area at 401.5 eV in the XPS N1s 

region of eth-GNF in Fig. 5.5(b) w.r.t the amine group centered at 399.5 eV. Similarly, 

since the formation of an amide bond over a thioester bond is expected when cysteamine 

is used (due to the amide being the more thermodynamically favoured product, based 

on resonance grounds), one can expect very little free amine to be present in the XPS 
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N1s region of cys-GNF, in good agreement with what is observed (Fig. 5.5(c)). 

Thioesters, therefore, shown in Fig. 5.7(b) are not probable, and unfortunately cannot be 

distinguished from thiol groups in the XPS S2p region (49; 50). 

The small feature at ~1770 cm-1 in the FT-IR spectra of the cys-GNFs, as mentioned 

earlier, was attributed to 5-membered cyclic imides (note that 6-membered cyclic imides 

occur at significantly lower frequencies) (52). However, the fact that such a feature is 

even observed is quite surprising, since in order for an imide to form it would have to 

proceed via the amide which is highly unreactive (41; 59-62). Although imides are 

prepared by reaction of amines with carboxylic anhydrides (via the amide), high 

temperatures are required and/or an activating species (41; 59-62). The only plausible 

way under these ambient conditions that an imide could form is if the amide was adjacent 

to another carboxylic anhydride. Under these circumstances, the terminal amine group 

(in the case of ethylenediamine) will also be able to compete with the amide for reaction 

with the carboxylic anhydride. This is less likely to be the case with the terminal thiol (in 

the case of cysteamine), hence the imide is only observed for the cys-GNFs and not the 

eth-GNFs.  

 

5.3.1 Confirming covalent functionalisation 

Ideally, 15N ssNMR would be useful in distinguishing some of the functional groups 

present on the eth/cys-GNFs, however the cost and large amount of sample required 

make this characterisation technique less practical. A simple alternative would be to 

consider physical properties such as solubility. Whilst this does not confirm specific 

functionality, it can be used to differentiate whether covalent or non-covalent (salt 

bridges) are present. For instance, the cx-GNFs are highly soluble in water (> 100 g / L) 

at room temperature, and do not precipitate out of solution. The eth-GNFs on the other 

hand are significantly less soluble and the cys-GNFs are only sparingly soluble and 

precipitate out of solution readily. These results strongly indicate that covalent 

modification has taken place since salt bridges, in the form of primary ammonium 

carboxylates, would readily dissolve – perhaps even to a greater extent than the cx-

GNFs. Similarly, physisorption of amines onto the cx-GNF basal plane should not alter 

the solubility since it is the COOH groups that confer the hydrophilicity to the material. 

In the case of the eth-GNFs and cys-GNFs, both materials remain soluble in water, albeit 

to a lesser extent than the cx-GNFs. If, however, amide formation between the cx-GNFs 

and a bulky amine would result in the precipitation of the GNFs, then this would 
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unequivocally confirm amide or covalent modification of some sort. A weak linkage such 

as an electrostatic attraction, would conversely be easy to remove by washing. Hence 

this section concerns itself with identifying a stable precipitate after the cx-GNFs have 

been subjected to amine treatment. In this regard, the cx-GNFs were functionalised onto 

silica gel which had been modified to incorporate amine groups (see Fig. 5.8). Given the 

very large size of the silica particles (40-63 µm, compared with the cx-GNFs ~30 nm), a 

covalent bond (such as an amide) between the two materials would render the silica-

GNFs (SiO2-GNFs) completely insoluble in water. Conversely, a salt bridge would result 

in a brown-black dispersion of the cx-GNFs, as the salt dissociates resulting in the 

dissolution of the GNFs. It should also be noted that physisorption of the cx-GNFs onto 

the silica gel is possible, although they too should be able to be washed away readily 

with deionised water. However, significant physisorption is not expected in the first place 

since both the cx-GNFs and the silica gel are negatively charged owing to the 

dissociation of acidic oxygen functional groups. 

  

 

Fig. 5.8 Modification of silica gel with amine groups (SiO2-NH2) followed by reaction with cx-

GNFs to yield SiO2-GNFs. The repeated functionalisation unit is shown by the red box. 

Modification of silica gel to introduce amine functionality is shown in Fig. 5.8, and is well 

documented in the literature (63-68). However, the newly introduced amine group is 

known to participate in salt bridges with unreacted silanol groups, rendering the amine 

unreactive (69-72). Kamisetty and co-workers (73) overcame this problem by treating the 

amine functionalised silica once again with an alkylsilane, which reacted with the 

remaining silanol groups (in theory) and hence acted as a capping agent (c.f. reaction 

(2) in Fig. 5.8) (73).  

The capped and amine treated silica (SiO2-NH2) was then added to a dispersion of cx-

GNFs in deionised water. The almost-immediate brown precipitate formed was filtered 

and washed with copious volumes of deionised water and dried in air. The filtrate after 
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washing was found to be completely colourless, indicating the absence of cx-GNFs (see 

chapter 8 section 8.1.7 for full details). The SiO2-GNF precipitate was re-immersed in 

water once again and left overnight to ensure no dissolution of the GNFs occurred-and 

none was observed. As a control experiment, unmodified silica-gel was combined with 

cx-GNFs in deionised water and allowed to stand overnight. A dark-brown dispersion 

was initially observed before filtration suggesting that no reaction between the cx-GNFs 

and the silica gel had occurred. After filtration, only a white precipitate was collected on 

the filter membrane whilst the filtrate was dark brown. Hence no modification (or 

precipitation) occurs between the cx-GNFs and the unmodified silica gel, which 

conclusively confirms that covalent modification must have taken place between the 

amine functionalised silica (SiO2-NH2) and the cx-GNFs. 

The SEM and photographic images in Fig. 5.9 before and after grafting the cx-GNFs onto 

the silica gel show the changes in morphology that accompany the transformation.  

 

Fig. 5.9 SEM images of (a) silica gel, (b) SiO2-NH2 and (c) SiO2-GNF. (d) Photographic image 

showing SiO2-NH2 (left) and SiO2-GNF (right). 

 

Little difference can be seen between the silica gel (Fig. 5.9(a)) and SiO2-NH2 (Fig. 

5.9(b)), however a significant change in the surface morphology of the SiO2-GNF (Fig. 

(a)

(d)(c)

(b)
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5.9(c)) is apparent. The previously clean and well-defined surface of the silica particles 

has been replaced with a rough coating. This is even more evident from the photographic 

image in (Fig. 5.9(d)). On the left is a fine white power of SiO2-NH2, whilst on the right is 

a brown powder of SiO2-GNF retrieved after copious washing with deionised water. The 

two materials lack any resemblance to each other.  

The XPS, FT-IR and TGA data in Fig. 5.10 before and after modification of the silica gel 

and subsequent functionalisation with the cx-GNFs, indicates that the covalent grafting 

of the cx-GNFs onto the silica gel was successful.   

 

Fig. 5.10 XPS survey spectra of (a) SiO2-GNFs (black), SiO2-NH2 (blue) and silica gel (red). 

XPS elemental regions of (b) silica gel, (c) SiO2-NH2 and (d) SiO2-GNF, showing C1s regions 

(outset) and N1s regions (inset). The crosses represent the experimental data, blue line the 

background, grey lines the fitted peaks and the peak sum is shown in red. (e) FT-IR spectra of 

silica gel (red), SiO2-NH2 (blue) and SiO2-GNFs (black). (f) TGA of silica gel (red), SiO2-NH2 

(blue), SiO2-GNFs (black) and cx-GNFs (green). 
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The XPS spectra of silica gel in Fig. 5.10 (a) confirmed the presence of silicon and 

oxygen in a 1:2 ratio as expected. A small amount of adventitious carbon was also 

present as indicated in Fig. 5.10(b). After modification of the silica gel (Fig. 5.10 (a) and 

(c)), significant amounts of carbon (18.6 ± 0.3) at. % and an appreciable amount of 

nitrogen (2.9 ± 0.3) at. % can now be seen. However, due to the surface sensitivity of 

XPS, these values are exaggerated. Note that these values were determined via the 

averaging and 1.s.d. of three measurements from a large scale preparation. Although 

this experiment has been repeated successfully on smaller scales, an excess of silica 

gel was used and therefore the samples obtained would not reflect a ‘maximum loading 

capacity’, i.e. the minimum amount of silica gel required to precipitate out the cx-GNFs. 

The C1s region has been fitted to represent the functionality indicated by the red box in 

Fig. 5.8 which can be considered a ‘repeat’ unit (74; 75). The N1s region shows the 

presence of free amine (399.1 eV) and ammonium salt (401.0 eV). Once the SiO2-NH2 

is grafted onto the cx-GNFs (Fig. 5.10(a) and (d)) the carbon and nitrogen content 

increases significantly to (44.5 ± 1.5) at. % and (5.8 ± 0.4) at. % respectively. The GNFs 

will naturally increase the carbon content, yet the nitrogen content should actually 

decrease (NB: 44.5 at. % carbon is also far too high!). The enhancement therefore points 

towards a surface coating of the silica particles by the GNFs. More interestingly, the ratio 

of the N1s peaks at ~399 and 401 eV are reversed. However, given the insolubility of the 

GNFs in water after forming the SiO2-GNF composite, the peak at ~401 eV will have 

contributions from covalent functionality such as the amide bond.  

In good agreement with the XPS data, the FT-IR data in Fig. 5.10(e) before and after 

chemical modification, show characteristic vibrations for silica at 470, 800 and 950-1250 

cm-1 corresponding to the Si-O (rocking), Si-O-Si (symmetric stretching) and Si-O 

(asymmetric stretching) respectively (76). The additional two peaks observed in the silica 

gel at ~3500 (broad) and ~1630 cm-1 can be attributed to O-H stretching and bending 

modes from water respectively (76). After modification of the silica gel, the SiO2-NH2 

shows a shift in these two bands to ~3100 and (1600 and 1500) cm-1 respectively which 

can be reassigned to N-H (from NH2 and NH3
+) stretching and bending modes 

respectively (44). Final grafting of the SiO2-NH2 onto the cx-GNFs, producing SiO2-

GNFs, results in the formation of i.e. an amide bond, indicated by the increased intensity 

of the broad peak at ~1600 cm-1 (44).  

Lastly, the TGA data in Fig. 5.10(f) indicate an overall mass loss of ~6 wt% in the SiO2-

NH2 material relative to the unfunctionalised silica gel, again confirming the modification 

of the silica particles. Surprisingly, the overall mass loss of the SiO2-GNFs is similar to 
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the SiO2-NH2, when one would expect an even greater mass loss in the SiO2-GNFs due 

to the presence of the cx-GNFs. By considering how much of the SiO2-NH2 was added 

to the cx-GNFs, it was calculated that the cx-GNFs constitute ~5.9 wt% of the total weight 

of the SiO2-GNFs, suggesting that the difference should be seen in the TGA pattern. The 

fact that no additional mass loss was observed could be explained by the aqueous 

washing step which could have hydrolysed some of the Si-O-C bonds, thus reducing the 

organic content of the SiO2-GNFs. 

 

5.3.2 Direct functionalisation of cx-GNFs with ethylenediamine in DMF 

The formation of carboxylic anhydrides is unfavourable under aqueous conditions due to 

the large concentration of water molecules which shifts the equilibrium strongly in favour 

of the carboxylic acids. An alternative approach would be to perform the reactions in a 

different solvent, such as DMF, which should potentially result in an initially higher 

concentration of carboxylic anhydrides. Ethylenediamine was treated with cx-GNFs 

under identical conditions as before when the eth-GNFs were prepared, except that DMF 

was used as the solvent instead of water (now referred to as eth-GNF(DMF)). 

Interestingly, the XPS survey spectra of eth-GNF(DMF) in Fig. 5.11(a) show that the N/C 

ratio is actually slightly lower when the reaction is performed in DMF (0.137 ± 0.002) than 

in water (0.151 ± 0.007). Note that two samples of eth-GNF(DMF) were measured, and 

the ratio and error reflect the mean and 1.s.d. respectively. The results suggest that the 

reaction between amines and cx-GNFs occurs very quickly and therefore the equilibrium 

shifts back in favour of the carboxylic anhydrides as they are consumed during the 

reaction. The exact reason why the yield of amidation is slightly lower in DMF than in 

water is unclear. However, comparison of the N1s regions of the eth-GNFs(DMF) in Fig. 

5.11(b) with the eth-GNFs earlier in Fig. 5.4(b), clearly demonstrates a different 

preference in the nitrogen bonding environment/type between the two. Note that the C1s 

region of eth-GNFs(DMF) in Fig. 5.11(b) does not support the presence of DMF in the 

sample since it is very similar to the C1s spectrum of eth-GNFs. The two methyl groups 

of DMF, for instance, would contribute strongly to the C(I) peak at ~286.5 eV. Similarly, 

there is little difference between the two IR spectra. The difference is therefore likely to 

be due to the solvation behaviour (and overall dispersion properties) of ethylenediamine 

and cx-GNFs in water and DMF. 
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Fig. 5.11 XPS survey spectra (a), elemental regions showing C1s regions (outset) and N1s 

regions (inset) (b). The crosses represent the experimental data, blue line the background, grey 

lines the fitted peaks and the peak sum is shown in red. (c) FT-IR spectra of eth-GNFs(DMF). 

 

5.4 What can we do with cys-GNFs and eth-GNFs? 

The cys-GNFs prepared earlier were spin coated onto a HOPG substrate along with Au 

nanoparticles. In a typical experiment, one drop Au nanoparticles (3-7 nm core size, 7-

20 nm hydrodynamic diameter, absorption maximum 510-525 nm, OD1, reactant free) 

dispersed in 0.1 mM phosphate buffered saline solution purchased from Aldrich 

(752568), was spin coated at 2000 rpm for 2 min onto a freshly cleaved HOPG substrate. 

The cys-GNFs (one drop, ~0.1 mg mL-1) were then spin coated onto the same substrate 

in the same way as before. 

It is well-known that thiol groups coordinate strongly to gold (77-79), and therefore 

coordination of the cys-GNFs with the Au particles would suggest the availability of 

terminal thiol groups at the flake edge (c.f. Fig. 5.12). Indeed, the AFM images of the Au 

treated cys-GNFs (Au-cys-GNFs) in Fig. 5.13 confirms coordination of the Au 

nanoparticles along the external flake perimeter of the cys-GNFs. In every case, Au 

nanoparticles were found to be attached to the cys-GNFs and none were observed 

isolated by themselves. Using multiple AFM images such as the ones in Fig. 5.13, it was 
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found that 43 of the 46 Au nanoparticles attached to the cys-GNFs were at the external 

flake perimeter. The remaining three Au nanoparticles were observed at the centre of 

the flakes. By contrast, when the cx-GNFs were treated with the Au nanoparticles as a 

control experiment, none of the Au nanoparticles were seen at the external flake 

perimeter, but they were observed to be attached at the centre of the cx-GNFs. In this 

way, 14 Au nanoparticles out of 14 were found at the cx-GNF flake centre. The presence 

of Au nanoparticles at the flake centre could be due to defects in the flake harbouring 

reactive functionality, or perhaps due to electrostatic interactions between the Au metal 

the graphenic π system in a cation-π type fashion. This concept is explored in detail in 

the next chapter. 

 

 

Fig. 5.12 Schematic showing the coordination of gold nanoparticles to cys-GNFs. 
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Fig. 5.13(a) AFM image of cys-GNFs spin coated with Au nanoparticles (3-7 nm), (b) zoomed in 

image of (a) as indicated by the red box. The green arrows point to the Au particles attached to 

the flake perimeter of the cys-GNFs. (c) line profile of (b) indicated by the blue line. 

 

  

Interestingly, the height profiles of the Au-cys-GNFs such as the one in Fig. 5.13(c), 

indicate that grafting cysteamine onto the cx-GNFs results in the vertical height of the 

cys-GNFs increasing significantly from ~0.45 nm (c.f. chapter 3 section 3.3.3) to ~2 nm. 

Alternatively, given the lower dispersibility of the cys-GNFs, it is possible that stacking 

may occur resulting in few-layered cys-GNFs.  

Given the basic nature of amines, it is expected that the terminal amine groups on the 

eth-GNFs will have significantly less negative zeta potential compared with the native 

cx-GNFs (Fig. 5.14). As expected, the zeta potential measurements shown in Fig. 5.14 

illustrate that the as-made cx-GNFs display an average zeta potential of about -45 mV 

due to negatively charged carboxylates which are in equilibrium with the carboxylic acids. 
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The eth-GNFs, on the other hand, display an average zeta potential of -32 mV as 

positively charged NH3
+ groups are introduced. The values are also in good agreement 

with the aqueous dispersibility of the two materials, with the cx-GNFs exhibiting excellent 

solubility and the eth-GNFs demonstrating less pronounced dispersion properties. It 

should be noted, however, that zeta potential assumes spherical particles in solution and 

not two dimensional structures – hence caution should be undertaken when comparing 

the zeta potential of 2D structures.  

 

Fig. 5.14 eth-GNFs (left) showing the basic and acidic nature of the amine and carboxyl group 

respectively. Zeta potential distribution (right) of cx-GNFs (black) and eth-GNFs (green). The 

red arrows indicated the shift in zeta potential. 

 

 

 

5.5 Conclusions 

The covalent modification of cx-GNFs with amines has been demonstrated via the 

dynamic equilibrium which exists between the carboxylic acids and anhydrides on the 

cx-GNFs. The resulting functionalised materials have been shown to exhibit a high 

affinity for gold nanoparticles as well as reduce the native negative zeta potential of the 

GNFs. In the next chapter, emphasis will be placed on the chemistry of carboxylic acids 

groups (as opposed to the anhydride). In particular, their ability to coordinate strongly to 

a wide range of heavy metals is investigated thoroughly.  
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Chapter 6: Highly efficient heavy-metal 

extraction from water with cx-GNFs and nGO 

 

6.1 The removal of heavy metals from water using carbon 

nanomaterials 

Exposure to heavy metals causes a wide range of adverse health effects in 

humans.(1) Lead poisoning, for example, can lead to kidney(2) and bone 

damage,(1) malfunction of the nervous system,(3) psychosis,(1) infertility,(4) 

anaemia(5) and cancer.(6; 7) Children in particular are susceptible to the effects 

of heavy-metal poisoning due to their under-developed blood-brain barrier.(1) Yet, 

the global exposure levels of humans to heavy metals are on the rise. This is due, 

for example, to cadmium-based products such as nickel-cadmium batteries, 

airborne inorganic lead resulting from mines, smelters, battery plants and the 

glass industry, and contaminated wastewaters from a wide range of chemical 

processes in industry.(1; 8-10) The contamination of soil and water streams 

ultimately leads to the incorporation of heavy metals into the human food chain.(1) 

The efficient removal of heavy metals from drinking water, industrial wastewater 

and the environment at large is therefore of paramount importance. 

Carbon materials have been at the vanguard of aqueous heavy-metal extraction 

over the last few years.(11-38) This surge in interest arose after the isolation of 

graphene(39) and its use in metal-extraction processes.(11; 12) More recently, 

graphene oxide (GO) has been advocated as an alternative to graphene(40-42) 

as a result of its hydrophilic nature, tuneable pore sizes as well as a stronger 

chelation ability towards metals due to the oxo-functional groups. Considerable 

efforts have gone into chemically modifying GO to further enhance its metal 

extraction capability (c.f. Fig. 6.1), including the preparation of hybrid materials 

with ethylenediamine tetraacetic acid (EDTA),(13; 14) cyclodextrin,(15) 

polypyrrole,(16) polyethylenimine,(17; 18) silica(19) and many more.(20-23) 

Lately, some of these functionalised/doped GO materials have been utilised in 

capacitive deionisation and achieved very good performances with respect to 

metal extractions.(29-33) Unfortunately, the chemical functionalisation of GO is a 
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lengthy and expensive step. It is therefore desirable to optimise and further 

investigate the metal-extraction properties of as-made carbon nanomaterials in 

order to provide low-cost adsorbents.  

 

 

Fig. 6.1 GO-based adsorbents with high capacity and their corresponding pH levels. Adapted 

from ref [23] with permission of Springer.(23; 25; 34; 35; 38; 43-48) 

 

In fact, very little research has so far been conducted using nano-graphene oxides 

such as carboxylated graphene nanoflakes (cx-GNFs) and nano-graphene oxide 

(nGO), in heavy metal extraction. This is surprising because the chemical 

structure of GO, as described earlier in chapter 1 by the Lerf-Klinowski model,(49) 

suggests that carboxylic acid groups which should be most effective in chelating 

metals, are located on the edges of GO. Smaller GO sheets with large edge-to-

basal-plane ratios should therefore have more carboxylic acid groups per unit 

mass and hence be well-suited for metal-extraction processes.  
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6.2 Outline of chapter 

In this chapter, the heavy-metal sorption capacity of cx-GNFs and nGO are 

investigated and benchmarked against conventional permanganate oxidised GO 

(PM-GO). The PM-GO used here is the same as the PM-GO (Chen) previously 

described in chapter 3 section 3.3. The heavy-metal cations under investigation 

are: Fe2+, Cu2+, Fe3+, Cd2+ and Pb2+. The chemical mechanisms of heavy-metal 

binding onto the carbon materials are investigated as well as the recyclability of 

the cx-GNFs towards the loading and unloading of Pb2+ cations. The selectivity of 

the cx-GNFs towards Pb2+ cation extraction in the presence of large quantities of 

other cations typically present in drinking or industrial waste water such as 

magnesium and calcium will be investigated. 

 

6.3 Heavy-metal extraction from water with cx-GNFs, nGO 

and PM-GO 

In a typical set of experiments, 10 mg of cx-GNFs, nGO or PM-GO (Chen) were 

combined with 10 mL of 0.1 M solutions of metal chloride or nitrate salts (FeCl2·4 H2O, 

FeCl3·6 H2O, CuCl2·2 H2O, Cd(NO3)2·4 H2O and Pb(NO3)2). The mixtures were then 

sonicated for 3 x 10 minutes allowing the precipitate to settle out each time for 10 minutes 

before re-sonicating, resulting in a 60 min total reaction time. This was followed by 

filtration through a 200 nm polycarbonate membrane and washing with 3 x 10 mL of 

deionised water to remove any excess metal salt. The material on the membrane was 

collected and allowed to dry in a vacuum desiccator overnight. 

In order to quantify the relative adsorption capacities of cx-GNFs, nGO and PM-GO 

towards heavy metals, the metal/carbon (M/C) ratio of each metal-carbon composite, 

denoted as M2+/3+@cx-GNFs, M2+/3+@nGO or M2+/3+@PM-GO respectively or 

collectively as M2+/3+@carbon, was determined from the XPS survey spectra. Fig. 6.2(a) 

shows the survey spectra of cx-GNFs, nGO and GO after exposure to Pb2+ solutions 

which are hence referred to as Pb2+@cx-GNFs, Pb2+@nGO and Pb2+@PM-GO 

respectively or collectively as Pb2+@carbon. In the case of Pb2+@carbon, the Pb4f peak 

was used for the quantification of Pb2+. The XPS survey spectra of the other 

M2+/3+@carbon samples can also be found in Appendix Fig. A6.1. The analysis of 

multiple M/C survey spectra are represented by the bar graph in Fig. 6.2(b). Each bar 
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represents the average and 1.s.d. of at least two samples, with each sample measured 

three times (i.e. three spots in XPS).   

 

Fig. 6.2(a) XPS survey spectra of Pb2+@cx-GNFs (red), Pb2+@nGO (green) and Pb2+@PM-GO 

(blue). (b) Bar graph of atomic metal/carbon ratios of cx-GNFs (red), nGO (green) and PM-GO 

(blue) treated with Fe2+, Cu2+, Fe3+, Cd2+ or Pb2+ solutions, respectively. The line graph 

corresponds to the pH of each of the mixtures prior to filtration (10 mg of graphenic material in 

10 mL of 0.1 M solutions of the respective metal salts). 

 

It should be noted that while XPS is not a bulk technique, it still has a significant 

penetration depth of a few nm, which corresponds to tens of layers of atoms. Hence, it 

is expected that the M/C ratios collected from the XPS survey spectra will be 
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representative of the samples. However, it should be noted that the M/C ratios between 

samples will be considered on a relative basis, and not an absolute basis. 

A kinetic study of the Pb2+ adsorption onto the various carbon materials was also carried 

out by combining 30 mg of cx-GNFs, nGO or PM-GO (Chen) with 30 mL of 0.1 M 

Pb(NO3)2.  The mixtures were continuously sonicated to ensure homogeneity. At defined 

time intervals, 4 mL of this dispersion was filtered through a 200 nm polycarbonate 

membrane, washed and dried. The Pb/C ratio of each Pb2+@carbon sample was then 

determined by the XPS survey spectra as described previously.  The data reveals that 

the adsorption equilibria are reached very quickly for nGO and GO (Fig. A6.2). This 

suggests that the uptake of heavy-metals is not being limited in any way by inaccessible 

surface area on the nGO and GO. The cx-GNFs show a slight gradual increase in the 

Pb2+ uptake over a time period of 100 minutes. This could be due to the initial formation 

of dicarboxylate-lead complexes with COOH groups from different flakes which are 

successively replaced by monocarboxylate complexes as the sonication time 

progresses.  

The fast equilibration of the Pb2+ adsorption onto nGO and GO illustrates that their poorer 

performance with respect to binding Pb2+ is not due to kinetic factors but to the 

intrinsically different interaction properties of the carbon materials with the heavy metals. 

Furthermore, the exfoliation process of the carbon materials upon sonication, which 

could potentially limit the accessible surface area, does not appear to be a limiting factor 

for the heavy metal extraction using nGO and GO. 

The ability of a carbon material to extract metal cations from solution is dependent upon 

a range of parameters including the ionic strength and pH of the mixture. In order to 

ensure comparable ionic strengths throughout the various adsorption experiments, 10 

mg of each carbon material was treated with 10 mL of a 0.1 M solutions of the metal 

salts which means that the cations are in a large excess. Consequently, the ionic strength 

of a mixture of cx-GNFs, nGO or GO with a particular metal cation, is approximately 

constant. Likewise, increasing the pH of a mixture is expected to lead to an increase in 

metal chelation. This arises as a result of a decrease in H+ ions in solution which in turn 

reduces the competition between the metal cations and H+ ions for the chelating ligand; 

which in the case of cx-GNFs, nGO and GO, are the oxo-functional groups. Furthermore, 

increasing the pH to basic conditions would lead to precipitation of metal hydroxide 

species (34; 50) and therefore give misleading results.  
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The pH of the M2+/3+@carbon mixtures was measured prior to filtration and the results 

are shown in Fig. 6.2(b). It can be seen that for a particular metal ion, the pH of the 

M2+/3+@cx-GNFs ≤ M2+/3+@GO ˂ M2+/3+@nGO indicating that the cx-GNFs are at a 

disadvantage for metal sorption with respect to GO and nGO for the reasons discussed 

earlier. The lower pH of the cx-GNFs is expected given the highly carboxylated nature of 

the material and the fact that carboxylic acids are much stronger acids than alcohols and 

the other functional groups found at high concentrations on GO. Indeed, 1 mg mL-1 

aqueous dispersions of cx-GNFs, nGO and GO gave pH values of 2.5, 3.3 and 3.0 

respectively. Interestingly, the pH of GO is slightly lower than nGO despite nGO 

containing more carboxylic acid groups. However, GO has many more acidic hydroxyl 

groups on its basal plane, and given that its structural instability in water generates even 

more acidic functional groups,(51) this result is not necessarily surprising. 

Despite the lower pH of the cx-GNFs, they clearly outperform the other two carbon 

materials at extracting metals as evidenced by the M/C ratios obtained from the XPS 

survey spectra shown in Fig. 6.2(b).  For example, the cx-GNFs can bind about 10 times 

more Pb2+ than GO. This is partially due to the number of carboxylic acid groups per unit 

mass of each material. For instance, the cx-GNFs consist of (17 ± 3) at. % COOH groups 

according to the integrated C(III) XPS C1s region at approx. 289.0 eV, compared to (15 

± 2) and (10 ± 2) at. % for nGO and GO respectively. However, it should be noted that 

this value is exaggerated for nGO and GO which will have significant contributions from 

C(II) species such as ketones, as demonstrated previously by 13C-NMR studies in 

chapter 3 section 3.3.1. Carboxylic acids are bidentate and generally stronger metal 

chelators compared to monodentate alcohols and epoxides. Indeed, it has been 

proposed by other authors that COOH groups are the most efficient functional group on 

graphenic materials at removing Pb2+ cations.(11) However, this alone cannot rationalise 

the significantly enhanced adsorption capacity of the cx-GNFs. Clearly, other sorption 

mechanisms are taking place, as will be discussed in the next section.  

It is important to stress that despite nGO achieving better extraction results compared to 

GO, the pH of the M2+/3+@nGO mixtures were on average 0.4 units more basic than for 

M2+/3+@GO, allowing the nGO flakes to better coordinate to metals. Hence, the actual 

ability of nGO to remove heavy metals compared to GO may not be as pronounced as 

shown in Fig. 6.2(b) if the extractions were carried out at the same pH.  It is noteworthy 

that buffer solutions were deliberately not used for these experiments, instead the natural 

pH of the M2+/3+@carbon mixtures was relied upon. This removes any doubt with respect 
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to the effect ionic strength and foreign species might have in influencing the metal-

sorption capability of the carbon materials. 

 

6.4 Binding mechanism of heavy-metals onto cx-GNFs 

The area-normalised XPS C1s spectra of the M2+/3+@cx-GNFs are shown in Fig. 6.3. 

The most immediate observation is the additional peak at ~286.7 eV which is present in 

all the M2+/3+@cx-GNFs but absent for the pure cx-GNFs. Furthermore, the areas of the 

C(III) peaks at ~288.5 eV are larger and shifted towards lower binding energies for the 

M2+/3+@cx-GNFs. The newly formed peaks at 286.7 eV suggest non-covalent cation- 

interactions between the metal cations and the graphenic basal plane of the cx-

GNFs.(52-54) This can be rationalised by considering the electrostatic attraction 

between the positively charged metal cations and the graphenic -electrons which 

creates a local deshielding effect along the graphenic basal plane where the metal 

cations have adsorbed. This in turn confers a δ+ charge on the carbon atoms resulting in 

an increase in the binding energy of its core electrons. Hence, the observed decrease in 

the relative C1s C-C/C=C peak intensity with respect to the C(III) peak. This effect is 

most noticeable for the Pb2+@cx-GNFs sample which has the highest M/C ratio of all the 

M2+/3+@cx-GNFs (Fig. 6.2(b))), suggesting that Pb- interactions are the most favourable 

out of all the heavy metals under these conditions, perhaps because Pb2+ has the lowest 

solvation enthalpy.(55) Alternatively, the results can also be interpreted as a covalent 

Lewis acid-base interaction whereby the M2+/3+ cations and carbon π electrons act as the 

electron receptor and donor respectively.(11; 25) It is noteworthy that the pure cx-GNFs 

were ultrasonicated in the same way as the M2+/3+@cx-GNFs to ensure this feature was 

not the result of mechanical agitation.  

These changes in the XPS C1s region before and after heavy-metal loading onto the cx-

GNFs are not unique to heavy metals. Indeed, it was found that alkali (Na+) and alkaline 

earth metals (Mg2+ and Ca2+) as well as rare-earth metals (Y3+) and group 3 elements 

such as Al3+ all exhibited similar enhancements on loading onto the cx-GNFs (c.f. 

Appendix Fig. A6.3). Note that since these are not redox-active elements, one can 

conclude the enhancements seen in the XPS C1s region are not due to redox processes. 
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Fig. 6.3 Area-normalised XPS C1s spectra of cx-GNFs (cyan), Fe2+@cx-GNFs (magenta), 

Cu2+@cx-GNFs (orange), Fe3+@cx-GNFs (green), Cd2+@cx-GNFs (red) and Pb2+@cx-GNFs 

(blue). The crosses are the experimental data, grey lines are the fitted peaks, black line is the 

Shirley background function and the coloured lines are the peak sums respectively. 

 

To further prove that the trends observed in the XPS C1s spectra are due to metal 

interactions with the graphenic basal plane (be they electrostatic, covalent or a mixture 

of both in nature; and now collectively referred to as M-π), solid state 13C-NMR spectra 

of the cx-GNFs were collected before and after exposure to a Pb2+ solution (Fig. 6.4). 

The 13C-NMR spectra of the cx-GNFs and Pb2+@cx-GNFs both exhibit two peaks, one 

associated with COOH groups (~170 ppm) and another for sp2 graphenic carbon (~130 

ppm).(49) A distinct shift to higher ppm (downfield shift) is observed for both peaks in the 

spectrum of Pb2+@cxGNFs, indicating more deshielded environments. The downfield 

shift observed for the sp2 carbon from 134 to 137 ppm is in good agreement with M- 

interactions which induce a deshielding effect on the aromatic rings as described 

earlier.(53) However, the downfield shift of the COOH group from 170 to 176 ppm is most 

likely the result of chelation between the Pb2+ ions and the carboxyl groups on the cx-

GNFs.(56; 57) It is noteworthy that the absence of C(I) species such as epoxides and 

alcohols between 60 and 70 ppm in the Pb2+@cx-GNFs spectrum proves that the newly 

formed peaks at 286.7 eV in the XPS C1s regions of the M2+/3+@cx-GNFs are due to M-

 interactions and not to the formation of alcohol or epoxide groups. Interestingly, the M-
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 interactions were not observed in the XPS C1s spectra of M2+/3+@GO but were 

noticeable to a small extent for the M2+/3+@nGO materials (Fig. A6.4). This could be 

because the cx-GNFs and nGO nanomaterials have more intact aromatic sp2 basal 

planes compared to GO, as evidenced by the higher intensity of the sp2 C=C peak in the 

solid state 13C-NMR spectra (c.f. chapter 3 section 3.3.1). 

 

Fig. 6.4 13C-NMR spectra of cx-GNFs (red) and Pb2+@cx-GNFs (blue). Vertical dashed lines 

denote peak positions of functional groups. 

 

Further evidence for metal chelation between the heavy-metal cations and the 

carboxylic acid groups of the cx-GNFs is provided by the significant shift to lower 

binding energy of the XPS C1s C(III) peak from ~289 eV to 288.5 eV (Fig. 6.3), 

consistent with the weakening of the C=O bond in COOH to form an extended 

electron delocalised system in the metal carboxylate.(58) This is further 

emphasised by the bathochromic shift in the C=O stretching frequency from about 

1715 cm-1 of the COOH groups in the cx-GNFs to 1558 cm-1 of the metal 

carboxylates in the M2+/3+@cx-GNFs (Fig. 6.5). Interestingly, the effect is also most 

pronounced for Pb2+@cx-GNFs, suggesting that Pb2+ ions interact most strongly 

with the cx-GNFs both via M-π interactions as well as the metal-carboxylate 

chelation. Consequently, these two effects taken together explain the 

exceptionally high performance of the cx-GNFs for extraction of Pb2+ compared 

with the other carbon materials as shown in Fig. 6.2(b). It is noteworthy that the IR 

spectra of both the M2+/3+@nGO as well as M2+/3+@GO also show the same 
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bathochromic shift (Appendix Fig. A6.5) indicating that metal complexation has 

taken place, albeit to lesser extents. 

 

Fig. 6.5 ATR-IR spectra of cx-GNFs (cyan), Fe2+@cx-GNFs (magenta), Cu2+@cx-GNFs 

(orange), Fe3+@cx-GNFs (green), Cd2+@cx-GNFs (red) and Pb2+@cx-GNFs (blue). 

 

The combination of strong M-π interactions and chelation of carboxylic acids to metals 

explains why the cx-GNFs are able to adsorb metals more strongly than nGO and PM-

GO. 

 

6.5 Adsorption capacity of Pb2+ cations on cx-GNFs, nGO 

and GO using optical absorbance spectroscopy 

In order to directly quantify, and thus compare, the adsorption capacities of the 

Pb2+@carbons with other adsorbents, the three carbon materials were treated with an 

excess of Pb2+ cations. However, 5 mM concentrations of Pb(NO3)2 were used instead 

of the 0.1 M concentrations utilised in the metal-sorption experiments in section 6.3 (Fig. 

6.2(b)). This was because the 0.1 M Pb(NO3)2 was in a large excess and greatly 

exceeded the loading capacity of the graphenic materials. To ensure equilibrium had 

been reached at this 5 mM Pb(NO3)2 concentration, the Pb/C ratio of the Pb2+@carbons 

was determined from the XPS survey spectra in (Appendix Fig. A6.6) and found to be in 

agreement with the Pb/C ratios in Fig. 6.2(b), when 0.1 M Pb(NO3)2 was used.  
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In a typical experiment, 10 mg of cx-GNFs, nGO or GO were combined with 10 mL of 5 

mM Pb(NO3)2 solutions. The mixtures were then ultrasonicated, filtered and washed in 

the way as described earlier in section 6.3. The colourless filtrates as well as 10 mL of a 

5 mM Pb2+ solution (as a control) were topped up to 250 mL with deionised water. 4 mL 

of these solutions were acidified with 1 mL of 5 mM HCl, combined with a large excess 

solution of 2,5-dimercapto-1,3,4-thiadiazole dipotassium salt (DMTD-K+)(59) and topped 

up to 10 mL. The yellow solutions were then transferred into quartz cuvettes of 1 cm path 

length, and optical absorbance spectra were recorded between 300 and 500 nm. Finally, 

the Pb2+ sorption capacities of the carbon materials were calculated from the difference 

in the optical absorbances at 400 nm between the initial 5 mM solution and the solutions 

after the Pb2+ extraction. 

It should be noted that 2,5-dimercapto-1,3,4-thiadiazole dipotassium salt (DMTD-

K+),(59) depicted in Fig. 6.6(a) is a well-known chelating agent for Pb2+ cations. Chelation 

of DMTD-K+ with Pb2+ cations occurs in 2:1 ratio and results in the formation of a yellow 

solution, whose concentration can be determined accurately using a calibration plot (c.f. 

Appendix Fig. A6.7(a)).(59) In this case absorbance values were taken at λ = 400 nm 

(Appendix Fig. A6.7(b)). Example optical absorbance spectra of the remaining 

(unreacted) Pb2+ cations after treatment of 5 mM Pb(NO3)2 with the cx-GNFs, nGO and 

GO can be found in Fig. 6.6(b). It is noteworthy that Pb2+ was chosen over the other 

heavy-metals for adsorption measurements since the adsorption of Pb2+ cations on the 

carbon materials demonstrated the greatest variability, as evidenced by Fig.6.2(b). 
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Fig. 6.6(a) The chemical structure of DMTD-K+ and (b) optical absorbance spectra in the λ = 

500-300 nm range (outset) and zoomed in region at λ = 400 nm (inset) of the remaining 

(unreacted) Pb2+ cations after treatment of 5 mM Pb(NO3)2 with the cx-GNFs, nGO and GO.  

 

The calculated adsorption values of the Pb2+@carbon derived from the optical 

absorbance spectra (such as those illustrated in Fig. 6.6(b)) are shown in Table 6.1. For 

each carbon material, the data in Table 6.1 represents the average and error (1.s.d.) of 

three samples, each measured three times. The results demonstrate that the adsorption 

capacity of the cx-GNFs towards Pb2+ ions are approximately six times that of 

conventional GO. Note that under the same pH conditions, it is likely that this value is 

even higher.  

 

Table 6.1 Average sorption capacities of Pb2+ cations on cx-GNFs, nGO and GO 

Carbon material Adsorption capacity / 
mg.g-1 

Conditions 

cx-GNFs 659 ± 6 pH 2.2, T 293 K 

nGO 336 ± 6 pH 3.3, T 293 K 

GO 102 ± 76 pH 3.1, T 293 K 
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In comparison with other functionalised graphenic materials, according to recent 

reviews,(23; 26) the cx-GNFs are one of the best materials to date at extracting Pb2+ 

cations from aqueous solutions (see Table 6.2). For clarity, the table has been modified 

to include the cx-GNFs in the appropriate rankings (top 5). It is noteworthy that an attempt 

was made to determine the sorption capacity of activated charcoal (AC), towards Pb2+ 

cations, but it was found to be negligible in comparison with the graphenic materials 

(even when treated with 0.1 M Pb(NO3)2). Indeed, the Pb/C ratio of Pb2+@AC was 

determined to be one order of magnitude below GO and therefore two orders of 

magnitude lower than the Pb2+@GNF (c.f. Appendix Fig. A6.8). This is in good 

agreement with Yang et. al. who demonstrated the adsorption capacity of Cu2+ cations 

on GO is about ten times higher than activated charcoal.(60) Furthermore, the cx-GNFs 

outweigh other common sorbents such as zeolites and biomass-derived sorbents by an 

order of magnitude.(23; 61) 

 

Table 6.2 Adsorption capacities of the top ten GO-based adsorbents at extracting Pb2+ cations. 

Table adapted from [ref. 23] with permission from Springer. 

Adsorbent Max. adsorption 
capacity / mg.g-1 

pH 

FGO1 1850.00 (333 K) 6.0 

GO 1119.00 ± 41 (298 K) 5.0 

FGO2 758.00 (333 K) 5.5-7.5 

MnFe2O4/GO 673.00 5.0 

cx-GNFs 659 ± 6 (293 K) 2.2 

Iron Oxide/GO 588.24 (303 K) 5.0 

EDTA/MGO 508.40 (298 K) 4.2 

GO/PAMAMs 568.18 (298 K) 4.5 

EDTA/GO 479.00 ± 0.82 (298 K) 6.8 

Chitosan/GO 461.30 (318 K) 6.0 

Chitosan/GO-SH 447.00 (293 K) 5.0 

 

From Table 6.2 it can be seen that all of the Pb2+ cations were extracted at pH ≥ 4.2. 

This is because a sharp increase in Pb2+ adsorption on GO is observed on increasing 
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the pH from 2 to 4. (23; 27; 34; 35) Above pH 4.2, the adsorption capacity does not 

change as significantly with pH. Hence above pH 4.2, a true maximum adsorption 

capacity can be obtained.(23; 27; 34; 35) It should be noted, however, that these are 

generalisations and do not always hold true.(25) Under these circumstances, the cx-

GNFs are expected to exhibit a very high (maximum) adsorption capacity at optimum 

pH. The true relevance of a maximum adsorption capacity at an ideal pH in the 

application of heavy-metal treatment is unclear. Whilst the presence of heavy-metals in 

water streams is expected to lower the pH of the water streams below neutral conditions, 

the metal-extraction process is likely to involve the metals being passed through large 

columns of adsorbents where the local pH is more likely to reflect the natural pH of the 

adsorbent. Hence, investigating the adsorbents at their natural pH in aqueous solution 

(as described in this work) may be more industrially relevant. The alternative would be 

to ensure that the adsorbent always operates at optimum pH by constantly flushing the 

column with an appropriate buffer solution, which is costly and time consuming.  

Other factors influencing the adsorption capacity of heavy-metals on GO include ionic 

strength and temperature.(11; 25; 36-38; 62) In the case of the former, inorganic anions 

have only a small influence on the adsorption capacity as they interact with the solvated 

metal cations through outer-sphere complex formation.(25; 36; 37) However, the effect 

of cations on the adsorption capacity is more significant as they may compete directly 

for the adsorbent (i.e. the oxo-groups on GO), through the formation of inner-sphere 

interactions.(25; 36; 37) Temperature, by contrast, has a huge effect on adsorption 

capacity as is evidenced by the ‘number 1’ spot in Table 6.2 taken by few-layered 

graphene oxide (FGO). The impressive adsorption capacity of 1850 mg.g-1 was carried 

out at 333 K (60°C) by Zhao and co-workers.(25) Indeed, Zhao et. al. demonstrated that 

the capacity FGO towards Pb2+ cations increases from 842 mg.g-1 to 1850 mg.g-1 on 

increasing the temperature from 273 K to 333 K, an increase of 120 %. Similarly, Jia et. 

al. obtained adsorption capacities of 344 and 758 mg.g-1  when Pb2+ cations were treated 

with FGO at 273 K and 333 K respectively.(38) Note that to ensure the adsorption 

capacities we report in Table 6.1 were carried out at 293 K, the quartz cuvettes containing 

the Pb2+ cations were placed in a device which allowed for external water 

cooling/heating. 

The adsorption of Pb2+ cations on GO is clearly an endothermic process.(11; 25; 38) The 

endothermicity can be rationalised by considering the strongly solvated Pb2+ cations 

which require more energy to dehydrate than is gained by chelation/adsorption on 

GO.(25) Hence the endothermicity of dehydration outweighs the exothermicity of 
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adsorption.(25) Increasing the temperature allows the dehydration of Pb2+ cations to 

occur more readily and thus adsorption on GO becomes more likely.(25) The overall 

Gibbs free energy change (ΔG0) is negative implying that the entropy change on 

adsorbing Pb2+ cations onto GO is positive and outweighs the endothermicity of the 

process.(25) The entropy gain most likely reflects the removal of the hydration shell 

surrounding the Pb2+ cations on adsorbing onto GO.(25) The increase in entropy as a 

result of dehydration therefore outweighs the decrease in entropy due to adsorption.  

The sorption mechanism of Pb2+ cations on GO has been shown to be pH dependent, 

suggesting outer-sphere adsorption at low pH and inner-sphere complexation at high 

pH.(11; 25; 34; 62) Interestingly, Zhao et. al. demonstrated that at pH values below 10, 

adsorption of Pb2+ cations on GO results in a decrease in pH due to inner-sphere 

coordination.(25) The inner-sphere coordination can be treated as an ion exchange 

mechanism where H+ ions are replaced with Pb2+ cations.(25) The liberated H+ ions 

hence contribute towards the global decrease in pH.(25) Above pH 10, the authors note, 

no appreciable change in pH is detected.(25)  

Conversely, Huang and co-workers revealed that the adsorption of Pb2+ cations on GO 

with lower oxidation degrees resulted in a significant rise in pH when experiments were 

conducted between pH 3 and 5.(11) In fact, in one case, the pH of a GO dispersion 

increased from 4.00 to 6.11 on addition of sub milli-molar concentrations of Pb2+ 

cations.(11) Interestingly, at pH 2 no observable change in pH was detected after the 

addition of Pb2+ cations, yet significant decreases in pH were noted under basic 

conditions.(11) Huang et. al. propose that the results are consistent with Pb2+ cations 

and the π electron system of GO behaving as Lewis acids and donors respectively, in 

the same way as described earlier between the cx-GNFs and the metal cations.(11) 

Between pH 3 and 5 the Pb2+ cations adsorb strongly onto the graphenic basal plane 

which is accompanied by the simultaneous adsorption of H+ ions, resulting in the 

observed increase in pH.(11) At low pH it is expected that the GO sheet has a less 

negative surface potential, disfavouring the adsorption of Pb2+ cations, and hence little 

change is observed in pH.(11) At higher pH (>7.6), the decrease in pH when the Pb2+ 

cations are adsorbed can be explained by an increased competition in inner-sphere 

chemistry which liberates H+ ions, as discussed earlier, which outweighs the adsorption 

of the ions on the graphenic basal plane.(11) That is to say, that under basic conditions 

a significant number of acidic functional groups (carboxyls, hydroxyls etc.), will be 

deprotonated and thus negatively charged. Hence these species will form strong 

complexes with the Pb2+ cations. 
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Recently, Showalter et. al. demonstrated using X-ray absorption fine structure (XAFS) 

that the sorption of Pb2+ cations on GO is predominantly outer-sphere at low pH whilst 

mainly inner-sphere at high pH.(62) The exact cut-off between the two remains 

unclear.(62)  

In this work, the adsorption of Pb2+ cations on cx-GNFs, nGO and GO resulted in an 

increase in pH of 0.4-0.5 units when 0.1 M Pb(NO3)2 was used. However, in this case 

the increase in pH is most likely the result of combining the 0.1 M Pb(NO3)2 solution, 

which is pH 4.3, with the carbon materials respectively. Hence the pH of 1 mg.mL-1 

dispersions of cx-GNFs, nGO and GO increase from 2.5, 3.0 and 3.3 to 3.0, 3.5 and 3.9 

respectively. 

However, when the adsorption measurements were carried out using 5 mM Pb(NO3)2, 

little change in the pH of nGO and GO was detected before and after the addition of Pb2+ 

cations. This suggests that inner-sphere coordination by the oxo-groups is almost 

perfectly counter-balanced by the adsorption of Pb2+ and H+ on the basal planes. This 

can be rationalised by considering that whilst nGO has more COOH groups than GO, 

and should therefore have a greater degree of inner-sphere coordination, nGO also has 

a more intact sp2 carbon framework which would encourage Pb2+ and H+ ion adsorption 

on the basal plane. Evidence for both of these assumptions is suggested by XPS and 

FT-IR spectra in Appendix Figs. A6.4 and A6.5 respectively which indicate enhanced M-

π and COO-M coordination respectively for nGO w.r.t GO (note that these spectra were 

collected when the materials were treated with 0.1 M Pb(NO3)2, and are consequently 

not a direct comparison). Furthermore, consideration is not being taken towards the 

interaction of Pb2+ cations with the other oxo-groups on GO which would alter the 

scenario. In reality, therefore, the situation is more complex. With regards to the cx-

GNFs, the pH decreases slightly from 2.5 to 2.2 when 5mM Pb(NO3)2 was added. This 

is not unexpected since Huang et. al also observed no increase in pH at this pH due to 

the less negative surface potential of the graphenic sheet as described earlier. The slight 

decrease in pH is therefore the result of inner-sphere metal-carboxylate complexes. 

Since the chelation ability of COOH groups towards Pb2+ cations will be low at this pH, 

due to competition with H+ ions, only a small decline in pH is expected. Lastly, since 

buffer solutions were used in the literature studies, it is unclear to what extent these 

buffers could have altered the sorption mechanism(s).  

Comparison of the Pb2+@carbon adsorption capacities (determined from optical 

absorbance spectra) in Table 6.1 with the Pb/C ratios from XPS in Fig. 6.2(b), and 

appendix Figs. A6.2 and A6.6 respectively, suggests that XPS is reliable at a semi-
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quantitative level. From Table 6.1, the cx-GNFs were found to adsorb approximately 

twice as many Pb2+ cations than nGO; according to XPS, the cx-GNFs should adsorb 

~2.5 times more. Similarly, the adsorption capacity of nGO in Table 6.1 was determined 

to be on average at least 3 times that of GO, in reasonable agreement with the 

aforementioned XPS data. However the cx-GNF capacity is ~6.5 times that of GO which 

is not as high as suggested by the XPS spectra, which implied up to an order of 

magnitude in difference. Having said this, the error in the adsorption capacity of GO using 

optical absorbance spectroscopy was exceptionally high which could be attributed to the 

large variation in the morphology of GO. Indeed, there exists a significant discrepancy 

between reported adsorption capacities within the GO literature, with values differing by 

up to an order of magnitude under similar conditions.(23) Furthermore, different 

characterisation methods are used to determine adsorption capacities, such as optical 

absorbance spectroscopy, flame atomic absorbance spectrometry (FAAS) and 

inductively coupled mass spectrometry (ICP-MS). Furthermore, for a given published set 

of data, only one technique is typically employed to determine the adsorption capacity.  

 

6.6 Reversibility and selectivity of Pb2+ cations adsorbed on 

cx-GNFs 

The XPS spectra in Fig. 6.7 illustrate the reversible loading and unloading of Pb2+ cations 

onto the cx-GNFs. Initially, the cx-GNFs (Fig. 6.7(a)) were treated with 0.1 M Pb(NO3)2  

in the same way as described earlier (section 6.3), yielding the corresponding Pb2+@cx-

GNF material (Fig. 6.7(b)). The Pb2+ cations were then removed by treatment with formic 

acid (Fig. 6.7(c)), leaving behind only a small trace of Pb2+ cations. A small quantity of 

calcium (3%) was also detected in the XPS survey spectrum which was most likely the 

result of the gradual uptake of Ca2+ cation traces in the deionised water during the 

multiple dialysis steps to remove the Pb2+ cations (see chapter 8 section 8.2.16). It is 

noteworthy that after the unloading of Pb2+ cations from the Pb2+@cx-GNFs there is clear 

reversibility in the XPS C1s region back to the original cx-GNFs in terms of the relative 

peak intensities. Finally, after removal of the Pb2+ cations, the cx-GNFs were re-treated 

with 0.1 M Pb(NO3)2  solution as before which again yielded Pb2+@cx-GNF without any 

change in the loading efficiency as indicated by the Pb/C ratio (Fig. 6.7(d)). As expected 

due to the reversible behaviour, the final XPS C1s region was similar compared to the 

spectrum of the Pb2+@cx-GNF upon first loading of the cx-GNF with Pb2+ cations. 
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Fig. 6.7 Reversible loading of Pb2+ cations onto cx-GNFs. XPS survey spectra (outset), Pb4f 

regions (inset, left) and C1s regions (inset, right) of (a) cx-GNFs before Pb2+ cation addition, (b) 

after Pb2+ cation addition, (c) treatment of (b) with formic acid to remove Pb2+ cations and (d) 

after reloading with Pb2+ cations. 

 

To assess the selectivity of the cx-GNFs towards Pb2+ cation extraction in the presence 

of other cations, the cx-GNFs were treated with mixtures containing lead cations as well 

as calcium or magnesium cations. In a typical experiment, 5 mL of a 2 M Ca(NO3)2 or 

Mg(NO3)2 solution was combined with 5 mL of either a 0.2 M or 0.02 M Pb(NO3)2 solution 

to give 10 or 100 molar excesses of Ca2+ or Mg2+ cations. The solutions were then 

combined with 10 mg of cx-GNFs and the precipitated GNFs were collected as described 

in section 6.3 earlier. 
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Calcium and magnesium were chosen because these cations are the most common 

divalent metal cations found in drinking or industrial waste waters. The Mg2+ or Ca2+ 

cations were either in a 10 or 100 molar excess compared to the lead ions. In the 

presence of 10 mole equivalents of Ca2+ or Mg2+ cations per equivalent of Pb2+, only Pb2+ 

cations were removed from solution (Fig. 6.8(a) and (c)) and in the same quantities as 

reported before in Fig. 6.2(b) where no other cations were present. When 100 mole 

equivalents were employed, there was still a significant selectivity towards the Pb2+ 

cations as shown in Fig. 6.8(b) and (d). Indeed, an average Pb2+/Mg2+ ratio of 6.5 and 

Pb2+/Ca2+ ratio of 2.0 was determined from the XPS survey spectra.  

 

Fig. 6.8 XPS survey spectra (outset) and Mg1s or Ca2p regions (inset) of cx-GNFs treated with 

a mixture of Pb2+ cations and 10 equiv. Mg2+ cations (a) or Ca2+ cations (b) or 100 equiv. Mg2+ 

cations (c) or Ca2+ cations (d). 
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For clarity, the Pb/C ratios of the selectivity measurements are shown in the bar graph 

in Fig. 6.9. Each bar represents the mean and 1.s.d error of three samples, each sample 

being measured three times. The red bar represents the Pb2+@GNF in Fig. 6.2(b) in the 

absence of any other metal cations. 

 

Fig. 6.9 Pb/C atomic ratios determined from XPS survey spectra of cx-GNFs treated with Pb2+ 

cations only (red), Pb2+ cations with 10 equivalents Ca2+ or Mg2+ cations (green), and Pb2+ 

cations with 100 equivalents Ca2+ or Mg2+ cations (blue). 

 

Interestingly, the results suggest that the affinity of the cx-GNFs towards Ca2+ cations is 

much greater than Mg2+ cations. This could be due to Mg2+ cations forming strong and 

stable solvation spheres in water, hence a lot of energy is required for their 

dehydration.(63) Conversely, calcium has been shown to adopt various hydration 

spheres, which could aid the sorption process.(63) Nonetheless, the cx-GNFs clearly 

demonstrate a strong selectivity towards Pb2+ cations in the presence of up to 100 

equivalents of Mg2+ or Ca2+ cations. Furthermore, the Pb2+@GNF can be readily recycled 

with formic acid to yield the cx-GNFs once again which can then be reloaded with Pb2+ 

cations without any loss in efficiency.  

The exact reason why the cx-GNFs display such a remarkable and unique selectivity for 

Pb2+ cations over other metal cations is unclear. It is likely that the relatively weak 

solvation sphere of Pb2+ plays a crucial role. Moreover, the relatively diffuse nature of 

the Pb2+ cation compared with other smaller metal cations, would be more preferable in 

the context of M-π interactions, where the electron π is very diffuse. 
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6.7 Conclusions 

Cx-GNFs and nGO are highly efficient materials for the extraction of a wide range of 

heavy metals and outperform conventional GO by up to six times. In fact, they can easily 

compete with carbon nanomaterials which have been chemically functionalised for the 

purpose of heavy metal extraction.(23; 26) Furthermore, they outweigh other common 

sorbents such as zeolites and biomass-derived sorbents by an order of magnitude (23; 

61). In the case of cx-GNFs, a remarkable affinity for Pb2+ cations even in the presence 

of large excesses of Mg2+ and Ca2+ cations has been demonstrated. Detailed insights 

into the chemical binding mechanisms of the heavy metal cations onto the cx-GNFs were 

gained, highlighting the formation of metal carboxylates as well as M-π interactions as 

the two dominating modes for metal-carbon interactions. The high efficiency of the cx-

GNFs for heavy-metal extraction can therefore be attributed to the large number of 

carboxylic acid groups but also the intact graphenic areas on the basal plane. The 

loading and unloading of Pb2+ cations onto the cx-GNFs was found to be completely 

reversible allowing for the cx-GNFs to be readily recycled. Consequently, out of all the 

investigated as-made graphene materials, the cx-GNFs are most suited for future 

applications in heavy-metal extraction processes. 
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Chapter 7: Final Conclusions and Outlook 

The primary aim of this thesis was to prepare novel carbon nanomaterials, characterise 

their structures, to understand their chemistry and to explore their use in a wide range of 

applications. These materials were designed as an alternative to conventional graphene 

oxide prepared via permanganate oxidation (PM-GO). PM-GO, despite being a 

promising and widely used material has many short comings, most notably the 

controversy surrounding its structure (1-4) and the non-eco-friendly way in which it is 

produced (5-8). To address these issues, three novel nanomaterials were prepared. 

These included highly carboxylated graphene nanoflakes (cx-GNFs), which are 

structurally well defined-constituting only of unoxidised sp2 carbon and carboxylic acid 

groups. Nano-graphene oxide (nGO) - prepared using an eco-friendly route which 

replaces the conventional oxidation protocol of potassium permanganate in sulfuric acid 

with 8 M nitric acid, significantly reducing the oxidation strength of the mixture. The 

‘bottle-neck’ purification process of typical GO processing which involves repetitive 

centrifugation and ultrasonication was replaced with a simple filtration step and ion-

exchange/dialysis. The third and final material, which is GO prepared via dichromate 

oxidation, DC-GO, was structurally characterised and optimised for the first time. The 

alternative ratio of functional groups present on this material compared with PM-GO can 

provide for alternative chemical functionalisation protocols, i.e. to take advantage of the 

increased number of carboxylic acid groups.  

The thermal annealing behaviour of the materials established that the cx-GNFs, and to 

a lesser extent the nGO, undergo unique decomposition pathways compared to PM-GO 

and DC-GO. In particular, the formation of carboxylic anhydrides at the graphene edges 

of these two materials was demonstrated experimentally for the first time. In fact, it was 

demonstrated that 81% of the carboxylic acid groups on the cx-GNFs are able to convert 

to carboxylic anhydrides. It was further shown that these carboxyl groups on the cx-GNFs 

exist in a dynamic equilibrium with the carboxylic anhydrides in water, allowing for facile 

room temperature chemical functionalisation with amines (not that the cx-GNFs are 

highly soluble in water, ~100 mg mL-1). The fact that the cx-GNFs consist only of carboxyl 

(and a small number of anhydride) groups as the only oxygen-functionalities, allowed for 

simpler interpretation of the reaction products compared with PM-GO.  

Finally, the cx-GNFs and the nGO were benchmarked against PM-GO in their ability to 

extract heavy-metal cations from water. Both materials were found to be exceptional at 
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extracting heavy-metals, and the cx-GNFs were shown to outperform some of the best 

purpose-built GO-hybrid materials reported in the literature at extracting Pb2+ cations 

from solution. Indeed the cx-GNFs were found to outperform PM-GO by up to six times, 

despite being at a pH disadvantage. The mode of metal-binding onto the cx-GNFs was 

also investigated - the formation of strong metal-carboxylate complexes as well as 

cation-pi (M-π) interactions were responsible for the strong binding affinity of the cx-

GNFs towards metal cations. In general, the assignment of the new features in the XPS 

C1s regions of the M2+/3+@GNFs as M-π interactions, contributed significantly towards 

the interpretation of XPS spectra of metal-carbon composites.  

The unique nature of the cx-GNFs means they have been involved in a number of 

collaborations with other research groups. These include DNA sensors (9), ice-

nucleation (10) and electrochemistry (11; 12). Ongoing collaborative research involves 

E-Coli sensors, metal-sensors and carbon frameworks. The potential impact of the cx-

GNFs can therefore not be understated. A future outlook would be to look towards 

applying the cx-GNFs in the context of devices for heavy metal extraction, as well as to 

explore additional applications the cx-GNFs could be used for. The idea would be to find 

the most cost-effective and useful application.  

In essence, the work presented in this thesis is not just about reporting the preparation 

and chemistry of new carbon materials, but also to contribute towards the current 

understanding of carbon materials in the literature in general. Carbon materials are 

expected to play a huge role in the future in regards to applications, yet their full potential 

is not realised. It is not in the interests of scientists to ‘stick with’ conventional materials 

and to not explore the new possibilities that new materials have to offer. Hence, this 

thesis encourages the exploration of carbon, new strategies and insights into its 

fundamental nature.  
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Chapter 8: Additional experimental details 

In this chapter the details of experimental data collection are described as well as the 

experimental methodologies. All experimental data collection was carried out at 

University College London (UCL).  

 

8.1 Synthesis 

8.1.1 Preparation of cx-GNFs  

1.00 g of MWCNTs (3 to 15 walls, 5-20 nm outer diameter and 2-6 nm inner diameter 

and 1 to 10 μm in length; purchased from Bayer Materials Science or Elicarb (Thomas 

Swan Ltd)) were ultrasonicated in a 100 mL mixture of 3:1 vol% conc. H2SO4 acid (95-

97% w/w) and conc. nitric acid (70% w/w) for 30 minutes. The reaction mixture was 

heated for 2 h at 100°C, cooled to room temperature and diluted three-fold with deionised 

water. The black dispersion was filtered through a 200 nm track-etched polycarbonate 

membrane and the black residue on the membrane was collected and washed with 

deionized water and vacuum dried. The black filtrate was neutralised with KOH and the 

white salt precipitate (consisting mainly of K2SO4) was removed by filtration. The black 

filtrate was re-acidified with dilute formic acid and then dialysed against high-purity Milli-

Q water using a SpectraPor 3 regenerated cellulose dialysis membrane (Spectrum 

laboratories, MWCO 3.5 kDa). Once the conductivity of the surrounding water was <5 

µS.cm-1 the dispersion was passed over a cation exchange resin (Amberlite IR120, 

Sigma-Aldrich), if necessary, and freeze dried to give 160 mg of brown-black cx-GNFs. 

 

8.1.2 Preparation of nGO 

Arc-discharge (ADC) material consisting of single-wall carbon nanotubes (SWCNT) 

(diameter: 0.7- 1.2 nm, length: 10-50 μm), multi-wall carbon nanotubes (MWCNT) 

(diameter: 8-20 nm, length: 2-20 μm) and graphitic carbon was purchased from the 

Materials and Electrochemical Research (MER) Corporation (MRSW grade). 420 mg of 

this material was ultrasonicated in 21 mL of 1:1 distilled water/conc. HNO3 acid for 30 

min and then refluxed in air for 20 h, generating brown NOx fumes. The resulting 

dispersion was diluted three fold with distilled water and then filtered under vacuum 

through a 0.2 μm track-etched Whatman polycarbonate membrane. The black residue 
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on the membrane was washed with deionised water and dried in air whilst the brown-

black filtrate was neutralized by carefully adding NaOH pellets. On neutralization, 

precipitation of Na-nGO occurred. The mixture was then filtered under vacuum in the 

same way as before and the resulting filtrate (containing NaNO3) was discarded. The 

Na-nGO left on the membrane was re-dispersed in ~0.1 M HNO3 acid and dialyzed 

against distilled water via a regenerated cellulose dialysis membrane from Spectrum 

Laboratories, MWCO 3.5 kDa, flat width 45 mm. The dialysis was considered complete 

when the conductivity of the surrounding water was <5 μS cm-1. The purified dispersion 

was then freeze dried to obtain 90 mg (21 % yield by mass) of brown-black nGO material. 

 

8.1.3 Preparation of DC-GO (Chandra)(1) 

Graphite flakes (2.5 g, 1 equiv.) and NaNO3 (1.875 g, 0.75 equiv) were combined with 

H2SO4 (187.5 mL, 95-97% w/w) and left stirring for 15 min in an ice bath. K2Cr2O7 (18.8 

g, 7.5 equiv) was added slowly to the mixture over a period of 2 h. The mixture was then 

left stirring at room temperature (20°C) for 5 d. The dark green viscous mixture was 

transferred to an ice bath and aqueous H2SO4 (375 mL, 5% v/v) was added slowly over 

a period of 1 h. The mixture was then heated at 95°C for 2 h and left to cool back down 

to room temperature and diluted a further two-fold with deionised water. The mixture was 

centrifuged at 5000 r.p.m for 20 min and the dark blue-green solution containing the 

reduced Cr(III) species was decanted away. The remaining brown-black solid was 

collected and washed a further three times with aqueous HCl (5% v/v), discarding the 

clear supernatant each time. The brown-black solid was then re-dispersed in deionised 

water via ultrasonication for 20 min and centrifuged at 5000 r.p.m for 40 min. The dark 

brown supernatant containing the DC-GO was collected and the remaining solid was re-

dipsersed/ultrasonicated in deionised water and centrifuged as before a further two times 

(or until the supernatant was colourless), collecting and combining the supernatants at 

the end of each cycle. The dispersed DC-GO was concentrated in vacuo at 50°C and 

dialysed against a Spectra/Por 3 regenerated cellulose dialysis membrane (MWCO 3.5 

kDa) and freeze dried to obtain the desired DC-GO (~1 g yield by mass). 

 

8.1.4 Preparation of DC-GO (optimised)  

Graphite flakes (2.5 g, 1 equiv.) were combined with H2SO4 (187.5 mL, 95-97% w/w) and 

left stirring for 15 min in an ice bath. K2Cr2O7 (18.8 g, 7.5 equiv) was added slowly to the 

mixture over a period of 2 h. The mixture was then left stirring at 45°C for 20 h. The dark 
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green viscous mixture was transferred to an ice bath and aqueous H2SO4 (375 mL, 5% 

v/v) was added slowly over a period of 1 h. The mixture was then heated at 95°C for 2h 

and left to cool back down to room temperature and diluted a further two-fold with 

deionised water, and a few drops of H2O2 (30% w/w) were added. The mixture was 

centrifuged at 5000 r.p.m for 20 min and the dark blue-green solution containing the 

reduced Cr(III) species was decanted away. The remaining brown-black solid was 

collected and washed a further three times with aqueous HCl (5% v/v), discarding the 

clear supernatant each time. The brown-black solid was then re-dispersed in deionised 

water via ultrasonication for 20 min and centrifuged at 5000 r.p.m for 40 min. The dark 

brown supernatant containing the DC-GO was collected and the remaining solid was re-

dipsersed/ultrasonicated in deionised water and centrifuged as before a further two times 

(or until the supernatant was colourless), collecting and combining the supernatants at 

the end of each cycle. The dispersed DC-GO was concentrated in vacuo at 50°C and 

dialysed against a Spectra/Por 3 regenerated cellulose dialysis membrane (MWCO 3.5 

kDa) and freeze dried to obtain the desired DC-GO (94% yield by mass). 

 

8.1.5 Preparation of PM-GO (Chen)(2) 

Graphite flakes (500 mg, 100 mesh, Sigma Aldrich) was combined with concentrated 

sulfuric acid (12.5 mL, 97% w/w) at 0°C with stirring. Potassium permanganate (1.50 g) 

was added slowly to the reaction mixture and the mixture was heated at 40°C for 30 min. 

Deionised water (25 mL) was added carefully to the mixture and the mixture was heated 

once more at 95°C for 15 min with stirring. The resulting brown mixture was then diluted 

by addition of deionised water (85 mL) followed by dropwise addition of hydrogen 

peroxide (5 ml, 30% v/v) to reduce any excess permanganate. The resulting yellow-

green mixture was filtered through a 200 nm polycarbonate membrane, washed with 

aqueous HCl (75 mL, 10% v/v) and allowed to dry. The dry powder was re-dispersed in 

deionised water (100 mL) and dialysed against deionised water using a SpectraPor 3 

regenerated cellulose dialysis membrane (Spectrum Laboratories, MWCO 3.5 kDa). The 

GO was then exfoliated by ultrasonication for 90 minutes, and the dispersion was 

centrifuged at 3000 rpm for 40 min. The supernatant was collected and ultrasonicated 

once more for 30 min, filtered through compacted glass wool, and passed over a cation 

exchange resin (Amberlite IR120, Sigma-Aldrich). The dispersion was concentrated and 

freeze dried to obtain a light brown solid (500 mg). 
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8.1.6 Preparation of PM-GO (Chandra) and PM-GO (optimised) 

PM-GO (Chandra) and PM-GO (optimised) were prepared according to experimental 

sections 8.2.4 and 8.2.5 of this chapter respectively, with the exception that K2Cr2O7 was 

replaced with KMnO4.  

 

8.1.7 Preparation of SiO2-GNFs 

SiO2-NH2 was initially prepared by combining silica gel (1.00 g, 40-63 µm) with 3-

aminopropyltriethoxysilane (2 v/v in toluene, 250 mL) and stirred at room temperature 

for 1 h. The resulting amine functionalised silica gel was then filtered on a 0.2 µm 

Whatman Teflon membrane and washed three times, first with toluene, then a 1:1 

toluene-methanol mixture, and finally methanol. Once dry, the material was treated with 

the capping agent (n-butyltrimethoxysilane, 2 v/v in toluene) in the same way as just 

described, and washed in the same way. The dry SiO2-NH2 was found to weigh 1.25 g 

after the amidation and capping, suggesting successful grafting. The SiO2-NH2 was then 

added slowly to a ~0.5 mg.mL-1 brown dispersion of cx-GNFs (25.4 mg/50 mL) with 

occasional swirling, resulting in the formation of a brown precipitate (SiO2-GNFs). The 

SiO2-NH2 was added until the dispersion of cx-GNFs just turned colourless, indicating 

maximum loading capacity of the cx-GNFs. 403 mg of SiO2-NH2 was required to 

completely precipitate 25.4 mg of cx-GNFs, suggesting a loading capacity/stoichiometry 

of ~15.9 mg of SiO2-NH2 per mg of cx-GNFs. The SiO2-GNFs were then filtered on a 0.2 

µm Whatman polycarbonate membrane and washed with copious volumes of deionised 

water. The SiO2-GNFs were then dried in a vacuum desiccator. 

 

8.1.8 Reversibility of cx-GNFs towards Pb2+ cations 

75 mg of Pb2+-loaded cx-GNFs (Pb2+@cx-GNF) were sonicated in 10 mL of formic acid 

for <1 min. The dark brown dispersion was diluted with deionised water until pH 2 and 

then dialysed against deionised water via a SpectraPor 3 regenerated cellulose dialysis 

membrane (Spectrum laboratories, MWCO 3.5 kDa). Once the conductivity of the 

surrounding water was below 5 µS.cm-1 the dispersion was passed over an ion exchange 

resin (Amberlite IR120, Sigma-Aldrich). The dispersion was dialysed once more, 

concentrated in vacuo and freeze dried to regenerate the cx-GNFs. The cx-GNFs were 

then treated again with a 0.1 M Pb2+ solution in the same way.  
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Appendix chapter 3 additional figures 

 

 
Fig. A3.1 cx-GNFs derived from Elicarb CVD MWCNTs (Thomas Swan Ltd.) under the same 

conditions as employed using Bayer MWCTNs. 

 

 
Fig. A3.2 BET surface area plot of t-GNFs (red) and a-GNFs (blue).  
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Fig. A3.3 Powder XRD pattern of pc-nGO 

 

 

  
Fig. A3.4 (a) FT-IR and (b) Raman spectra of DC-GO (optimised) in green and DC-GO 

(Chandra) in black.  
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Fig. A3.5 AFM images of DC-GO (Chandra) 

 

  
Fig. A3.6 XPS survey (outset) and C1s region (inset) of (a) less oxidised DC-GO prior to 

optimisation and (b) after optimisation, i.e. DC-GO (optimised). The crosses represent the 

experimental data whereas the grey, blue, green, red and black lines are the Shirley 

background functions, C(0), C(I) and C(III) fitted peaks and peak sum, respectively. 
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Fig. A3.7 Optimisation of the DC-GO protocol. XPS survey (outset) and C1s region (inset) of 

DC-GO prepared with (a) 3, (b) 4.5, (c) 6, (d) 7.5, (e) 9 and (f) 12 equivalents of K2Cr2O7 per 

equivalent of graphite. Temperature and time were kept constant at 45°C and 20 h respectively. 

The crosses represent the experimental data whereas the grey, blue, green, red and black lines 

are the Shirley background functions, C(0), C(I) and C(III) fitted peaks and peak sum, 

respectively. 
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Fig. A3.8 Optimisation of the DC-GO protocol. XPS survey (outset) and C1s region (inset) of 

DC-GO oxidised for (a) 4 h, (b) 8 h, (c) 20 h and (d) 40 h respectively. Temperature and the 

number of equivalents of K2Cr2O7 used were kept constant at 45°C and 7.5 respectively. The 

crosses represent the experimental data whereas the grey, blue, green, red and black lines are 

the Shirley background functions, C(0), C(I) and C(III) fitted peaks and peak sum, respectively. 
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Fig. A3.9 AFM images of PM-GO (optimised). 

 

 

 
Fig. A3.10 AFM images of PM-GO (Chandra). 
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Appendix Chapter 6 Figures 

 

 
Fig. A6.1 The XPS survey spectra of M2+/3+@cx-GNF (red), M2+/3+@nGO (green) and 

M2+/3+@GO (blue) treated with Cd2+, Fe3+, Cu2+ and Fe2+ cations are shown in (a)-(d) 

respectively. Black dashed lines indicate the major peaks in the spectra. 
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Fig. A6.2 The influence of contact time between Pb2+ cations and cx-GNF (red), nGO (green) 

and GO (blue) on the Pb/C ratio calculated from the XPS survey spectra. [Conditions: 10 mg of 

each carbon material was treated with 10 mL of 0.1 M Pb(NO3)2, in the same way as carried out 

in Fig. 2(b)]. 

 
Fig. A6.3 Area-normalised XPS C1s spectra of cx-GNFs (cyan), Fe2+@cx-GNFs (magenta), 

Cu2+@cx-GNFs (orange), Fe3+@cx-GNFs (green), Cd2+@cx-GNFs (red) and Pb2+@cx-GNFs 

(blue). The crosses are the experimental data, grey lines are the fitted peaks, black line is the 

Shirley background function and the coloured lines are the peaks sums respectively. 
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Fig. A6.4 XPS C1s spectra of (a) nGO and (b) GO treated with Fe2+ cations (magenta), Cu2+ 

cations (orange), Fe3+ cations (green), Cd2+ cations (red), Pb2+ cations (blue) and controls 

(black). 

 

 
Fig. A6.5 ATR-IR spectra of (a) nGO and (b) GO treated with Fe2+ cations (pink), Cu2+ cations 

(orange), Fe3+ cations (green), Cd2+ cations (red), Pb2+ cations (blue) and controls (black). 
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Fig. A6.6 XPS survey spectra (outset) and C1s region (inset) of Pb2+@carbon treated with 

0.005 M Pb(NO3)2. 
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Fig. A6.7(a) Optical absorbance spectra of the Pb-DMTD complex in 0.005 M aqueous HCl in 

the 5-35 µg.mL-1 concentration range. (b) Calibration plot of the absorbance values at λ = 400 

nm from (a). 

 

 

 
Fig. A6.8 XPS survey spectra (outset) and C1s region (inset) of Pb2+@AC treated with 0.1 M 

Pb(NO3)2. 
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