
Path Loss Models for Low-Power Wide-Area
Networks: Experimental Results using LoRa

Hendrik Linka∗, Michael Rademacher∗, Osianoh Glenn Aliu†, Karl Jonas∗
∗Hochschule Bonn Rhein-Sieg, Sankt Augustin, Germany

hendrik.linka@smail.inf.h-brs.de, michael.rademacher@h-brs.de, karl.jonas@h-brs.de
†Fraunhofer Fit, Sankt Augustin, Germany

osianoh.glenn.aliu@fit.fraunhofer.de

Abstract—More and more low-power wide-area networks
(LPWANs) are being deployed and planning the gateway loca-
tions plays a significant role for the network range, performance
and profitability. We choose LoRa as one LPWAN technology and
evaluated the accuracy of the Received Signal Strength Indication
(RSSI) of different chipsets in a laboratory environment. The
results show the chipsets report significantly different RSSI. To
estimate the range of a LPWAN beforehand, path loss models
have been proposed. Compared to previous work, we evaluated
the Longley-Rice Irregular Terrain Model which makes use of
real-world elevation data to predict the path loss. To verify the
results of that prediction, an extensive measurements campaign
in a semi-urban area in Germany has been conducted. The results
show that terrain data can increase the prediction accuracy.

Index Terms—LoRa; Path loss model; LoRa receiver accuracy;
Free-Space Loss (FSL); Longley-Rice Irregular Terrain Model
(ITM)

I. INTRODUCTION AND MOTIVATION

There has been a significant adoption of Internet of Things
(IoT) technologies in commercial applications in a wide range
of environments. Common outdoor IoT applications require a
low power device that forwards the data over wide areas to a
gateway. The device should operate independently a significant
amount of time (magnitude of years) on batteries and not
require regular maintenance to be profitable. A system with
these characteristics is called a LPWAN.

In Europe, the Industrial, Scientific and Medical (ISM) band
(433 MHz and 868 MHz) is mainly used for the operation of
LPWAN since it does not require a spectrum license [1]. The
field of application for LPWANs ranges from smart cities to
environmental monitoring to industrial applications. By 2020,
there will be tens of billions of smart devices [2]. Some of
them must use a transmission technology that is customized
to the conditions of the environment. LoRaWAN is one of
many LPWAN transmission technologies. The so called LoRa
modulation is based on chirp spread spectrum enhanced by
forward error correction for all messages [3].

One of the most interesting properties that makes LoRa
special is the ability of the sensors to forward data with energy-
constrained devices over large distances. Fundamentally, trans-
mitting data over large distances in a wireless channel requires
high transmission power. However, even at 14 dBm output
power, LoRa can transmit data to a distance of up to 25 km
in a semi-urban area assuming line-of-sight.

There are different possible applications for the LoRa tech-
nology or LPWAN in general. One may be the detection of
water levels with multiple sensors along a river. These sensors
are installed far apart from each other in rural areas and
measure the water level in regions located downstream [3].
In urban environments, parking sensors check whether a car
is parked in a specific spot and conduct energy harvesting to
extend their battery life. These sensors are especially useful
in big cities where parking spaces are limited [4]. However,
especially in (semi-)urban environments, the transmission can
be disrupted by surrounding buildings, and a forecast for a
gateway location must be generated to guarantee the cor-
rect operation of the entire system. A path-loss model may
produce precise predictions by forecasting possible receive
signal strengths. These predictions could be used to install the
gateways at appropriate locations and guarantee the operation
of the sensors.

In this work, we are testing different published path-loss
models and checking their capabilities against real signal
measurements from a LoRa test deployment. In addition, we
contribute the evaluation of path-loss model which makes
use of terrain data to enhance the predictions. We start by
discussing related work and path loss models in Section II.
Afterwards, a subset of models is selected and examined
further in Section III. Section IV describes the measurement
setup with further challenges introduced by the LoRa chipsets.
In Section V, the results are analyzed and discussed. Finally,
in Section VI, we summarize our results and provide ideas for
possible future research directions.

II. RELATED WORK

Table I provides an overview of significant contributions in
context of evaluated path-loss models for LPWAN. In [1], the
authors compare 6 majorly used path loss models to determine
their accuracy. Testbeds are set up at different locations in
Dortmund, Germany. The research group uses the Pycom LoPy
transceiver for a range test at 433 MHz and 868 MHz. The
setup consists of one gateway and eight nodes, which are
spread throughout the city. Four nodes are placed indoors
while the other four are installed outdoors. All nodes use a
spreading factor of 12 and a coding rate of 4/8. In addition,
the authors tested the 433 MHz and 868 MHz bands with a
moving transceiver mounted on the roof of a car at a height of



1.7 m. The comparison of their live measurements with the 6
other path loss models shows an imprecise prediction for the
real signal data. Therefore, the authors propose a new model.

The authors in [5] conduct a coverage comparison of Gen-
eral Packet Radio Service (GPRS), Narrowband-IoT, LoRa,
and Sigfox for a 7,947-km2 area with two different models
that use the Danish digital height model 2007 [6] for the height
of the terrain. The height model was scaled down to 100 m to
decrease the computational load. The result of the calculation
shows the coverage for four different technologies. However,
the authors did not compare the evaluated path-loss models
with real world measurements.

In [7], the authors conduct a test with a mounted LoRa
transmitter on the roof of a car in city of Oulu. A second
LoRa transmitter on a boat provides additional measurement
data. The measured signal strengths are compared to the Free-
Space Path Loss (FSPL) model. The results show a significant
deviation and the authors therefore propose a new path loss
model.

To the best of our knowledge, there is no work which eval-
uated the role of topographical data to improve the accuracy
of a LPWAN path loss model.

Paper Evaluated path-loss models

[1]

Free space path loss model
Okumura Hata Model
ITU-Advanced Channel Model for Urban Macro NLOS Areas
Winner+ Channel Models for Urban Macro NLOS Areas
3GPP Spatial Channel Model for Urban Macro Areas
Oulu channel model proposed
Dortmund (urban) path loss model

[5] 3GPP Rural Macro non-line-of-sight (NLOS) model (rural areas)
3GPP Urban Macro NLOS model (urban areas)

[7] Free space path loss model
Oulu Model

TABLE I: Related work.

III. PATH LOSS MODELS

Based on the related work presented in Section II and the
survey presented in [8] we selected three different path-loss
models for further evaluation. In the following, we provide a
short summary of each model.

A. Free-Space Path Loss

The purely analytic FSPL (Friis equation [9]) model serves
as a baseline in our analysis. In addition, it is an integral
component of all forthcoming approaches. The equation is
given in the logarithmic domain as follows:

PLfs = 20 ∗ log10(f) + 20 ∗ log10(d) + 32.45 (1)

Here and henceforth, the distance (d) is given in km, the
frequency (f) in MHz and the path loss (PLx) is in units
of decibels relative to a mW (dBm) [8].

B. Regression Coefficient

Based on their measurement data, the authors in [10] and [1]
derived a regression curve for the mean path loss using the
following equation:

PLcoeff = B + 10 ∗ n ∗ log10(
d

d0
) (2)

Using a reference distance of d0 = 1 km, a path loss exponent
(n) and a path loss intercept (B) have been derived. In the
city of Dortmund (Germany), the authors in [1] determined
n = 2.65 and B = 132.25. Different results have been calculated
in the city of Oulu (Finnland) [10], where n = 2.32 and
B = 128.95 fitted best to the samples obtained.

C. Longley-Rice Irregular Terrain Model

The ITM incorporates various additional parameters to
increase the accuracy of path-loss predictions like the soil
condition, the climate but most importantly refraction and
diffraction due to obstacles and terrain. The model is appli-
cable from 20 MHz up to 20 GHz and has been widely used
in the context of TV broadcasting. In the simplest form, the
model can be stated as:

PLITM = PLfs + Aref (3)

The component Aref sums up possible attenuation in addition
to the FSPL. It is computed using three different distance
ranges [11]. For shorter distances, mostly at line-of-sight, the
two-ray model is used. For distances where the horizon limits
the line-of-sight or in the case there is an obstruction, diffrac-
tion is the dominant factor and a double knife edge estimation
is applied. For very long distances, scattering becomes the
dominant factor for Aref . For a detailed description of Aref

we refer the reader to [11], [12].
The Longley-Rice Model requires terrain data for accurate

diffraction computations. We found two options to obtain
suitable terrain data for our area. The first option is data
acquired by the Shuttle Radar Topography Mission (SRTM)
in February 2000. The result of this mission is a large set
of digital elevation models (DEMs) at a resolution of 1
arc second (≈ 30 m) between 60◦N and 57◦S [13]. The
data is freely available online at [14]. The second option
is to use data obtained by the Light detecting and ranging
(LIDAR) technique. LIDAR systems obtain terrain data by
evaluating the reflection of a laser beneath the flight path of
an aircraft. Compared to the SRTM data, the resolution is
much higher but such data is rarely available in public domain.
To calculate PLITM , we use an already established software
package called SPLAT available at [15]. The parameters of
the Longley-Rice model are summarized in Table II.



(a) Fixed LoRa transceiver. (b) Moving LoRa transceiver. (c) Testing LoRa receiver performance.

Fig. 1: Antenna and test setup.

Earth Dielectric Constant 5.0

Earth Conductivity 0.001 [S/m]

Atmospheric Bending Constant 301

Radio Climate 5

Fraction of situations 0.9

Fraction of time 0.9

TABLE II: Longley-Rice model parameters.

IV. MEASUREMENT SETUP

The test was conducted at the Bonn-Rhein-Sieg University
of Applied Sciences, Germany. The building is surrounded by
different terrain. There is a mountain in the north of the test
area. In the east lies a densely populated city and in the south
is a flat rural area.
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Fig. 2: Chipset RSSI accuracy verification.

A. Testbed

The measurement setup consists of a fixed LoRa transceiver
on the roof of the university (Fig. 1a) and a moving transceiver
installed on a car at a height of 1.2 m (Fig. 1b). For the
fixed transceiver, we used the IMST iC880A. It features an
SX1301 digital baseband chipset and two SX1257 radios for
LoRa transmissions and demodulations. We installed it at a
height of 22 m. The moving transmitter was placed on a car
with a Global Positioning System (GPS) logger. First tests
were performed with the Pycom LoPy and the PyTrack GPS

expansion board. The LoPy has an integrated LoRa SX1272
transceiver and an additional WiFi transceiver.

After quickly evaluating our first results, we decided to test
the reliability of the reported RSSI value of both transceivers.
For this test, we build-up a small experiment in our laboratory
utilizing an industrial grade spectrum analyzer visible in
Fig. 1c. The transceivers of the iC880A and the LoPy were
directly connected by a 50-Ω cable. In the middle of the
connection, we used fixed and dynamic attenuators to simulate
the path-loss. The spectrum analyzer, connected via a splitter,
measures the strength of each signal down to a noise level
of -82 dB. For each attenuation setting noted the RSSI and
the reported channel power by the spectrum analyzer. Fig. 2
shows the deviation (RSSI-Signal) for both transceivers.

The average deviation for the iC880A is 3.12 dB while the
LoPy, has an average deviation of 13.85 dB (2). Therefore,
to keep the measurement error for the path-loss model eval-
uation as small as possible, we decided to use two iC880A
transceivers. The disadvantage of the IMST iC880A is its
minimum receiving signal strength of -125 dB. We were
unable to receive lower RSSI values with a fixed setting of
spreading factor 12 and 125 kHz. Similar observations have
already been made in [16]. The GPS measurements are still
produced by the L76-L chipset of the LoPy expansion board.
The GPS chipset has an accuracy of less than 2.5 m Circular
Error Probable (CEP) [17]. A test with a geodetic measuring
point delivered a deviation of 4 m which is a sufficient
accuracy for our use-case.

B. Acquisition of data

After the receiver performance of the LoRa and GPS
chipsets was reviewed, ten points surrounding the university
were selected. Besides the measurements of these points,
we recorded the paths between them. The transmitted LoRa
messages had a size of 11 bytes. We used a spreading factor
of 12 to maximize the range. In addition, the coding rate was
4/5 with a bandwidth of 125 kHz. We used a fixed channel
at 868.1 MHz. At the end of the experiment, three tables
were generated with synchronized time stamps. One table
contains the GPS positions of the car, which are rounded to
10−3 decimal degrees (≈ 11 m). The second table includes
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Fig. 3: Results for different evaluated path loss models and our field measurements.

the sent LoRa messages, and the third table includes the
received LoRa messages with their signal strength. By merging
these tables, a table of GPS locations and signal strength is
created. Furthermore, lost signals are included, along with
the GPS locations of the car. If multiple measurements exist
for one location (10−3 decimal degrees), the mean value of
these measurements is used to account for different fading
effects. Lost signals which occurred between two valid LoRa
transmissions are considered interference/collisions and are
removed from the data-set. For the uplink (the transmission
from the node to the gateway), 3,745 different measurements
were collected. The downlink data-set has a size of 3,819
different measurements.

After the aggregation of data, predictions for the surround-
ing area of the University were generated. The equivalent
isotropically radiated power (EIRP) is set to 17 dB. This value
consists of 14 dB transmit power and an additional 5 dBi of
antenna gain. For the 5 m cable attached to the car antenna, we
subtract 2 dB. Due to the high computing power required by
the uplink for terrain models, we evaluate only the downlink
in this work.

V. RESULTS AND ANALYSIS

In Fig. 3, we compare the distance of the car to the gateway
with the measured RSSI samples. In addition, we added the
four models described in Section III. All predicted values
below -125 dBm were mapped to the maximum receiver
sensitivity of -125 dBm for a more meaningful comparison.

The values predicted by the FSPL model are as expected
above the samples with a few outliers which we assume
are possible multi-path propagation. The Oulu and Dortmund
models predict significant lower values. With increasing dis-
tance, the prediction of both models improves. Up to a distance
of 3 km the samples measured are found between the FSPL
model and both coefficient models. In fact, the predicted
values by the ITM model is more accurate up to this distance.
However, the measured samples varies significant and a direct
benefit of the terrain data is not visible in this plot.

For a deployment oriented comparison of the models, we
implemented a binary classification for the FSPL model, the
Oulu model, and the ITM model. Our binary classification
splits the predictions into false positives and false negatives.
False positives predictions are locations where the model pre-
dicts a connection to the gateway but there is none available.
The false negatives describes the opposite prediction.

ITM FSPL Oulu

False positive 12% 19% 5%

False negative 6% 0% 31%

TABLE III: Percentage share of false positives and false
negatives.

The FSPL model generates 19% false positives, which
would lead to possible sensor locations that are in fact not
covered by the current gateway. False negatives are not present
due to the overestimated RSSI. The Oulu model predicts
only 5% false positive, but includes a huge number of false
negative. The Oulu model (similar results were obtained for the
Dortmund model) underestimates the possible RSSI. The ITM
model leads to 12% false positive and 6% false negative. In
Fig. 4, the distribution of the false positives and false negatives
is shown on a map. In addition, we added a heatmap for each
model to visualize the different RSSI predictions.

VI. CONCLUSION AND FUTURE WORK

In this work, we tested different path-loss models for LoRa
and compared the results to real measurements.

No perfect model is apparent from a comparison of the
results. It is necessary to assess whether false positives or
false negatives are more important for the deployment of a
LPWAN. To ensure a signal reception, a reduction in false
positives seems desirable, but may lead to unnecessary expen-
ditures. A model with a balanced ratio of false positives and
false negatives could be the correct choice. The ITM model
generates this ratio and has the potential to significantly reduce
this error at regions with huge elevation differences since
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(a) Free Space Path Loss prediction. (b) Oulu prediction. (c) ITM prediction.

Fig. 4: Binary comparison and heatmaps for different path loss models.

especially mountains lead to many false negatives. Contrary
to various publications in this area, we have demonstrated that
the ITM model does not gratefully outperform other models
for LPWAN but is especially useful in mountainous areas.
We strongly assume that the accuracy could be increased by
calculation reflections and diffraction for buildings or small
terrain elevations more precisely using a LIDAR dataset. In
2017, the state of North Rhine-Westphalia made such a dataset
(several terabyte) available online at [18]. Terrain data based
path-loss modeling is commonly used and well-established for
mobile radio or TV broadcasting. We have shown that the use
of such data should be considered for LPWAN as well.
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