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Abstract

The field of paramagnetic NMR has expanded considerably in recent years, both in solution and the solid

state. This review addresses both the theoretical description of paramagnetic NMR, and the way in which it

is currently practised. We provide a review of the theory of the NMR parameters of systems in both solution

and the solid state. Here we unify the di↵erent languages used by the NMR, EPR, quantum chemistry/DFT,

and magnetism communities to provide a comprehensive and coherent theoretical description. We cover

the theory of the paramagnetic shift and shift anisotropy in solution both in the traditional formalism in

terms of the magnetic susceptibility tensor, and using a more modern formalism employing the relevant EPR

parameters, such as are used in first-principles calculations. In addition we examine the theory first in the

simple non-relativistic picture, and then in the presence of spin-orbit coupling. These ideas are then extended

to a description of the paramagnetic shift in periodic solids, where it is necessary to include the bulk magnetic

properties, such as magnetic ordering at low temperatures. The description of the paramagnetic shift is

completed by describing the current understanding of such shifts due to lanthanide and actinide ions. We then

examine the paramagnetic relaxation enhancement, using a simple model employing a phenomenological

picture of the electronic relaxation, and again using a more complex state-of-the-art theory which incorporates

electronic relaxation explicitly. An additional important consideration in the solid state is the impact of

bulk magnetic susceptibility e↵ects on the form of the spectrum, where we include some ideas from the

field of classical electrodynamics. We then continue by describing in detail the solution and solid-state

NMR methods that have been deployed in the study of paramagnetic systems in chemistry, biology, and

the materials sciences. Finally we describe a number of case studies in paramagnetic NMR that have been

specifically chosen to highlight how the theory in part one, and the methods in part two, can be used in

practice. The systems chosen include small organometallic complexes in solution, solid battery electrode
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materials, metalloproteins in both solution and the solid state, systems containing lanthanide ions, and

multi-component materials used in pharmaceutical controlled-release formulations that have been doped with

paramagnetic species to measure the component domain sizes.
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Chapter 1

Introduction

1.1 Paramagnetic NMR

Nuclear magnetic resonance (NMR) spectroscopy has become established as an essential method for struc-

tural characterisation in chemistry, biology, and the materials sciences [1, 2]. One area that has seen increased

activity in recent years is the study of the structural and electronic properties of paramagnetic systems in both

solution and the solid state [3–13]. Paramagnetic systems are defined as molecules or materials that contain

one or more ‘paramagnetic centres’, which are atoms or ions possessing at least one unpaired electron.

From the the point of view of NMR spectroscopy the important property of these systems is that there is

a hyperfine interaction between the unpaired electrons and the observed nucleus, which is the origin of the

paramagnetic shift and shift anisotropy (SA), the paramagnetic relaxation enhancement (PRE), and additional

sources of substantial broadening due to bulk magnetic susceptibility e↵ects. These interactions potentially

yield important information about the system, including the bonding between the atoms and ions and their

spatial arrangement, the delocalisation of the unpaired electrons onto the coordinating atoms and ligands,

the dynamics of the system, and, in the case of lanthanide ions, details about the crystal-field splitting and

consequent optical properties [14–17]. However the paramagnetism can also cause problems when attempting

to both acquire and interpret the NMR data. The problem of acquisition arises because the paramagnetic shifts

and SAs are often very large, with the result that excitation of the nuclei with practicable radio-frequency (RF)

powers can be both ine�cient and non-broadband, and the large PREs cause the coherences to decay rapidly
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once they have been excited. The interpretation of the NMR data is not always intuitive, and usually requires

the availability of reliable theoretical models. The research in the field of method development has therefore

focused on two areas: the development of new and improved experimental NMR techniques for acquiring

usable data, and the development of new theoretical techniques for calculating and interpreting the spectra.

1.2 New techniques for solid-state paramagnetic NMR

The development of new NMR techniques has focused on new methods for solid samples under magic-angle

spinning (MAS). The motivation for this development arises from the observation that many conventional

techniques that are standard for diamagnetic systems perform very poorly when applied to paramagnetic

systems. In particular those techniques that require long periods of RF irradiation, such as cross-polarization

(CP) [18] and heteronuclear decoupling [19] are found to be ine�cient, due to RF field power not dominating

the paramagnetic shift and SA interactions; in the worst cases this has a deleterious e↵ect on the spectrum.

The most successful techniques applied to paramagnetic solid-state NMR are generally those that employ

short, high-power RF pulses, such as the spin-echo [20] and transferred-echo double-resonance (TEDOR)

[21] sequences.

Clayton et al. showed that under slow-to-moderate MAS the linewidths in the 13C spectra of param-

agnetic complexes have a significant contribution due to the 1H–13C dipolar couplings, and that attempts

at conventional 1H decoupling lead to no improvement [22]. However the problem can be alleviated by

chemical substitution of 2H for 1H, which results in narrower lines due to the smaller heteronuclear dipolar

interactions. These observations were later confirmed by Liu et al., who also showed that detection of 2H

leads to narrower lines than detection of 1H, allowing the characterization of hydrogen environments closer

to the metal ion [23]. One spectroscopic solution to the problem would be to design a new, more broadband,

decoupling sequence, such as that proposed by Raleigh el al [24]. Their solution was to split the irradiation

over multiple frequencies so that the RF power is distributed more evenly over the 1H resonances. However

this early method has not achieved widespread usage. Ishii et al. suggested a di↵erent approach using very

fast MAS, under which conditions the dipolar-coupling contribution to the linewidths is su�ciently narrowed

that the decoupling can be dispensed with [6, 25]. This approach has the advantage that the recycle delay can

be shortened considerably, in the absence of a duty cycle limit, in order to exploit the PRE of the longitudinal
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relaxation. Hence both the resolution and sensitivity are considerably enhanced. Very fast MAS is the

foundation upon which all subsequent paramagnetic NMR methods have been based.

Further improvements in resolution and sensitivity have been made by using two-dimensional heteronu-

clear correlation experiments based on the TEDOR [7], dipolar insensitive nucleus enhanced by polarization

transfer (DINEPT) [26], and dipolar heteronuclear single-quantum correlation (DHSQC) [27] experiments.

These pulse sequences employ short, high-power pulses and have been shown to give superior results com-

pared to the CP-based heteronuclear correlation (HETCOR) sequences. The use of such techniques is crucial

if solid-state NMR is to yield unambiguous data for paramagnetic systems.

An additional avenue of enquiry is the development of new RF pulse schemes that are capable of de-

livering more broadband excitation, therefore making NMR applicable to more demanding paramagnetic

systems experiencing larger interactions. The most promising schemes to have been proposed to date are

those which employ adiabatic pulses, the most successful example of which is the family of short high-power

adiabatic pulses (SHAP) [28]. It has been shown that the SHAPs are particularly versatile, and they have been

incorporated into more sophisticated experiments to enhance sensitivity, such as the SHAP-CPMG sequence

[29], and resolution, such as the adiabatic magic-angle turning (aMAT) experiment [30]. A second class of

adiabatic scheme that has been proposed is the low-power single-sideband-selective adiabatic pulse (S3AP)

[31–33]. These pulses have been shown to achieve a broadband NMR response over a frequency range that is

an order of magnitude larger than the applied RF field amplitude, and generally exhibit optimal performances

at higher spinning frequencies. This field has been recently reviewed [34].

1.3 The paramagnetic shift and shift anisotropy

The interpretation of the paramagnetic shift and SA is aided by a number of di↵erent theories and formalisms

that have been proposed over the years. Work in this area has been performed by theoretical physicists,

researchers in quantum chemistry and density-functional theory (DFT), chemists, and biologists. As a result

the di↵erent formalisms take di↵erent approaches, and often use di↵erent scientific language. It is one main

purpose of this review to unify these di↵erent approaches, to identify the common ground, and to explain any

di↵erences. In brief the di↵erent approaches can be categorised into the groups described below, between

which there is some overlap. For example some theories are designed for d-block transition-metal ions,
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whilst others are specifically for lanthanide ions. There are also di↵erent ways of modelling the magnetic

properties of the metal ions. In some cases the ions are described by their molecular/atomic-level electronic

paramagnetic resonance (EPR) parameters, such as the g-tensor and zero-field splitting (ZFS), whilst in others

the ions are described by their bulk magnetic susceptibility. Finally another important distinction that arises

is whether the system being described contains non-interacting metal ions, such as complexes in solution, or

an extended network of interacting metal ions, such as in periodic solid materials. The link between these

cases is not always obvious.

The first contributions to understanding the paramagnetic shifts from d-block metal ions are due to

McConnell in 1958, who identified two important contributions to the isotropic shift. These are the contact

shift, which is due to through-bond transfer of the unpaired electron spin onto the nucleus [35], and the

pseudo-contact shift (PCS), which arises from the through-space spin-dipolar coupling between the unpaired

electrons and the nucleus [36]. Kurland and McGarvey generalized this formalism to include d-block metal

ions with a more complex description of the magnetic properties [37]. More recently Moon and Patchkovskii

have rejuvenated interest in this area by publishing a modern formalism describing the whole shift tensor,

including the SA, for metal ions with a single unpaired electron [38]. This has since been extended to d-block

metal ions with arbitrary electronic spin, and a small spin-orbit coupling parameter, by Pennanen, Vaara, et

al., where the shift tensor is described in terms of the g-tensor, hyperfine tensor, and the ZFS [39, 40]. This

formalism and its application in quantum chemistry and DFT calculations have been recently reviewed by

Kaupp and Koehler [41].

An alternative description of the paramagnetic shift and SA due to d-block transition-metal ions has been

given in terms of the bulk magnetic properties of an ensemble of such ions. Here the paramagnetic shift

tensor is calculated from the magnetic susceptibility tensor and the and the hyperfine tensor [15, 16, 42].

This approach has been applied extensively to paramagnetic metalloproteins in both solution [43] and the

solid state [44, 45], where the observed paramagnetic shifts are given entirely by the PCS. As a consequence

of its origin from the through-space spin-dipolar interaction, the PCS has a very well-defined geometrical

dependence that can be exploited to provide information on the position of the observed nuclei relative

to the metal ion, and thence structural restraints [15]. The advantage of this susceptibility formalism is

that it can be used to describe the paramagnetic shifts in materials with di↵erent magnetic properties by

changing the form of the magnetic susceptibility accordingly. For example it has been used to describe
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the shift due to a small cluster of paramagnetic d-block metal ions that are coupled together by exchange

interactions [46, 47]. In addition this formalism has been used extensively to rationalize the paramagnetic

shifts in periodic paramagnetic battery materials [48], glasses, and minerals [49–52]. For these systems it

has been shown that the isotropic shifts are dominated by contact interactions, and the SAs are dominated by

spin-dipolar interactions. One important observation is that the contact shifts can be broken down into a sum

of contributions from the metal ions that transfer unpaired electronic spin density onto the nucleus, known as

‘pathway contributions’ [5]. This idea has been instrumental in allowing the analysis of the contact shifts of

very complex battery materials which contain more than one type of metal ion [30, 53–59].

In parallel to these developments there has been some work, albeit less extensive, in rationalizing the

form of the paramagnetic shift due to lanthanide ions. The first, and still principal, contributions to this were

the Golding and Halton [60] and Bleaney [61] theories, which gives expressions for the contact shift and

PCS respectively. For the latter the Bleaney theory links the PCS to the crystal-field splitting parameters

of the metal ion [61]. These theories are considerably simpler than the formalisms for d-block metal ions

described above, and depend on the assumption, which may not be universally valid [62], that the spin-orbit

(SO) coupling interaction completely dominates the crystal-field splitting. Nevertheless they have been

remarkably successful in rationalizing the observed shifts in both solid-state samples and in solution, and

in pushing the field forward. An extension has been given by McGarvey, however the improvements are

relatively modest and the theory is still subject to the same basic assumptions [63]. The basic forms of the

Golding and Halton, and Bleaney theories have been instrumental in the rationalization of the shifts observed

in lanthanide pyrochlores [64, 65], and more recently for the solid-state lighting materials, lanthanide-doped

yttrium aluminium garnet [66, 67]. The Bleaney theory also allows the paramagnetic shift and SA due

to lanthanides to be described in terms of the magnetic susceptibility [61]. This is an extension of the

susceptibility formalism described above, and has been employed for materials in the solid state [66, 68–72],

small molecules in solution [62, 73], and more extensively for proteins in solution including calcium-binding

metalloproteins such as calbindin D9k [74] and calmodulin [75, 76], and for many other proteins where the

lanthanide ions have been introduced as attached tags [77–85].

Recently van den Heuvel and Soncini have introduced a formalism which describes the paramagnetic

shift for any system with arbitrary SO coupling strength [86–88]. For d metal ions, lanthanides, and actinides

the shift and SA can either be calculated directly from the electronic energy levels, or else via an intermediate
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step where the EPR parameters are first determined. This is straightforward for 3d metals, but the equivalent

description of lanthanides and actinides is more complicated due to the more complex electronic structure of

these ions. This formalism has been explored for isolated d-block metal ions [87, 89, 90] and actinide ions

[91, 92]. In the future it seems likely that this formalism will become more widely used.

1.4 The paramagnetic relaxation enhancement

The development of formalisms to describe the PRE, and their applications, have also been researched

actively [93–95]. The earliest and most widely-used formalism is the Solomon–Bloembergen–Morgan theory,

which describes the nuclear relaxation as the e↵ect of stochastic fluctuations in the hyperfine interaction as

a consequence of a combination of molecular dynamics, fast chemical exchange, and electronic relaxation

[96–98]. This formalism is limited to applications in high external magnetic fields, and with fast molecular

dynamics. Additionally, the electronic relaxation is only treated approximately, using phenomenological

parameters. The theory has been extended to describe systems with molecular dynamics that are much slower

than electronic relaxation, such as large biomolecules, adding an extra term known as the Curie relaxation rate

[99, 100]. The Curie PRE is calculated by separating the slow molecular dynamics from the faster electronic

relaxation, and treating the relaxation process as a hyperfine coupling to the average electronic magnetic

moment. The Curie contribution has been shown to dominate the linewidths of nuclear spins in proteins in

solution for paramagnetic metals with electron relaxation times much shorter than the reorientation times

[15]. These formalisms have been widely used to interpret PREs as structural restraints, particularly for

proteins [11, 17, 101].

Further developments have focussed on formalisms that treat the electronic relaxation explicitly, both in

the fast- and slow-electronic dynamics regimes, and which are also applicable in low external magnetic fields.

These formalisms have been developed mainly by research groups in Sweden, Grenoble, and Ann Arbor, and

are consequently referred to as the Swedish slow-motion [93, 102–109], Grenoble [110, 111], and Ann Arbor

[112–114] theories respectively. These theories are more complicated than the Solomon–Bloembergen–

Morgan theory and Curie formalisms, but have also been shown to be more generally applicable. Explicit

calculations of electronic relaxation have been incorporated, including mechanisms such as distortion of the

metal-site geometry due to solvent collisions in solution samples [115, 116], and molecular vibrations in
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solutions and solids [117–119]. The slow-motion theory has been used to describe the relaxation of solvent

molecules in a solution of paramagnetic metal ions by the mechanisms of inner- and outer-sphere relaxation

[120]. The former mechanism describes the relaxation of molecules in the solvation sphere of the metal ion

that are in exchange with the bulk solvent, and the latter mechanism describes the PRE of solvent molecules

that never coordinate to the metal ion. The theory that describes these e↵ects, and the calculations it facilitates

[121–124], are of importance to understanding and developing contrast agents in magnetic resonance imaging

(MRI) [125–133]. In addition the studies of the PRE under low-field conditions enable the calculation of

NMR dispersion (NMRD) profiles, which show how relaxation rates vary with field [134–144]. Such NMRD

profiles are useful for studying dynamic processes such as protein folding [145, 146].

1.5 Bulk magnetic susceptibility e↵ects

The final paramagnetic e↵ects that are considered here are the bulk magnetic susceptibility (BMS) and

anisotropic bulk magnetic susceptibility (ABMS). These are of particular importance in the solid-state NMR

of paramagnetic single-crystal samples, powders, and complex and heterogeneous samples such as battery

cells. The BMS e↵ect involves the change in the bulk susceptibility at the surface of a crystal and in the

surrounding medium, which gives rise to a demagnetizing field within the crystal leading in turn to changes

in the measured paramagnetic shift and to inhomogeneous line broadening. For paramagnetic polycrystalline

powder samples with an ABMS, the close packing results in each crystallite experiencing a demagnetizing

field due to the neighbouring crystallites, which is also a source of inhomogeneous broadening. Importantly

this ABMS broadening is not removed by MAS and can dominate the lineshapes and linewidths of spinning

paramagnetic solids, and perturb the intensities of the spinning sidebands so that they can no longer be

analysed in terms of a simple second-rank tensor. What this means in practice is that the BMS leads to NMR

spectra with low resolution, which hinders the basic assignment, and also impedes the obtaining of accurate

distance information from the analysis of sideband manifolds.

The BMS and ABMS broadening e↵ects were first described by VanderHart [147], and Alla and Lippmaa

[148]. The e↵ects of the BMS on the linewidth and spinning sideband intensities were demonstrated on

paramagnetic lanthanide stannates by Grey et al. [149], who also showed that it is possible to remove the

perturbing e↵ects on the spinning sidebands in materials with isotropic susceptibilities by immersing the
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crystals in a medium with a matching magnetic susceptibility, thus removing the e↵ects that are responsible

for the BMS. A more complete theory of the BMS and ABMS broadening was proposed by Schwerk et al.

[150], and extended by Kubo et al. [151]. More recently a practical method for calculating the broadening

has been proposed by Dickinson et al., [152], who use ideas from classical electrostatics to calculate the

demagnetizing fields due to a large bulk sample.

The BMS e↵ect has been shown to be very important in the study of whole battery cells containing a

paramagnetic material. In this case the linewidth varies with the orientation of the sample within the magnetic

field, and so it is crucial that this be optimized in order to obtain the optimum data [153, 154].

1.6 Paramagnetic NMR and dynamic nuclear polarization

One area of magnetic resonance that is very closely related to paramagnetic NMR is dynamic nuclear

polarization (DNP). The object of this method is to increase, or enhance, the nuclear polarization of a system

that also contains unpaired electrons. The electrons have a larger gyromagnetic ratio than any nuclei and

so the electrons also have a larger spin polarization. For example the electronic gyromagnetic ratio, and

therefore the polarization in a magnetic field, is larger than that of the proton by a factor of 658. The DNP

methods transfer this polarization to the nuclei via a number of mechanisms involving the coupling between

the electronic and nuclear magnetic moments, by irradiating the electronic spin transitions with microwave

radiation simultaneously to acquiring the NMR spectrum.

Dynamic nuclear polarization was first proposed as an enhancement method for metals by Overhauser

[155], and was shortly after demonstrated experimentally by Carver and Slichter [156, 157]. In recent years,

the field has been revolutionized by the development of polarization methods for frozen solutions at high

magnetic fields [158, 159], and application to solids under MAS [160–162]. The best enhancements have

generally been obtained on diamagnetic samples that have been impregnated with paramagnetic species based

on organic nitroxide-based radicals, and frozen at low temperatures of around 100 K [163–170]. These

radicals and conditions are chosen because the polarization transfer mechanisms are generally more e�cient

if the electrons have longer relaxation times, typically of the order of milliseconds. This approach has been

shown to be very successful in NMR applications in both biology [162, 171–176] and materials science

[177–179]. However it has also been demonstrated that DNP enhancements can be obtained on paramagnetic
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samples containing high-spin transition metal ions, such as Mn2+ and Gd3+ which also have comparatively

slow electronic spin relaxation since these ions have no orbital angular momentum [180, 181].

The field of DNP has much in common with that of paramagnetic NMR. The obvious similarity is that

both fields are applicable to samples containing sources of unpaired electrons, and an understanding of both

fields requires an appreciation of “paramagnetic NMR concepts” such as the hyperfine interaction, electronic

relaxation, PRE, and BMS. Specifically to explain DNP fully, we need to understand these paramagnetic

e↵ects in samples that have been impregnated with many paramagnetic radical molecules. For example

two paramagnetic e↵ects that have consequences for DNP are quenching, and nuclear depolarization. The

quenching e↵ect is important for nuclei that are close to the radicals, and experience a large PRE or hyperfine

coupling that renders them “invisible” in conventional NMR experiments. This e↵ectively reduces the

number of nuclei that contribute to the NMR signals, and acts to reduce the size of the DNP enhancement. The

depolarization e↵ect, described by Thurber and Tycko, is an interesting phenomenon where the impregnation

of the sample with the radical has the e↵ect of reducing the initial nuclear polarization in the absence of

microwave irradiation [182]. With microwave irradiation depolarization is expected to reduce the enhance-

ment. Thurber and Tycko showed that depolarization is more e↵ective when the unpaired electrons have long

electronic relaxation times, meaning that the e↵ect is important for organic radicals at low temperature, and is

increased at higher fields [182]. It was also shown that spinning samples experience larger depolarization than

static samples, provided the electronic spin relaxation times are longer than the rotation period. Thurber and

Tycko ascribed depolarization to the cross e↵ect, which becomes more pronounced in spinning samples due

to time-dependent spin-level crossings that occur in organic biradicals with spatially anisotropic electronic

Zeeman interactions. It is currently unclear whether this e↵ect is also important for paramagnetic samples

containing metal ions at room temperature, although the indications so far are that depolarization is negligible

for such samples under these conditions, as the metal ions generally have much shorter electronic relaxation

times.

Both the fields of paramagnetic NMR and DNP have their origin in early contributions made from the

1950s onwards, but have only experienced an expansion into the mainstream relatively recently with advances

in instrumentation and methodology. However there are also some subtle di↵erences between the two fields.

Firstly, most applications of DNP are to diamagnetic systems that have been impregnated with paramagnetic

radicals specifically for the purpose of using the unpaired electrons to obtain the enhancement. For the
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subsequent DNP study to be valid, it is clearly necessary to avoid any structural changes to the system on

adding the radical, and so the impregnation is carried out in such a way that the part of the system of interest is

su�ciently far from the unpaired electrons not to experience any direct paramagnetic NMR e↵ects. Beyond

experiencing an enhancement and any relayed paramagnetic e↵ects transferred by spin di↵usion, this part of

the system is assumed to be unperturbed by the radical. The “paramagnetic” part of the sample that is close to

the radical is usually not studied and, as has already been remarked, is often invisible under the experimental

conditions. This is in contrast to the practice of paramagnetic NMR, where the unpaired electrons play

a key role in the properties of the system, and it is of immense interest to probe the nuclei that are as

close to the paramagnetic centre as possible. Secondly, the DNP radicals are designed so that the unpaired

electrons have long electronic spin relaxation times, on the order of milliseconds at low temperature. By

contrast paramagnetic NMR is applied to paramagnetic species with a broader range of electronic relaxation

times, usually ranging from picoseconds to milliseconds, but most studies are performed on species with

faster electronic relaxation than DNP. Thirdly, in paramagnetic NMR we usually model the shift and shift

anisotropy by noting that the nuclear spin dynamics occur on a timescale that is much longer than the

electronic relaxation times, meaning that the nuclear spin e↵ectively interacts with the average electronic

magnetic moment. This model is at the root of all the theories of the paramagnetic shift and shift anisotropy.

We only model the electronic spin levels explicitly when we need to consider a process that occurs on a faster

timescale, such as the processes leading to nuclear relaxation. In DNP, on the other hand, the polarization

transfer mechanisms can only be understood from a full consideration of the electronic spin levels at all

times. This di↵erence from paramagnetic NMR is due both to the longer electronic relaxation times of DNP

radicals, and to the fact that the microwave irradiation of the electronic spin transitions has a timescale that is

shorter than, or comparable to, the electronic spin relaxation times.

The field of DNP is currently evolving very rapidly, and there are many details to be worked out and

controversies to be resolved. Therefore a comprehensive review of the theory and applications of DNP is at

the time of writing extremely di�cult, and beyond the scope of the current review.
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1.7 What this review contains

The purpose of this review is to unify the descriptions of paramagnetic e↵ects in the literature, and set them

out in the context of the most recent work, particularly the theoretical descriptions of the paramagnetic shift

and SA, which have hitherto not been described in detail for the NMR community. In addition greater

emphasis is placed on the form of the shifts obtained in solid materials, which has been somewhat neglected

in comparison to paramagnetic molecules in solution. In all cases we pull out the key equations that are

generally used to interpret the spectra so that the reader does not have to follow all of the derivations, which

we hope makes the chapters more practically useful. We do not intend this to be comprehensive in terms of a

review of the literature, but simply to review the di↵erent approaches and strategies, and their strengths and

weaknesses.

This review is divided into five parts. Part I is the single chapter 2, which describes the basic concepts that

are necessary for understanding paramagnetic e↵ects on NMR. Part II comprises chapters 3–7, and contains a

description of all the formalisms for the paramagnetic shift and SA under di↵erent conditions and in di↵erent

systems. This part also attempts to provide a unified description of the di↵erent formalisms. Part III contains

chapters 8 and 9, and describes the PRE in di↵erent regimes. Again a unifying description is provided. Part

IV concerns the BMS and ABMS e↵ects in single-crystal and powder samples, and is formed of the single

chapter 10. Part V is chapter 11, and describes the quantum mechanics of the NMR experiment. It is shown

how the di↵erent NMR interactions in paramagnetic systems change the observed spectral features in both

solution and solid-state NMR. The final part VI, formed from chapters 12–14, is a practical guide to the NMR

experiments that can be used on di↵erent paramagnetic systems in solution and the solid state, and includes

a series of case studies of di↵erent systems.

Chapter 2 describes some basic concepts that are essential for understanding paramagnetic NMR. These

include the basic theory of magnetism, the chemical shift, and the hyperfine interaction. This material forms

the foundations of NMR [183] and EPR [184, 185] spectroscopy, and it will be seen that an understanding of

paramagnetic e↵ects in NMR can only be obtained through an understanding of EPR.

Chapter 3 describes the origin of the paramagnetic shift and SA for the simplest possible example of a

spin-only transition-metal complex. The shift is described both in terms of the EPR parameters, and the bulk

magnetic susceptibility, and the two formalisms are unified. The e↵ects of SO coupling on the paramagnetic
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shift and SA due to a d-block transition-metal ion are described in chapter 4 in terms of the EPR formalism

of van den Heuvel and Soncini [86, 88]. The e↵ect of SO coupling on the magnetic susceptibility and the

susceptibility formalism, are given. This chapter concludes with the first description of a unification of the

two formalisms. The interpretation of the various contributions to the shift and SA arising from these EPR

and susceptibility formalisms is detailed in chapter 5. This chapter describes under which conditions the

various contributions become important, and the di↵erent types of structural and electronic information that

each can provide. The following chapter 6 provides an advanced description of the EPR formalism of van den

Heuvel and Soncini [86, 88], and in particular the role of higher-order e↵ects that may be present in the EPR

description of the metal ion, and with arbitrary spin-orbit coupling strength. This description is first applied

to d-block metal ions, and then extended to the shift and SA due to lanthanide ions in the Bleaney formalism

[61]. The e↵ect of interactions between neighbouring metal ions in transition-metal clusters and extended

solids is described in chapter 7. It describes the role of low-temperature magnetic ordering, such as ferro-

and antiferromagnetic ordering, in determining the sizes of the shifts and SAs. We also link the solid-state

shift formalism described by Kim et al. [53] to the EPR formalism.

In chapter 8 we turn our attention to the PRE and the form that the relaxation rate constants take in

di↵erent motional regimes, including rapidly-tumbling molecules in solution, large biomolecules, and rigid

solids. This chapter presents the Solomon–Bloembergen–Morgan and Curie relaxation theories, which are

used to interpret the PRE of small molecules and large biomolecules under conditions of high field, and with a

phenomenological description of electronic relaxation. Chapter 9 extends the relaxation discussion to include

explicitly the relevant mechanisms of electronic relaxation. The Swedish slow-motion formalism is used to

describe the e↵ects of slow electron dynamics, low field, and inner- and outer-sphere PREs [102–104, 107–

109].

A feature of paramagnetic solid-state NMR that has hitherto been neglected by reviews is the presence of

BMS e↵ects in single-crystal and powder samples. However it is a very important e↵ect as it leads to changes

in the measured shift, and to broadening of the resonances which limits the available resolution. The BMS

e↵ects are described in chapter 10 in terms of the theory of classical electrodynamics [186].

The remainder of the review concentrates on how di↵erent paramagnetic e↵ects appear in the NMR

spectra of solutions, static, and spinning solids containing di↵erent metal ions. Chapter 11 describes the basic

quantum mechanics of NMR. We examine how the appearance of the NMR spectrum varies with di↵erent
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interactions due to paramagnetic metal ions, and how these e↵ects combine with other interactions, such

as the nuclear quadrupolar interaction, to give distinctive spectral features. Chapter 12 is a practical guide

to the NMR pulse sequences that can be applied to paramagnetic systems. The survey has a wide scope,

and encompasses small molecules in solution, solid materials, and proteins both in solution and the solid

state. This chapter aims to find the general principles that govern the success or failure of particular NMR

methods when applied to paramagnetic systems. This links to chapter 13, which presents a series of case

studies in paramagnetic NMR. The examples that are presented include small molecules, biomolecules, and

solid materials incorporating a wide range of unpaired electron species including 3d metal ions, lanthanides,

and organic radicals. Finally we provide some concluding remarks, and o↵er a perspective on the future of

paramagnetic NMR in chapter 14.

Each chapter ends with a summary of the salient points.
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Chapter 2

Introduction to nuclear and electronic

magnetism

This chapter introduces the basic concepts describing the magnetic properties of nuclei and electrons. Bulk

properties, such as the magnetization and magnetic susceptibility, and molecular/atomic-level properties, such

as magnetic moments, are presented. We employ Cartesian and spherical tensor formalisms for describing the

spin Hamiltonians of the basic interactions that are relevant for the NMR of paramagnetic systems, namely the

nuclear and electronic Zeeman interactions, the chemical shielding and shift, and the hyperfine interaction.

2.1 Nuclear and electronic magnetic moments

In quantum mechanics the magnetic dipole moment of a nucleus µI is proportional to the dimensionless

nuclear spin angular momentum I ,

µI = ~�II , (2.1)

where the constant of proportionality is the product of Planck’s constant divided by 2⇡ (~), and the nuclear

gyromagnetic ratio �I . Planck’s constant is a fundamental physical constant, whereas �I takes di↵erent values

depending on the nuclear species. It is important to note that �I is a signed quantity, i.e. it can take either

positive or negative values. For example both 1H and 13C have positive gyromagnetic ratios, whereas 15N has
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(a) (b) (c)

Figure 2.1: Illustration of the relationship between the spin and the magnetic dipole moment for nuclear and
electronic spins. In (a) it is shown that a nuclear spin I with a positive gyromagnetic ratio �I possesses a
magnetic moment µI that is parallel to the spin I . If instead the nuclear gyromagnetic ratio is negative, the
spin and magnetic moment are antiparallel, as shown in (b). The free electron has a negative gyromagnetic
ratio �S , and so the electronic magnetic moment µS is antiparallel to the electronic spin S.

a negative value. Figure 2.1 illustrates the relationship between the spin and magnetic moment vectors. The

cases of positive and negative �I are shown in (a) and (b) respectively.

In describing the electronic magnetic moment we encounter a di↵erence in the nomenclature used by

the NMR and EPR communities. The definition of the nuclear magnetic moment in Equation 2.1, given in

terms of ~ and �I , is that most commonly employed by the NMR community. The EPR community, however,

predominantly uses the alternative expression

µI = µNgII , (2.2)

where µN is the nuclear magneton, and gI is the dimensionless nuclear g-factor. Like ~, µN is a physical

constant; it can be related to other physical constants via the expression

µN =
e~

2mp
, (2.3)

where e is the elementary charge, and mp is the rest mass of the proton. In this nomenclature di↵erent

nuclear species have di↵erent values of gI . The equivalence between the two sets of parameters describing

the magnetic moment is concisely expressed as

~�I = µNgI . (2.4)

We note that gI is also a signed quantity, and takes the same sign as �I .

In an analogous way the electron magnetic moment µS is proportional to the electron spin S, and can
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also be written using two related constants of proportionality as follows:

µS = ~�SS (2.5)

= �µBgeS, (2.6)

where �S is the electron gyromagnetic ratio, ge is the free-electron g-factor, and µB is a physical constant

known as the Bohr magneton which can be calculated from the elementary charge and the rest mass of the

electron me:

µB =
e~

2me
. (2.7)

The relationship between the two sets of constants in the expression for the electronic magnetic moment is

related in a similar way to Equation 2.4, but with an additional minus sign:

~�S = �µBge. (2.8)

This awkward minus sign arises because the electron gyromagnetic ratio is actually negative, but it remains

conventional to define ge as a positive number with approximate value 2.0023. The relationship between the

electronic spin and magnetic moment is illustrated in Figure 2.1 (c). In this review we adopt the convention

that the angular momenta I and S refer to nuclear spins and electronic spins respectively.

2.2 Magnetic field, magnetization, and the magnetic susceptibility

In the literature one commonly encounters two definitions of the magnetic field, namely the magnetic field

strength H , and the magnetic induction, also known as the magnetic flux density, B. When we are describ-

ing the application of a magnetic field to a material containing a large number of magnetic moments, the

relationship between H and B is, in general, rather complicated. The field induces a net bulk magnetization

M which is the total induced magnetic moment per unit volume. The relationship between B and H is then

[187]

B = µ0(H +M ), (2.9)
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(a) (b)

Figure 2.2: Illustration of the e↵ect of applying a magnetic field to a magnetic material. The external magnetic
field H induces a response from the material in the form of a bulk magnetization M . The vector sum of H
and M is the total magnetic flux density B. In general these three vector quantities are not parallel to each
other, as shown in (a). The special case of a linear material with an isotropic volume magnetic susceptibility
�V is shown in (b). Here M is parallel to H , and so both are parallel to B.

where µ0 is the permeability of free space. The magnetic field, magnetization, and flux density are not always

parallel to each other, as illustrated in Figure 2.2 (a). Here we are concerned with linear materials, which are

those materials for which the magnetization is proportional to the field strength [187]

M = �VH , (2.10)

where �V is a dimensionless scalar quantity called the volume magnetic susceptibility. Hence the flux density

is given by

B = µ0(1 + �V )H . (2.11)

In this case the flux density is parallel to the field, as shown in Figure 2.2 (b). The scope of this review

is restricted to paramagnetic systems which are linear, and for which the volume susceptibility is small,

|�V | ⌧ 1, and so the magnetic flux density and field strength are related by the simple relation

B ⇡ µ0H . (2.12)

Henceforth we use B for the applied field, and refer to it simply as the ‘magnetic field’.

This review will focus on how the interaction between the nuclear and electronic spins in the presence of a

magnetic field can be related to both the macroscopic and the molecular/atomic-level properties of the system.

This link can be made by employing classical and statistical thermodynamics, and will be summarised here

to facilitate the discussion. The first law of thermodynamics relates the infinitesimal change in the internal
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energy U of a system to the energy supplied as heat and the work done by the system:

dU = TdS � pdV � VM · dB. (2.13)

The heat is equal to TdS , where T is the absolute temperature and S is the entropy of the system, and the

work done by the system is pdV + VM · dB where p and V are the pressure and volume of the system. We

define the Helmholtz free energy F as

F = U � TS . (2.14)

The infinitesimal change in F that accompanies the infinitesimal change in U is

dF = dU � S dT � TdS (2.15)

= �S dT � pdV � VM · dB, (2.16)

from which the components of the magnetisation are given by

Mi = �
1
V

 

@F
@Bi

!

T,V
, (2.17)

where the subscripts T and V indicate that the partial derivative is calculated at constant temperature and

volume. This establishes the link between the bulk magnetization and the bulk thermodynamic properties

of the system via the Helmholtz energy. It is also possible to establish a link to the molecular/atomic-level

properties via statistical thermodynamics, from which it can be shown that F is given by

F = �NkT ln Q, (2.18)

where N is the number of particles, k is the Boltzmann constant, and Q is the partition function. This latter

quantity is a sum over the molecular/atomic-level states |ni with energies En:

Q =
X

n

exp(�En/kT ). (2.19)
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Hence the expression for magnetization in terms of the molecular/atomic-level states is

Mi =
NkT

V

 

@ ln Q
@Bi

!

T,V
. (2.20)

This important link is used later to establish the forms of the chemical shielding and magnetic susceptibility

tensors.

2.3 The electronic and magnetic properties of periodic solids

In chapter 7 we derive and discuss the form of the paramagnetic shielding tensor in periodic solid materials.

In order to do so we must make a distinction between electronic insulators and metals, which have distinct

electronic properties, and for which the contributions of the unpaired electrons to the NMR properties are

very di↵erent. We therefore summarize the electronic properties of periodic solids here.

2.3.1 Electronic energy levels and the density of states

In finite systems, such as isolated molecules, the electronic energy levels form a discrete ladder with well-

defined energies, and the wavefunctions may either be localized to certain atoms or delocalized to a limited

extent across the molecule. However in an infinite periodic solid the energy spacing between levels is so

small that the levels broaden into continuous bands [188]. The corresponding wavefunctions are delocalized

across the entire material. In the absence of interactions between the electrons, the overall wavefunction can

be approximated by a product of one-electronic wavefunctions �(r) with energies E that are the solutions of

the following Schrödinger equation:

 

� ~
2

2me
r2 + U(r)

!

�(r) = E�(r), (2.21)

where r is the position of the electron. The potential U(r) is due to the electrostatic attraction between the

electron and all the nuclei distributed throughout the solid lattice. The potential is periodic over the lattice,

and so satisfies the relation

U(r +R) = U(r), (2.22)
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where the position vector R is a linear combination of the three primitive vectors ai that span the lattice,

R = n1a1 + n2a2 + n3a3, (2.23)

and the ni are integers. The energy levels En(k) found by solving the Schrödinger equation can be character-

ized by a band index n, which is an integer defining the electronic band, and a wavevector k which labels the

levels within a particular band. Each corresponding one-electron wavefunction �nk(r) is given by the product

of a plane wave that depends on k and is normalized over the sample volume V , and a normalized function

unk(r) that depends on both n and k:

�nk(r) =

r

1
V

exp(ik · r)unk(r). (2.24)

The functions unk(r) have the same periodicity as the lattice, i.e. unk(r+R) = unk(r), and the allowed values

of k satisfy

exp(ik ·R) = 1. (2.25)

If the electron-electron interactions are weak or absent we can write the normalized multi-electron wavefunc-

tion  (r1, r2, . . . , rN) describing N electrons as the product of the N one-electron wavefunctions that have

been properly symmetrized to satisfy the Pauli principle:

 (r1, r2, . . . , rN) =

r

1
N!

X

P

(�1)PP�n1k1 (r1)�n2k2 (r2) . . . �nNkN (rN). (2.26)

The operator P permutes the electron labels, the factor (�1)P is a plus or minus depending on whether an

even or odd number of permutations is involved, and ri is the position of the ith electron.

It is frequently the case that we need to calculate certain general quantities that are the sums of contribu-

tions from the di↵erent electronic levels. For instance we may write a general quantity Q as the following

sum of contributions Qn(k)

Q =
X

n,k

Qn(k), (2.27)

where Qn(k) is the contribution from the level with wavevector k in band n, and the sum runs over all bands

n and the allowed values of k with in each band. In the limit where the volume of the system V becomes very
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large the allowed values of k become more closely spaced, and we can replace the sum over k in Equation

2.27 with an integral. This allows us to calculate the value of the general quantity Q per unit volume, q, as

q = lim
V!1

Q
V

(2.28)

=
1

(2⇡)3

X

n

Z

Qn(k)dk. (2.29)

This expression is awkward to evaluate in practice, and so we replace it with an integral over the energies

E. To do this we firstly calculate the average value of Qn(k) at constant energy E over all values of k

corresponding to that energy, denoted hQ(k)iE . The value of q is then given by the following integral

q =
Z

hQ(k)iE g(E)dE. (2.30)

The function g(E) is the density of states, which is given by the derivative of the number of electrons per unit

volume n = N/V with respect to energy:

g(E) =
dn
dE
. (2.31)

Using this definition the number of electrons per unit volume with energies between E and E+dE is g(E)dE.

In the special case where Qn(k) depends on n and k only through the energy En(k), we can write Equation

2.30 as

q =
Z

Q(E)g(E)dE. (2.32)

In the discussion so far we have focussed solely on the spatial properties of the electrons, and have made

no reference to the spin. We account for the spin by multiplying the many-electron spatial wavefunction in

Equation 2.26 with a properly symmetrized spin wavefunction. In addition we define separate density-of-state

functions g↵(E) and g�(E) describing the electronic states of electrons in the ↵ and � spin states. In the absence

of an external magnetic field these functions are simply

g↵(E) = g�(E) = 1
2 g(E), (2.33)

i.e. each is exactly half of the total density of states.

The density of states gives us the energies of the levels, but does not give us their populations. The average
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occupancy of a level in band n with wavevector k is given by the Fermi-Dirac distribution function fn(k).

This distribution function is usually given in terms of the energy to give the following function f (E),

f (E) =
1

exp
⇥

(E � µ) /kT
⇤

+ 1
, (2.34)

where µ is the chemical potential of the system. At zero temperature the Fermi-Dirac distribution function is

a Heaviside step function [189], which is given by

f (E) =

8

>

>

>

>

<

>

>

>

>

:

1, E < µ,

0, E > µ,
(2.35)

i.e. the states with energies below the chemical potential are completely filled, and those with energies above

the chemical potential are completely unfilled. Hence we see that at zero temperature the chemical potential

is equal to the energy of the highest-energy occupied electronic level, which is referred to as the Fermi energy

EF, i.e. limT!0(µ) = EF. The corresponding level is the Fermi level. At temperatures above zero the chemical

potential deviates from the Fermi energy according to

µ = EF

2
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, (2.36)

where TF is the Fermi temperature which is defined via the relation EF = kTF. However the temperature-

dependent correction can usually be neglected at typical temperatures from 100–1000 K, for example in the

case of metals where TF is of the order 104–105 K [183], and so we simply equate the chemical potential

with the Fermi energy µ ⇡ EF. The Fermi-Dirac distribution function is plotted for di↵erent temperatures in

Figure 2.3. It can be seen that the distribution is a step function at T = 0, with the discontinuity at E = EF.

However as the temperature increases we can clearly see the progressive population of states just above the

Fermi level at the expense of those just below the Fermi level. The total number density of the electrons n is

given by the integral expression in Equation 2.32, where the quantity Q(E) is substituted for f (E):

n =
Z

f (E)g(E)dE. (2.37)

There are also analogous expressions for the separate number densities of ↵ and � electrons.
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0.5f(E)
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3EF/2 2EF0

T = 0

Figure 2.3: Plots of the Fermi–Dirac distribution function as a function of energy at di↵erent temperatures.
At T = 0 (light grey curve) the distribution is a Heaviside step function with the discontinuity at EF. As
T increases (dark grey and black curves) the discontinuity is smoothed, and the states just above EF are
populated at the expense of those just below.

2.3.2 Band structures of insulators, semiconductors, and metals

We are now in a position to distinguish between the di↵erent types of periodic solid, namely insulators,

semiconductors, and metals. The definitions of these materials are illustrated by the schematics of their band

structures shown in Figure 2.4.

Insulators

We discuss the case of insulators first as this is the class of solid materials to which we devote the most time in

this review. The band structure is shown in Figure 2.4 (a). The highest occupied band, called the valence band,

is completely filled with electrons, and the next-highest, called the conduction band, is completely empty.

There is an energy gap between the top of the valence band and the bottom of the conduction band called

the band gap Eg, in the middle of which is the Fermi energy. This gives us our definition of a non-metallic

system, which is a system for which the Fermi level lies in a band gap. Solid insulators have a band gap that

is large compared to the thermal energy Eg � kT , so that the conduction band remains unpopulated. We note

that such systems do not necessarily have equal numbers of ↵ and � electrons, and that such systems behave

as paramagnets. There is no mobility of electronic charge, and we can regard any unpaired metal electrons as

being mainly localised on, for example, the metal ion. The paramagnetic NMR properties of these systems

are discussed in section 7.7.
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E unfilled conduction band

(a)

filled valence band

EFEg

E partly-filled conduction band

(b)

EF

Figure 2.4: Schematic band structures of solid materials. The bands are shown for (a) an insulator with band
gap Eg � kT , and (b) a metal. Intrinsic semi-conductors are also represented by (a), but now with Eg ⇡ kT

Semiconductors

Intrinsic semi-conductors are also described by the band structure in Figure 2.4 (a), with the Fermi level

being located in a band gap. However the di↵erence here is that the band gap is comparable to kT at

room temperature, and not much greater, i.e. Eg ⇡ kT . Therefore there is some thermal population of

the conduction band and the conduction electrons are delocalized over the whole lattice, rather than being

localized to the paramagnetic centres. Hence the NMR properties are di↵erent to those of paramagnetic

insulators, as discussed in section 7.12.

Metals

The final example we consider is the case of solid metals, the band structure of which is shown in Figure

2.4 (b). Here the highest-occupied band is only partly filled, and the Fermi level coincides with the highest-

energy occupied level. Therefore at non-zero temperatures the levels just above the Fermi level become

partly occupied and the material exhibits conductive behaviour. This has profound consequences for the

NMR properties nuclei in such materials as the unpaired electrons, rather than being largely localised to the

paramagnetic centres, are now delocalized across the whole lattice. These e↵ects are discussed in section

7.12.
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2.3.3 The free-electron model of metals

In order to facilitate a later discussion in section 7.12 comparing the NMR shifts observed in paramagnetic

insulators and metals, we will use a simple model for the electronic structure of a metal referred to as a

free-electron model. This model is summarized here.

The definition of a free-electron metal is a solid in which there is no attractive potential between the

nuclei and the electrons, so that U(r) = 0. The solid is also periodic in x, y, and z over a length L. Then the

electronic levels are contained in a single band n = 1, and the one-electron wavefunctions �k(r) are simply

the normalized plane wave functions

�k(r) =

r

1
V

exp(ik · r), (2.38)

i.e. uk(r) = 1. The allowed values of the wavevectors are k = (2⇡/L)(n1, n2, n3). The corresponding energies

E(k) depend only on the magnitude of the wavevector k, and are given by

E(k) =
~2k2

2me
. (2.39)

The number density of electrons with wavevector magnitudes between k and k + dk is given by the density

of states g(E(k))dk on the one hand. On the other the number density is equal to the volume of a spherical

shell in wavevector space at radius k and thickness dk divided by the average volume per electron (2⇡/L)3.

Equating these two expressions we obtain

g (E(k)) dk =
2
V

✓ L
2⇡

◆3
4⇡k2dk (2.40)

=
k2

⇡2 dk, (2.41)

where the extra factor of two accounts for double occupancy by electrons with paired spins. The number

density of electrons n(k, 0) with wavevector magnitudes between 0 and k is given by the integral

n(k, 0) =
Z k

0
g

�

E(k0)
�

dk0 (2.42)

=
k3

3⇡2 . (2.43)
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From this we can calculate an expression for the density of states as a function of energy:

g(E) =
dn(k, 0)

dk
dk
dE

(2.44)

=
1

2⇡2

 

2me

~2

!3/2

E1/2 (2.45)

We associate the Fermi level with a Fermi wavevector kF, giving a Fermi energy of

EF ⌘ E(kF) (2.46)

=
~2k2

F

2me
. (2.47)

Combining Equations 2.45 and 2.47, we obtain the following simple expression for the density of states at

the Fermi level:

g(EF) =
3n

2EF
. (2.48)

This expression will prove very useful when comparing the shifts in metals and paramagnetic insulators.

2.4 The nuclear and electronic Zeeman interactions

The energy of interaction E between a magnetic moment µ and a magnetic field B is given by the scalar

product

E = �B · µ, (2.49)

where the magnetic field can either be applied externally or be due to a second magnetic moment. Figure

2.5 (a) shows the variation of the interaction energy with the relative orientation of the magnetic moment

with respect to the magnetic field. The corresponding Hamiltonian Ĥ is given by the same expression with µ

replaced with the equivalent operator µ̂:

Ĥ = �B · µ̂. (2.50)

The interaction of the nuclear magnetic moment with an external magnetic field B0 gives the nuclear

45



(a) (b) (c)

Figure 2.5: Illustration of the relationship between the spin, magnetic moment, external magnetic field, and
Zeeman energy of interaction for nuclear and electronic spins. The classical description is illustrated in (a),
with the energy of interaction between the magnetic moment and external field depending on the angle ✓
between the two vectors. The corresponding quantum-mechanical relationships are shown for the nuclear
and electronic spins in (b) and (c), assuming that the external field is along z.

Zeeman Hamiltonian ĤIZ

ĤIZ = �B0 · µ̂I (2.51)

= �~�IB0 · Î , (2.52)

where Î is the nuclear spin operator. By convention the laboratory axis system is defined so that the external

field is parallel to z. The nuclear Zeeman interaction is therefore given by

ĤIZ = �~�I B0 Îz (2.53)

= ~!0 Îz, (2.54)

where Îa is the operator representing the component of the spin along axis a, and !0 = ��I B0 is the nuclear

Larmor frequency. Since �I is a signed quantity, so is !0. For example we note that both 1H and 13C have

a positive gyromagnetic ratio and a negative Larmor frequency, whereas 15N has a negative gyromagnetic

ratio and positive Larmor frequency. A nucleus of spin quantum number I has 2I + 1 states |IMIi which are

labelled by the magnetic quantum number MI which takes values from �I to +I in integer steps. Whilst this

‘complete notation’ is the one that is mainly used throughout this review, in some cases we also employ the

more compact, and less crowded, notation |MIi where the spin quantum number I is well defined. These
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(a) (b) (c)

Figure 2.6: The ladder of energy levels due to the Zeeman interaction. The energy levels are shown for a
general nuclear spin I with (a) a positive gyromagnetic ratio, and (b) a negative gyromagnetic ratio. The
energy levels for an arbitrary electronic spin S are shown in (c). Note that the gyromagnetic ratio of the
electron is negative. We employ the compact notation for the spin states, |MIi or |MS i, rather than the
complete notation. In each case the energies of the allowed transitions are shown.

states are the eigenstates of the Zeeman Hamiltonian, with the following energies E(MI):

E(MI) = MI~!0. (2.55)

Figure 2.5 (b) illustrates the relationship between the nuclear spin vector, the external field, and the Zeeman

energy of interaction. Note that for a nucleus with positive �I (and therefore negative !0), the lowest-lying

state is |I + Ii, with energy I~!0, and the state with the highest energy is |I � Ii. Allowed transitions obey

the selection rule �MI = ±1, and so the observed frequency of absorption is �!0, as shown in Figure 2.6 (a).

For nuclei with negative �I the energy order of the states is reversed with the lowest-lying state now being

|I � Ii, with energy �I~!0, as shown in Figure 2.6 (b). The observed frequency of absorption for transitions

obeying the selection rule �MI = ±1 is now +!0. A nucleus with spin I = 1/2 possesses two states, which

are conventionally labelled
�

�

�

1
2 +

1
2

E

⌘ |↵i and
�

�

�

1
2 � 1

2

E

⌘ |�i.
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The electron Zeeman interaction is described by the Hamiltonian ĤS Z which is given by

ĤS Z = �B0 · µ̂S (2.56)

= µBgeB0 · Ŝ, (2.57)

where µ̂S and Ŝ are the operators representing the electronic magnetic moment and spin respectively. When

the applied magnetic field is along z the Hamiltonian becomes

ĤS Z = µBgeB0Ŝ z, (2.58)

where Ŝ a is the operator representing the component of Ŝ along axis a. The electronic spin states are now

labelled |S MS i. A free electron has spin S = 1/2, and therefore two states with energies E� = � 1
2µBgeB0 and

E↵ = +
1
2µBgeB0. The relationship between the electronic spin, external magnetic field, and Zeeman energy

of interaction is illustrated in Figure 2.5 (c). Note that as the electron has a negative gyromagnetic ratio, it is

the |�i state that has the lower energy. Figure 2.6 (c) shows the ladder of Zeeman energy levels and energy of

transition of an arbitrary electronic spin S .

2.5 Irreducible spherical tensors and tensor operators

2.5.1 Cartesian tensor representation of the spin Hamiltonian

This review makes extensive use of the various types of spin interactions that are present in both NMR and

EPR spectroscopy, the basic ideas behind which are summarised here. All NMR and EPR interactions can

be described as a coupling between two vectors, such as two spin vectors either belonging to two di↵erent

spins or to the same spin, or a spin coupling to an external magnetic field, via a rank-two Cartesian tensor that

contains all the information about the relevant spatial properties of the interaction. For example the nuclear

Zeeman and chemical shielding interactions can be described by a Hamiltonian ĤBI of the form

ĤBI = B ·K · Î . (2.59)
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V10 V1±1

Vz ⌥
q

1
2 V±

Table 2.1: Irreducible spherical tensor components of a vector V in terms of the Cartesian components Vi,
with V± = Vx ± iVy.

The form of this Hamiltonian is instantly recognisable as a generalised scalar product of the external magnetic

field vector B with the spin vector Î via the real spatial tensor K. As stated earlier in section 2 I refers to

nuclear spins and S to electronic spins. Hence Equation 2.59 describes either a nuclear Zeeman or chemical

shielding interaction, and the electronic Zeeman interaction can be obtained simply by replacing Î with Ŝ.

Note that the information about the field, spatial orientation, and spin is neatly separated into the di↵erent

parts of ĤBI , being represented by B, K, and Î respectively. Likewise a coupling between two spins S and

I has the general Hamiltonian ĤS I

ĤS I = Ŝ ·K · Î . (2.60)

Finally the nuclear quadrupole interaction Hamiltonian is ĤII ,

ĤII = Î ·K · Î , (2.61)

which mathematically appears to be the coupling of the spin vector of I with itself.

2.5.2 Irreducible spherical tensor representation of the spin Hamiltonian

In addition to the Cartesian representation of the interaction Hamiltonian, it sometimes proves convenient to

adopt an irreducible spherical tensor representation of the field, spin, and spatial parts. A general irreducible

spherical tensor is represented as Plm, with l and m indicating the rank and order respectively. The order m

takes values from �l to +l in integer steps. In the spherical tensor basis we write Cartesian vectors V , such

as the field and spin, as irreducible spherical tensors of rank 1. They have three components V10, and V1±1,

which are given in terms of the Cartesian components by the expressions in Table 2.1. It is usual to couple

together the two vectors in the Hamiltonian to form either a mixed field-spin tensor operator, in the case of

coupling the field to a spin operator, or a spin-spin tensor operator, in the case of coupling two spin operators.

The coupling together of two rank-one tensors Û1m0 and V̂1m00 , both of which are in general operators, yields
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the coupled tensor operator T̂lm via the expression [190]

T̂lm =

+1
X

m0=�1

+1
X

m00=�1

⌦

11m0m00|lm↵

Û1m0 V̂1m00 , (2.62)

where h11m0m00|lmi is a Clebsch–Gordan coe�cient, l takes the values 2, 1, and 0 according to the Clebsch–

Gordan series, and m = m0 + m00. Table 2.2 shows the tensor operators T̂lm formed by coupling together two

rank-one spin tensors for interactions that are commonly encountered in NMR spectroscopy.

The real Cartesian spatial tensor K can be broken down into an isotropic part Kiso, an anisotropic

antisymmetric part Kasym, and a traceless anisotropic symmetric part Ksym:

K = Kiso1 +Kasym +Ksym, (2.63)

where 1 is the 3 ⇥ 3 identity matrix. These three parts are given by

Kiso =
1
3

Tr (K) , (2.64)

Kasym =
1
2

⇣

K �KT
⌘

, (2.65)

Ksym =
1
2

⇣

K +KT
⌘

� 1
3

Tr (K)1. (2.66)

We see that the nine independent components of K are separated into these three parts as follows. The

isotropic part Kiso contains a single component which corresponds to the orientation-independent part of

K. The anisotropic and antisymmetric part Kasym contains three independent components, and is therefore

equivalent to a so-called pseudo vector. The final part Ksym, which is wholly anisotropic (i.e. traceless) and

symmetric, contains five independent components. These five parts can be written in terms of the irreducible

spherical tensors of ranks 0, 1, and 2 respectively as summarised in Table 2.3. The Hamiltonian written in

the irreducible spherical tensor basis is

Ĥ =
2

X

l=0

+l
X

m=�l

(�1)mKlmT̂l�m, (2.67)

which is the form of the generalised scalar product [190].

It is conventional to parameterise the anisotropic parts of the spatial tensor according to their anisotropy
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Î ±

Ŝ
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Î �
Ŝ
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Î z
Ŝ
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zŜ

z
�
Î
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Rank Expression in terms of Ki j Expression in terms of Kiso, Kasym
i j , and Ksym

i j

0 K00 = �
q

1
3

⇣

Kxx + Kyy + Kzz
⌘

�
p

3Kiso

1 K10 = � ip
2

⇣

Kxy � Kyx
⌘

�i
p

2Kasym
xy

K1±1 = � 1
2

h

Kzx � Kxz ± i
⇣

Kzy � Kyz
⌘i

�
h

Kasym
zx ± iKasym

zy
i

2 K20 =
q

1
6

h

3Kzz �
⇣

Kxx + Kyy + Kzz
⌘i

q

3
2 Ksym

zz

K2±1 = ⌥ 1
2

h

Kxz + Kzx ± i
⇣

Kyz + Kzy
⌘i

⌥
h

Ksym
zx ± iKsym

zy
i

K2±2 =
1
2

h

Kxx � Kyy ± i
⇣

Kxy + Kyx
⌘i

1
2

h

Ksym
xx � Ksym

yy ± 2iKsym
xy

i

Table 2.3: Irreducible spherical tensor components of a matrix K describing the spatial part of an interaction
in terms of the Cartesian components Ki j. The isotropic part of the tensor is Kiso.

parameters in their respective principal axis frames (PAFs). The PAF of the antisymmetric rank-one tensor is

defined as the coordinate system in which the irreducible spherical tensor components are given by

K10 = �i
p

2⇣, (2.68)

K1±1 = 0, (2.69)

where the overbar indicates that the tensor components are evaluated in the PAF of the antisymmetric part of

the tensor. The antisymmetric anisotropy parameter ⇣ is defined as

⇣ =

r

⇣

Kasym
xy

⌘2
+

⇣

Kasym
yz

⌘2
+

⇣

Kasym
xz

⌘2
(2.70)

=
1
2

r

⇣

Kxy � Kyx
⌘2
+

⇣

Kyz � Kzy
⌘2
+ (Kxz � Kzx)2. (2.71)

The PAF of the symmetric part of the tensor is defined as the frame in which Ksym is diagonal. Note that this

frame does not, in general, coincide with the PAF of the antisymmetric part of K. In the PAF of Ksym the

diagonal elements are ordered according to the Haeberlen convention so that
�

�

�Ksym
zz

�

�

� �
�

�

�Ksym
xx

�

�

� �
�

�

�Ksym
yy

�

�

�. The

rank-two irreducible spherical tensor components are given by

K̃20 =

r

3
2
�K, (2.72)

K̃2±1 = 0, (2.73)

K̃2±2 = �
1
2
⌘�K, (2.74)

where the tilde indicates that the tensor components are evaluated in the PAF of the symmetric part of K.
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The symmetric anisotropy �K and asymmetry parameter ⌘ are given by

�K = K̃sym
zz , (2.75)

⌘ =
K̃sym

yy � K̃sym
xx

�K
. (2.76)

Before leaving this section we note that there are numerous examples of spatial interaction tensors X ,

such as the nuclear quadrupolar interaction, zero-field splitting, and magnetic susceptibility tensors, which

have an antisymmetric part of zero, i.e X10 = X1±1 = 0. In this case it is possible to define the rank-zero and

rank-two tensors in terms of the components Xi j of the complete tensor:

X00 = �
p

3Xiso, (2.77)

X̃20 =

r

3
2
�X, (2.78)

X̃2±1 = 0, (2.79)

X̃2±2 = �
1
2
⌘�X, (2.80)

where the anisotropy �X and asymmetry parameter ⌘ have modified expressions:

�X = X̃zz � Xiso, (2.81)

⌘ =
X̃yy � X̃xx

�X
. (2.82)

These definitions are completely equivalent to those in Equations 2.75 and 2.76.

2.6 Chemical shielding and chemical shift

The nuclear Zeeman Hamiltonian correctly describes the e↵ect of an external magnetic field applied to an

isolated nucleus. However when the nucleus is part of an atom, ion, or molecule, the Zeeman Hamiltonian

no longer provides an adequate description, and we must account for the e↵ect of the surrounding electrons.

The external magnetic field causes the electrons to move in such a way that they produce their own induced

magnetic fields that modify the actual field experienced by the nucleus. In diamagnetic systems the electronic
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magnetic fields usually oppose the external field, thus shielding the nucleus from the external field. This e↵ect

is described by a chemical shielding tensor � which can be included in the nuclear Zeeman Hamiltonian to

give the correct overall description of the system:

ĤI = ĤIZ + ĤIC (2.83)

= �~�IB0 · (1 � �) · Î , (2.84)

where ĤIC = ~�IB0 · � · Î is the term in the Hamiltonian describing the chemical shielding, and 1 is the

identity tensor.

The shielding tensor �, which was first described theoretically by Ramsey [191], comprises isotropic,

antisymmetric, and symmetric anisotropic parts. Ramsey showed that for diamagnetic systems the chemical

shielding can be written as the sum of a “diamagnetic component” �dia and a “paramagnetic component”

�para.

� = �dia + �para. (2.85)

Here we face our first di�culty with the terminology. The terms “diamagnetic” and “paramagnetic” do not

refer to whether the system itself is dia- or paramagnetic, i.e. whether or not it has unpaired electrons. Rather,

the former is the contribution to the shielding from the electronic ground state of the system, and the latter

is due to the mixing of excited states with the ground state. Both contributions are present in both dia- and

paramagnetic systems [88]. Pennanen and Vaara refer to the sum of these two terms as the orbital contribution

to the shielding �orb [39]. In true paramagnetic systems we must add to the orbital contribution a second term

that is due solely to the unpaired electrons �S to give the total shielding tensor

� = �orb + �S . (2.86)

It is �S that gives rise to the “paramagnetic shift”, and it is this that forms a central subject of this review.

The isotropic, antisymmetric, and symmetric parts of � can be separated by rewriting ĤIC as the gener-

alised scalar product of irreducible spherical tensors. This gives

ĤIC = ~�I

+2
X

l=0

+l
X

m=�l

(�1)m�lmT̂l�m, (2.87)
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where �lm is the component of the chemical shielding tensor with spherical rank l and order m, and contains

the spatial dependence of the interaction. The rank l can take values of 0 (corresponding to the isotropic

part of the tensor), 1 (antisymmetric anisotropic part), and 2 (symmetric anisotropic part), and m takes values

from �l to +l in integer steps. The irreducible spherical components of � are taken from Table 2.3. The

irreducible spherical tensor operators T̂lm are formed by coupling together the components of the rank-one

tensor representing the external magnetic field vector B1n, and the rank-one tensor operator containing the

components of the nuclear spin vector Î1n where the order n takes the values �1, 0, and +1. These rank-one

irreducible spherical tensor components are given in Table 2.1. The components of T̂lm that are formed by

coupling the field and spin tensors are calculated from the formula [190]

T̂lm =
X

n

B1nÎ1,m�nh11n,m � n|lmi (2.88)

= B0 Î1mh110m|lmi (2.89)

where the hl1l2m1m2|LMi are the Clebsch–Gordan coe�cients, which are non-zero for values of L equal to

l1 + l2, l1 + l2 � 1, . . . , |l1 � l2|, and for M = m1 + m2. To go to the last line we used the convention that the

magnetic field is applied along z. The mixed field-spin second-rank tensor components formed by coupling

the field and spin tensors in this manner are given in Table 2.2.

2.6.1 The high-field approximation

Conventional NMR experiments are performed in the high-field limit, where the Zeeman interaction of the

spin with the external field dominates all internal interactions, including couplings between spins, and the

interaction of the spin with the external field via the chemical shielding. In this limit we can simplify the

form of the Hamiltonians describing these internal interactions by treating them as a perturbation to the

Zeeman Hamiltonian. The perturbation expansion can be calculated by first transforming the Hamiltonian

representing the interaction into the reference frame rotating at the Larmor frequency (simply referred to

as the rotating frame) [183], and then computing the average Hamiltonian H over one period of Larmor

precession according to the Baker–Campbell–Hausdor↵ expansion, which can be written as H = H(1) +

H(2) + H(3) + . . . where H(i) is the ith-order term [192, 193].

The transformation of the chemical shielding Hamiltonian in Equation 2.87 into the rotating frame gives
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a time-dependent Hamiltonian H̃IC(t) which is equal to

H̃IC(t) = ~�I

+2
X

l=0

+l
X

m=�l

(�1)m�lmT̂l�m exp (�im!0t) (2.90)

= ~�I B0

X

l

X

m

(�1)m h110 � m|l � mi�lmÎ1�m exp (�im!0t) . (2.91)

The first-order average Hamiltonian H(1) is given by the time-average over one period of Larmor precession

⌧0 = 2⇡/ |!0|:

H(1) =
1
⌧0

Z ⌧0

0
dt1H̃IC(t1) (2.92)

= ~�I

+2
X

l=0

�l0T̂l0, (2.93)

where we recall that only those terms with m = 0 contribute. For the chemical shielding interaction,

and indeed all interactions apart from the coupling of the nuclear quadrupolar moment to the electric-field

gradient, it is su�cient to truncate the average Hamiltonian series at the first-order term. We can now

substitute in the expressions for the T̂l0 in Table 2.2, noting that T̂10 = 0 and that both T̂00 and T̂20 are

proportional to B0 Îz. The result is

H(1) = �~!0

0

B

B

B

B

B

@

�
r

1
3
�00 +

r

2
3
�20

1

C

C

C

C

C

A

Îz. (2.94)

We can rewrite Equation 2.94 in terms of a high-field chemical shielding �(1) as follows:

H(1) = �~!0�
(1) Îz, (2.95)

�(1) = �
r

1
3
�00 +

r

2
3
�20. (2.96)

We see that, in this high-field regime, the chemical shielding tensor contains only terms of spherical ranks

zero and two, i.e. we only observe the symmetric part of the tensor. The isotropic term can be simplified easily

by noting, with reference to Table 2.3, that �00 = �
p

3�iso. The rank-two term is more complex to write

out, as �20, by definition, varies with the orientation of the system. However we can separate the size of the

anisotropy and the orientation dependence in the PAF. According to the Haeberlen convention the diagonal
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elements �̃ii are ordered as follows: |�̃zz � �iso| � |�̃xx � �iso| �
�

�

��̃yy � �iso
�

�

�. The irreducible spherical tensor

components of the chemical shielding tensor in the laboratory frame �2m can now be written in terms of the

components in the PAF �̃2m using the following relationship:

�2m =

+2
X

m0=�2

�̃2m0D(2)
m0m(↵PL, �PL, �PL), (2.97)

where the D(l)
m0m(↵, �, �) are the Wigner rotation matrix elements of rank l, and the Euler angles (↵PL, �PL, �PL)

give the orientation of the PAF in the laboratory frame. The Wigner rotation matrix elements can be written

in terms of the reduced matrix elements d(l)
m0m(�) by separating the dependence on each Euler angle into three

separate factors:

D(l)
m0m(↵, �, �) = exp(�im0↵) d(l)

m0m(�) exp(�im�). (2.98)

The complete set of reduced Wigner rotation matrix elements are tabulated up to rank l = 2 in Table 2.4,

along with the single fourth-rank element d(4)
00 (�). Substituting the matrix elements into Equation 2.94 we

obtain

H(1) = �~!0

0

B

B

B

B

B

B

@

�iso +

r

2
3

+2
X

m=�2

�̃2m exp(�im↵PL)d(2)
m0(�PL)

1

C

C

C

C

C

C

A

Îz. (2.99)

Note that the anisotropic part of the chemical shielding interaction only depends on two Euler angles. This is

because the application of the large magnetic field means that only the shielding spherical tensor components

with m = 0 in the laboratory frame are retained in the Hamiltonian, as seen in Equation 2.93. Therefore the

orientation dependence is described purely by the Wigner matrix elements D(2)
m0(↵PL, �PL, �PL) in which the

second index is zero, and so the dependence �PL is removed. The symmetric part of the chemical shielding

tensor is conventionally represented as a chemical-shielding ellipsoid, as shown in Figure 2.7. Here the value

of the chemical shielding tensor is plotted as 1/
p
� as a function of orientation in a Cartesian coordinate

system. The tensor has the shape of an ellipsoid when plotted as 1/
p
�. By convention the ii principal

component is located along the i-axis, and is plotted as 1/
p
�̃ii.

We can now use Table 2.3 to write down expressions for the rank-two chemical shielding terms in the PAF

of the symmetric part of the shielding tensor, and substitute these into the Hamiltonian to give it an explicit
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l = 1/2 expression
d(1/2)
+1/2,+1/2(�) cos(�/2)

d(1/2)
�1/2,+1/2(�) sin(�/2)

l = 1 expression
d(1)
+1,+1(�) cos2(�/2)

d(1)
�1,+1(�) sin2(�/2)

d(1)
0,+1(�) sin(�)/

p
2

d(1)
0,0(�) cos(�)

l = 3/2 expression
d(3/2)
+3/2,+3/2(�) cos3(�/2)

d(3/2)
+1/2,+3/2(�)

p
3 cos2(�/2) sin(�/2)

d(3/2)
�1/2,+3/2(�)

p
3 cos(�/2) sin2(�/2)

d(3/2)
�3/2,+3/2(�) sin3(�/2)

d(3/2)
+1/2,+1/2(�) cos(�/2)

⇣

3 cos2(�/2) � 2
⌘

d(3/2)
�1/2,+1/2(�) � sin(�/2)

⇣

3 sin2(�/2) � 2
⌘

l = 2 expression
d(2)
+2,+2(�) cos4(�/2)

d(2)
+1,+2(�) sin(�) (1 + cos(�)) /2

d(2)
0,+2(�)

q

3
8 sin2(�)

d(2)
�1,+2(�) sin(�) (1 � cos(�)) /2

d(2)
�2,+2(�) sin4(�/2)

d(2)
+1,+1(�) (2 cos(�) � 1) (1 + cos(�)) /2

d(2)
0,+1(�)

q

3
2 sin(�) cos(�)

d(2)
�1,+1(�) (2 cos(�) + 1) (1 � cos(�)) /2

d(2)
0,0(�)

⇣

3 cos2(�) � 1
⌘

/2

l = 4 expression
d(4)

0,0(�)
⇣

35 cos4(�) � 30 cos2(�) + 3
⌘

/8

Table 2.4: Expressions for the set of unique reduced Wigner rotation matrix elements d(l)
m0m(�) for ranks

l = 1/2, 1, 3/2, and 2, and the single fourth-rank element d(4)
00 (�). Additional elements are generated using

the symmetry relations d(l)
mm0 (�) = (�1)m�m0d(l)

m0m(�) and d(l)
�m0�m(�) = (�1)m�m0d(l)

m0m(�).

Figure 2.7: The chemical-shielding ellipsoid. The symmetric part of the chemical shielding tensor is plotted
on three-dimensional Cartesian axes as 1/

p
�, with the three ii principal components plotted as 1/

p
�̃ii along

the i-axes.
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form. Remembering that the o↵-diagonal elements are zero in the PAF, the �̃2m are [194]:

�̃20 =

r

3
2
�� (2.100)

�̃2±1 = 0 (2.101)

�̃2±2 = �
1
2
⌘��, (2.102)

where �� and ⌘ are the chemical shielding anisotropy and asymmetry parameter respectively. They are

defined according to the Haeberlen convention as

�� = �̃zz � �iso (2.103)

⌘ =
�̃yy � �̃xx

��
. (2.104)

For completeness we can also give explicit expressions for the unobservable antisymmetric part of the

shielding tensor. The PAF of the antisymmetric tensor is the reference frame in which

�10 = �i
p

2⇣, (2.105)

�1±1 = 0, (2.106)

where the antisymmetric anisotropy parameter ⇣ is

⇣ =
1
2

r

⇣

�xy � �yx
⌘2
+

⇣

�yz � �zy
⌘2
+ (�zx � �xz)2. (2.107)

The �i j in Equation 2.107 are those in the laboratory frame. We recall that the PAF of the antisymmetric part

does not in general coincide with that of the symmetric part, and that tensor components in the former are

represented with a tilde, whereas those in the latter are shown with an overbar. In terms of these parameters
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the Hamiltonian is

H(1) = �~!0

2

6

6

6

6

6

4

�iso + ��

r

2
3

8

>

>

<

>

>

:

r

3
2

d(2)
00 (�PL) � 1

2
⌘

⇣

exp(2i↵PL)d(2)
�20(�PL) + exp(�2i↵PL)d(2)

+20(�PL)
⌘

9

>

>

=

>

>

;

3

7

7

7

7

7

5

Îz

(2.108)

= �~!0

"

�iso +
1
2
��

n

3 cos2(�PL) � 1 � ⌘ cos(2↵PL) sin2(�PL)
o

#

Îz. (2.109)

A nuclear spin with positive gyromagnetic ratio in a crystallite of a well-defined orientation (↵PL, �PL) will

therefore resonate in the rotating frame at a single well-defined frequency ⌦(↵PL, �PL) which is given by

⌦(↵PL, �PL) = !0

"

�iso +
1
2
��

n

3 cos2(�PL) � 1 � ⌘ cos(2↵PL) sin2(�PL)
o

#

. (2.110)

In a polycrystalline powder, in which crystallites of all orientations are present with a random statistical

distribution, each crystallite is represented by a sharp peak at a particular frequency. These peaks combine to

give a broad resonance referred to as a powder pattern, an example of which is shown in Figure 2.8. Super-

imposed upon this powder pattern are the positions of five single-crystallite spectra (a)–(e) of representative

orientations. The lineshape has two discontinuities, which are located at frequencies !0�̃zz and !0�̃xx, with

the former frequency defined as being the one that is further from the isotropic frequency !0�iso. In addition

there is a cusp at frequency !0�̃yy. In principle, measuring these three positions is su�cient to obtain the

three principal values of the symmetric part of the CSA tensor.

Second-order e↵ects in the high-field approximation

In the majority of known cases the first-order approximation as presented in the previous section is su�cient

for the description of the chemical shielding under high-field conditions. However for very large shifts and

shift anisotropies, such as those that may be encountered in superparamagnetic systems [195–197], it may

be necessary to include higher-order terms. We will calculate the second-order term here as an example,

following the protocol of Ashbrook et al [193].

We proceed by calculating the second-order average Hamiltonian term in the Baker–Campbell–Hausdor↵

expansion, given by

H(2) = � i
2~⌧0

Z ⌧0

0
dt2

Z t2

0
dt1

h

H̃I(t2), H̃I(t1)
i

, (2.111)
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Figure 2.8: Simulated NMR ‘powder pattern’ spectrum of a static polycrystalline powder of a system
containing a single spin-1/2, with positive gyromagnetic ratio, which experiences a CSA interaction. The
three principal components of the CSA tensor are labelled, and correspond to the high- and low-frequency
discontinuities, and the cusp in the powder pattern. Superimposed are the five spectra (a)–(e) corresponding to
five representative crystallites of well-defined orientations. The chemical shielding isotropic and anisotropy
parameters used are !0�iso/2⇡ = 0, !0��/2⇡ = 500 kHz, and ⌘ = 0.3, which correspond to principal
components of !0�̃xx/2⇡ = �325 kHz, !0�̃yy/2⇡ = �175 kHz, and !0�̃zz/2⇡ = 500 kHz. The
single-crystallite spectra have orientations (↵PL, �PL) equal to (a) (0�, 90�), (b) (0�, 64.74�), (c) (45�, 54.74�),
(d) (0�, 36�), (e) (0�, 0�), and resonance frequencies ⌦(↵PL, �PL)/2⇡ of (a) �325 kHz, (b) �175 kHz, (c) 0
kHz, (d) 215 kHz, (e) 500 kHz.
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and extracting the secular terms. Substituting Equation 2.91 into the commutator we obtain

h

H̃I(t2), H̃I(t1)
i

= ~2�2
I B2

0

X

l1,l2

X

m

h110 � m|l1 � mi h110m|l2mi�l1m�l2�m
h

Î1m, Î1�m
i

exp (�im!0(t1 � t2)) ,

(2.112)

where we have retained only the secular terms with m1 = �m2 = m. Inserting this expression into Equation

2.111 and computing the integral yields the second-order average Hamiltonian:

H(2) =
1
2
~!0

X

l1,l2

X

m,0

1
m
h110 � m|l1 � mi h110m|l2mi�l1m�l2�m

h

Î1m, Î1�m
i

. (2.113)

The commutator of rank-one irreducible spherical tensor operators can be simplified after some tedious

algebra by using the mathematical tools of quantum angular momentum, giving

h

Î1m, Î1�m
i

= 2
p

3(�1)2I+1
p

I(I + 1)(2I + 1) h11m � m|10i

8

>

>

>

>

<

>

>

>

>

:

1 1 1

I I I

9

>

>

>

>

=

>

>

>

>

;

Îz (2.114)

= (�1)mm Îz, (2.115)

where the array in braces is a Wigner 6 j symbol [190]. Finally we use the explicit expressions for the

Clebsch–Gordan coe�cients to give the following second-order chemical shielding Hamiltonian:

H(2) =
1
2
~!0

X

l1,l2

X

m,0

(�1)m h110 � m|l1 � mi h110m|l2mi�l1m�l2�m Îz (2.116)

=
1
2
~!0 [�1�1�1+1 � �2�1�2+1 + �1�1�2+1 � �2�1�1+1] Îz. (2.117)

In analogy to the first-order interaction, we can reformulate Equation 2.117 in terms of the second-order

chemical shielding:

H(2) = �~!0�
(2) Îz, (2.118)

�(2) = �1
2

[�1�1�1+1 � �2�1�2+1 + �1�1�2+1 � �2�1�1+1] . (2.119)

The spin part of this Hamiltonian is simply Îz, which is the same as for the first-order high-field chemical
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shielding interaction. The second-order term therefore indicates that the resonance frequency experienced

by a nuclear spin is simply shifted from the frequency in Equation 2.94 by the correction term in Equation

2.117. This correction term is also proportional to the external magnetic field B0, and therefore the Larmor

frequency !0. The spatial dependence of this correction term is complicated as it is the sum of four terms,

each of which is a product of two irreducible spherical tensor components, �l1�1�l2+1. It should be noted

that only the antisymmetric and symmetric anisotropic parts of the shielding tensor contribute to the second-

order interaction; no contribution is made by the isotropic shielding. The spatial dependence is more easily

understood by writing the products �l1m�l2�m in terms of the coupled spatial tensors W (l1l2)
L0 as follows:

W (Cl1,Cl2)
L0 =

X

m

hl1l2m � m|L0i�l1m�l2�m. (2.120)

The tensor W (l1l2)
L0 is of rank L, which takes values according to the Clebsch–Gordan series from l1 + l2 down

to |l1 � l2| in integer steps. We will see that the only coupled tensors we need consider are those of ranks 0,

2, and 4. The rank-zero tensors correspond to spatially isotropic shielding components, the rank-two tensors

to the symmetric shielding anisotropy, and the rank-four tensors to an additional shielding anisotropy with a

di↵erent angular dependence. The coupled tensor components have the following symmetry with regard to

the order in which the �l1m are coupled together:

W (Cl1,Cl2)
L0 = (�1)L�l1�l2 W (C,l2,Cl1)

L0 . (2.121)

In order to write the second-order shielding Hamiltonian in terms of the W (l1l2)
L0 tensors, we invert Equation

2.120 to give an expression for �l1m�l2�m:

�l1m�l2�m =

l1+l2
X

L=|l1�l2 |
hl1l2m � m|L0iW (Cl1,Cl2)

L0 , (2.122)
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which we substitute into Equation 2.117. The final expression is

H(2) =
1
2
~!0

2

6

6

6

6

6

4

r

1
3

W (C1,C1)
00 +

r

1
5

W (C2C,2)
00

3

7

7

7

7

7

5

Îz

+
1
2
~!0

2

6

6

6

6

6

4

r

1
6

W (C1,C1)
20 �

p
2W (C1,C2)

20 �
r

1
14

W (C2,C2)
20

3

7

7

7

7

7

5

Îz

�
r

2
35
~!0W (C2,C2)

40 Îz. (2.123)

The Hamiltonian in Equation 2.123 comprises three terms. The first is spatially isotropic, as it depends

on W (C1,C1)
00 and W (C2,C2)

00 which are formed by coupling together two antisymmetric and two symmetric

shielding tensor components respectively. It will therefore manifest itself as a change in the measured

isotropic chemical shielding. The second term contains coupled tensors of rank 2, formed from coupling two

antisymmetric, one symmetric and one antisymmetric, or two symmetric shielding components, and therefore

contributes to the symmetric shielding anisotropy in the same way as the rank-two tensor in Equation 2.94.

One intriguing aspect of these two terms is that both depend on the antisymmetric part of the shielding

tensor, which is not observable in the conventional high-field (first-order) limit. The final term is new: it has

a rank-four spatial dependence through W (C2,C2)
40 , which is due to the coupling of two symmetric shielding

tensor components. It is spatially anisotropic, but with a di↵erent angular dependence to the ‘conventional’

shielding anisotropy. Such rank-four spatial terms are well known from the NMR of quadrupolar nuclei,

where they are formed from the coupling together of two spatial components from the quadrupolar coupling

Hamiltonian or the quadrupolar Hamiltonian with the CSA Hamiltonian [193], and are known to lead to

broadening of the resonance [198] as well as being sources of information about the tensor parameters.

2.6.2 The chemical shift

So far we have formulated the discussion in terms of the chemical shielding. We now introduce the chemical

shift convention, limiting ourselves to the high-field limit where only the first-order interaction is retained. In

experimental NMR we actually measure the chemical shift tensor �, the isotropic value of which is equal to

the di↵erence between the isotropic shielding of a reference system �ref
iso and the system of interest:

�iso = �
ref
iso � �iso. (2.124)
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Using the shift convention we define the diagonal components (or principal values) of the symmetric part of

the tensor in the PAF as �̃ii, and write the chemical shift anisotropy (CSA) ��, and asymmetry parameter ⌘

as:

�� = �̃zz � �iso (2.125)

⌘ =
�̃yy � �̃xx

��
, (2.126)

where we have used the Haeberlen convention to order the principal values:
�

�

��̃zz � �iso
�

�

� �
�

�

��̃xx � �iso
�

�

� �
�

�

��̃yy � �iso
�

�

�. To obtain the isotropic chemical shift and the CSA in frequency units, we multiple �iso and �� by

the Larmor frequency !0. Note that for nuclei with a positive gyromagnetic ratio, and therefore a negative

Larmor frequency, a positive value of either �iso or �� implies a negative frequency.

Finally, when we discuss the paramagnetic contribution to the chemical shielding �S we can also define

a paramagnetic shift tensor. If our reference system is diamagnetic the total isotropic chemical shift is

�iso = �
ref,orb
iso � �orb

iso � �S
iso, (2.127)

where �ref,orb
iso is the orbital contribution to the isotropic shielding of the reference compound. The total

chemical shift is therefore the sum of the orbital contribution �orb
iso and the paramagnetic shift �S

iso:

�iso = �
orb
iso + �

S
iso, (2.128)

where

�orb
iso = �

orb,ref
iso � �orb

iso (2.129)

�S
iso = ��S

iso. (2.130)

This implies that the paramagnetic part of the isotropic shift is simply given by minus the isotropic part of

the paramagnetic shielding tensor.
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2.7 The spin interactions of quadrupolar nuclei

We now extend the previous discussion of nuclear spin interactions to quadrupolar nuclei, which are defined

as nuclei with spin I > 1/2. Quadrupolar nuclei also experience nuclear Zeeman ĤIZ and chemical shielding

ĤIC interactions, which have the same form as for spin-1/2 nuclei. However there is an additional term in

the Hamiltonian, known as the nuclear quadrupolar interaction ĤIQ, which describes the interaction of the

nuclear quadrupole moment with the gradient of the electric field due to the electrons. The total nuclear spin

Hamiltonian ĤI is therefore

ĤI = ĤIZ + ĤIQ + ĤIC . (2.131)

Under high-field conditions the magnitudes of the three interactions are generally ordered as follows:
�

�

�ĤIZ
�

�

� �
�

�

�ĤIQ
�

�

� >
�

�

�ĤIC
�

�

�, i.e. the nuclear Zeeman interaction dominates the chemical shielding and quadrupolar inter-

actions. In come cases the magnitudes of the shielding and quadrupolar interactions may be opposite, for

example for nuclei with small quadrupolar moments such as 6/7Li and nuclei in a cubic environment. The

dominance of the Zeeman interaction means that the internal spin interactions may be treated as perturbations,

as we have already seen for the chemical shielding interaction. Hence we can write down a high-field internal

spin interaction H
(2)
I with the following form:

H
(2)
I = H

(1)
IQ + H

(1)
IC + H

(2)
I,Q⇥Q + H

(2)
I,Q⇥C + H

(2)
I,C⇥C . (2.132)

In order of decreasing magnitude the interactions in Equation 2.132 are the first-order quadrupolar interaction

H
(1)
IQ, the first-order chemical shielding interaction H

(1)
IC , and the second-order interactions due to the nuclear

quadrupole H
(2)
I,Q⇥Q, the cross-terms between the quadrupole and chemical shielding H

(2)
I,Q⇥C , and the chemical

shielding H
(2)
I,C⇥C . The two Hamiltonians for the chemical shielding H

(1)
IC and H

(2)
I,C⇥C have already been deter-

mined for spin-1/2 nuclei in Equations 2.109 and 2.123, and have exactly the same form for a quadrupolar

nucleus. However for quadrupolar nucleus there is the additional complication in that there are 2I + 1 spin

states, between which there are I(2I+1) transitions in which the magnetic quantum increases. Each transition

has an associated frequency for each interaction. For example the first-order chemical shielding transition
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frequency for a transition from state |IM1i to |IM2i is

⌦(M1!M2)
IC (↵PL, �PL) = �!0

"

�iso +
1
2
��

n

3 cos2(�PL) � 1 � ⌘ cos(2↵PL) sin2(�PL)
o

#

(M2 � M1). (2.133)

We have already fully examined the chemical shielding interaction. The remainder of this section is

devoted to the quadrupolar interaction under high-field conditions.

2.7.1 The nuclear quadrupole Hamiltonian

The nuclear quadrupolar Hamiltonian describes the interaction between the quadrupolar moment of the

nucleus and the electric-field gradient (EFG) due to the surrounding electrons. The EFG is calculated from

the electric scalar potential of the electrons V by taking the second derivative with respect to the position

coordinates xi. There are therefore nine components of the EFG, which takes the form of a symmetric and

traceless tensor (rank two) with components Vi j = @2V/@xi@x j. We define the PAF of the EFG tensor as the

reference frame in which the tensor is diagonal with principal components Ṽii. These components are ordered

as
�

�

�Ṽzz
�

�

� �
�

�

�Ṽyy
�

�

� �
�

�

�Ṽxx
�

�

�, and are written in terms of the EFG anisotropy eq and asymmetry ⌘Q parameters as

follows:

Ṽzz = eq, ⌘Q =
Ṽxx � Ṽyy

Ṽzz
. (2.134)

The Euler angles giving the orientation of the PAF relative to the laboratory frame are⌦QL =
�

↵QL, �QL, �QL
�

.

The nuclear quadrupolar Hamiltonian is given by

ĤIQ =
eQ

2I(2I � 1)
Î · V · Î , (2.135)

where eQ is the nuclear quadrupole moment. Note that although ĤIQ appears to have the form of an

interaction of the nuclear spin with itself, this is not the correct physical interpretation. As we have stated,

the interaction is between the nuclear quadrupolar moment and the EFG. By convention we define the

quadrupolar coupling constant CQ (in Hz) and quadrupolar splitting frequency !Q (in rads�1) as

CQ =
e2qQ

h
, !Q =

3⇡CQ

2I(2I � 1)
. (2.136)
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In terms of these quantities we can rewrite ĤIQ as

ĤIQ =
2~!Q

3eq
Î · V · Î (2.137)

=
2
3
~!QÎ · v · Î , (2.138)

where we have defined the reduced EFG tensor as v = V /(eq). We see that the strength of the interaction

is proportional to the quadrupolar splitting frequency. This Hamiltonian contains the generalized Cartesian

scalar product Î · v · Î . To facilitate the following discussion, this quantity is more conveniently written in

terms of irreducible spherical tensors, which gives the following equivalent form of the Hamiltonian:

ĤIQ =
2
3
~!Q

+2
X

m=�2

(�1)mv2mÎ2�m. (2.139)

We now proceed to calculate the resulting first- and second-order terms in Equation 2.132.

The first-order nuclear quadrupole interaction

The first-order quadrupolar interaction Hamiltonian H
(1)
IQ is calculated according to the protocol in section

2.6.1. The Hamiltonian has a simple form in which only the term in Î20 is retained from Equation 2.139:

H
(1)
IQ =

2
3
~!Qv20 Î20 (2.140)

=
2
3
~!QÎ20

+2
X

m=�2

ṽ2mD(2)
m0(⌦QL), (2.141)

which we see is proportional to !Q. On the second line we have written v20 in terms of the irreducible

spherical tensor components in the PAF ṽ2m, which are given by:

ṽ20 =

r

3
2
, (2.142)

ṽ2±1 = 0, (2.143)

ṽ2±2 =
1
2
⌘Q. (2.144)
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Substituting these into Equation 2.141 gives the following explicit expression for H
(1)
IQ:

H
(1)
IQ =

1
2
~!Q

h

3 cos2(�QL) � 1 + ⌘Q sin2(�QL) cos(2↵QL)
i

"

Î2
z �

1
3

I(I + 1)1̂
#

. (2.145)

The corresponding frequency of transition from state |IM1i to state |IM2i is therefore:

⌦(M1!M2)
IQ (↵QL, �QL) =

1
2
!Q

h

3 cos2(�QL) � 1 + ⌘Q sin2(�QL) cos(2↵QL)
i h

M2
2 � M2

1

i

. (2.146)

We see that, in contrast to the chemical shielding interaction, the transition frequency depends on the dif-

ference in the squares of the two magnetic quantum numbers. An important consequence of this is that any

symmetric transition with M2 = �M1 has no contribution from the quadrupolar interaction. This point is

explored in more detail in chapter 11.

The second-order nuclear quadrupole interaction

There are two second-order terms in the Hamiltonian in Equation 2.141 which are due to the quadrupolar

interaction. The larger and more important of these is H
(2)
I,Q⇥Q, which is due solely to the nuclear quadrupole.

It is calculated using the same protocol given for the second-order chemical shielding term as described in

section 2.6.1. The Hamiltonian is given by the time-integral of the commutator
h

H̃IQ(t2), H̃IQ(t1)
i

in the

second-order average Hamiltonian. Evaluating this gives the following expression

H
(2)
I,Q⇥Q = �

2~!2
Q

45!0

h

2 (4v2�1v2+1 + v2�2v2+2)
⇣

5Î3
z � (3I(I + 1) � 1)Îz

⌘

+ (v2�1v2+1 � v2�2v2+2) (4I(I + 1) � 3) Îz,
i

(2.147)

which has a magnitude that is proportional to !2
Q/!0. This indicates that this second-order interaction

decreases in size as we increase the external magnetic field B0.

The spatial properties of the interaction are elucidated by writing the products v2�mv2m in terms of the

following irreducible spherical tensor components W (Q,Q)
L0 in the coupled representation.

W (Q,Q)
L0 =

X

m

h22m � m|L0i v2mv2�m. (2.148)
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In this representation the Hamiltonian is

H
(2)
I,Q⇥Q =

4~!2
Q

9!0
W (Q,Q)

00

"

3
5
p

5

⇣

5Î3
z � (3I(I + 1) � 1) Îz

⌘

+
4I(I + 1) � 3

5
p

5
Îz

#

+
4~!2

Q

9!0
W (Q,Q)

20

2

6

6

6

6

6

4

�3
5

r

2
7

⇣

5Î3
z � (3I(I + 1) � 1) Îz

⌘

+
4I(I + 1) � 3

10
p

14
Îz

3

7

7

7

7

7

5

+
4~!2

Q

9!0
W (Q,Q)

40

2

6

6

6

6

6

4

�51
15

r

1
70

⇣

5Î3
z � (3I(I + 1) � 1) Îz

⌘

� 3
10
p

70
(4I(I + 1) � 3) Îz

3

7

7

7

7

7

5

. (2.149)

We see that the interaction contains a part that depends on the rank-zero tensor W (Q,Q)
00 , and is therefore

spatially isotropic. The anisotropic parts are of ranks two and four. Finally we note that the transition

frequencies depend on M2 � M1 and M3
2 � M3

1 , and so symmetric transitions are a↵ected by the quadrupolar

interaction to second order.

The second-order quadrupole–SA cross term

The final second-order interaction Hamiltonian H
(2)
I,Q⇥C is due to the combination of the quadrupolar and

chemical shielding interactions. In the second-order average Hamiltonian treatment the Hamiltonian is given

by the integral of
h

H̃IQ(t2), H̃IC(t1)
i

+
h

H̃IC(t2), H̃IQ(t1)
i

, which is the sum of the two cross terms between

these two interactions [193]. The resulting expression for H
(2)
I,Q⇥C is:

H
(2)
I,Q⇥C = ~!Q [(�1+1 + �2+1) v2�1 � (�1�1 � �2�1) v2+1]

"

Î2
z �

1
3

I(I + 1)1̂
#

, (2.150)

which we see is proportional to the product of the quadrupolar splitting frequency !Q and the components of

the symmetric and antisymmetic anisotropic parts of the chemical shielding tensor �2m and �1m. As before

we can deduce the spatial properties by writing the tensor products in terms of the coupled tensor components

W (Cl,Q)
L0

W (Cl,Q)
L0 =

X

m

hl2m � m|L0i�lmv2�m, (2.151)

which gives

H
(2)
I,Q⇥C = ~!Q

2

6

6

6

6

6

4

� 2p
5

W (C2,Q)
00 +

p
2W (C1,Q)

20 +

r

2
7

W (C2,Q)
20 + 4

r

2
35

W (C2,Q)
40

3

7

7

7

7

7

5

"

Î2
z �

1
3

I(I + 1)1̂
#

. (2.152)
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As for the other second-order terms, this contribution also has parts of spatial ranks zero, two, and four. We

also note that, as for the first-order quadrupolar interaction, the transition frequencies are proportional to

M2
2 � M2

1, and so this interaction does not a↵ect symmetric transitions.

2.8 The hyperfine interaction

The coupling interaction between the nucleus and the unpaired electrons is of central importance when

discussing the e↵ect of the latter on the NMR of paramagnetic systems. This coupling is referred to as

the hyperfine interaction as it results in a “hyperfine” splitting structure in the EPR resonance. As we will see

the hyperfine coupling constant, which describes the dependence of the interaction on the spatial orientation,

contains both an isotropic contact term, which is analogous to the J-coupling interaction between nuclei, and

a symmetric anisotropic dipolar coupling term.

In deriving the Hamiltonian ĤSI describing the hyperfine interaction we can choose to view it either as

the interaction of the nuclear magnetic moment µ̂I with a magnetic field due to the electron, or equivalently

as the interaction of the electronic magnetic moment µ̂S with a magnetic field due to the nucleus. A detailed

derivation can be found in Abragam and Bleaney [184], who show that ĤSI is equal to

ĤSI = �
µ0

4⇡

h

(µ̂S ·r) (µ̂I ·r) � (µ̂S · µ̂I)r2
i 1

r
, (2.153)

where r is the vector derivative operator del, which is given by

r =
 

@

@x
,
@

@y
,
@

@z

!

. (2.154)

The coordinates (x, y, z) describe the position of a point relative to the nucleus, and r =
p

x2 + y2 + z2 is the

distance from the nucleus. As will become apparent shortly, it is convenient to separate the Hamiltonian into

two parts as follows:

ĤSI = �
µ0

4⇡

"

(µ̂S ·r) (µ̂I ·r) � 1
3

(µ̂S · µ̂I)r2
#

1
r
+
µ0

4⇡

"

2
3

(µ̂S · µ̂I)r2
#

1
r
. (2.155)

The two terms in Equation 2.155 are the spin-dipolar and contact parts of the hyperfine interaction respec-
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tively, which we now explore in detail.

2.8.1 Interaction with a single delocalised electron

We assume that that electron is spatially delocalized, and the nucleus is localised at the single point r = 0.

This description is appropriate when for example considering 3d electrons of first-row d-block transition-

metal ions that are delocalized into ligand orbitals. The full magnetic interaction is calculated by multiplying

ĤSI with the electron density ⇢(r), which is given by the square of the electron wavefunction  (r), i.e.

⇢(r) = | (r)|2, and then integrating over all space. We consider two cases, firstly when the electron and

nucleus are well separated, and secondly when the electron is within the immediate vicinity of the nucleus.

In the first case we set r , 0, which for instance would be the case when the electron occupies an orbital other

than an s-orbital. The second term in Equation 2.155 then integrates to zero, and the first term Ĥr,0
SI becomes

[184]

Ĥr,0
SI = �

µ0

4⇡

Z

3 (µ̂S · r) (µ̂I · r) � (µ̂S · µ̂I) r2

r5 | (r)|2 d3r (2.156)

= � µ0

4⇡

Z

[3 (µ̂S · e) (µ̂I · e) � µ̂S · µ̂I]
| (r)|2

r3 d3r, (2.157)

where r is the vector displacement of the electron with respect to the nucleus, e is the corresponding unit

vector, and  (r) is the electron wavefunction. The square of the magnitude of the wavefunction, | (r)|2, gives

the electron density at position r. This interaction term is referred to as the spin-dipolar interaction.

The situation where the electron is in the immediate vicinity of the nucleus corresponds to setting r = 0.

Physically we would encounter this situation when the electron resides in an s-orbital centred at the nucleus.

It can be shown that, in this case, the dipolar coupling term of the hyperfine interaction is equal to zero, and

we are then left with the second term of Equation 2.155 which integrates to give Ĥr=0
SI :

Ĥr=0
SI = �

2
3
µ0 (µ̂S · µ̂I) | (0)|2 . (2.158)

This term, which is referred to as the Fermi-contact interaction, is purely isotropic and arises due to the

delocalisation of the electron onto the nucleus [184], which is reflected by the dependence of the size of the

interaction on | (0)|2, which is the electron density at the nucleus, where r = 0. Summing Ĥr,0
SI and Ĥr=0

SI
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n (r = 0)

e (r = R)

(c)

Figure 2.9: Illustration of the hyperfine interaction between a nucleus and unpaired electron. In (a) is shown
the contact interaction. The nucleus n interacts with a delocalised electron, the electron density of which
here takes the shape of a 3d-orbital centred on a di↵erent nucleus. The size of the interaction is proportional
to the electron density located at the nuclear position r = 0 (Equation 2.158). In (b) the same unpaired
electron interacts with a more remote nuclear spin via the spin-dipolar interaction. The size of the interaction
is given by the integral over all positions r relative to the nucleus in Equation 2.157. When the electron is
approximated as a point electronic dipolar moment e in (c), the hyperfine interaction is given by Equation
2.162, and depends on the distance R between the nucleus and electron. Now if R , 0 the Fermi-contact
interaction is zero, and the hyperfine interaction is purely spin-dipolar in nature.

yields the full hyperfine Hamiltonian,

ĤSI = �
µ0

4⇡

"

Z

3 (µ̂S · r) (µ̂I · r) � (µ̂S · µ̂I) r2

r5 | (r)|2 d3r +
8⇡
3

(µ̂S · µ̂I) | (0)|2
#

. (2.159)

The Fermi-contact and spin-dipolar interactions with a delocalised electron are illustrated in Figure 2.9 (a)

and (b).

2.8.2 Interaction with a single localised electron

In cases where we can model the electron as being completely localised on the paramagnetic centre, we treat

the electron as a point charge and point dipole. In this case we replace the electron density | (r)|2 in Equation

2.159 with the three-dimensional Dirac delta function �(r �R) [189], where R is the position of the electron

relative to the nucleus, and the integral simplifies to

Z

3 (µ̂S · r) (µ̂I · r) � (µ̂S · µ̂I) r2

r5 | (r)|2 d3r =
Z

3 (µ̂S · r) (µ̂I · r) � (µ̂S · µ̂I) r2

r5 �(r �R)d3r (2.160)

=
3 (µ̂S · e) (µ̂I · e) � µ̂S · µ̂I

R3 (2.161)
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where R is the distance of the electron from the nucleus. We note here that, formally, R is the position of the

unpaired electron relative to the nucleus of interest. However in situations where this nucleus of interest is

di↵erent to the paramagnetic centre, R is e↵ectively the position of the nucleus of the paramagnetic centre

relative to the nucleus of interest, i.e. the positions of the nucleus and electron of the paramagnetic centre are

essentially indistinguishable. If the errors introduced by this approximation are non-negligible, then we are

automatically not in the point-dipole regime, which is the situation described by Walder et al [199]. Assuming

that the point-dipole approximation holds, the total hyperfine Hamiltonian is

ĤSI = �
µ0

4⇡

"

3 (µ̂S · e) (µ̂I · e) � µ̂S · µ̂I

R3 +
8⇡
3

(µ̂S · µ̂I) �(R)
#

, (2.162)

The first term is the well-known interaction between point dipoles [194], and the second term is the Fermi-

contact interaction which is equal to zero unless the nucleus is actually located at the exact position of the

electron, i.e. R = 0. This is illustrated in Figure 2.9 (c).

In order to simplify the calculation of the hyperfine interaction it is frequently assumed that we can apply

the point-dipole approximation to determine the spin-dipolar part, and need only use electron delocalization

for the Fermi-contact part. The errors in the former approximation are not great at large distances from the

paramagnetic centre, i.e. typically when R > 4 Å, but can lead to inaccuracies for nuclei that are closer. This

comparison has been discussed in some detail by Autschbach et al [200]. The point-dipole approximation

for the spin-dipolar interaction has been widely used for both paramagnetic proteins, and solid materials

[11, 17, 44, 45, 65, 66, 101].

2.8.3 Interaction with a paramagnetic centre of multiple delocalised electrons

The expression for the hyperfine interaction Hamiltonian given above describes a hyperfine coupling to a

single electron. For a system containing an ion with multiple unpaired electrons i with total electronic spin

S , the Hamiltonian in Equation 2.159 is modified so that we sum over all the electrons [184]:

ĤSI = �
µ0

4⇡

X

i

"

Z

3
�

µ̂s,i · r
�

(µ̂I · r) � �

µ̂s,i · µ̂I
�

r2

r5 | i(r)|2 d3r +
8⇡
3

�

µ̂s,i · µ̂I
� | i(0)|2

#

, (2.163)
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where µ̂s,i, and  i(r) are the magnetic moment, and wavefunction of electron i. We can simplify the Hamil-

tonian by writing the sum over the electrons i in terms of the average spin density per electron ⇢↵��(r)/(2S ),

where ⇢↵��(r) is the total spin-unpaired electron density at position r, and 2S is the number of unpaired

electrons. The Fermi-contact term can then be written as

�2µ0

3

X

i

�

µ̂s,i · µ̂I
� | i(0)|2 = �2µ0

3
(µ̂S · µ̂I)

1
2S

⇢↵��(0), (2.164)

where µ̂S =
P

i µ̂s,i is the magnetic moment operator for the total electron spin Ŝ. Likewise the spin-dipolar

term can be written as

� µ0

4⇡

X

i

Z 3
⇣

µ̂(i)
S · r

⌘

(µ̂I · r) �
⇣

µ̂(i)
S · µ̂I

⌘

r2

r5 | i(r)|2 d3r

= � µ0

4⇡

Z

3 (µ̂S · r) (µ̂I · r) � (µ̂S · µ̂I) r2

r5
⇢↵��(r)

2S
d3r. (2.165)

The total hyperfine Hamiltonian is therefore

ĤSI = �
µ0

8⇡S

"

Z

3 (µ̂S · r) (µ̂I · r) � (µ̂S · µ̂I) r2

r5 ⇢↵��(r)d3r +
8⇡
3

(µ̂S · µ̂I) ⇢↵��(0)
#

. (2.166)

2.8.4 Interaction with a paramagnetic centre of multiple localised electrons

Finally we consider the case where all the electrons are localised at the same position R, which we refer to as

the position of the paramagnetic centre. The densities of each of the electrons i can now be replaced with the

same Dirac delta function | i(r)|2 = �(r �R), and we can write the hyperfine Hamiltonian in terms of the

e↵ective spin electronic magnetic moment µ̂S as follows:

ĤSI = �
µ0

4⇡

X

i

"

3
�

µ̂s,i · e
�

(µ̂I · e) � µ̂s,i · µ̂I

R3 +
8⇡
3

�

µ̂s,i · µ̂I
�

�(R)
#

(2.167)

= � µ0

4⇡

"

3 (µ̂S · e) (µ̂I · e) � µ̂S · µ̂I

R3 +
8⇡
3

(µ̂S · µ̂I) �(R)
#

, (2.168)

which is the same as Equation 2.162. Note in particular that, for localised electrons, there is no scaling of the

hyperfine Hamiltonian by the factor 1/(2S ).
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2.8.5 The hyperfine coupling constant

For all the situations we have described above, we can write the hyperfine Hamiltonian in terms of the spin

operators. Substituting in the corresponding expressions for the nuclear and electronic magnetic moments,

namely µ̂I = ~�I Î and µ̂S = �µBgeŜ, we obtain an expression of the form

ĤSI = Ŝ ·A · Î , (2.169)

where A is the hyperfine coupling tensor, which we have seen can be divided into the isotropic Fermi-contact

coupling constant AFC and the traceless and symmetric spin-dipolar tensor ASD:

A = AFC1 +ASD. (2.170)

If the electrons are delocalised onto the ligands the Fermi-contact coupling constant, and the Cartesian

components of the spin-dipolar tensor are given by [184, 201]

AFC =
µ0µBge~�I

3S
⇢↵��(0), (2.171)

ASD
i j =

µ0µBge~�I

8⇡S

Z 3rir j � �i jr2

r5 ⇢↵��(r)d3r, (2.172)

where i and j are equal to x, y, or z, ei is the unit vector along axis i, and �i j is the Kronecker delta.

The coupling constant describing the hyperfine interaction to a multi-electron paramagnetic centre has a

complicated interpretation. The Fermi-contact coupling constant is proportional to the total unpaired electron

spin density transferred to the nucleus, i.e. the sum of the contributions from the individual electrons. But

since each unpaired electron resides in a di↵erent orbital with a di↵erent spatial distribution of electron

density, the contribution to the hyperfine interaction from each electron is di↵erent. For example, imagine a

diatomic system comprising a d-transition-metal centre whose dz2 orbital is coordinated to an s-orbital of the

atom containing the nucleus of interest. We would expect the contribution to the Fermi-contact term from

the dz2 orbital to be non-zero. However an electron in the dxy orbital may not be delocalized at all into the

s-orbital due to the di↵erent symmetry, and so would have a Fermi-contact contribution of zero. In order to

make the Fermi-contact contributions from di↵erent metal ions in di↵erent systems comparable we divide the
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coupling constant by the number of unpaired electrons, which is equal to 2S so as to give a “Fermi-contact

coupling constant per electron”, which is also known as the many-electron Fermi-contact coupling constant.

The same considerations also apply to the spin-dipolar interaction.

If, on the other hand, the electrons can be treated as a point dipole with spin S , the hyperfine coupling

tensor parameters are

AFC =
2µ0µBge~�I

3
�(R), (2.173)

ASD
i j = bS I

h

3eie j � �i j
i

, (2.174)

where the point-dipole coupling constant bS I is

bS I =
µ0µBge~�I

4⇡R3 . (2.175)

Here the scaling by the number of electrons has already been implicitly included. Since the electrons are

point dipoles, the di↵erent spatial variation of the individual orbitals is suppressed, and each electron makes

exactly the same contribution to the interaction. Hence the factor of 2S is not present.

We can also write Equation 2.169 in terms of irreducible spherical tensors as follows

ĤSI =
X

l=0,2

+l
X

m=�l

(�1)mAlmT̂l�m. (2.176)

In the high-field limit, only the terms with m = 0 are retained and the Hamiltonian reduces to

ĤSI = A00T̂00 + A20T̂20. (2.177)

The spin tensors T̂l0 can be written down after referring to Table 2.2, with one important di↵erence. Because

the energy corresponding to the di↵erence between the electron and nuclear Larmor frequencies is several

orders of magnitude greater than the hyperfine coupling constant, the scalar product Î · Ŝ can be simplified

as the flip-flop term ÎxŜ x + ÎyŜ y is averaged to zero in the calculation of the first-order average Hamiltonian,
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and only the longitudinal term ÎzŜ z remains [1]. Therefore the spin tensors are

T̂00 = �
r

1
3

ÎzŜ z (2.178)

T̂20 =

r

2
3

ÎzŜ z. (2.179)

The spatial tensor components Al0 can be written down after referring to Table 2.3. Using this information

we can write the spatial tensor components for delocalised electrons as

A00 = �
p

3AFC (2.180)

Ã20 =

r

3
2

⇣

Ãzz � AFC
⌘

(2.181)

=

r

3
2
µ0µBge~�I

8⇡S

Z 3z2
PAF � r2

PAF

r5
PAF

⇢↵��(rPAF) d3rPAF (2.182)

Ã2±1 = 0 (2.183)

Ã2±2 = �
1
2
⌘SD

⇣

Ãzz � AFC
⌘

, (2.184)

where ⌘SD is the asymmetry parameter, and ri,PAF is a position coordinate measured in the PAF of the spin-

dipolar tensor. Note that the spin-dipolar interaction is not necessarily axially symmetric. For localised

electrons, the spatial tensor components are:

A00 = �
p

3AFC (2.185)

Ã20 =

r

3
2

⇣

Ãzz � AFC
⌘

(2.186)

=
p

6bS I (2.187)

Ã2±1 = 0 (2.188)

Ã2±2 = 0, (2.189)

where Ãzz � AFC = 2bS I . The spin-dipolar interaction between two point magnetic dipoles is always axially

symmetric, and so ⌘SD and Ã2±2 are therefore zero.
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2.8.6 The hyperfine interaction in solid insulators

We now consider the form of the hyperfine interaction in solids. As discussed in section 2.3.2, insulating

materials exhibit no charge conductivity, and so we can treat the unpaired electrons as being largely localized

on the paramagnetic centres. In this case we can write the hyperfine interaction Hamiltonian as a sum of

terms of the type given in section 2.8.5, to give

ĤIS =
X

A

Ŝ(A) ·A(A) · Î . (2.190)

Here Ŝ(A) and A(A) are the electronic spin operator and the hyperfine coupling tensor due to the unpaired

electrons on paramagnetic centre A.

2.8.7 The hyperfine interaction in solid metals

The hyperfine interaction Hamiltonian in metallic materials has a similar form to the Hamiltonian describing

an isolated paramagnetic centre, but with some notable di↵erences. Firstly we note that we cannot necessarily

write the interaction in terms of a total electronic spin operator Ŝ. We therefore write the Hamiltonian as a

sum over the N electrons:

ĤIS =
µ0µBge~�I

4⇡
Î ·

X

l

2

6

6

6

6

4

3 (rl · ŝl) rl � r2
l ŝl

r5
l

+
8⇡
3
�(rl)ŝl

3

7

7

7

7

5

. (2.191)

Secondly, in the sum over the electrons l, only electrons in states close to the Fermi level contribute to the

hyperfine coupling. The other electrons are spin paired, and so do not contribute. Equation 2.191 assumes

that the electrons can be approximated as free electrons, with g-factor ge.

We proceed as before and calculate the expectation value of ĤIS with respect to the electronic spatial

degrees of freedom in a spatial state described by the many-electron wavefunction of Equation 2.26. The

result is a sum of hyperfine interactions with the individual electronic spins:

ĤIS =
X

l

ŝl · al · Î , (2.192)
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where al is the hyperfine coupling tensor describing the interaction with electron l, which is given by

al =
µ0µBge~�I

4⇡

Z

 (r1, r2, . . . , rN)⇤
2

6

6

6

6

6

4

3rlrl � r2
l 1̂

r5
l

+
8⇡
3
�(rl)1̂

3

7

7

7

7

7

5

 (r1, r2, . . . , rN)d3r1d3r2 . . . d3rN . (2.193)

The NMR properties that result from this interaction are explored in section 7.12.

2.8.8 Finite nucleus e↵ects

The treatment of the hyperfine interaction in this section has so far assumed that the nucleus can be accurately

modelled as a point charge eZ, with a distribution of infinitesimal width given by ⇢(rI) = eZ�(rI), where rI

is the nuclear position coordinate. Assuming this model, we obtain a hyperfine Hamiltonian of the form of

Equation 2.159, from which follow all the remaining formulae up to the end of section 2.8.7. However it has

been shown that finite nucleus e↵ects, where the nuclear charge has a finite volume, can have a non-negligible

e↵ect on the hyperfine interaction, particularly for heavy nuclei [202–205]. A finite nucleus has two e↵ects

on the hyperfine interaction, namely the change in electronic structure due to the non-zero nuclear volume

and the change to the relevant operators due to the spread of nuclear charge [204].

The e↵ect of a finite nucleus is modelled by replacing the point nuclear charge with a charge distribution

⇢(rI) of finite width. This distribution can be modelled with any suitable function, but a radial Gaussian

G⇠(rI) is commonly used [202–205]:

⇢(rI) = eZ G⇠(rI), (2.194)

G⇠(rI) =
✓ ⇠

⇡

◆3/2
exp

⇣

�⇠r2
I

⌘

, (2.195)

where ⇠ is a parameter that is inversely proportional to the mean-square width of the distribution
D

r2
I

E

:

⇠ =
3

2
D

r2
I

E , (2.196)

and the distribution is centred at rI = 0. The electron–nucleus potential VS I(r) is then given by

VS I(r) = �Ze
r

P
⇣

1/2, ⇠r2
⌘

, (2.197)
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where r is the position of the electron relative to the centre of the nuclear charge distribution. The function

P(a, x) is defined as

P(a, x) =
1
�(a)

Z x

0
ta�1 exp(�t)dt, (2.198)

where �(a) is the gamma function, and a > 0.

The hyperfine interaction Hamiltonian can now be modified to include the finite nucleus e↵ect. If we

consider the hyperfine interaction with a single unpaired electron, we simply modify Equation 2.159 to

include the nuclear distribution. The modified hyperfine Hamiltonian is

ĤSI = �
µ0

4⇡

"

Z

P
⇣

5/2, ⇠r2
⌘ 3 (µ̂S · r) (µ̂I · r) � (µ̂S · µ̂I) r2

r5 | (r)|2 d3r +
8⇡
3

(µ̂S · µ̂I)
Z

G⇠(r) | (r)|2
#

.

(2.199)

The first term is due to the spin-dipolar interaction with a nucleus of finite charge distribution, and the second

term is the corresponding Femi-contact distribution. For the remainder of this review, we do not consider

finite nucleus e↵ects further. However we should remember that these e↵ects become important for heavy

elements [202–205].

2.9 Key concepts

• Nuclei and unpaired electrons possess magnetic moments, due to their spin, which define their molecular/atomic-

level magnetic properties.

• The magnetization and magnetic susceptibility define the bulk magnetic properties of ensembles of

nuclei and electrons.

• Solid materials with unpaired electrons can be characterized as insulators, semi-conductors, or metals

according to their electronic structure.

• The molecular/atomic-level magnetic moments of nuclei and unpaired electrons couple with an external

magnetic field, giving the Zeeman interaction, which is responsible for both the NMR and EPR spectra.

• The nuclear Zeeman resonance frequency depends on the local environment of the nucleus, with nuclei

in di↵erent chemical sites having di↵erent resonance frequencies. This is the origin of the chemical

shielding and chemical shift.
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• The chemical shielding, in general, depends on the orientation of the chemical environment with respect

to the external magnetic field. The orientationally-dependent part of the shielding is known as the CSA,

and is described by a rank-two spherical tensor.

• The nuclear and electronic magnetic moments couple to each other resulting in the hyperfine interac-

tion.

• The hyperfine interaction in isolated molecules, solid insulators, and metals is described by a hyperfine

coupling constant, which comprises a ‘through-bond’ isotropic Fermi-contact term, and a ‘through-

space’ anisotropic spin-dipolar term.

• For heavy nuclei, finite nuclear e↵ects modify the hyperfine interaction. Here the nuclear charge

distribution is modelled by a function of non-zero spatial width.
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Chapter 3

The paramagnetic shift in electron

spin-only systems

In this chapter we describe the origin of the paramagnetic shifts of nuclei that are coupled to the unpaired

electrons of paramagnetic systems such as organic radicals or transition-metal ions. The discussion is initially

limited to spin-only paramagnets, where the electrons occupy a non-degenerate orbital state, with the more

complicated e↵ects due to orbital angular momentum, spin-orbit coupling, and the crystal field being dealt

with in the following chapters.

The first question that is answered is why the hyperfine interaction, which takes exactly the same form as a

heteronuclear coupling interaction, causes a shift in the nuclear resonance frequency and not a splitting of the

NMR resonance. The reason for this is that the unpaired electrons relax on a timescale that is several orders

of magnitude shorter than the timescales of both nuclear relaxation and the NMR experiment. Values of

electron relaxation times for a range of metal ions have been tabulated [15], and are generally between 10�14

and 10�8 s, which are considerably shorter than typical nuclear longitudinal relaxation times of between

1 ms and several minutes. As a result the nucleus in e↵ect does not interact with an electronic magnetic

moment, but rather with its average value. This interaction has the same form as a chemical shift. However

we should note that whilst this model is su�cient to describe the NMR shift, it is not able to account for

all the e↵ects of the hyperfine interaction that are measurable by NMR. For example, in order to model the
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nuclear relaxation enhancement, we must consider the full interaction between the nuclear and electronic

dipole moments, which is discussed at length in chapters 8 and 9.

Three di↵erent, but essentially equivalent, explanations of why the paramagnetic shift occurs are pro-

posed. Firstly we calculate the form of the NMR spectrum of a nucleus coupled to a free electron, and show

that the e↵ect of the fast electron relaxation is to average the two components of the resonance splitting to

a single line that is shifted with respect to the nominal nuclear Larmor frequency. Secondly we show that

we can also explain the shift as a result of the nucleus coupling to an average electronic magnetic moment

that can be calculated from an average over the thermally-accessible electron energy levels. Thirdly we show

that the thermal average of the electron magnetic moment is related to the bulk magnetic properties of the

material via the magnetic susceptibility, and that we can therefore relate the paramagnetic shift to these bulk

properties.

3.1 The origin of the paramagnetic shift

We begin by deriving the form of the spectrum of a heteronuclear spin system comprising two spins-1/2,

which is already familiar to an NMR audience. Following this we will then substitute a single free electron

for the second nucleus, and derive the corresponding paramagnetic shift.

3.1.1 Two-spin system comprising two spin-1/2 heteronuclei

We initially consider a spin system comprising two nuclear spins-1/2 I and S of di↵erent species that interact

via an isotropic J-coupling. Note however that the argument that follows also applies to a dipolar coupling in

a static single crystal, and can be extended in a straightforward manner to powder samples, and to include the

e↵ects of sample rotation. We also assume that the gyromagnetic ratios of I and S are positive and negative

respectively, and that |!0,S | > |!0,I | � |J|, where !0,S and !0,I are the I-spin and S -spin Larmor frequencies

respectively, and J is the heteronuclear J-coupling constant in rad s�1, which is here taken to be positive.

This choice allows us to change the S -spin into an electron later on, without having to change the signs in all

of the derived expressions.
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The high-field Hamiltonian is

Ĥ = ~!0,I Îz + ~!0,S Ŝ z + ~JÎzŜ z, (3.1)

where the first and second terms represent I-spin and S -spin Zeeman interactions respectively, and the third

term is the heteronuclear J-coupling interaction. The eigenstates of Ĥ are the functions |IMI , S MS i, which

depend on the four quantum numbers I = 1/2, S = 1/2, MI , and MS . Here we omit I and S , and use the

labels ↵ and � to represent the allowed values of both MI and MS . In addition it proves useful to emphasize

the energy order of the four spin states, and so we also label them as |1i, |2i, |3i, and |4i in order of increasing

energy as follows

|1i = |↵�i, (3.2)

|2i = |��i, (3.3)

|3i = |↵↵i, (3.4)

|4i = |�↵i. (3.5)

The corresponding energies En are

E1 =
1
2~!0,I � 1

2~!0,S � 1
4~J (3.6)

E2 = � 1
2~!0,I � 1

2~!0,S +
1
4~J, (3.7)

E3 =
1
2~!0,I +

1
2~!0,S +

1
4~J, (3.8)

E4 = � 1
2~!0,I +

1
2~!0,S � 1

4~J. (3.9)

Note that the order of the energies is correct as !0,I < 0 and !0,S > 0. A schematic of the energy levels is

shown in Figure 3.1 (a).

We are interested in the transitions which give resonances in the NMR spectrum of the I-spin. These are

the two single quantum transitions |1i ! |2i and |3i ! |4i, which have the transition frequencies �!1!2 and
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(a)

(b)

(c)

(d)

(e)

Figure 3.1: Illustration of the spin energy levels and NMR spectrum of a two-spin-1/2 system I–S , showing
the di↵erences between a system of two coupled nuclear spins-1/2 of di↵erent species, and a spin-1/2 coupled
to an electron. In (a) is shown the array of four energy levels, 1–4, assuming that

�

�

�!0,S
�

�

� >
�

�

�!0,I
�

�

� > |J|, !0,S > 0,
!0,I < 0, and J > 0. The two I-spin transitions are shown with a red and blue arrow, and are labelled with
their frequencies �!1!2 and �!3!4. The corresponding schematic of the I-spin NMR spectrum is shown in
(b) for the case where S is a second nuclear spin. The spectrum contains two components of a doublet with
the same intensity, centred on �!0,I , and separated by the coupling constant J. Decoupling of the S -spin,
or other fast exchange of the two S -spin spin states leads to a singlet at �!0,I as shown in (c). The energy
level diagram in (a) also applies to a nuclear spin I coupled to an electron S if we substitute J for A/~. The
corresponding nuclear I-spin spectrum is shown in (d), and exhibits the same features as the spectrum in (b)
with the exception that the two components of the doublet now have di↵erent intensities because the larger
energy separation between the pairs of I-spin energy levels in the two transitions leads, via the Boltzmann
distribution, to di↵erent equilibrium spin state population di↵erences. The rapid electronic relaxation of S
‘decouples’ the I spin spectrum to give a singlet which is positioned at the centre of mass of the two doublet
components as shown in (e). The singlet is thus o↵set from �!0,I by an o↵set frequency �!0,I�S

iso, where �S
iso

is the ‘paramagnetic shift’ due to the electron S .

86



�!3!4 given by:

�!1!2 =
E2 � E1

~
(3.10)

= �!0,I +
1
2 J, (3.11)

�!3!4 =
E4 � E3

~
(3.12)

= �!0,I � 1
2 J. (3.13)

The two resonances are split by the coupling constant J and centred on �!0,I , and so can be interpreted as

the two components of the I-spin doublet, with the component due to the |1i ! |2i transition representing

the I-spin single-quantum transition when the S -spin is in the |�i state, and the |3i ! |4i transition occurring

with the S -spin in the |↵i state.

The intensity of each peak is proportional to the population di↵erence of the two states. For example the

intensity In!p of the transition |ni ! |pi varies as

In!p / Pn � Pp. (3.14)

The population of the state |ni, Pn is given by the Boltzmann distribution,

Pn =
exp(��En)

Q
, (3.15)

where � = 1/kT , k is the Boltzmann constant, T is the absolute temperature, and Q is the partition function

Q =
X

n

exp(��En). (3.16)

Using these expressions we can write down the fraction fn!p of the total spectral intensity that is contained
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in the peak due to the transition |ni ! |pi. For the two I-spin transitions these fractional intensities are:

f1!2 =
I1!2

I1!2 + I3!4
(3.17)

=
P1 � P2

P1 � P2 + P3 � P4
, (3.18)

f3!4 =
I3!4

I1!2 + I3!4
(3.19)

=
P3 � P4

P1 � P2 + P3 � P4
. (3.20)

Note that, according to these definitions, f1!2 + f3!4 = 1.

We can simplify these expressions somewhat by noting that the thermal energy kT greatly exceeds the

energy separation of the four energy levels, which allows us to expand the exponential in the expression for

the population of the state |ni as a Taylor series in �, and to truncate it at the first-order term:

exp(��En) = 1 � �En + O(�2). (3.21)

Substituting this into the expressions in Equations 3.18 and 3.20 we obtain, to zeroth order in �,

f1!2 =
E2 � E1

E4 � E3 + E2 � E1
+ O(�) (3.22)

=
�!1!2

�!3!4 + �!1!2
+ O(�), (3.23)

f3!4 =
E4 � E3

E4 � E3 + E2 � E1
+ O(�) (3.24)

=
�!3!4

�!3!4 + �!1!2
+ O(�), (3.25)

and hence

f1!2 =
�!0,I +

1
2 J

�2!0,I
, (3.26)

f3!4 =
�!0,I � 1

2 J
�2!0,I

. (3.27)

Remembering that |J| ⌧ |!0,I |, we see that both transitions, and therefore both components of the doublet,

have the same fractional intensity of 1/2. A schematic of the corresponding I-spin spectrum is shown in

88



Figure 3.1 (b).

Now let us imagine that the spectrum is acquired whilst the |↵i and |�i spin states of the S -spin are

rapidly interconverted. Such a situation may arise either because we are applying decoupling irradiation

to S , or because S is relaxing on a timescale that is fast compared to the I-spin relaxation. Under these

circumstances the two components of the I-spin doublet collapse to a singlet, the spectral position of which

! is given by the average of the two spectral frequencies:

! = f1!2�!1!2 + f3!4�!3!4 (3.28)

= 1
2

⇣

�!0,I +
1
2 J

⌘

+ 1
2

⇣

�!0,I � 1
2 J

⌘

(3.29)

= �!0,I , (3.30)

i.e. the peak appears at minus the I-spin Larmor frequency, as shown in Figure 3.1 (c).

3.1.2 Two-spin system comprising one spin-1/2 nucleus and a free electron

A spin system comprising a single spin-1/2 nucleus I coupled to a free electron S can be treated in an

analogous way. The high-field Hamiltonian is the same as in Equation 3.1, with the exception that we write

the electron Zeeman interaction in terms of µBge, and we replace the coupling ~J with a hyperfine coupling

constant A (which is in units of energy, rather than frequency):

Ĥ = ~!0,I Îz + µBgeŜ z + AÎzŜ z. (3.31)

The eigenstates are the same as those in Equations 3.2–3.5, and have the corresponding energies:

E1 =
1
2~!0,I � 1

2µBge � 1
4 A, (3.32)

E2 = � 1
2~!0,I � 1

2µBge +
1
4 A, (3.33)

E3 =
1
2~!0,I +

1
2µBge +

1
4 A, (3.34)

E4 = � 1
2~!0,I +

1
2µBge � 1

4 A. (3.35)
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The two nuclear-spin transitions have the following frequencies:

�!1!2 =
E2 � E1

~
(3.36)

= �!0,I +
1
2~
�1A, (3.37)

�!3!4 =
E4 � E3

~
(3.38)

= �!0,I � 1
2~
�1A. (3.39)

Here we encounter the key di↵erence between the energy levels of the heteronuclear two-spin system,

and the nucleus–electron two-spin system, which is that the electron Zeeman interaction is much larger than

the nuclear Zeeman interaction. This is reflected in the values of the gyromagnetic ratios for 1H and the free

electron which are 2.675 ⇥ 108 rad s�1 and �1.761 ⇥ 1011 rad s�1 respectively (ratio |�S /�I | = 658), and the

Larmor frequencies of �500 MHz and +329 GHz at a magnetic field of 11.74 T. Therefore when we calculate

the intensities of the spectral peaks using Equations 3.18 and 3.20 we have to bear in mind that the larger

ratio of µBge/(kT ) means we can no longer truncate the exponential factors in the Boltzmann distribution at

first order in �, and must include terms of order �2:

exp(��En) = 1 � �En +
1
2
�2E2

n + O(�3). (3.40)

If we again assume that the coupling constant has a negligible e↵ect on the populations of the states the

intensities of the two nuclear transitions are, to first order in �:

f1!2 =
1
2
+

1
4
µBgeB0 �, (3.41)

f3!4 =
1
2
� 1

4
µBgeB0 �. (3.42)

We see that the transition between the two lower states, |1i and |2i, has a greater intensity than the transition

between the two higher states, |3i and |4i. The corresponding NMR spectrum is illustrated in Figure 3.1 (d).

In a magnetic field of 11.74 T at a temperature of 298 K, the di↵erence in peak intensities is approximately

0.03, or 3%. At first sight this appears to be very small, but as we will see it is enough to exert a decisive

e↵ect on the NMR spectrum.
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The rapid electron relaxation e↵ectively “decouples” the NMR spectrum, resulting in a singlet appearing

at a frequency ! that is the weighted average of the two peaks. This frequency is

! = f1!2�!1!2 + f3!4�!3!4 (3.43)

= �!0,I +
µBgeAB0

4~kT
. (3.44)

The corresponding spectrum is shown in Figure 3.1 (e). We see immediately that the resonance is o↵set from

�!0,I by an amount µBgeAB0/(4~kT ) that is proportional to the magnetic field B0. It is therefore equivalent

to an isotropic chemical shift which, from Equations 2.109 and 2.130, has a Hamiltonian Ĥ = ~!0,I(1 + �S
iso)

from which we can calculate a transition frequency

! = �!0,I
⇣

1 + �S
iso

⌘

. (3.45)

Comparing Equations 3.44 and 3.45 we deduce that the shift is equal to

�S
iso =

µBgeA
4~�IkT

. (3.46)

We have identified this contribution as the paramagnetic shift, as it is due solely to the interaction between

the nucleus and the unpaired electron. The paramagnetic shift scales as A/(kT ), which can be understood

as follows. Increasing the temperature results in a smaller shift, simply because the higher-energy states

become more populated relative to the lower-energy states, and the di↵erence between the intensities of the

two transitions is reduced. Eventually we approach the limit encountered in the case of the heteronuclear

two-spin system, with the paramagnetic shift tending to zero. This inverse proportionality is a form of the

Curie Law, which we will see again in the discussion of the magnetic susceptibility. On the other hand as we

increase the hyperfine coupling constant the shift also increases as we are averaging over a larger separation

of the peaks.

These observations all point to the idea that the hyperfine interaction has been scaled down by a temperature-

dependent factor to give the paramagnetic shift. This is an idea we will return to later, and quantify more

formally, when we discuss the role of the magnetic susceptibility.
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3.2 The thermal average of the electron magnetic moment: the Bril-

louin function and the Curie spin

The ideas developed in the previous section act as a visual explanation of why we observe a paramagnetic

shift in the presence of unpaired electrons. However this is not the most convenient way to calculate the

shift, especially for more complex systems with multiple electrons and orbital angular momentum. A better

method turns out to be to calculate the average electronic magnetic moment first, and then to couple that to

the nucleus via the hyperfine interaction.

3.2.1 The Hamiltonian and the pseudo spin

The Hamiltonian we use in this section is

Ĥ = ~!0,I Îz + µBgeB0Ŝ z + Ŝ ·A · Î , (3.47)

where the first term is the nuclear Zeeman interaction, which ignores the e↵ects of the orbital contribution to

the chemical shielding, the second term is the electron Zeeman interaction, and the third term is the hyperfine

coupling.

For the electron Zeeman interaction we assume that the interaction is spatially isotropic, with a g-factor

equal to ge. However we no longer restrict the discussion to a single free electron, but to a paramagnetic

centre containing N unpaired electrons with total spin S . Such a situation is appropriate, for instance, for

describing spin-only transition-metal ions in a perfectly cubic ligand-field environment. Here we introduce

the concept of pseudo spin, where we model the energy levels of the electrons as being due to a single e↵ective

spin S̃ which has the same multiplicity 2S̃ + 1 as the true states [184]. For the first-row d-block transition

metals the pseudo spin is the same as the true spin S , so we drop the tilde.

The form of the hyperfine interaction we use here does not make use of the high-field approximation.

This allows us to treat coupling constants that are not small compared to the Zeeman interactions in the most

general way possible. At this point we remind ourselves that the hyperfine coupling tensor is the sum of an

isotropic Fermi-contact term, and a symmetric spin-dipolar tensor.

We saw in the previous section that the paramagnetic shift is due to electronic relaxation, which occurs on
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a timescale that is orders of magnitude shorter than nuclear relaxation, so that during the observation of the

nuclear-spin transitions the electronic spins are e↵ectively sampling all the electronic energy levels according

to their equilibrium configuration. This means that, in e↵ect, the hyperfine interaction ĤS I does not really

couple the nuclear magnetic moment to the electronic magnetic moment, but rather to the average of the

electronic magnetic moment. Before continuing, we note that whilst this model is su�cient for understanding

the paramagnetic shift, it does not give a correct explanation of nuclear relaxation in paramagnetic systems.

This is because the random processes that cause nuclear relaxation occur on timescales that are several orders

of magnitude shorter than those of nuclear relaxation itself, and so we must consider the full interaction

between the nuclear and electronic dipole moments. This is discussed in more detail in chapters 8 and 9. For

now we confine our discussion to the shift, and are therefore able to write the hyperfine Hamiltonian as

ĤS I =
D

Ŝ
E

·A · Î , (3.48)

where
D

Ŝ
E

is the expectation value of the electronic spin vector. This expectation value represents the time

average of the electron spin, which we will assume to be equivalent to the average over the entire ensemble

of paramagnetic centres. The latter is equal to the Boltzmann average of the components Ŝ i of the spin:

D

Ŝ i
E

=

P

n

D

n
�

�

�Ŝ i
�

�

� n
E

exp(��En)
P

n exp(��En)
, (3.49)

where the |ni and the En are the eigenstates and energies of the Hamiltonian in Equation 3.47. To proceed we

simplify matters by noting that the dominant term in the Hamiltonian is the electronic Zeeman interaction,

and that the other terms have a negligible e↵ect on the electronic spin energy levels. Therefore we take the

eigenstates and energies simply to be those of the Zeeman interaction, namely

|ni = |S MS i, En ⌘ E(S ,MS ) = µBgeB0MS . (3.50)

We note that the lowest-energy state is |S � S i, which is consequence of the negative gyromagnetic ratio of

the electron.
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We see immediately that the transverse components of the expectation value of the spin are zero:

D

Ŝ x
E

=
D

Ŝ y
E

= 0. (3.51)

This is because these components are perpendicular to the applied field, and so there is no driving force for

inducing a net magnetic moment in these directions. However there is such a driving force parallel to the

field, resulting in the longitudinal component
D

Ŝ z
E

being non-zero:

D

Ŝ z
E

=

P+S
MS=�S

D

S MS
�

�

�Ŝ z
�

�

� S MS
E

exp(��E(S ,MS ))
P+S

MS=�S exp(��E(S ,MS ))
(3.52)

=

P+S
MS=�S MS exp(��µBgeB0MS )
P+S

MS=�S exp(��µBgeB0MS )
. (3.53)

Defining x = ��µBgeB0 we can write Equation 3.53 as

D

Ŝ z
E

=

P+S
MS=�S MS exp(MS x)
P+S

MS=�S exp(MS x)
(3.54)

=
d
dx

ln

2

6

6

6

6

6

6

4

+S
X

MS=�S

exp(MS x)

3

7

7

7

7

7

7

5

, (3.55)

where the move to the last line can be verified by calculating the derivative. The sum is a simple geometric

progression, which can be written in the following closed form:

+S
X

MS=�S

exp(MS x) =
sinh

h⇣

S + 1
2

⌘

x
i

sinh
h

1
2 x

i . (3.56)

Calculating the derivative now gives, after some algebra:

d
dx

ln

2

6

6

6

6

6

6

4

sinh
h⇣

S + 1
2

⌘

x
i

sinh
h

1
2 x

i

3

7

7

7

7

7

7

5

=
⇣

S + 1
2

⌘

coth
h⇣

S + 1
2

⌘

x
i

� 1
2 coth

h

1
2 x

i

. (3.57)

The expectation value of the the z-component of the spin is now

D

Ŝ z
E

= �S BS (y), (3.58)
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Figure 3.2: The Brillouin function in Equation 3.59 for an electronic spin S = 1/2 plotted as a function of
the applied magnetic field for a range of experimentally-available temperatures. The plots in (a) show the
Brillouin function BS (y) for values of the external field up to 2000 T for temperatures of 100, 200, and 300 K.
Saturation is reached at values of B0 between approximately 300 T (at 100 K) and 1500 T (300 K). Part (b)
shows as expansion of the plots in (a) up to the commercially-available magnetic field of 28 T (black curves),
along with the linear approximation of Equation 3.61 (grey curves). For each temperature the two curves are
indistinguishable, except for the lowest temperature of 100 K where there is a small departure of BS (y) from
linear behaviour.

where the Brillouin function BS (y) is defined as

BS (y) =
2S + 1

2S
coth

 

2S + 1
2S

!

y � 1
2S

coth
✓ y
2S

◆

, (3.59)

and y = �µBgeB0S = �S x.

Equation 3.58 is a general expression for the value of the expectation value of Ŝ z for any temperature

and magnetic field. Representative curves are plotted in Figure 3.2 (a) for a range of magnetic fields and

temperatures. However for typical values of the field and temperature in high-resolution NMR, including the

current maximum available field of 28.18 T and the lowest readily-available temperature of 90 K, we are in

the high-temperature limit µBgeB0/kT ⌧ 1, and the general form of the Brillouin function is not needed. We

can therefore expand the coth function as a Laurent series [189],

coth(z) =
1
z
+

1
3

z � 1
45

z3 +
2

945
z5 + O(z7), (3.60)

95



and truncate at the lowest order in y to give the following approximation to the Brillouin function:

BS (y) =
S + 1

3S
y + O(y3). (3.61)

The expectation value of Ŝ z is therefore

D

Ŝ z
E

= �µBgeS (S + 1)B0

3kT
. (3.62)

The
D

Ŝ z
E

above is referred to as the Curie spin, as it exhibits a Curie temperature dependence of 1/T . The

Brillouin function is an odd function in �, and so the next-lowest-order term in the expansion varies as 1/T 3,

i.e. there is no term in 1/T 2 for an isotropic spin system. Comparisons of the full Brillouin function and the

high-temperature approximation are shown in Figure 3.2 (b).

We see immediately that the Curie spin is negative, which we rationalise by noting that, at finite temper-

ature, the states with the more negative values of MS are more populated, as we see in Figure 3.3 (a). In

addition we see that the magnitude of the Curie spin is proportional to the electron Zeeman energy µBgeB0.

If we increase this energy, for example by raising the magnetic field, the separation between the energy

levels increases and the lower-energy states with negative MS become more populated relative to the higher

energy states, as seen in Figure 3.3 (b). A similar argument also explains the Curie temperature dependence,

namely that a lower thermal energy kT increases the populations of the lower-energy states relative to the

higher-energy states, as we see in Figure 3.3 (c). In both cases the magnitude of the Curie spin increases.

The components of the expectation value of the electronic magnetic moment are proportional to those of the

Curie spin, i.e. hµ̂ii = �µBge
D

Ŝ i
E

, and are given by the following expressions:

hµ̂xi =
D

µ̂y
E

= 0 (3.63)

hµ̂zi =
µ2

Bg2
eS (S + 1)B0

3kT
. (3.64)

We note that hµ̂zi is proportional to the square of the magnitude of the total electronic magnetic moment

µe↵ = µBge
p

S (S + 1).

Another regime of interest is the saturation regime, where either the field is su�ciently high or the

temperature is su�ciently low that µBgeB0/kT ! 1. In this case both the coth function and BS (y) tend
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(a) (b) (c) (d)

Figure 3.3: Illustration of the factors a↵ecting the populations of the electronic spin states according to the
Boltzmann distribution, and the resulting Curie spin. The population distribution of the electronic spin states
|S MS i is shown for an electronic spin S = 3/2 in (a). The states with more negative MS lie lower in energy
and are more populated relative to the higher-energy states, hence the Curie spin is negative. The populations
of the lower-energy states can be increased relative to those of the higher-energy states either by increasing
the size of the external magnetic field B0 (b), or decreasing the temperature T (c). When the field is increased,
or the temperature is lowered, su�ciently that µBgeB0/kT ! 1 only the lowest-energy state with MS = �S
is populated, and the electronic spins are saturated, as shown in (d).
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to unity, and the expectation value of Ŝ z,
D

Ŝ z
E

sat
, is

D

Ŝ z
E

sat
= �S . (3.65)

At saturation only the lowest-energy state with MS = �S is populated, with all the paramagnetic centres

having this same MS . This situation is shown in Figure 3.3 (d).

Returning to the high-temperature regime we see that the Curie spin is linear in B0, so is the corresponding

hyperfine interaction Hamiltonian
D

Ŝ
E

·A · Î . It has exactly the same form as the nuclear shielding interaction

Hamiltonian in Equation 2.84, and we can equate the two to determine the corresponding paramagnetic

shielding tensor:

~�IB · �S · Î =
D

Ŝ
E

·A · Î , (3.66)

from which we obtain:

~�IB · �S =
D

Ŝ
E

·A. (3.67)

Our calculation of the Curie spin assumes a magnetic field B0 along z, and so the only components of the

paramagnetic shielding we obtain are the �z j, where j is x, y, or z:

�z j =

D

Ŝ z
E

Az j

~�I B0
. (3.68)

We can repeat the calculation with the field along x or y, with a Zeeman interaction of µBgeB0Ŝ x or µBgeB0Ŝ y

respectively, and obtain the corresponding x- and y-components of the Curie spin, which are the same as the

z-component above, i.e.
D

Ŝ x
E

=
D

Ŝ y
E

=
D

Ŝ z
E

= �µBgeS (S + 1)B0

3kT
. (3.69)

Note that, for each calculation, the components of the Curie spin that are perpendicular to the applied field

are zero, and so in order to obtain the full paramagnetic shielding tensor we must apply the field along each

of the three axes in turn. This is because only three of the nine components of the shielding tensor dictate

the response of the system to a field applied in a single direction. The full form of the shielding tensor is

therefore

�S = �µBgeS (S + 1)
3~�IkT

A. (3.70)
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The Curie spin is, of course, proportional to the thermal average of the magnetic moment of the total spin

S , and multiplying the hyperfine coupling constant in Equations 2.171 and 2.172 by the Curie spin gives the

total paramagnetic shift due to all the unpaired electrons.

Note that although the hyperfine tensor A depends on the nuclear species, the ratio A/(~�I), which

appears in the expression for the paramagnetic shielding in Equation 3.70 does not, as it is independent of �I .

This independence from the nuclear species is a general property of all chemical shielding tensors.

We can write the paramagnetic shielding tensor in terms of the irreducible spherical tensor components

�S
lm, and apply the high-field approximation. We saw in section 2.6 that the only components that are

significant at high field are �S
00 and �S

20. Note that, although the high-field approximation may not be valid

for the hyperfine interaction, it can be more safely applied to the paramagnetic shielding interaction as the

size of the hyperfine coupling constant is scaled down by the Curie spin. The irreducible spherical tensor

components are therefore

�S
00 = �

µBgeS (S + 1)
3~�IkT

A00, (3.71)

�S
20 = �

µBgeS (S + 1)
3~�IkT

A20. (3.72)

The orientation dependence of the rank-two part of � is exactly the same as the orientation dependence of

the rank-two part of A, and both share the same PAF.

The isotropic part of the paramagnetic shielding tensor �S
iso is

�S
iso = �

r

1
3
�S

00 (3.73)

= �µBgeS (S + 1)
3~�IkT

0

B

B

B

B

B

@

�
r

1
3

A00

1

C

C

C

C

C

A

(3.74)

= �µBgeS (S + 1)
3~�IkT

AFC. (3.75)

We see that the Fermi-contact interaction gives a paramagnetic shielding that is entirely isotropic. Substituting

in the expression in Equation 2.171 we obtain

�S
iso = �

µ0µ2
Bg2

e(S + 1)
9kT

⇢↵��(0). (3.76)
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By contrast we expect the spin-dipolar contribution to the paramagnetic shielding to be wholly anisotropic

and symmetric, and therefore contribute only to the anisotropy and asymmetry of the interaction. If we

compare the spherical components of the rank-two part of the shielding and hyperfine tensors in their common

PAF:

�̃S
20 =

r

3
2
��S , Ã20 =

r

3
2

⇣

Ãzz � AFC
⌘

=

r

3
2
µ0µBge~�I

8⇡S

Z 3z2
PAF � r2

PAF

r5
PAF

⇢↵��(rPAF) d3rPAF, (3.77)

�̃S
2±1 = 0, Ã2±1 = 0, (3.78)

�̃S
2±2 = �

1
2
⌘S��S , Ã2±2 = �

1
2
⌘SD

⇣

Ãzz � AFC
⌘

, (3.79)

we can deduce that the shielding anisotropy ��S and asymmetry parameter ⌘S are:

��S = �
µ0µ2

Bg2
e(S + 1)

24⇡kT

Z 3z2
PAF � r2

PAF

r5
PAF

⇢↵��(rPAF) d3rPAF, (3.80)

⌘S = ⌘SD. (3.81)

In terms of the shift convention, these expressions become

�S
iso =

µ0µ2
Bg2

e(S + 1)
9kT

⇢↵��(0), (3.82)

��S =
µ0µ2

Bg2
e(S + 1)

24⇡kT

Z 3z2
PAF � r2

PAF

r5
PAF

⇢↵��(rPAF) d3rPAF, (3.83)

⌘S = ⌘SD. (3.84)

The interaction of a nucleus with a single paramagnetic centre therefore results in an isotropic paramagnetic

shift �S
iso due to the Fermi-contact interaction, usually referred to as the Fermi-contact shift and first described

by McConnell and Chesnut [35], and a shielding anisotropy ��S due to the spin-dipolar interaction, and hence

referred to as the dipolar shift anisotropy.

Finally we note that if we set S = 1/2 in Equation 3.82 we obtain the same value for the isotropic shift

in Equation 3.46 that we derived by averaging the position of the two components of the doublet in the NMR

spectrum.
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3.3 The magnetic susceptibility

As discussed in the previous section, the e↵ect of applying a magnetic field to an electronic spin system is to

lift the degeneracy of the manifold of states, giving the net magnetic moment in Equation 3.64 that is parallel

to the direction of the applied field, and whose magnitude is proportional to the Curie spin. To complement

the quantum mechanical treatment we have already seen, we can also determine the average e↵ect of the

magnetic field on the bulk material via the magnetic susceptibility �, which is of interest as this property can

be measured independently. Following the description by Bertini et al. [16], we describe the susceptibility

and relate it to the paramagnetic shift tensor.

3.3.1 Magnetism of the bulk

The application of an external magnetic field H0 to an ensemble of spins induces a bulk magnetization M (the

total induced magnetic moment µind per unit volume V), which is proportional to H0, as seen from Equation

2.10:

M = �V H0, (3.85)

where the dimensionless constant of proportionality �V is the magnetic susceptibility per unit volume. As

seen in section 2.2 we can, for a linear and paramagnetic material, relate the magnetic field H0 to the induction

B0 via the expression

B0 ⇡ µ0H0, (3.86)

and so the magnetisation is given by [187]:

M =
1
µ0
�V B0. (3.87)

In addition to �V there are other definitions of the susceptibility. For example the molar susceptibility �M

(units m3 mol�1) relates the size of the induced magnetic moment per mole to the external field. The molar

susceptibility is given by �M = VM�V , where VM is the volume that contains one mole of the paramagnetic

system, and so

MVM = µind
VM

V
=

1
µ0
�M B0, (3.88)
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where we identify µindVM/V as the total induced magnetic moment per mole. For a large ensemble of spins,

we can write this quantity as hµiNA, where hµi is the ensemble average of the induced magnetic moment,

and NA is Avogadro’s number. This leads us to another definition of the susceptibility, which is the magnetic

susceptibility per molecule � = �M/NA (units m3), which relates hµi to the external field as follows:

hµi = 1
µ0
�B0. (3.89)

Throughout the rest of this review this definition is the one we utilise, and we refer to � simply as the

“magnetic susceptibility”. In a solid paramagnetic material containing a single species of metal ion, and in

which there are no clear molecular units, � is more properly identified as the magnetic susceptibility per metal

ion.

Equation 3.89 gives the average magnetic moment per molecule induced by a magnetic field B0, which is

in turn a result of the Zeeman interaction of the individual magnetic moments of the spins i, µ(i) = �µBgeS (i)
z ,

where S (i)
z is the z-component of the spin i. We are therefore able to draw a parallel between the bulk

susceptibility � and the g-factor ge, and identify the former as a ‘bulk representation’ of the latter. This

correspondence will be presented more formally in the following section.

3.3.2 The susceptibility in terms of the molecular/atomic-level parameters

We can immediately relate the average induced magnetic moment hµi in Equation 3.89 to the expectation

value of µ̂z. We have already calculated this in the high-temperature limit, with the result shown in Equation

3.64, and reproduced below:

hµ̂zi =
µ2

Bg2
eS (S + 1)B0

3kT
. (3.90)

Comparing this with Equation 3.89 gives us the expression for the magnetic susceptibility [16]:

� =
µ0

B0
hµ̂zi (3.91)

=
µ0µ2

Bg2
eS (S + 1)
3kT

. (3.92)
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The susceptibility has a Curie temperature dependence, and is proportional to the square of the magnitude of

the electronic magnetic moment µe↵.

3.3.3 Relating the paramagnetic shift to the magnetic susceptibility

We now derive the expression for the paramagnetic shift tensor in terms of the magnetic susceptibility.

As before we begin with the Hamiltonian describing the hyperfine interaction, this time using the form in

Equation 2.166 which is in terms of the electronic and nuclear magnetic moments. However, as before, we

must remember that the nuclear magnetic moment couples to the expectation value of the electronic mag-

netic moment hµ̂S i, and so we must modify Equation 2.166 accordingly to give the paramagnetic shielding

Hamiltonian Ĥ:

Ĥ = � µ0

8⇡S

"

Z

3 (hµ̂S i · r) (µ̂I · r) � (hµ̂S i · µ̂I) r2

r5 ⇢↵��(r)d3r +
8⇡
3

(hµ̂S i · µ̂I) ⇢↵��(0)
#

, (3.93)

where we have assumed that the electrons are delocalised. The above Hamiltonian can easily be modified

for localised electrons as described previously. The expectation value of the electronic magnetic moment in

terms of the susceptibility is the operator equivalent of Equation 3.89 which, for an arbitrary direction of the

external magnetic field B0 is

hµ̂S i =
1
µ0
�B0. (3.94)

Using this expression, and the expression for the nuclear magnetic moment in terms of the nuclear spin,

µ̂I = ~�I Î, gives the following Hamiltonian:

Ĥ = �~�I �

8⇡S

2

6

6

6

6

6

6

4

Z 3 (B0 · r)
⇣

Î · r
⌘

�
⇣

B0 · Î
⌘

r2

r5 ⇢↵��(r)d3r +
8⇡
3

⇣

B0 · Î
⌘

⇢↵��(0)

3

7

7

7

7

7

7

5

. (3.95)

This Hamiltonian is linear in both the magnetic field and the nuclear spin, and so can be written in terms of a

chemical shielding tensor ��, with isotropic and anisotropic parts ��iso and ��
aniso as follows:

Ĥ = ~�IB0 · �� · Î , (3.96)

= ~�IB0 ·
⇣

��iso1 + �
�
aniso

⌘

· Î . (3.97)
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Comparing Equation 3.95 with Equation 3.97 we identify the isotropic and anisotropic parts of the shielding

tensor as

��iso = �
�

3S
⇢↵��(0), (3.98)

��aniso,i j = �
�

8⇡S

Z 3rir j � r2�i j

r5 ⇢↵��(r)d3r, (3.99)

where we see that the former is due to the Fermi-contact interaction, and the latter is due to the spin-dipolar

interaction. We note that this expression for the paramagnetic shielding is symmetric, as is the expression in

terms of the Curie spin �S .

We can also write the shielding tensor as the product of the susceptibility and a reduced coupling tensor

C:

�� = ��C, (3.100)

where

C =
1

µ0µBge~�I
A. (3.101)

This tensor C is the sum of an isotropic Fermi-contact part CFC and anisotropic spin-dipolar part CSD,

C = CFC1 +CSD, (3.102)

where:

CFC =
⇢↵��(0)

3S
(3.103)

CSD
i j =

1
8⇡S

Z 3rir j � r2�i j

r5 ⇢↵��(r)d3r. (3.104)

This way of writing down the shielding tensor emphasises that it can be separated into two factors which

describe di↵erent parts of the shielding interaction. The magnetic susceptibility is a bulk quantity that

describes the unpaired electrons in that it quantifies the size of the average electronic magnetic moment

per unit field, or equivalently the Curie spin per unit field, that we can expect from our paramagnetic centre

at a certain temperature. It is important to draw the distinction that � represents an average over the whole
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system, whereas the paramagnetic shielding tensor describes local structural and electronic e↵ects. Therefore

the susceptibility description of the shielding may not capture more local phenomena, such as we may

encounter in a heterogeneous solid material. The coupling tensor describes the relationship of the nucleus of

interest with respect to the paramagnetic centre, with CFC giving the unpaired spin density per electron that

is delocalized onto the nucleus, and CSD giving the geometrical position of the nucleus with respect to the

paramagnetic centre. These are molecular/atomic-level properties that depend on the geometry and bonding

in the paramagnetic material. Note that neither the susceptibility nor the reduced coupling tensor depends on

the nuclear species, as is usual for shielding tensors, which are independent of �I .

Using this description we can write down the irreducible spherical tensor components of the paramagnetic

shielding ��lm in terms of the corresponding components of the reduced hyperfine coupling tensor Clm:

��lm = ��Clm. (3.105)

In the high-field regime, only the components ��00 and ��20 are retained. The isotropic part is proportional to

C00, which is given by:

C00 = �
⇢↵��(0)p

3S
. (3.106)

The isotropic shielding ��iso is:

��iso = ��CFC (3.107)

= ��⇢
↵��(0)
3S

(3.108)

= �
µ0µ2

Bg2
e(S + 1)

9kT
⇢↵��(0), (3.109)

which is exactly the same as the expression derived in Equation 3.76. The anisotropy parameters can be

determined from ��20, which is proportional to C20. In the PAF of the reduced coupling tensor, the spherical
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components C̃2m are

C̃20 =

r

3
2

⇣

C̃zz �Ciso
⌘

(3.110)

=

r

3
2

1
8⇡S

Z 3z2
PAF � r2

PAF

r5
PAF

⇢↵��(rPAF)d3rPAF, (3.111)

C̃2±1 = 0, (3.112)

C̃2±2 =
1
2

⇣

C̃xx � C̃yy
⌘

(3.113)

= �1
2
⌘SD

⇣

C̃zz �Ciso
⌘

. (3.114)

If the electrons are localised at the paramagnetic centre, we can write the unpaired electron density as

⇢↵��(r) = 2S �(r � R), where R is the position of the electrons relative to the nucleus. The Cartesian

components of the reduced hyperfine coupling tensor are then

Ci j =
1

4⇡

"

3RiRj � R2�i j

R5 +
8⇡
3
�(R)�i j

#

, (3.115)

and the spherical-tensor components in the PAF become

C00 = �
2�(R)p

3
, (3.116)

C̃20 =

r

3
2

1
2⇡R3 , (3.117)

C̃2±1 = 0, (3.118)

C̃2±2 = 0. (3.119)

In the general case the spherical components of the shielding tensor are:

�̃�20 = �
r

3
2

�

8⇡S

Z 3z2
PAF � r2

PAF

r5
PAF

⇢↵��(rPAF)d3rPAF, (3.120)

�̃�2±1 = 0, (3.121)

�̃�2±2 =
⌘SD�

16⇡S

Z 3z2
PAF � r2

PAF

r5
PAF

⇢↵��(rPAF)d3rPAF, (3.122)
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and hence the following shielding anisotropy ��� and asymmetry parameter ⌘� have the forms:

��� =

r

2
3
��20 (3.123)

= � �

8⇡S

Z 3z2
PAF � r2

PAF

r5
PAF

⇢↵��(rPAF)d3rPAF (3.124)

= �
µ0µ2

Bg2
e(S + 1)

24⇡kT

Z 3z2
PAF � r2

PAF

r5
PAF

⇢↵��(rPAF)d3rPAF, (3.125)

⌘� = ⌘SD. (3.126)

We see that these are exactly the same expressions in Equations 3.80 and 3.81 that we derived using the Curie

spin, thus demonstrating the equivalence of the two approaches.

Finally in terms of the chemical shift convention, the isotropic paramagnetic shift ��iso, paramagnetic SA

���, and asymmetry parameter ⌘� are

��iso = �
⇢↵��(0)

3S
(3.127)

=
µ0µ2

Bg2
e(S + 1)

9kT
⇢↵��(0), (3.128)

��� =
�

8⇡S

Z 3z2
PAF � r2

PAF

r5
PAF

⇢↵��(rPAF)d3rPAF (3.129)

=
µ0µ2

Bg2
e(S + 1)

24⇡kT

Z 3z2
PAF � r2

PAF

r5
PAF

⇢↵��(rPAF)d3rPAF, (3.130)

⌘� = ⌘SD. (3.131)

3.4 The scaling factor

In the previous sections we commented that the paramagnetic shielding tensor, which has the form shown

in Equation 3.70, is essentially proportional to the hyperfine tensor, with the proportionality constant equal

to a factor that scales down the size of the interaction. So far we have avoided giving a precise description

of the exact quantity that is scaled down, and what the scaling factor represents. A full discussion will be

presented in this section, following the description of Kim et al [53], who use the idea of scaling the hyperfine

interaction calculated from first principles to determine a paramagnetic shift.
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The calculation is performed on a system in which all the e↵ective electron spins are aligned parallel in

a ferromagnetic configuration. Note that the ferromagnetic alignment is not necessarily the lowest-energy

configuration, but reflects the system in the saturation regime at a temperature of 0 K that we have discussed

previously. It turns out that this arrangement is convenient for performing the calculation. So far, we have

not included any interactions between the paramagnetic centres, which we still assume to be independent

of each other, and so there is no energetic driving force for preferential alignment of the electronic spins.

The calculation provides the total unpaired-spin density ⇢↵��(r), whence is determined the total hyperfine

tensor A, which is the sum of Fermi-contact AFC1 and spin-dipolar ASD parts as before. The hyperfine

Hamiltonian takes the usual form:

ĤS I = Ŝ ·A · Î , (3.132)

in which the calculated Fermi-contact and spin-dipolar contributions are

AFC =
2
3
µ0µBge~�I⇢

↵��(0), (3.133)

ASD
i j =

µ0µBge~�I

4⇡

Z 3rir j � r2�i j

r5 ⇢↵��(r)d3r. (3.134)

We note that this definition of the hyperfine tensor, involving the full unpaired electron spin density, has not

been normalised by dividing by the number of electrons. The spin-dipolar tensor is usually written in a form

in which the total electronic wavefunction | (r)i of the unpaired electrons is expressed as a superposition of

basis functions, for example molecular orbitals, |✏i, as follows

| (r)i =
X

✏

⇣

c↵✏ |✏i + c�✏ |✏i
⌘

, (3.135)

where the c↵✏ and c�✏ are coe�cients relating to electrons of ↵ and � spin in molecular orbital |✏i. The expansion

can, in principle, include contributions from several unit cells. The resulting tensors are

AFC =
2
3
µ0µBge~�I

X

✏⌧

P↵��
✏⌧ h✏ |�(r)| ⌧i , (3.136)

ASD
i j =

µ0µBge~�I

4⇡

X

✏⌧

P↵��
✏⌧

*

✏

�

�

�

�

�

�

3rir j � r2�i j

r5

�

�

�

�

�

�

⌧

+

, (3.137)
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where P↵��
✏⌧ = c✏↵c↵⌧ � c✏�c

�
⌧ is the spin density matrix, and the overbar represents the complex conjugate.

The size of the hyperfine splitting expressed as a chemical shielding is proportional to the hyperfine

coupling constant divided by the nuclear Zeeman energy:

� A
2~�I B0

, (3.138)

where the factor of 1/2 is included because, in the high-field regime, the hyperfine interaction splits the

nuclear resonance into two peaks which appear at frequencies located at ±Azz/2 either side of the nuclear

Larmor frequency. This chemical shielding is the value that would be observed when all the e↵ective electron

spins are aligned, which occurs at saturation. The expectation value of Ŝ z is, under these circumstances, given

by Equation 3.65
D

Ŝ z
E

sat
= �S . (3.139)

Experimentally we observe the system in the weaker paramagnetic regime, in which
D

Ŝ z
E

has been scaled

down by the Brillouin function. Therefore in order to obtain the shielding tensor of the paramagnetic system,

we must scale the expression in Equation 3.138 by

D

Ŝ z
E

para
D

Ŝ z
E

sat

= BS

✓µBgeB0S
kT

◆

(3.140)

⇡ µBge(S + 1)B0

3kT
. (3.141)

In terms of the susceptibility the scaling factor is

D

Ŝ z
E

para
D

Ŝ z
E

sat

=
�B0

µ0µBgeS
. (3.142)
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The paramagnetic shielding tensor thus obtained is

�S = � A
2~�I B0

D

Ŝ z
E

para
D

Ŝ z
E

sat

(3.143)

= � �

µ0µBge~�I

A
2S

(3.144)

= �µBgeS (S + 1)
3~�IkT

A
2S
, (3.145)

which, when we note that A =A/(2S ), is the same expression as the one obtained in Equation 3.70.

3.5 Key concepts

• In a system of two coupled spin-1/2 nuclei I and S , the I-spin NMR spectrum contains a resonance that

is centred on the I-spin Larmor frequency, and split into two peaks separated by the coupling constant.

• In a system of a nuclear spin-1/2 I coupled to an electron S , the NMR spectrum contains a single peak

o↵set from the I-spin Larmor frequency by the “paramagnetic shift”.

• The paramagnetic shift is the result of the electron relaxation between its Zeeman spin states occurring

on a timescale that is orders of magnitude faster than the corresponding nuclear dynamics.

• The paramagnetic shift can be calculated from the hyperfine coupling between the nucleus and the

electronic pseudo-spin with a thermally averaged magnetic moment (the Curie spin).

• The Curie spin, and therefore the paramagnetic shift, both have a Curie temperature dependence of

1/(kT ).

• We can also calculate the paramagnetic shift from the bulk magnetic susceptibility.

• The role of the magnetic susceptibility in determining the paramagnetic shift is to scale down the

hyperfine coupling constant between the nuclear and electronic spins, from the saturation regime to the

high-temperature paramagnetic regime.
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Chapter 4

The paramagnetic shift due to d-block

transition-metals with spin-orbit

coupling

The EPR parameters in many d-block transition-metal systems are strongly influenced by the e↵ects of

spin-orbit (SO) coupling. In turn these changes to the EPR properties strongly influence the form of the

paramagnetic shift and SA. The formalism presented in the previous chapter ignored the e↵ects of SO

coupling, and so is only valid when the metal ion behaves strictly as a spin-only ion. Whilst this formalism

could be applied successfully to more complex systems where the paramagnetic shifts are dominated by

non-SO e↵ects, such as the Fermi-contact interaction [53], it is often inadequate for describing the shift when

such non-SO e↵ects are small [15]. Kurland and McGarvey were the first to derive a general equation for the

isotropic shift that includes these additional e↵ects, but this did not describe the e↵ects leading to the SA [37].

More recently Moon and Patchkovskii proposed a formula for the entire shift tensor due to a paramagnetic

centre with spin S = 1/2 in terms of the EPR parameters; this remains the benchmark for all theoretical

work that has been proposed since [38]. Following this milestone Pennanen and Vaara extended the theory to

describe the paramagnetic shifts at high temperature of first-row (3d) transition-metal ions with spin S > 1/2,

which are subject to a SO coupling that is smaller than the ligand-field interaction [39]. More recently van
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den Heuvel and Soncini proposed a di↵erent formalism which extends the theory to low temperatures, and

larger SO coupling interactions [86, 88]. This generalised treatment gives the paramagnetic shift in terms of

the e↵ective spin EPR parameters for electronic spins greater than S = 1/2.

We begin this chapter by deriving the form of the EPR e↵ective spin Hamiltonian, the parameters in

which are used to calculate the paramagnetic shift. The discussion here will be limited to d-transition-metal

ions with spin-orbit coupling that is weak compared to the ligand-field interaction, and which is described by

the Russell–Saunders (LS ) coupling scheme. We then outline an EPR theory of the paramagnetic shielding

tensor and highlight the new features that are introduced as a result of SO coupling. Finally we show that

the magnetic susceptibility of such systems becomes anisotropic [16], and we show how this tensor can be

related to the paramagnetic shielding tensor.

4.1 The EPR e↵ective spin Hamiltonian

4.1.1 Derivation

For a spin-only d-block transition-metal ion we have seen that the electronic magnetic moment is proportional

to the e↵ective spin, i.e. µ̂S = �µBgeŜ. Transition-metal ions with non-zero orbital angular momentum L,

on the other hand, have an orbital contribution to the magnetic moment µ̂L = �µBL̂, where L̂ is the operator

representing the total orbital angular momentum, that is orientation-dependent. In the limit of LS coupling

we can define the total angular momentum operator Ĵ as the sum of L̂ and Ŝ, i.e. Ĵ = L̂ + Ŝ, and the total

magnetic moment operator m̂ as

m̂ = �µB
⇣

L̂ + geŜ
⌘

. (4.1)

We note that the vectors representing the total angular momentum and total magnetic moment, shown in

Figure 4.1 (a) and (b) respectively, are not parallel because ge is not equal to unity. The orbital angular

momentum is quantized and represented by the quantum number L which takes integer values. Each level L

comprises a manifold of 2L + 1 states that are labelled by the orbital magnetic quantum number ML which

takes integer values from �L to +L.

The Hamiltonian Ĥ describing the electronic spin system of a d-block transition-metal ion in a ligand
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(a) (b)

Figure 4.1: The angular momentum properties of a metal ion subject to Russell–Saunders spin-orbit coupling.
The total angular momentum J , which is the vector sum of the spin S and orbital angular momentum L, is
shown in (a). The total magnetic moment m, which is the sum of the spin and orbital magnetic moments µS
and µL is shown in (b). We note that m is not parallel to J .

field is given by

Ĥ = ĤLF + Ĥ1, (4.2)

where ĤLF is the interaction of the ion with the ligand field, and Ĥ1 encompasses the other interactions. The

ligand-field interaction is the largest contribution to Ĥ, giving rise to a splitting in the energy levels of the

order of 104 cm�1. The smaller contribution Ĥ1 can be broken down into a sum of the following terms:

Ĥ1 = ĤSO + ĤSS + ĤHF + ĤZ. (4.3)

The first term ĤSO is the Hamiltonian representing the SO coupling interaction which, for LS coupling and

assuming Hund’s rules are obeyed, is

ĤSO = �L̂ · Ŝ, (4.4)

� = ±⇣/2S . (4.5)

The many-electron SO coupling parameter � is given above in terms of the single-electron SO coupling

parameter ⇣, where for the free ion the + sign is required for a shell that is less than half filled, and the

� sign for a shell that is more than half filled. Values of ⇣ have been tabulated by Abragam and Bleaney

[184], and take values between 102 and 103 cm�1. The SO coupling is therefore the largest interaction after

the ligand-field splitting. The second term ĤSS is the spin-spin interaction which represents the magnetic
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coupling between the individual electrons. In the LS coupling regime it is given by [184]

ĤSS = �⇢


⇣

L̂ · Ŝ
⌘2
+ 1

2

⇣

L̂ · Ŝ
⌘

� 1
3 L(L + 1)S (S + 1)1

�

, (4.6)

where ⇢ is an energy coe�cient that, for 3d metal ions, takes values up to 1 cm�1. We can also write the

spin-spin interaction Hamiltonian as

ĤSS = �⇢
X

i j

h

1
2

⇣

L̂iL̂ j + L̂ jL̂i
⌘

� 1
3 L(L + 1)�i j

i

Ŝ iŜ j. (4.7)

The third term ĤHF is the hyperfine interaction Hamiltonian which, for spin-only systems, was derived in

section 2.8. For systems with non-zero orbital angular momentum ĤHF can be generalised to [184]

ĤHF = P
h

{⇠L(L + 1) � }
⇣

Ŝ · Î
⌘

� 3
2⇠

n⇣

L̂ · Ŝ
⌘ ⇣

L̂ · Î
⌘

+
⇣

L̂ · Î
⌘ ⇣

L̂ · Ŝ
⌘o

+ L̂ · Î
i

, (4.8)

P = µ0µBge~�I

4⇡

*

1
r3

+

, (4.9)

⇠ =
2l + 1 � 4S

S (2l � 1)(2l + 3)(2L � 1)
, (4.10)

where P is the dipolar coupling constant, ⇠ is a coe�cient that depends on the total spin and orbital quantum

numbers S and L and the one-electron orbital quantum number l, and  is a dimensionless number that

accounts for the Fermi-contact term. Finally we have the electronic Zeeman interaction ĤZ which is the sum

of the orbital Zeeman µBB0 · L̂ and spin Zeeman µBgeB0 · Ŝ terms:

ĤZ = µBB0 ·
⇣

L̂ + geŜ
⌘

. (4.11)

The Zeeman splitting varies with the applied magnetic field B0, with µBB0 taking a maximum value of

13 cm�1 at the maximum field of 28.18 T that is currently commercially available (µBgeB0 = 26 cm�1).

The typical ranges of the magnitudes of the ligand-field interaction and the additional four perturbation

interactions are plotted in Figure 4.2. For now we neglect the nuclear Zeeman interaction and the orbital

contribution to the chemical shielding as they are both much smaller than the interactions above.

Clearly the perturbation Hamiltonian depends on both the spin- and spatially-dependent orbital angular
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Figure 4.2: Typical ranges of the magnitudes of electronic-spin interactions that are relevant to the EPR
properties of the metal ion. The largest interaction is the ligand field (LF). The four relevant perturbations
are the spin-orbit (SO) coupling, electronic Zeeman (Z), hyperfine (HF), and the electronic spin-spin (SS)
interactions.

momentum operators. It is our task to convert this to a Hamiltonian that contains only spin operators, and

which can therefore be used in the interpretation of both EPR and paramagnetic NMR experiments. We

do this by applying time-independent perturbation theory [206] to the eigenstates |ni of the ligand-field

Hamiltonian, which have energies En, i.e.

ĤLF|ni = En|ni. (4.12)

The |ni are orbital states, and so have no dependence on the spin.

We apply perturbation theory to the orbital ground state |0i, which for ease of derivation we assume to be

a singlet. Orbital ground states of larger degeneracy are more di�cult to treat, and so we do not discuss them

further. The consequence of assuming a singlet ground state is that the expectation values of the components

of the orbital angular momentum operator L̂i in the ground state are zero:

h0| L̂i |0i = 0. (4.13)

The first-order perturbation Hamiltonian Ĥ(1)
1 is given by

Ĥ(1)
1 = h0| Ĥ1 |0i . (4.14)
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Inserting the expression for Ĥ1 in Equation 4.3 we obtain

Ĥ(1)
1 = h0| ĤSO |0i + h0| ĤSS |0i + h0| ĤHF |0i + h0| ĤZ |0i (4.15)

= �
X

i

h0| L̂i |0i Ŝ i � ⇢
X

i j

⌧

0
�

�

�

�

h

1
2

⇣

L̂iL̂ j + L̂ jL̂i
⌘

� 1
3 L(L + 1)�i j

i

�

�

�

�

0
�

Ŝ iŜ j

+ P
X

i j



h0 |{⇠L(L + 1) � }| 0i �i jŜ i Î j �
⌧

0
�

�

�

�

3
2⇠

n

L̂iL̂ j + L̂ jL̂i
o

�

�

�

�

0
�

Ŝ i Î j + �i j
D

0
�

�

�L̂i
�

�

� 0
E

Î j

�

+ µB

X

i

B0,i
⇣D

0
�

�

�L̂i
�

�

� 0
E

+ h0|0i geŜ i
⌘

(4.16)

= �⇢
X

i j

Ŝ ili jŜ j � P
X

i j

Ŝ i
⇣

�i j + 3⇠li j
⌘

Î j + µBge

X

i

B0,iŜ i. (4.17)

This is an example of an e↵ective spin Hamiltonian, which comprises three terms. The first is referred to either

as the zero-field splitting (ZFS) or the electric quadrupole interaction [207]. The latter name emphasises the

fact that the Hamiltonian is formally equivalent to that of a nuclear quadrupole interaction Î ·Q · Î , where Q

is the tensor describing the orientation dependence of the quadrupolar coupling. To first order the ZFS is due

to the spin-spin interaction, and has a spatial dependence given by the tensor li j whose components are given

by

li j =
1
2 h0| L̂iL̂ j + L̂ jL̂i |0i � 1

3 L(L + 1)�i j. (4.18)

In common with the quadrupolar coupling interaction the ZFS tensor is symmetric, and is equal to zero for

S < 1 or for an environment of perfectly cubic symmetry.

The second term is the hyperfine interaction comprising both the isotropic Fermi-contact�P and anisotropic

spin-dipolar �3P⇠li j parts. The third term is the electron Zeeman interaction. The Hamiltonian in Equation

4.17 is often referred to as non-relativistic (NR) as it does not depend on the SO coupling [201]. In fact

this Hamiltonian is only valid in the absence of SO coupling e↵ects, for example for spin-only metal ions.

When SO coupling is present we must continue the perturbation theory calculation to at least second order,

remembering that as the SO interaction is the largest term in Ĥ1, some of the second-order terms may be

larger than the first order terms in the NR Hamiltonian.
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The second-order perturbation Hamiltonian Ĥ(2)
1 is given by [206]

Ĥ(2)
1 = �

X

n,0

h0| Ĥ1 |ni hn| Ĥ1 |0i
En � E0

(4.19)

= h0| Ĥ1⌃̂Ĥ1 |0i , (4.20)

where ⌃̂ is a sum of the projection operators of the excited orbital states |ni hn| where each term is weighted

by the reciprocal of the di↵erence in the energy of the state from the ground state E0:

⌃̂ = �
X

n,0

|ni hn|
En � E0

. (4.21)

The expression in Equation 4.20 contains products between all the various terms in Ĥ1, the largest of which

is expected to be the self term involving ĤSO SO–SO, which is

h0| ĤSO⌃̂ĤSO |0i = �2
X

i j

h0| L̂i⌃̂L̂ j |0i Ŝ iŜ j (4.22)

= ��2
X

i j

Ŝ i⇤i jŜ j. (4.23)

where

⇤i j =
X

n,0

h0| L̂i |ni hn| L̂ j |0i
En � E0

. (4.24)

We see that this term varies as the square of the SO coupling energy coe�cient �2, and is bilinear in the

components of Ŝ, and so it contributes to the ZFS in the e↵ective spin Hamiltonian. The spatial tensor ⇤i j is

real and symmetric.

Whilst the SO–SO self term is the largest of the second-order contributions, we also expect there to be

significant contributions from the cross terms between ĤSO and the other parts of Ĥ1. These are the only

remaining terms we consider here, and we ignore the smaller contributions such as the cross terms between

the spin-spin and hyperfine interactions. The cross term between the spin-spin and SO interactions SS–SO is
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given by

h0| ĤSO⌃̂ĤSS + ĤSS⌃̂ĤSO |0i = � 1
2�⇢

P

i jk h0| L̂i⌃̂
⇣

L̂ jL̂k + L̂k L̂ j
⌘

|0i Ŝ iŜ jŜ k

� 1
2�⇢

P

i jk h0|
⇣

L̂ jL̂k + L̂k L̂ j
⌘

⌃̂L̂i |0i Ŝ iŜ jŜ k (4.25)

= �⇢
X

i j

Ŝ i
⇣

⇤0i j + ⇤
0
ji

⌘

Ŝ j, (4.26)

where the tensor ⇤0i j is given by

⇤0i j = �
i
2

X

kl

"ikl

X

n,0

h0| L̂l |ni hn| L̂ jL̂k + L̂k L̂ j |0i
En � E0

, (4.27)

and "i jk is the Levi–Civita tensor. Note that⇤0i j is not necessarily symmetric. This term is again a contribution

to the ZFS which is proportional to the product of the spin-spin and SO interaction energies, and so we expect

it to be smaller than the SO–SO term. It is also spatially symmetric, even though ⇤0i j may not be. The cross

term between the SO and hyperfine Hamiltonians SO–HF gives a contribution to the hyperfine part of the

e↵ective spin Hamiltonian:

h0| ĤSO⌃̂ĤHF + ĤHF⌃̂ĤSO |0i = �2�P
X

i j

Ŝ i⇤i j Î j + 3⇠�P
X

i j

Ŝ i⇤
0
i j Î j, (4.28)

where the first term is symmetric and the second, in general, is not. The final cross term we will consider is

that between the SO and Zeeman Hamiltonians SO–Z, which gives us a contribution to the electronic Zeeman

Hamiltonian:

h0| ĤSO⌃̂ĤZ + ĤZ⌃̂ĤSO |0i = µB�
X

i j

B0,i h0| L̂i⌃̂L̂ j + L̂ j⌃̂L̂i |0i Ŝ j (4.29)

= �2µB�
X

i j

B0,i⇤i jŜ j. (4.30)

More specifically, this is the cross term between the SO and orbital Zeeman interactions, as the cross term

with the spin Zeeman interaction is zero. We note that the tensor coupling the electronic spin to the magnetic

field is now spatially anisotropic, and is proportional to µB�. All these second-order terms sum to give us an

SO, or relativistic, contribution to the e↵ective spin Hamiltonian.
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We collect all of the above first- and second-order contributions to give the total EPR e↵ective spin

Hamiltonian ĤEPR:

ĤEPR = µBB0 · g · Ŝ + Ŝ ·A · Î + Ŝ ·D · Ŝ, (4.31)

which comprises three terms. The first term is the electronic Zeeman interaction describing the interaction

of the magnetic moment of the electrons with the external magnetic field. We see that this interaction is now

spatially anisotropic, and is described by a g-tensor g which is given by:

gi j = ge�i j � 2�⇤i j. (4.32)

This is the sum of the free-electron g-factor and the g-shift term �2�⇤i j which arises because of SO coupling.

This g-shift plays the role of a “chemical shielding” for the electron as it modifies the reference resonance

frequency that is due to ge, in the same way that the chemical shielding of the nucleus gives a deviation of

the nuclear resonance frequency from the Larmor frequency. We note that the g-shift contribution above is

symmetric. However we must bear in mind that this is not a general feature and that, on including other

cross terms and higher-order perturbations, the g-tensor is not necessarily symmetric [208, 209]. We can see

that, from this form of the Zeeman interaction, we can write down an expression for the electronic magnetic

moment m̂ in terms of the g-tensor:

m̂ = �µBg · Ŝ. (4.33)

This expression is apparently di↵erent to that in Equation 4.1 which contains both the orbital and electronic

contributions to m̂. The di↵erence can be understood by noting that the expression in Equation 4.1 contains

L̂, thus giving the magnetic moment an intrinsic spatial dependence. On calculating the e↵ective spin

Hamiltonian we remove the explicit dependence on L̂ and, by definition, retain only the spin operators.

However the spatial dependence is retained and is encoded in the g-tensor anisotropy, the leading contribution

to which is the cross term between the SO coupling and orbital Zeeman interaction Hamiltonians. As we will

see, this definition of the electronic magnetic moment operator corresponds to that used by van den Heuvel

and Soncini in their description of the EPR formalism of the paramagnetic shielding tensor [86, 88].

The second term is the hyperfine interaction from which we can write down a hyperfine coupling tensor
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A as follows:

Ai j = �P
⇣

�i j + 3⇠li j + 2�⇤i j � 3⇠�⇤0i j

⌘

. (4.34)

The first two terms of A are due to the NR Fermi-contact and spin-dipolar interactions, and the second two

terms are due to SO coupling. Both of the SO terms contribute to the anisotropy of A, which is now not

necessarily symmetric due to the presence of the last term which is proportional to ⇤0i j. The final interaction

is the ZFS, which is mediated by a tensor D, the Cartesian components of which are given by

Di j = ��2⇤i j � ⇢li j + �⇢
⇣

⇤0i j + ⇤
0
ji

⌘

. (4.35)

This interaction is only non-zero for e↵ective spins S > 1/2, in complete analogy with the nuclear quadrupole

interaction which is only non-zero for I > 1/2. The first term ��2⇤i j is dominant for 3d metal ions due to the

relative sizes of the SO and spin-spin splitting parameters � and ⇢. The ZFS tensor D is always symmetric

due to the symmetric form of the ZFS Hamiltonian. We also note that, whilst D is not necessarily traceless,

we can ignore the isotropic contribution as it shifts all the spin energy levels by the same amount in the same

direction, and so does not a↵ect the frequencies of the transitions between these levels. Henceforth we refer

to the ZFS as a traceless and symmetric interaction.

4.1.2 The NMR and EPR tensors

If we now include the nuclear Zeeman and chemical shielding interactions the EPR Hamiltonian becomes

ĤEPR = �~�IB0 ·
⇣

1 � �orb
⌘

· Î + µBB0 · g · Ŝ + Ŝ ·A · Î + Ŝ ·D · Ŝ. (4.36)

As we have already discussed in section 2.6.1 it is common practice in NMR to employ high-field conditions,

in which we retain only those terms in the Hamiltonian that commute with the unmodified Zeeman interaction,

which in this case is ~!0 Îz + µBgeB0Ŝ z. Such an approximation is only valid if the Zeeman interaction is

several orders of magnitude larger than the other interactions. However this is not the case for ĤEPR as the

dominant interaction may be the ZFS, and so the high-field approximation does not apply.

We can expand the EPR tensors as Taylor series in the fine structure constant ↵ which takes the value
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1/137.036 [201]. For instance the g-tensor can be written as the sum of the NR and SO terms

g = gNR + gSO, (4.37)

where the NR term gNR is of order O(↵0) and the SO term gSO is O(↵2). These two terms can further be

written as [209]

gNR = ge1, O(↵0), (4.38)

gSO = �giso1 +�g, O(↵2). (4.39)

Thus, as indicated by the previous perturbation theory calculation, the NR contribution is simply the isotropic

free-electron g-factor, and the SO contribution can be separated into an isotropic part �giso and a traceless

anisotropic part �g that is not necessarily symmetric.

In the same way we can expand the hyperfine coupling constant as a Taylor series in ↵ [210]:

A = ANR +ASO, (4.40)

ANR = AFC1 +ASD, O(↵2), (4.41)

ASO = AFC,21 +ASD,2 +Aas, O(↵4). (4.42)

The NR contribution is the sum of the isotropic Fermi-contact term and the symmetric and anisotropic spin-

dipolar part that we have already encountered. The SO contribution contains an isotropic part AFC,2 that is

also due to the delocalisation of unpaired electron density into the s orbital of the nucleus. It has also been

referred to as a ‘pseudo-contact’ term [210], but since this leads to confusion with the established NMR

term ‘pseudo-contact shift’ we will simply refer to it as a second-order Fermi-contact coupling constant. The

SO hyperfine constant also comprises a symmetric and anisotropic component ASD,2 which is labelled as a

second-order spin-dipolar interaction, but is actually an interaction of shorter range than the NR spin-dipolar

term. Nevertheless we include it with ASD as it is also a rank-two tensor. We note that this is similar to

diamagnetic NMR where the anisotropic J-coupling is often absorbed into the larger dipolar coupling. Finally

there is also an antisymmetric anisotropic contribution to the hyperfine tensor Aas. Explicit expressions for
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the SO coupling contribution to the hyperfine tensors are given in appendix B.

The ZFS tensor is given by [211]

D =DNR +DSO, (4.43)

where the NR part DNR is due to the electron spin-spin interaction, and is usually dominated by the SO term

DSO. We recall that D is symmetric and traceless, and is equal to zero either for electronic spins S < 1 or

for transition metals in perfectly cubic environments.

We expect the NR terms of all three tensors to be the only contributions to spin-only 3d metal ions,

with the SO terms only being observed in the presence of SO coupling. We recall that we have already

encountered the NR contributions to both g and A in chapter 3 when we calculated the paramagnetic shift

tensors in spin-only systems. That theoretical treatment ignored the NR spin-spin contribution to the ZFS,

and so is only an approximation for S > 1/2.

We can write all the terms in the EPR Hamiltonian in terms of irreducible spherical tensor operators,

according to Equation 2.67. The expressions for the spin-spin spherical tensors used in the hyperfine and

ZFS interactions, and the spin-field tensor used in the electronic Zeeman interaction are given in Table 2.2.

The spherical spatial tensors are given in Table 2.3, and can in turn be written in terms of the isotropic

value, antisymmetric anisotropy, symmetric anisotropy, and asymmetry parameter. We return to this topic in

chapter 5. For now we give the single example of the ZFS. The spatial tensor is symmetric and traceless, and

so contains only rank two components. The Hamiltonian is therefore

Ŝ ·D · Ŝ =
+2
X

m=�2

(�1)mDlmT̂l�m(S S ) (4.44)

=

+2
X

m=�2

(�1)mT̂l�m(S S )
m0
X

m0=�2

D̃lm0D(2)
m0m(↵DL, �DL, �DL), (4.45)

where (↵DL, �DL, �DL) are the Euler angles that give the orientation of the ZFS PAF in the laboratory frame.

The spin operators T̂2m(S S ) are equivalent to the spin operators describing the nuclear quadrupole interaction:

T̂20(S S ) =
q

1
6

⇣

3Ŝ 2
z � S (S + 1)1̂

⌘

, (4.46)

T̂2±1(S S ) = ⌥ 1
2

⇣

Ŝ zŜ ± + Ŝ ±Ŝ z
⌘

, (4.47)

T̂2±2(S S ) = 1
2 Ŝ 2
±. (4.48)
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The spatial irreducible spherical tensors D̃2m in the PAF are given by

D̃20 =
q

2
3 D, (4.49)

D̃2±1 = 0, (4.50)

D̃2±2 = E, (4.51)

where D and E are the established symbols for the axial and rhombic anisotropies:

D = D̃zz � 1
2 (D̃xx + D̃yy), (4.52)

E = 1
2

⇣

D̃xx � D̃yy
⌘

. (4.53)

Note that for the ZFS it is conventional to define the interaction in terms of D and E, rather than the anisotropy

�D and asymmetry ⌘.

4.2 The EPR formalism of the paramagnetic shielding

In chapter 3 we saw that the hyperfine interaction between the nucleus and unpaired electrons results in a

“paramagnetic shift” of the nuclear resonance frequency, rather than a splitting, and that the shielding tensor

depends on the electronic g-factor and hyperfine coupling tensor. We have a similar situation when the metal

ion is subject to SO coupling, but the details of the theory are more complicated. In the following we relate

the EPR tensor parameters to the paramagnetic shielding tensor.

4.2.1 General derivation of the paramagnetic shielding tensor

The description of the chemical shielding interaction in paramagnetic systems follows that of van den Heuvel

and Soncini. Although the remainder of this chapter is concerned with 3d metal ions, it should be noted

that the derivation of van den Heuvel and Soncini is more general, since there are no assumptions made

about whether or not the theory is at the relativistic level, or about the SO coupling strength. Therefore the

expression we derive here is one we will return to later in chapter 6 when considering more complex metal

ions, such as lanthanides and actinides. There is a short review of this formalism by Autschbach, which

123



summarizes its theory and practice in quantum chemistry [212].

We equate the chemical shielding interaction to the terms in the e↵ective temperature-dependent Hamilto-

nian that are linear in both the external magnetic field and the nuclear magnetic moment. This e↵ective Hamil-

tonian is given by the single-particle Helmholtz free energy F, to which we apply Rayleigh–Schrödinger

perturbation theory to find the chemical shielding tensor, the components of which are [88]

�i j =
1
~�I

0

B

B

B

B

@

@2F
@B0,i@Î j

1

C

C

C

C

A

B0=0,Î=0̂

. (4.54)

The electronic Hamiltonian Ĥ(B0, Î) is written as the sum of Ĥ0, which describes the electrons in the

absence of the external field and the nuclear magnetic moments, and a perturbative term V̂(B0, Î) which

includes these latter e↵ects:

Ĥ(B0, Î) = Ĥ0 + V̂(B0, Î). (4.55)

The term Ĥ0 is the dominant part of the Hamiltonian and includes parts such as the Born–Oppenheimer

Hamiltonian, the crystal-field interaction, and the ZFS interaction. The smaller term V̂ is written as the sum

of three parts that are linear in either B0, Î , or both:

V̂ = ĤZ + ĤHF + ĤD, (4.56)

ĤZ = �B0 · m̂, (4.57)

ĤHF = F̂ · Î , (4.58)

ĤD = B0 ·D · Î . (4.59)

The Hamiltonian ĤZ is the electronic Zeeman interaction between the electronic magnetic moment operator

m̂ = �µB(L̂ + geŜ) and the external field, ĤHF is the hyperfine interaction between the hyperfine field

operator F̂ and the nuclear magnetic moment operator, and ĤD represents the diamagnetic nuclear-electron

field coupling via the spatial tensor D. There are additional terms of higher degree in B0 and Î , but these

do not contribute to the shielding tensor, and so are not considered here. It proves convenient to partition the

Hamiltonian as follows

Ĥ = Ĥ0 + �Ĥ1 + �
2Ĥ2, (4.60)
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where � is a perturbation parameter that represents the combined order of B0 and Î , and Ĥ1 and Ĥ2 are

Ĥ1 = ĤZ + ĤHF, (4.61)

Ĥ2 = ĤD. (4.62)

The Helmholtz free energy is given by Equation 2.18 as

F = �1
�

ln Q, (4.63)

where Q is the partition function. We write Q as the sum of the diagonal elements of the matrix representation

of the density operator ⇢̂, that has been computed in the basis operators of the electronic spin:

Q = TrS (⇢̂). (4.64)

The notation TrS indicates that the sum is over the matrix elements of a spin operator, and not a sum of the

diagonal elements of a spatial tensor. The equilibrium density operator is defined as

⇢̂ = exp
⇣

��Ĥ
⌘

. (4.65)

We can expand both ⇢̂ and Q as Taylor series in �:

⇢̂ = ⇢̂0 + �⇢̂1 + �
2⇢̂2 + O(�3), (4.66)

Q = Q0 + �Q1 + �
2Q2 + O(�3), (4.67)

where ⇢̂0 = exp
⇣

��Ĥ0
⌘

, ⇢̂n is the nth-order correction to ⇢̂, and Qn = TrS (⇢̂n) is the nth-order correction to
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Q. We are now in a position to expand F as a power series in �:

F = �1
�

ln
h

Q0 + �Q1 + �
2Q2 + O(�3)

i

(4.68)

= �1
�

ln Q0 �
1
�

ln
"

1 + �
Q1

Q0
+ �2 Q2

Q0
+ O(�3)

#

(4.69)

= F0 �
�

�

Q1

Q0
+
�2

�

2

6

6

6

6

6

4

1
2

 

Q1

Q0

!2

� Q2

Q0

3

7

7

7

7

7

5

+ O(�3), (4.70)

where F0 = ���1 ln Q0 is the Helmholtz free energy in the absence of the external magnetic field and nuclear

magnetic moment. The principle of time-reversal symmetry [190] states that the free energy must be time-

even, and therefore an even function of the time-odd parameters B0 and Î . Hence it must only contain even

powers of �, from which we deduce that Q1 must be zero. The free energy is therefore

F = F0 �
�2

�

Q2

Q0
+ O(�4). (4.71)

We now need an expression for the partition function Q2. We note that ⇢̂ satisfies a form of the Schrödinger

equation:
@⇢̂

@�
= �Ĥ⇢̂. (4.72)

On substituting Equations 4.60 and 4.66 for Ĥ and ⇢̂ into the Schrödinger equation, and collecting terms of

equal order in �, we obtain the following di↵erential equations for ⇢̂1 and ⇢̂2:

@⇢̂1

@�
= �Ĥ0⇢̂1 � Ĥ1⇢̂0, (4.73)

@⇢̂2

@�
= �Ĥ0⇢̂2 � Ĥ1⇢̂1 � Ĥ2⇢̂0. (4.74)

The solutions to these equations can be found using standard techniques [189], which give:

⇢̂1 = �
Z �

0
dw exp

⇣

(w � �) Ĥ0
⌘

Ĥ1 exp
⇣

�wĤ0
⌘

, (4.75)

⇢̂2 = �
Z �

0
dw exp

⇣

(w � �) Ĥ0
⌘

Ĥ2 exp
⇣

�wĤ0
⌘

+

Z �

0
dw

Z w

0
dw0 exp

⇣

(w � �) Ĥ0
⌘

Ĥ1 exp
⇣

�

w0 � w
�

Ĥ0
⌘

Ĥ1 exp
⇣

�w0Ĥ0
⌘

. (4.76)
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Alternatively one can substitute Equations 4.75 and 4.76 into Equations 4.73 and 4.74 to verify that the former

are solutions of the latter. The partition function Q2 is given by the trace of ⇢̂2. Taking the trace of the first

term gives

TrS

"

�
Z �

0
dw exp

⇣

(w � �) Ĥ0
⌘

Ĥ2 exp
⇣

�wĤ0
⌘

#

= �
Z �

0
dwTrS

h

exp
⇣

(w � �) Ĥ0
⌘

Ĥ2 exp
⇣

�wĤ0
⌘i

= �
Z �

0
dwTrS

h

exp
⇣

�wĤ0
⌘

exp
⇣

(w � �) Ĥ0
⌘

Ĥ2
i

= �
Z �

0
dwTrS

h

exp
⇣

��Ĥ0
⌘

Ĥ2
i

= ��TrS
h

⇢̂0Ĥ2
i

, (4.77)

where, to go to the third line, we have used the identity Tr(ÂB̂Ĉ) = Tr(ĈÂB̂) = Tr(B̂ĈÂ). The Boltzmann

average
D

Û
E

0
of an operator Û over the energy levels of Ĥ0 is equal to

D

Û
E

0
=

TrS
⇣

⇢̂0Û
⌘

Q0
, (4.78)

and so Equation 4.77 can be written in its final form as

��
D

Ĥ2
E

0
Q0, (4.79)

i.e. this part of ⇢̂2 is proportional to the thermal average of Ĥ2 over the energy levels of Ĥ0.

The trace of the second term in Equation 4.76 is more complex to compute. We start by noting that

TrS

"

Z �

0
dw

Z w

0
dw0 exp

⇣

(w � �) Ĥ0
⌘

Ĥ1 exp
⇣

�

w0 � w
�

Ĥ0
⌘

Ĥ1 exp
⇣

�w0Ĥ0
⌘

#

=

Z �

0
dw

Z w

0
dw0TrS

h

⇢̂0 exp
⇣

�

w � w0
�

Ĥ0
⌘

Ĥ1 exp
⇣

� �

w � w0
�

Ĥ0
⌘

Ĥ1
i

(4.80)

=

Z �

0
du

Z u

0
dvTrS

h

⇢̂0 exp
⇣

vĤ0
⌘

Ĥ1 exp
⇣

�vĤ0
⌘

Ĥ1
i

, (4.81)

where to go to the last line we have performed a change in the dummy integration variables u = w and

v = w � w0. This integral is still rather tricky to evaluate in its present form, but fortunately it can be

simplified after some straightforward algebra. Firstly we apply the change of variable v0 = v � � to the first
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integral, which gives
Z �

0
du

Z u��

��
dv0TrS

h

⇢̂0 exp
⇣

�v0Ĥ0
⌘

Ĥ1 exp
⇣

v0Ĥ0
⌘

Ĥ1
i

, (4.82)

followed by a second change of variable v = �v0, which yields

Z �

0
du

Z �

��u
dvTrS

h

⇢̂0 exp
⇣

vĤ0
⌘

Ĥ1 exp
⇣

�vĤ0
⌘

Ĥ1
i

. (4.83)

Secondly we apply a similar change of variables to u in the second integral, namely u0 = u � � which gives

Z 0

��
du0

Z �

�u0
dvTrS

h

⇢̂0 exp
⇣

vĤ0
⌘

Ĥ1 exp
⇣

�vĤ0
⌘

Ĥ1
i

, (4.84)

followed by u = �u0 after which the double integral becomes

Z �

0
du

Z �

u
dvTrS

h

⇢̂0 exp
⇣

vĤ0
⌘

Ĥ1 exp
⇣

�vĤ0
⌘

Ĥ1
i

. (4.85)

The integrals in Equations 4.81 and 4.85 sum to give

Z �

0
du

Z u

0
dvTrS

h

⇢̂0 exp
⇣

vĤ0
⌘

Ĥ1 exp
⇣

�vĤ0
⌘

Ĥ1
i

+

Z �

0
du

Z �

u
dvTrS

h

⇢̂0 exp
⇣

vĤ0
⌘

Ĥ1 exp
⇣

�vĤ0
⌘

Ĥ1
i

=

Z �

0
du

Z �

0
dvTrS

h

⇢̂0 exp
⇣

vĤ0
⌘

Ĥ1 exp
⇣

�vĤ0
⌘

Ĥ1
i

. (4.86)

However the integrals on the first line are equal, and so we can finally write Equation 4.81 in a form that is

more straightforward to evaluate:

Z �

0
du

Z u

0
dvTrS

h

⇢̂0 exp
⇣

vĤ0
⌘

Ĥ1 exp
⇣

�vĤ0
⌘

Ĥ1
i

=
1
2

Z �

0
du

Z �

0
dvTrS

h

⇢̂0 exp
⇣

vĤ0
⌘

Ĥ1 exp
⇣

�vĤ0
⌘

Ĥ1
i

(4.87)

=
�

2

Z �

0
dvTrS

h

⇢̂0 exp
⇣

vĤ0
⌘

Ĥ1 exp
⇣

�vĤ0
⌘

Ĥ1
i

(4.88)

=
�

2

*

Z �

0
dw exp

⇣

wĤ0
⌘

Ĥ1 exp
⇣

�wĤ0
⌘

Ĥ1

+

0
Q0, (4.89)

i.e. it is proportional to the Boltzmann average of the integral of exp
⇣

wĤ0
⌘

Ĥ1 exp
⇣

�wĤ0
⌘

Ĥ1 over w. Com-
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bining Equations 4.71, 4.79, and 4.89 we arrive at the final expression for the Helmholtz free energy

F = F0 +
D

Ĥ2
E

0
� 1

2

*

Z �

0
dw exp

⇣

wĤ0
⌘

Ĥ1 exp
⇣

�wĤ0
⌘

Ĥ1

+

0
+ . . . , (4.90)

where we have set � = 1, as it has served its purpose as an expansion parameter and is no longer needed. Sub-

stituting in the expressions for Ĥ1 and Ĥ2 and performing the double di↵erentiation gives us the expression

for the chemical shielding:

�i j =
1
~�I

0

B

B

B

B

@

@2F
@B0,i@Î j

1
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(4.91)

=
1
~�I

D

Di j
E

0
+

1
2~�I

*

Z �

0
dw exp

⇣

wĤ0
⌘

m̂i exp
⇣

�wĤ0
⌘

F̂ j

+

0

+
1

2~�I

*

Z �

0
dw exp

⇣

wĤ0
⌘

F̂ j exp
⇣

�wĤ0
⌘

m̂i

+

0
. (4.92)

The second integral can be rewritten as

1
2~�I

*

Z �

0
dw exp

⇣

wĤ0
⌘

F̂ j exp
⇣

�wĤ0
⌘

m̂i

+

0

=
1

2~�I Q0

Z �

0
dwTrS

h

exp
⇣

��Ĥ0
⌘

exp
⇣

wĤ0
⌘

F̂ j exp
⇣

�wĤ0
⌘

m̂i
i

(4.93)

=
1

2~�I Q0

Z �

0
dwTrS

h

exp
⇣

�wĤ0
⌘

m̂i exp
⇣

��Ĥ0
⌘

exp
⇣

wĤ0
⌘

F̂ j
i

. (4.94)

Making a change of variable u = � � w we obtain

1
2~�I Q0

Z �

0
duTrS

h

exp
⇣

��Ĥ0
⌘

exp
⇣

uĤ0
⌘

m̂i exp
⇣

�uĤ0
⌘

F̂ j
i

=
1

2~�I

*

Z �

0
du exp

⇣

uĤ0
⌘

m̂i exp
⇣

�uĤ0
⌘

F̂ j

+

0
, (4.95)

which is equal to the first integral in Equation 4.92. The expression for the shielding tensor is therefore

�i j =
1
~�I

D

Di j
E

0
+

1
~�I

*

Z �

0
dw exp

⇣

wĤ0
⌘

m̂i exp
⇣

�wĤ0
⌘

F̂ j

+

0
. (4.96)

To evaluate the integral we need to write the Boltzmann averages in terms of the energy levels and states
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of the Hamiltonian Ĥ0. We will denote the eigenstates as |n⌫i where ⌫ denotes the states with the same energy

En, i.e.

Ĥ0 |n⌫i = En |n⌫i . (4.97)

Using this we write Equation 4.96 as

�i j =
1

~�I Q0

X

n⌫

exp(��En)
D

n⌫
�

�

�Di j
�

�

� n⌫
E

+
1

~�I Q0

X

n⌫,mµ

exp(��En) hn⌫ |m̂i|mµi
D

mµ
�

�

�F̂ j
�

�

� n⌫
E

Z �

0
dw exp (w (En � Em)) . (4.98)

This integral is now easy to evaluate, and we obtain as the final result for the chemical shielding tensor

�i j =
1
~�I

2

6

6

6

6

6

4

1
Q0

X

n

exp(��En)
X

⌫

D

n⌫
�

�

�Di j
�

�

� n⌫
E

+
1

Q0

X

n

exp(��En)
X

m,n

X

⌫,µ

hn⌫ |m̂i|mµi
D

mµ
�

�

�F̂ j
�

�

� n⌫
E

+ c.c.

Em � En

+
�

Q0

X

n

exp(��En)
X

⌫,⌫0

⌦

n⌫ |m̂i| n⌫0
↵

D

n⌫0
�

�

�F̂ j
�
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7

7

7
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, (4.99)

where c.c. is the complex conjugate of hn⌫ |m̂i|mµi
D

mµ
�

�

�F̂ j
�

�

� n⌫
E

.

This apparently complicated expression comprises three terms. The first two are the ‘diamagnetic’ �dia
i j

and ‘paramagnetic’�para
i j contributions to the chemical shielding that Ramsey calculated for a non-degenerate,

singlet ground state [191], and which van den Heuvel and Soncini generalised to an open-shell electronic

configuration with thermally accessible electronic excited states [86, 88]:

�dia
i j =

1
~�I Q0

X

n

exp(��En)
X

⌫

D

n⌫
�

�

�Di j
�

�

� n⌫
E

, (4.100)

�para
i j =

1
~�I Q0

X

n

exp(��En)
X

m,n

X

⌫,µ

hn⌫ |m̂i|mµi
D

mµ
�

�

�F̂ j
�

�

� n⌫
E

+ c.c.

Em � En
. (4.101)

We again note that Ramsey’s use of the term ‘paramagnetic’ is di↵erent to the one employed here. Pennanen

and Vaara gathered the diamagnetic term and the spin-independent part of the paramagnetic term together into

the ‘orbital’ component of their chemical shielding tensor �orb
i j . However we must bear in mind that, for open-
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shell configurations exhibiting appreciable SO coupling, the ‘paramagnetic’ term includes the spin-dependent

terms in both m̂ and F̂ , and so �para is not a pure orbital term. The third term in Equation 4.99 exhibits

a leading Curie temperature dependence of 1/(kT ), which is familiar from our earlier discussions. One

interesting feature of this term is that it receives a zero contribution from any levels n that are non-degenerate.

Hence if we have an isolated non-degenerate ground state n = 0 we obtain

�i j =
1
~�I

D

0
�

�

�Di j
�

�

� 0
E

+
1
~�I

X

m,0

X

µ

h0 |m̂i|mµi
D

mµ
�

�

�F̂ j
�

�

� 0
E

+ c.c.

Em � E0
, (4.102)

which is the Ramsey expression [191].

In our discussion of paramagnetic shifts, we retain both the Curie term and the spin-dependent part of the

‘paramagnetic’ term and combine both in our paramagnetic shielding �S
i j:

�S
i j =

2
~�I Q0

X

n

exp(��En)
X

m,n

X

⌫,µ

hn⌫ |m̂i|mµi
D

mµ
�

�

�F̂ j
�

�

� n⌫
E

Em � En

+
�

~�I Q0

X

n

exp(��En)
X

⌫,⌫0

⌦

n⌫ |m̂i| n⌫0
↵

D

n⌫0
�

�

�F̂ j
�

�

� n⌫
E

. (4.103)

Note that hn⌫ |m̂i|mµi
D

mµ
�

�

�F̂ j
�

�

� n⌫
E

in the first term is always real, and so we have removed the c.c. and

replaced it with a factor of 2 in front of the sum. Henceforth we only consider �S
i j in our discussion.

4.2.2 The EPR formalism applied to d-block transition-metal systems

Equation 4.103 is a correct, if opaque, form of the paramagnetic shielding tensor. However for d-block

transition-metal ions we can convert it to an intuitively more useful form by using the explicit EPR Hamilto-

nian in Equation 4.36, from which we can write down Ĥ0 and Ĥ1 as

Ĥ0 = Ŝ ·D · Ŝ, (4.104)

Ĥ1 = µBB0 · g · Ŝ + Ŝ ·A · Î , (4.105)

where we see that the ZFS interaction is the Hamiltonian in the absence of the external field and nuclear

magnetic moments. We can deduce the expressions for both the magnetic moment m̂i and the hyperfine field
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F̂ j operators to be

m̂i = �µB

X

k

gikŜ k, (4.106)

F̂ j =
X

l

Ŝ lAl j. (4.107)

Substituting these into the EPR expression for the paramagnetic shielding in Equation 4.103 we obtain

�S
i j = �

2µB

~�I

X

kl

gikAl j
1
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E D
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�

�Ŝ l
�

�

� n⌫
E

, (4.108)

where the |n⌫i and En are the eigenstates and eigenvalues of the ZFS interaction Hamiltonian. This is

simplified to give

�S
i j = �

µB

~�I

X

kl

gikZklAl j, (4.109)

or alternatively

�S = � µB

~�I
g ·Z ·A. (4.110)

The tensor Zkl contains all the information pertaining to the ZFS, and the form of the temperature dependence

of the whole shielding tensor. It takes the form

Zkl =

*

Z �

0
dw exp

⇣

wĤ0
⌘

Ŝ k exp
⇣

�wĤ0
⌘

Ŝ l

+

0
(4.111)

=
1

Q0
TrS

(

exp
⇣

��Ĥ0
⌘

Z �

0
dw exp

⇣

wĤ0
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(4.112)

=
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� n⌫
E

. (4.113)

In the absence of a ZFS interaction D = 0 and there is a single degenerate level n = 0 with energy E0 = 0.
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In this case the Equation 4.108 reduces to a simple expression with a Curie temperature dependence:

�S
i j = �

µB

~�IkT

X

kl

gikAl j

X

⌫,⌫0

D

0⌫
�

�

�Ŝ k
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� 0⌫0
E D

0⌫0
�

�

�Ŝ l
�

�

� 0⌫
E

2S + 1
(4.114)

= � µB

~�IkT

X

kl

gikAl j
TrS

⇣

Ŝ kŜ l
⌘

2S + 1
(4.115)

= � µB

~�IkT

X

kl

gikAl j
1
3

S (S + 1)�kl (4.116)

= �µBS (S + 1)
3~�IkT

X

k

gikAk j, (4.117)

which can also be written

�S = �µBS (S + 1)
3~�IkT

g ·A. (4.118)

In fact this is the same expression that was derived by Moon and Patchkovskii [38]. We note the following

features. Firstly this expression is reminiscent of that for the spin-only ion in Equation 3.70, with the main

di↵erence that the g-factor ge has been replaced by the full g-tensor g. The tensors g and A couple together

via conventional matrix multiplication. Secondly, as in Equation 3.70, the temperature dependence varies

according to the 1/kT Curie law. We see in the next section that this is not the case when there is a non-zero

ZFS.

4.2.3 The EPR formalism in di↵erent temperature limits

It is instructive to explore the form of the EPR expression for the paramagnetic shielding tensor in di↵erent

temperature regimes. This has been investigated in some detail by Martin and Autschbach, who considered

expansions of the EPR expression for the shielding tensor up to 1/(kT )3 for metal ions with the full range

of spins appropriate for the d-block, which range from 1/2 to 5/2 [89, 90]. It is particularly informative

to consider the case of high temperatures, where the expression is considerably simplified. The term ‘high

temperature’ refers to the size of kT with respect to the ZFS parameters D and E, and is therefore quantified

by the ratios |D|/kT and |E|/kT , with smaller ratios indicating a better agreement with the high-temperature

limit. We examine two related facets of this limit in order to illustrate the connection between the two

formalisms. Firstly we note that the integral in Equation 4.112 is over values of w from 0 to �, which

corresponds to temperatures from infinity down to the experimental temperature T . If we assume that this
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range of temperatures is ‘high’, such that we can approximate the operators exp
⇣

±wĤ0
⌘

by the identity

operator, then Zkl reduces to the expression calculated by Pennanen and Vaara ZPV
kl [39]:

Zkl =
1

Q0
TrS
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exp
⇣

��Ĥ0
⌘

Z �
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(4.119)

⇡ 1
Q0

TrS

(

exp
⇣

��Ĥ0
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Z �

0
dwŜ kŜ l

)

(4.120)

= �
TrS

n

exp
⇣

��Ĥ0
⌘

Ŝ kŜ l
o

Q0
(4.121)

= ZPV
kl . (4.122)

The Pennenan–Vaara expression is therefore a high-temperature approximation of the EPR expression [40].

Note that we have not explicitly assumed that exp
⇣

��Ĥ0
⌘

is also approximated by the identity; this approxi-

mation has only been applied to temperatures higher than T .

Even higher temperatures can be examined further by expanding both ZPV
kl and Zkl as Taylor series in �.

The expansion of the former is straightforward:

ZPV
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Ĥ2
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The expansion of the EPR expression Zkl requires more tedious algebra, which gives the following
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+ O(↵4). (4.126)
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The first term of order �2 is proportional to the trace of Ĥ0
h

Ŝ k, Ŝ l
i

, which is equal to zero:
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= 0, (4.129)

where to go to the last line we use the argument set out in appendix D. We therefore see that ZPV
kl and Zkl are

identical out to and including the terms in 1/(kT )2, and di↵er only in the third-order terms and above. Both

formalisms therefore give the same second-order expression:

Zkl = �
TrS

⇣

Ŝ kŜ l
⌘

Q0
� �2

TrS
⇣

Ĥ0Ŝ kŜ l
⌘

Q0
(4.130)

=
�

3
S (S + 1)�kl �

�2

30
S (S + 1)(2S � 1)(2S + 3)Dkl, (4.131)

where we have replaced Ĥ0 with the ZFS interaction Hamiltonian. The calculation is described in detail in

appendix D. This form of Zkl results in a high-temperature expression for the paramagnetic shielding tensor

that was first derived by Bleaney [61]:

�S ⇡ �µBS (S + 1)
3~�kT

g ·A + µBS (S + 1)(2S � 1)(2S + 3)
30~�I(kT )2 g ·D ·A. (4.132)

The conclusion is that if kT is su�ciently large that the Boltzmann average over the ZFS energy levels can

be well-approximated to 1/(kT )2 in the Taylor expansion, both formalisms give the same result.

An example of the temperature dependence of the paramagnetic shielding tensor

The deviation of both the Bleaney and Pennanen–Vaara theories from the EPR shielding formalism becomes

important at low temperature, and for very large values of the ZFS. To investigate this we employ a discussion

along the lines of van den Heuvel and Soncini [87], upon which we expand, and calculate the form of the

shielding tensor due to a paramagnetic centre with spin S = 1. Initially we assume that the ZFS interaction
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Axial symmetry Rhombic symmetry

Figure 4.3: Energy levels of an electronic spin S = 1 subject to a ZFS. The levels are shown in coordination
environments of axial and rhombic symmetry. The dotted line represents the barycentre at zero energy.

is axially symmetric and traceless. In the PAF of the ZFS the Hamiltonian ˆ̃H is given by

ˆ̃H = D̃20T̂20 (4.133)

= D
⇣

Ŝ 2
z � 1

3 S (S + 1)1̂
⌘

, (4.134)

and has the following eigenstates and energies:

|1i = |+1i , E1 =
1
3 D, (4.135)

|2i = |0i , E2 = � 2
3 D, (4.136)

|3i = |�1i , E3 =
1
3 D, (4.137)

where we see that states |1i and |3i are degenerate and form a doublet state, and |2i is a non-degenerate singlet

state. The energy levels are shown in Figure 4.3 and the matrix representations of the spin operators Ŝ i are

given in Table 4.1. It should be noted that these energy levels are of the same form as those that describe

nuclear quadrupolar resonance (NQR) spectra of nuclei with spin I = 1.

We obtain the components of the tensor Zkl by taking all possible products of the matrix elements of two

136



Symmetry Ŝ x Ŝ y Ŝ z
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Table 4.1: Matrix representations of the spin operators Ŝ i in the basis of a spin S = 1 subject to a ZFS
interaction of axial or rhombic symmetry.

spin operators. In the full EPR formalism we obtain the following diagonal components:

Z̃xx = Z̃yy =
2
D

e2�D/3 � e��D/3

2e��D/3 + e2�D/3 , (4.138)

Z̃zz = 2�
e��D/3

2e��D/3 + e2�D/3 . (4.139)

The o↵-diagonal elements are zero, as a result of our working in the PAF of the ZFS tensor. The implication

is that the both the Z- and ZFS tensors share the same PAF. Furthermore we see that Z̃xx = Z̃yy, and so the

Z-tensor is axially symmetric, like the ZFS. In the Pennanen–Vaara formalism we calculate Z̃PV
kl in a similar

way to obtain the following diagonal elements:

Z̃PV
xx = Z̃PV

yy = �
e��D/3 + e2�D/3

2e��D/3 + e2�D/3 , (4.140)

Z̃PV
zz = 2�

e��D/3

2e��D/3 + e2�D/3 . (4.141)

We can see immediately that the two formalisms give di↵erent results for the Z̃xx and Z̃yy, but the same value

for Z̃zz. However, as seen above, if we expand both Z̃PV
xx and Z̃xx as Taylor series

Z̃PV
xx =

2
3� +

1
9 D�2 + 1

54 D2�3 + O(�4), (4.142)

Z̃xx =
2
3� +

1
9 D�2 � 1

27 D2�3 + O(�4), (4.143)

we see that the deviation only appears in the terms of order �3 and higher. Finally we use the Taylor

137



Axial symmetry, D = 50 cm-1

Rhombic symmetry, D = 50 cm-1, E = 20 cm-1
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Figure 4.4: Comparison between the expressions of the paramagnetic chemical shielding Z-tensor as a
function of temperature as derived using the EPR formalism of van den Heuvel and Soncini [86, 88], and
the Pennanen–Vaara [39], and Bleaney [61] theories for a spin S = 1 subject to the ZFS interaction. In each
plot the EPR curve is in black, the Pennanen–Vaara curve is in red, and the Bleaney curve is in grey. Shown
in (a) and (b) are the Z̃xx / Z̃yy and Z̃zz curves due to an axially symmetric ZFS with D = 50 cm�1. In (b) the
black and red curves are exactly coincident. The temperature variations of Z̃xx, Z̃yy, and Z̃zz are shown in (c),
(d), and (e) for a rhombic ZFS interaction with D = 50 cm�1 and E = 20 cm�1.

expansions to obtain the Bleaney expressions for the Z-tensor Z̃B
kl, which are:

Z̃B
xx = Z̃B

yy =
2
3
� +

1
9

D�2, (4.144)

Z̃B
zz =

2
3
� � 2

9
D�2. (4.145)

We need an idea of the size of the discrepancies between the three theories under standard conditions

for high-resolution NMR. Figure 4.4 shows plots of the three diagonal components of the Z-tensor as a

function of temperature in the EPR, Pennanen–Vaara, and Bleaney formalisms. Parts (a) and (b) compare the

temperature variation of Z̃xx,yy and Z̃zz respectively for each formalism from 0 K to 400 K for a large axial

ZFS of D = 50 cm�1. The non-Curie behaviour of all four curves is immediately seen, and for the xx and

yy components we see that the di↵erences between the three curves are only apparent below approximately

100 K, with both the Pennanen–Vaara and Bleaney curves tending to infinity at 0 K, whilst the EPR curve

shows better behaviour by tending to a constant, finite value of 2/D. The EPR and Pennanen–Vaara curves

of the zz component are coincident, as we have shown with the calculations above, and both tend to zero at
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zero temperature. The Bleaney curve is not well-behaved at very low temperatures (here below 50 K), as

it tends to minus infinity. Nevertheless the Bleaney curve matches extremely well with the others at higher

temperatures.

The discrepancies between the curves appear at higher temperatures if the system possesses a larger ZFS.

Interestingly we note that the Bleaney theory, although considerably simpler than the other two, performs

remarkably well down to temperatures of 100 K, and in particular has very good agreement with the more

complicated Pennanen–Vaara theory. However out of the these three formulae we would expect the full EPR

formula to be more likely to be correct at low temperatures simply because at very low temperature only the

lowest-energy state |2i ⌘ |0i is populated, and so the shielding tensor should be temperature independent and

not tend to infinity [87].

We can repeat the calculation for a ZFS of rhombic symmetry with Hamiltonian

ˆ̃H = D̃20T̂20 + D̃2�2T̂2+2 + D̃2+2T̂2�2 (4.146)

= D
⇣

Ŝ 2
z � 1

3 S (S + 1)1̂
⌘

+ E
⇣

Ŝ 2
x � Ŝ 2

y

⌘

, (4.147)

where we are once again working within the PAF of the ZFS tensor. The eigenstates and energies are:

�

�

�10
↵

=
q

1
2 (|+1i + |�1i) , E01 =

1
3 D + E, (4.148)

�

�

�20
↵

= |0i , E02 = � 2
3 D, (4.149)

�

�

�30
↵

=
q

1
2 (� |+1i + |�1i) , E03 =

1
3 D � E. (4.150)

The Hamiltonians T̂2±2 are double-quantum operators, being proportional to Ŝ 2
±, and so mix together the

states |±1i, which are no longer degenerate but are split by 2E, and leave |0i unperturbed. The energy levels

under rhombic symmetry are shown in Figure 4.3. We need the matrix elements of Ŝ i in the new basis, the

representations within which are given in Table 4.1.
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The EPR formula gives the following non-zero diagonal values of Z̃kl:

Z̃xx =
2

D + E
e2�D/3 � e��(D/3+E)

e��(D/3+E) + e2�D/3 + e��(D/3�E) , (4.151)

Z̃yy =
2

D � E
e2�D/3 � e��(D/3�E)

e��(D/3+E) + e2�D/3 + e��(D/3�E) , (4.152)

Z̃zz =
1
E

e��(D/3�E) � e��(D/3+E)

e��(D/3+E) + e2�D/3 + e��(D/3�E) . (4.153)

We note that the Z-tensor is still diagonal, but no longer axially symmetric due to the introduction of the

rhombic anisotropy E. The Pennanen–Vaara formula gives the following non-zero values of Z̃PV
kl :

Z̃PV
xx = �

e��(D/3+E) + e2�D/3

e��(D/3+E) + e2�D/3 + e��(D/3�E) , (4.154)

Z̃PV
yy = �

e2�D/3 + e��(D/3�E)

e��(D/3+E) + e2�D/3 + e��(D/3�E) , (4.155)

Z̃PV
zz = �

e��(D/3+E) + e��(D/3�E)

e��(D/3+E) + e2�D/3 + e��(D/3�E) . (4.156)

We see that the expressions for the zz components are no longer the same, which is a result of the lifting of

the axial symmetry. However the Taylor series of the expressions up to �2 are once again identical, and are

equal to the expressions obtained from the Bleaney theory:

Z̃B
xx =

2
3
� +

1
9

(D � 3E)�2, (4.157)

Z̃B
yy =

2
3
� +

1
9

(D + 3E)�2, (4.158)

Z̃B
zz =

2
3
� � 2

9
D�2. (4.159)

All these expressions for Z̃xx, Z̃yy, and Z̃zz are plotted in Figure 4.4 (c)–(e) for ZFS anisotropies of D = 50 cm�1

and E = 20 cm�1. Once again the discrepancies from the EPR curves are only apparent at low temperatures,

here below 100 K for these specific values of D and E, with the EPR curves for Z̃HS
xx and Z̃HS

yy tending to

constant values of 2/(D+E) and 2/(D�E) respectively at 0 K. It is once again striking how well the Bleaney

theory performs at higher temperatures.

Therefore the conclusion is that the general EPR formalism, due to van den Heuvel and Soncini, presented

in this chapter gives an exact description of the paramagnetic shielding tensor at all temperatures. However
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(a) (b)

Figure 4.5: Illustration of the induced magnetic moment per paramagnetic ion due to magnetically isotropic
and anisotropic materials. A magnetically isotropic material is shown in (a). The size of the induced magnetic
moment per paramagnetic ion is proportional to the size of the external field, and does not vary with the field
direction. However the induced magnetic moment always remains parallel to the field. In a magnetically
anisotropic material, shown in (b), the induced magnetic moment per paramagnetic ion is in general not
parallel to the external field, and changes in size and direction as the material is rotated within the field.

the simpler Pennanen–Vaara or Bleaney forms can be used if the temperature is su�ciently high that the

shielding expression can be truncated at 1/(kT )2. In practice, this means that for first-row transition-metal

ions for which D has a maximum of approximately 50 cm�1 at temperatures above 100 K we can safely use

either the Pennanen–Vaara or Bleaney formula.

4.3 The magnetic susceptibility tensor

4.3.1 Magnetism of the bulk

We saw that for a linear material containing an ensemble of spin-only transition metal centres, an applied

magnetic field induces a bulk magnetisation that is proportional in size and parallel in direction to the field,

with the constant of proportionality equal to the volume magnetic susceptibility, as shown in Equation 3.87.

In particular we noted that the magnetization is independent of the relative orientation of the field to the

material. Such a bulk material is said to be magnetically isotropic. This situation is shown in Figure 4.5

(a). For spin systems subject to SO coupling we can apply the same reasoning to determine the induced

magnetization, with one important di↵erence. Because the magnetic moments of the paramagnetic centres

are now spatially anisotropic, via either L̂ or g depending on how we choose to define the spin Hamiltonian,

we also expect the induced magnetization vector M to vary as the direction of the applied field is changed.

The bulk material is therefore anisotropic, and Equation 3.87 should be modified to account for this:

M =
1
µ0

�V ·B0. (4.160)
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The constant of proportionality is replaced by the volume magnetic susceptibility tensor �V , in which is

encoded the anisotropic response of the material to the field. The e↵ect of the anisotropic susceptibility

tensor is that in general the magnetisation vector is no longer parallel to the field, as shown in Figure 4.5

(b). From here we can also generalise Equation 3.89 to give an expression for the average induced magnetic

moment per paramagnetic centre hµ̂S i of such spin systems:

hµ̂S i =
1
µ0

� ·B0, (4.161)

where � is the molecular magnetic susceptibility tensor.

To calculate the average energy E per paramagnetic centre that results from the interaction of the average

moment with the field we recall Equation 2.13, which gives the infinitesimal change in internal energy of the

whole sample due to a change in magnetic field at constant entropy and constant volume as �VM ·dB. From

this we express the infinitesimal change in the average energy per paramagnetic centre as

dE
dB0

= � hµ̂S i (4.162)

= � 1
µ0

� ·B0. (4.163)

Integrating this expression we obtain

E = � 1
2µ0

B0 · � ·B0, (4.164)

from which we see that the � tensor must be symmetric. It therefore just contains zeroth- and second-rank

irreducible spherical tensor components �00 and �2m. Writing the latter in the PAF these components are

�00 = �
p

3�iso, (4.165)

�̃20 =

r

2
3
��ax, (4.166)

�̃2±1 = 0, (4.167)

�̃2±2 =
1
2
��rh, (4.168)

where �iso is the isotropic susceptibility, and��ax and��rh are the axial and rhombic susceptibility anisotropies
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which are defined as

��ax = �̃zz �
1
2

⇣

�̃xx + �̃yy
⌘

(4.169)

��rh = �̃xx � �̃yy. (4.170)

Note that in this convention we order the principal components of the tensor as �̃zz > �̃yy > �̃xx.

4.3.2 The susceptibility tensor in terms of the molecular/atomic-level parameters

according to the EPR formalism

The EPR formalism for the paramagnetic shielding tensor can be adapted to calculate the magnetic suscepti-

bility tensor [88]. Here, following the computation of the Helmholtz free energy we look for terms that are

bilinear in the external magnetic field, which is done by calculating the following derivative:

�i j = �µ0

0

B

B

B

B

@

@2F
@B0,i@B0, j

1

C

C

C

C

A

B0=0

. (4.171)

The paramagnetic susceptibility tensor can written down from Equation 4.103 on substituting m̂ j for F̂ j. The

expression is

�i j =
2µ0

Q0

X

n

exp(��En)
X

m,n

X

⌫,µ

hn⌫ |m̂i|mµi
D

mµ
�

�

�m̂ j
�

�

� n⌫
E

Em � En

+
µ0

kT
1

Q0

X

n

exp(��En)
X

⌫,⌫0

⌦

n⌫ |m̂i| n⌫0
↵

D

n⌫0
�

�

�m̂ j
�

�

� n⌫
E

, (4.172)

which is a form of the van Vleck equation [213]. This is the general expression for the paramagnetic

susceptibility tensor.

In the specific case of an ensemble of d-block transition-metal ions, we once again write the electronic

magnetic moment operator as m̂i = �µB
P

k gikŜ k, and we obtain Equation 4.173:

� = µ0µ
2
B g ·Z · gT , (4.173)

where the matrix Z is the same as that encountered earlier in Equation 4.113. If the EPR expression for
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Z is used, this expression gives the susceptibility tensor at arbitrary temperature. The expression for the

susceptibility tensor reduces to the Pennanen–Vaara expression if we use ZPV for Z. In addition, as for

the paramagnetic shielding tensor, we can also approximate � to second order in 1/(kT ). Once again the

expression for Z approximates to the same expression ZB regardless of which formalism we employ, and we

obtain the Bleaney expression for �:

� ⇡
µ0µ2

BS (S + 1)
3kT

g · gT �
µ0µ2

BS (S + 1)(2S � 1)(2S + 3)
30(kT )2 g ·D · gT . (4.174)

This describes the susceptibility tensor in the high-temperature limit, such that |D|, |E| ⌧ kT .

4.3.3 Relating the paramagnetic shift to the magnetic susceptibility tensor

We can now derive the connection between the paramagnetic shielding and the magnetic susceptibility

tensors. We start by writing down the Hamiltonian describing the hyperfine interaction between the nuclear

spin and the average electronic magnetic moment. The general widely-used expression is [214, 215]

ĤS I = �µ0 hµ̂S i ·C · µ̂I , (4.175)

where we write the reduced hyperfine coupling tensor in a completely general way as the sum of isotropic

Ccon, antisymmetric Cas, and traceless symmetric Cdip parts:

C = Ccon1 +Cas +Cdip. (4.176)

We will see shortly that the isotropic and symmetric anisotropic parts Ccon and Cdip are not strictly equal to

the the NR Fermi-contact and spin-dipolar parts CFC and CSD respectively. Nevertheless this approximation

is frequently made, in which case the expressions for Ccon and Cdip are the same as those for CFC and CSD

given in Equations 3.103 and 3.104, and the corresponding irreducible spherical tensor components are those

given in Equations 3.106 and 3.110–3.114. This equivalence (or lack thereof) is a subtle point that is discussed

further in sections 4.4 and 4.5. The antisymmetric hyperfine term Cas is characterised by the antisymmetric

anisotropy ⇣C , which is given by

⇣C =

r

⇣

Cas
xy

⌘2
+

⇣

Cas
yz

⌘2
+

�

Cas
xz
�2. (4.177)
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In the PAF of Cas, the three rank-one irreducible spherical tensor components are

C10 = �i
p

2⇣C , (4.178)

C1±1 = 0. (4.179)

Substituting the expressions for the average electronic magnetic moment in Equation 4.161 and the

nuclear magnetic moment operator into Equation 4.175, we obtain

ĤS I = �B0 · � ·C · µ̂I (4.180)

= �~�IB0 · � ·C · Î . (4.181)

This Hamiltonian represents an interaction that is linear in the components of both the magnetic field and

the nuclear spin, i.e. a chemical shielding. We can therefore write the interaction in the form ~�IB0 · �� · Î ,

where the shielding due to the susceptibility tensor �� is

�� = �� ·C. (4.182)

This is the generalised form of Equation 3.100 which we derived for spin-only paramagnetic centres. Note

that Equation 4.182 has been derived without making any specific assumptions about the form of the suscep-

tibility tensor, other than it being field-independent. We now provide the last link in the connection between

the EPR and susceptibility formalisms. We start from the Hamiltonian of the hyperfine interaction

ĤS I = �µ0µ̂S ·C · µ̂I , (4.183)

and we substitute in the expressions for the magnetic moment operators µ̂I = ~�I Î and µ̂S = �µBg · Ŝ. This

expression for the electronic magnetic moment encodes both the orbital and spin components of the magnetic

moment. The hyperfine interaction Hamiltonian becomes

ĤS I = µ0µB~�IŜ · gT ·C · Î (4.184)

= Ŝ ·A · Î , (4.185)
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where the hyperfine coupling constant is given by

A = µ0µB~�Ig
T ·C. (4.186)

We have written it as the matrix product of the transpose of the g-matrix and the reduced hyperfine coupling

matrix gT · C. We note that writing the hyperfine tensor in this form means that the magnitude and sign of

the interaction change as the spatially-anisotropic electronic magnetic moment changes orientation due to the

presence of gT . This property is missing in the EPR expression for the hyperfine tensor, which is dominated

by the NR terms AFC and ASD, which only contain information about the NR part of the electronic magnetic

moment via ge. We note that it is exactly this inclusion of the g-tensor in Equation 4.186, and in particular

the anisotropic part of the g-tensor, which means that Ccon and Cdip are not strictly equivalent to CFC and

CSD. Rather, Ccon contains contributions from both AFC and ASD. We also note that this discrepancy is

not addressed by including the SO coupling terms from Equation 4.42 in the EPR expression. Firstly these

terms usually have a negligible impact on the shift when compared to other SO coupling e↵ects, such as the

g-shift and ZFS. Secondly the second-order contribution to the hyperfine tensor ASD,2 is only referred to as

a “dipolar coupling” as it is symmetric like the NR contribution ASD, but does not have the same long-range

dependence on distance. This is due to it being a cross term in the perturbation expansion of the e↵ective-spin

Hamiltonian, and therefore representing a shorter-range e↵ect. Combining the expression in Equation 4.186

with the EPR formula for the paramagnetic shielding in Equation 4.109 gives

�S = � µB

~�I
g ·Z ·A (4.187)

= �µ0µ
2
Bg ·Z · gT ·C (4.188)

= �� ·C. (4.189)

Equations 4.182 and 4.189 are the same, thus establishing the self-consistency of the derived expressions.

This provides the foundation for showing that the EPR and susceptibility expressions �S and �� for the

paramagnetic shielding tensor are indeed equivalent. A previous attempt at providing a similar argument was

made by Benda et al., which covered a lot of ground on unifying the description of the PCS in both formalisms

[216]. However there are still some subtleties that remain in the argument, which mainly originate from the
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interpretation of the hyperfine tensors A and C. These points are addressed in the following sections on the

scaling-factor model of Kim et al. (section 4.4) [53], and on the Kurland–McGarvey formalism (section 4.5)

[37]. We begin by writing the susceptibility tensor as the sum of the isotropic �iso and anisotropic �� parts,

i.e. � = �iso1 +��, and the expression for �� becomes

�� = ��isoCcon1 ���Ccon � �isoCas ��� ·Cas � �isoCdip ��� ·Cdip. (4.190)

This establishes that �� is the sum of di↵erent terms that originate from di↵erent parts of the hyperfine

interaction, and contribute di↵erently to the isotropic shift and SA. If the di↵erent contributions to the

hyperfine tensor are interpreted correctly, the susceptibility expression for the paramagnetic shielding is

exactly equivalent to the EPR formalism. However if we make the approximation Ccon = CFC and Cdip =

CSD di↵erences do arise between the formalisms.

We examine these points in more detail in the next sections 4.4 and 4.5, and later in chapter 5.

4.4 The scaling factor revisited

It was shown in section 3.4 that the paramagnetic shielding tensor for spin-only transition-metal ions can be

viewed as the ratio of the hyperfine coupling tensor to the nuclear Zeeman energy, given by �A/(2~�I B0), that

is calculated in the saturation regime, and then scaled into the high-temperature paramagnetic regime by mul-

tiplication with a scaling factor that depends on both temperature, and the electronic magnetic moment. This

scaling factor is proportional to the magnetic susceptibility, and so can be determined from measurements of

the bulk magnetism. When we include the e↵ects of SO coupling this picture becomes more complicated.

We have seen that the magnetic susceptibility becomes a spatially-anisotropic tensor, and so we would expect

the scaling factor to also be anisotropic. However if we restrict the discussion to an NR hyperfine tensor, and

only account for the SO coupling e↵ects in the electronic magnetic moment, we can apply a modified form

of the scaling-factor idea of Kim et al. [53], which has been employed by Clément et al. to first-row d-block

ions [30].

The idea is to scale down the same NR hyperfine �A/(2~�I B0), comprising the NR Fermi-contact and

spin-dipolar parts, as shown in section 3.4, but with a scaling factor that includes SO coupling e↵ects. This
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scaling factor is the ratio of the paramagnetic electronic magnetic moment to the saturated magnetic moment.

The electronic angular momentum properties are described in full in section 6.4.1. However for present

purposes we simply note that the paramagnetic centre is described by a total angular momentum J , and has a

magnetic moment operator given by m̂ = �µBgJĴ , where gJ is the isotropic Born–Landé g-factor. We note

here that we do not account for the spatial anisotropy of the g-tensor. Following the discussion in section 3.2,

the z-component of the average electronic magnetic moment hm̂zipara is given by

hm̂zipara = µBgJ JBJ(y), (4.191)

where BJ(y) is a form of the Brillouin function that depends on the total angular momentum quantum number

J:

BJ(y) =
2J + 1

2J
coth

" 

2J + 1
2J

!

y
#

� 1
2J

coth
 y
2J

�

, (4.192)

and y = �µBgJ B0J. In the high-temperature limit the Brillouin function is approximated by BJ(y) ⇡ y(J + 1)/(3J),

and hm̂zipara is given by

hm̂zipara =
µ2

e↵B0

3kT
. (4.193)

In Equation 4.193 we have defined the magnitude of the e↵ective electronic magnetic moment as µe↵ = µBgJ
p

J(J + 1).

However in practice we treat µe↵ as an empirical parameter that can be determined from measurements of the

magnetic susceptibility, which is given by

�iso =
µ0µ2

e↵

3kT
. (4.194)

The treatment of µe↵ in this way avoids the need for any explicit calculation of the SO coupling e↵ects. The

average electronic magnetic moment in the saturation regime hm̂zisat is formally given by µBgJ J. However,

as we do not include SO coupling e↵ects in the calculation of either the electronic magnetic moment or the

hyperfine tensor, we instead use the NR expression derived in section 3.2, where J ! S and gJ ! ge:

hm̂zisat = µBgeS . (4.195)
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The scaling factor is therefore

hm̂zipara

hm̂zisat
=

�isoB0

µ0µBgeS
(4.196)

=
µ2

e↵B0

3µBgeS kT
. (4.197)

The expression in terms of the magnetic susceptibility is the same as for spin-only paramagnetic centres.

However in the present case we note that the magnetic susceptibility here includes the SO coupling contri-

butions to the electron magnetic moments, and does not have the same expression as in the spin-only case.

Finally, in this formalism, the paramagnetic shielding tensor is

�S = �
hm̂zipara

hm̂zisat

A
2~�I B0

(4.198)

= � �iso

µ0µBge~�I

A
2S

(4.199)

= �
µ2

e↵

3µBge~�IkT
A
2S

(4.200)

= �
µ2

e↵

3µBge~�IkT
A, (4.201)

where have written A = A/(2S ) as the hyperfine tensor per electron. As mentioned earlier the e↵ective

electronic magnetic moment in Equation 4.201 can be treated as an empirical parameter which hides all the

SO coupling e↵ects, such as the g-shift. The hyperfine tensor A is calculated in the NR regime, and so if we

make the approximations Ccon = CFC and Cdip = CSD, the shielding tensor in this formalism is equivalent to

the part ��isoCcon1��isoCdip in Equation 4.190. This model of the paramagnetic shielding tensor is therefore

an approximation, as it neglects SO coupling e↵ects in the hyperfine tensor and does not account for magnetic

anisotropy, which gives rise to the PCS. Nevertheless it has been shown to be very e↵ective for calculating

the contact shifts of solid paramagnetic battery materials [30, 54–56].

4.4.1 The scaling tensor in the presence of magnetic susceptibility anisotropy

The scaling factor picture can be modified in a straightforward manner to also account for the e↵ects of

the susceptibility anisotropy due to both the g-anisotropy and ZFS. We note that when the susceptibility

anisotropy is taken into account, rather than the scaling factor being a scalar quantity that is proportional to the
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isotropic magnetic susceptibility, the scaling factor becomes a tensor with the same spatial properties as the

susceptibility tensor. We can back-calculate the scaling factor from the shielding tensor in the susceptibility

formalism in Equation 4.182. If we assume that the hyperfine tensor is still well approximated in the NR

regime, Equation 4.186 gives is the following expression for the total hyperfine tensor:

A = 2Sµ0µBge~�IC. (4.202)

Rearranging Equation 4.182 gives us

�� = � B0�

µ0µBgeS
· A

2~�I B0
. (4.203)

From here we can define the scaling tensor as

B0

µ0µBgeS
�. (4.204)

The physical explanation for this expression comes from the fact that the electronic magnetic moments that

contribute to the magnetic susceptibility tensor are orientation-dependent, and so the required scaling of the

hyperfine interaction into the paramagnetic regime is also orientation-dependent. When we compare this

expression for the shielding with Equation 4.190 we see that it contains the following terms: ��isoCcon1 �

��Ccon � �isoCdip ��� · Cdip, i.e. all the cross terms between the isotropic and anisotropic parts of the

susceptibility tensor and the contact and spin-dipolar parts of the hyperfine tensor, with only contributions

from the antisymmetric hyperfine tensor missing. Therefore the model of the paramagnetic shielding in terms

of a scaling tensor accounts for both the contact shift [53] and PCS [16].

4.5 The Kurland–McGarvey formalism

We complete our survey of the di↵erent formalisms for the paramagnetic shielding tensor by examining

the classic general treatment by Kurland and McGarvey [37]. The expression for the PCS in the Kurland–

McGarvey formalism exactly matches that in the susceptibility formalism introduced in Equation 4.190,

namely ��� · Cdip, but there is a discrepancy in the expressions for the contact shielding, which in the
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susceptibility and scaling-factor formalisms is given by ��isoCcon1. This reason for this discrepancy can be

understood by noting that in the susceptibility formalism, we neglect the e↵ect of the g-shift in the expression

linking the two hyperfine interactions in the definition in Equation 4.186, and choose to write:

AFC = µ0µBge~�ICcon, (4.205)

ASD = µ0µBge~�IC
dip. (4.206)

This is the approach taken in the exposition of the scaling-factor models in section 4.4. However there may

be cases in which the g-shift in Equation 4.186 cannot be neglected. The correct expression for C to use in

the susceptibility formalism is given by inverting Equation 4.186 to give [200]:

C =
1

µ0µB~�I

h

gT
i�1 ·A. (4.207)

This, in turn, gives us the following expression for the paramagnetic shielding in the susceptibility formalism:

�� = � 1
µ0µB~�I

� ·
h

gT
i�1 ·A. (4.208)

We now write the hyperfine tensor as the sum of the NR Fermi-contact and spin-dipolar parts, which results

in a shielding tensor which is the sum of two terms:

�� = � AFC

µ0µB~�I
� ·

h

gT
i�1 � 1

µ0µB~�I
� ·

h

gT
i�1 ·ASD. (4.209)

The first term gives us the Fermi-contact shift and associated SA, whilst the second gives us the PCS and the

SA due to the spin-dipolar interaction.

The isotropic contact shielding is given by

�FC = � AFC

3µ0µB~�I
Tr



� ·
h

gT
i�1

�

(4.210)

The trace can, of course, be computed in any spatial reference frame. For convenience, we choose the

common PAF of both the susceptibility and symmetric part of the g-tensor. Evaluating the trace then gives us
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the Kurland–McGarvey expression for the contact shielding [37]:

�FC = � AFC

3µ0µB~�I

"

�̃xx

g̃xx
+
�̃yy

g̃yy
+
�̃zz

g̃zz

#

. (4.211)

On comparing this expression with that due to the scaling-factor model in Equation 4.199, we see that the two

are only equal when the g-tensor is equal to the free-electron g-factor, which is one of the initial assumptions

of the scaling-factor model [53]. The Kurland–McGarvey expression for the contact shielding in Equation

4.211 can therefore be regarded as a generalization of the contact shielding calculated using the scaling-factor

approach in the susceptibility formalism. In commenting on the di↵erence between the two expressions, we

note that to use the Kurland–McGarvey expression we need to know the principal values of the susceptibility

tensor, which cannot be independently measured for molecules in solution, or for solid powders, and may

also be di�cult to determine for single crystals, as discussed in chapter 7. The scaling-factor expression,

on the other hand, only requires knowledge of the isotropic susceptibility, which can be readily obtained

for all these samples. Therefore the scaling-factor model is almost always more convenient to use than the

Kurland–McGarvey formula.

The pseudo-contact shielding is given by the expression

�PCS = � 1
3µ0µB~�I

Tr


� ·
h

gT
i�1 ·ASD

�

. (4.212)

If we write ASD in terms of CSD via Equation 3.102 we obtain

�PCS = �1
3

Tr
h

�0 ·CSD
i

, (4.213)

where �0 = � ·
h

gT
i�1

ge is the pseudo-susceptibility tensor defined by Benda et al. in their description of

the PCS obtained following a first-principles calculation of � via the g- and ZFS tensors [216]. As for the

contact shielding, there is a discrepancy between this expression for the pseudo-contact shielding and that

from the susceptibility formalism, ��� · Cdip. The reason for this discrepancy can be traced back to the

di↵erence between the NR hyperfine spin-dipolar tensor CSD and the antisymmetric tensor in the presence

of SO coupling Cdip. The former is a ‘true’ dipolar coupling, and may be represented as a point-dipolar

interaction where appropriate, whereas the latter is the second-rank component of C that is proportional to

152



h

gT
i�1 ·A and is not a pure spin-dipolar contribution, as there is a contribution from the g-anisotropy. Care

is needed in di↵erentiating between these two cases.

4.6 Key concepts

• The coupling between the electronic spin and orbital angular momentum changes the form of the EPR

parameters, resulting in the Hamiltonian of Equation 4.36.

• The free-electron g-factor is modified so that it becomes a spatially anisotropic g-tensor.

• The hyperfine tensor gains additional contributions to the isotropic and symmetric parts, as well as an

antisymmetric part.

• For electronic spins greater than 1/2 there is also a zero-field splitting interaction.

• The SO-induced changes to the EPR parameters also change the form of the paramagnetic shielding

tensor, as given in the EPR formalism (Equation 4.109).

• The SO coupling also introduces anisotropy to the bulk magnetic properties, with the magnetic suscep-

tibility becoming a spatially anisotropic tensor (Equation 4.173).

• The paramagnetic shielding can also be calculated in terms of the susceptibility tensor, as in Equation

4.189.

• The paramagnetic shielding due to SO coupling can also be approximated by a scaling of the NR

hyperfine tensor. The scaling factor contains an empirical e↵ective electronic magnetic moment that

can be calculated, or measured separately (Equation 4.201).

• The susceptibility formalism also provides the Kurland–McGarvey expressions for the contact and

pseudo-contact shieldings (Equations 4.211 and 4.213). These expressions may be regarded as gener-

alizations of those obtained from the scaling-factor formalism.
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Chapter 5

The interpretation of the paramagnetic

shielding tensor of d-block

transition-metal ions

This chapter contains a full discussion of the various terms that arise from the expression for the paramagnetic

shielding tensor presented in chapter 4, and how they may be interpreted in terms of the structural and

electronic properties of the system under study. We explore the form of the shielding tensor in two di↵erent

formalisms: the EPR formalism, in terms of the molecular/atomic-level EPR tensor parameters, and the

susceptibility formalism, in terms of the bulk magnetic susceptibility tensor. In each formalism the shielding

tensor is broken down into a number of contributions that can be grouped according to the di↵erent parts of the

hyperfine interaction. There are three such groups of terms, corresponding to the isotropic contact interaction,

the symmetric anisotropic spin-dipolar interaction, and the antisymmetric hyperfine interaction. We derive

explicit formulae for all these contributions using both formalisms, and link both approaches together. It

is particularly important to link the two formalisms, so that we can compare the forms of the paramagnetic

shielding tensor we obtain from each, and to be able to judge whether the di↵erences we observe are merely

superficial, or due to the fundamental di↵erences between the two pictures.
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5.1 Correspondence between the EPR and susceptibility formalisms

of the paramagnetic shielding tensor

The terms in both the EPR and susceptibility formalisms are listed in Table 5.1 and ordered into three groups:

terms giving rise to the contact shift (con), the dipolar shift (dip), and the shift from the antisymmetric part

of the hyperfine tensor (as). We recall that ASD,2 is not a long-range interaction term, unlike ASD, and that

the notation ‘SD,2’ is somewhat misleading. Nevertheless we include it with the other dipolar terms, since it

is also a rank-two tensor and shares the same angular properties.

We see that the correspondence between the formalisms is not perfect, as for example in the lack of

rank-one contact shielding terms in the susceptibility formalism. This reason for this discrepancy is that

in the EPR formalism the magnetic anisotropy of the metal ion is accounted for by the local SO coupling

e↵ects which give rise to the g-anisotropy and ZFS, whereas in the susceptibility formalism the magnetic

anisotropy is described wholly as a bulk e↵ect in the magnetic susceptibility tensor. So for instance we see

that the rank-one contact shielding tensor components are due to the antisymmetric part of the g-tensor in the

EPR formalism. In the susceptibility formalism, on the other hand, the antisymmetric part of the g-tensor is

‘hidden’ in the susceptibility tensor, which itself is symmetric and so does not produce any rank-one terms

in the contact shielding. For the spin-dipolar interaction the antisymmetric shielding terms are present, but

we will see that these are due to the coupling of the symmetric susceptibility anisotropy tensor with the

dipolar coupling tensor. However we do not dwell on this specific point, since the rank-one shielding terms

are unobservable under high-field conditions. A second reason for any possible discrepancy is that the terms

present in the EPR formalism form a series expansion in the fine structure constant ↵, with only terms of

order up to and including ↵4 being retained.

Throughout this chapter we assume that the chemical shielding interaction is in the high-field approx-

imation. Even though this approximation may not be valid for the ZFS and electron Zeeman interactions

in the EPR Hamiltonian, it can be applied more safely to the paramagnetic shielding interaction as the

latter is obtained by scaling down the hyperfine tensor, as we have seen previously [53]. In the high-field
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approximation the paramagnetic shielding in terms of irreducible spherical tensors is given by Equation 2.96:

�(1) = �
r

1
3
�S

00 +

r

2
3
�S

20 (5.1)

= �S
iso +

r

2
3

+2
X

m=�2

�̃S
2m exp(�im↵PL)d2

m0 (�PL) , (5.2)

from which we see that we are only able to observe the isotropic and symmetric parts of the shielding tensor.

Hence we do not concern ourselves with the rank-one parts of the shielding tensor. In Cartesian tensor

components the high-field paramagnetic shielding adopts the simple form

�(1) = �S
zz. (5.3)

The same interaction can also be written in terms of the susceptibility expression for the paramagnetic

shielding as follows:

�(1) = �
r

1
3
��00 +

r

2
3
��20 (5.4)

= ��iso +

r

2
3

+2
X

m=�2

�̃�2m exp(�im↵PL)d2
m0 (�PL) , (5.5)

= ��zz. (5.6)

We now proceed to analyse the terms in Table 5.1 in both formalisms, and examine in detail the contributions

from the contact, spin-dipolar, and antisymmetric hyperfine interactions.

5.2 Summary of the relevant tensor parameters

The interpretation of the paramagnetic shielding tensor using either the susceptibility or EPR formalisms

requires the definition of a number of spatial tensors.
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The magnetic susceptibility tensor

The magnetic susceptibility tensor � is symmetric, and can be decomposed into two components as follows:

� = �iso1 +��, (5.7)

where �iso is the isotropic part, and �� is the traceless and symmetric susceptibility anisotropy. The

susceptibility anisotropy is parameterised according to one of two conventions. The first is in terms of the

axial and rhombic anisotropies ��ax and ��rh, which are defined in terms of the PAF components �̃ii as

��ax = �̃zz �
1
2

⇣

�̃xx + �̃yy
⌘

, (5.8)

��ax = �̃xx � �̃yy. (5.9)

The PAF components are defined so that �̃zz � �̃yy � �̃xx. Alternatively we can define the PAF components to

satisfy
�

�

��̃zz � �iso
�

�

� �
�

�

��̃xx � �iso
�

�

� �
�

�

��̃yy � �iso
�

�

�, and define the anisotropy �� and asymmetry parameter ⌘� as

�� = �̃zz � �iso, (5.10)

⌘� =
�̃yy � �̃xx

��
. (5.11)

The orientation of the PAF of �� is specified by the Euler angles ⌦XL = (↵XL, �XL, �XL).

The susceptibility tensor is given in terms of the EPR parameters by the following expression

� = µ0µ
2
Bg ·Z · gT . (5.12)

The expressions for both the isotropic and anisotropic parts of the susceptibility contain the g-shift and ZFS

tensors, which are both due to SO coupling.

The hyperfine coupling tensor

The hyperfine coupling tensor A takes the following form

A =
⇣

AFC + AFC,2
⌘

1 +Aas +
⇣

ASD +ASD,2
⌘

. (5.13)
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The isotropic part Aiso is due to the NR Fermi-contact and the SO second-order contact interactions:

Aiso = AFC + AFC,2. (5.14)

The antisymmetric part is due entirely to the SO-coupling term Aas and is characterised by the antisymmetric

anisotropy ⇣A which is given by

⇣A =

r

⇣

Aas
xy

⌘2
+

⇣

Aas
yz

⌘2
+

�

Aas
xz
�2. (5.15)

The orientation of the PAF of Aas is specified by the Euler angles⌦AAL = (↵AAL, �AAL, �AAL). The symmetric

part is due to the NR and SO spin-dipolar terms ASD and ASD,2. The symmetric anisotropy�A and asymmetry

parameter ⌘A are therefore given by

�A = ÃSD
zz + ÃSD,2

zz , (5.16)

⌘A =
ÃSD

yy + ÃSD,2
yy � ÃSD

xx � ÃSD,2
xx

�A
. (5.17)

The tilde denotes that the matrix elements are evaluated in the PAF of the symmetric part of the whole

hyperfine tensor, i.e. ASD + ASD,2. The orientation of this PAF is specified by the Euler angles ⌦ASL =

(↵ASL, �ASL, �ASL). Note that in the point-dipole approximation, the interaction is given by the long-range NR

term, and the anisotropy and asymmetry parameter are

�A = 2bS I , (5.18)

⌘A = 0, (5.19)

where bS I is the dipolar coupling constant.

In the susceptibility formalism we make use of the reduced hyperfine coupling tensor C, which comprises

an isotropic contact term Ccon, antisymmetric term Cas, and a symmetric spin-dipolar term Cdip. The

isotropic contact term is equal to

Ccon =
1

3S
⇢↵��(0), (5.20)

i.e. it is proportional to the unpaired electron spin density at the nucleus ⇢↵��(0). The antisymmetric hyperfine
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term Cas is characterised by the antisymmetric anisotropy ⇣C , which is given by

⇣C =

r

⇣

Cas
xy

⌘2
+

⇣

Cas
yz

⌘2
+

�

Cas
xz
�2. (5.21)

The symmetric anisotropy �C and asymmetry parameter ⌘C are due to the spin-dipolar interaction and are

given by

�C = C̃dip
zz , (5.22)

⌘C =
C̃dip

yy � C̃dip
xx

�C
. (5.23)

We will see that the corresponding expressions in the point-dipole approximation are of interest; these are

derived from Equations 3.115–3.119 to give:

�C =
1

2⇡R3 , (5.24)

⌘C = 0. (5.25)

The orientations of the PAFs of the antisymmetric and symmetric parts of C are specified by the Euler angles

⌦CAL = (↵CAL, �CAL, �CAL) and ⌦CSL = (↵CSL, �CSL, �CSL) respectively.

The g-tensor

The g-tensor has the following generic form:

g = (ge + �giso)1 +�g, (5.26)

where the isotropic free-electron g-factor ge is the NR contribution. The e↵ect of SO coupling manifests itself

in the g-shift part of the tensor, which comprises an isotropic part �giso and an anisotropic part �g which, in

general, contains both symmetric and antisymmetric contributions.

The isotropic g-tensor is simply

giso = ge + �giso. (5.27)
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The anisotropic g-tensor is defined by both the antisymmetric and symmetric anisotropy parameters. The

antisymmetric g-anisotropy ⇣g is given by

⇣g =
1
2

r

⇣

�gxy � �gyx
⌘2
+

⇣

�gyz � �gzy
⌘2
+ (�gxz � �gzx)2, (5.28)

and the symmetric g-anisotropy �g and asymmetry ⌘g are:

�g = �̃gzz, (5.29)

⌘g =
�̃gyy � �̃gxx

�g
, (5.30)

where the �̃gii are the principal components of the symmetric part of �g in its PAF. The orientations

of the PAFs of the antisymmetric and symmetric parts of g are specified by the Euler angles ⌦GAL =

(↵GAL, �GAL, �GAL) and ⌦GSL = (↵GSL, �GSL, �GSL) respectively.

The zero-field splitting and Z tensors

The final interaction of interest for single transition-metal ions is the ZFS, which is characterised by a traceless

and symmetric spatial tensor D. This tensor is described by the axial and rhombic anisotropy parameters D

and E which are conventionally defined in terms of the principal values D̃ii as follows:

D = D̃zz �
1
2

⇣

D̃xx + D̃yy
⌘

, (5.31)

E =
1
2

⇣

D̃xx � D̃yy
⌘

. (5.32)

Note that the definition of the rhombic anisotropy E di↵ers from the rhombic susceptibility ��rh by a factor

of 1/2 included in the former. Alternatively we can adopt an alternative convention and specify the ZFS

anisotropy �D and asymmetry parameter ⌘D as follows:

�D = D̃zz, (5.33)

⌘D =
D̃yy � D̃xx

�D
, (5.34)
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where we use the following convention for the ordering of the principal values:
�

�

�D̃zz
�

�

� �
�

�

�D̃xx
�

�

� �
�

�

�D̃yy
�

�

�. The

orientation of the PAF of D is specified by the Euler angles ⌦DL = (↵DL, �DL, �DL).

The ZFS tensor does not usually enter the expression for the paramagnetic shielding directly, but rather

does so within the tensor Z, which is an average of a product of electronic spin operators over the ZFS energy

levels. The tensor can be written as the sum of an isotropic part Ziso and a symmetric anisotropic part �Z:

Z = Ziso1 +�Z. (5.35)

We recall that a general expression for Z is given by the van den Heuvel–Soncini theory in Equation 4.113,

of which the Pennanen–Vaara theory (Equation 4.121) is a high-temperature approximation. As for the other

symmetric anisotropic tensors, we can define the anisotropy �Z and asymmetry parameter ⌘Z according to

�Z = Z̃zz � Ziso, (5.36)

⌘Z =
Z̃yy � Z̃xx

�Z
, (5.37)

where the Z̃ii are the principal components of the whole Z tensor which have been ordered according to:
�

�

�Z̃zz � Ziso
�

�

� �
�

�

�Z̃xx � Ziso
�

�

� �
�

�

�Z̃yy � Ziso
�

�

�. The PAF of Z coincides with that of D, and therefore has an

orientation specified by the Euler angles ⌦ZL = ⌦DL.

In general the expressions for Ziso, �Z, and ⌘Z are complicated. However, as has been shown in the

previous chapter, when we apply the high-temperature limit up to second order in 1/(kT ), as shown in

Equation 4.131, they simplify to the expressions derived by Bleaney [61]:

Ziso ⇡ S (S + 1)
3kT

, (5.38)

�Z ⇡ �S (S + 1)(2S � 1)(2S + 3)
30(kT )2 D. (5.39)

In this high-temperature limit the first-order term is wholly isotropic, and the second-order term is wholly

anisotropic. We subsequently see that, in this regime, the anisotropy and asymmetry of Z are proportional to

163



those of D:

�Z = �S (S + 1)(2S � 1)(2S + 3)
30(kT )2 �D, (5.40)

⌘Z = ⌘D. (5.41)

It is worth examining the temperature dependence of Ziso, �Z, and ⌘Z more closely through an example. In

section 4.2.3 we calculated the Z-matrix of an electronic spin S = 1 subject to a ZFS interaction with rhombic

symmetry. The principal values of Z were given in Equations 4.151–4.153. They are reproduced below for

convenience, having been reordered according to the Haeberlen convention assuming D = 5E/2 > 0:

Z̃xx =
1
E

e��(D/3�E) � e��(D/3+E)

e��(D/3+E) + e2�D/3 + e��(D/3�E) , (5.42)

Z̃yy =
2

D + E
e2�D/3 � e��(D/3+E)

e��(D/3+E) + e2�D/3 + e��(D/3�E) , (5.43)

Z̃zz =
2

D � E
e2�D/3 � e��(D/3�E)

e��(D/3+E) + e2�D/3 + e��(D/3�E) . (5.44)

The previous example focussed on the case where the axial and rhombic anisotropies are D = 50 cm�1 and

E = 20 cm�1 respectively, giving ordered principal values of D of D̃xx = 33.33 cm�1, D̃yy = 3.33 cm�1,

and D̃zz = �36.67 cm�1. Figure 5.1 shows plots of the isotropic value and anisotropy of Z as a function of

temperature. Part (a) compares the isotropic values of Z calculated from Equations 5.42–5.44 with the

high-temperature Bleaney expression in Equation 5.38. The comparison of the values of �Z calculated

from Equations 5.42–5.44 with the high-temperature Bleaney expression in Equation 5.40 is shown in (b).

Interestingly, we note that the asymmetry parameter ⌘Z is temperature-independent, and is always equal to

the ZFS asymmetry parameter ⌘D, taking in this case the value ⌘Z = 9/11.

We note that, as seen previously in section 4.2.3, the curves calculated from the high-temperature ap-

proximation match the exact curves very well down to a temperature of 100 K. The general value of this

high-temperature ‘cut-o↵’ threshold depends on the values of D/(kT ) and E/(kT ). We also see that the

anisotropy of Z tends to zero at higher temperatures more quickly than the isotropic part, on account of the

latter varying as 1/(kT ), and the former being due to a second-order e↵ect with a temperature dependence of

1/(kT )2.
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Figure 5.1: Example plots of the isotropic value Ziso and anisotropy �Z of the Z-tensor as a function of
temperature. The isotropic part is plotted in (a), and the anisotropy is plotted in (b). The asymmetry
parameter is temperature-independent. For both plots the curves in black are calculated from the general
EPR expressions in Equations 5.42–5.44. The red curves are plotted from the high-temperature Bleaney
expressions in Equations 5.38 and 5.40. The electronic spin is S = 1, and the ZFS parameters are D = 50
cm�1 and E = 20 cm�1, giving principal values of D̃xx = 33.33 cm�1, D̃yy = 3.33 cm�1, D̃zz = �36.67 cm�1,
and an anisotropy and asymmetry of �D = �36.67 cm�1, and ⌘D = 9/11.

5.3 The paramagnetic shift in the susceptibility formalism

We now examine in detail the terms contributing to the paramagnetic shielding tensor according to the

susceptibility formalism, as listed in Table 5.1. In this section we treat the susceptibility tensor as an

empirical quantity that can be either measured experimentally or calculated using Equation 5.12. However

we remember that �iso depends on both NR and SO coupling e↵ects, and that �� is due entirely to SO

coupling, and so the simple expressions obtained in this section actually hide a high level of complexity. At

this stage we do not make the explicit link between the various terms and the EPR parameters, the discussion

of which we defer until section 5.4. We separate the terms into three groups, which are (1) terms due to a

contact interaction (contact shielding), (2) terms due to a spin-dipolar interaction (dipolar shielding), and (3)

terms due to the antisymmetric hyperfine interaction (antisymmetric hyperfine shielding). Within each group

we examine the isotropic and symmetric anisotropic contributions to the shielding tensor. Note that as the

antisymmetric shielding is not observable under high-field conditions we neglect it.

165



5.3.1 The contact shift and shift anisotropy

The contact shielding contains two terms, namely ��isoCcon and �Ccon��, which are of spherical-tensor

ranks 0 and 2. They contribute to the isotropic shift and shift anisotropy respectively.

The contact shift

The isotropic contact shielding �con,�
iso is proportional to both the isotropic susceptibility and the contact

coupling constant:

�con,�
iso = ��isoCcon. (5.45)

The contact coupling constant is proportional to the unpaired electron density at the nucleus, and so �con,�
iso

can be written as

�con,�
iso = ��

iso

3S
⇢↵��(0). (5.46)

Using the chemical shift convention we can also define the contact shift as �con,�
iso = ��con,�

iso , which then has

the form given by McConnell and Chesnut [35]

�con,�
iso = �isoCcon (5.47)

=
�iso

3S
⇢↵��(0). (5.48)

There are three things to note about the contact shift. Firstly it is proportional to the isotropic magnetic

susceptibility, indicating that paramagnetic metal ions that exhibit a stronger tendency for their electronic

magnetic moments to align with the external magnetic field also give larger contact shifts. Secondly the

contact shift is also proportional to the magnitude of the unpaired electron density that is present at the

nuclear site. This indicates that larger shifts result from the more extensive overlap between the orbitals of

the metal ion and the s-orbital of the nucleus via the orbitals of any bridging atoms. Finally the sign of the

contact shift is the same as that of the unpaired electron density at the nucleus. Therefore the contact shift

can be used as a tool to determine whether the unpaired electrons are delocalised onto the nucleus, giving a

positive shift, or whether the unpaired electrons polarise a negative spin density at the nucleus, which gives a

negative shift [217].
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The contact shift anisotropy

The term �Ccon�� gives rise to a purely anisotropic paramagnetic chemical shielding which is parameterised

by the anisotropy ��con,� and asymmetry parameter ⌘con,�. The form of these anisotropy parameters is easily

deduced by noting that this contribution to the shielding tensor has exactly the same symmetry as ��, and

therefore the same PAF. The value of ��con,� is then simply proportional to ��, and the ⌘con,� is exactly equal

to ⌘�:

��con,� = �Ccon�� (5.49)

= ���
3S

⇢↵��(0), (5.50)

⌘con,� = ⌘�. (5.51)

This form of the contact shielding anisotropy has obvious similarities to that of the isotropic contact shift.

The size and sign of ��con,� both depend on the size and sign of the unpaired electron density transferred to

the nuclear site. However the anisotropy is proportional to ��, rather than �iso, indicating that metals which

exhibit a greater degree of spatial anisotropy in the tendency for their electronic magnetic moments to align

with the external field also give larger contact shielding anisotropies. In addition the shape of the shielding

tensor, as described by the ellipsoid in Figure 2.7, exactly matches the shape of the susceptibility tensor.

5.3.2 The spin-dipolar shift and shift anisotropy

The spin-dipolar shielding contribution to the paramagnetic chemical shielding tensor has two terms, namely

��isoCdip and ��� ·Cdip. The former has a simple form and is purely anisotropic with spherical-tensor rank

2. However the latter is more complicated as it couples together the two rank-two tensors �� and Cdip and

therefore requires special consideration.

The secular part �(1) of ��� ·Cdip is, in terms of the Cartesian tensor components:

�(1) = ���zxC
dip
xz � ��zyC

dip
yz � ��zzC

dip
zz . (5.52)

It proves convenient to rewrite this expression in terms of the irreducible spherical tensor components ��2m
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and Cdip
2m :

�(1) = �2
3
��20Cdip

20 +
1
2
��2�1Cdip

2+1 +
1
2
��2+1Cdip

2�1. (5.53)

The spatial dependence of �(1) can now be deduced by writing the products ��2mCdip
2�m in terms of the coupled

irreducible spherical tensor components WL0(22), which are defined as

WL0(22) =
+2
X

m=�2

h22m � m|L0i��2mCdip
2�m, (5.54)

where the rank L can take values between 0 and 4 in integer steps. The inverse of Equation 5.54 is

��2mCdip
2�m =

4
X

L=0

h22m � m|L0iWL0(22). (5.55)

Substituting Equation 5.55 into Equation 5.53 we obtain the following expression for the secular shielding in

terms of the coupled tensor components:

�(1) =

4
X

L=0

aLWL0(22), (5.56)

where the coe�cients aL are given by

aL = �
2
3
h2200|L0i + 1

2
h22 � 1 + 1|L0i + 1

2
h22 + 1 � 1|L0i (5.57)

= �2
3
h2200|L0i + 1

2

⇣

1 + (�1)L
⌘

h22 � 1 + 1|L0i . (5.58)

The Clebsch–Gordan coe�cients are easily evaluated to obtain

a0 = �
p

5
3
, (5.59)

a1 = 0, (5.60)

a2 =
1
3

r

7
2
, (5.61)

a3 = 0, (5.62)

a4 = 0. (5.63)
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The terms with odd L are zero due to the symmetry properties of the Clebsch–Gordan coe�cients. Further-

more we see that there are no terms of rank L = 4. This is because the coupling of the two tensors is a

standard matrix multiplication. The only terms that contribute to the secular shielding tensor are therefore

of ranks 0 and 2, which correspond to the isotropic and symmetric anisotropic parts of the interaction. The

shielding is therefore given by

�(1) =
1
3

0

B

B

B

B

B

@

�
p

5W00(22) +

r

7
2

W20(22)
1

C

C

C

C

C

A

. (5.64)

The W00(22) term is the only isotropic component of the shielding tensor that originates from the spin-dipolar

interaction, and results in the so-called ‘pseudo-contact shift’ (PCS). The shift anisotropy term resulting from

W20(22) is present in addition to the shift anisotropy due to the ��isoCdip term. Both contributions are referred

to as spin-dipolar anisotropy. The three contributions are now discussed.

The pseudo-contact shift

The sole isotropic term in the paramagnetic shielding is due to the W00(22) term in Equation 5.64. On

comparing this expression with Equation 5.4 we see that the isotropic pseudo-contact shielding �pcs,�
iso is

given by

�pcs,�
iso = �

p
5

3
W00(22). (5.65)

The isotropic tensor W00(22) is given in terms of ��2m and Cdip
2m by Equation 5.54, which gives the following

�pcs,�
iso = �

p
5

3

+2
X

m=�2

h22m � m|00i��2mCdip
2�m (5.66)

= �1
3

+2
X

m=�2

(�1)m��2mCdip
2�m, (5.67)

where to go to the second line we have used the identity h22m � m|00i = (�1)m/
p

5. The sum in Equation

5.67 is recognisable as the generalised scalar product of the tensors �� and Cdip written in the irreducible

spherical tensor basis [190]. Further progress is made by writing ��2m and Cdip
2�m in terms of their PAF values:

�pcs,�
iso = �1

3

X

m0
�̃�2m0

X

m00
C̃dip

2m00

X

m

(�1)mD(2)
m0m(↵XL, �XL, �XL)D(2)

m00�m(↵CS,L, �CS,L, �CS,L). (5.68)
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The second Wigner rotation matrix element can be rewritten as

D(2)
m00�m(↵CS,L, �CS,L, �CS,L) = (�1)m00�mD(2)

m�m00 (��CS,L,��CS,L,�↵CS,L), (5.69)

where (��CS,L,��CS,L,�↵CS,L) are the Euler angles representing the inverse rotation to (↵CS,L, �CS,L, �CS,L).

The pseudo-contact shielding then simplifies to

�pcs,�
iso = �1

3

X

m0
�̃�2m0

X

m00
C̃dip

2m00

X

m

(�1)m00D(2)
m0m(↵XL, �XL, �XL)D(2)

m�m00 (��CS,L,��CS,L,�↵CS,L)

= �1
3

X

m0
�̃�2m0

X

m00
C̃dip

2m00

X

m

D(2)
m0m(↵XL, �XL, �XL)D(2)

m�m00 (��CS,L,��CS,L,�↵CS,L) (5.70)

= �1
3

X

m0
�̃�2m0

X

m00
C̃dip

2m00D
(2)
m0�m00 (↵X,CS, �X,CS, �X,CS), (5.71)

where (↵X,CS, �X,CS, �X,CS) are the Euler angles that specify the orientation of the PAF of the susceptibility

tensor relative to the PAF of the spin-dipolar tensor. To go to the second line, we have used the fact that

C̃dip
2±1 = 0 and therefore m00 is always even, and to go to the last line we have used the following closure

identity for the Wigner rotation matrix elements [190]:

X

m00
D(l)

mm00 (↵1, �1, �1)D(l)
m00m0 (↵2, �2, �2) = D(l)

mm0 (↵, �, �), (5.72)

where (↵, �, �) represents the rotation resulting from applying (↵1, �1, �1) followed by (↵2, �2, �2). Now we

can substitute the explicit expressions for the �̃�2m and the Cdip
2m in terms of the relevant anisotropy and

asymmetry parameters, which are given in Equations 5.22?5.25, to give the final form of the pseudo-contact

shielding:

�pcs,�
iso = �1

6
�C

"

��ax
⇣

3 cos2 �

�X,CS
� � 1

⌘

+
3
2
��rh sin2 �

�X,CS
�

cos
�

2↵X,CS
�

�⌘C
n

��ax sin2 �

�X,CS
�

cos
�

2�X,CS
�

+ ��rh cos4(�X,CS/2) cos(2(↵X,CS + �X,CS))

+ ��rh sin4(�X,CS/2) cos(2(↵X,CS � �X,CS))
oi

. (5.73)
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Using the chemical shift convention we obtain the pseudo-contact shift �pcs,�
iso :

�pcs,�
iso =

1
6
�C

"

��ax
⇣

3 cos2(�X,CS) � 1
⌘

+
3
2
��rh sin2(�X,CS) cos(2↵X,CS)

�⌘C
n

��ax sin2(�X,CS) cos(2�X,CS) + ��rh cos4(�X,CS/2) cos(2(↵X,CS + �X,CS)) + ��rh sin4(�X,CS/2) cos(2(↵X,CS � �X,CS))
oi

.

(5.74)

The Euler angles (↵X,CS, �X,CS, �X,CS) depend only on the internal geometry of the system, and so are indepen-

dent of crystallite orientation as required for an isotropic shift. We can also specify the orientation between

the two PAFs in terms of the Euler angles (↵CS,X, �CS,X, �CS,X), which give the orientation of the PAF of the

dipolar coupling tensor relative to the PAF of the susceptibility. In this case Equation 5.71 becomes

�pcs,�
iso = �1

3

X

m0
�̃�2m0

X

m00
C̃dip

2m00D
(2)
m00�m0 (↵CS,X, �CS,X, �CS,X), (5.75)

and the final expression for the PCS is

�pcs,�
iso =

1
6
�C

"

��ax
⇣

3 cos2(�CS,X) � 1
⌘

+
3
2
��rh sin2(�CS,X) cos(2�CS,X)

�⌘C
n

��ax sin2(�CS,X) cos(2↵CS,X)

+ ��rh cos4(�CS,X/2) cos(2(↵CS,X + �CS,X)) + ��rh sin4(�CS,X/2) cos(2(↵CS,X � �CS,X))
oi

. (5.76)

The PCS is a shift that originates from the through-space spin-dipolar interaction, and so has a form

that is very di↵erent to that of the contact shift. Both depend on the interaction with the unpaired electron

spin density, but whereas the contact shift results from the spin density at the nuclear site, the PCS is a

longer-range e↵ect that depends on the spatial position of the nucleus with respect to the paramagnetic ion.

This form of the PCS emphasises that it depends only on the susceptibility anisotropy, through the axial and

rhombic anisotropy parameters, and not on the isotropic susceptibility. Therefore the PCS only arises for

metal ions with electronic configurations that are subject to SO coupling. At ion–nucleus separations that are

su�ciently large, typically more than 4Å, we can employ the point-dipole approximation for the unpaired

electrons. The PCS then takes on the well-known form that was first derived by McConnell and Robertson
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Figure 5.2: Representative surfaces plots of the PCS as a function of the position (x, y, z) of the NMR-
active nucleus relative to an anisotropic paramagnetic centre. The PCS due to two examples of the magnetic
susceptibility are shown with the susceptibility in (a) being axially symmetric, and that in (b) having a non-
zero rhombic component. The susceptibility anisotropy parameters are: ��ax = 10�32 m3 in both cases, and
��rh = 0 for (a) and ��rh = 0.9⇥ 10�32 m3 for (b). The surfaces show the position at which we see a positive
PCS of 1 ppm (in red), and a negative PCS of �1 ppm (in blue).

[36]:

�pcs,�
iso =

1
12⇡R3

"

��ax
⇣

3 cos2(✓) � 1
⌘

+
3
2
��rh sin2(✓) cos(2�)

#

. (5.77)

The angles ✓ and � are the polar and azimuthal angles that are defined through �X,CS = ✓ and ↵X,CS = �,

or equivalently �CS,X = ✓ and �CS,X = �. Hence (✓, �) can be interpreted either as the angles relating the

PAF of the susceptibility tensor relative to the metal ion–nucleus vector, or vice versa. The point-dipole

PCS therefore depends on five parameters: the spherical polar coordinates (R, ✓, �) of the nucleus relative

to the PAF of the susceptibility tensor of the metal ion, and the axial and rhombic anisotropy parameters

of the susceptibility. Two examples of the position-dependence of the PCS are shown in Figure 5.2, for an

axially-symmetric susceptibility tensor (a), and a susceptibility tensor with a rhombic component (b). The

former plot has the appearance of a 3dz2 orbital, which is due to the polar-angle dependence of
⇣

3 cos2 ✓ � 1
⌘

in Equation 5.77. The inclusion of the rhombic term has the e↵ect of splitting the ‘doughnut’ ring into two

distinct lobes.

Equivalent expressions for the PCS in di↵erent coordinate systems can be formulated; an extensive list of
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these has been provided by Bertini et al. for the point-dipole regime [16]. Here we give two expressions in

Cartesian coordinates for the case where the point-dipole model applies. We write the PCS as

�pcs
iso =

1
3

Tr
⇣

�� ·Cdip
⌘

. (5.78)

Starting from Equation 3.104 we write the Cartesian components of Cdip as

Cdip
i j =

3RiRj � R2�i j

4⇡R5 . (5.79)

Because the PCS is isotropic, we obtain the same result independent of which reference frame we use.

Therefore for convenience we adopt the PAF of the susceptibility tensor, so that ��i j = �̃�ii�i j. In this frame

the Cartesian coordinates (x, y, z) give the position of the nucleus in the PAF of the susceptibility tensor. The

PCS can now be evaluated easily:

�pcs
iso =

1
12⇡R5 Tr

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

�̃�xx 0 0

0 �̃�yy 0

0 0 �̃�zz

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

3x2 � R2 3xy 3xz

3xy 3y2 � R2 3yz

3xz 3yz 3z2 � R2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

=
1

12⇡R5

h

�̃�xx

⇣

3x2 � R2
⌘

+ �̃�yy

⇣

3y2 � R2
⌘

+ �̃�zz

⇣

3z2 � R2
⌘i

. (5.80)

In terms of the axial and rhombic susceptibility anisotropy parameters Equation 5.80 becomes

�pcs
iso =

1
12⇡R5

"

��ax
⇣

2z2 � x2 � y2
⌘

+
3
2
��rh

⇣

x2 � y2
⌘

#

. (5.81)

This form of the PCS again emphasises that the shift depends only on the susceptibility anisotropy, and not

on the isotropic susceptibility.

The spin-dipolar shift anisotropy

There are two contributions to the spin-dipolar shift anisotropy, namely the anisotropy shielding term��isoCdip,

and the anisotropic component of ���·Cdip as given in Equation 5.64. The symmetry of the former shielding

tensor exactly matches the symmetry of the dipolar coupling tensor, and so they both share the same PAF, the
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same anisotropy to within a multiplicative constant of proportionality, and the same asymmetry parameter.

The shielding anisotropy ��dip,�,1 and asymmetry parameter ⌘dip,�,1 are therefore

��dip,�,1 = ��iso�C, (5.82)

⌘dip,�,1 = ⌘C . (5.83)

The former is proportional to the isotropic magnetic susceptibility. In the point-dipole approximation the

anisotropy �C is equal to twice the reduced dipolar coupling constant 1/(4⇡R3), and the asymmetry parameter

⌘C is zero. The anisotropic shielding parameters are therefore

��dip,�,1 = � �iso

2⇡R3 , (5.84)

⌘dip,�,1 = 0. (5.85)

We expect this contribution to the spin-dipolar shielding anisotropy to be the most dominant of the two.

The second shift anisotropy contribution from Equation 5.64 gives a rank-2 shielding �dip,�,2
20 equal to

�dip,�,2
20 =

1
2

r

7
3

W20(22). (5.86)

The anisotropy ��dip,�,2 and asymmetry parameter ⌘dip,�,2 of this contribution to the shielding match those of

the coupled tensor W20(22), which we denote as �W(22) and ⌘W(22) respectively:

��dip,�,2 =
1
3

r

7
2
�W(22), (5.87)

⌘dip,�,2 = ⌘W(22). (5.88)

These parameters contain information on the anisotropic properties of both the susceptibility and dipolar

coupling tensors.
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5.3.3 The antisymmetric hyperfine shift anisotropy

The final contribution to consider is that due to the antisymmetric hyperfine interaction Cas. The only

contribution to the shielding that is observable under high-field conditions is the symmetric anisotropic part

of ��� · Cas, which contributes to the shift anisotropy. This term is calculated from the secular part of

��� ·Cas, which is given by

�(1) = ���zxCas
xz � ��zyCas

yz, (5.89)

where we have acknowledged that Cas
zz is zero by definition. Applying the same treatment as for the coupled

spin-dipolar contribution to the shielding, we rewrite Equation 5.89 in terms of the irreducible spherical tensor

basis to obtain

�(1) = �1
2
��2�1Cas

1+1 +
1
2
��2+1Cas

1�1. (5.90)

We can now express the tensor products ��2mCas
1�m in terms of the coupled tensor components WL0(21) which

are defined through the relations

WL0(21) =
+1
X

m=�1

h21m � m|L0i��2mCas
1�m, (5.91)

��2mCas
1�m =

3
X

L=1

h21m � m|L0iWL0(21), (5.92)

where the rank L runs from 1 to 3. In terms of the WL0(21) the secular shielding is

�(1) =

3
X

L=1

bLWL0(21), (5.93)

where the coe�cients bL are given by

bL = �
1
2
h21 � 1 + 1|L0i + 1

2
h21 + 1 � 1|L0i (5.94)

= �1
2

⇣

1 + (�1)L
⌘

h21 � 1 + 1|L0i . (5.95)
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Type Term �� �iso �� ⌘ Present in magnetically isotropic transition-metal systems?

con A ��isoCcon �isoCcon 0 — yes
B ���Ccon 0 ���Ccon ⌘� no

dip C ��isoCdip 0 ��iso�C ⌘C yes

D ��� ·Cdip �pcs
iso

1
3

q

7
2�W(22) ⌘W(22) no

as E ��isoCas 0 0 — no

F ��� ·Cas 0
q

1
2�W(21) ⌘W(21) no

Table 5.2: Summary of the various terms in the paramagnetic shielding tensor in the susceptibility formalism,
and their respective contributions to the isotropic paramagnetic shift, shielding anisotropy, and asymmetry
parameter.

We see immediately that the coe�cients are zero if L is odd, and therefore the only contribution is from the

rank-2 part W20(21):

b1 = 0, (5.96)

b2 =

r

1
2
, (5.97)

b3 = 0. (5.98)

The secular shielding is therefore

�(1) =

r

1
2

W20(21). (5.99)

The corresponding shielding anisotropy ��as,� and asymmetry parameter ⌘as,� are given in terms of the

corresponding anisotropy and asymmetry of W20(21), which we denote as �W(21) and ⌘W(21) respectively:

��as,� =

r

1
2
�W(21), (5.100)

⌘as,� = ⌘W(21). (5.101)

5.3.4 Summary

The various terms in the susceptibility formalism of the paramagnetic shielding, and their contributions to

the isotropic paramagnetic shift, shift anisotropy, and asymmetry are summarised in Table 5.2. The questions

that now arise are what is the relative importance of these various terms, and can the interpretation of the

observed shifts and shift anisotropies in the NMR spectrum be simplified by considering only a subset of

176



them.

Magnetically isotropic transition-metal ions

The first case to consider is that of transition metal ions with an isotropic magnetic susceptibility. This

includes metal ions that are not subject to SO coupling, such as those with a half-full high-spin d-shell

configuration, for example Mn2+, and metal ions which may exhibit SO coupling e↵ects, but in a perfectly

cubic coordination environment. In this case the only contributions to the shielding tensor are terms A and C.

Hence the isotropic paramagnetic shift is due entirely to the contact interaction, and the shift anisotropy is due

entirely to the spin-dipolar interaction. In such systems the interpretation of the NMR spectrum is relatively

straightforward, with the isotropic and anisotropic shifts providing information on the spin-transfer pathways

from the unpaired electrons to the nucleus, and the spatial geometry of the system, respectively. One impor-

tant observation is that the shift anisotropy has a distance dependence of 1/R3, and so is considerably longer

range than the spin-transfer that gives the isotropic shift. Therefore nuclei that are outside the coordination

environment of the metal ion, and hence exhibit no contact shift, are still expected to have a significant shift

anisotropy due to the spin-dipolar interaction.

The e↵ect of magnetic anisotropy

Metal ions that are subject to SO coupling e↵ects, and in coordination environments of non-cubic symmetry,

possess a susceptibility anisotropy which results in a more complicated form of the paramagnetic shielding

tensor, as can be seen from Table 5.2. In such systems the isotropic paramagnetic shift is a combination

of the contact (term A) and pseudo-contact (term D) interactions. These give complementary information

on the through-bond and through-space interactions with the unpaired electrons. Whether one or the other

is dominant is a complex issue, and depends on the precise nature of the system. In situations where the

s-orbitals of the relevant nucleus receive appreciable transfer of electronic spin density due to, for example,

favourable orbital overlap, the contact shift is likely to dominate the overall isotropic shift and the PCS

can safely be neglected. However in situations where the orbital overlap is less favourable, or where the

nucleus is outside the immediate coordination environment of the metal ion, the contact shift is small, and

the PCS becomes more important. In structural studies of proteins with a paramagnetic centre, the PCS is

observed for nuclei up to a range of approximately 50 Å, at which distance the contact shift is zero. Because
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of the long-range nature of the PCS, and its dependence on the position of the nucleus with respect to the

susceptibility tensor of the metal ion, the PCS is an extremely useful tool here, as will be seen in chapters 12

and 13.

The form of the overall shielding anisotropy is more complicated, having four contributions that are due

to the anisotropy of the hyperfine tensor, the susceptibility tensor, and the coupling of the two. The anisotropy

due to term B is due to the susceptibility anisotropy and the contact interaction, and is therefore only expected

to be important for nuclei that are within the coordination environment of a metal ion with large magnetic

anisotropy. Terms C and D are longer-range e↵ects, being due to the spin-dipolar interaction. Term C is

proportional to the isotropic susceptibility whereas term D depends on the susceptibility anisotropy, and so

the former is expected to be the more important contribution of the two, especially for metal ions with a

small magnetic anisotropy. In addition both C and D contain the product of an NR term with a SO coupling

term, and so both are expected to be larger than term F, which is formed by coupling together two tensors due

entirely to SO coupling, namely �� and Cas.

5.4 The paramagnetic shift in terms of the molecular/atomic-level EPR

parameters

We now begin the more complex task of interpreting the form of the paramagnetic shielding tensor in terms

of the EPR tensor parameters, and elucidating more thoroughly the links between this formalism and the

susceptibility formalism. This link can be summarised by the expression for the magnetic susceptibility

tensor in Equation 5.12. If we expand this expression by using the full forms of g and Z we obtain

� = µ0µ
2
B (ge1 + �giso1 +�g) ·

⇣

Ziso1 +�Z
⌘

·
⇣

ge1 + �giso1 +�gT
⌘

. (5.102)

We see that both the isotropic and anisotropic parts of � contain contributions due to the SO coupling. In the

absence of SO coupling however both Z and the susceptibility are wholly isotropic, and � reduces to the NR
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form we have seen previously:

�iso = µ0µ
2
Bg2

eZiso (5.103)

=
µ0µ2

Bg2
eS (S + 1)
3kT

, (5.104)

where we have used the NR expression for Z. We begin by re-examining the NR case, and then include the

SO coupling terms. The contributions are separated into contact, spin-dipolar, and antisymmetric hyperfine

terms in the same way as for the susceptibility formalism.

5.4.1 Magnetically isotropic transition-metal ions in the absence of spin-orbit cou-

pling

In the absence of SO coupling the only terms in Table 5.1 that remain are the Fermi-contact term (1), and the

NR spin-dipolar term (2). These give rise to the isotropic paramagnetic shift and shift anisotropy respectively.

The expressions given in this section are the same as those presented in chapter 3.

The Fermi-contact shift

The isotropic Fermi-contact paramagnetic shielding �FC,S
iso is given by

�FC,S
iso = �µBgeS (S + 1)

3~�IkT
AFC. (5.105)

We can also define the corresponding Fermi-contact shift �FC,S
iso as

�FC,S
iso =

µBgeS (S + 1)
3~�IkT

AFC. (5.106)
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This expression is exactly equal to the corresponding contact shift in the susceptibility formalism �con,�
iso = �isoCcon

when we note that both �iso and Ccon take their respective NR forms:

�con,�
iso = �isoCcon (5.107)

=

2

6

6

6

6

4

µ0µ2
Bg2

eS (S + 1)
3kT

3

7

7

7

7

5

"

⇢↵��(0)
3S

#

(5.108)

=

"

µBgeS (S + 1)
3~�IkT

# "

1
3S
µ0µBge~�I⇢

↵��(0)
#

(5.109)

=
µBgeS (S + 1)

3~�IkT
AFC, (5.110)

where to go to the third line we have multiplied the numerator and denominator by ~�I . The final expression

is exactly the one given in Equation 5.106.

The spin-dipolar shift anisotropy

The shielding anisotropy due to the spin-dipolar term SD is parameterised in terms of the shielding anisotropy

and asymmetry, which are given by:

��SD,S = �µBgeS (S + 1)
3~�IkT

�ASD, (5.111)

⌘SD,S = ⌘SD, (5.112)

where �ASD and ⌘SD are the anisotropy and asymmetry parameter of the NR spin-dipolar interaction. The

overall shielding tensor therefore has the same PAF and anisotropic properties as the NR spin-dipolar coupling

tensor. By following the same line of reasoning as with the Fermi-contact shift in Equations 5.107–5.110,

we can show that this value of ��SD,S is exactly equivalent to the corresponding NR expression given by the

susceptibility formalism ��dip,�,1 = ��iso�C when we note that �ASD = µ0µBge~�I�C.

5.4.2 The contact shift and shift anisotropy

We now examine the contact contribution to the shielding tensor in the presence of SO coupling. The relevant

terms from Table 5.1 are (1), (3), (6), and (8). Terms (1), (6), and (8) are due to the NR Fermi-contact

interaction with coupling constant AFC, whilst term (3) originates from the SO contact term with coupling
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constant AFC,2. The link can be made to the susceptibility formalism when we note that Ccon contains

contributions from both AFC and AFC,2.

The contact shift

All four terms have an isotropic part, the sum of which gives the overall isotropic contact shielding �con,S
iso :

�con,S
iso = � µB

~�I
Ziso

h

geAFC + geAFC,2 + �gisoAFC
i

� µB

3~�I
Tr [�g ·�Z] AFC. (5.113)

The first three terms (1, 3, and 6) in Equation 5.113 depend on the isotropic part of the g-tensor, and the

isotropic part of Z. Therefore the leading temperature dependence of these terms matches that of Ziso, which

is first order in 1/(kT ). On the other hand the final isotropic term (8) is formed from coupling together the

anisotropic part of Z and the anisotropic and symmetric part of g. The temperature dependence of this term is

that of �Z, which is 1/(kT )2, i.e. second order. This is also observed in the corresponding isotropic shielding

in the susceptibility formalism where, in the presence of SO coupling, �iso contains contributions from �Z

and �g in addition to Ziso and ge + �giso. The overall isotropic contact shift is given by

�con,S
iso =

µB

~�I
Ziso

h

geAFC + geAFC,2 + �gisoAFC
i

+
µB

3~�I
Tr [�g ·�Z] AFC. (5.114)

This expression is completely general for transition-metal ions subject to SO coupling.

In the high-temperature limit we can approximate the contact shift to 1/(kT )2, which gives the Bleaney

expression:

�con,S
iso =

µBS (S + 1)
3~�IkT

h

geAFC + geAFC,2 + �gisoAFC
i

� µBS (S + 1)(2S � 1)(2S + 3)
90~�I(kT )2 Tr [�g ·D] AFC. (5.115)

This form of the contact shift emphasises that both the isotropic g-factor, including the SO coupling contri-

bution, and the SO coupling contribution to the Fermi-contact interaction appear to first order in 1/(kT ). The

g-anisotropy and ZFS, on the other hand, only appear to second order in 1/(kT ). In the absence of the ZFS
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the fourth term is zero and we are left with

�con,S
iso =

µBS (S + 1)
3~�IkT

h

geAFC + geAFC,2 + �gisoAFC
i

, (5.116)

which is a simple modification of the NR expression that accounts for the SO-coupling-induced changes to

both the isotropic g-factor and contact coupling interaction.

The contact shift anisotropy

The anisotropy associated with the contact shielding is represented by the symmetric anisotropic part of the

contact shielding, which we denote �con,sym,S . The full expression is

�con,sym,S = � µB

~�I

h

geAFC + geAFC,2 + �gisoAFC
i

�Z

� µB

~�I
AFCZiso�gsym

� µB

~�I
AFC {�g ·�Z}sym , (5.117)

where the notation Asym indicates the symmetric anisotropic part of A, and {A ·B}sym represents the sym-

metric anisotropic part of the matrix product of A and B. Hence �gsym and {�g ·�Z}sym are the symmetric

anisotropic parts of those tensors, which are given by

�gsym =
1
2

⇣

�g +�gT
⌘

, (5.118)

{�g ·�Z}sym =
1
2

⇣

�g ·�Z +�Z ·�gT
⌘

� 1
3

Tr (�g ·�Z)1. (5.119)

All of these terms correspond to the single term in the susceptibility formalism ���Ccon. Thus the shielding

anisotropy is the sum of three terms �con,sym,A,S , �con,sym,B,S , and �con,sym,C,S , to each of which can be ascribed
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an anisotropy ��con,X,S and asymmetry parameter ⌘con,X,S , X = A, B, C. These are given by:

��con,A,S = � µB

~�I

h

geAFC + geAFC,2 + �gisoAFC
i

�Z, (5.120)

⌘con,A,S = ⌘Z , (5.121)

��con,B,S = � µB

~�I
AFCZiso�g, (5.122)

⌘con,B,S = ⌘g, (5.123)

��con,C,S = � µB

~�I
AFC� {�g ·�Z} , (5.124)

⌘con,C,S = ⌘{�g·�Z}, (5.125)

where � {�g ·�Z} and ⌘{�g·�Z} are shorthand notation for the anisotropy and asymmetry parameter re-

spectively of the matrix product {�g ·�Z}. In general each term has its own PAF which does not necessarily

coincide with the other two, and therefore the overall contact shift anisotropy and asymmetry parameter are

not simple combinations of the contributions given above, but are rather calculated by diagonalising the total

symmetric anisotropic contact shielding �con,sym,S . Nevertheless it is instructive to analyse the three terms

separately to understand better the anisotropic properties of the contact shielding. Term A depends on the

ZFS tensor, with the anisotropy and asymmetry parameter being proportional to �Z and ⌘Z respectively, and

the PAF being coincident with that of the ZFS. Term B depends only on the anisotropic g-tensor, with an

anisotropy proportional to �g, an asymmetry parameter equal to ⌘g, and the same PAF as the symmetric

g-tensor. Term C is more complicated, with an anisotropy, asymmetry parameter, and PAF that depend on the

product of the anisotropic parts of Z, and g.

In the high-temperature limit the anisotropic contact shielding is given by

�con,sym,S =
µBS (S + 1)(2S � 1)(2S + 3)

30~�I(kT )2

h

geAFC + geAFC,2 + �gisoAFC
i

D

� µBS (S + 1)
3~�IkT

AFC�gsym

+
µBS (S + 1)(2S � 1)(2S + 3)

30~�I(kT )2 AFC {�g ·D}sym . (5.126)
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The three contributions to the contact shielding anisotropy and asymmetry parameter are now

��con,A,S =
µBS (S + 1)(2S � 1)(2S + 3)

30~�I(kT )2

h

geAFC + geAFC,2 + �gisoAFC
i

�D, (5.127)

⌘con,A,S = ⌘D, (5.128)

��con,B,S = �µBS (S + 1)
3~�IkT

AFC�g, (5.129)

⌘con,B,S = ⌘g, (5.130)

��con,C,S =
µBS (S + 1)(2S � 1)(2S + 3)

30~�I(kT )2 AFC� {�g ·D} , (5.131)

⌘con,C,S = ⌘{�g·D}. (5.132)

We see that the ZFS only contributes to second order in 1/(kT ), whereas the g-anisotropy contributes to first

order. Finally in the absence of the ZFS interaction we obtain the following simple expression for the contact

shielding anisotropy:

�con,sym,S = �µBS (S + 1)
3~�IkT

AFC�gsym. (5.133)

Only term B is present, and so the total shielding anisotropy and asymmetry parameter are wholly given by

the anisotropic properties of the symmetric part of the g-tensor:

��con,B,S = �µBS (S + 1)
3~�IkT

AFC�g, (5.134)

⌘con,B,S = ⌘g. (5.135)

5.4.3 The spin-dipolar shift and shift anisotropy

The spin-dipolar contribution to the shielding tensor comprises four terms from Table 5.1, namely (2), (4),

(7), and (9). Three of these terms (2, 7, and 9) are due to the NR spin-dipolar interaction with coupling tensor

ASD, and the fourth term (4) is due to the SO coupling contribution ASD,2. As for the contact shielding, the

link to the susceptibility formalism can be made when we note that Cdip includes both the NR and SO parts

of the dipolar coupling tensor.
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The pseudo-contact shift

In order to obtain an isotropic chemical shielding from the spin-dipolar interaction in the EPR formalism we

need the terms that contain a matrix product of the spin-dipolar tensor with at least one other anisotropic

and symmetric tensor. Writing down these terms and taking the trace we obtain the pseudo-contact shielding

�pcs,S
iso :

�pcs,S
iso = � µB

3~�I

h

geTr
⇣

�Z ·ASD
⌘

+ geTr
⇣

�Z ·ASD,2
⌘

+ �gisoTr
⇣

�Z ·ASD
⌘i

� µB

3~�I

h

ZisoTr
⇣

�g ·ASD
⌘

+ Tr
⇣

�g ·�Z ·ASD
⌘i

. (5.136)

From this we can write down the expression for the PCS �pcs,S
iso :

�pcs,S
iso =

µB

3~�I

h

geTr
⇣

�Z ·ASD
⌘

+ geTr
⇣

�Z ·ASD,2
⌘

+ �gisoTr
⇣

�Z ·ASD
⌘i

+
µB

3~�I

h

ZisoTr
⇣

�g ·ASD
⌘

+ Tr
⇣

�g ·�Z ·ASD
⌘i

. (5.137)

The first three terms (2, 4, and 7) of both Equations 5.136 and 5.137 contain the product of the symmetric part

of the Z-tensor with a spin-dipolar coupling tensor, the fourth term (9) contains the product of the g-anisotropy

tensor with the NR spin-dipolar coupling tensor, with only the symmetric part of �g contributing to the PCS,

and the fifth (also 9) contains the triple product �g ·�Z ·ASD. The term containing the SO spin-dipolar term

is of shorter range than the other four, and so has a negligible contribution to �pcs,S
iso at longer distances from

the metal. However it may be important at shorter distances. In analogy with the PCS in the susceptibility

formalism we can deduce the following about this form of the PCS.

The first and third terms depend on the Euler angles⌦ASDD which specify the orientation of the PAF of the

NR spin-dipolar tensor relative to the PAF of the ZFS tensor. The second term is similar, with the di↵erence

that the relevant Euler angles ⌦ASD,2D are those that now specify the orientation of the PAF of the SO coupling

spin-dipolar tensor relative to the PAF of the ZFS tensor. Both terms have a leading temperature dependence

of 1/(kT )2. The fourth term, which has a leading temperature dependence of 1/(kT ), depends on the Euler

angles ⌦ASD,GS, which give the orientation of the PAF of the NR spin-dipolar tensor relative to the PAF of the

symmetric part of the g-tensor. The fifth term is more complicated, and depends on the orientation of the NR

spin-dipolar tensor PAF relative to the PAF of the symmetric part of the product �g ·�Z. It has a leading
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temperature dependence of 1/(kT )2.

In the high-temperature limit we obtain the following PCS

�pcs,S
iso =

µBS (S + 1)
9~�IkT

Tr
⇣

�g ·ASD
⌘

� µBS (S + 1)(2S � 1)(2S + 3)
90~�I(kT )2

h

geTr
⇣

D ·ASD
⌘

+ geTr
⇣

D ·ASD,2
⌘

+ �gisoTr
⇣

D ·ASD
⌘i

� µBS (S + 1)(2S � 1)(2S + 3)
90~�I(kT )2 Tr

⇣

�g ·D ·ASD
⌘

. (5.138)

The g-anisotropy appears in terms with both a first- and second-order temperature dependence, whilst the

ZFS only a↵ects the PCS to second order. In the absence of the ZFS all the terms bar the first are zero, and

we are left with a very simple form of the PCS

�pcs,S
iso =

µBS (S + 1)
9~�IkT

Tr
⇣

�g ·ASD
⌘

. (5.139)

The PCS now depends only on the g-anisotropy, and the orientation of the PAF of the NR dipolar coupling

tensor with respect to the PAF of the symmetric part of the g-tensor.

The question that now arises is how di↵erent are the two expressions for the PCS that are given in Equa-

tions 5.76 and 5.137? This point was explored in section 4.5. There it was shown that if we attempt to interpret

the rank-two part of the reduced hyperfine tensor as a pure spin-dipolar interaction, we recover an expression

for the PCS where the true susceptibility tensor is substituted by a modified (non-symmetric) tensor �0.

Therefore we recover an equation of the form of Equation 5.76, but containing the tensor components of the

rank-two part of �0. If this substitution is made, Equations 5.76 and 5.137 become exactly equivalent [216].
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The spin-dipolar shift anisotropy

The anisotropic shielding �dip,sym,S that arises from the spin-dipolar interaction is given by

�dip,sym,S = � µB

~�I
Ziso

h

geA
SD + geA

SD,2 + �gisoA
SD

i

� µB

~�I
Ziso

n

�g ·ASD
osym

� µB

~�I

h

ge
n

�Z ·ASD
osym
+ ge

n

�Z ·ASD,2
osym
+ �giso

n

�Z ·ASD
osymi

� µB

~�I

n

�g ·�Z ·ASD
osym
. (5.140)

The term on the first line is an anisotropy that depends wholly on the NR and SO-coupling dipolar part of the

hyperfine tensor, and corresponds to the term in the susceptibility formalism ��isoCdip. The remaining terms

contain one or both of the anisotropic part of the g-tensor and of the ZFS tensor, as part of �Z, and therefore

correspond to the anisotropic symmetric part of ��� ·Cdip.

In the high-temperature approximation the expression for �dip,sym,S becomes

�dip,sym,S = � µBS (S + 1)
3~�IkT

h

geA
SD + geA

SD,2 + �gisoA
SD

i

� µBS (S + 1)
3~�IkT

n

�g ·ASD
osym

+
µBS (S + 1)(2S � 1)(2S + 3)

30~�I(kT )2

h

ge
n

D ·ASD
osym
+ ge

n

D ·ASD,2
osym
+ �giso

n

D ·ASD
osymi

+
µBS (S + 1)(2S � 1)(2S + 3)

30~�I(kT )2

n

�g ·D ·ASD
osym
. (5.141)

The terms on the first two lines, which depend only on the dipolar coupling tensors and g-anisotropy have

a leading temperature dependence of 1/(kT ). The other terms, which also depend on the ZFS tensor, have

a leading temperature dependence of 1/(kT )2 as we have seen with the other contributions to the shielding

tensor. In the absence of the ZFS interaction the anisotropic shielding is

�dip,sym,S = �µBS (S + 1)
3~�IkT

h

geA
SD + geA

SD,2 + �gisoA
SD

i

�µBS (S + 1)
3~�IkT

n

�g ·ASD
osym
, (5.142)
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which contains contributions due to ASD, ASD,2, �giso, and �g. In all these cases we note again that ASD,2

represents a shorter-range interaction than ASD, and so is only important at shorter distances from the metal

ion.

5.4.4 The antisymmetric hyperfine shift anisotropy

The final term to consider is the paramagnetic chemical shielding due to the antisymmetric hyperfine in-

teraction, as given by term (5) in Table 5.1. This contribution corresponds to the susceptibility formalism

contribution ��� · Cas. As in the susceptibility formalism the anisotropic hyperfine interaction does not

contribute to the isotropic paramagnetic shift, but does contribute to the shielding anisotropy through the

term

�as,sym,S = � µB

~�I
ge

�

�Z ·Aas sym . (5.143)

The anisotropic properties therefore depend on those of the matrix product �Z ·Aas. The g-anisotropy does

not play a role here, but the dependence on �Z indicates that the shielding anisotropy and asymmetry do

depend on the ZFS. In the high-temperature limit Equation 5.143 becomes

�as,sym,S =
µBS (S + 1)(2S � 1)(2S + 3)

30~�I(kT )2 ge
�

D ·Aas sym . (5.144)

The leading temperature dependence is therefore 1/(kT )2. In the absence of the ZFS this term disappears

altogether.

5.4.5 Summary

As has been seen in this chapter, the form of the paramagnetic shielding tensor in terms of the EPR parameters

is rather complex. Therefore to finish this discussion we outline the salient points, which are the roles that

the various EPR parameters play in the forms of the isotropic shift and shift anisotropy, the temperature

dependences of the various contributions, and which are the most important for di↵erent systems. This

last point closely follows the corresponding discussion of the susceptibility formalism in section 5.3.4. The

di↵erent terms are summarised in Table 5.3, where it is shown whether each term contributes to the shift

and/or shift anisotropy, and also the leading temperature dependence of each contribution.
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In the absence of spin-orbit coupling

As has been shown, the only terms to contribute to metal ions which do not exhibit SO coupling are (1a)

and (2a), which contribute to the isotropic shift and shift anisotropy respectively. The shielding tensor

therefore has a simple form, with a temperature dependence of 1/kT . Such paramagnetic systems only

show an isotropic paramagnetic shift if the nucleus is within the coordination environment of the metal ion

and receives unpaired electron density within its s-orbital. Nuclei outside the coordination site therefore have

zero isotropic paramagnetic shift. The shift anisotropy is longer range, as it depends on the spin-dipolar

interaction, and so nuclei exhibit a shift anisotropy even when several 10s of Å from the metal ion.

The e↵ect of spin-orbit coupling

The simple picture described above is complicated significantly when SO coupling is present, with the extra

contributions to the hyperfine, g- and ZFS tensors adding several more terms to the paramagnetic shielding

tensor. The ZFS tensor is responsible for a more complicated temperature dependence, through the tensor Z.

In the high-temperature limit, such that Z can be truncated at second order in 1/(kT )2, the ZFS tensor only

appears in the shielding, with a leading temperature dependence of 1/(kT )2. For metal ions where the ZFS

is small its contribution to the shielding can be neglected, and the temperature dependence is simply 1/kT .

Under these circumstances the contact shift is given by the sum of terms (1a), (3a), and (6a) with the NR term

(1a) dominating. In addition the PCS is due entirely to the coupling of the g-anisotropy to the NR dipolar

coupling tensor in term (9a). The total shift anisotropy contains a contact contribution from the g-anisotropy,

in term (8a), and four terms due to the spin-dipolar interaction (2a), (4a), (7a), and (9a). The dominant

spin-dipolar term is expected to be the NR contribution (2a). The contact anisotropy is only significant if

the nucleus is within the coordination environment of the metal ion, so that the Fermi-contact interaction is

comparable to or greater than the spin-dipolar interaction.

For metal ions with a larger ZFS anisotropy, the terms in 1/(kT )2 become important. The isotropic contact

shift now includes a contribution in 1/(kT )2, term (8b), and the contact shift anisotropy includes four extra

terms (1b), (3b), (6b), and (8b). The ZFS contribution to the PCS comprises four terms (2b), (4b), (7b), and

(9b), of which (2b) is expected to be the most important as it depends on the product of the NR free-electron

g-factor ge and the NR spin-dipolar coupling constant, whereas in the other terms either the g-tensor or

hyperfine tensor is an SO coupling contribution. The relative importance of the ZFS contribution (2b) and
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the g-anisotropy contribution (9a) depends on the relative sizes of the g- and ZFS anisotropies. There are

also four additional contributions to the spin-dipolar anisotropy, which are terms (2b), (4b), (7b), and (9b).

Finally there is one more contribution to the shift anisotropy (5b) which comes from the antisymmetric

hyperfine interaction, which can usually be neglected.

As discussed in section 5.3.4 the isotropic shift is dominated by the contact shift (1a) when nucleus is in

the coordination site of the metal ion, and the transfer of unpaired electronic spin density is large. In situations

where the orbital overlap is poor and the spin transfer is relatively low, or where the nucleus is outside the

coordination environment of the metal the PCS terms begin to dominate. For nuclei outside the coordination

environment of the metal ion the dominant contribution to the shift anisotropy is the spin-dipolar term (2a).

The contact anisotropy terms become more important for nuclei within the coordination environment.

5.5 Key concepts

• The paramagnetic shielding tensor can be expressed either in terms of the EPR parameters, or the bulk

magnetic susceptibility tensor. The correspondence between the two formalisms is given in Table 5.1.

• In both formalisms we can separate the shift into contributions from the contact, spin-dipolar, and

antisymmetric hyperfine interactions.

• The contact interaction gives an isotropic contact shift that is proportional to the isotropic susceptibility,

and a shift anisotropy that is proportional to the susceptibility anisotropic. Both contributions are also

proportional to the unpaired electron spin density at the nuclear site.

• The spin-dipolar interaction produces an isotropic pseudo-contact shift, that depends on the suscepti-

bility anisotropy and the spatial position of the nucleus with respect to the PAF of the susceptibility

tensor, and a shift anisotropy that is the product of the isotropic susceptibility and spin-dipolar coupling

tensor.

• The terms in the EPR formalism of the paramagnetic shielding tensor are summarised in Table 5.3.
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Chapter 6

The paramagnetic shift due metal ions

with arbitrary spin-multiplicity and

spin-orbit coupling strength: application

to d-transition metals, lanthanides, and

actinides

Chapters 4 and 5 provide a practicable formalism for the paramagnetic shielding tensor in terms of the g-,

hyperfine, and ZFS tensors due to a d-block transition-metal ion. The initial part of the derivation gives an

exact expression for the chemical shielding that is valid for an arbitrary electronic spin S , and makes no

assumptions about the relative orientations of the tensors in the EPR Hamiltonian. Following the derivation

of the general expression, a number of assumptions are applied in order to make further progress. These

assumptions are that (i) the e↵ective electronic spin S is equal to the real spin of the ion, (ii) the SO coupling

is weak in comparison to the ligand-field interaction, (iii) the spin system can be described by the EPR

Hamiltonian in Equation 4.36, and (iv) we need only consider contributions from the ground state spin
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manifold, i.e. there are no thermally-accessible excited states. Assumption (iii) e↵ectively means that the

final expression is only exact for electronic spins up to S = 1 and is only an approximation for larger spins,

and all three assumptions limit the theory to the application of d metal ions.

We now extend the description to paramagnetic ions with arbitrary SO coupling strength and arbitrary

spin, such as the lanthanides and actinides. In systems with lanthanide ions the crystal-field interaction

is much weaker than the SO coupling, whilst for actinides both interactions are large, and of comparable

magnitude. In both cases the EPR Hamiltonian is more complex than the perturbation expression derived in

chapter 4, and in particular higher-order terms in the EPR Hamiltonian need to be considered to provide a

proper description.

We first describe the crystal-field interaction explicitly, and extend the concept of “e↵ective electronic

spin”. We then generalise the EPR Hamiltonian and use this to derive an expression for the paramagnetic

shielding tensor and the magnetic susceptibility of a paramagnetic system of arbitrary SO coupling strength

and spin. This is first applied to d-block transition-metal ions, and spin-only f -block ions with an f 7

electronic configuration which exhibit equivalent behaviour. Then we indicate how the EPR formalism may

be applied to lanthanides and actinides generally, and we link the EPR formalism to the Bleaney theory of

paramagnetic shifts due to lanthanides.

The Bleaney formalism assumes that the magnetic properties of the coordinated lanthanide ions can be

approximated by those of the free ion, and that the crystal-field interaction is su�ciently small that all levels

are equally thermally populated. Therefore the this part of the discussion begins with a description of the

electronic properties of the free lanthanide ions in terms of the total angular momentum J , and the Landé

g-factor gJ .

Finally we include a short discussion about the paramagnetic shieldings in paramagnetic actinide com-

plexes.

6.1 The crystal-field interaction and the e↵ective spin

In chapter 4 we introduced the concept of the crystal- or ligand-field, as the interaction between the metal

ion and the ligands following the immersion of a free metal ion into a coordination complex. For the d-

block transition-metal ions to which we have hitherto restricted the discussion the crystal-field interaction is
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su�ciently large that (1) only the ground state is thermally populated at relevant experimental temperatures,

and (2) it dominates the other interactions relevant to the EPR properties, such as the SO coupling. This results

in an EPR Hamiltonian that is characterised by a spin quantum number that is equal to the true spin of the

metal ion. This description is not valid for metal ions such as lanthanides and actinides where the larger SO

coupling and greater complexity of the electronic structure result in a more complicated form of the shielding

tensor. In lanthanides the contracted nature of the 4 f -orbitals containing the unpaired electrons results in a

weaker crystal-field interaction, which is now dominated by the SO coupling, whereas for lanthanides the 5 f

electrons participate directly in bonding to the ligand, and so the crystal-field and SO interactions are both

large, and of comparable magnitude. In these cases we need to describe the crystal-field interaction explicitly.

6.1.1 The e↵ective spin

For a free ion subject to SO coupling the electron configuration gives rise to a series of energy levels each

of which is, in general, degenerate. Each level can be represented as an e↵ective spin S̃ whose multiplicity

2S̃ + 1 matches the degeneracy of the level. In general S̃ is not equal to the true spin S . In addition the

di↵erent levels will, in general, have di↵erent e↵ective spins. If we immerse the free ion into a complex the

e↵ect of the crystal field is to separate the energies of the states of each level, thus reducing their degeneracy.

This results in the formation of a number of sub-levels from each level, each of which has lower degeneracy

compared to the original level. Each sub-level can therefore be represented by a new e↵ective spin, again

whose multiplicity matches the degeneracy of that sub-level.

In order to interpret the EPR and NMR data of paramagnetic systems with an arbitrary SO coupling

strength we apply the following logic. Firstly the combination of the SO coupling and crystal-field inter-

actions creates a ladder of (degenerate) energy sub-levels n, to each of which can be assigned an e↵ective

spin S̃ n, whose multiplicity matches the degeneracy of the corresponding sub-level. These energy levels are

properties of the metal ion and the surrounding crystal-field environment and, of course, are independent

of the external magnetic field and nuclear magnetic moments. Secondly we introduce the e↵ects of the

external magnetic field and nuclear magnetic moments as ‘external’ perturbations, which allows us to define

an electronic Zeeman interaction, a hyperfine interaction, and a ZFS for each level n which are dependent on

the e↵ective spin S̃ n of that level. Since the corresponding EPR tensor parameters depend on the e↵ective

spin, rather than the true spin, they are di↵erent in the di↵erent sub-levels. This idea is explored further in
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this chapter.

6.1.2 The crystal-field interaction

The crystal field can be modelled as the interaction of the unpaired electrons of the metal ion with a potential

V(r) due to the ligands of the coordination site. The potential is given by

V(r) = � e
4⇡"0

X

l

Zl

|Rl � r|
, (6.1)

where "0 is the permittivity of free space, and the sum is over all the ligands l, each one of which is modelled

as a point charge �Zle at position Rl [218]. We define the positions of the ligand charges with the spherical

polar coordinates (al, ✓l, �l), and place the unpaired electron at (r, ✓, �). If we assume that the electron is closer

to the paramagnetic centre than to the ligands, so that al > r, we can expand the factor |Rl � r|�1 as a sum of

products of spherical harmonic functions Ykq(✓, �) to give

V(r) = � e
4⇡"0

X

l

1
X

k=0

+k
X

q=�k

4⇡
2k + 1

Zl

ak+1
l

rkYkq(✓, �)⇤Ykq(✓l, �l), (6.2)

where k and q are the spherical harmonic rank and order. The crystal-field Hamiltonian ĤCF is given by the

sum of the interactions of the unpaired electrons i with the potential:

ĤCF = �e
X

i

V(ri) (6.3)

=
e2

4⇡"0

X

i

X

l

1
X

k=0

+k
X

q=�k

4⇡
2k + 1

Zl

ak+1
l

rk
i Ykq(✓i, �i)⇤Ykq(✓l, �l), (6.4)

where ri = (ri, ✓i, �i) is the position of the ith electron.

It was shown by Stevens that this Hamiltonian can be transformed into a di↵erent form ĤCF by replacing

each term in the sum over k and q with an operator equivalent [219]. The most convenient choice of operator

basis comprises the irreducible spherical tensors operators Ôkq of rank k and order q, which represent either

the orbital or total angular momentum according to the particular situation. These operator equivalents are

formed by coupling together the tensor components Ô1q of rank 1 with those components Ôk�1,q of rank k� 1
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using the expression

Ôkq =
X

q1,q2

Ôk�1,q1 Ô1q2 hk � 11q1q2|kqi . (6.5)

The expressions for these irreducible spherical tensor operators have been tabulated extensively by Buckmas-

ter et al [220]. This gives the following Hamiltonian:

ĤCF =
X

k

+k
X

q=�k

(�1)qBkqÔk�q, (6.6)

where the Bkq are components of the crystal-field spatial tensor in the irreducible spherical tensor basis, which

satisfy

B⇤kq = (�1)qBk�q. (6.7)

Not all the components in Equation 6.6 are retained, and it can be shown that only those components of even

rank, up to a maximum of k = 6, are non zero.[218]. In addition the rank-zero component has the e↵ect of

simply shifting all the energy levels by the same amount, resulting in no e↵ect on the transition frequencies,

and so is also dropped. Therefore the remaining spherical tensor components in the crystal-field Hamiltonian

have ranks 2 and 4, for d-block transition-metal ions, and ranks 2, 4, and 6 for f -block transition-metal ions

[218].

6.1.3 Crystal-field vs zero-field splitting

The crystal-field terms with k = 2 have the same mathematical form as the ZFS interaction, which we

have already encountered in the discussion of the first-row transition metal ions. However great care must

be taken in correctly interpreting the crystal-field and ZFS interaction Hamiltonians [221]. In summary the

crystal-field interaction is a physical property of the metal ion and its coordination environment, and therefore

depends on the orbital and total angular momenta of the system. This interaction lifts the degeneracy of the

electron configuration in zero external magnetic field, and creates a number of distinct sub-levels. To each

sub-level can be assigned an e↵ective spin S̃ , the multiplicity 2S̃ + 1 of which matches the degeneracy of

the sub-level. Each sub-level is associated with a set of e↵ective EPR Hamiltonians including the electronic

Zeeman, hyperfine, and ZFS interactions, each of which acts only within the designated sub-space that is

defined by S̃ . Hence the e↵ective spin Hamiltonians are properties of the e↵ective spin only. One consequence
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is that for a particular metal ion the tensor parameters change according to the sub-level under consideration

[221]. We can see from this that the crystal-field and ZFS interactions are completely di↵erent, and should

not be confused with each other.

6.2 The generalized EPR spin Hamiltonian and paramagnetic shield-

ing tensor

At arbitrary SO coupling strength we can no longer treat the SO coupling interaction as a perturbation to the

ligand, or crystal, field interaction, and in fact the former may be larger than the latter. Nevertheless we can

still write down the EPR Hamiltonian within each sub-level n in terms of an e↵ective electronic spin operator

ˆ̃S which represents the e↵ective spin quantum number S̃ which we have seen may or may not be equal to the

true spin quantum number. The general Hamiltonian is equal to a sum of terms of the form KBrS̃ sIt, where

Br is a product of the components of the external magnetic field with degree r, and S̃ s and It respectively

are products of s and t components of the electronic and nuclear spin operators respectively [222]. The size

and spatial dependence of the interaction is given by K, which is a component of the relevant tensor. The

EPR Hamiltonian in Equation 4.36 contains terms with r = t = 1 and s = 0 (the orbital chemical shielding

interaction), r = s = 1 and t = 0 (the electronic Zeeman interaction), s = t = 1 and r = 0 (the hyperfine

interaction), and finally s = 2 and r = t = 0 (the ZFS interaction). However these are not the only terms

that are present in the Hamiltonian, as we could in principle include terms with larger values of r, s, and t.

There are three conditions that we must impose on the form of the terms, the first being that r + s + t must

be even in order to ensure that the Hamiltonian is even with respect to time reversal [190], since the field and

spin angular momenta are each time-odd. Secondly the maximum value that s can take is 2S̃ , i.e. twice the

e↵ective electronic spin, and the third condition is that the maximum value of t is 2I [222]. The electronic

configurations of d-block transition metals result in a maximum possible spin of S = 5/2 and so, for systems

containing these ions, we need only consider terms containing products of ˆ̃S with s  5. Likewise for f -block

metal ions, the maximum spin is S = 7/2, and so the maximum value of s we need consider is 7.

The dominant terms in the nuclear chemical shielding interaction are linear in both the external field and

nuclear spin with higher-order terms being negligible. We therefore ignore any terms with r > 1 and t > 1

as these will not give us the required chemical shielding tensor. Nevertheless we retain any terms with s > 1
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as these can contribute important e↵ects to the electronic Zeeman, hyperfine, and ZFS interactions. The term

with t = 2 and r = s = 0 is due to the nuclear quadrupole interaction which is present for quadrupolar nuclei

with spin I > 1/2 [198]. This is a very important interaction in the NMR of such nuclear spins, but since

it does not directly impact on our discussion of paramagnetic shifts we do not consider it further. We can

therefore write the generalized EPR Hamiltonian ĤEPR as

ĤEPR = �~�IB0 ·
⇣

1 � �orb
⌘

· Î + ĤZ + ĤHF + ĤZFS, (6.8)

where ĤZ, ĤHF, and ĤZFS are the Hamiltonians representing the electronic Zeeman, hyperfine, and ZFS

interactions as described below. Henceforth, in the interests of simplifying the notation, we denote the

e↵ective spin operator as Ŝ rather than ˆ̃S, i.e. we omit the tilde.

6.2.1 The electronic Zeeman interaction

We can write the general electronic Zeeman interaction Hamiltonian as

ĤZ = �
X

i

B0,im̂i, (6.9)

where, in an electronic state with e↵ective spin S , the general magnetic moment vector operator m̂i is [222]

m̂i = �µB

2S
X

k=0

+k
X

q=�k

(�1)qŜ k�qgkq,i, (6.10)

where the gkq,i are the components of a complex g-tensor of rank k and order q. The complex conjugate of

gkq,i is

g⇤kq,i = (�1)qgk�q,i, (6.11)

which ensures that ĤZ is Hermitian. We note that, because ĤZ is linear in B0,i the sum in Equation 6.10

only contains terms of odd rank k. Explicitly this means that the terms of ranks 1, 3, and 5 are relevant for

d-block metal ions, whereas terms of ranks 1, 3, 5, and 7 are needed for f -block metal ions. We have already

encountered the terms of rank one in chapter 4.

As an example, we consider the generalized Zeeman interaction of the Gd3+, which has spin S = 7/2.
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The relevant g-tensors are approximately isotropic as the 4 f subshell is half filled, giving an electronic ground

state with term 8S 7/2. We can therefore write the Zeeman Hamiltonian as [223]

ĤZ = µBgB0Ŝ z + µBg0B0Ŝ 3
z + µBg00B0Ŝ 5

z + µBg000B0Ŝ 7
z , (6.12)

where g, g0, g00, and g000 are the g-factors associated with the Zeeman interactions of increasing order,

consistent wtih measurements of the g-factors of Gd3+ defects within diamagnetic host crystalline lattices of

di↵erent symmetries. Early measurements of the first-order factors g have been reviewed by Buckmaster and

Shing, and are found to be slightly smaller than ge, taking typical values of 1.985–1.992. The higher-order

g-factors have also been examined separately by Marshall and Tilton [224], and Buckmaster et al [225].

Marshall and Tilton acquired EPR spectra of Gd3+ in ThO2, and measured an upper bound of g0 of 2 ⇥ 10�7,

with the higher-order g-factors expected to have progressively smaller values [224]. Buckmaster et al.

measured the g-factors of Gd3+ in La(C2H5SO4)3·H2O, and found that g0 has an upper bound of 2 ⇥ 10�6

[225]. This indicates that, although measurable, the higher-order Zeeman interactions in these systems are

much weaker than the first-order Zeeman interaction, and consequently less important to the EPR/NMR

properties.

6.2.2 The hyperfine interaction

The general hyperfine interaction can be written as a scalar product between the nuclear spin operator and the

hyperfine field vector operator F̂ .

ĤHF =
X

i

F̂i Îi, (6.13)

The hyperfine field operator in an electronic state with e↵ective spin S has a form that is similar to the

magnetic moment vector operator in Equation 6.10 in that it is written in terms of the irreducible spherical

tensor operators Ŝ kq [222]:

F̂i =

2S
X

k=0

+k
X

q=�k

(�1)qŜ k�qAkq,i. (6.14)
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The Akq,i are the components of a complex hyperfine tensor of rank k and order q which, like the gkq,i

components, obey the following relation:

A⇤kq,i = (�1)qAk�q,i. (6.15)

We note that, as for the electronic Zeeman interaction, the hyperfine field vector operator contains only terms

of odd rank k to ensure the hermiticity of the hyperfine interaction Hamiltonian, i.e. k = 1, 3, and 5 for

d-block metal ions, and k = 1, 3, 5, and 7 for f -block metal ions. We have already encountered the terms of

rank one in chapter 4.

6.2.3 The ZFS interaction

The general ZFS interaction Hamiltonian is

ĤZFS =

2S
X

k=0

+k
X

q=�k

(�1)qDkqŜ k�q, (6.16)

where the ZFS irreducible spherical spatial tensor components Dkq have rank k and order q, and satisfy the

relation:

D⇤kq = (�1)qDk�q. (6.17)

In contrast to the Zeeman and hyperfine interactions, the ZFS retains non-zero terms with even k, i.e. k = 2,

and 4 for d-block metal ions, and k = 2, 4, and 6 for f -block metal ions. We have already encountered

the terms of rank two in chapter 4. The principal values of the generalized ZFS tensor of rank k and order

q are conventionally written in terms of the energy parameters b|q|k . In cubic systems we define the three

principal axes to be along the three four-fold (proper or improper) rotation axes, whereas in tetragonal,

hexagonal, and trigonal systems the principal z-axis is defined to be parallel to the highest-order rotation

axis. In orthorhombic groups the principal axes are defined according to the two-fold rotation axes. Adopting

these conventions we obtain the principal values of the ZFS tensors described by Buckmaster and Shing,

which are tabulated in Table 6.1.

The rank-four ZFS parameters have been measured for Mn2+ and Fe3+ (both S = 5/2) [207], and the

rank-four and rank-six parameters have been measured extensively for Gd3+ in diamagnetic host lattices of
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Rank k Order q D̃kq for di↵erent symmetries
cubic tetragonal hexagonal trigonal orthorhombic

2 0 0
⇣p

2/3
⌘

b0
2

⇣p
2/3

⌘

b0
2

⇣p
2/3

⌘

b0
2

⇣p
2/3

⌘

b0
2

±1 0 0 0 0 0
±2 0 0 0 0 (1/3) b2

2
4 0

⇣p
70/30

⌘

b0
4

⇣p
70/30

⌘

b0
4

⇣p
70/30

⌘

b0
4

⇣p
70/30

⌘

b0
4

⇣p
70/30

⌘

b0
4

±1 0 0 0 0 0
±2 0 0 0 0

⇣p
7/60

⌘

b2
4

±3 0 0 0 ±
⇣p

2/6
⌘

b3
4 0

±4 (1/6) b0
4 (1/30) b4

4 0 0 (1/30) b4
4

6 0
⇣p

231/315
⌘

b0
6

⇣p
231/315

⌘

b0
6

⇣p
231/315

⌘

b0
6

⇣p
231/315

⌘

b0
6

⇣p
231/315

⌘

b0
6

±1 0 0 0 0 0
±2 0 0 0 0

⇣⇣p
11/5

⌘

/315
⌘

b2
6

±3 0 0 0 ±
⇣⇣p

11/5
⌘

/18
⌘

b3
6 0

±4 �
⇣⇣p

11/6
⌘

/15
⌘

b0
6

⇣⇣p
11/6

⌘

/315
⌘

b4
6 0 0

⇣⇣p
11/6

⌘

/315
⌘

b4
6

±5 0 0 0 0 0
±6 0 0 (1/315) b6

6 (1/315) b6
6 (1/315) b6

6

Table 6.1: The principal values of the spatial parts of the generalized ZFS interaction up to rank six. The
second-rank parameters are related to the axial and rhombic ZFS anisotropies by b0

2 = D and b2
2 = 3E. The

point groups corresponding to each symmetry class are: Oh, O, Td, and T (cubic); C4, C4v, C4h, D4, D4h, and
D2d (tetragonal); C6, C6v, C6h, C3h, D6, D6h, and D3h (hexagonal); C3, S 6, C3v, D3, and D3d (trigonal); C2v,
D2, and D2h (orthorhombic). In the cubic groups the principal axes of the PAF are along the three four-fold
rotation axes. In the tetragonal, hexagonal, and trigonal groups the PAF is defined so that the z-axis is aligned
with the highest-order rotation axis. In the orthorhombic groups, the three principal axes coincide with the
three two-fold rotation axes.

various symmetry groups [223]. The maximum values of the ZFS parameters for Gd3+ are generally found

to be b0
2 ⇠ 1 GHz, b0

4 ⇠ 100 MHz, and b0
4 ⇠ 10 MHz. In non-cubic systems the rank-two ZFS is generally

expected to dominate the other ZFS terms. However in cubic systems with either a small or no rank-two ZFS,

the higher-order ZFS interactions may become important.

6.2.4 The EPR formalism of the paramagnetic shielding tensor

The form of the generalized EPR Hamiltonian has a profound e↵ect on the form of the paramagnetic shielding

tensor, which is given by the EPR formula in Equation 4.103 and reproduced below for convenience:

�S
i j =

2
~�I Q0

X

n

exp(��En)
X

m,n

X

⌫,µ

hn⌫ |m̂i|mµi
D

mµ
�

�

�F̂ j
�

�

� n⌫
E

Em � En

+
�

~�I Q0

X

n

exp(��En)
X

⌫,⌫0

⌦

n⌫ |m̂i| n⌫0
↵

D

n⌫0
�

�

�F̂ j
�

�

� n⌫
E

. (6.18)
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The EPR expression in Equation 6.18 is a completely general formula for the paramagnetic shielding tensor

due to a paramagnetic centre of any spin multiplicity and SO coupling strength. As we mentioned in section

4.2.1, this formalism makes no assumptions about the level of theory, i.e. relativistic or not, the SO coupling

strength, or the multiplicity of the electronic energy levels. Therefore this formalism has a much wider

scope than the 3d metal ions we have so far discussed, and can be applied to more complex ions such as

lanthanides and actinides. The general, and unspecified, forms of the electronic magnetic moment m̂ and

hyperfine F̂ operators in Equation 6.18 are valid for situations where several energy levels of the crystal-field

interaction are thermally populated. However this formula su↵ers from the disadvantage of being rather

unwieldy. The remainder of this chapter is orientated towards examining the situations in which we may

simplify the formalism.

Paramagnetic chemical shielding of a thermally-isolated degenerate ground state

Van den Heuvel proposed a simplification of Equation 6.18 that can be employed when only the ground state

sub-manifold due to the crystal-field splitting is thermally occupied [88]. In practice this would occur when

the energy separation between the ground sub-manifold n = 0 and the lowest-lying excited sub-manifold is

much greater than kT . In this case Equation 6.18 can be simplified to give

�S̃
i j =

�

~�I

1
2S̃ + 1

X

⌫,⌫0

D

0⌫
�

�

�m̂(0)
i

�

�

� 0⌫0
E

⌧

0⌫0
�

�

�

�

F̂ (0)
j

�

�

�

�

0⌫
�

(6.19)

=
�

~�I

1
2S̃ + 1

TrS̃

h

m̂(0)
i F̂

(0)
j

i

(6.20)

= �µB�

~�I

1
2S̃ + 1

X

k,k0

X

q,q0
(�1)q+q0g(0)

kq,iA
(0)
k0q0, jTrS̃

h

Ŝ k�qŜ k0�q0
i

, (6.21)

where we have added a superscript (0) to the g- and hyperfine tensor parameters to reflect the fact that they

are properties of the n = 0 sub-manifold. The trace can be further simplified following the discussion in

appendix D to give

�S̃
i j = �

µB

~�IkT

2S̃
X

k=0

D

S̃
�

�

�

�

�

�Ŝ k
�

�

�

�

�

� S̃
E2

2k + 1

+k
X

q=�k

(�1)qg(0)
kq,iA

(0)
k�q, j, (6.22)

where only the terms with k0 = k and q0 = q remain. The
D

S
�

�

�

�

�

�Ŝ k
�

�

�

�

�

� S 0
E

are the reduced matrix elements of

the tensor Ŝ k [190] which, for tensors Ŝ k that are formed according to Equation 6.5 with Ôkq = Ŝ kq, can be
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calculated from the formula of Buckmaster et al. [220]:

D

S
�

�

�

�

�

�Ŝ k
�

�

�

�

�

� S 0
E

=

s

k!k!(2S + k + 1)!
2k(2k)!(2S � k)!(2S + 1)

�S S 0 . (6.23)

This paramagnetic shielding in this expression has a Curie temperature dependence, which is because the

electronic spin system behaves analogously to the spin system with an anisotropic g-tensor and no ZFS

discussed by Moon and Patchkovskii [38]. In fact we may regard Equation 6.22 as the generalization of

the Moon–Patchkovskii Equation 4.118 resulting from considering the EPR interaction terms with ranks k

greater than one. If we retain only those terms with k = 1, then Equation 6.22 reduces to Equation 4.118.

6.3 The paramagnetic shielding and magnetic susceptibility tensors

due to a transition-metal ion with arbitrary spin multiplicity

In this section we return to the case of a d-block transition-metal ion in a thermally-isolated ground state

n = 0 of the crystal-field splitting interaction Hamiltonian, in which the e↵ective spin is the same as the

formal true spin. The generalized EPR Hamiltonian in section 6.2 describes the electronic spin properties

of this ground state, and dictates the form of the paramagnetic shielding tensor. We use the forms of the

operators m̂ and F̂ that are given in terms of Ŝ kq, and set the energy levels of the Boltzmann averages so that

they correspond to the eigenvalues of the generalized ZFS Hamiltonian. Note that this situation is di↵erent

to that which resulted in Equation 6.22, since in that case it is also assumed that the electronic spin system is

thermally isolated in the ZFS ground state in addition to the crystal field splitting ground state. In the present

case the paramagnetic shielding tensor then takes the form:

�S
i j = �

µB

~�I

2S
X

k=0

2S
X

k0=0

+k
X

q=�k

+k0
X

q0=�k0
(�1)q+q0gkq,iZkk0qq0Ak0q0, j, (6.24)
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where the dependence on both the temperature and the zero-field Hamiltonian is encoded in Zkk0qq0 , which is

given by

Zkk0qq0 =
2

Q0

X

n

exp(��En)
X

m,n

X

⌫,µ

D

n⌫
�

�

�Ŝ k�q
�

�

� mµ
E D

mµ
�

�

�Ŝ k0�q0
�

�

� n⌫
E

Em � En

+
�

Q0

X

n

exp(��En)
X

⌫,⌫0

D

n⌫
�

�

�Ŝ k�q
�

�

� n⌫0
E D

n⌫0
�

�

�Ŝ k0�q0
�

�

� n⌫
E

. (6.25)

To second order in 1/(kT ) the paramagnetic shielding tensor is given by

�S
i j = �

µB

~�I

2

6

6

6

6

6

6

4

�

2S + 1

X

kk0qq0
(�1)q+q0gkq,iAk0q0, jTrS

⇣

Ŝ k�qŜ k0�q0
⌘

� �2

2S + 1

X

kk0k00qq0q00
(�1)q+q0+q00gkq,iAk0q0, jDk00q00TrS

⇣

Ŝ k�qŜ k0�q0 Ŝ k00�q00
⌘

3

7

7

7

7

7

7

5

+ O(�3). (6.26)

The details of the calculation are given in appendix D. This expression can be simplified by calculating the

traces (also see Appendix D). The term that is first-order in 1/(kT ), �S ,1
i j , is then given by [88]:

�S ,1
i j = �

µB

~�IkT

2S
X

k=0

D

S
�

�

�

�

�

�Ŝ k
�

�

�

�

�

� S
E2

2k + 1

+k
X

q=�k

(�1)qgkq,iAk�q, j, (6.27)

where we notice that the only contributing terms from the sum are those with k = k0 and q = �q0. This

is an analogous expression to that in Equation 6.22. However we recall that here the electronic spin is not

thermally isolated in the ground state of the ZFS. The second-order term �S ,2
i j is given by

�S ,2
i j =

µB

~�I(kT )2 (�1)2S (2S + 1)1/2
X
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;
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qq0q00
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0

B

B

B

B

B

B
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B

@

k0 k00 k

�q0 �q00 �q

1

C

C

C

C

C

C

C

C

C

A

, (6.28)

where the arrays contained in parentheses and braces are Wigner 3 j and Wigner 6 j symbols respectively.

It is important to note that the symmetry properties of the Wigner 3 j and Wigner 6 j symbols impose

restrictions on both the ranks and orders of the irreducible spherical tensors that can contribute to the second-
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order paramagnetic chemical shielding. Firstly the symmetry of the 6 j symbol dictates that the triplets

(k, S , S ), (k0, S , S ), and (k00, S , S ) must satisfy the triangle condition k, k0, k00  2S . This is simply a rein-

forcement of the restriction on the ranks of the interaction tensors that we stated earlier. Secondly, both the

3 j and 6 j symbols require (k, k0, k00) to also satisfy the triangle condition that any one of the three ranks must

be less than or equal to the sum of the other two. This has important consequences for the shielding tensor

to second order, as we will see later. Finally, from the 3 j symbol, the sum of the three orders must be zero,

q + q0 + q00 = 0.

As we have also noted in chapter 4, the g-tensor is responsible for introducing a term into the paramagnetic

shielding tensor with a leading temperature dependence of 1/(kT ), and the ZFS gives a term with a leading

temperature dependence of 1/(kT )2. This feature is also present in the Bleaney expression in Equation 4.132.

However the present situation is more general, as we have explicitly considered the higher-order irreducible

spherical tensor components of the EPR parameters. Hence Equations 6.27 and 6.28 are generalized forms

of the Bleaney expression in Equation 4.132.

6.3.1 The Bleaney expression for d-block metal ions revisited

We now calculate the paramagnetic shielding tensor up to O(1/(kT )2) for a Hamiltonian comprising an

electronic Zeeman term and a hyperfine term that are both linear in Ŝ, and a ZFS term with terms of ranks 2,

4, and 6:

Ĥ = µBB0 · g · Ŝ + Ŝ ·A · Î +
X

k=2,4,6

+k
X

q=�k

(�1)qDkqŜ k�q (6.29)

= µB

X

i

B0,i

+1
X

q=�1

(�1)qŜ 1�qg1q,i +
X

i

+1
X

q=�1

(�1)qŜ 1�qA1q,i Îi +
X

k=2,4,6

+k
X

q=�k

(�1)qDkqŜ k�q. (6.30)

In the ZFS term, we encounter the terms of rank 4 for transition metal ions with S � 2, and the rank-6 terms

for the lanthanide ions [184]. Henceforth we concentrate on the transition-metal ions of the d block and

those of the f block with an f 7 configuration, such as Gd3+, with the aim being to reproduce the Bleaney

expression in Equation 4.132. We can write down the first- and second-order parts of the shielding tensor
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from Equations 6.27 and 6.28:
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. (6.32)

As we have come to expect, the first-order term is proportional to the product of the g- and hyperfine tensors,

and is independent of the ZFS tensor. In the second-order term we have hitherto retained terms in the ZFS

tensor of all possible ranks, but we can see that a simplification is possible. Since k, k0, and k00 must satisfy

the triangle condition, the only ZFS tensor components that contribute to the second-order shielding tensor

are of rank k00 = 2, as was previously noted by Bleaney [61], and McGarvey and Kurland [37].

We can now proceed with the calculation by writing down the analytical expressions of all the factors

involved. The reduced matrix elements of the first- and second-rank spin tensors are given by Equation 6.23,

and have the following explicit expressions:

D

S
�

�

�

�

�

�Ŝ 1
�

�

�

�

�

� S
E

=
p

S (S + 1), (6.33)
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�Ŝ 2
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�

�

� S
E

=

r

S (S + 1)(2S � 1)(2S + 3)
6

. (6.34)

The exact expression for the Wigner 6 j symbol with k00 = 2 has been derived by Edmonds [226], and is
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(�1)2S
q
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0, otherwise.
(6.35)

It can also be shown that the exact expression for the Wigner 3 j symbol is [190]
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@

1 2 1

�q0 �q00 �q

1
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= (�1)�q0�q

s

(1 + q0)!(2 � q00)!(2 + q00)!(1 � q)!
30(1 � q0)! ((1 + q0 + q00)!)2 ((1 � q00 � q)!)2 (1 + q)!

, (6.36)
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for q + q0 + q00 = 0 and zero otherwise. Finally the components of the g- and hyperfine tensors g1q,i and A1q,i

can be calculated from the Cartesian components. The g-tensor comprises three vectors g1q, one for each

value of q, which are equal to:

g1±1 = ⌥
r
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2
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. (6.37)

Likewise the three vectors comprising the hyperfine tensor A1q are:
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. (6.38)

Combining all these expressions results in the final expression for the paramagnetic shielding tensor to second

order in 1/(kT ):

�S = �µBS (S + 1)
3~�kT

g ·A + µBS (S + 1)(2S � 1)(2S + 3)
30~�(kT )2 g ·D ·A, (6.39)

where D is the second-rank part of the ZFS interaction tensor. This expression is identical to that derived

earlier in Equation 4.132, but is in fact more general. The former expression was calculated assuming that the

zero-field Hamiltonian was described entirely by the second-rank ZFS tensor, whereas the present derivation

has shown that the fourth- and sixth-rank parts do not contribute to the shielding tensor to second order in

1/(kT ). However these higher-order components are present in the terms of third order and higher in 1/(kT )

[37]. We recall that if the higher-order ZFS terms are zero or negligible, the shielding tensor has the form of

Equation 4.109.

6.3.2 The EPR formalism of the magnetic susceptibility tensor

The EPR formalism can also be used to calculate the magnetic susceptibility tensor [88]. Following the

discussion leading to the paramagnetic shielding tensor in Equation 6.24, and substituting the hyperfine field
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operator for the electronic magnetic moment operator, we obtain a susceptibility tensor of a similar form:

�i j = µ0µ
2
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+k0
X
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(�1)q+q0gkq,iZkk0qq0gk0q0, j. (6.40)

We can write down the first- and second-order terms in 1/(kT ) in the susceptibility tensor following the same

procedure as for the paramagnetic shielding tensor. The first-order term �(1)
i j is
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and the second-order term �(2)
i j is
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�Ŝ k00
�

�

�

�

�

� S
E

8

>

>

>

>

<

>

>

>

>

:

k0 k00 k

S S S

9

>

>

>

>

=

>

>

>

>

;

⇥
X

qq0q00
gkq,igk0q0, jDk00q00

0

B

B

B

B

B

B

B

B

B

@

k0 k00 k

�q0 �q00 �q

1

C

C

C

C

C

C

C

C

C

A

. (6.42)

We immediately notice the similarity between these expressions and the corresponding expressions for the

shielding tensor in Equations 6.27 and 6.28.

If we further assume that the system can be described with the EPR Hamiltonian in Equation 6.30 we

obtain Equation 4.174, which is reproduced below

� ⇡
µ0µ2

BS (S + 1)
3kT

g · gT �
µ0µ2

BS (S + 1)(2S � 1)(2S + 3)
30(kT )2 g ·D · gT . (6.43)

Once again, as noted by Bleaney [61] and Kurland and McGarvey [37], the only terms of the ZFS Hamiltonian

that contribute to the susceptibility tensor to second order are those of spatial rank two. We recall at this point

that higher-order ZFS terms do contribute to shielding terms of order higher than 1/(kT )2. However when

the fourth- and sixth-rank ZFS terms are either zero or negligible we can write down a general form of the

susceptibility tensor as follows

� = µ0µ
2
B g ·Z · gT , (6.44)
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which is the same expression as given in Equation 4.173.

6.4 Electronic properties of the lanthanide ions

We now turn our attention to the lanthanide ions, focussing on the formalism for the paramagnetic shielding

and magnetic susceptibility tensors proposed by Bleaney [61]. This approach assumes that the coordinated

lanthanides can be modelled as free metal ions with the crystal-field due to the ligands added as a perturbation.

We therefore begin by summarizing the free-ion properties, and then introduce the crystal-field interaction.

6.4.1 The free lanthanide ions

The lanthanide ions are predominantly, but not exclusively, trivalent with the unpaired electrons residing in

the 4 f orbitals. Unlike the 3d shell of the first-row transition-metal ions, the 4 f orbitals of the lanthanides are

not valence orbitals and so participate in the metal-ligand coordination to a lesser extent. In addition the SO

coupling strength of the lanthanides is much larger than for the 3d metal ions. This places the lanthanide ions

in the ‘weak crystal-field limit’, where the SO coupling is much stronger than the crystal-field interaction, and

so cannot be treated as a perturbation as in chapter 4. We therefore use the approach of Bleaney [61], which

is to assume that the 4 f orbitals are su�ciently radially contracted for the properties of the coordinated metal

ions to be adequately described by the free ions, with the crystal-field interaction added as a perturbation.

The magnetic properties of the free lanthanides are described in terms of the total angular momentum J

which, in the limit of LS coupling, is written as the sum of the total orbital L and spin S angular momenta

of the electronic configuration, according to the LS coupling scheme:

J = L + S. (6.45)

The total angular momentum is quantized, and labelled with the total angular momentum quantum number J

which takes values according to the Clebsch–Gordan series, i.e. L + S , L + S � 1, . . . , |L � S |. The electronic

levels corresponding to the configuration of the free ion can therefore be labelled by these three quantum

numbers and are usually represented by term symbols 2S+1LJ . The ground level is given by Hund’s rules

[206], and is generally the only level that is thermally occupied at room temperature and is therefore the only
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Ion Configuration S L J Term ⇣ / cm�11 � / cm�12

Ce3+ f 1 1/2 3 5/2 2F5/2 640 640
Pr3+ f 2 1 5 4 3H4 750 375
Nd3+ f 3 3/2 6 9/2 4I9/2 900 300
Pm3+ f 4 2 6 4 5I4 — —
Sm3+ f 5 5/2 5 5/2 6H5/2 1180 236
Eu3+ f 6 3 3 0 7F0 1360 227
Gd3+ f 7 7/2 0 7/2 8S 7/2 — —
Tb3+ f 8 3 3 6 7F6 1620 �270
Dy3+ f 9 5/2 5 15/2 6H15/2 1820 �364
Ho3+ f 10 2 6 8 5I8 2080 �520
Er3+ f 11 3/2 6 15/2 4I15/2 2470 �823
Tm3+ f 12 1 5 6 3H6 2750 �1375
Yb3+ f 13 1/2 3 7/2 2F7/2 2950 �2950

Table 6.2: List of the trivalent lanthanide ions, and the parameters defining the electronic ground states of the
free ions assuming LS -coupling. The f -electron configurations are given, along with the total spin S , orbital
L, and total J angular momenta. The ground state is given by Hund’s rules, and is represented by the term
symbol. The one-electron ⇣ and many-electron � SO coupling parameters are also given, except for Pm3+,
which is radioactive, and Gd3+, which has a half-filled 4 f shell and therefore an SO interaction of zero.

state we need consider. The exceptions to this assertion are the ions with configurations 4 f 5 and 4 f 6, namely

Sm3+ and Eu3+, where we also have to consider the lowest-lying excited states. The free-ion properties of the

trivalent lanthanides Ln3+ with between 1 and 13 4 f electrons, and the one-electron and many-electron SO

coupling constants ⇣ and � [185], are given in Table 6.2.

Each electronic level 2S+1LJ comprises 2J + 1 electronic states that are labelled with the azimuthal

quantum number MJ , which takes values from +J to �J in integer steps. In the absence of other interactions

the states of a particular level are degenerate, and may therefore be described as corresponding to an e↵ective

spin S̃ = J whose multiplicity 2S̃ + 1 matches the true degeneracy. Clearly levels with di↵erent J therefore

correspond to di↵erent e↵ective spins.

The e↵ective spin EPR Hamiltonian can therefore be written in terms of the operator for the total angular

momentum Ĵ . For the free ion the ZFS is zero by symmetry, and so we need only consider the electronic

Zeeman interaction, and the hyperfine coupling between the unpaired electrons and the lanthanide nucleus.

We have seen that the total magnetic moment µJ is not parallel to the total angular momentum J , as

illustrated in Figure 4.1. However, from the projection theorem outlined in Appendix A.1, the matrix elements

of the operator µ̂J are proportional to those of Ĵ , and so the component of the magnetic moment that appears

in the Zeeman interaction Hamiltonian is that which commutes with Ĵ , i.e. �µBgJĴ , as shown in Figure 6.1.

1Values taken from Weil and Bolton [185].
2Calculated using � = ±⇣/(2S ) with the plus sign for f -shells that are less than half full, and the minus sign for shells that are more

than half full. When the shell is exactly half full, the SO coupling is essentially zero.
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Figure 6.1: Illustration of the relationship between the total angular momentum J and the total magnetic
moment µJ under the Russell–Saunders coupling scheme. In general µJ is not parallel to J . However the
electronic Zeeman interaction depends only on the component of the magnetic moment that is parallel to J ,
namely �µBgJJ .

The Zeeman interaction Hamiltonian ĤZ = µBB0 ·
⇣

L̂ + geŜ
⌘

can therefore be written in terms of Ĵ :

ĤZ = µBgJB0 · Ĵ . (6.46)

The number gJ is the isotropic Landé g-factor which is given by

gJ =
gS + gL

2
+ (gL � gS )

L(L + 1) � S (S + 1)
2J(J + 1)

, (6.47)

where gL and gS are the orbital and electronic g-factors. Writing gL = 1 and approximating gS as 2 gives us

the familiar expression

gJ =
3
2
+

S (S + 1) � L(L + 1)
2J(J + 1)

. (6.48)

This expression for gJ can be derived by calculating the projection of the total magnetic moment µJ onto

the total angular momentum J , as shown in appendix A.1. The Zeeman interaction lifts the degeneracy of

the each level J and, for an external magnetic field along z, the Zeeman energy of each state is MJµBgJ B0.

One important property of the Landé g-factor is that it varies with J, and so we would expect a di↵erent

g-factor, and therefore a di↵erent Zeeman splitting, for each level. This may appear trivial, but does in fact

have important consequences for the EPR and NMR spectra of lanthanide compounds subject to a large

crystal-field splitting of the electronic energy levels.

We can write the hyperfine coupling Hamiltonian ĤHF as

ĤHF = AJĴ · Î , (6.49)
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where AJ is an isotropic contact hyperfine coupling constant. Here ĤHF describes the interaction between the

unpaired 4 f electrons and the lanthanide nuclear spin.

6.4.2 The crystal-field interaction

The crystal-field interaction Hamiltonian can be described by Equation 6.6, but in terms of the total angular

momentum. The expression is here given explicitly:

ĤCF =
X

k=2,4,6

+k
X

q=�k

(�1)qBkq Ĵk�q, (6.50)

where the Ĵkq are irreducible spherical tensor operators of the total angular momentum of rank k and order q.

In the absence of an external magnetic field and nuclear magnetic moments, this Hamiltonian has the e↵ect

of lifting the degeneracy of the manifold of states of level J, creating a set of sub-manifolds each with a

multiplicity lower than 2J + 1.

It is common to write the crystal-field splitting Hamiltonian ĤCF using the following alternative form,

rather than in terms of the irreducible spherical tensor operators:

ĤCF =
X

k=2,4,6

+k
X

q=0

Aq
k

D

rk
E

hJ ||k|| Ji Ôq
k . (6.51)

In Equation 6.51 the spin part of the interaction is represented by the Stevens operator equivalents Ôq
k of rank

k, and an order q that takes values from 0 to +k [219]. These operators should not be confused with the

irreducible spherical tensor operators Ôkq introduced earlier. For example the operators Ô0
2 and Ô2

2 are given

by

Ô0
2 =3Ĵ2

z � J(J + 1)1̂, (6.52)

Ô2
2 =

1
2

⇣

Ĵ2
+ + Ĵ2

�
⌘

, (6.53)

and the additional relevant expressions for k � 2 can be found in Abragam and Bleaney [184]. The spatial

part of the interaction is represented by the A-energy coe�cients Aq
k of rank k and order q. The reduced matrix

elements hJ ||k|| Ji are numerical coe�cients that depend only on J. It is common to use the notation ↵, �, and
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� for k = 2, 4, and 6 so that, for example, hJ ||↵|| Ji ⌘ hJ ||2|| Ji. However we do not use that convention here.

The remaining factor
D

rk
E

is the mean kth power of the electronic radius of the 4 f orbitals. The principal

values of the rank-two part of the B-tensor, B̃ii, are related to A0
2 and A2

2 as follows [61]:

B̃xx =
D

r2
E

hJ ||2|| Ji
⇣

A2
2 � A0

2

⌘

, (6.54)

B̃yy =
D

r2
E

hJ ||2|| Ji
⇣

�A2
2 � A0

2

⌘

, (6.55)

B̃zz =
D

r2
E

hJ ||2|| Ji 2A0
2, (6.56)

from which we can define the axial and rhombic anisotropies of B, �Bax and �Brh, as

�Bax =
D

r2
E

hJ ||2|| Ji 3A0
2, (6.57)

�Brh =
D

r2
E

hJ ||2|| Ji 2A2
2. (6.58)

These crystal-field splitting parameters can be calculated from first principles as demonstrated by, for exam-

ple, Vonci et al [73].

Each sub-manifold can therefore be described by an e↵ective spin S̃ chosen so that the degeneracy is equal

to 2S̃ + 1. We can now write down the EPR Hamiltonian of the lanthanide within a particular sub-manifold

n as

Ĥ(n) = µB

X

i

B0,i

2S̃
X

k=0

+k
X

q=�k

(�1)qŜ k�qg(n)
kq,i +

2S̃
X

k=0

+k
X

q=�k

(�1)qŜ k�q

X

i

A(n)
kq,i Îi +

2S̃
X

k=0

+q
X

q=�k

(�1)qD(n)
kq Ŝ k�q, (6.59)

where the superscript (n) denotes the EPR tensor parameters in the nth sub-level. We note that the g-tensor

in each sub-level is no longer isotropic due to the lowering of the symmetry of the metal environment, and

that the hyperfine interaction can now refer to the coupling between the unpaired electrons and a nucleus in

the ligand. These tensor parameters are actually di↵erent for the di↵erent sub-manifolds that are present as

a result of the crystal field splitting [184]. To take an example, the four states of the J = 3/2 level of a free

lanthanide ion will, when subjected to an axially-symmetric crystal-field of spatial rank two, split into two

doubly-degenerate sub-manifolds, each corresponding to an e↵ective spin S̃ = 1/2. The PAF components of

the rank-one g-tensor are g̃zz = 3gJ and g̃xx = g̃yy = 0 for one sub-manifold, and g̃zz = gJ and g̃xx = g̃yy = 2gJ
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for the other. In practice this means that the e↵ective g- and hyperfine tensors that we measure during an EPR

experiment depend on the relative populations of the sub-manifolds at the given temperature.

6.5 The Bleaney theory of the paramagnetic shielding tensor due to

lanthanide ions

Bleaney derived a form of the paramagnetic chemical shielding tensor for lanthanide ions using a method that

is distinct from the EPR formalism [61]. He assumed that (i) only the ground-state J manifold is thermally

occupied, and that (ii) the 2J + 1 states are split by the crystal field by an overall amount that does not exceed

kT . Condition (i) is a good assumption for the lanthanide ions, with the exception of those metal ions with

either a 4 f 5 or 4 f 6 configuration. However Bleaney calculated corrections involving the excited states for

these cases. Condition (ii) is reasonable for many lanthanide compounds. This latter assumption also allows

us to make a simplification to the form of the electron Zeeman interaction. We have seen that the di↵erent

sub-manifolds of the level J under the crystal-field splitting have g-tensors with di↵erent anisotropies, and

whose PAFs have di↵erent orientations. Kurland and McGarvey pointed out that, when all the sub-manifolds

have a substantial thermal population, the g-anisotropies from the di↵erent sub-manifolds cancel to a first

approximation, and we are left with an overall g-tensor that is isotropic, and equal to the Landé factor gJ . We

can therefore write down a Hamiltonian that comprises this Zeeman interaction, and terms for the hyperfine

and crystal-field interactions as:

ĤJ = µBgJB0 · Ĵ + Ĵ ·A · Î +
X

k=2,4,6

+k
X

q=�k

(�1)qBkq Ĵk�q. (6.60)

Note that, in contrast to the e↵ective-spin Hamiltonians we have so far encountered, the Hamiltonian in

Equation 6.60 is a property of the total angular momentum of the physical system, rather than of the e↵ective

spin of a particular sub-level. This is why there is a term for the crystal-field interaction, rather than a ZFS.

We can use this Hamiltonian to derive an expression for the paramagnetic shielding tensor in terms of the

total angular momentum. We begin by deriving the following electronic magnetic moment and hyperfine
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field operators:

m̂i = � µB

+1
X

q=�1

(�1)q Ĵ1�qg1q,i, (6.61)

F̂i =

+1
X

q=�1

(�1)q Ĵ1�qA1q,i, (6.62)

where

g1±1 = ⌥
r
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and

A1±1 = ⌥
r

1
2

0
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. (6.64)

The hyperfine coupling constant can be written as A = Acon1 +Adip, i.e. as the sum of an isotropic contact

term and an anisotropic dipolar term.

We can now derive the Bleaney expression for the shielding tensor �J
i j by expanding the expression from

the EPR formalism to second order in 1/(kT ), which gives us (from Appendix D)

�J
i j = �

µB

~�I

2

6

6

6

6

6

6

4

�

2J + 1

X

qq0
(�1)q+q0g1q,iA1q0, jTrJ

⇣

Ĵ1�q Ĵ1�q0
⌘

� �2

2J + 1

X

k00qq0q00
(�1)q+q0+q00g1q,iA1q0, jBk00q00TrJ

⇣

Ĵ1�q Ĵ1�q0 Ĵk00�q00
⌘

3

7

7

7

7

7

7

5

+ O(�3), (6.65)

where we have replaced S with J, and TrJ refers to a summation over the 2J + 1 states of the level J. As pre-

viously we can simplify the traces to obtain (see Appendix D) the first-order and second-order contributions
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to the shift �J,1
i j and �J,2

i j :

�J,1
i j = �

µB

~�IkT

D

J
�

�

�

�

�

�Ĵ1
�

�

�

�

�

� J
E2

3

+1
X

q=�1

(�1)qg1q,iA1�q, j, (6.66)

�J,2
i j =

µB

~�I(kT )2 (�1)2J(2J + 1)1/2
D
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�Ĵ1
�

�

�

�

�

� J
E2 X

k00=2,4,6

D

J
�

�

�

�

�
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. (6.67)

Substituting in the values for the spatial tensor parameters, and the 3 j and 6 j symbols, we obtain the Bleaney

expression for the paramagnetic shielding tensor:

�J ⇡ �µBgJ J(J + 1)
3~�kT

A +
µBgJ J(J + 1)(2J � 1)(2J + 3)

30~�(kT )2 B ·A, (6.68)

where we note that only the rank k00 terms in the crystal-field Hamiltonian contribute to the shielding tensor

to second order.

6.5.1 The paramagnetic chemical shielding in terms of the magnetic susceptibility

tensor

We can also use the EPR formula to derive the paramagnetic susceptibility tensor, in terms of J, of a system

containing an ensemble of lanthanide ions. To second order in 1/(kT )2, the susceptibility tensor is

� ⇡
µ0µ2

Bg2
J J(J + 1)
3kT

1 �
µ0µ2

Bg2
J J(J + 1)(2J � 1)(2J + 3)

30(kT )2 B. (6.69)

This expression exhibits a complete separation of the isotropic and anisotropic contributions of the suscep-

tibility according to their temperature dependence, which is a direct result of treating the g-tensor of the

lanthanide ions as isotropic. The term that varies as 1/(kT ) is purely isotropic whereas the 1/(kT )2 term is

purely anisotropic, with an anisotropy that is proportional to, and with the same orientation as, that of the

second-rank part of the spatial tensor of the crystal-field interaction Hamiltonian.

As for the first-row transition metals, we can write the hyperfine coupling constant in terms of the reduced
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Type Term �J �� Rank

Contact 1 � µBgJ J(J+1)
3~�kT Acon ��(1)Ccon 0

2 µBgJ J(J+1)(2J�1)(2J+3)
30~�(kT )2 BAcon ��(2)Ccon 2

Dipolar 3 � µBgJ J(J+1)
3~�kT Adip ��(1)Cdip 2

4 µBgJ J(J+1)(2J�1)(2J+3)
30~�(kT )2 B ·Adip ��(2) ·Cdip 0,1,2

Table 6.3: The terms present in the paramagnetic chemical shielding tensor due in a lanthanide system,
expressed in terms of both the molecular/atomic-level parameters �J , and the bulk magnetic susceptibility
tensor ��.

coupling constant C as

A = µ0µBgJ~�IC, (6.70)

where C is the sum of an isotropic contact part Ccon1 and an anisotropic dipolar part Cdip. The paramagnetic

shielding tensor �� in terms of the susceptibility tensor now takes on a form that we have seen before:

�� = �� ·C. (6.71)

We are now in a position to write down all the terms in the expression for the shielding tensor that are formed

from the cross-terms between the coupling constant and the susceptibility tensor. They are summarised

in Table 6.3, where we have written the first- and second-order terms in the susceptibility as �(1) and �(2)

respectively. The contact interaction produces two terms in the shielding tensor, both of which are due to

the unpaired electron spin density that is present at the nucleus. Term 1 is purely isotropic, and exhibits

a temperature dependence of 1/(kT ) whilst term 2 is purely anisotropic, with a temperature dependence

of 1/(kT )2 and anisotropy parameters that are proportional to those of the second-rank crystal-field splitting

tensor. The two terms that are due to the dipolar interaction, 3 and 4, are a result of the long-range spin-dipolar

interaction between the nucleus and metal ion. Term 3 is purely anisotropic, with tensor parameters that are

proportional to those of the dipolar coupling tensor, and exhibits a temperature dependence of 1/(kT ). Term

4 is more complex because it is given by the matrix product of the crystal-field splitting tensor with the

dipolar coupling tensor, and so contains isotropic, antisymmetric, and symmetric anisotropic parts. Like term

3, it also has a 1/(kT )2 temperature dependence. The isotropic part of term 4 is a psuedo-contact term, as

it is given by the product of the anisotropic part of the susceptibility tensor with the dipolar coupling tensor.

Assuming that the 4 f electrons can be modelled as point-dipole moments, the pseudo-contact shielding is
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given by Equation 5.77 as

�pcs
iso = �

1
12⇡R3

"

��ax
⇣

3 cos2 ✓ � 1
⌘

+
3
2
��rh sin2 ✓ cos 2�

#

, (6.72)

where ✓ and � are the polar and azimuthal angles describing the orientation of the susceptibility tensor to the

dipolar coupling tensor. In terms of the axial and rhombic crystal-field splitting tensor parameters �Bax and

�Brh, the pseudo-contact shielding is equal to

�pcs
iso =

µ0µ2
Bg2

J J(J + 1)(2J � 1)(2J + 3)
360⇡(kT )2R3

"

�Bax
⇣

3 cos2 ✓ � 1
⌘

+
3
2
�Brh sin2 ✓ cos 2�

#

. (6.73)

This is the main result of Bleaney’s theory.

Trends in the contact and pseudo-contact shielding, and shielding anisotropy

We are now in a position to decompose the terms in the paramagnetic shielding tensor in Equation 6.68 into

products of two contributions, the first of which depends on the electronic properties of the free lanthanide

ion, and the second of which depends on the coordination environment. For example the first term in Equation

6.68, which is proportional to the hyperfine tensor A, can be decomposed as follows. The free-ion part that

depends on the lanthanide ion being studied is a function of gJ and J, and is equal to

CSA
J = g2

J J(J + 1). (6.74)

We recall that the hyperfine tensor is proportional to gJ , hence the above factor contains g2
J . The coordination

environment is due to the unpaired electron density present in the s-orbital of the observed nuclear spin, and

the distance of this nucleus from the lanthanide ion, both of which are contained within the hyperfine tensor.

These factors dictate the size of both the Fermi-contact shift and the dominant part of the SA. Therefore the

factor CSA
J indicates the sign and magnitude of the dominant part of the SA. The form of the contact shielding

is actually more complicated than predicted by the simple Bleaney theory, and requires special treatment, as

first proposed by Golding and Halton [60]. This is discussed below.

The second term of Equation 6.69 gives rise to the PCS, and a secondary contribution to the SA. The
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lanthanide ion-dependent part is

Cpcs
J = g2

J J(J + 1)(2J � 1)(2J + 3) hJ ||2|| Ji , (6.75)

and the coordination-environment dependent part is due to the crystal-field splitting factors
D

r2
E

A0
2 and

D

r2
E

A2
2.

The form of the contact contribution to the isotropic shielding is more complicated than suggested by

the Bleaney theory. The reason for this is that the contact interaction requires the through-bond transfer of

the unpaired electronic spin density, and so we cannot separate the shielding into parts that depend solely

on the properties of the free ion and coordination environment. One way of treating the contact shielding

has been proposed by Golding and Halton [60]. The idea is to essentially treat the electronic configuration

of the lanthanide as a free ion, but include a modification to account for the bonding to the ligands. This

modification is the inclusion of an orbital reduction parameter � that takes values close to unity. The factor

Ccon
J which gives the sign and magnitude of the contact shielding when the ion is in an SO coupling level J

can be shown to be

Ccon
J =

(gJ � �)gJ J(J + 1)
2 � � +

 

2kT
�

!

(gJ � �)(gJ � 2)
2 � � . (6.76)

The first term has a similar form to CSA
J , with the inclusion of the � factor. The second term accounts for the

e↵ect of SO coupling strength �.

Numerical values of the ion-dependent contributions for both terms in the paramagnetic shielding are

given in Table 6.4. These values depend only on the nature of the ion, and so can be used to compare the size of

the expected shifts and SAs for a series of lanthanide ions in the same coordination site, assuming that both the

coordination geometry and the factors
D

r2
E

Aq
2 are unchanged. Note also that, whilst these numerical factors

can be used to compare, for example, the expected pseudo-contact shifts for a series of ions, they cannot

be used to compare the sizes of the contact shifts versus the pseudo-contact shifts as this comparison also

requires knowledge of the Fermi-contact and spin-dipolar components of the hyperfine tensor. For instance

we would expect both Ce3+ and Pm3+ to give relatively small SAs, with the relative factors being 6.4 and 7.2

respectively, whereas we would expect the corresponding values for Dy3+ and Ho3+ to be approximately 16

3Values taken from Abragam and Bleaney [184], and Bleaney [61].
4Values taken from Golding and Halton [60].
5Values taken from Bleaney [61].
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Ion Configuration J gJ hJ ||2|| Ji3 CSA
J Ccon

J
4 Cpcs

J
5

Ce3+ f 1 5/2 6/7 �0.0571 6.4 �0.98 �11.8
Pr3+ f 2 4 4/5 �0.0210 12.8 �2.9 �20.7
Nd3+ f 3 9/2 8/11 �0.00643 13.1 �4.4 �8.08
Pm3+ f 4 4 3/5 0.00771 7.2 — 4.28
Sm3+ f 5 5/2 2/7 0.0413 0.7 0.3 0.943
Eu3+ f 6 0 — — — — —

1 3/2 �0.200 4.5 1.0 �4.5
2 3/2 �0.0349 13.5 4.0 �9.9

Gd3+ f 7 7/2 2 0 63.0 31.5 0
Tb3+ f 8 6 3/2 �0.0101 94.5 31.9 �157.5
Dy3+ f 9 15/2 4/3 �0.00635 113.3 28.6 �181
Ho3+ f 10 8 5/4 �0.00222 112.5 22.6 �71.3
Er3+ f 11 15/2 6/5 0.00254 91.8 15.4 58.8
Tm3+ f 12 6 7/6 0.0101 57.2 8.2 95.3
Yb3+ f 13 7/2 8/7 0.0317 20.6 2.6 39.2

Table 6.4: Parameters pertaining to the size of the contact [60] and pseudo-contact [61] shifts, and the SA of
the di↵erent lanthanides. The contact shift is proportional to Ccon

J , the pseudo-contact shift to Cpcs
J , and the

SA is proportional to CSA
J . The contact-shift terms are evaluated with � = 1, and at 300 K.

times larger. We see a di↵erent trend for the sizes of the PCSs with Ce3+ and Pm3+ giving values that di↵er

more in magnitude than their contact/SA contributions, and which are also of opposite sign. In addition we

expect Gd3+ and Tb3+ to give the largest contact shifts, but Dy3+ to give the largest pseudo-contact shifts.

6.5.2 Contact shift contributions from excited states of di↵erent J

The theory presented above assumes that only the lowest-energy J level, with J = J0, contributes to the

electronic properties of the lanthanide, and therefore to the paramagnetic shift. If the 4 f shell is less than

half full the lowest excited state is J0 + 1, whilst for 4 f shells that are more than half full it is J0 � 1. In

general, in the free ion, the lowest-lying excited J levels are 2000 cm�1 or more above the ground level, and

we do not need to consider them. However there are two exceptions amongst the trivalent ions, which are

Sm3+ (4 f 5; ground term 6H5/2), and Eu3+ (4 f 6; ground term 7F0). The lowest-lying excited level of Sm3+

is J = 7/2 which lies at 1000 cm�1 above the ground level, and for Eu3+ it is J = 1 which lies at 400 cm�1

above the ground level. In order to describe the paramagnetic chemical shielding due to these lanthanides

we must account for these low-lying ground states, and must include them in the sum over states in the EPR

formula in Equation 4.103. The states |n⌫i now contain information about the di↵erent J levels that result

from SO coupling as well as the crystal-field splitting of each J level.

The e↵ect of thermal population of the excited states on the total isotropic contact shielding parameter
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Ion Configuration Ccon

Ce3+ f 1 �0.98
Pr3+ f 2 �3.0
Nd3+ f 3 �4.5
Pm3+ f 4 �4.0
Sm3+ f 5 0.063
Eu3+ f 6 10.7
Gd3+ f 7 31.5
Tb3+ f 8 31.8
Dy3+ f 9 28.5
Ho3+ f 10 22.6
Er3+ f 11 15.4
Tm3+ f 12 8.2
Yb3+ f 13 2.6

Table 6.5: The parameters Ccon dictating the sign and size of the contact shift for the full series of trivalent
lanthanide ions calculated by considering the excited SO coupling states; the values given here are taken from
Golding and Halton [60]. � = 1, and the temperature is 300 K.

Ccon can be calculated from the following Boltzmann average over the excited J levels:

Ccon =

P

J Ccon
J (2J + 1) exp(�EJ/kT )

P

J(2J + 1) exp(�EJ/kT )
, (6.77)

where the energies EJ are due to the SO coupling, and are given by

EJ =
�

2
[J(J + 1) � L(L + 1) � S (S + 1)] . (6.78)

The values at 300 K, taken from Golding and Halton, are tabulated in Table 6.5 [60]. If we compare the

values of Ccon with those calculated from the ground level only in Table 6.4 we see the the inclusion of

thermal population of the excited levels has a negligible e↵ect on the contact coupling, with the exception

of Sm3+ and Eu3+. In the former case the excited states reduce the magnitude of the (already small) contact

shielding by almost an order of magnitude. However the most substantial e↵ect is seen for Eu3+, where the

inclusion of the excited states increases the contact shielding from zero to the largest value seen in the series

of lanthanides.

6.5.3 Pseudo-contact shift contributions from excited states of di↵erent J

The excited states also play an important role for the pseudo-contact shift in the Bleaney formalism. Here we

examine the cases of Sm3+ and Eu3+, and also comment on Gd3+.
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Ion a b kT/�E at 300 K a(kT/�E) b(kT/�E)2

Ce3+ �0.555 �0.0833 0.09 �0.050 �0.00067
Pr3+ �0.497 �0.0535 0.095 �0.047 �0.00048
Nd3+ �0.673 �0.0678 0.105 �0.071 �0.00075
Pm3+ �1.426 �0.178 0.125 �0.18 �0.0028
Sm3+ �11.25 �3 0.20 �2.25 �0.12
Tb3+ �0.287 +0.0139 0.10 �0.029 0.00014
Dy3+ �0.185 +0.0081 0.07 �0.013 0.000040
Ho3+ �0.142 +0.0062 0.05 �0.0071 0.000016
Er3+ �0.127 +0.0061 0.03 �0.0038 0.0000055
Tm3+ �0.133 +0.0081 0.025 �0.0033 0.0000051
Yb3+ �0.181 +0.0188 0.02 �0.0036 0.0000075

Table 6.6: The values of the coe�cients a and b, and the factor kT/�E at 300 K used in the correction factor
for the pseudo-contact shift resulting from the mixing of excited states into the ground state. Values for the
trivalent lanthanides (excluding Eu3+ and Gd3+) are taken from Bleaney [61].

The Sm3+ ion: 4 f 5, 6H5/2

To calculate the correction to the PCS for all the trivalent lanthanide ions with the exception of Eu3+, we

need only consider the e↵ects of mixing the excited states into the ground state, which results in the PCS in

Equation 6.73 being multiplied by the following correction factor [61]:

1 + a
 

kT
�E

!

+ b
 

kT
�E

!2

+ c
 

(kT )2

�E�E0

!

. (6.79)

In Equation 6.79 a, b, and c are coe�cients, �E is the energy of the lowest-lying excited state relative to

the ground state, and �E0 is the energy of the lowest-lying excited state resulting from di↵erent values of S

and L to those of the ground state. The coe�cients a and b and the ratio kT/�E have been calculated by

Bleaney, and are reproduced in Table 6.6 [61]. These correction terms are negligible for all the ions apart

from Sm3+, which has values a(kT/�E) = �2.25, b/(kT/�E)2 = �0.12, and also c(kT )2/(�E�E0) = +0.14

at 300 K [61]. The overall multiplicative factor is then �1.23, which results in a change in sign of the PCS

predicted from the ground state only. The lowest-lying excited J level J = 7/2 is su�ciently high for its

thermal population to be negligibly small, we need only consider the e↵ects of mixing in of the excited states

into the ground state.

The Eu3+ ion: 4 f 6, 7F0

For the Eu3+ ion the situation is more complex. The ground level of J = 0 is diamagnetic, but the mixing of

the excited states into the ground state gives rise to a temperature-independent paramagnetic shift. In addition
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to the J = 1 excited level at 400 cm�1 above the ground level, we must also consider the second excited level

J = 2 at 1200 cm�1, and possibly the third J = 3. We may also see contributions to the paramagnetic shift

from the thermal population of these same excited states, which gives temperature-dependent contributions

to the PCS [61]. The energies quoted here are those in the free ion and so we must bear in mind that the

excited levels may be lower-lying in a bound ion [184].

The Gd3+ ion: 4 f 7, 8S 7/2

The Gd3+ ion represents a special case amongst the trivalent lanthanides as it possesses a half-full 4 f shell,

and is therefore an S term. The SO coupling is e↵ectively zero, and so the ion exhibits behaviour more akin

to a first-row transition-metal ion with S = 7/2 than to the other lanthanides. One important property is that

the reduced matrix element hJ ||2|| Ji is zero, and so the PCS is zero. The zero PCS is a property that Gd3+

shares with transition-metal ions with half-filled d shells, such as high-spin Mn2+ and Fe3+. It should also be

noted that, because there is no SO coupling, there are no low-lying J-levels that mix with the ground level

J = 7/2.

6.5.4 The shortcomings of the Bleaney theory

The Bleaney theory is currently the only theory of paramagnetic shifts due to lanthanides that has been applied

with any regularity to the interpretation of the NMR data of systems containing rare earths [66, 68, 74].

However the theory has a number of shortcomings which mean that it is not generally applicable to all

systems. Some of these have already been mentioned in this chapter, and these and other shortcomings have

been enumerated in more detail by Funk et al [62]. There are two minor and two more important points to be

addressed, which are detailed and expanded upon here.

Firstly Funk et al. point out that it is often assumed that the PAF of the second-rank crystal-field splitting

tensor is invariant when comparing lanthanide ions in an isostructural series of materials. This assumption

does not hold in general, as the di↵erences in ion size and electronic properties can result in di↵erences in the

coordination geometry for di↵erent ions. However, contrary to the claim of Funk et al. this is not a deficiency

in the Bleaney theory per se, but is rather a cautionary note that the di↵erences in the PAF orientation must be

accounted for when comparing the e↵ects of di↵erent lanthanide ions in isostructural systems. For example

Bertini et al. performed a study in which the full series of lanthanide ions, with the exceptions of Pm3+ and
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Gd3+, were incorporated into the C-terminal calcium binding site of the dicalcium protein calbindin D9k [74].

The measured PCSs enabled the determination of the anisotropic components of the magnetic susceptibility

tensor and the orientation of the PAF for each lanthanide. The axes of the largest anisotropy were found to

vary by up to 20� across the series.

Secondly the simplest implementation of the Bleaney theory assumes a point-dipole model for the un-

paired electron density in the 4 f orbitals. The justification for this is that the f -orbitals are relatively

contracted, and so the electron density is confined to a relatively small space. In the study of Bertini et

al. the observed nuclei were separated from the lanthanide ion by more than 8 Å, where the point-dipole

model is a good approximation [74]. However the point-dipole approximation begins to break down when

the nucleus is closer to the metal ion, and the spread of electron density must be taken into account. For

first-row transition-metal ions the cuto↵ separation below which the point-dipole model begins to break down

is approximately 4 Å, but this value may be smaller for lanthanides due to the more contracted nature of the

4 f orbitals relative to the 3d orbitals, where the electron density is delocalised to a greater extent onto the

ligands. However the lifting of the point-dipole restriction is relatively straightforward and, whilst the Bleaney

formula itself is no longer valid, the expressions given in section 5.3.2 are still applicable.

This brings us to the more serious deficiencies in the Bleaney theory. The third point is the central

assumption that the crystal-field splitting parameters Blm are much smaller in magnitude than kT . This is

generally not true, as B20 can take values up to 1500 cm�1 in some cases [227], compared to kT = 205

cm�1 at 298 K. Since this assumption lies at the heart of the Bleaney theory, there is no easy fix to this

problem. A related issue is that the Bleaney formula is calculated from a series expansion up to 1/(kT )2, to

which the higher-rank crystal-field terms do not contribute. However since the crystal-field splittings may be

comparable to or greater than kT the second-order term may not be su�cient to account for the paramagnetic

shielding, and the higher-rank crystal-field terms may become important. The fourth shortcoming is that

it is assumed that the SO coupling is adequately described by the Russell–Saunders coupling scheme, and

that J is a good quantum number. However this may not be the case for the heavy lanthanide ions with

larger SO coupling constants. Both of these points are not easily fixed in the Bleaney formalism, and a

di↵erent approach is needed. In cases where the deficiencies in the Bleaney theory are too important to be

neglected it will be necessary to adopt a more general EPR formalism, as summarised by the expression of

the paramagnetic shielding tensor in Equation 6.18. Nevertheless it should be pointed out that the Bleaney
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theory has been remarkably successful in driving the field of paramagnetic NMR of lanthanide ions forward.

6.6 The paramagnetic shielding due to actinides

A comparatively small number of paramagnetic NMR studies have been performed on systems containing

actinide ions, including small molecules in solution [228–230] and solid oxides [13]. However only relatively

recently have first-principles calculations of the paramagnetic shifts been performed [212].

6.6.1 Electronic structure of actinide ions

The magnetic properties of the actinide ions are defined by the 5 f electrons. Whilst one might expect these

properties to mirror those of the lanthanide ions, there are some important di↵erences. Firstly, in contrast

to the lanthanide ions, actinides exhibit a greater range of oxidation states. For example, uranium exhibits

oxidation states up to its diamagnetic (5 f 0) state of +6. Secondly the SO coupling is not the dominant

interaction. Rather, both the crystal-field and SO interactions are large, and comparable in magnitude.

In addition we expect there to be greater deviation from the Russell–Saunders coupling scheme than for

lanthanide ions. Thirdly, the partially-occupied 5 f orbitals are more directly involved in bonding interactions

with the metal coordination site.

6.6.2 The EPR formalism for the paramagnetic shielding tensor

The paramagnetic shielding tensor due to an actinide ion is given by the general formula of van den Heuvel

and Soncini in Equation 6.18. When the electronic energy levels are parameterized in terms of the EPR

e↵ective-spin parameters, we obtain separate shielding tensors for each of the electronic levels, each of which

has the form of Equation 6.22 if we neglect the ZFS. Otherwise, if we include the ZFS we obtain a similar

sum of terms, with each now having the form of Equation 6.24. We recall that each level has a distinct set of

EPR parameters.

First-principles calculations of the paramagnetic shielding tensor have recently been carried out by Gen-

dron et al. where they investigated the 5 f 1 complexes UO2(CO3)5�
3 and NpO2(CO3)4�

3 , and the 5 f 2 complexes

PuO2(CO3)4�
3 and (C3H5)3UCH3 [91, 92]. Here they showed that the main contributions are due to the

Fermi-contact and spin-dipolar interactions, giving the contact shift and PCS respectively, and a third term
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known as the paramagnetic spin–orbital interaction (PSO), which is a coupling between the nuclear spin and

the electron orbital angular momentum.

Research in this area is still relatively new, but progressing rapidly, and it is expected that both experiments

and calculations in actinide complexes, in addition to solid systems, will become more widespread.

6.7 Key concepts

• In a free ion subject to spin-orbit coupling each electronic energy level can be represented as an e↵ective

spin S̃ with multiplicity 2S̃ + 1 that matches the actual degeneracy of the level.

• The immersion of a metal ion in a complex results in a crystal- or ligand-field interaction which partially

lifts the degeneracy of the electron energy levels creating a number of sub-levels to each of which is

assigned an (di↵erent) e↵ective spin S̃ .

• Each sub-level is associated with a di↵erent set of EPR parameters.

• The EPR Hamiltonian in a level with e↵ective spin S̃ contains terms with powers of Ŝ up to 2S̃ .

• Lanthanide ions form complexes with crystal-field interactions that are much weaker than the SO

coupling.

• Actinde ions form complexes in which the crystal-field interactions and SO coupling are both large,

and of comparable magnitude.

• The paramagnetic shielding tensor can also be parameterised in terms of the EPR parameters associated

with all the thermally accessible crystal-field energy levels (Equation 6.24).

• The magnetic properties of the free lanthanide ions are characterised by the total angular momentum

J .

• The crystal-field interaction of lanthanide complexes is much weaker than the SO coupling.

• The paramagnetic shielding tensor due to lanthanide ions is given by the general EPR expression in

Equation 6.18.
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• A simplified form of the paramagnetic shielding tensor is given by the Bleaney formula in Equation

6.68.

• The Bleaney theory is an approximate description of the shielding tensor, and assumes that the lan-

thanide can be treated as a free ion, subject to a crystal-field interaction that is su�ciently small so that

all the energy levels are equally populated at the relevant temperature.

• The paramagnetic shielding tensor due to actinide ions can be calculated from the general expression

of van den Heuvel and Soncini (Equation 6.18), which can, in turn, be expressed in terms of the EPR

parameters of each electronic level, giving a sum of terms of the form of Equation 6.22 (neglecting

ZFS) or Equation 6.24 (including ZFS).
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Chapter 7

The paramagnetic shift in

multi-metal-ion systems, and solid

materials

Our discussion of the paramagnetic shift has so far only considered systems containing a single paramagnetic

metal ion. This is su�cient for describing monometallic complexes in solution, but is obviously inadequate

for molecular systems containing metal clusters, crystallised molecular complexes, and solid materials. In

these systems we must account for the contributions to the paramagnetic shift from multiple metal ions,

and the e↵ects of magnetic exchange interactions between the unpaired electrons of di↵erent metal ions. In

general these interactions can lead to either ferromagnetic or antiferromagnetic alignment of the paramagnetic

centres at low temperature. In this review we are not interested in this regime per se, but rather in the

high-temperature paramagnetic behaviour of these materials.

We begin by exploring how the exchange coupling interactions influence the form of the paramagnetic

shielding tensor due to small clusters of metal ions. These principles can also be applied to solid materials

containing an extended network of coupled metal ions. We also provide a simplified description of these solid

materials using a mean-field expression of the magnetic properties, leading to the Curie–Weiss model of the

magnetic susceptibility [187] and the paramagnetic shielding tensor. The discussion in this chapter focuses
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exclusively on the first-row d-transition-metal ions.

7.1 The paramagnetic shift due to multiple non-interacting metal ions

Initially we consider the relatively simple case of the paramagnetic shift of a nucleus that is hyperfine-coupled

to multiple non-interacting metal ions. The EPR Hamiltonian ĤEPR can then be written as a sum of Hamilto-

nians Ĥ(A)
EPR, each containing the interactions pertaining to an individual metal ion A:

ĤEPR = �~�IB0 ·
⇣

1 � �orb
⌘

· Î +
X

A

Ĥ(A)
EPR. (7.1)

The individual Hamiltonians Ĥ(A)
EPR are given by

Ĥ(A)
EPR = µBB0 · g(A) · Ŝ(A) + Ŝ(A) ·A(A) · Î + Ŝ(A) ·D(A) · Ŝ(A), (7.2)

where each symbol has its usual meaning, and the superscript (A) indicates that the relevant tensor or spin

operator refers to the metal ion A.

In such a system the paramagnetic chemical shielding tensor is simply the sum of contributions from each

metal ion, with the expression for each contribution being given by Equation 4.109:

�S = � µB

~�I

X

A

g(A) ·Z (A) ·A(A), (7.3)

where the tensor Z (A) contains both the temperature dependence of the shielding, and the information of the

ZFS tensor of metal ion A. The EPR formalism gives the following expression for Z(A)
kl :

Z(A),HS
kl =

2
Q(A)

0

X

n

exp(��E(A)
n )

X

m,n
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�Ŝ (A)
l

�

�
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E

. (7.4)

We note here that the expression for the shielding tensor does not contain any ‘cross terms’ involving two or

more metal ions. This is because there are no interactions between the metal ions, with the result that they are
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independent. This observation is no longer true once we introduce the interactions between the spins, when

the cross terms become extremely important.

7.2 The Heisenberg exchange Hamiltonian

In this section we describe the simplest coupling interaction between the unpaired electron clouds of two

paramagnetic metal ions, referred to as the Heisenberg exchange interaction. The Hamiltonian Ĥex describing

the interaction between two electronic spins S(1) and S(2) is given by [187]

Ĥex = �2J (12)Ŝ(1) · Ŝ(2), (7.5)

whereJ (12) is the spatially-isotropic Heisenberg exchange coupling constant, and the factor of two is present

by convention. The exchange constant J (12) is a signed quantity, with the sign having a profound e↵ect on

the behaviour of the spin system, as we will see shortly. This Hamiltonian bears an obvious resemblance to

the Hamiltonian describing a homonuclear J-coupling interaction between two nuclei [194], and much of the

theory of nuclear spin systems subject to J-couplings is applicable to exchange interactions and vice versa.

7.2.1 The exchange interaction between two electronic spins 1/2

Many of the important properties of the exchange interaction are illustrated by considering a metal dimer

containing two electronic spins 1/2. An example of this in practice might be a system containing two Cu2+

ions, each of which has a 3d9 electronic configuration.

Each spin can be described using a basis comprising the functions |↵i and |�i, which describe the spin

states referred to as ‘spin up’ and ‘spin down’ respectively, and we write down the spin 1 and spin 2 bases as

{|↵1i, |�1i} and {|↵2i, |�2i}. However these bases are not su�cient for describing the interacting spin system,

and we need to construct a new basis by taking the direct product of the two one-spin bases. The two-spin

basis functions are therefore

{|↵1i, |�1i} ⌦ {|↵2i, |�2i} = {|↵1↵2i, |↵1�2i, |�1↵2i, |�1�2i} (7.6)

⌘ {|↵↵i, |↵�i, |�↵i, |��i} . (7.7)
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The exchange Hamiltonian has four eigenfunctions, denoted |S MS i, which are linear combinations of the

basis functions. The notation |S MS i emphasises that each eigenstate represents the spin system as an object

with total spin S = S1 +S2, the spin quantum number S of which is given by a value of the Clebsch–Gordan

series S 1+S 2, S 1+S 2�1, . . . , |S 1�S 2|. The corresponding total magnetic quantum number MS takes values

from +S to �S in integer steps as usual. For S 1 = S 2 = 1/2 the allowed values of S are 1 and 0, and so we

can separate the four eigenstates into the S = 1 triplet and the S = 0 singlet states. All the states with the

same total spin quantum number S are degenerate, and have energy ES . The energies and eigenstates are:

E1 = �J (12)/2, |1 + 1i = |↵↵i (7.8)

|10i =
r

1
2

(|↵�i + �↵i) (7.9)

|1 � 1i = |��i, (7.10)

E0 = +3J (12)/2, |00i =
r

1
2

(|↵�i � �↵i) . (7.11)

The three triplet states |1MS i correspond to the two spins being aligned co-parallel,which is referred to

as ferromagnetic alignment. By contrast the singlet state |00i is formed by summing the two spin angular

momenta when they are aligned anti-parallel to each other, which represents antiferromagnetic alignment.

The question as to which level is the ground level, and therefore the nature of the alignment at low temperature

when only this level is occupied, depends on the sign of J (12). If J (12) > 0, the triplet is lowest in energy,

and therefore the spins are aligned ferromagnetically at low temperature. On the other hand if J (12) < 0 the

low-temperature alignment is antiferromagnetic. The energy levels for the two cases are shown in Figure

7.1 (a) and (b). At high temperatures, such that all the states are substantially occupied, there is no strong

preference for either ferro- or antiferromagnetic alignment of the two spins i.e. the thermal fluctuations disrupt

the tendency for the spins to align, and the two spins begin to act as if they are independent and exhibit

paramagnetic behaviour. The temperature at which we can expect to observe this ferro/antiferromagnetic-to-

paramagnetic transition is a topic we will return to later.
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(a) J(12) > 0 J(12) < 0(b)

S = 1, E1 = -J(12)/2

S = 0, E0 = 3J(12)/2

ΔE = +2J(12)

E = 0

S = 0, E0 = 3J(12)/2

S = 1, E1 = -J(12)/2

ΔE = -2J(12)

Figure 7.1: The energy levels resulting from the exchange coupling of two electronic spins 1/2. The energy
levels, energies, and e↵ective spins are shown for (a) ferromagnetic coupling with a positive exchange
coupling constant J(12), and (b) antiferromagnetic coupling with a negative exchange coupling constant J(12).

7.2.2 The exchange interaction between two arbitrary electronic spins

We now turn our attention to the exchange interaction between two arbitrary spins. The basis set of the

two-spin system is formed by the direct product of the two one-spin bases |S 1M1i and |S 2M2i, and comprises

(2S 1 + 1)(2S 2 + 1) functions |S 1S 2M1M2i. We can take linear combinations of the direct-product basis

functions to give the eigenfunctions |S 1S 2S MS i of the exchange Hamiltonian, which are characterised by S

and MS . The eigenfunctions are given by

|S 1S 2S MS i =
X

M1,M2

|S 1S 2M1M2i hS 1S 2M1M2|S MS i (7.12)

= (�1)S 1�S 2+MS
p

2S + 1
X

M1,M2

|S 1S 2M1M2i

0

B

B

B

B

B

B

B

B

B

@

S 1 S 2 S

M1 M2 �MS

1

C

C

C

C

C

C

C

C

C

A

, (7.13)

where S = S 1 + S 2, S 1 + S 2 � 1, . . . , |S 1 � S 2|, and MS = M1 + M2.

We can calculate the corresponding energies by rewriting the exchange Hamiltonian in terms of the total
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spin. First we note that Ŝ2 =
⇣

Ŝ1 + Ŝ2
⌘2
= Ŝ2

1 + Ŝ
2
2 + 2Ŝ1 · Ŝ2, and therefore

Ĥex = �2J (12)Ŝ(1) · Ŝ(2) (7.14)

= �J (12)
h

Ŝ2 � Ŝ2
1 � Ŝ2

2

i

(7.15)

= �J (12) [S (S + 1) � S 1(S 1 + 1) � S 2(S 2 + 1)] 1̂. (7.16)

The exchange Hamiltonian therefore depends only on J (12), S 1, S 2, and S , and splits the (2S 1 + 1)(2S 2 + 1)

states into a series of manifolds |S 1S 2S MS i, each of which is labelled with the total spin quantum number S

and is (2S + 1)-fold degenerate. The energies E(S , S 1, S 2) of the states within each manifold S are given by

[47]

E(S , S 1, S 2) = �J (12) [S (S + 1) � S 1(S 1 + 1) � S 2(S 2 + 1)] . (7.17)

As with the case of the two coupled spins 1/2 we see that a positive exchange coupling constant results in

the states with the maximum S lying lowest in energy, and therefore favours ferromagnetic alignment at low

temperature. In addition, a negative exchange coupling constant results in the lowest-energy manifold having

the minimum value of S , which favours antiferromagnetic alignment at low temperature. Levels that are

adjacent in energy have values of S that di↵er by one, e.g. S and S � 1. The energy separation between

such adjacent levels is given by an interval rule, and is equal to 2
�

�

�J (12)
�

�

� S > where, S > is the larger of the two

values of S .

7.3 The paramagnetic shift due to a coupled electronic spin system

The exchange-coupled electronic spin system induces a paramagnetic contribution to the chemical shielding

tensor in a similar way to a single transition-metal ion. On the application of an external magnetic field

B0 each individual electronic manifold |S 1S 2S MS i is split by the Zeeman interaction. The resulting total

energies E (S , S 1, S 2,MS ) are

E (S , S 1, S 2,MS ) = E(S , S 1, S 2) + µBgeB0MS (7.18)

= �J (12) [S (S + 1) � S 1(S 1 + 1) � S 2(S 2 + 1)] + µBgeB0MS , (7.19)

234



where we have ignored the spin-spin contribution to the ZFS tensor. Examples of the ladders of the spin

energy levels are shown in Figure 7.2 for both ferro- and antiferromagnetic coupling and in the absence and

presence of an external magnetic field B0. The example spin systems are two coupled electronic spins 1/2 in

(a) and (b), a spin 1/2 coupled to a spin 1 in (c) and (d), and two coupled spins 1 in (e) and (f).

The average electronic magnetic moments are characterised both by the individual Curie spins
D

Ŝ iz
E

,

where i = 1, 2, and the total Curie spin
D

Ŝ z
E

of the coupled spin system. This latter quantity is the Boltzmann

average over the states with energies E (S , S 1, S 2,MS ):

D

Ŝ z
E

=

PS 1+S 2
S=|S 1�S 2 |

P+S
MS=�S MS exp (�E (S , S 1, S 2,MS ) /kT )

PS 1+S 2
S=|S 1�S 2 |

P+S
MS=�S exp (�E (S , S 1, S 2,MS ) /kT )

, (7.20)

where we have explicitly separated the sums over the Zeeman states in each manifold S from the sum over

the manifolds themselves.

Initially we consider the case where only the ground manifold is occupied so that
�

�

�J (12)
�

�

� � kT , and the

spin system behaves as a single electronic spin S . The Curie spin then takes exactly the same value as we

calculated for a single metal ion in Equation 3.62:

D

Ŝ z
E

=

P+S
MS=�S MS exp (� (E(S , S 1, S 2) + µBgeB0MS ) /kT )
P+S

MS=�S exp (� (E(S , S 1, S 2) + µBgeB0MS ) /kT )
(7.21)

=

P+S
MS=�S MS exp (�µBgeB0MS /kT )
P+S

MS=�S exp (�µBgeB0MS /kT )
, (7.22)

The interpretation of this situation is that we have an ensemble of spin pairs with no interactions between

the pairs, and so we can view the system as comprising an ensemble of paramagnetic ions with spin S . We

employ the high-temperature approximation for the thermal populations of the Zeeman energy levels, and we

obtain the familiar expression for the spin-only Curie spin:

D

Ŝ z
E

= �µBgeS (S + 1)B0

3kT
. (7.23)

The corresponding paramagnetic shielding tensor is

�S = �µBgeS (S + 1)
3~�IkT

A, (7.24)
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(a) (b)

(e) (f)

(c) (d)

Figure 7.2: Energy levels due to the ferro- and antiferromagnetic exchange coupling between two electronic
spins in the absence and presence of an external magnetic field. The energy levels are shown for (a)–(b) two
coupled electronic spins 1/2, (c)–(d) a spin 1/2 coupled to a spin 1, and (e)–(f) two coupled spins 1. The
energy levels due to ferromagnetic coupling are shown in (a), (c), and (e), and those due to antiferromagnetic
coupling are shown in (b), (d), and (f).
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where the hyperfine tensor is calculated from the total unpaired electron density of the combined spin system.

Now let us consider the simplest example of a coupled spin system we introduced above, namely with S 1 =

S 2 = 1/2. If J (12) is positive and the spins are ferromagnetically aligned, the lowest-energy manifold is the

triplet with S = 1, and both the EPR and NMR parameters we measure reflect those of a fictitious ion with

that spin. If, on the other hand, J (12) is negative it is the singlet S = 0 that is lowest in energy. The system

is e↵ectively diamagnetic and therefore exhibits no EPR signal. Therefore we observe no paramagnetic

contribution to the shielding tensor of the nuclei. More generally we can extend the above discussion to

include systems of more than two interacting spins. For instance this has been done by Bertini et al. who

considered the case of a cluster containing four iron ions in an iron-sulphide protein [46].

Now we consider the other extreme situation where the thermal energy dominates the exchange coupling,

i.e.
�

�

�J (12)
�

�

� ⌧ kT . The exponential factors in Equation 7.20 can now be expanded to first order in J (12)/kT ,

in addition to first order in µBgeB0MS /kT :

D

Ŝ z
E

⇡
PS 1+S 2

S=|S 1�S 2 |
P+S

MS=�S MS
⇣

1 � E(S ,S 1,S 2)
kT � µBgeB0 MS

kT

⌘

PS 1+S 2
S=|S 1�S 2 |

P+S
MS=�S

⇣

1 � E(S ,S 1,S 2)
kT � µBgeB0 MS

kT

⌘ (7.25)

We now obtain a Curie spin that is simply the sum of the two independent Curie spins:

D

Ŝ z
E

= �µBge [S 1(S 1 + 1) + S 2(S 2 + 1)] B0

3kT
(7.26)

=
D

Ŝ 1z
E

+
D

Ŝ 2z
E

. (7.27)

Since both electronic spins are independent, we can write the total paramagnetic shielding tensor as the sum

of two independent contributions

�S = �µ0geS 1(S 1 + 1)
3~�IkT

A(1) � µ0geS 2(S 2 + 1)
3~�IkT

A(2), (7.28)

where A(A) is the hyperfine coupling tensor due to ion A. The two metal ions are now e↵ectively non-

interacting, and the system is reduced to the paramagnetic ensemble, which we have seen previously in

section 7.1.

In each individual regime the paramagnetic shielding tensor has a Curie temperature dependence of
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1/(kT ). However we should note that the dependence over the full range of temperatures is more complicated,

since the expression for the shielding changes on moving from one regime to another via an intermediate

regime where
�

�

�J (12)
�

�

� ⇡ kT that we have not explicitly examined. This is an example of the exchange

interactions introducing a deviation from the Curie behaviour.

7.4 The general exchange Hamiltonian for transition metal ions sub-

ject to spin-orbit coupling

The previous section described the behaviour of an electronic spin system and the corresponding paramag-

netic chemical shielding tensor of two spin-only transition-metal ions that interact via an isotropic exchange

interaction in both the low-temperature ordered and high-temperature paramagnetic regimes. The results

above can easily be generalised to a finite cluster of metal ions. The case where the metal ions are subject to

SO coupling is a little more complex, as there are several other terms that must be included in the exchange

coupling Hamiltonian, which is where we turn our attention now.

The general spin Hamiltonian Ĥ0 describing the exchange interactions between the transition-metal ions

is

Ĥ0 = ĤNR
0 + ĤSO

0 , (7.29)

where ĤNR
0 and ĤSO

0 are the NR and SO contributions respectively. The NR contribution can be written as

[231]

ĤNR
0 = �2

X

A>B

J (AB)Ŝ(A) · Ŝ(B) +
X

A>B

Ŝ(A) ·D(AB) · Ŝ(B), (7.30)

where the sums are over pairs of coupled metal ions (A, B). The first term is the isotropic Heisenberg exchange

Hamiltonian with isotropic exchange coupling constant J (AB), and the second term is the anisotropic dipolar

coupling interaction and D(AB) is the symmetric dipolar coupling constant [232]. This latter interaction is

weaker than the former, but can be important in establishing either long-range ferromagnetic or antiferro-

magnetic ordering in three dimensions. The presence of SO coupling adds two important terms that are
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contained in ĤSO
0 , which is given by [231]

ĤSO
0 =

X

A

Ŝ(A) ·D(A) · Ŝ(A) +
X

A>B

d(AB) ·
⇣

Ŝ(A) ⇥ Ŝ(B)
⌘

. (7.31)

The first term represents the ZFS interactions of the ions, with which we are already familiar, and which are

sometimes referred to as the single-ion anisotropy interactions [233]. The symmetric and traceless ZFS tensor

for ion A is denoted D(A). The second term is referred to as the Dzyaloshinskii–Moriya (DM) interaction

[233–235]. The spatial dependence is encoded in the vector d(AB), the three components of which can also

be described by an antisymmetric (i.e. rank-one) tensor, and so this interaction is entirely anisotropic. The

DM interaction depends on the vector product between Ŝ(A) and Ŝ(B), and is therefore zero if the two spins

are exactly collinear, which we have seen is the preferred alignment for both ferro- and antiferromagnetic

interactions. The e↵ect of the DM term is therefore to perturb the spin orientations away from the perfect

ferro- or antiferromagnetic collinear alignment, a process which is referred to as spin canting. We have

neglected any SO contribution to the dipolar coupling interaction, which we absorb into the NR dipolar

coupling term.

For convenience we recast the Hamiltonians in Equations 7.29, 7.30, and 7.31 into the following form

Ĥ0 =
X

A

+2
X

q=�2

(�1)qD(A)
2q Ŝ (A)

2�q +
X

A>B

2
X

k=0

+k
X

q=�k

(�1)qJ(AB)
kq T̂ (AB)

k�q , (7.32)

which is written in terms of irreducible spherical tensors. The first sum represents the rank-two ZFS interac-

tions experienced by all the metal ions, the spatial and spin parts of which are given by the usual expressions.

The second sum contains all the two-spin interaction terms, including the isotropic Heisenberg exchange,

dipolar interaction, and DM parts. The spin tensor T̂ (AB)
k�q is a direct tensor product of the rank-one spin

operators:

T̂ (AB)
k�q =

X

q1,q2

Ŝ (A)
1q1

Ŝ (B)
1q2
h11q1q2|k � qi (7.33)

=(�1)q
p

2k + 1
X

q1,q2

Ŝ (A)
1q1

Ŝ (B)
1q2

0

B

B

B

B

B

B

B

B

B

@

1 1 k

q1 q2 q

1

C

C

C

C

C

C

C

C

C

A

, (7.34)
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and the components of the spatial tensor J(AB)
kq can be written down with reference to Table 2.3. The rank-zero

part of the interaction is purely isotropic, and so represents the isotropic Heisenberg interaction. The spatial

component J(AB)
00 is therefore given by

J(AB)
00 = 2

p
3J (AB). (7.35)

The rank-one part is anisotropic and antisymmetric, and so represents the DM interaction. In terms of the

Cartesian components of the DM interaction vector d(AB) the irreducible spherical tensor components J(AB)
1q

are:

J(AB)
10 = � i

p
2d(AB)

z , (7.36)

J(AB)
1±1 = �

⇣

d(AB)
y ± id(AB)

x

⌘

. (7.37)

Finally we have the rank-two components of the two-ion interaction, which are symmetric and therefore

represent the ion-ion dipolar coupling interaction. In terms of the Cartesian tensor D(AB) the irreducible

spherical tensor components J(AB)
kq are given by:

J(AB)
20 =

r

3
2

D(AB)
zz , (7.38)

J(AB)
2±1 = ⌥

⇣

D(AB)
xz ± iD(AB)

yz

⌘

, (7.39)

J(AB)
2±2 =

1
2

⇣

D(AB)
xx � D(AB)

yy ± 2iD(AB)
xy

⌘

. (7.40)

From Equation 7.34 the irreducible spherical spin components satisfy the following identity when the ion

labels A and B are swapped:

T̂ (AB)
kq = (�1)kT̂ (BA)

kq . (7.41)

Hence, in order for the Hamiltonian to remain invariant under such a label change, the irreducible spherical

spatial components of the exchange coupling tensor must also satisfy

J(AB)
kq = (�1)k J(BA)

kq . (7.42)

This indicates that the isotropic coupling constant and dipolar-coupling tensor do not change sign when the
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ions are coupled in the opposite order, whereas the DM tensor undergoes a sign change.

7.5 The paramagnetic shift due to a coupled electronic spin system

subject to spin-orbit coupling

7.5.1 The EPR formalism

In this section we calculate the form of the paramagnetic chemical shielding tensor due to a cluster of coupled

transition-metal ions. We firstly consider the case where the exchange coupling constants are su�ciently large

that only the ground manifold is thermally populated, and secondly spend more time deriving the form of the

shielding tensor in the high-temperature paramagnetic regime to second order in 1/(kT )2.

In the former case where only the ground manifold is thermally populated, we can describe the metal

cluster as a single e↵ective spin S , which possesses a single g-, hyperfine, and ZFS tensor. The EPR

Hamiltonian is therefore of the form that we have already seen for a single metal ion in Equation 4.36,

and we can immediately write down the paramagnetic chemical shielding tensor:

�S = � µB

~�I
g ·Z ·A. (7.43)

This has the same form as the shielding due to a single transition-metal ion.

We have seen that in the high-temperature paramagnetic regime, so that kT dominates the exchange

coupling constants, we can treat the metal ions as being independent. One important consequence of this

is that we are able to assign to each ion its own g-, hyperfine, and ZFS interaction tensor. The exchange

Hamiltonian Ĥ0 introduced above can be included in the EPR Hamiltonian ĤEPR with the electronic Zeeman

and hyperfine interaction Hamiltonians. We consider a system containing a single spin-1/2 nucleus I that

is coupled to several paramagnetic centres. The following Hamiltonian represents the starting point for our

calculation of the paramagnetic chemical shielding tensor:

ĤEPR = µB

X

A

B0 · g(A) · Ŝ(A) +
X

A

Ŝ(A) ·A(A) · Î + Ĥ0 (7.44)

= µB

X

A

B0 · g(A) · Ŝ(A) +
X

A

Ŝ(A) ·A(A) · Î +
X

A

Ŝ(A) ·D(A) · Ŝ(A) +
X

A>B

Ŝ(A) · J (AB) · Ŝ(B). (7.45)
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The first and second terms represent the electronic Zeeman interactions of all the metal ions, and the hyperfine

couplings between these ions and the single nucleus. As before these interactions are the origin of the

electronic magnetic moment and hyperfine field operators m̂ and F̂ , the cross terms between which give

us the chemical shielding tensor according to the EPR formalism. The terms contained in Ĥ0, namely the

ZFS and two-spin exchange interactions, are independent of both the external magnetic field and the nuclear

magnetic moment, so their eigenfunctions and energies are used to calculate the Boltzmann average in the

expressions for the shielding tensor.

The details of the calculation of the paramagnetic shielding tensor are somewhat complicated, and are

contained in appendix E, with only the results given here. We can write the paramagnetic shielding as the

sum of three terms up to O(�2):

�S
i j = �

S ,1
i j + �

S ,2A
i j + �S ,2B

i j + O(�3). (7.46)

The first term �S ,1
i j is of order 1/(kT ), and there are two terms of order 1/(kT )2 which we have labelled �S ,2A

i j

and �S ,2B
i j .

The first term is calculated to be

�S ,1
i j = �

µB

3~�IkT

X

A

D

S (A)
�

�

�

�

�

�Ŝ (A)
1

�

�

�

�

�

� S (A)
E2 X

q

(�1)qg(A)
1q,iA

(A)
1�q, j, (7.47)

which is a sum of terms each of which has the same form as the expression we have already encountered in

Equation 6.27. Substituting in the expression for the reduced matrix element and simplifying the sum over q

as before, we obtain a familiar expression for the first-order shielding:

�S ,1 = � µB

3~�IkT

X

A

S (A)
⇣

S (A) + 1
⌘

g(A) ·A(A). (7.48)

We note that this contribution depends only on the g- and hyperfine tensors of the individual spins and is

independent of the ZFS, as before, and of the two-spin exchange tensors. Hence this term is a simple sum

of contributions from each paramagnetic centre, as it contains no information on how the ions interact with

each other.

The second term, which is of order 1/(kT )2, is also familiar to us, being a sum of expressions which have
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the same form as Equation 6.28:

�S ,2A
i j =

µB

~�I(kT )2

X

A

(�1)2S (A)
(2S (A) + 1)1/2

D

S (A)
�

�

�

�

�

�Ŝ (A)
1

�

�

�

�

�

� S (A)
E2 D

S (A)
�

�

�

�

�

�Ŝ (A)
2

�

�

�

�

�

� S (A)
E

⇥

8

>

>

>

>

<

>

>

>

>

:

1 2 1

S (A) S (A) S (A)

9

>

>

>

>

=

>

>

>

>

;

X

qq0q00
(�1)q+q0+q00g(A)

1q,iA
(A)
1q0, jD

(A)
2q00

0

B

B

B

B

B

B

B

B

B

@

1 2 1

�q0 �q00 �q

1

C

C

C

C

C

C

C

C

C

A

. (7.49)

This term can also be simplified using the same method as before to give

�S ,2A =
µB

30~�I(kT )2

X

A

S (A)
⇣

S (A) + 1
⌘ ⇣

2S (A) � 1
⌘ ⇣

2S (A) + 3
⌘

g(A) ·D(A) ·A(A), (7.50)

which depends on the ZFS tensors in addition to the g- and hyperfine tensors. Once again it is a simple sum

of contributions from each paramagnetic ion, which is again a result of it containing no information about the

couplings between the paramagnetic centres.

The third term, also of order 1/(kT )2 is given by

�S ,2B
i j =

µB

9~�I(kT )2

X

A,B,A

D

S (A)
�

�

�

�

�

�Ŝ (A)
1

�

�

�

�

�

� S (A)
E2 D

S (B)
�

�

�

�

�

�Ŝ (B)
1

�

�

�

�

�

� S (B)
E2

⇥
X

k00qq0q00
g(A)

1q,iA
(B)
1q0, j J

(AB)
k00q00
p

2k00 + 1

0

B

B

B

B

B

B

B

B

B

@

1 1 k00

q q0 q00

1

C

C

C

C

C

C

C

C

C

A

. (7.51)

This is an expression we have not encountered before, as it results from the exchange couplings between the

paramagnetic centres. On simplifying we obtain the concise expression

�S ,2B =
µB

9~�I(kT )2

X

A,B,A

S (A)
⇣

S (A) + 1
⌘

S (B)
⇣

S (B) + 1
⌘

g(A) · J (AB) ·A(B), (7.52)

which is now a sum of contributions from pairs of metal ions that have a non-zero coupling between them.

Each contribution is a cross term containing the g-tensor of one metal ion and the hyperfine tensor of another.

Note that if the exchange coupling constant between any two ions is zero, that pair of ions will not give a

joint contribution to the overall paramagnetic shielding tensor. To summarise, the final expression for the
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paramagnetic chemical shielding tensor is

�S = � µB

3~�IkT

X

A

S (A)
⇣

S (A) + 1
⌘

g(A) ·A(A)

+
µB

30~�I(kT )2

X

A

S (A)
⇣

S (A) + 1
⌘ ⇣

2S (A) � 1
⌘ ⇣

2S (A) + 3
⌘

g(A) ·D(A) ·A(A)

+
µB

9~�I(kT )2

X

A,B,A

S (A)
⇣

S (A) + 1
⌘

S (B)
⇣

S (B) + 1
⌘

g(A) · J (AB) ·A(B). (7.53)

The third term adds both isotropic and anisotropic contributions to both the contact and pseudo-contact shifts.

In this high-temperature regime, we may also write the paramagnetic shielding tensor in terms of Z-

tensors, as for non-interacting ions. In the present case, however, the expression is more complicated:

�S = � µB

~�I

X

A

g(A) ·
2

6

6

6

6

6

4

Z (A) ·A(A) +
X

B,A

Z (AB) ·A(B)

3

7

7

7

7

7

5

. (7.54)

The tensor Z (A) is the one-ion Z-tensor, and takes the form that we have seen before:

Z (A) =
S (A)

⇣

S (A) + 1
⌘

3kT
1 �

S (A)
⇣

S (A) + 1
⌘ ⇣

2S (A) � 1
⌘ ⇣

2S (A) + 3
⌘

30(kT )2 D(A), (7.55)

which depends on the single-ion g- and ZFS tensors. The tensor Z (AB) is the two-ion Z-tensor, which is given

by

Z (AB) = �
S (A)

⇣

S (A) + 1
⌘

S (B)
⇣

S (B) + 1
⌘

9(kT )2 J (AB), (7.56)

and contains all the information about the exchange coupling tensors.

7.5.2 Example: two coupled electronic spins-1/2

We complete this section with the illustration of a practical example of the paramagnetic shielding tensor due

to a cluster of coupled paramagnetic ions, with a particular emphasis on the temperature dependence of the

shielding. The example we choose is that of electronic spins-1/2 A and B with di↵erent isotropic g-factors

g(A) and g(B), which interact via an isotropic exchange interaction with coupling constant J (AB). We focus on

the paramagnetic shielding of a nuclear spin I which interacts with both paramagnetic centres via di↵erent

Fermi-contact coupling constants AFC,(A) and AFC,(B). This choice of isotropic interaction parameters results
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Figure 7.3: Plots of the temperature dependence of the isotropic paramagnetic shielding due to two coupled
electronic spins-1/2. The plot in (a) is for a positive exchange coupling constant of J (AB) = +100 cm�1,
and the plot in (b) corresponds to a negative exchange constant of J (AB) = �100 cm�1. In both cases the
temperature curves calculated from both the general EPR expression and the high-temperature second-order
approximation are included.

in a paramagnetic shielding that is also wholly isotropic. Since we are mainly interested in the temperature

dependence of the shielding this choice is su�cient, but we note here that the extension to anisotropic spatial

tensors is straightforward.

We begin by deriving the general paramagnetic shielding tensor from the EPR formula in Equation 4.103,

where the energy levels En are the eigenvalues of the singlet and triplet states of the exchange Hamiltonian

given in Equations 7.8–7.11, and the hyperfine and electronic magnetic moment operators are each the sum

of the operators for each paramagnetic centre. The general shielding tensor is isotropic and is given by

�S
gen =

µB�g�A � µB exp(2�J (AB))
h

�g�A + 2�⌃g⌃AJ (AB)
i

4~�IJ (AB) ⇥1 + 3 exp(2�J (AB))
⇤

, (7.57)

where �g = g(A) � g(B), �A = AFC,(A) � AFC,(B), ⌃g = g(A) + g(B), and ⌃A = AFC,(A) + AFC,(B) are the sums and

di↵erences of the g-factors and Fermi-contact coupling constants. For comparison we can also calculate the

shielding tensor to second-order in � �S
2nd using the expressions in Equations 7.54–7.56 to give

�S
2nd = �

µB

4~�IkT

⇣

g(A)AFC,(A) + g(B)AFC,(B)
⌘

� µBJ (AB)

8~�I(kT )2

⇣

g(A)AFC,(B) + g(B)AFC,(A)
⌘

. (7.58)

The general and second-order shielding tensors are plotted as a function of temperature in Figure 7.3

with both positive and negative exchange coupling constants. In both plots the expressions are simplified
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by assuming that g(A) = g(B) ⌘ g and AFC,(A) = AFC,(B) ⌘ AFC. The temperature plot of the paramagnetic

shielding for a positive exchange coupling constant of J (AB) = +100 cm�1 is shown in Figure 7.3 (a). Here

ferromagnetic alignment at low temperature results in a triplet electronic spin ground state with S = 1.

The shielding decreases as the temperature increases from 0 K, due to two factors. At temperatures below

J (AB)/k = 144 K the decrease in the shielding is primarily due to the thermal population of the excited

Zeeman energy levels of the triplet manifold, which reduces the Curie spin of this state; this temperature

variation can therefore be modelled with a Curie law with S = 1. As the temperature increases above

144 K the diamagnetic singlet excited state with S = 0 begins to be substantially populated. At still higher

temperatures where kT dominates the exchange coupling interaction the two spins-1/2 behave as independent

independent spins, each with its own separate contribution to the shielding. The total shielding is then equal

to the sum of the two independent contributions, as given by the first-order term in Equation 7.58, which

follows a Curie temperature law.

In Figure 7.3 (b) is shown the corresponding temperature plot of the shielding with a negative exchange

coupling of J (AB) = �100 cm�1. This interaction gives a diamagnetic singlet ground state with S = 0. The

temperature dependence is markedly di↵erent from the ferromagnetic case as the shielding first increases

with increasing temperature, before reaching a maximum at
�

�

�J (AB)
�

�

� /k = 144 K and then decreasing. Initially,

at temperatures below 40 K, only the singlet state is thermally occupied, and so there is no contribution to

the paramagnetic shielding tensor. The increase in the shielding above 40 K is due to the increasing thermal

population of the triplet state. This trend persists up to 144 K, above which both the singlet and triplet states

are substantially populated and the two spins-1/2 start to behave as independent Curie spins. The subsequent

decrease in the shielding with increasing temperature is then due to each Curie spin following a Curie law.

One interesting aspect of these plots is that they suggest that NMR can be used to determine the exchange

coupling constants of a cluster of coupled electronic spins by measuring the paramagnetic shielding tensors

at multiple temperatures.
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7.6 Ferromagnetic and antiferromagnetic interactions in solid insula-

tors: the Curie–Weiss law

We now extend the previous discussion on magnetic exchange coupling interactions to solid insulator ma-

terials containing an ensemble of metal ions which possess unpaired electrons. The interactions between

the unpaired electrons result in ferromagnetic or antiferromagnetic ordering of the bulk material, and we

will see how this ordering a↵ects the magnetic susceptibility and the paramagnetic shielding tensor of the

nuclei. Whereas in isolated metal-ion clusters the electronic energy levels form a discrete ladder, the case of

solid materials is considerably more complicated as the extremely large number of interactions results in a

continuum of energy levels. This means that whilst for isolated clusters we are able to define EPR parameters,

such as the g-tensor, which are properties of the entire coupled spin system with total spin S , it becomes much

less clear how to define such parameters for an infinite lattice of coupled electronic spins. Therefore we use

the simplest successful model for extended systems of coupled electronic spins, namely mean-field theory

and the Weiss model, which we apply to spin-only transition-metal ions.

7.6.1 The Weiss model of ferromagnetism

We describe the material with the simplest Hamiltonian that can be used to describe magnetic ordering, which

contains the electronic Zeeman and isotropic Heisenberg exchange terms:

Ĥ = µBge

X

A

B0 · Ŝ(A) � 2
X

A>B

J (AB)Ŝ(A) · Ŝ(B), (7.59)

where the sum is over the metal ions A and B. We assume that the ions are spin only, and therefore exhibit

no SO coupling. As is the case for the two-spin system of section 7.2, the exchange coupling constants J (AB)

between the nearest neighbours are positive for ferromagnetic alignment, and negative for antiferromagnetic

alignment.

In the Weiss model we approximate the above Hamiltonian with a mean field term which describes

the interaction of spin A with a mean molecular field Bmf that is due to the other spins. Furthermore we

restrict our discussion to an ensemble of metal ions of the same type, and consider only nearest-neighbour
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interactions. The molecular magnetic field experienced by ion A is given by

Bmf = �
2
µBge

X

B,A

J (AB)Ŝ(B), (7.60)

and is assumed to be the same for all the metal ions in the solid. The total e↵ective mean-field Hamiltonian,

which replaces Equation 7.59, is then

Ĥ = µBge

X

A

(B0 +Bmf) · Ŝ(A). (7.61)

This expression has the form of the Hamiltonian of an ensemble of spin-only paramagnetic ions in a magnetic

field B0 +Bmf. The mean molecular field is responsible for the ordering of the system at low temperature,

and so we assume that it is proportional to the bulk magnetization of the system:

Bmf = ⇤M , (7.62)

where ⇤ is the constant of proportionality that characterises the strength of the molecular field as a function

of the magnetization. We find it useful to employ an alternative expression for the mean molecular field in

terms of the Curie spin:

Bmf = ��
D

Ŝ
E

, (7.63)

where the minus sign is present because M and
D

Ŝ
E

have opposite sign. Note that we have dropped the

superscript (A) from the Curie spin, as a result of the assumption that all ions experience the same molecular

field. With these conventions, both ⇤ and � are positive for a ferromagnet.

The form of the Hamiltonian in Equation 7.61 implies that magnetic ordering of the electronic spins can

be achieved with the mean molecular field, even in the absence of an external field. At low temperatures this

leads to the formation of a spontaneous magnetization in a ferromagnet. As the temperature is raised, the

higher-energy states become occupied, and the magnetic ordering is disrupted, with all order being destroyed

above a transition temperature. At temperatures above the transition temperature, the material behaves as a

paramagnet. This is the Weiss model of ferromagnetism.

In order to elucidate the magnetic behaviour of a ferromagnetic material, and to derive the expression for
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the transition temperature above which we observe paramagnetic behaviour, we apply a modified form of the

general expression for the Curie spin in Equation 3.58:

D

Ŝ z
E

D

Ŝ z
E

sat

= BS (y), (7.64)

where the Brillouin function BS (y) is given in Equation 3.59. The quantity y has a similar expression to that

in Equation 3.59, but we have added the term ��
D

Ŝ z
E

to account for the mean molecular field:

y =
µBgeS

⇣

B0 � �
D

Ŝ z
E⌘

kT
. (7.65)

Note that we assume that B0, the Curie spin, and therefore the mean molecular field are all along z. We obtain

the conditions for spontaneous ferromagnetic alignment of the spins in the absence of an external field as

follows. We set B0 = 0, and rearrange Equation 7.65 in terms of
D

Ŝ z
E

/
D

Ŝ z
E

sat
(where

D

Ŝ z
E

sat
= �S ). In

combination with Equation 7.64 we now have two simultaneous equations that we must solve to obtain the

alignment conditions:

D

Ŝ z
E

D

Ŝ z
E

sat

=BS (y), (7.66)

D

Ŝ z
E

D

Ŝ z
E

sat

=
kTy
µBgeS 2�

. (7.67)

The second equation depends on the temperature, and so the solutions can be found by identifying the

temperature, referred to as the Curie temperature TC, below which we obtain solutions consistent with

spontaneous ferromagnetism. The solutions are illustrated graphically in Figure 7.4 (a), which shows as

a function of y a plot of both the Brillouin function, and the linear relation
D

Ŝ z
E

/
D

Ŝ z
E

sat
= kTy/(µBgeS 2�),

at three di↵erent temperatures. When the temperature is higher than TC there is only one solution to the two

simultaneous equations,
D

Ŝ z
E

/
D

Ŝ z
E

sat
= y = 0, indicating that there is no spontaneous magnetization in the

absence of the external field. At temperatures below TC we see that there are two solutions in addition to the

one at y = 0. These two further solutions, with non-zero values of
D

Ŝ z
E

/
D

Ŝ z
E

sat
, with equal magnitudes and

opposite signs, indicate the presence of a spontaneous magnetization, and therefore ferromagnetic behaviour.
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-1.0

Figure 7.4: Plot illustrating the conditions for spontaneous ferromagnetism in the absence of an external
field, and the e↵ect of a subsequently applied field. In (a) are shown plots of Equations 7.66 (in red) and
7.67 (black), with the second equation plotted at three di↵erent temperatures. Simultaneous solutions are
found at the points where the two curves intersect, and indicate the conditions under which the sample is
spontaneously magnetised. These plots indicate that the sample must be below a certain critical temperature
TC for spontaneous ferromagnetism to occur. The graph in (b) shows plots of Equations 7.70 and 7.71, which
illustrate the conditions for non-zero magnetisation in a ferromagnet in an externally applied magnetic field.
The e↵ect of the field is to magnetise the sample irrespective of the temperature.

The transition between the paramagnetic and ferromagnetic behaviour occurs at T = TC, which is the

temperature at which the gradient of the linear relation in Equation 7.67 is exactly equal to the gradient of the

Brillouin function at y = 0. Equating the two gradients, we obtain an expression for the Curie temperature in

terms of the mean-field parameter:

S + 1
3S

=
kTC

µBgeS 2�
(7.68)

TC =
µBgeS (S + 1)�

3k
. (7.69)

The application of an external magnetic field B0 results in a non-zero magnetization at all temperatures.

This can be deduced from Equations 7.64 and 7.65, by rearranging the latter as before, but this time retaining
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a non-zero B0. The result is the following pair of simultaneous equations:

D

Ŝ z
E

D

Ŝ z
E

sat

=BS (y), (7.70)

D

Ŝ z
E

D

Ŝ z
E

sat

= � B0

�S
+

kTy
µBgeS 2�

. (7.71)

Equation 7.71 di↵ers from Equation 7.67 by the additive factor �B0/(�S ). The e↵ect of this factor is to shift

the straight line parallel to the y-axis so that it crosses
D

Ŝ z
E

/
D

Ŝ z
E

sat
= 0 at y = µBgeS B0/kT , rather than y = 0,

with the result that the line always intersects the Brillouin function at a non-zero value of the Curie spin for

all temperatures. Hence, for all temperatures above and below the Curie temperature, there is a non-zero net

magnetization, as shown in Figure 7.4 (b). The implication is that there is always an energetic advantage for

the magnetic moments of a ferromagnet to line up with the external field. We return to this topic in section

7.6.3, when we discuss the magnetic susceptibility of magnetically ordered systems.

7.6.2 The Weiss model of antiferromagnetism

In the Weiss model of antiferromagnetism we apply the same basic assumptions as for ferromagnetism,

namely that the ions are of the same species, that we only consider nearest-neighbour interactions, and that

we can replace the terms in the exchange Hamiltonian with a mean molecular field term. However we

have to modify the phenomenological form of the molecular field in Equation 7.63 in the following way.

The negative exchange coupling constants result in the magnetic moments of the nearest-neighbour ions

lying antiparallel to one another. Hence, from a conceptual point of view, we can divide the ions into two

interpenetrating sub-lattices, where within each sub-lattice the magnetic moments at low temperature are

aligned the same way. In one sub-lattice all the magnetic moments point ‘up’, and in the other they point

‘down’. In the simple cubic oxides MO, such as NiO and MnO, which adopt the rock-salt structure, all the

nearest neighbours of a particular M2+ ion on one sub-lattice must belong entirely to the other sub-lattice. In

addition the simplest implementation of mean-field theory assumes that the exchange interactions only occur

between nearest neighbours, so that a particular spin interacts only with spins on the other sub-lattice. The

result is that the mean molecular field on the former must be proportional to the magnetization of the latter.

Whilst this represents a clear simplification of the physics of antiferromagnetism, it is nevertheless su�cient

251



to introduce most of the important features of the magnetic ordering. However we note that in real materials

next-nearest-neighbour interactions are not negligible. This situation requires a modification of the model

discussed here, which is presented in section 7.6.4.

Therefore, according to the Weiss model, the molecular fields on the ‘up’ and ‘down’ sub-lattices B+mf

and B�mf are given by

B+mf = � �
D

Ŝ
E�

(7.72)

B�mf = � �
D

Ŝ
E+
, (7.73)

where
D

Ŝ
E±

are the Curie spins of the two sub-lattices, which we label + and �, and the mean-field constant

� is negative for antiferromagnetic ordering. The Curie spin of each sub-lattice, and therefore the conditions

for spontaneous magnetization in each of the two sub-lattices can be found in a similar way as for the

ferromagnetic systems in the previous section. In the absence of an external field, the
D

Ŝ
E±

are given by

D

Ŝ z
E±

D

Ŝ z
E

sat

= BS (y±), (7.74)

where

y± = �
µBgeS�

D

Ŝ z
E⌥

kT
, (7.75)

and we have assumed that the Curie spins are aligned along ±z. The two sub-lattices are equivalent, and di↵er

only in the opposite directions of their spontaneous magnetization vectors. Therefore

D

Ŝ z
E+
= �

D

Ŝ z
E�
=

D

Ŝ z
E

, (7.76)

where
D

Ŝ z
E

is the magnitude of the Curie spin of each sub-lattice, which is now given by

D

Ŝ z
E

D

Ŝ z
E

sat

=BS (y), (7.77)

y =
µBgeS�

D

Ŝ z
E

kT
. (7.78)
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The situation is now exactly the same as for the ferromagnetic system in section 7.6.1. We rearrange Equation

7.78 to obtain a pair of simultaneous equations that can be solved in the same way:

D

Ŝ z
E

D

Ŝ z
E

sat

=BS (y), (7.79)

D

Ŝ z
E

D

Ŝ z
E

sat

= � kTy
µBgeS 2�

. (7.80)

These two equations can be solved using Figure 7.4, which shows that for temperatures below a certain

transition temperature we obtain a spontaneous magnetization in each sub-lattice, which disappears above

the transition temperature. This transition temperature is referred to as the Néel temperature TN, and can be

shown to have an expression in terms of the mean-field parameter that is similar to the Curie temperature:

TN = �
µBgeS (S + 1)�

3k
. (7.81)

We note that there is an additional sign compared to the expression for TC. This is because for antiferromag-

netic alignment � is negative, and the minus sign ensures that TN is positive.

At this point we also note that, although each sub-lattice exhibits spontaneous magnetization below TN,

the magnetization vectors of the two sub-lattices are equal in magnitude and opposite in direction. This means

that the material as a whole has zero magnetization in the absence of an external magnetic field. This magnetic

transition may also be accompanied by a change in structure. For example MnO undergoes a rhombohedral

distortion from the high-temperature cubic structure on cooling below the Néel temperature.

7.6.3 The magnetic susceptibility

We have derived expressions for the Curie and Néel temperatures, below which a solid material shows

ferromagnetic and antiferromagnetic behaviour respectively in the absence of an external magnetic field. Now

we must move further and consider the e↵ect of an external magnetic field when applied to these materials,

as it is under these conditions we observe the NMR spectrum. At this point we assume that, under the

experimental conditions, we are operating in a temperature regime where T > TC or T > TN, and the material

behaves as a paramagnet. Before we calculate the magnetic susceptibility we note that, so far, we have treated
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the ferromagnetic and antiferromagnetic systems di↵erently in order to acknowledge the di↵erences between

the two models. However, since we have now shown that both systems behave in the same way above their

respective transition temperatures we can unify the descriptions. In doing so, we note that the expressions for

TC and TN di↵er only in their signs. Therefore we can define a single parameter, called the Weiss constant ⇥,

which is given by

⇥ =
µBgeS (S + 1)�

3k
. (7.82)

When we are referring to a ferromagnetic material the mean-field parameter � is positive, and so ⇥ is positive

and is equal to the Curie temperature, ⇥ = TC. On the other hand antiferromagnetic materials have negative

�, and so ⇥ is negative and given by ⇥ = �TN.

In the presence of an external magnetic field B0 of the strength used in high-resolution NMR we can trun-

cate the Brillouin function at the first-order term in y. For a ferromagnetic material we take the expressions

for the Curie spin and the quantity y in Equations 7.64 and 7.65 and obtain:

D

Ŝ z
E

= � S BS (y) (7.83)

⇡ � S + 1
3

y (7.84)

= � µBgeS (S + 1)
3k

0

B

B

B

B

B

B

@

B0 � �
D

Ŝ z
E

T

1

C

C

C

C

C

C

A

(7.85)

= � ⇥
�

0

B

B

B

B

B

B

@

B0 � �
D

Ŝ z
E

T

1

C

C

C

C

C

C

A

. (7.86)

For an antiferromagnetic material the treatment is similar with an additional step. We take the expressions for

the Curie spins of the two sub-lattices in Equation 7.74 and the quantities y± in Equation 7.78, and modify

the latter to include B0. The e↵ect of the external field is to make both Curie spins more negative, so that they

are no longer equal and opposite. We average them to obtain the total Curie spin
D

Ŝ z
E

=
✓

D

Ŝ z
E+
+

D

Ŝ z
E�◆
/2,

for which we obtain the same expression as for the ferromagnetic case in Equation 7.86. Henceforth we can

treat both cases using this same expression for the Curie spin, which rearranges to give

D

Ŝ z
E

= � ⇥B0

�(T � ⇥)
. (7.87)
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The z component of the average electronic magnetic moment operator is then

hµ̂zi = � µBge
D

Ŝ z
E

(7.88)

=
µBge⇥B0

�(T � ⇥)
. (7.89)

Finally, substituting this last expression in Equation 3.89 gives the magnetic susceptibility

� =
µ0µ2

Bg2
eS (S + 1)

3k(T � ⇥)
. (7.90)

This expression has the same form as the susceptibility of an ensemble of non-interacting paramagnetic spins,

with the exception that the 1/T Curie temperature dependence has been replaced by a 1/(T �⇥) dependence.

The temperature dependence of the susceptibility in Equation 7.90 is an example of the Curie–Weiss law.

7.6.4 The Néel temperature and Weiss constant in antiferromagnetic materials

The mean-field theory of antiferromagnetism that we have presented so far indicates that the Néel temperature

and the Weiss constant have the same value within a sign, i.e. ⇥ = �TN. However we should bear in

mind that the two quantities are physically distinct, with the Néel temperature being the temperature below

which we observe antiferromagnetic ordering, and the Weiss constant being a parameter that characterises the

magnetic susceptibility in the paramagnetic regime. The two parameters are therefore measured in di↵erent

temperature regimes, and may in fact take very di↵erent values for some antiferromagnetic materials. For

example in materials such as MnO, FeO, and CoO the measured Weiss constants have greater magnitude

than the Néel temperature, |⇥| > TN ; in the case of MnO TN and ⇥ are 116 K and �510 K respectively

[187]. The discrepancy can be explained when we note that in the mean-field theory of section 7.6.2 it was

assumed that exchange interactions occur only between nearest neighbouring spins on di↵erent sub-lattices,

so that the mean field experienced by one sub-lattice is due entirely to the other sub-lattice. However this is

generally not true, and we may have to account for next-nearest-neighbour interactions between spins on the

same sub-lattice, which introduces an additional mean-field term.
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We can write down the two mean fields experienced by the + and � sub-lattices, B+mf and B�mf, as

B+mf = ⇠
D

Ŝ
E+ � �

D

Ŝ
E�

(7.91)

B�mf = ⇠
D

Ŝ
E� � �

D

Ŝ
E+
, (7.92)

where the quantity ⇠ parameterises the strength of the mean field from the same sub-lattice. If we now repeat

the derivation of the Néel temperature in section 7.6.2, we now obtain the following expression:

TN = �
µBgeS (S + 1)(� + ⇠)

3k
. (7.93)

If the field parameter ⇠ is positive the Néel temperature is lower than predicted by the previous expression in

equation 7.81. If the recalculate the magnetic susceptibility in the paramagnetic regime according to section

7.6.3, we obtain the Curie–Weiss expression in Equation 7.90, but with a di↵erent expression for the Weiss

constant:

⇥ =
µBgeS (S + 1)(� � ⇠)

3k
, (7.94)

which for positive ⇠ has a lower value that than predicted by Equation 7.82. Therefore this formulation of the

mean-field theory predicts that |⇥| � TN, with the equality only being observed when ⇠ = 0.

We emphasize again that the Néel temperature and Weiss constant are distinct quantities that measure

fundamentally di↵erent aspects of the bulk magnetic properties of the material. The former is measured from

the experimental magnetic susceptibility data at temperatures in the vicinity of which we observe the onset

of magnetic ordering. Therefore TN is the temperature below which we see antiferromagnetic behaviour,

and above which we are in the paramagnetic regime. On the other land the Weiss constant parameterizes

the magnetic susceptibility in the paramagnetic regime at temperatures above TN, and so in principle is

independent of the lower-temperature regime where we observe magnetic ordering. As we will see in section

7.7, the paramagnetic shielding tensor is also parameterized by the Weiss constant.

In materials such as the metal oxides where |⇥| � TN the temperature at which we acquire NMR data may

be larger than the Néel temperature, but lower than the magnitude of the Weiss constant, i.e. TN < T < |⇥|.

For example this is the case for FeO where TN = 116 K and ⇥ = �610 K, and thus considerable residual

(antiferromagnetic) interactions persist at typical operating temperatures of around 300 K [187]. In this case
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the material is in the paramagnetic regime as we are above the Néel temperature and there is no magnetic

ordering. A classic example where TN ⌧ |⇥| occurs is in frustrated magnets. In the conceptually simplest

example of these materials, the triangular lattice, three sublattices are coupled antiferromagnetically, and

thus no simple ordering scheme exists. The extent of residual magnetic couplings at room temperature is

determined by the strength of the antiferromagnetic couplings, but long range magnetic ordering may not

occur until temperatures much below |⇥|, if at all in the case of spin-glasses.

For completeness, we note that ferrimagnets are materials with two or more magnetic sublattices that are

coupled antiferromagnetically (i.e., ⇥ is negative) but because the magnetic moments of the two sublattices

are not equal, ferromagnetism is observed below TN.

7.6.5 The magnetic susceptibility in terms of the isotropic exchange coupling

So far we have examined the magnetic properties of paramagnetic solid insulator materials by employing a

phenomenological approach using mean-field theory. We now round o↵ this section by linking this model to

the explicit exchange interactions between the magnetic ions and deriving the expression linking the Weiss

constant to the exchange coupling constants for transition-metal ions. We focus on the isotropic exchange

interactions as these dominate the e↵ects of anisotropic exchange in determining the magnetic properties of

these materials.

We start by writing the total Hamiltonian Ĥ in Equation 7.59 with the isotropic exchange interaction

terms written with irreducible spherical tensors:

Ĥ = µBge

X

A

B0 · Ŝ(A) +
X

A,B,A

J(AB)
00 (11)T̂ (AB)

00 (11). (7.95)

The second term describes all the exchange interactions, and comprises a sum of terms, each of which is

the product of an electronic spin part T̂ (AB)
00 (11) and a spatial part J(AB)

00 (11). The former is the direct-product

irreducible spherical tensor operator of two one-spin operators Ŝ (A)
1q1

and Ŝ (B)
1q2

, and is written as

T̂ (AB)
00 (11) = �

r

1
3
Ŝ(A) · Ŝ(B). (7.96)

The rank-zero spatial tensor of the exchange interaction is written in terms of the isotropic exchange coupling
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constant �2J (AB) as follows

J(AB)
00 (11) = 2

p
3J (AB), (7.97)

where we have retained the factor of two as before. Note that we are restricting the discussion to the isotropic

exchange interaction. A central assumption of mean-field theory is that each ion experiences exactly the same

mean molecular magnetic field. The same assumption is made here, and is equivalent to assuming that all the

ions are of the same species, and that the network of exchange interactions experienced by a particular ion

A is the same for all the other ions in the lattice (or sub-lattice in the case of antiferromagnetic materials).

Therefore the magnetic susceptibility tensor calculated for ion A, �i j, corresponds to the total susceptibility

tensor per metal ion for the whole material.

The magnetic susceptibility tensor per ion can be calculated to second order in 1/(kT ) from the EPR

formalism. Following a similar calculation in appendix E, and after much algebraic manipulation, the

expression is

�i j =µ0µ
2
B

2

6

6

6

6

6

6

4

�

!

X

B

X

qq0
(�1)q+q0g(A)

1q,ig
(B)
1q0, jTrS

⇣

Ŝ (A)
1�qŜ (B)

1�q0
⌘

��
2

!

X

�

X

�>�

X

qq0
(�1)q+q0g(A)

1q,ig
(B)
1q0, j J

(��)
00 (11)TrS

⇣

Ŝ (A)
1�qŜ (B)

1�q0 T̂
(��)
00 (11)

⌘

3

7

7

7

7

7

7

5

, (7.98)

where we have only retained the Zeeman terms with a rank one spin operator, we have written the g-tensor

components of ion A g(A)
1q,i in their most general form, and ! is the total number of electronic spin states. The

trace TrS is a sum over all the states of the entire extended spin system. This expression can be simplified

after the tedious task of computing the two traces, following the calculations presented in appendix E. The

first-order term in the susceptibility �(1)
i j is given by:

�(1)
i j =

µ0µ2
B

kT
1
!

X

B

X

qq0
(�1)q+q0g(A)

1q,ig
(B)
1q0, jTrS

⇣

Ŝ (A)
1�qŜ (B)

1�q0
⌘

(7.99)

=
µ0µ2
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3kT
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=
µ0µ2

B

3kT

X

q

(�1)qg(A)
1q,ig

(A)
1�q, j

D

S (A)
�

�

�

�

�

�Ŝ (A)
1

�

�

�

�

�

� S (A)
E2
, (7.101)

where the reduced matrix element of Ŝ (A)
1 is evaluated in the basis functions of ion A. As a result of the
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mean-field approximation, all the ions are of the same type and therefore have the same spin S , and all

the reduced matrix elements are equal to
p

S (S + 1). The second-order susceptibility term �(2)
i j is more

complicated, and is equal to

�(2)
i j = �

µ0µ2
B

(kT )2
1
!

X

B

X

�>�

X

qq0
(�1)q+q0g(A)

1q,ig
(B)
1q0, j J

(��)
00 (11)TrS

⇣

Ŝ (A)
1�qŜ (B)

1�q0 T̂
(��)
00 (11)

⌘

(7.102)
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We now acknowledge that we are assuming that the transition-metal ions have a spin-only ground state, and

write the g-factors for each ion g(A)
1q,i in terms of ge:
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. (7.106)

The sum of the product of g-factors that occurs in the expressions for both the first- and second-order

susceptibility tensors then takes the simple form:

X

q

(�1)qg(A)
1q,ig

(B)
1�q, j = g2

e�i j. (7.107)

We note that, as a consequence of both the Zeeman and exchange interactions being spatially isotropic, the
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susceptibility � is also isotropic. The final expression is

� =�(1) + �(2) (7.108)

=
µ0µ2

Bg2
eS (S + 1)
3kT

+
2µ0µ2

Bg2
eS 2(S + 1)2

9(kT )2

X

B,A

J (AB). (7.109)

The first-order term is independent of the exchange coupling constants, and is equal to the expression we

derived previously for a system of non-interacting transition-metal ions. The exchange interactions only

contribute to the susceptibility to second order, with this term being proportional to the sum of the exchange

coupling constants describing the couplings to a particular ion [184]. For ferromagnetic ordering all the

coupling constants are positive, and the second-order susceptibility is positive. On the other hand, if we

assume that the nearest-neighbour exchange couplings are dominant, then antiferromagnetic ordering results

in a sum of coupling constants that is negative, and the second-order susceptibility is also negative. If there

are no exchange couplings this term is zero, as we have also seen previously for non-interacting metal ions.

Now we need to establish the connection between Equation 7.109 and the susceptibility from the mean-

field model in Equation 7.90. The former is written as a Taylor series in 1/(kT ), so to facilitate the comparison

we also expand the latter as a Taylor series giving

� =
µ0µ2

Bg2
eS (S + 1)
3kT

+
µ0µ2

Bg2
eS (S + 1)

3kT 2 ⇥. (7.110)

The first term in Equation 7.110 is equal to the susceptibility from an ensemble of non-interacting metal ions,

as for Equation 7.109. The second term depends on the Weiss constant, which contains all the information

about the exchange interactions, in the same way that only the second term of Equation 7.109 depends on the

exchange coupling constants. If we equate the two we obtain an expression for the Weiss constant in terms

of the sum of exchange coupling constants [184]:

⇥ =
2S (S + 1)

3k

X

�,↵

J (AB). (7.111)

Considering only the nearest-neighbour interactions, we can make a similar observation to before: ferromag-

netic order is characterised by positive nearest-neighbour exchange constants, and therefore a positive Weiss

constant, whilst antiferromagnetic ordering is characterised by negative exchange coupling constants, and
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therefore a negative Weiss constant.

7.7 The paramagnetic shielding tensor in solid insulator materials

Equation 7.53 is a general expression for the paramagnetic shielding tensor in either a system containing

a cluster of transition-metal ions, or a solid insulator, and includes the e↵ects of anisotropic exchange, g-

anisotropy, and the ZFS interaction. Many solid systems, such as battery materials, can be approximated

by a simpler formula which neglects SO coupling, and in which the dependence on the isotropic exchange

coupling constants is replaced by a Curie–Weiss temperature dependence [5, 53, 54]. The link between this

model and Equation 7.53 is now examined in detail. As for the magnetic susceptibility the isotropic exchange

interactions, rather than anisotropic exchange, dominate the form of the paramagnetic shielding tensor, and

so we focus exclusively on the former interactions.

7.7.1 The Curie–Weiss expression for the paramagnetic shielding tensor

In the spin-only limit we replace the g-tensor with the free-electron g-factor, and remove both any SO

coupling contributions to the ZFS tensor, and the DM part of the exchange coupling constants. In addition we

will also ignore the NR parts of the ZFS and the anisotropic exchange interaction, which are due to dipolar

couplings between the electrons and are expected to be small. The paramagnetic shielding tensor in a solid

insulator containing only spin-only transition-metal ions of the same species is now given by a simplified

form of Equation 7.53:

�S = �µBgeS (S + 1)
3~�IkT

X

A

A(A) � 2µBgeS 2(S + 1)2

9~�I(kT )2

X

A

X

B,A

J (AB)A(B). (7.112)

So far we have made no assumptions about the exchange coupling constants. However in order to make the

link with the Curie–Weiss law we need to introduce a mean-field approximation. As we have already seen

this equates to stating that the network of exchange couplings experienced by any one metal ion is the same as

for all metal ions. This means that in the second term of Equation 7.112, the sum over the exchange coupling
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constants is independent of one of the indices, and we can partition the double sum as follows:

X

A

X

B,A

J (AB)A(B) =
X

B,A

J (AB)
X

�

A(�), (7.113)

where we have labelled the index in the sum of the hyperfine coupling constants as � to emphasise the

separation from the sum over B. We can also simplify the sum over the hyperfine coupling tensors further. We

have already seen that for each metal ion the hyperfine coupling tensor A(A) that we include in the expression

for the paramagnetic shielding as derived from the EPR formalism represents the coupling per electron. This

is because the di↵erent electrons reside in di↵erent orbitals, each of which may couple di↵erently to the

nuclear spin. However, at this point, it proves convenient to write the shielding tensor in terms of the total

hyperfine coupling constantA, due to all the electrons in all the metal ions that couple to the nucleus:

A = 2S
X

A

A(A). (7.114)

With these two simplifications the paramagnetic shielding tensor is now

�S = �µBge(S + 1)
6~�IkT

A � µBgeS (S + 1)2

9~�I(kT )2

X

B,A

J (AB)A. (7.115)

We can also write down a phenomenological form of the shielding tensor. We have seen that the magnetic

susceptibility per metal ion of an ensemble of spin-only transition-metal ions, as given in Equation 7.90, has a

Curie–Weiss temperature dependence, and since the shielding is proportional to the susceptibility, we expect

the shielding tensor to have the form

�S = � µBgeS (S + 1)
3~�Ik(T � ⇥)

X

A

A(A) (7.116)

= � µBge(S + 1)
6~�Ik(T � ⇥)

A. (7.117)

Expanding Equation 7.117 as a Taylor series in 1/(kT ), and equating terms of order 1/(kT )2 as we did for the

magnetic susceptibility, we obtain the same expression for the Weiss constant as we calculated in Equation

7.111. This establishes the Curie–Weiss temperature dependence of the paramagnetic shift at temperatures

above |⇥| that is often assumed in the calculation and interpretation of the paramagnetic shifts of solid
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insulating materials [53, 236].

7.7.2 The scaling factor

In section 3.4 we introduced the idea of Kim et al. [53] that the paramagnetic shielding tensor can be thought

of as a quantity that is calculated with all the e↵ective electronic spins aligned with ferromagnetic ordering,

and then scaled down into the paramagnetic regime by a factor that accounts for the thermal occupation of

the excited electronic spin states. The quantity that is averaged is

� A
2~�I B0

, (7.118)

where A is the total hyperfine coupling tensor calculated in the ferromagnetic regime from the electron

density of all the unpaired electrons from all the paramagnetic centres coupled to the nucleus. This expression

is the same as the one quoted in section 3.4 for non-interacting metal ions, and we again note that the

ferromagnetic phase of the material in which the calculation ofA is performed need not necessarily represent

the ground state.

The factor which scales this quantity to give the paramagnetic shielding tensor is the ratio of the Curie

spins in the paramagnetic and saturated (i.e. spin-aligned) regimes. The saturated Curie spin
D

Ŝ z
E

sat
is simply

�S , as before, and the paramagnetic Curie spin is given by Equation 7.87, and contains the Curie–Weiss

temperature dependence. The scaling factor is therefore

D

Ŝ z
E

para
D

Ŝ z
E

sat

=
⇥B0

S�(T � ⇥)
(7.119)

=
µBge(S + 1)B0

3k(T � ⇥)
(7.120)

=
�B0

µ0µBgeS
, (7.121)

and has been written in terms of both the local parameters, and the bulk magnetic susceptibility. To go to

the second line we have used the expression for the Weiss constant in terms of the mean-field parameter � as
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given in Equation 7.82. The scaled paramagnetic shielding tensor is therefore

�S = � A
2~�I B0

D

Ŝ z
E

para
D

Ŝ z
E

sat

(7.122)

= � �

2µ0µBge~�IS
A (7.123)

= � µBge(S + 1)
6~�Ik(T � ⇥)

A. (7.124)

These expressions open up two possibilities for calculating paramagnetic shifts in the solid state. In both cases

the hyperfine coupling tensor can be calculated using either quantum chemistry or DFT methods [53, 210,

237]. The scaling factor can then be calculated either from (1) the experimental magnetic susceptibility or the

experimental Weiss constant [53], which have been determined independently from the NMR measurement,

or (2) the computed values of the exchange couplings from which a Weiss constant can be calculated.

If SO coupling e↵ects need to be considered, we can employ an alternative form of the scaling factor,

as shown in the absence of magnetic ordering in section 4.4. Here the scaling factor is given by the ratio of

the paramagnetic and saturation electronic magnetic moments, in terms of an empirical e↵ective magnetic

moment µe↵:
hm̂zipara

hm̂zisat
=

µ2
e↵B0

3µBgeS k(T � ⇥)
. (7.125)

The paramagnetic shielding tensor is then:

�S = �
µ2

e↵

3µBge~�Ik(T � ⇥)
A. (7.126)

This is the same as Equation 4.201, except with the inclusion of the Weiss constant. As discussed in section

4.4 this form of the shielding tensor is approximate, as it neglects SO coupling e↵ects in the hyperfine tensor

and does not account for magnetic anisotropy, which gives rise to the PCS. However it has been successfully

used to calculate contact shifts due to first-row d-block ions for a range of solid battery electrode materials

[30, 54–56].
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7.7.3 A word of caution

In the light of the discussion in section 7.7.2, and the Curie–Weiss temperature dependence of the param-

agnetic chemical shielding tensor, there is the very attractive prospect of determining the Weiss constant

experimentally from the measured temperature dependence of either the isotropic shift or the SA. For exam-

ple, at temperatures above |⇥|, the isotropic paramagnetic shift �S
iso has the dependence

�S
iso =



T � ⇥ , (7.127)

where the constant  is equal to

 =
µBge(S + 1)

6~�Ik
AFC, (7.128)

andAFC is the total Fermi-contact coupling constant. Equation 7.127 can be rearranged to give

1
�S

iso

=
T

� ⇥

, (7.129)

from which one would plot 1/�S
iso versus T to obtain ⇥ from the y-intercept, and then relate this to the

exchange coupling constants. However there are a number of problems with this approach. The first is that the

temperature range over which NMR data can be acquired is generally limited either by the available hardware,

or the nature of the material, which may undergo a structural phase transition above or below a certain

temperature, or decompose. In such cases there will be a significant error introduced when extrapolating the

line in Equation 7.129 back to T = 0 K to obtain the intercept, and in some cases the errors will be su�ciently

large that even the sign of ⇥ cannot be obtained. This problem is exacerbated for large Weiss constants when

we note that Equation 7.129 is only valid at temperatures above |⇥|. In practice, this problem can be overcome

by taking the susceptibility measured at the temperature of the NMR experiment and using this to calculate

the scaling factor.

The second, and more fundamental, problem is that Equation 7.127 is only valid for spin-only transition-

metal ions. For metal ions with SO coupling, the resulting g-anisotropy and ZFS splitting tensor combine

to give a contribution that varies as 1/(kT )2 in addition to the contribution from the exchange couplings, as

seen in Equation 7.53. The measured Weiss constant is then a function not only of the exchange coupling

constants, but also of the g- and ZFS tensors, and the di↵erent contributions cannot be separated without
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further experimental or computational data.

7.7.4 The magnetic susceptibility and paramagnetic shielding tensors in solid mate-

rials with more than one species of paramagnetic metal ion

The previous discussion in sections 7.6.3, and 7.7.1–7.7.3 focussed on solid materials with only one species

of transition-metal ion, and neglected the e↵ects of SO coupling. We lift the first assumption here, and delay

the discussion of SO coupling e↵ects to section 7.10.

The presence of only one species of transition-metal ion in the material allows us to relate the bulk

magnetic properties, such as the magnetic susceptibility and Weiss constant, to the local paramagnetic shield-

ing in a straightforward manner. This is because each metal ion has the same local magnetic properties,

which are equal to the average of those of the ensemble. If the material contains more than one species of

transition-metal ion this assertion is no longer true, as the average of the bulk properties fails to distinguish

the di↵erences between the ions. It therefore appears that we can no longer use the bulk magnetic properties

to calculate the shielding tensor. However we show here that a simple modification of the discussion of the

scaling factor does indeed allow us to do this with no significant di�culty.

The trick is to break the material up into interpenetrating sub-lattices, each one of which contains a single

species of metal ion. For example a material containing two species of metal ion 1 and 2 can be separated into

two sub-lattices, which contain exclusively ions of type 1 and type 2 respectively. We note that this treatment

is analogous to that used in the Weiss model of antiferromagnetism, where the two sub-lattices contained

metal ions with spin-up and spin-down electron spins. In the present case we can associate a magnetic

susceptibility per ion �(A) with the sub-lattice with metal ions A. The sum of these sub-lattice susceptibilities

gives the total magnetic susceptibility per ion �:

� =
1
N

X

A

�(A), (7.130)

where N is the number of distinct species of metal ion in the material. Each metal ion species has electronic

spin S (A), and can also be associated with its own Weiss constant ⇥(A), which describes the exchange interac-

tions associated with ion A, which are assumed to be the same as for all ions of species A. In the spin-only
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approximation this allows us to write �(A) as

�(A) =
µ0µ2

Bg2
eS (A)(S (A) + 1)

3k(T � ⇥(A))
, (7.131)

where the corresponding Weiss constant is

⇥(A) =
2S (A)

⇣

S (A) + 1
⌘

3k

X

B,A

J (AB). (7.132)

The exchange coupling constants in the expression for the Weiss constant of ion A in Equation 7.132 describe

both the couplings within the sub-lattice A, and also between each ion A and the metal ions in the other

sub-lattices.

The total paramagnetic shielding tensor of a particular nuclear spin �S can be written as the sum of the

contributions �S ,(A) from the metal ions from all the sub-lattices:

�S =
X

A

�S ,(A). (7.133)

In general each contribution �S ,(A) from a sub-lattice A contains the hyperfine interactions from all the ions

in that sub-lattice. We now see that relating the bulk magnetic properties to the shielding tensor is actually

straightforward. We simply scale the hyperfine tensors A(A) from each sub-lattice separately according to

either Equation 7.120 or 7.121, using the susceptibility and Weiss constants pertaining to the relevant sub-

lattice. The sub-lattice contributions to the shielding tensor �S ,(A) are then given by:

�S ,(A) = � A
(A)

2~�I B0

D

Ŝ (A)
z

E

para
D

Ŝ (A)
z

E

sat

(7.134)

= � �(A)

2µ0µBge~�IS
A(A) (7.135)

= � µBge(S (A) + 1)
6~�Ik(T � ⇥(A))

A(A). (7.136)

This process is of particular importance for studying mixed transition-metal ion materials, or materials

containing metal ions of mixed valency.
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Figure 7.5: Illustration of the direct isotropic exchange interaction between two paramagnetic metal ions at
low temperature. One example is given, which shows the exchange that results from �-overlap between two
eg orbitals of metal ions M1 and M2, each one of which contains an unpaired electron, as is shown in (a). The
overlap between both atomic orbitals gives a bonding molecular orbital 1�, and an anti-bonding molecular
orbital 2�, as shown in (b). It can be seen that the two electrons are paired in the 1� orbital, leaving the 2�
vacant. The electron pairing results in an overall spin of S = 0, and hence antiferromagnetic alignment.

7.8 Types of isotropic exchange interaction

In the discussion of the magnetic exchange interactions and their e↵ect on the susceptibility and paramagnetic

shielding tensors we have hitherto avoided a detailed discussion of the physical nature of the interactions. We

turn to this topic now.

7.8.1 Direct exchange

The first mechanism involves the direct interaction between unpaired electrons of neighbouring metal ions,

and is known as direct exchange. The interaction is due to the overlap of the atomic orbitals of the two

ions, an example of which is shown in Figure 7.5 (a). Here the two metal ions M1 and M2 each possess a

half-occupied orbital of eg symmetry, which overlap to form molecular orbitals of � symmetry. The resulting

alignment of the two unpaired electrons at low temperature, i.e. below the magnetic ordering temperature TC

or TN, can be understood by employing the linear combination of atomic orbitals (LCAO) model. This is

the foundation of the Goodenough–Kanamori rules, which allow the prediction of the sign of the exchange

coupling constant [238–240]. In this case the LCAO model predicts the formation of two molecular orbitals,

which are the 1� bonding and 2� anti-bonding orbitals. As shown in Figure 7.5 (b) the energy of the 1� lies

below that of the two eg atomic orbitals, while the energy of the 2� lies above. Therefore the two unpaired

electrons both occupy the lower-energy 1� orbital, with configuration 1�2, and must do so with paired spins

to satisfy the Pauli principle. This results in the S = 0 spin state having the lower energy, and the electrons are
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aligned antiferromagnetically. We note that the S = 1 spin state can only be reached with the higher-energy

electronic configuration of 1�12�1, where occupancy of the anti-bonding orbital causes the bond to break.

Although the direct interaction is the most obvious exchange mechanism, it is not the most prevalent,

due to the di�culty of obtaining su�cient overlap between the metal orbitals. For example direct exchange

is unlikely to be e↵ective between lanthanide ions, since the contracted nature of the 4 f orbitals means that

there is negligible overlap over typical atomic spacings. For d-transition metals the d-orbitals extend further

from the nucleus, and so direct overlap is more common particularly for the less radially-contracted 3d ions

on the left-hand side of the 3d series, and the larger 4d and 5d ions. However other exchange mechanisms

are generally more important in determining the magnetic properties of d-transition-metal materials.

7.8.2 Superexchange

Many ionic solid materials, such as metal oxides, exhibit magnetic ordering at low temperatures even though

there is no direct overlap between the metal-ion orbitals. In these cases the exchange interaction is indirect,

and occurs via an intermediate bridging anion, such as O2�. This mechanism, which is clearly longer

range than direct exchange, is referred to as superexchange. The superexchange mechanism is dominated

by the overlap of the two metal orbitals with the orbitals of the bridging anion, and may be ferro- or

antiferromagnetic depending on the exact nature of the overlap. An example of each is shown in Figure

7.6. In Figure 7.6 (a) is shown the orbital overlap that occurs when the metal ions M1 and M2 and O2� ion

are arranged as M1–O–M2 with a bridging angle of 180�. The two half-filled metal eg orbitals both overlap

with the filled oxygen 2p� orbital to give three molecular orbitals of � symmetry, labelled 1�, 2�, and 3�,

as shown in Figure 7.6 (b). The four electrons fill the 1� and 2�orbitals as two pairs, giving a configuration

of 1�22�2 with S = 0. This superexchange interaction is therefore antiferromagnetic.

A di↵erent result arises in the situation shown in Figure 7.6 (c) where the M1–O–M2 bridging angle

is 90�. In this case an unfilled t2g orbital of each metal ions overlaps with a di↵erent filled oxygen 2p⇡

orbital. Therefore the orbitals formed by M1–O overlap are orthogonal to those formed by M2–O overlap.

The resulting molecular orbitals are shown in Figure 7.6 (d), and comprise a doubly-degenerate 1⇡ bonding

level, and a doubly-degenerate 2⇡ anti-bonding level. The low-temperature electronic configuration of the

six electrons is 1⇡42⇡2, i.e. the two 1⇡ orbitals are filled with two pairs of electrons, with the remaining

two electrons in the 2⇡ orbitals. The lowest-energy arrangement of these latter two electrons is that they
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Figure 7.6: Illustration of the indirect isotropic superexchange interaction between two paramagnetic metal
ions via a bridging anion at low temperature. Two examples are given which show the superexchange that
results from the overlap between the atomic orbitals of two metal ions M1 and M2, each one of which contains
an unpaired electron, and the filled 2p orbitals of a bridging O2� anion. In the first example, shown in (a)
two metal eg orbitals interact with one filled oxygen 2p� orbital with a 180� bridging angle to give molecular
orbitals of � symmetry. Three such orbitals are formed, labelled 1�, 2�, and 3�, as shown in (b). The four
electrons occupy the bonding 1� and 2� orbitals in pairs, leaving the anti-bonding 3� orbital vacant. The
total spin is S = 0, and hence the interaction is antiferromagnetic. A di↵erent example is shown in (c) and
(d), in which the bridging angle is 90�, and involving two orthogonal atomic orbitals of the bridging oxygen.
The t2g orbitals of M1 and M2 each overlap with a di↵erent oxygen 2p⇡ orbital, resulting in two separate
⇡ interactions as shown in (c). The energy levels are shown in (d), from which can be seen that a pair of
degenerate 1⇡ bonding orbitals and a pair of degenerate 2⇡ anti-bonding orbitals are formed. Four of the
six electrons fill the two 1⇡ as two pairs, with the remaining two occupying the 2⇡. According to Hund’s
first rule these latter two electrons occupy di↵erent 2⇡ orbitals with parallel spins, thus giving ferromagnetic
alignment with S = 1.
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Figure 7.7: Illustration of the indirect isotropic double-exchange interaction between two paramagnetic metal
ions of di↵erent valency. The two interacting ions are the Mn3+ and Mn4+ cations in octahedral coordination
environments, and with electronic configurations of t3

2ge1
g and t3

2g respectively. The single eg electron on the
Mn3+ ion undergoes hopping to a vacant eg orbital of Mn4+ as shown by the red arrow. This hopping occurs
without a change in electron polarization, and so is energetically most favourable when the electrons of Mn3+

are spin-aligned so they are parallel to those of Mn4+, according to Hund’s first rule. The double-exchange
interaction is therefore ferromagnetic.

occupy di↵erent 2⇡ orbitals with parallel spins, according to Hund’s first rule. The lowest-energy spin

state is therefore S = 1 and the alignment is ferromagnetic. It is generally observed that the ferromagnetic

superexchange interaction is weaker than antiferromagnetic superexchange. It is also worth noting that, in

the second example in Figure 7.6 (c) and (d), direct overlap between the two metal t2g orbitals may occur

if the distance is su�ciently short, resulting in an antiferromagnetic direct exchange interaction in addition

to the ferromagnetic superexchange interaction. This has been suggested to happen in Li2MnO3, with direct

exchange between the two Mn4+ ions proving to be the dominant interaction, resulting in antiferromagnetic

alignment [241].

7.8.3 Double exchange

Some metal oxide materials contain metal ions which are present in more than one oxidation state and exhibit

a ferromagnetic exchange interaction. This is due to the double exchange mechanism, which is illustrated in

7.7 for an interaction between Mn3+ and Mn4+, which have free-ion electronic configurations of 3d4 and 3d3.

In an octahedral ligand field the electronic configurations are t3
2ge1

g and t3
2g, and have e↵ective spins of S = 2

and S = 3/2 due to Hund’s first rule. In the double-exchange mechanism the eg electron of the Mn3+ ion can

hop into a vacant eg orbital of the Mn4+ ion on a neighbouring site. This hopping electron does not undergo

a change in spin polarization, and so this process is only energetically favourable if the polarization of this

electron matches that of the t2g electrons in the destination ion. This means that the Mn4+ t2g electrons must
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have the same polarization as the Mn3+ t2g electrons, which in turn requires ferromagnetic alignment of the

two metal ions.

Double exchange is also an important exchange mechanism in iron materials of mixed valency, i.e.

containing Fe2+ (3d6) and Fe3+ (3d5).

7.8.4 Ruderman–Kittel–Kasuya–Yosida exchange

The final mechanism we consider here is Ruderman–Kittel–Kasuya–Yosida (RKKY) exchange, which is

observed in metals. The interaction occurs between two localized e↵ective electronic spins via the conduction

electrons, hence it is an indirect exchange mechanism and may occur over long distances. It can be shown

that the exchange constant varies with distance r as

J (AB) / cos(2kFr)
r3 , (7.137)

i.e. the sign oscillates with distance, and so the interaction may be either ferro- or antiferromagnetic [187].

7.9 Predicting the Fermi-contact shift with the Goodenough–Kanamori

rules

In solid-oxide materials the isotropic paramagnetic shift is usually dominated by electron transfer processes,

and is therefore given by the Fermi-contact shift. Therefore we now examine the problem of interpreting and

rationalizing the Fermi-contact shifts obtained in such materials. It turns out that we can use the Goodenough–

Kanamori rules [238–240] to make simple predictions about the Fermi-contact shift which have proved to

represent a practical and intuitive method with which to interpret the NMR spectra of, for example, a series

of paramagnetic battery materials [5]. The concepts introduced in this section are therefore closely related to

those for predicting the sign of the isotropic exchange coupling constants introduced in section 7.8.

The isotropic Fermi-contact shift can be determined from Equation 7.124 to be

�FC
iso =

µBge(S + 1)
6~�Ik(T � ⇥)

AFC, (7.138)
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where we have focussed on a single sub-lattice containing a single species of metal ion. However the ideas

discussed here are easily generalized to materials containing more than one metal-ion species, and also to

systems with no magnetic ordering, such as paramagnetic molecules in solution. The Fermi-contact shift is

proportional to the Fermi-contact coupling constant, which is given by Equation 2.171 and reproduced below

for convenience:

AFC =
2µ0µBge~�I

3
⇢↵��(0). (7.139)

Thus the Fermi-contact shift is proportional to, and has the same sign as, the unpaired electron density ⇢↵��(0)

that is within the s-orbital of the nucleus. In general accurate values of ⇢↵��(0) require either quantum-

chemical or DFT calculations. However it may be possible to determine and/or rationalise the sign of ⇢↵��(0),

and hence the sign of the Fermi-contact shift, more simply by using the Goodenough–Kanamori rules [238–

240]. The rules stem from the fact that, on the formation of a bonding interaction between two atoms, the

atomic orbitals of compatible symmetry of the two atoms combine to form a molecule orbital, or ‘bond’. The

electrons present in both atomic orbitals are now shared between the two atoms. In particular any unpaired

electrons present on one atom become delocalised, or partially transferred, into the atomic orbitals of the

second, and if the second orbital is an s-orbital this delocalisation mechanism results in a Fermi-contact shift.

Alternatively the s-orbital may form a bond with an unoccupied metal orbital. If this metal orbital receives

electron density as a result this density must be spin-aligned to any other unpaired electrons in other metal

orbitals. This results in unpaired electron density with a well-defined polarization being transferred to the

s-orbital. This polarization mechanism also results in a Fermi-contact shift. The essence of the Goodenough–

Kanamori rules is that this electronic spin transfer occurs so that the total electronic spin angular momentum

of the system is conserved.

An illustration of the use of the Goodenough–Kanamori rules to predict the sign of the Fermi-contact shift

is given by three examples in Figure 7.8. Part (a) shows the simplest case, where a half-filled atomic orbital

of a metal ion M overlaps with a vacant s-orbital on the atom X with the NMR-active nucleus. The single

unpaired spin-up electron on M is shared between the two atoms with a certain proportion being delocalised

into the vacant orbital of X. The transferred electron density must have the same spin polarisation as the

original electron, and so is also spin up. The result is that the net spin density ⇢↵��(0) is positive, and hence

the Fermi-contact shift is also positive. The second example, shown in (b), is the case where the half-filled
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Figure 7.8: Schematic illustrating the transfer of unpaired-electron spin density between the orbitals of a
transition-metal ion M and the vacant s-orbital of the NMR-active nucleus X, possibly via the filled orbital of
a bridging atom O. The unpaired electrons formally present in each orbital are illustrated with black arrows.
The transfer of polarisation is indicated with a curved red arrow, and the transferred spin is shown with a small
red arrow. In (a) is shown the direct delocalisation of an unpaired electron on M to the vacant orbital on X.
Both the unpaired electron and the transferred polarisation have the same ‘up’ polarisation, giving a positive
spin density ⇢↵��(0) at X, and therefore a positive Fermi-contact shift. In (b) is shown the spin transfer that
occurs when the M orbital, which contains a single spin-up electron, interacts with a vacant X-orbital via
the filled orbital of the bridging atom O. There is transferred polarisation from the O-orbital of both the ‘up’
and ‘down’ electrons, with the latter being transferred to the M-orbital to satisfy the Pauli principle, and the
former being transferred to X to give both a positive spin density and Fermi-contact shift. The situation in
(c) is similar with the exception that the M-orbital that interacts with the filled O-orbital is unoccupied. The
result is that the ‘up’ electron is transferred to the vacant M-orbital so as to satisfy Hund’s first rule and
be spin-aligned with the unpaired electron in the lower-energy half-filled M-orbital. The ‘down’ electron is
therefore transferred to X, giving a negative spin density at X, which results in a negative Fermi-contact shift.
The situations in (a) and (b) are examples of unpaired-electron delocalization, and the situation in (c) is an
example of unpaired-electron polarization.
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M-orbital overlaps with the vacant s-orbital on X via a filled atomic orbital of a bridging atom, say oxygen

O. In this case the delocalisation is a transfer of two electrons from the O atom, one to each of the other two

atoms M and X. Since the unpaired electron already present on M is spin up, any additional electronic spin

partially transferred from O must be of the opposite polarisation so as to satisfy the Pauli exclusion principle.

The remaining spin-up electron on O is then partially transferred into the s-orbital of X, thus giving a net

positive spin density at the nucleus and a positive Fermi-contact shift. In the final example (c) the M-orbital

involved in the overlap with O and X is vacant, and the only electrons present in the molecular orbitals are

the pair on O. The M-orbital that contains the spin-up unpaired electron, shown as having lower energy in (c),

does not have compatible symmetry with either the O- or X-orbitals, and so does not participate directly in

any covalent bonding. The unpaired electron density that is now transferred from O to the vacant M-orbital

must have the same polarisation as the unpaired electron in the second M-orbital, i.e. spin-up, so as to satisfy

the requirements of Hund’s first rule, and therefore the electronic spin density transferred from O to X is spin

down. This polarization mechanism results in a net negative spin density at the X nucleus, and therefore a

negative Fermi-contact shift.

Figure 7.9 shows how the Goodenough–Kanamori rules are applied in practice using the solid lithium

manganates as examples [5]. In these materials M =Mn4+ has a 3d3 electronic configuration, which becomes

t3
2g in octahedral coordination sites, i.e. the t2g orbitals are each half filled, and the eg are vacant. The O

atom forms the bridge via the filled 2p orbitals, and X is the Li+ ion which possesses a vacant 2s orbital

into which is transferred the unpaired electron density. The metal–lithium interactions are formed by sets

of Mn4+–O2�–Li+ bonds, which are characterised by the angle subtended at the O atom. The signs of the

Fermi-contact shifts can be rationalised easily in two special cases of bond geometry, namely when the bond

angle is either 90� or 180�. Figure 7.9 (a) shows the overlap of the orbitals for a 90� bond angle. A half-filled

t2g orbital of Mn4+ is of the correct symmetry to overlap with one of the filled 2p⇡ orbitals of O to give a

⇡-bond, which in turn overlaps with the vacant Li+ 2s orbital. As discussed above and shown in Figure 7.8

(b), this form of overlap gives a positive Fermi-contact shift for both 6Li and 7Li. In addition, direct overlap

between the t2g and 2s orbitals is possible, which also results in a positive shift as shown in Figure 7.8 (a). In

this bonding geometry the vacant eg orbitals make no contribution as their symmetry properties result in there

being no net overlap between them and the Li+ 2s, either directly or through any bridging O 2p orbital. By

contrast a 180� bonding angle gives the overlap of orbitals shown in Figure 7.9 (b). In this case the t2g–2p⇡
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t2g 2p
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2p 2s

t2g
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Mn4+

Mn4+

(a)

(b)

O

O

Li+

Li+

Figure 7.9: Illustration of the orbital overlap and electron spin transfer in an Mn4+–O–Li arrangement of
ions in the solid lithium manganates, for 90� and 180� angles subtended at O [5]. The unpaired electrons
formally present in each orbital are illustrated with black arrows. The transfer of polarisation is indicated
with a curved red arrow, and the transferred spin is shown with a small red arrow. In (a) is shown the orbital
overlap that occurs in a Mn4+–O–Li link with a 90� angle. Both direct overlap between the M t2g and the Li+
2s orbitals, indicated by the dashed line, and overlap via the filled bridging O 2p orbitals are possible, both of
which result in a positive Fermi-contact shift via electron delocalization as shown in Figure 7.8 (a) and (b).
In (b) is shown the orbital overlap that occurs with a 180� bond angle, which results in a negative electronic
spin density being transferred to the 2s via polarization, and hence a negative Fermi-contact shift as shown
in Figure 7.8 (c).
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⇡-bond has symmetry that is incompatible with that of the Li+ 2s orbital, and so does not contribute directly.

However the �-overlap between a vacant eg orbital and a filled O 2p� gives a �-bond which does have a net

overlap with the Li+ 2s. The electronic spin transferred to the eg must be spin up, so as to be aligned with

the unpaired electrons in the t2g which, as shown in Figure 7.8 (c), results in both a negative electronic spin

density transferred to the Li+ 2s, and a negative Fermi-contact shift for 6Li and 7Li.

7.10 The magnetic susceptibility and paramagnetic shielding tensors

in solid materials due to metal ions with SO coupling

We now extend the Curie–Weiss description of the paramagnetic shielding tensor in solid insulator materials

by including the e↵ects of SO coupling. In particular we once again provide a link between the bulk magnetic

properties, namely the magnetic susceptibility tensor and the Weiss constant, and the local paramagnetic

shielding tensor. Whilst we include the e↵ects of SO coupling on the g- and ZFS tensors, we continue to

neglect the SO contributions to the exchange interactions, namely the DM interaction, as well as the NR

dipolar coupling. The justification for this is that isotropic exchange is the most important contribution to the

interactions between the metal ions.

In the following discussion we assume for simplicity that only one species of transition-metal ion is

present. However we note that the extension to more than one species is easily made by using the sub-lattice

model of section 7.7.4. The assumption of one species of metal ion is not as trivial a point as it first appears.

The reason is that it restricts all the metal ions to have the same g- and ZFS tensors. Importantly this means

that not only must, for example, the g-tensors have the same principal components, but they must also have

PAFs with the same orientation. Even if the unit cell contains only one metal ion, the solid may not satisfy

the single-species condition. For example consider the battery cathode material LiFePO4, the unit cell of

which contains one Fe2+ site. However closer inspection reveals that there are actually four Fe2+ sites that are

related to each other by rotational symmetry operations. This means that, whilst the four Fe2+ ions have the

same principal values for the g- and ZFS tensors, their PAFs have di↵erent orientations which are related to

each other by the same rotational symmetry operations. Therefore in order to describe this system we would

require four separate sub-lattices.
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The magnetic susceptibility tensor

Assuming only one species of transition-metal ion we can write down the magnetic susceptibility tensor per

metal ion �i j to second order in 1/(kT ) as an extension of Equation 7.98:

�i j =µ0µ
2
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(�)
1�q00

⌘

��
2

!

X

B

X

�>�

X

qq0
(�1)q+q0g(A)

1q,ig
(B)
1q0, j J

(��)
00 (11)TrS

⇣
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, (7.140)

where we have included the second-order contribution from the ZFS tensor. As for Equation 7.98, and with

reference to appendix E, we simplify the expressions for the traces to obtain:

� =
µ0µ2

BS (S + 1)
3kT

g · gT �
µ0µ2

BS (S + 1)(2S � 1)(2S + 3)
30(kT )2 g ·D · gT +

2µ0µ2
BS 2(S + 1)2

9(kT )2 g · gT
X

B,A

J (AB).

(7.141)

We have seen the first two terms before, which are simply the first- and second-order contributions that also

occur in systems with no magnetic ordering, and which depend on the matrix products g · gT and g ·D · gT

respectively. The third term, which depends on the exchange coupling constants, is analogous to the second

term in Equation 7.109, with the factor g2
e replaced with g ·gT . Note that the form of this susceptibility tensor

requires the metal ions to have the same g-tensor g and ZFS tensor D.

In order to link the susceptibility Equation 7.141 Weiss constant we require a phenomenological expres-

sion for � that depends on ⇥. For this we propose the following modified version of Equation 7.90, into

which we have introduced the g- and ZFS tensors:

� =
µ0µ2

BS (S + 1)
3k(T � ⇥)

g · gT �
µ0µ2

BS (S + 1)(2S � 1)(2S + 3)
30k2(T � ⇥)2 g ·D · gT . (7.142)

In order to link this expression to Equation 7.141 we expand the former as a Taylor series in 1/(kT ) to second

order, which gives us

� ⇡
µ0µ2

BS (S + 1)
3kT

g · gT �
µ0µ2

BS (S + 1)(2S � 1)(2S + 3)
30(kT )2 g ·D · gT +

µ0µ2
BS (S + 1)
3kT 2 g · gT⇥. (7.143)
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On comparing terms in this expression and Equation 7.141 with the same temperature dependence we obtain

the same expression for the Weiss constant as calculated previously in Equation 7.111.

The paramagnetic shielding tensor

We now calculate the SO coupling expression for the paramagnetic shielding tensor, where we include the

SO coupling contributions to the g-, ZFS, and hyperfine tensors, but only consider the isotropic exchange

coupling constants. From the discussion in appendix E we obtain the following expression for the shielding

tensor:
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Following the calculation of the expressions for the traces we obtain the following expression:

�S = �µBS (S + 1)
3~�IkT
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X
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(7.145)

where the first term is the first-order contribution that depends only on the g-tensor, the second term is

a second-order contribution that depends on the g- and ZFS tensors, and the third term contains all the

information about the exchange couplings. The first step in linking this expression with the Weiss constant is

to write the many-electron hyperfine tensors A(A) in terms of the total hyperfine tensors A using Equations

7.113 and 7.114:

�S = �µB(S + 1)
6~�IkT

g ·A + µB(S + 1)(2S � 1)(2S + 3)
60(kT )2 g ·D ·A � µBS (S + 1)2

9~�I(kT )2

X

B,A

J (AB)g ·A. (7.146)
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The phenomenological expression for the paramagnetic shielding tensor is given by an expression that is

analogous to the magnetic susceptibiity tensor in Equation 7.142:

�S = � µB(S + 1)
6~�Ik(T � ⇥)

g ·A + µB(S + 1)(2S � 1)(2S + 3)
60k2(T � ⇥)2 g ·D ·A (7.147)

Expanding this as a Taylor series in 1/(kT ) and comparing the second-order terms, we once again obtain the

expression for the Weiss constant in Equation 7.111. Equation 7.147 is therefore a practical expression for

the paramagnetic shielding tensor in a solid exhibiting magnetic ordering. If the solid contains more than one

species of metal ion, we may repeat the analysis of section 7.7.4, and treat Equation 7.147 as the contribution

to the shielding tensor from a single sub-lattice containing one species of metal ion. For the example of

LiFePO4 introduced above, this would require the specification of four sub-lattices, each corresponding to a

Fe2+ ion with a di↵erent PAF orientation.

7.11 Exchange interactions between transition-metal ions and lanthanides

Throughout this chapter we have focussed exclusively on the exchange interactions between transition-metal

ions, and the consequences for the paramagnetic shift. Before we leave this topic we very briefly note the

additional e↵ects that we may expect from an exchange interaction between a transition-metal ion and a

lanthanide ion. For such a spin system it has been shown that the exchange Hamiltonian is given by the

expressions in Equations 7.29, 7.30, and 7.31 to which have been added terms of higher degree in the

electronic spin operators [231]. The most important of these is the biquadratic exchange, which takes the

form [242]
X

A>B

K(AB)
⇣

Ŝ(A) · Ŝ(B)
⌘2
, (7.148)

where the sum is restricted to only include interactions between one transition-metal ion and one lanthanide

ion, and K(AB) is the biquadratic exchange coupling constant. These terms can be included in the irreducible

spherical tensor form of the Hamiltonian in Equation 7.32 by adding terms of spatial and spin ranks greater

than two to give a new Hamiltonian of the form

Ĥ0 =
X

A

X

kq

(�1)qD(A)
kq Ŝ (A)

k�q +
X

A>B

X

kq

(�1)qJ(AB)
kq (k1k2)T̂ (AB)

k�q (k1k2). (7.149)
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This Hamiltonian can be used in conjunction with the EPR formalism to derive a general form of the

paramagnetic chemical shielding tensor, using the method in appendix E.

7.12 The paramagnetic shift in metals

We now turn to the final topic of this chapter, which is the paramagnetic shift in metals. This shift was first

described by Townes and Knight, and is referred to as the Knight shift [243]. It is interesting to compare

the form of the Knight shift in metals with the corresponding paramagnetic shifts in insulators. We will see

that there are striking similarities, as well as important di↵erences. The latter are due to the di↵erences in

the paramagnetism in the two materials. We have seen that in insulators, the unpaired electrons are largely

localized to the paramagnetic centres, which act as e↵ective electronic spins S . In the paramagnetic regime,

above the ordering temperature, these e↵ective spins act independently of each other which can result in large

magnetic susceptibilities and induced magnetic moments. On the other hand, in metals at zero temperature

the electrons occupy orbitals orbitals that are delocalized across the entire lattice with energies up to the

Fermi energy. The electrons are paired, and so the material is diamagnetic. On increasing the temperature the

orbitals just above the Fermi level are partially populated at the expense of those just below and the material

exhibits paramagnetism. The key di↵erence to insulators is that in metals only the electrons close to the

Fermi level contribute to the paramagnetism, and these are delocalized across the entire lattice. The resulting

magnetic susceptibilities are therefore much smaller than in insulators. We should note that the form of the

Knight shift is also valid for the paramagnetic shifts of semiconductors [244]. We derive the form of the

Knight shift here, following the protocols of Slichter [245] and Abragam [183].

7.12.1 The Knight shift

Like all paramagnetic shifts, the Knight shift of a nuclear spin is due to the hyperfine interaction with the

unpaired electrons. For metals the correct form of the hyperfine interaction Hamiltonian is given in Equation

2.191. We note that, as for other paramagnetic systems, the electronic relaxation dynamics are several orders

of magnitude faster than the nuclear spin dynamics. This means that, in e↵ect, the nuclear spins actually

interact with the average electronic magnetic moments. We account for this by modifying the hyperfine

coupling Hamiltonian in Equation 2.191 by computing its expectation value with the wavefunction that is
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the product of the spatial ground state of Equation 2.26, and a spin wavefunction which is the correctly

symmetrized product of the one-electron functions |mi. We make the assumption that the metal has cubic

symmetry, and that therefore we only need to consider the contact interaction, and furthermore we do not

consider SO coupling e↵ects. The resulting Knight shift is therefore purely spatially isotropic, and takes the

form of a Fermi-contact shift. The role of the spin-dipolar interaction and the susceptibility anisotropy would

be to introduce an SA, which for metals is generally smaller than the isotropic shift [183].

Following these assertions and assumptions the Hamiltonian Ĥ describing the nuclear spin interaction

with the average electronic magnetic moments is given by the contact part of Equation 2.191 following the

calculation of the expectation value in the many-electron space-spin wavefunction. Since �(rl) and ŝl are

one-electron space and spin operators and the one-electron wavefunctions are orthogonal, the only terms of

the wavefunction in Equation 2.26 that contribute are those with no permutations of the electron labels. The

Hamiltonian is therefore

Ĥ =
2
3
µ0µBge~�I

X

l

⌦

�kl (rl) |�(rl)| �kl (rl)
↵ hml |ŝl|mli · Î , (7.150)

where we have placed the nucleus at the origin r = 0. Whilst the sum is over all the electrons l in the metal,

we note that only those electrons present in partially filled orbitals actually make a net contribution to both

the hyperfine interaction and Ĥ. As discussed before these electrons occupy states that lie close to the Fermi

level. To simply this Hamiltonian we replace the sum over l with a double sum over the wavevectors k in the

partially occupied band, as the other filled bands make no net contribution, and electronic spin states m. We

also note that, as the external magnetic field is applied along z, the nuclear spin system is quantised along z

and we retain only the component Îz in the scalar product. The result is

Ĥ =
2
3
µ0µBge~�I Îz

X

k,m

|�k(0)|2 m fm(k) (7.151)

=
2
3
µ0µBge~�I Îz

X

k,m

1
V
|uk(0)|2 m fm(k), (7.152)

where we have included the Fermi–Dirac distribution function fm(k) for electrons in spin state m. This

function provides the necessary weighting to the state populations as a result of the non-zero temperature,

and replaces the Boltzmann distribution function used for insulators.
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At this point we are able to make the connection between this interaction and the bulk magnetic properties

of the metal. When an external magnetic field is applied to the metal, the electrons with wavevector k are

partially aligned with the field, and can be described by an average magnetic moment per electron
⌦

µ̂k,z
↵

.

This is given by

⌦

µ̂k,z
↵

= �µBge

X

m

m fm(k) (7.153)

= �1
2
µBge

h

f↵(k) � f�(k)
i

, (7.154)

which is proportional to the di↵erence in populations of electrons with di↵erent polarizations in the state k.

Written in terms of the average electronic magnetic moments the Hamiltonian becomes

Ĥ = �2
3
µ0~�I Îz

X

k

|�k(0)|2 ⌦

µ̂k,z
↵

. (7.155)

This form of the expression emphasises that electrons far from the Fermi level, for which f↵(k) ⇡ f�(k), have

zero net magnetic moment as indicated by Equation 7.154, and do not contribute. In complete analogy with

paramagnetic molecules in solution, or paramagnetic insulators, the average electronic magnetic moment due

to wavevector k is proportional to B0:
⌦

µ̂k,z
↵

=
1
µ0
�kB0, (7.156)

where the �k is the magnetic susceptibility per electron with wavevector k. The sum of these susceptibilities

divided by the volume of the system is the total magnetic susceptibility per unit volume, which for metals is

called the Pauli susceptibility �P:

�P =
1
V

X

k

�k. (7.157)

In terms of the individual magnetic susceptibilities the Hamiltonian is

Ĥ = �2
3
~�I B0 Îz

X

k

|�k(0)|2 �k. (7.158)

This clearly has the form of a chemical shielding Hamiltonian:

Ĥ = ~�I�
K
isoB0 Îz, (7.159)
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with an isotropic shielding �K
iso. In the shift convention we write the Knight shift K = ��K

iso as

K =
2
3

X

k

|�k(0)|2 �k. (7.160)

We can see that this form of the Knight shift is a sum of terms due to each electron, with each term

proportional to the product of the density of that electron at the nucleus |�k(0)|2, and its isotropic magnetic

susceptibility �k. Therefore each term is equivalent in form to a Fermi-contact shift from one electron,

but with two di↵erences. Firstly the magnetic susceptibility per electron has a di↵erent form to that for

independent electrons, as discussed in section 7.12.2. Secondly we note that the Knight shift is written as

a sum over electronic spatial states that appear to be independent, whereas for a paramagnetic centre in an

insulator we combine the electrons into a single e↵ective spin with a total unpaired spin density. This appears

to be a significant di↵erence, but we now show that we can rewrite the expression for the Knight shift in terms

of a single contribution that has a form closer to that of the Fermi-contact shift.

We can simplify the sum over k by recalling that as the volume of the system becomes infinitely large,

the spacing between the allowed values of k decreases until the wavevector space becomes a continuum, and

we can replace the sum with an integral over energy as in Equation 2.30:

lim
V!1

1
V

X

k

|�k(0)|2 �k =
Z

D

|�k(0)|2
E

Ek
�(Ek)g(Ek)dEk. (7.161)

Here we have acknowledged that the magnetic susceptibilities �k only depend on k via the energies Ek,

and so the susceptibilities are written as �(Ek). However the electron spin densities |�k(0)|2 have a more

complicated dependence on k, and so must be averaged over all values of k that have the same energy Ek

before we compute the integral. We recall that the only electrons that contribute to the Knight shift are those

that are close to, i.e. within a range kT of, the Fermi level. We also assume that the variation of the average

of the spin density
D

|�k(0)|2
E

Ek
over this range of energies is small, and so we can replace the average at

energy Ek with the average over the Fermi energy. This allows us to bring the factor of
D

|�k(0)|2
E

EF
outside
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the integral to give

lim
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1
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k
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�(Ek)g(Ek)dEk (7.162)

=
D

|�k(0)|2
E

EF
�P, (7.163)

where to go to the last line we have written the total Pauli susceptibility as the integral

�P =

Z

�(Ek)g(Ek)dEk. (7.164)

The Knight shift now takes the simple form

K =
2
3

D

|�k(0)|2
E

EF
�PV. (7.165)

This expression is a contact shift proportional to the total susceptibility of the metal �PV , and the average

one-electron spin density at the Fermi level
D

|�k(0)|2
E

EF
. To further investigate the form of the Knight shift,

we need an expression for the Pauli susceptibility.

7.12.2 The Pauli magnetic susceptibility

The origin of the paramagnetic magnetic moment in a metal induced by an external magnetic field B0 can be

understood from Figure 7.10. In the absence of the external field the electrons are divided into two bands with

spin polarization ↵ and �, referred to as the spin-up and spin-down bands respectively. Both bands have the

same density of states at all energies, given by Equation 2.33, and both bands are equally populated as shown

in Figure 7.10 (a). When we apply the magnetic field the electrons acquire an additional Zeeman energy term

µBgeB0m, where m is the magnetic-quantum number for a single electron. Hence the spin-up band is shifted

up in energy by µBgeB0/2, and the spin-down band is shifted down by the same amount, as shown in Figure

7.10 (b). In order to maintain the lowest-energy electronic configuration, electrons move from the spin-up

band to the spin-down band, resulting in a greater population of the latter and hence a net non-zero electronic

magnetic moment. The expressions for the density of states for the two bands g↵(E) and g�(E) are modified
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Figure 7.10: Illustration of the e↵ect of an external magnetic field on the band structure of a metal. In the
absence of the field the spin-up (↵) and spin-down (�) electrons have the same band structure and are equally
populated, as shown by the left- and right-hand density-of-states plots in (a). When the field is applied the
spin-up band is shifted to higher energy by an amount µBgeB0/2, and the spin-down band is shifted down by
the same amount, as shown in (b). The populations of the levels change so as to maintain the same average
Fermi level, with the result that electrons transfer from the spin-up band to the spin-down band.
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from those in Equation 2.33 to account for the field, and are given by:

g↵(E) = 1
2 g

⇣

E � 1
2µBgeB0

⌘

, (7.166)

g�(E) = 1
2 g

⇣

E + 1
2µBgeB0

⌘

. (7.167)

The numbers of electrons per unit volume in the spin-up and spin-down bands n↵ and n� are then given by

the integral expressions:

n↵ =
1
2

Z 1

0
g

⇣

E � 1
2µBgeB0

⌘

f (E)dE, (7.168)

n� =
1
2

Z 1

0
g

⇣

E + 1
2µBgeB0

⌘

f (E)dE. (7.169)

We recall that the Zeeman energy is much smaller than the thermal energy µBgeB0 ⌧ kT , and so we can

expand the expressions for the density of states as Taylor series,

g
⇣

E ± 1
2µBgeB0

⌘

= g(E) ± 1
2µBgeB0g0(E) + O

✓

⇣

1
2µBgeB0

⌘2
◆

, (7.170)

from which we can clearly see that the spin-down band has a greater population than the spin-up band.

The magnetization, i.e. the net magnetic moment per unit volume, is proportional to the di↵erence in spin

populations:

M = 1
2µBge

⇣

n� � n↵
⌘

. (7.171)

Expanding the density of states functions as Taylor series we obtain the following expression for M:

M =
1
4
µ2

Bg2
e B0

Z 1

0
g0(E) f (E)dE (7.172)

=
1
4
µ2

Bg2
e B0

(

⇥

g(E) f (E)
⇤1
0 �

Z 1

0
g(E) f 0(E)dE

)

(7.173)

= �1
4
µ2

Bg2
e B0

Z 1

0
g(E) f 0(E)dE, (7.174)

where to go to the second line we have employed integration by parts, and to go to the last line we have

removed the first term by noting that g(0) = 0 and f (E) ! 0 as E ! 1. To proceed we need to evaluate the
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derivative for the Fermi–Dirac distribution function with respect to energy. We recall that, at zero temperature,

f (E) is proportional to the Heaviside step function with the discontinuity at E = EF, and that at higher

temperatures the discontinuity is smoothed out. Nevertheless at practicable experimental temperatures the

Fermi–Dirac function is still well-approximated by the Heaviside step function, and so we can write its

derivative as [189]

f 0(E) = ��(E � EF). (7.175)

Substituting this into Equation 7.174 we obtain the final expression for the magnetization:

M =
1
4
µ2

Bg2
e B0g(EF). (7.176)

The Pauli susceptibility per unit volume is therefore

�P =
µ0M
B0

(7.177)

=
1
4
µ0µ

2
Bg2

eg(EF). (7.178)

We see that the Pauli susceptibility is proportional to the density of states at the Fermi level. This is

because the Zeeman interaction is very small, and so the unpaired electrons resulting from the application

of the field are located in the vicinity of the Fermi level. A greater number of states in this range of

energies, which is given by g(EF), results in a greater number of unpaired electrons, and hence a greater

magnetization and susceptibility. It is notable that the Pauli susceptibility, in contrast to the Curie expression

for isolated electrons, is temperature independent. This is because in this derivation we have assumed

the zero-temperature form of the Fermi–Dirac function, and hence we have ignored the e↵ects of thermal

population. Nevertheless the inclusion of temperature results in only a small correction, because the electron

populations follow the Fermi–Dirac distribution rather than the Boltzmann distribution.

7.12.3 Comparison between the paramagnetic shifts in metals and insulators

We are now in a position to compare the Knight shift of a metal with the Fermi-contact shift obtained from

an insulator. In order to make a fair comparison we compare two solids with the same number of electrons

in the same volume. In the case of the metal these N electrons occupy the delocalized orbitals with energies

288



determined by the density of states and populations by the Fermi–Dirac distribution, whilst in the insulator

the N electrons are each localized to N paramagnetic centres of spin S = 1/2. The expression for the Knight

shift is taken from Equation 7.165, and the Fermi-contact shift for the insulator is adapted from Equation

3.108. These expressions are reproduced here for convenience:

K =
2
3

D

|�k(0)|2
E

EF
�PV (7.179)

�FC =
2
3
⇢↵��(0)�VV

NA

N
, (7.180)

where NA is the number of equivalent paramagnetic centres that contribute to the Fermi-contact shift of the

insulator. We note that we have written the Fermi-contact shift in terms of the volume susceptibility, which

is related to the susceptibility per paramagnetic centre by �V = �(N/V). The two expressions are similar

except for the additional factor of NA/N in the latter. This reflects the fundamental di↵erences in the two

cases between the small number of electrons that contribute to the shift. For the metal all N electrons are

delocalized over the entire lattice, and hence they all contribute spin density to the s-orbital of the observed

nucleus. The fact that only the fraction at the Fermi level make a net contribution is addressed by the Pauli

susceptibility. However for the insulator the N electrons are localized at their paramagnetic centres and only

a small number NA, which are located in the bonding environment of the nucleus, actually contribute to the

shift. The other electrons are not delocalized at all into the s-orbital.

In both cases the shift is proportional to the size of the average unpaired electron density per electron that

is present in the s-orbital of the nucleus. For the metal this is given by
D

|�k(0)|2
E

EF
, which is the average of

the one-electron spin density over the electrons located at the Fermi level. For the insulator the one-electron

density in the expression for the Fermi-contact shift is ⇢↵��(0), and is due to the single electron on the

paramagnetic ion. We have seen that ⇢↵��(0), and therefore the Fermi-contact shift, can either be positive or

negative depending whether the electron transfer occurs via a delocalization or polarization mechanism. The

same principles also apply to
D

|�k(0)|2
E

EF
, and so the Knight shift may also be positive or negative depending

on the nature of the electron transfer. Furthermore if the e↵ective spin of the paramagnetic centres is greater

than S = 1/2, this electron density is divided by 2S to give the unpaired electron density per unpaired

electron.

In order to compare the sizes of the two shifts we compare the two magnetic susceptibilities. For the
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insulator we take the expression from Equation 3.92, set S = 1/2, and multiply by n to obtain the volume

susceptibility �V. For the metal the comparison with the Pauli susceptibility �P is di�cult unless we specify

the form of the density of states. Therefore we apply the simplified free-electron model, for which the density

of states at the Fermi level is given by Equation 2.48. The two volume susceptibilities are given below:

�P =
3µ0µ2

Bg2
en

8kTF
(7.181)

�V =
µ0µ2

Bg2
en

4kT
. (7.182)

The two expressions appear to be remarkably similar, but with one crucial di↵erence. The expression for

the insulator has a Curie temperature di↵erence, and therefore �V and the Fermi-contact shift increase with

decreasing temperature. The Pauli susceptibility, however, is temperature independent. The temperature that

does appear in the denominator of �P is the constant Fermi temperature TF. For metals TF generally takes

values from 104–105 K, and so the Pauli susceptibility is between two and three orders of magnitude lower

than the corresponding Curie susceptibility at all practicable temperatures. Therefore Fermi-contact shifts

are generally much larger than Knight shifts.

7.13 Key concepts

• The paramagnetic shielding tensor due to multiple non-interacting metal ions is simply the sum of the

individual independent contributions from each ion.

• Neighbouring metal ions often interact with each other via an exchange coupling, which gives either

ferromagnetic or antiferromagnetic alignment of the e↵ective spins.

• The exchange interaction comprises an isotropic exchange term, antisymmetric Dzyaloshinskii–Moriya

term, and a symmetric dipolar term.

• In the high-temperature regime the paramagnetic shielding tensor due to clusters of interacting metal

ions is modified by the exchange coupling, which gives an additional term in 1/(kT )2 (Equation 7.53).

• The magnetic properties of extended networks of interacting metal ions in solid insulator materials can

be approximated by mean-field theory.
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• The magnetic susceptibility (Equation 7.90) and paramagnetic shielding tensor (Equation 7.117) of

solid insulator materials generally exhibit a Curie–Weiss temperature dependence.

• In systems either with large Weiss constants, or with magnetic ordering temperatures close to room

temperature, it is not appropriate, even in the paramagnetic state, to use the spin-only values to estimate

the magnetic susceptibility.

• Under certain circumstances the signs of both the isotropic exchange coupling constants and the Fermi-

contact shift can be predicted using the Goodenough–Kanamori rules.

• The paramagnetic shift in a metal or semiconductor is referred to as the Knight shift (Equation 7.165),

and depends on the Pauli susceptibility of the material (Equation 7.178).

• Both the Pauli susceptibility and Knight shift are 100–1000 smaller than their equivalents in solid

insulators, and are temperature-independent.
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Chapter 8

Relaxation in paramagnetic systems

under fast-motional and high-field

conditions

We now turn our attention to a feature of paramagnetic NMR that we have rather neglected up until now, but

which is nevertheless extremely important, and that is the relaxation behaviour of paramagnetic systems. The

relaxation rates of the nuclear spins contain contributions from e↵ects that are present in both diamagnetic

and paramagnetic systems, such as nuclear–nuclear dipolar couplings and the quadrupole interaction, and

e↵ects that are present only in paramagnetic systems, namely the hyperfine couplings to unpaired electrons.

For many systems the paramagnetic e↵ects dominate the relaxation properties, with very large contributions

to the rate constants that are often referred to as paramagnetic relaxation enhancements (PREs). Here we

provide a basic description of the PRE under the high-field conditions of high-resolution NMR, and the

conditions of fast electron dynamics. A more complete treatment for arbitrary field and electron dynamics is

deferred until chapter 9.

We begin with a brief account of the Redfield theory of relaxation, and then document the applications

to the calculation of electron relaxation rates and the PRE of the nuclei. We discuss the main mecha-

nisms responsible for electron relaxation in both complexes in solution, and solid insulators. The relaxation

293



properties of the unpaired electrons are directly responsible for the PRE. However electron relaxation is

more complicated than nuclear relaxation as Redfield theory does not usually provide a valid description

[95]. Therefore for the remainder of this chapter we model the e↵ect of the electron relaxation on the PRE

phenomenologically.

We then describe the PRE using semi-classical Redfield theory [246], which in this specific case is

known as the Solomon–Bloembergen–Morgan theory. The treatment of relaxation given here is valid for

systems with fast motional dynamics, such as those encountered in the rotational di↵usion of small and

large molecules in solution, and under high-field conditions, which are defined as those where the electronic

Zeeman interaction dominates the ZFS interaction.

We derive the expressions for the contributions to the relaxation rate constants originating from the di↵er-

ent parts of the hyperfine interaction, and in di↵erent motional regimes including small complexes in solution,

large biomolecules in solution, and solid insulators with no rotational dynamics. The discussion in this

chapter is limited to the non-relativistic description of the hyperfine interaction, and we ignore SO coupling

e↵ects on the PRE, although we acknowledge that SO coupling is important for electronic relaxation, via the

ZFS and the g-anisotropy.

Further reading on the subject of relaxation in solution can be found in the contributions from Kowalewski

and Mäler [95], Bertini et al [15, 247], and Kruk [248, 249]. The specific topic of paramagnetic relaxation in

solution has recently been reviewed by Kowalewski and Kruk [250].

8.1 Overview of the models of electronic and nuclear relaxation

Both this chapter and the next present the di↵erent models of electronic and nuclear relaxation in paramag-

netic systems, for di↵erent experimental conditions and within di↵erent approximations. Whilst this plethora

of di↵erent models and approaches may initially seem confusing, they are in fact related to each other in a

straightforward way, as shown by the two flow charts in Figures 8.1 and 8.2.
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Figure 8.1: Flow chart showing the relationship between the di↵erent models describing electronic relaxation. The chart di↵erentiates between
the full-quantum and semi-classical treatment of the lattice, fast (Redfield) and slow (non-Redfield) motions and, within Redfield theory, between
high and low field, and between di↵erent electronic spins. Definitions: fast motion ⌦⌧c ⌧ 1, slow motion ⌦⌧c � 1, high field |D| ⌧ µBgeB0, low
field |D| � µBgeB0. ⌦ is the strength of the fluctuating spin interaction, ⌧c is the correlation time, D is the axial ZFS anisotropy, B0 is the applied
magnetic field.
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Figure 8.2: Flow chart showing the relationship between the di↵erent models describing nuclear relaxation in paramagnetic systems. The chart
di↵erentiates between the full-quantum and semi-classical treatment of the lattice, fast (Redfield) and slow (non-Redfield) motions and, within
Redfield theory, between high and low field, and between fast and slow rotations. Definitions: fast motion ⌦⌧c ⌧ 1, slow motion ⌦⌧c � 1,
high field

�

�

�!Q
�

�

� ⌧ |!0|, low field
�

�

�!Q
�

�

� � |!0|, fast rotation ⌧r ⌧ T1e,T2e, slow rotation ⌧r � T1e,T2e. ⌦ is the strength of the fluctuating spin
interaction, ⌧c is the correlation time, ⌧r is the rotational correlation time, T1e and T2e are the electronic spin-lattice and spin-spin relaxation times,
!Q is the quadrupolar splitting, !0 is the nuclear Larmor frequency.
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Figure 8.1 shows how the models of electronic relaxation at di↵erent levels of theory (quantum vs semi-

classical treatment of the lattice), timescales of motion (fast vs slow), size of the external magnetic field (high

vs low), and the electronic spin (S = 1/2, S = 1, S > 1) are related to each other. Figure 8.2 presents the

same relationship for nuclear relaxation, this time for di↵erent levels of theory (quantum vs semi-classical

treatment of the lattice), timescales of motion (fast vs slow), size of the external magnetic field (high vs low),

and timescale of rotation (fast vs slow). Full definitions of these terms are provided at later points in chapters

8 and 9.

These flow charts are intended to act as visual aids to help place the various relaxation models in their

proper context. In particular, there are a number of cases in chapter 9 where a more advanced theory of

relaxation is subjected to a set of assumptions that result in a description that is equivalent to one obtained

with a simpler theory. Figures 8.1 and 8.2 will help to illuminate these cases more clearly.

The expressions for the relaxation rate constants derived in these two chapters were verified using Spin-

Dynamica, which is a set of packages for spin dynamics calculations in Mathematica. Details about numerical

implementations of relaxation calculations are given in Belorizky et al [251].

8.2 The Redfield theory of relaxation

In this section we summarize the main features of semi-classical Redfield theory, and establish the conven-

tions and notation that we continue to use later. Readers interested in complete and accessible descriptions

of Redfield theory are referred to the contributions by Redfield [246], Goldman [252, 253], and Kowalewski

and Mäler [95].

8.2.1 The equation of motion

We separate the system into two parts: the combined electronic–nuclear spin system, and the lattice which

comprises everything else, such as the molecular framework. In the semi-classical formulation of Redfield

theory we treat the combined electronic–nuclear spin system using quantum mechanics, and model the lattice

classically. We therefore describe the time-evolution of the spin system with the Hamiltonian Ĥ(t), which is

the sum of a dominant part Ĥ0, containing coherent terms such as the Zeeman interactions, and a perturbation

Ĥ1(t) with a random time dependence and zero time-average, which describes incoherent e↵ects such as
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relaxation and chemical exchange:

Ĥ(t) = Ĥ0 + Ĥ1(t). (8.1)

The dominant part Ĥ0 essentially describes both the experimental conditions we impose upon the spin

system, for example the size of the external magnetic field via the Zeeman interaction, or else the e↵ects

of radiofrequency (RF) irradiation during the pulse sequence, in addition to any coherent internal spin

interactions. We therefore note that Ĥ0 may also be time-dependent if it includes, for example, terms describ-

ing a time-dependent radiofrequency (RF) irradiation, or the periodic modulation of spatially anisotropic

interactions due to sample spinning. However when describing the spin-lattice and spin-spin relaxation

of molecules in solution Ĥ0 generally contains only isotropic interactions. We also add RF terms when

describing relaxation during extended spin-lock pulses or pulse sequences, which may be time-dependent.

However, here we mainly consider the case of relaxation in solution with no RF irradiation where Ĥ0 is

time-independent, as written here. However we should note that, since introducing RF irradiation or sample

rotation changes the form of Ĥ0, we expect these e↵ects to also change the measured relaxation properties.

The behaviour of the ensemble of spin systems in the sample under the action of Ĥ(t) is determined by

calculating the time evolution of the density operator ⇢̂(t) with the Liouville–von Neumann equation:

d⇢̂(t)
dt
= � i
~

h

Ĥ0 + Ĥ1(t), ⇢̂(t)
i

. (8.2)

The random time dependence of the part
h

Ĥ1(t), ⇢̂(t)
i

makes the equation in this form insoluble. However

we are able to proceed by factoring out the ‘motion’ of the density operator due to the static Hamiltonian

Ĥ0, which we do by transforming both Ĥ1(t) and ⇢̂(t) into the interaction representation of Ĥ0. The reference

frame of the interaction representation changes orientation so that it follows the time evolution due to Ĥ0 in

the laboratory frame. Both the random Hamiltonian and density operator in the interaction representation of

Ĥ0 can be calculated from their laboratory frame counterparts at any time t using the following expressions:

ĤT
1 (t) = exp

⇣

iĤ0t/~
⌘

Ĥ1(t) exp
⇣

�iĤ0t/~
⌘

, (8.3)

⇢̂T(t) = exp
⇣

iĤ0t/~
⌘

⇢̂(t) exp
⇣

�iĤ0t/~
⌘

, (8.4)

where the superscript T denotes an operator in the interaction representation.
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The evolution of ⇢̂T(t) under the action of ĤT
1 (t) can be solved to second order in a perturbation expansion

to give the Redfield master equation

d⇢̂T(t)
dt

= � 1
~2

Z 1

0

h

ĤT
1 (t),

h

ĤT
1 (t � ⌧), ⇢̂T(t) � ⇢̂0

ii

d⌧, (8.5)

where the overbar denotes an average over the spin systems in the ensemble, and ⇢̂0 is the equilibrium density

operator, which commutes with Ĥ0 and is therefore unchanged by the transformation into the interaction

representation. Equation 8.5 depends on a series of approximations. Firstly we assume that the motions of

the lattice are characterised by a correlation time ⌧c which is su�ciently short that its product with the r.m.s.

size ⌦ of the interaction represented by Ĥ1(t), in frequency units, is much less than unity:

⌦⌧c ⌧ 1, (8.6)

where ~⌦ =
�

�

�Ĥ1(t)2
�

�

�

1/2. This is the motional narrowing regime, in which the fluctuations of the interactions

in Ĥ1(t) due to stochastic motion lead to a narrowing of the spectroscopic peak in comparison to the lineshape

that would be obtained due to the spread of frequencies if the spin systems were static. Secondly, in order to

be able to stop the perturbation expansion at second order, we assume that the time t during which we observe

the system satisfies the inequalities

⌧c ⌧ t ⌧ 1
⌦
. (8.7)

The upper-bound inequality, t ⌧ ⌦�1, is potentially problematic as the inverse frequency ⌦�1 is often much

shorter than typical NMR observation times of between milliseconds and seconds. For example an interaction

frequency of ⌦/(2⇡) = 100 kHz would give an inverse frequency of 1.6 µs, which is much shorter than

our NMR acquisition time! However this problem can be circumvented by noting that we can divide our

observation time t into discrete chunks, each one of which satisfies Equation 8.7, and which we can safely

assume is independent of the others due to the random nature of the perturbation. This leaves the lower-bound

inequality of Equation 8.7, which amounts to the relaxation times always being longer than the correlation

time.

The next step is to write the random perturbation Hamiltonian Ĥ1(t) in terms of the irreducible spherical
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tensor operators as follows:

Ĥ1(t) =
X

⇤

X

l

+l
X

m=�l

(�1)mK(⇤)
lm (t)T̂ (⇤)

l�m(t) (8.8)

=
X

⇤

X

l

+l
X

m=�l

(�1)mK(⇤)
lm (t)⇤T̂ (⇤)

l�m(t)†. (8.9)

We have written the total perturbation as a sum of terms from di↵erent interactions ⇤, with each interaction

having a distinct set of spatial tensors K(⇤)
lm (t) and spin tensors T̂ (⇤)

l�m(t). This form of the Hamiltonian separates

the lattice variables and the spin variables into the spatial tensors and spin tensors respectively. We have

included the time-dependence explicitly in both the K(⇤)
lm (t), and the T̂ (⇤)

l�m(t) to account for all the possible

causes of the random fluctuations in Ĥ1(t), a subject we return to in more detail later. In the following

discussion we consider the e↵ect of just a single interaction (which for nuclear relaxation we will later take

to be the hyperfine interaction, and for electronic relaxation the ZFS) and so we drop both the sum over ⇤

and the superscript. We return to the case of the combined e↵ects of more than one interaction on nuclear

relaxation in section 8.8. We can write the spatial tensors in terms of their components in the PAF as follows

Klm(t) =
+l

X

µ=�l

D(l)
µm (↵l(t), �l(t), �l(t)) K̃lµ(t), (8.10)

where we have acknowledged that the random lattice fluctuations can result in a fluctuation of either the PAF

components K̃lµ(t), or the orientation of the PAF in the laboratory frame, due to changes in the Euler angles

(↵l(t), �l(t), �l(t)). These Euler angles describe a pair of rotations, the first of which gives the orientation of

the PAF in a frame fixed relative to the molecular geometry, and the second of which gives the orientation

of this molecular frame in the laboratory frame. Each interaction clearly has a di↵erent set of Euler angles.

However for a single interaction, each part of di↵erent rank may have also have a di↵erent set of Euler angles,

since the PAFs may not be coincident. For example we generally expect the the rank-one and rank-two parts

of the hyperfine tensor to have di↵erent PAFs. This is why we have written the Euler angles as having a

dependence on l.

Before inserting the operator expression into the master equation, we first need to transform the spin

tensors into the interaction representation of Ĥ0. At this point we assume high-field conditions such that Ĥ0

is dominated by the electronic and nuclear Zeeman interactions, and that the electronic g-tensor is isotropic
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and equal to ge.eq:cswigner Therefore the transformation into the interaction representation is a rotation about

the z-axes of the I- and S -spin operators. We recall, from the rotation properties of irreducible spherical tensor

operators, that rotations about z depend only on the order m of the operators T̂lm and not on the rank l, and

that the e↵ect of such a rotation is to impart a phase factor that depends only on m. Therefore T̂ T
l�m(t) is equal

to

T̂ T
l�m(t) = exp

⇣

iĤ0t/~
⌘

T̂l�m(t) exp
⇣

�iĤ0t/~
⌘

(8.11)

=
X

n

T̂ (n)
l�m(t) exp

⇣

i!(n)
�mt

⌘

, (8.12)

where we have split each spin tensor operator T̂l�m(t) into a sum of operators T̂ (n)
l�m(t), labelled by a superscript

(n), each of which evolves at frequency !(n)
�m in the interaction representation. We note that the inclusion of

this superscript is necessary when the two spins have di↵erent Larmor frequencies, as is the case for a system

comprising a nuclear spin I coupled to an electronic spin S . The Hermitian conjugate of T̂ T
l�m(t) is simply

given by

T̂ T
l�m(t)† =

X

n

T̂ (n)
l�m(t)† exp

⇣

�i!(n)
�mt

⌘

. (8.13)

Inserting the operator expression into the master equation in Equation 8.5, we now obtain the Redfield

operator equation:

d⇢̂T(t)
dt

= � 1
~2

X

ll0

X

mm0

X

nn0
(�1)m+m0 exp

h

i
⇣

!(n)
�m � !(n0)

�m0
⌘

t
i

⇥
Z 1

0

h

T̂ (n)
l�m(t),

h

T̂ (n0)
l0�m0 (t � ⌧)†, ⇢̂T(t) � ⇢̂0

ii

Klm(t)Kl0m0 (t � ⌧)⇤ exp
⇣

i!(n0)
�m0⌧

⌘

d⌧. (8.14)

We have included the simultaneous ensemble average over all the spatial and spin-dependent parts of the

expression, which is a formal requirement. However we can simplify things by assuming that the di↵erent

stochastic processes are independent to each other, which enables us to perform the ensemble averages for
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each process independently. This is the decomposition approximation, in which we can write:

h

T̂ (n)
l�m(t),

h

T̂ (n0)
l0�m0 (t � ⌧)†, ⇢̂T(t) � ⇢̂0

ii

Klm(t)Kl0m0 (t � ⌧)⇤

=
h

T̂ (n)
l�m(t),

h

T̂ (n0)
l0�m0 (t � ⌧)†, ⇢̂T(t) � ⇢̂0

ii

⇥
X

µµ0
D(l)
µm (↵l(t), �l(t), �l(t)) D(l0)

µ0m0 (↵l0 (t � ⌧), �l0 (t � ⌧), �l0 (t � ⌧))⇤

⇥ K̃lµ(t)K̃l0µ0 (t � ⌧)⇤. (8.15)

In situations where the two spins relax on timescales that di↵er by several orders of magnitude, the faster-

relaxing spin acts as a source of a rapidly fluctuating magnetic field that influences the slower-relaxing spin via

the coupling between them. This e↵ect is accounted for by the ensemble average over the double commutator

of spin operators. For example electronic relaxation occurs on a timescale, typically between 0.1 ps and 10 ns

for metal ions, that is generally several orders of magnitude shorter than the timescale of nuclear relaxation,

which is typically between 1 ms and several hours or longer. Therefore this factor describes the e↵ect of

the rapid electronic relaxation on the PRE of the nucleus. On the other hand, when describing electronic

relaxation this part of the ensemble average can be dispensed with. The ensemble average over the product

of Wigner matrix elements accounts for the fluctuations due to random spatial reorientation of the anisotropic

interaction tensor, a process known as rotational di↵usion. It only a↵ects elements of tensor rank l > 0.

The final factor is the ensemble average of the product of the PAF tensor components, and accounts for

the instantaneous changes that may occur in these components either through distortion of the molecular

geometry of the system, or chemical exchange of the nucleus or electron between di↵erent sites. We now

examine these three mechanisms in detail.

8.2.2 Relaxation by spatial reorientation of the interaction tensor

We begin by examining the e↵ect of the random rotational di↵usion of the spatial tensor. Specifically we

consider the case of paramagnetic molecules in solution that experience unrestricted isotropic tumbling. The

local magnetic field experienced by the spin fluctuates in both size and direction as a result of the random

time dependence. The ensemble average of the product of the spatial tensor components can be written in the
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decomposition approximation as

Klm(t)Kl0m0 (t � ⌧)⇤ =
X

µµ0
D(l)
µm (↵l(t), �l(t), �l(t)) D(l0)

µ0m0 (↵l0 (t � ⌧), �l0 (t � ⌧), �l0 (t � ⌧))⇤

⇥ K̃lµ(t)K̃l0µ0 (t � ⌧)⇤. (8.16)

Our first step is to assume that the random fluctuations that modulate the di↵erent interactions are uncorre-

lated. For the PRE, this means that the fluctuations of the Fermi-contact interaction are independent of those

of the spin-dipolar interaction, and that both fluctuate independently of any other relevant interactions that

cause relaxation. For electronic relaxation we assume that the fluctuations of the ZFS, Zeeman, and hyperfine

interactions are all independent of each other. In practice the result is that we consider only those terms in the

double-commutator where the two Hamiltonians are of the same interaction, e.g. both Fermi contact, or both

spin dipolar, and neglect the cross-terms due to cross correlation between di↵erent interactions (to which we

will return later). Hence we set l = l0.

The average product Klm(t)Klm0 (t � ⌧)⇤ depends only on the di↵erence ⌧ between the times at which we

evaluate each element in the product, and not on t itself. We can therefore simplify the average of the product

of the Wigner rotation matrix elements as follows:

D(l)
µm (↵l(t), �l(t), �l(t)) D(l)

µ0m0 (↵l(t � ⌧), �l(t � ⌧), �l(t � ⌧))⇤

=

"

1
8⇡2

Z 2⇡

0
d↵l

Z ⇡

0
sin (�l) d�l

Z 2⇡

0
d�lD(l)

µm (↵l, �l, �l) D(l)
µ0m0 (↵l, �l, �l)⇤

#

gR
l (⌧) (8.17)

=
1

2l + 1
�mm0�µµ0gR

l (⌧), (8.18)

where to go to the second line we have factored out the ⌧-dependence into a function gR
l (⌧) which is the

reduced rotational correlation function describing the random reorientation of the spatial tensors, we have

used the fact that, for isotropic tumbling, the average product of the Wigner matrix elements at ⌧ = 0 is given

by the integral over all the Euler angles, and we have assumed that all orientations are equally probable at

⌧ = 0. To go to the last line we have used the well-known orthogonality relations of the Wigner elements

[190].

We do not specify the form of the reduced correlation function at this point other than to say that, by
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definition, gR
l (0) = 1, and that at times longer than the associated correlation time gR

l (⌧) decays to zero. The

reduced correlation function also, in principle, depends on the spatial rank l, which allows us to di↵erentiate

between second-rank interactions, which are a↵ected by spatial reorientation, and zeroth-rank interactions

which are invariant. The average product Klm(t)Kl0m0 (t � ⌧)⇤ can now be written in the following simplified

form:

Klm(t)Kl0m0 (t � ⌧)⇤ =
1

2l + 1
�ll0�mm0gR

l (⌧)
X

µ

K̃lµ(t)K̃lµ(t � ⌧)⇤. (8.19)

The next step is to evaluate the sum over µ.

8.2.3 Relaxation by fast chemical exchange

The sizes of the tensor components in the PAF are modulated by fast chemical exchange, or distortions in

the molecular geometry surrounding the site of the spin. A simple example is a nuclear spin, fixed in a

chemical site, that is coupled to a second spin which undergoes rapid exchange. The size of the coupling

interaction fluctuates in both sign and magnitude when the second spin is exchanged for another with a

di↵erent magnetic quantum number mS , and thus acts as a relaxation mechanism for the first spin. This

mechanism is responsible for the time dependence and ensemble average contained in the sum over µ in

Equation 8.19. The ⌧-dependence can be factored out of this sum to give

X

µ

K̃lµ(t)K̃lµ(t � ⌧)⇤ =
X

µ

�

�

�K̃lµ
�

�

�

2 gM
l (⌧), (8.20)

where gM
l (⌧) is the reduced exchange correlation function. In contrast to rotational di↵usion this mechanism

is also active for scalar interactions, as chemical exchange modulates the size of the interaction. If the

interaction under consideration is indeed of rank zero, then the chemical exchange mechanism described

here is an example of scalar relaxation of the first kind [183].

8.2.4 The spin-dependent part

The final source of relaxation we consider here is a rapidly-fluctuating local magnetic field experienced by

one spin due to the rapid relaxation of a second spin to which the former is coupled. This situation is very

important in paramagnetic systems, as the unpaired electrons relax on a timescale that is orders of magnitude

304



shorter than typical nuclear relaxation times. The rapidly-relaxing unpaired electrons induce a fluctuating

local field at the nucleus via both the isotropic and anisotropic hyperfine interactions. We can therefore

rewrite the ensemble average of the double commutator of spin operators as follows.

For computing electronic relaxation, we note that the relaxation of the nucleus has no e↵ect on the

relaxation of the electrons, and so we rewrite the double commutator by removing both the time dependence

from T̂ (n)
l�m, and the ensemble average to give:

h

T̂ (n)
l�m(t),

h

T̂ (n0)
l�m(t � ⌧)†, ⇢̂T(t) � ⇢̂0

ii

=


T̂ (n)
l�m,



⇣

T̂ (n0)
l�m

⌘†
, ⇢̂T(t) � ⇢̂0

��

. (8.21)

Electronic relaxation is discussed in section 8.4. The situation for nuclear relaxation is more complicated.

Here both the ⌧-dependence and ensemble average are factored out into the reduced electronic relaxation

correlation function gS
l�mnn0 (⌧), and the double commutator is rewritten as

h

T̂ (n)
l�m(t),

h

T̂ (n0)
l�m(t � ⌧)†, ⇢̂T(t) � ⇢̂0

ii

=


T̂ (n)
l�m,



⇣

T̂ (n0)
l�m

⌘†
, ⇢̂T(t) � ⇢̂0

��

gS
l�mnn0 (⌧). (8.22)

We have acknowledged that gS
l�mnn0 (⌧), in general, depends on the rank l, order �m, and the indices n and

n0, as the associated electronic spin operators relax at di↵erent rates depending on whether they represent

coherences (Ŝ ± or equivalently Ŝ 1±1), or populations (Ŝ z or equivalently Ŝ 10). This in turn a↵ects the

correlation function. As is the case for chemical exchange, electronic relaxation is able to induce nuclear

relaxation via the isotropic hyperfine interaction as well as the anisotropic interaction. Relaxation via the

isotropic part is referred to as scalar relaxation of the second kind [183].

8.2.5 The nuclear relaxation superoperator

Now that we have defined the reduced correlation functions above we can write the Redfield di↵erential

equation for the nuclear PRE from Equation 8.14 as

d⇢̂T(t)
dt

= � ˆ̂�
⇣

⇢̂T(t) � ⇢̂0
⌘

, (8.23)
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where ˆ̂� is the relaxation superoperator which takes the form

ˆ̂�Ô =
1
~2

X

lmnn0

1
2l + 1

exp
h

i
⇣

!(n)
�m � !(n0)

�m

⌘

t
i



T̂ (n)
l�m,



⇣

T̂ (n0)
l�m

⌘†
, Ô

��

⇥
Z 1

0
gM

l (⌧)gR
l (⌧)gS

l�mnn0 (⌧) exp
⇣

i!(n0)
�m⌧

⌘

d⌧
X

µ

�

�

�K̃lµ
�

�

�

2
. (8.24)

This expression emphasizes that the relaxation superoperator acts on an operator Ô to produce a new operator
ˆ̂�Ô. The integral over ⌧ contains only the product of the reduced correlation functions as only these are

functions of ⌧. The integral is complex, but is dominated by the real and even part which contributes to

the relaxation rate. The smaller imaginary and odd part is responsible for a relaxation-induced shift in the

resonance frequency [95], which is not considered further here. We therefore change the lower limit of

integration from 0 to �1 and introduce a factor of 1/2.

Equation 8.24 contains a number of terms that oscillate during t at frequency!(n)
�m � !(n0)

�m . The terms where

this frequency is non-zero are non-secular and are expected to not contribute significantly to the relaxation

rate if the oscillation is on a timescale that is much shorter than the relaxation times, as the net contribution

averages to zero. We therefore choose to retain only the secular terms, for which !(n)
�m = !(n0)

�m . For spin

systems in which all the spins have widely separated Larmor frequencies, such as an e↵ective electronic spin

coupled to a single nucleus, the secular approximation is made by setting n0 = n. The secular relaxation

superoperator is therefore

ˆ̂�Ô =
1

2~2

X

lmn

1
2l + 1



T̂ (n)
l�m,



⇣

T̂ (n)
l�m

⌘†
, Ô

��

jl�mn
⇣

�!(n)
�m

⌘

X

µ

�

�

�K̃lµ
�

�

�

2
. (8.25)

In Equation 8.25 we have defined the reduced spectral density jl�mn(!) as

jl�mn(!) =
Z 1

�1
gl�mn(⌧) exp (�i!⌧) d⌧, (8.26)

i.e. the Fourier transform of the overall reduced correlation function gln(⌧) which is the product of the three

reduced correlation functions defined above:

gl�mn(⌧) = gM
l (⌧)gR

l (⌧)gS
l�mn(⌧). (8.27)
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We note that both gl�mn(⌧) and jl�mn(!) depend on l, m, and n for the reasons given above, and that we have

dropped the dependence on n0 following the application of the secular approximation.

8.3 The correlation function and spectral density

We are now in a position to calculate nuclear relaxation rates using the superoperator in Equation 8.25,

which is the final result of the Redfield theory. Once we have decided on the mechanism, and the associated

Hamiltonian, that we wish to study all that remains is to decide on the form of the reduced correlation

function, which contains all the information about the dynamics, chemical exchange, and electronic relaxation

properties. There are a number of correlation functions g(⌧c; ⌧) that can be applied depending on the details

of the dynamics of the system [95]. However we use the simplest, which is an exponential decay

g(⌧c; ⌧) = exp (�|⌧|/⌧c) , (8.28)

where ⌧c is the correlation time. This form of the reduced correlation function can be rationalised for

unrestricted rotational motion of the system by using the principles of rotational di↵usion as described by

Fick’s law [95], and has been used to describe the relaxation due to overall tumbling of small- to large-sized

molecules in an isotropic solution. We also assume that the correlation functions describing the e↵ects

of chemical exchange and electron relaxation have the form of an exponential decay, but with di↵erent

correlation times.

The reduced spectral density j(⌧c;!) is the Fourier transform of g(⌧c; ⌧):

j(⌧c;!) =
Z 1

�1
g(⌧c; ⌧) exp (�i!⌧) d⌧ (8.29)

=
2⌧c

1 + !2⌧2
c
. (8.30)

This is a Lorentzian function, examples of which are plotted as a function of the correlation time, and for

particular frequencies, in Figure 8.3 (a). The spectral density, and hence its contribution to the relaxation rate,

is at a maximum when |!⌧c| = 1, where j(⌧c;!) takes the value |1/!|.

One regime of particular interest is the extreme-narrowing limit where the correlation time is su�ciently
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Figure 8.3: Plots of reduced spectral densities j(⌧c;!) as a function of (a) the correlation time ⌧c, and (b) the
frequency !. The expression for the reduced spectral density is given by Equation 8.30. In (a) three plots are
shown for the frequencies of 200, 300, and 400 MHz. In each case the maximum value of j(⌧c;!) occurs
when |!⌧c| = 1 and is equal to |1/!|. In (b) the plots are for the five values of ⌧c of 10�12, 10�11, 10�10, 10�9,
and 10�8 s.

short that |!⌧c| ⌧ 1. This situation is encountered, for example, in the unrestricted tumbling of small

molecules in solution. In this limit the spectral density is equal to

j(⌧c;!) ⇡ 2⌧c, (8.31)

and is independent of the frequency !. This is shown in Figure 8.3 (b), where the reduced spectral density is

plotted against frequency for five particular correlation times. For correlation times up to 10 ps we are in the

extreme-narrowing limit, and so we see no variation of the reduced spectral density with frequencies of up to

1 GHz, as expected.

Another regime of interest is the spin-di↵usion limit in which the correlation time is su�ciently long so

that |!⌧c| � 1. In this limit the spectral density has the approximate expression

j(⌧c;!) ⇡ 2
!2⌧c

, (8.32)

which decreases to zero at longer correlation times and larger frequencies. This is shown in Figure 8.3 (b) for

correlation times of 1 ns and above, where we see a decrease in the reduced spectral density with increasing
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frequency.

8.3.1 A note on terminology for motional regimes

We have hitherto encountered three di↵erent regimes within which we have defined the timescale of dynamic

processes as corresponding to either “fast” or “slow” dynamics. Before we continue further, it is worth taking

the time to properly define what these terms actually mean. Of course, the terms “fast” and “slow” are only

meaningful if they are quoted relative to something, usually the size of an interaction, or another timescale.

The first use of these terms we encountered was in the discussion on the validity of the Redfield theory.

Here we defined the motional narrowing limit in Equation 8.6, where ⌦⌧c ⌧ 1. This limit is also known

as the fast-motion limit, where “fast” means that the correlation time must be much shorter than the inverse

of the strength of the fluctuating interaction. If this condition is met, the Redfield theory is valid. The

other regime ⌦⌧c � 1 is known as the slow-motion limit, which is explored in more detail in chapter 9.

The electronic spin interactions are usually much larger than nuclear spin interactions, and so the absolute

timescales associated with “fast” and “slow” motions are di↵erent for electronic and nuclear relaxation, with

the motional-narrowing limit usually violated at shorter correlation times for the former.

The second use of “fast” and “slow” pertains only to nuclear relaxation, as it refers to the timescale of the

rotational di↵usion processes that modulate the spin-dipolar hyperfine interaction compared to the electronic

relaxation time constants. Here we define the fast-rotation limit as ⌧r ⌧ T1e,T2e, where rotational di↵usion

is faster than electronic relaxation, and the slow-rotation limit where ⌧r � T1e,T2e. Both cases correspond

to situations where nuclear relaxation is described within the Redfield limit. This distinction is important as,

under high-field conditions, it defines which description of nuclear relaxation is appropriate. We will see that,

in the fast-rotation limit, the correct description is that in section 8.6, leading to the Solomon–Bloembergen–

Morgan equations. In the slow-rotation limit, however, we need to employ the Curie mechanism in section

8.7.

The final classification of motional regimes is described earlier in this section, and refers to the size of

the correlation time compared to the inverse of the frequency ! that appears in the spectral density. The

extreme-narrowing limit is defined as |!| ⌧c ⌧ 1, where the correlation time is much shorter than the period

of Larmor precession. By contrast, the spin-di↵usion limit is defined for longer correlation times such that

|!| ⌧c � 1. This distinction is important as it allows us to simplify the spectral densities in these regimes. We
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note that the frequency ! describes the size of the dominant coherent term Ĥ0 in the total Hamiltonian, and

so is much larger than the frequency describing the strength of the perturbing interaction Ĥ1(t), i.e. |!| � |⌦|.

This implies that the extreme-narrowing limit always falls in the motional-narrowing regime, and that the

spin-di↵usion limit may do too.

8.4 Electronic relaxation

We now discuss electronic relaxation very briefly. One point that must be made very clear at the outset is

that Redfield theory does not provide an adequate description of the relaxation of electrons in the majority

of systems due to the larger magnitude of the interactions involved compared to nuclear relaxation, which

means that the motional-narrowing condition in Equation 8.6 is violated at shorter correlation times [95].

Nevertheless there are some systems for which Redfield theory is applicable, such as highly-symmetric metal

environments in which the anisotropic interactions are somewhat smaller. We therefore describe how Redfield

theory may be applied in these cases.

The Hamiltonian Ĥ1(t) that gives rise to electron relaxation may be written as

Ĥ1(t) = µBB0 · g(t) · Ŝ + Ŝ ·A(t) · Î + Ŝ ·D(t) · Ŝ, (8.33)

which we recognise as a standard EPR Hamiltonian in which the time dependence has been explicitly

indicated in the g-tensor g(t), hyperfine tensor A(t), and ZFS tensor D(t). The time dependence is due to

stochastic changes in the orientations of the tensors, in addition to changes in the sizes of the PAF components

due to chemical exchange and other random processes. The dominant relaxation source for metal ions with

S = 1/2 in high external fields is the g-tensor, with an important example being the Cu2+ ion. The majority

of ions are of spin S > 1/2, and for these relaxation is predominantly due to the ZFS interaction, which is the

case we focus on here. From Equation 8.25 the Redfield relaxation superoperator ˆ̂�S is equal to

ˆ̂�S Ô =
1

10~2

X

mn



Ŝ (n)
2�m,



⇣

Ŝ (n)
2�m

⌘†
, Ô

��

j
⇣

�!(n)
�m

⌘

X

µ

�

�

�D̃2µ
�

�

�

2
, (8.34)

for which the relevant spin operators Ŝ (n)
2m and frequencies !(n)

m are given in Table 8.1. The spectral density

function j(!) is independent of m.
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Ŝ (n)
2m !(n)

m
m n = 1 n = 1

0
q

1
6

⇣

3Ŝ 2
z � S (S + 1)

⌘

1̂ 0
±1 ⌥ 1

2

⇣

Ŝ zŜ ± + Ŝ ±Ŝ z
⌘

±!S

±2 1
2 Ŝ 2
± ±2!S

Table 8.1: The spin operators Ŝ (n)
2m and frequencies !(n)

m for the ZFS interaction used in the calculation of the
electron relaxation rates.

It was shown by Bloembergen and Morgan [98] that, for hydrated first-row transition-metal ions with

S = 1 at high magnetic field, the Redfield master equation for longitudinal (spin–lattice) relaxation can be

written in the following form:
dS z(t)

dt
= � 1

T1e

�

S z(t) � S z,0
�

, (8.35)

where S z(t) is the ensemble average of the expectation value of Ŝ z at time t (note the lack of the ‘hat’ in

the former), S z,0 is the corresponding equilibrium value, and T1e is the electron longitudinal (spin–lattice)

relaxation time constant. This equation can be solved to give a mono-exponential expression for S z(t):

S z(t) =
�

S z(0) � S z,0
�

exp(�t/T1e) + S z,0, (8.36)

where T1e is calculated from the expectation value of ˆ̂�S in the state
�

�

�Ŝ z
⌘

of Liouville space:

1
T1e
=

✓

Ŝ z

�

�

�

�

ˆ̂�S

�

�

�

�

Ŝ z

◆

⇣

Ŝ z|Ŝ z
⌘ (8.37)

=
TrS

✓

Ŝ z
ˆ̂�S Ŝ z

◆

TrS
⇣

Ŝ 2
z

⌘ . (8.38)

The notation
✓

Ŝ z

�

�

�

�

ˆ̂�S

�

�

�

�

Ŝ z

◆

represents the inner product in Liouville space, which takes the explicit form

TrS

✓

Ŝ z
ˆ̂�S Ŝ z

◆

, where TrS refers to a trace taken over the states of the S -spin manifold.

The transverse (spin–spin) relaxation time constant T2e of the electron can be calculated in a similar way.

The ensemble average of the expectation value of the operators Ŝ ±, which represent coherences, denoted

S ±(t), satisfy the following di↵erential equations:

dS ±(t)
dt

= � 1
T2e

S ±(t), (8.39)
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which have solutions

S ±(t) = S ±(0) exp(�t/T2e). (8.40)

The time constant T2e is given by the following expectation value of ˆ̂�S :

1
T2e
=

✓

Ŝ �
�

�

�

�

ˆ̂�S

�

�

�

�

Ŝ +
◆

⇣

Ŝ �|Ŝ +
⌘ (8.41)

=
TrS

✓

Ŝ � ˆ̂�S Ŝ +
◆

TrS
⇣

Ŝ �Ŝ +
⌘ . (8.42)

As well as referring to the relaxation time constants Tie, it is also common to refer to the relaxation rates

Rie which are simply the reciprocals of the former. Hence the electronic longitudinal and transverse rate

constants are R1e = 1/T1e and R2e = 1/T2e respectively.

The relaxation by the ZFS interaction can be divided into two separate mechanisms. The first concerns

metal ions in a cubic coordination environment, for which the ZFS tensor is zero by symmetry. However,

random, time-dependent distortions of the coordination sphere can lead to instantaneous deviations from

cubic symmetry, which in turn give rise to a transient ZFS. The second mechanism applies to metal ions

in environments of symmetry lower than cubic for which there is a permanent, non-zero static ZFS tensor.

These are considered in turn.

8.4.1 Relaxation due to the transient ZFS

The transient ZFS is characterised by quantity �2
t , which is the trace of the mean square of the interaction

tensor

�2
t =D̃2

xx + D̃2
yy + D̃2

zz (8.43)

= 2
3 D2 + 2E2, (8.44)
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where D and E are the axial and rhombic anisotropies of the transient ZFS. This expression is also equal to

the sum of the square moduli of the PAF components in the expression for the Redfield superoperator

+2
X

µ=�2

�

�

�D̃2µ
�

�

�

2
= �2

t . (8.45)

The process by which the coordination shell is distorted is responsible for the modulation of the transient

ZFS. We can model this process as a rapid reorientation of the PAF of the transient ZFS tensor relative to a

frame fixed relative to the molecule, with the magnitudes of the anisotropies D and E remaining constant.

This is the pseudo-rotation model proposed by Rubinstein et al [115]. This stochastic process is therefore

characterised by a reduced correlation function g2(⌧) which is analogous to that which describes unrestricted

rotational motion gR
2 (⌧):

g2(⌧) =gR
2 (⌧) (8.46)

= exp (�|⌧|/⌧v) , (8.47)

where ⌧v is the distortional, or pseudo-rotational, correlation time. The analogy between this stochastic

distortion and the stochastic rotation of the system is the origin of the term ‘pseudo-rotation’. It has been

shown that this model generates correlation times ⌧v of the order of 1–10 ps [109, 123, 124], which are values

consistent with e�cient electronic relaxation: at 11.74 T the electronic Larmor frequency is 329 GHz, which

corresponds to an optimum correlation time of 1/ |!S | of 0.5 ps.

Combining these expressions with the double commutators calculated from the operators in Table 8.1 we

obtain the following expressions for T1e and T2e:

1
T1e
=�2

t

"

1
10

jR(!S ) +
2
5

jR(2!S )
#

(8.48)

=
�2

t

5

2

6

6

6

6

4

⌧v

1 + !2
S ⌧

2
v
+

4⌧v

1 + 4!2
S ⌧

2
v

3

7

7

7

7

5

, (8.49)

1
T2e
=�2

t

"

3
20

jR(0) +
1
4

jR(!S ) +
1

10
jR(2!S )

#

(8.50)

=
�2

t

10

2

6

6

6

6

4

3⌧v +
5⌧v

1 + !2
S ⌧

2
v
+

2⌧v

1 + 4!2
S ⌧

2
v

3

7

7

7

7

5

, (8.51)

313



where jR(!) is the spectral density at frequency ! that describes the distortion process.

It must be remembered that Equations 8.48–8.51 are valid only for an electronic spin S = 1 in the

motional-narrowing limit �t⌧v ⌧ 1. For hydrated transition-metal complexes in solution ⌧v is of the order of

10�12 s, and so we are within the motional-narrowing limit for values of �t to up approximately 0.5 cm�1.

We note that T1e and T2e are not necessarily the same, which is an observation of electron relaxation that

holds in more general cases. In the present case the two time constants only take the same value when we are

in the extreme-narrowing limit |!S ⌧v| ⌧ 1, where the expressions for T1e and T2e reduce to:

1
T1e
=

1
T2e
= �2

t ⌧v. (8.52)

In this regime both T1e and T2e are independent of field, and decrease with increasing ⌧v, i.e. the relaxation

rates increase as the timescale of distortion becomes longer.

8.4.2 Relaxation due to the static ZFS

The Redfield expressions for the relaxation time constants due to the static ZFS interaction are analogous

to those calculated in Equations 8.48–8.51 for the transient ZFS, with two important di↵erences. Firstly we

replace �t with the trace of the square of the permanent ZFS interaction tensor �s, which has the form

�2
s =

2
3 D2 + 2E2. (8.53)

Secondly we ascribe the modulation of the static ZFS to actual random reorientation of the tensor, a process

which is described by the correlation function gR
2 (⌧), so that g2(⌧) is given by

g2(⌧) =gR
2 (⌧) (8.54)

= exp (�|⌧|/⌧R) , (8.55)
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and ⌧R is the corresponding dynamic correlation time. The time constants T1e and T2e are now

1
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Once again Equations 8.56–8.59 are only valid in the motional-narrowing limit. However this condition

is much more di�cult to fulfil than for the transient ZFS, as the dynamic correlation time is usually orders

of magnitude longer than 10�12 s, and so the theory is only valid for metal ions such as Mn2+, which has a

symmetrical electron configuration of 3d5 and therefore a small ZFS.

8.4.3 Beyond the simple Redfield approximation

The theory of Bloembergen and Morgan for describing electron relaxation has two important shortcomings,

which are that the resulting relaxation time constants are valid only for S = 1 and in the Redfield limit. The

first limitation is important because, as shown by Rubinstein et al., electronic relaxation is multi-exponential

for spins S � 3/2 even within the Redfield limit, provided we are not inside the extreme-narrowing regime

[115]. In such cases the multi-exponential form of the relaxation curves must be accounted for when

considering both electronic relaxation and the form of the correlation function when calculating the PRE.

However, for the latter, we may be able to approximate the correlation function with a mono-exponential

decay containing a correlation time ⌧S that represents the best fit to the true multi-exponential electronic

relaxation curve. The regime outside which Redfield theory does not apply is referred to as the slow-motion

regime. An improved model of electronic relaxation for S � 1, comprising the e↵ects of slow and fast

motion, and higher-order ZFS e↵ects has been proposed by Rast et al. and applied to Gd3+ complexes in

solution [116]. Some of these features are discussed in more detail in chapter 9.
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8.4.4 Other electronic relaxation mechanisms involving spin-orbit coupling

The preceding discussion has focussed both on the motional modulation of the anisotropic electronic spin

interactions, such as the g-anisotropy and particularly the static ZFS, and the collisional distortion of the

coordination geometry, leading to the transient ZFS. Both the ZFS and g-anisotropy are dominated by SO

coupling e↵ects, with the result that both interactions increase in size with the strength of SO coupling.

Therefore we would expect both of the electronic relaxation mechanisms to become more e�cient with

increasing size of the SO interaction. This is borne out in the observation that, for first-row transition metal

ions subject to a small SO coupling interaction, typical T1e values are of the order 10�12–10�8 s, whilst

lanthanide ions with significantly larger SO coupling experience shorter T1e values of 10�14–10�12 s, the

exception being Gd3+ which has a spatially non-degenerate electronic state.

In the solid state, where the system lattice experiences little, or possibly no, rotational motion, we need

another mechanism to account for electronic relaxation. One mechanism that has been proposed is the

transition between vibrational energy levels, often referred to as phonons. Phonons occur on timescales

that are orders of magnitude shorter than rotational di↵usion, and which are too short to contribute directly

to nuclear relaxation in an e�cient manner [254]. However they are more e�cient at inducing electronic

relaxation [119], where the relaxation rates are highest when the correlation time is of the order of |1/!S |.

For metal ions with non-zero orbital angular momentum, there is an interaction between the orbital

angular momentum and the lattice which is modulated by the phonons. This requires phonons with energies

that match the transition energies between the electronic spin levels, and can occur via three principal

mechanisms [15]. The first is the direct transition between electronic spin states of the ground electronic

manifold [255], and occurs only when the phonon energy matches the electronic Zeeman energy, as shown

in Figure 8.4 (a). It is the least important mechanism at high temperature, where the phonon energies are

generally too large for the required electronic spin transition, and this process only becomes significant at

temperatures of the order of 10 K. The second process is due to the Raman e↵ect [255, 256], where two

phonons simultaneously interact with the spin system, both of which are of energy that is too large for the

spin transition. However their energy di↵erence is equal to the spin transition energy, thus allowing the spin

transition to take place. This is shown in Figure 8.4 (b). The final mechanism is due to the Orbach process

where the electronic spin has low-lying excited states [256]. This process allows the coupling of the electronic

spin to a higher-energy phonon, which causes a transition from an electronic state in the ground manifold to
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Figure 8.4: The mechanisms of electronic spin transitions induced by energy exchange between the spin and
the lattice vibrational states. The direct process is illustrated in (a) in which the transition from the lower
energy spin state to a higher spin state in the ground electronic manifold n = 0 occurs with absorption of
energy that is emitted from an excited lattice vibrational state ⌫ = 1 to a lower state, here the ground state
⌫ = 0. The separation of this phonon must equal the electronic spin transition energy. The Raman process
is shown in (b). Here two lattice phonons simultaneously interact with the electronic spin. The di↵erence in
the energies of these phonons is exactly equal to the energy required for the electronic spin transition. In (c)
is illustrated the Orbach process. The excited electronic manifold n = 1 is relatively low-lying, so that the
transition energy between the lattice states ⌫ = 0 and ⌫ = 1 is equal to the separation between the spin state
MS = �1/2 in the ground manifold n = 0, and the spin state MS = +1/2 in the low-lying excited manifold
n = 1. The latter transition is therefore caused by interaction with the corresponding lattice phonon. The
energy parameter � is the separation between the ground n = 0 and first-excited n = 1 spin manifolds, and
the lattice vibrational states are labelled with the vibrational quantum number ⌫.
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a state in a higher-energy manifold, as shown in Figure 8.4 (c). This is usually the fastest mechanism for

electronic transitions in the high-temperature limit.

8.5 Nuclear relaxation

Having outlined some of the di�culties associated with electronic relaxation, we now move onto the main

topic of this chapter, which is the Redfield description of the PRE. The source of the PRE is the hyperfine

interaction with the unpaired electrons, and so we can write down the incoherent time-dependent Hamiltonian

Ĥ1(t) as

Ĥ1(t) = Ŝ(t) ·A(t) · Î , (8.60)

where we have acknowledged that the time dependence is due to both modulation of the hyperfine coupling

tensor A(t) and the variation of the electronic spin operator Ŝ(t) due to electronic relaxation. The spin

operators T̂l�m used to describe the interaction are formed by the direct product of the I-spin and S -spin

operators and are given by

T̂l�m =
X

q1,q2

h11q1q2|l � mi Î1q1 Ŝ 1q2 , (8.61)

where each term is only non-zero if q1 + q2 = �m. The expression for the Redfield relaxation superoperator

partitions these basis operators into operators T̂ (n)
l�m that are labelled with an index n, and which evolve under

di↵erent frequencies on transformation into the interaction representation of Ĥ0. In terms of the direct product

notation, for each order m the index n refers to a unique pair of one-spin orders q1 and q2, i.e. n ⌘ n(q1, q2),

and so we are able to write T̂ (n)
l�m as

T̂ (n)
l�m = h11q1q2|l � mi Î1q1 Ŝ 1q2 . (8.62)

The Hermitian conjugate of T̂ (n)
l�m is given by

⇣

T̂ (n)
l�m

⌘†
= h11q1q2|l � mi Î†1q1

Ŝ †1q2
(8.63)

=(�1)m h11q1q2|l � mi Î1�q1 Ŝ 1�q2 . (8.64)
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T̂ (n)
2m !(n)

m ⌧S
m n = 1 n = 2 n = 3 n = 1 n = 2 n = 3 n = 1 n = 2 n = 3

0
q

2
3 ÎzŜ z � 1

2

q

1
6 Î+Ŝ � � 1

2

q

1
6 Î�Ŝ + 0 !I � !S �!I + !S T1e T2e T2e

±1 ⌥ 1
2 Î±Ŝ z ⌥ 1

2 ÎzŜ ± — ±!I ±!S — T1e T2e —
±2 1

2 Î±Ŝ ± — — ±(!I + !S ) — — T2e — —

Table 8.2: The spin operators T̂ (n)
2m , frequencies !(n)

m , and electron correlation times ⌧S for the spin-dipolar
interaction used in the calculation of the PRE.

T̂ (n)
00 !(n)

0 ⌧S
m n = 1 n = 2 n = 3 n = 1 n = 2 n = 3 n = 1 n = 2 n = 3

0 �
q

1
3 ÎzŜ z � 1

2

q

1
3 Î+Ŝ � � 1

2

q

1
3 Î�Ŝ + 0 !I � !S �!I + !S T1e T2e T2e

Table 8.3: The spin operators T̂ (n)
00 , frequencies !(n)

0 , and electron correlation times ⌧S for the Fermi-contact
interaction used in the calculation of the PRE.

We consider only the non-relativistic spin-dipolar and Fermi-contact interactions, the operators T̂ (n)
lm corre-

sponding to which are given in Tables 8.2 and 8.3. Also given are the characteristic evolution frequencies in

the interaction representation, and the electron correlation times used in the electron correlation functions.

Using Equations 8.62 and 8.63 we can write the double commutator in the Redfield superoperator as

h

T̂ (n)
l�m(t),

h

T̂ (n)
l�m(t � ⌧)†, ⇢̂T(t) � ⇢̂0

ii

=(�1)m h11q1q2|l � mi2
h

Î1q1 Ŝ 1q2 (t),
h

Î1�q1 Ŝ 1�q2 (t � ⌧), ⇢̂T(t) � ⇢̂0
ii

(8.65)

=(�1)m h11q1q2|l � mi2
⇢

Î1q1

h

Î1�q1 , ⇢̂
T(t) � ⇢̂0

i h

Ŝ 1q2 (t), Ŝ 1�q2 (t � ⌧)
i

+
h

Î1q1 ,
h

Î1�q1 , ⇢̂
T(t) � ⇢̂0

ii

Ŝ 1�q2 (t � ⌧)Ŝ 1q2 (t)
�

, (8.66)

where to go to the last line we have used the fact that the rapid electronic relaxation means that only the

electronic spin operators are time-dependent on the timescale we are interested in, and so the ensemble

average is only over these operators. As before, we can factor out the ⌧-dependence and rewrite the ensemble
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averages of the products of the electronic spin operators as

Ŝ 1±1(t)Ŝ 1⌥1(t � ⌧) = Ŝ 1±1(t � ⌧)Ŝ 1⌥1(t) =Ŝ 1±1Ŝ 1⌥1gS
±1(⌧) (8.67)

= � 1
2

Ŝ ±Ŝ ⌥gS
±1(⌧), (8.68)

Ŝ 10(t)Ŝ 10(t � ⌧) =Ŝ 2
10gS

0 (⌧) (8.69)

=Ŝ 2
z gS

0 (⌧). (8.70)

Here we have used the fact that operators representing electronic coherences such as Ŝ 1±1, or equivalently

Ŝ ±, relax according to the electronic transverse relaxation time constant, and that this is represented by a

reduced electronic correlation function gS
±1(⌧). Likewise the longitudinal electronic spin operator Ŝ 10, or

equivalently Ŝ z, relaxes according to the electronic longitudinal relaxation time constant, and we represent

this by a reduced electronic correlation function gS
0 (⌧). The double commutator is therefore

h

T̂ (n)
l�m(t),

h

T̂ (n)
l�m(t � ⌧)†, ⇢̂T(t) � ⇢̂0

ii

=(�1)m h11q1q2|l � mi2
n

Î1q1

h

Î1�q1 , ⇢̂
T(t) � ⇢̂0

i h

Ŝ 1q2 , Ŝ 1�q2

i

+
h

Î1q1 ,
h

Î1�q1 , ⇢̂
T(t) � ⇢̂0

ii

Ŝ 1�q2 Ŝ 1q2

o

gS
q2

(⌧), (8.71)

where we have labelled the reduced electronic correlation function with the index q2 which indicates the order

of the rank-one S -spin spherical tensor operator.

The overall reduced correlation function glq2 (⌧), which combines all the sources of fluctuating fields

experienced by the nucleus, is labelled by two indices l and q, and is given by the product of three correlation

functions:

glq(⌧) = gM(⌧)gR
l (⌧)gS

q (⌧). (8.72)

The first function gM(⌧) in the product is the reduced correlation function that encodes the e↵ects of chemical

exchange, and takes the simple exponential form:

gM(⌧) = exp (�|⌧|/⌧M) , (8.73)

where ⌧M is the chemical exchange correlation time. The second factor gR
l (⌧) is the reduced dynamic,

or rotational, correlation function. It depends on the spatial rank of the interaction tensor l and takes the
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following form:

gR
l (⌧) =

8

>

>

>

>

<

>

>

>

>

:

exp (�|⌧|/⌧R) , l = 2,

1, l = 0.
(8.74)

For spatial ranks l = 2 the correlation function is a simple exponential decay with rotational correlation

time ⌧R. By contrast spatially isotropic interactions with l = 0 are invariant to rotational di↵usion, and so the

corresponding correlation function is simply unity. The third factor in the overall reduced correlation function

gS
q (⌧) is due to electronic relaxation. The index q takes values of 0 or ±1 in order to distinguish between the

longitudinal and transverse relaxation of the unpaired electrons respectively, with the correlation functions

being given by:

gS
0 (⌧) = exp (�|⌧|/T1e) , (8.75)

gS
±1(⌧) = exp (�|⌧|/T2e) . (8.76)

We see that gS
0 (⌧) decays according to T1e, and gS

±1(⌧) decays according to T2e.

The overall reduced correlation function glq(⌧), and therefore the spectral density jlq(!), takes two distinct

forms depending on whether the interaction in question is spatially isotropic or not. For spatially isotropic

interactions, these are

g0q(⌧) = exp
⇣

�|⌧|/⌧E,q
⌘

, (8.77)

j0q(!) =
2⌧E,q

1 + !2⌧2
E,q
, (8.78)

where the e↵ective correlation times ⌧E,q are equal to

⌧�1
E,q = ⌧

�1
M + T�1

qe , q = 1, 2 (8.79)

and the index q distinguishes between electronic longitudinal and electronic transverse relaxation. We note

that both the chemical exchange and electronic relaxation time constants contribute to ⌧E,q, but that the

rotational correlation time does not. By contrast interactions that are spatially anisotropic with spatial rank

321



10-14

τ / s

τR

τM

Tqe

10-12 10-10 10-8 10-6 10-4

Figure 8.5: Typical timescales of the electronic relaxation times Tqe (q = 1, 2), the rotational correlation time
⌧R, and the chemical exchange correlation time ⌧M. Note that ⌧M can extend to longer values than are shown
on the scale, which are not considered here.

l = 2 have the following reduced correlation time and reduced spectral density:

g2q(⌧) = exp
⇣

�|⌧|/⌧c,q
⌘

, (8.80)

j2q(!) =
2⌧c,q

1 + !2⌧2
c,q
. (8.81)

The correlation times ⌧c,q are still labelled by q, but now also contain contributions from ⌧R as the interaction

tensors are modulated by rotations of the system:

⌧�1
c,q = ⌧

�1
M + ⌧

�1
R + T�1

qe , q = 1, 2. (8.82)

Typical ranges of the correlation times Tqe, ⌧R, and ⌧M are shown in Figure 8.5. There is significant overlap

of the timescales of the three processes, especially when we have both fast rotational di↵usion and chemical

exchange, but the mean values of the ranges can be ordered as Tqe < ⌧R < ⌧M [15].

The nuclear longitudinal relaxation time constant T1 is given by the following expectation value of the

relaxation superoperator in Liouville space:

1
T1
=

✓

Îz

�

�

�

�
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�

�

�

�

Îz

◆
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Îz|Îz
⌘ (8.83)

=
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TrI
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TrS
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1̂S
⌘ (8.84)
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Îz
ˆ̂�Îz

◆

TrI
⇣

Î2
z

⌘

(2S + 1)
, (8.85)
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where TrI and TrS indicate traces taken over the manifold of states of the I-spin and S -spin respectively,

and TrIS is a trace taken over the entire direct-product manifold of states of the combined I–S spin system.

On moving from Equation 8.83 to Equation 8.84 we see that the trace of the S -spin identity operator 1̂S

appears in the denominator. This is because the inner products appearing in the former equation are defined

as sums over the direct-product manifold of states of the combined spin system. However when the operator

in the inner product is a simple direct product of an I-spin operator with an S -spin operator, the trace of the

product is equal to the product of the traces of the two individual operators over the two separate manifolds

of I-spin and S -spin states. Since here Î2
z implies Î2

z ⌦ 1̂S , the S -spin trace is over the identity, and is equal to

TrS
⇣

1̂S
⌘

= 2S + 1. Similarly the nuclear transverse relaxation time constant T2 is given by

1
T2
=

✓

Î�
�

�

�

�

ˆ̂�
�

�

�

�

Î+
◆

⇣

Î�|Î+
⌘ (8.86)

=
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✓

Î� ˆ̂�Î+
◆

TrI
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Î� Î+
⌘

(2S + 1)
. (8.87)

As for electronic relaxation we can also define rate constants for longitudinal and transverse nuclear relax-

ation, which are equal to R1 = 1/T1 and R2 = 1/T2 respectively.

The traces in the numerators of Equations 8.85 and 8.87 are calculated from the trace of the operator in

Equation 8.71, which is given by

TrIS

⇢

h

T̂ (n)
l�m(t),

h

T̂ (n)
l�m(t � ⌧)†, Îa

ii

�

= (�1)m h11q1q2|l � mi2 TrI
nh

Î1q1 ,
h

Î1�q1 , Îa
iio

TrS
n

Ŝ 1�q2 Ŝ 1q2

o

gS
q2

(⌧),

(8.88)

where a = z or ±. We have used the fact that TrS
h

Ŝ 1q2 , Ŝ 1�q2

i

is always zero for any value of q2. We can

therefore proceed with the calculation by using the following expressions for the traces of the products of the

S -spin operators:

TrS
n

Ŝ 2
10

o

/(2S + 1) =S (S + 1)/3, (8.89)

TrS
n

Ŝ 1±1Ŝ 1⌥1
o

/(2S + 1) = � S (S + 1)/3. (8.90)

We now examine some specific models for the PRE.
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8.6 The Solomon–Bloembergen–Morgan theory of paramagnetic nu-

clear relaxation

The simplest and most commonly-used model for the PRE is Solomon–Bloembergen–Morgan theory. It

is a non-relativistic theory, meaning that the parts of the hyperfine tensor we use in the calculation of the

relaxation time constants are limited to the first-order Fermi-contact and spin-dipolar parts. In calculating the

Solomon–Bloembergen–Morgan equations for T1 and T2 we consider the two parts of the hyperfine tensor

separately, firstly focusing on the spin-dipolar part for both localised and delocalised electrons, and then on

the Fermi-contact part.

8.6.1 Relaxation due to the spin-dipolar interaction with delocalized electrons

For a metal ion possessing unpaired electrons that are spatially delocalised we must calculate the sum of

the squares of the PAF tensor components using the expressions in Equation 2.172. Thus the tensor can be

expressed in terms of the principal component ÃSD
zz , which contains an integral over all space of the electron

density, and an asymmetry parameter ⌘SD that is, in general, non-zero. The sum of the squares of the tensor

parameters in the PAF is therefore

+2
X

µ=�2

�

�

�ÃSD
2µ

�

�

�

2
=

1
2

✓

3 +
⇣

⌘SD
⌘2

◆

⇣

ÃSD
zz

⌘2
. (8.91)

Evaluating the expression for the Redfield relaxation superoperator, and substituting it into Equation 8.85

gives us the expression for T1:
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= S (S + 1)
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, (8.93)
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where, to go to the second line, we have substituted in the explicit expressions for the reduced spectral

densities. In addition we can calculate the PRE contribution to T2, which is

1
T2
= S (S + 1)

✓

3 +
⇣

⌘SD
⌘2
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8.6.2 Relaxation due to the spin-dipolar interaction with localised electrons (the

Solomon mechanism)

When the nucleus is su�ciently far from the paramagnetic centre, typically at distances of more than 4 Å, we

can safely approximate the unpaired electrons as being localised at the paramagnetic ion, and therefore treat

them as point dipole moments of spin S . The dipolar coupling interaction then simplifies to the interaction

between an electronic point dipole and a nuclear point dipole, allowing us to write the spin-dipolar tensor

parameters as

ÃSD
zz =2bS I , (8.96)

⌘SD =0, (8.97)

where bS I is the dipolar coupling constant for the interaction between the two point dipoles, which is given by

Equation 2.175. The T1 and T2 time constants are then calculated by substituting these values into Equations

8.93 and 8.95. This results in the familiar expression for T1
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and for T2:
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These expressions were first calculated by Solomon, and so relaxation by the point-dipole part of the

hyperfine interaction is sometimes referred to as the Solomon mechanism [96]. It is of interest to note that,

once we have set S = 1/2 and replaced all the correlation times with the same time ⌧c, these expressions are

identical to those for the relaxation time constants due to the stochastic fluctuation of the dipolar coupling

tensor between two nuclei in a diamagnetic molecule in solution experiencing unrestricted rotation [95, 183,

252, 257, 258].

8.6.3 Relaxation due to the Fermi-contact interaction (the Bloembergen mechanism)

The second mechanism for paramagnetic nuclear relaxation in the Solomon–Bloembergen–Morgan theory

is via the isotropic Fermi-contact interaction, as first described by Bloembergen [97]. As we have seen the

fluctuating local field at the nucleus can be induced by chemical exchange and electronic relaxation, so the

Bloembergen mechanism comprises scalar relaxation of both the first and second kinds [183].

The calculation of the contributions to T1 and T2 proceeds as follows. The sum of the square modulus of

the PAF tensor components reduces to a single term, which is

�

�

�AFC
00

�

�

�

2
= 3

⇣

AFC
⌘2
, (8.102)

where AFC is the Fermi-contact coupling constant in Equation 2.171. The double commutators can now be

computed in the same way as for the Solomon mechanism, which gives the following simple expression for
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T1:

1
T1
=

1
3

S (S + 1)
 

AFC

~

!2

j02(!S � !I) (8.103)

=
2
3

S (S + 1)
 

AFC

~

!2
⌧E,2

1 + (!S � !I)2⌧2
E,2
, (8.104)

and likewise the following expression for T2:
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8.6.4 The Solomon–Bloembergen–Morgan equations

The final step in the Solomon–Bloembergen–Morgan theory is to note that the contributions from the relax-

ation rate constants Ri from the di↵erent mechanisms are additive, which is the result of neglecting cross-

correlation between the Fermi-contact and spin-dipolar interactions. Hence we can write down the overall

Solomon–Bloembergen–Morgan equation for T1 by summing the Solomon and Bloembergen contributions,

which gives [95]
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Similarly the corresponding expression for T2 is [95]
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These equations provide a description of the PRE in systems experiencing rapid rotational di↵usion such that

⌧R is not much longer than the electronic relaxation times T1e and T2e. The theory therefore applies to small

complexes in solution. In situations where the dynamics are slowed so that ⌧R, ⌧M � T1e,T2e, the correlation

times ⌧c,q and ⌧E,q are approximately equal to Tqe, so the relaxation properties of the nucleus are dominated

by the electron relaxation and are essentially independent of any molecular dynamics. However this is not

observed experimentally for systems undergoing sluggish rotational dynamics, such as large biomolecules in

solution, a subject we return to in section 8.7. A special case of slow dynamics occurs in rigid solids, where

⌧R essentially becomes infinite. This represents a violation of the Redfield theory as the observation time is

no longer much greater than ⌧R, and so care needs to be taken when writing down the relaxation rate constants

under such conditions. This is the subject of section 8.9.

8.6.5 Shortcomings of the Solomon–Bloembergen–Morgan theory

The Solomon–Bloembergen–Morgan model presented here is the simplest possible theory of the PRE and

so, inevitably, contains a number of approximations that may not be valid in all situations. The use of the

point-dipole model for the unpaired electrons is questionable for distances from the paramagnetic centre of

less than 4 Å [259], and deviations have been reported even for distances beyond 10 Å [260]. However, as

we have seen, this simplification can be addressed relatively simply by using a more complex form of the

spin-dipolar coupling tensor [261].

Additional approximations that have been made are that the reduced correlation functions are all assumed

to have the form of a simple exponential decay. For the rotational correlation function, this is only true

for small- to medium-sized molecules in solution. However for larger molecules, such as proteins, more

sophisticated dynamic correlation functions are needed that account for simultaneous restricted rotation and

internal motions, such as are used in the Lipari–Szarbo model [262]. A related problem is the assumption of

mono-exponential electronic relaxation, which we have seen is generally not valid even in the Redfield limit

if S > 1. Multi-exponential electronic relaxation, and the resulting e↵ect on the PRE, has been treated by

Westlund in the Redfield limit, and under conditions of high field so that the Zeeman interactions dominate

Ĥ0 [263]. The resulting model is referred to as the generalised Solomon–Bloembergen–Morgan theory.

A more serious problem concerns the approximation that the processes of chemical exchange, rotational

di↵usion, and electronic relaxation are uncorrelated, which allows us to write the overall correlation function
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as the product of three separate functions, each of which corresponds to one of these processes. This

assumption probably holds when the three processes occur on very di↵erent timescales, but this is often

not the case and this deficiency is not easy to repair. Nevertheless work has been performed in this area by

Bertini et al. [108] and Kruk et al [109].

8.7 Curie-spin relaxation

The Solomon–Bloembergen–Morgan theory does not provide a correct description of large paramagnetic

molecules with sluggish rotational di↵usion where electron relaxation is the fastest stochastic process de-

scribed by the correlation function. The reason for this is that we have ignored the e↵ect of the di↵erences in

the populations of the electronic spin energy levels due to the relatively large electronic magnetic moment.

It is this which is responsible for the measurable Curie spin in Equation 3.62. It was shown by Gueron [99],

and Vega and Fiat [100] that in situations where electronic relaxation occurs on a much shorter timescale

than the rotational processes, the primary role of the former is to generate a thermal average of the electronic

spin, equal to the Curie spin, and the role of the latter is to cause a random spatial fluctuation in the hyperfine

interaction to the Curie spin on a longer timescale. Given that the Curie spin is proportional to B0 we would

expect the relaxation e↵ects due to the Curie spin to become more important at high field.

For an ensemble of spin-only transition-metal ions, the Curie spin is parallel to the external magnetic

field, conventionally the z-direction. We must therefore modify the expression for the longitudinal electronic

spin operator Ŝ 10(t), which we write as the sum of a time-independent Curie-spin term, and a fluctuating

remainder ŝ10(t) with zero time average:

Ŝ 10(t) =
D

Ŝ 10
E

1̂S + ŝ10(t). (8.109)

This expression indicates that the electronic spin operator Ŝ 10(t) fluctuates about its average value of
D

Ŝ 10
E

1̂S .

This decomposition changes the expression of the ensemble average Ŝ 10(t)Ŝ 10(t � ⌧) compared to that used
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in the Solomon–Bloembergen–Morgan theory. The new expression is

Ŝ 10(t)Ŝ 10(t � ⌧) =
D

Ŝ 10
E2

1̂S + ŝ10(t)
D

Ŝ 10
E

+
D

Ŝ 10
E

ŝ10(t � ⌧) + ŝ10(t)ŝ10(t � ⌧) (8.110)

=
D

Ŝ 10
E2

1̂S + ŝ10(t)ŝ10(t � ⌧) (8.111)

=
D

Ŝ 10
E2

1̂S +


Ŝ 2
10 �

D

Ŝ 10
E2

1̂S

�

gS
0 (⌧), (8.112)

where to go to the second line we have used the fact that ŝ10(t) = 0, and to go to the last line we have

interpreted ŝ2
10 as the di↵erence between the squares of Ŝ 10 and the Curie term

D

Ŝ 10
E

1̂S . We see that

the expression comprises two terms. The first is the Curie term
D

Ŝ 10
E2

1̂S which, as the absence of any

⌧-dependence suggests, is independent of the electronic relaxation processes. This is because the e↵ects of

electronic relaxation have already been accounted for in the calculation of the Curie spin. The second term is

a remainder that is a↵ected by longitudinal electronic relaxation through the electronic correlation function

gS
0 (⌧). This part is similar to that in the corresponding Solomon–Bloembergen–Morgan expression, with the

di↵erence that it is reduced in size by
D

Ŝ 10
E2

1̂S .

The operators representing the coherences Ŝ 1±1(t) are unchanged, as the transverse components of the

Curie spin are zero. Therefore the ensemble average Ŝ 1±1(t)Ŝ 1⌥1(t � ⌧) has the same expression as in the

Solomon–Bloembergen–Morgan theory:

Ŝ 1±1(t)Ŝ 1⌥1(t � ⌧) = Ŝ 1±1(t � ⌧)Ŝ 1⌥1(t) =Ŝ 1±1Ŝ 1⌥1gS
±1(⌧) (8.113)

= � 1
2

Ŝ ±Ŝ ⌥gS
±1(⌧). (8.114)

We now have two new interactions to include in our calculation of the relaxation time constants in addition

to those considered in the Solomon–Bloembergen–Morgan theory, the Fermi-contact and spin-dipolar inter-

actions between the nuclear spin and the Curie spin. We therefore need two additional reduced correlation

functions to describe the stochastic time dependence of these interactions, and two corresponding reduced

spectral densities which we label gC
l (⌧) and jCl (!), with l = 0, 2, respectively. The Fermi-contact interaction
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to the Curie spin has the following reduced correlation function and spectral density with l = 0:

gC
0 (⌧) = exp (�|⌧|/⌧M, ) , (8.115)

jC0 (!) =
2⌧M

1 + !2⌧2
M
. (8.116)

The interaction is spatially isotropic, and so the overall correlation time is simply the chemical exchange

correlation time ⌧M. The relaxation mechanism is therefore an example of scalar relaxation of the first kind.

For the spin-dipolar interaction the reduced correlation function and spectral density, with l = 2, are given by

gC
2 (⌧) = exp (�|⌧|/⌧D) , (8.117)

jC2 (!) =
2⌧D

1 + !2⌧2
D
. (8.118)

The interaction is spatially anisotropic, and so the correlation time ⌧D is now a combination of the correlation

times for the chemical exchange and the rotational di↵usion of the system:

⌧�1
D = ⌧

�1
M + ⌧

�1
R . (8.119)

We recall that these interactions are not modulated by electronic relaxation, as this is already accounted for

in the calculation of the Curie spin.

8.7.1 Relaxation due to the spin-dipolar interaction with delocalized electrons

We can now derive the expressions for the Curie relaxation time constants via the spin-dipolar interaction

with a source of delocalized electrons. The calculation can be summarised as follows. We take the Solomon–

Bloembergen–Morgan equation, and replace any term that depends on T1e with two similar terms. The first

term is a Curie term that is weighted by S 2
C (where S C denotes the Curie spin

D

Ŝ 10
E

) and in which ⌧c,1 is

replaced with ⌧D, and the second is weighted by S (S + 1)/3 � S 2
C and otherwise unchanged. In addition, any
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terms that depend on T2e are unchanged. The new expression for T1 is:
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We can write this expression as the sum of two separate terms

T�1
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T SBM
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⌘�1
, (8.122)

where we define T C
1 as the Curie contribution and T SBM

1 as a modified Solomon–Bloembergen–Morgan

contribution to the overall T1:
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In exactly the same way we can write down an overall expression for the T2 time constant, which is
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This expression can also be decomposed into the constituent Curie T C
2 and modified Solomon–Bloembergen–
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Morgan T SBM
2 parts
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We note that both Curie terms depend only on spectral densities of the form jC2 (!), and the correlation time

⌧D.

8.7.2 Relaxation due to the spin-dipolar interaction with localised electrons

If we can approximate the unpaired electron density at the paramagnetic centre as a localised electronic spin

S , we can use the point-dipole form of the spin-dipolar interaction and set ÃSD
zz = 2bS I and ⌘SD = 0. The T1

time constant is now
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and T2 becomes
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The Curie contributions to both time constants now have the simple forms
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8.7.3 Relaxation due to the Fermi-contact interaction

Finally we consider the e↵ect of the Curie spin on the Fermi-contact relaxation mechanism. Since the Fermi-

contact term is spatially isotropic, we expect that any Curie contribution to the relaxation rates is due to

modulation only by chemical exchange, and so only contains terms that depend on the reduced spectral

density jC0 (0). As before we take each term in the Solomon–Bloembergen–Morgan expression and replace

any term that depends on T1e with a Curie term and a modified Solomon–Bloembergen–Morgan term, and

leave unchanged any terms that depend on T2e. The Fermi-contact contribution to the nuclear T1 depends

only on T2e, and so is unchanged by the e↵ect of the Curie spin:
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By contrast the expression for T2 acquires a Curie term with reduced spectral density jC0 (0):

1
T2
=

 

AFC

~

!2 "

1
2

S 2
C jC0 (0) +

1
2

 

1
3

S (S + 1) � S 2
C

!

j01(0) +
1
6

S (S + 1) j02(!S � !I)
#

(8.138)

=
1
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S (S + 1)
 

AFC

~

!2 2
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3S 2
C⌧M + 3

 

1
3

S (S + 1) � S 2
C

!

⌧E,1 +
⌧E,2

1 + (!S � !I)2⌧2
E,2

3

7

7

7

7

7

5

. (8.139)

As before we can write each total rate constant as the sum of a Curie term and a modified Solomon–

Bloembergen–Morgan term. The former are given by

1
T C

1

= 0, (8.140)

1
T C

2

=

 

AFC

~

!2 1
2

S 2
C jC0 (0). (8.141)

Again we note that the Curie relaxation only a↵ects the transverse PRE.

8.7.4 Comparison of the Curie terms with the relaxation rate constants due to stochas-

tic fluctuation of the paramagnetic chemical shielding interaction

Having introduced the relaxation rate constants resulting from the Curie interaction, we now explore how we

may interpret these contributions. Following the introduction of the Curie spin in section 3.2, we showed how

the parameters of the induced paramagnetic shielding could be related to the Curie spin. As a reminder we

reproduce the relevant expressions for the isotropic shielding, shielding anisotropy, and asymmetry parameter

below:

�S
iso =

S CAFC

~�I B0
, (8.142)

��S =
S CÃSD

zz

~�I B0
, (8.143)

⌘S =⌘SD. (8.144)
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T̂ (n)
lm !(n)

m
l m n = 1 n = 1

0 0 �
q

1
3 B0 Îz 0

2
0

q

2
3 B0 Îz 0

±1 ⌥ 1
2 B0 Î± ±!I

±2 0 ±2!I

Table 8.4: The spin operators T̂ (n)
lm , and frequencies !(n)

m for the chemical shielding interaction used in the
calculation of the PRE.

If the electrons are localised at the paramagnetic centre, the anisotropy and asymmetry become

��S =
2S CbS I

~�I B0
, (8.145)

⌘S =0. (8.146)

Since the Curie spin induces a shielding tensor at the nucleus via the hyperfine interaction, we can interpret

the Curie relaxation mechanism as resulting from the stochastic modulation of this shielding tensor due to

fast chemical exchange, and rotational di↵usion. The random Hamiltonian that we use is

Ĥ1(t) = ~�IB0 · �S (t) · Î , (8.147)

where the time dependence is encoded entirely in the shielding tensor through changes in the orientation of

the PAF, with the associated correlation time ⌧R, and changes in the PAF components themselves, with the

associated correlation time ⌧M. We consider relaxation due both to the isotropic parts of the shielding, which

depend on the Fermi-contact coupling constant, and to the anisotropic part, which depends on the spin-dipolar

coupling parameters. The relevant irreducible spherical tensor operators are given in Table 8.4, and the sums

of the squares of the PAF parameters are:

X

µ

�

�

�K̃lµ
�

�

�

2
=

8

>

>

>

>

<

>

>

>

>

:

3~2�2
I�

2
iso, l = 0

1
2~

2�2
I��

2
⇣

3 + ⌘2
⌘

, l = 2
. (8.148)

Incorporating these expressions into the Redfield superoperator in Equation 8.25, and computing the expec-

tation values of the longitudinal and coherence I-spin operators, gives us the following expressions for the
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Curie longitudinal and transverse relaxation time constants:

1
T C

1

=
1

20
!2

I��
2
⇣

3 + ⌘2
⌘

jC2 (!I) (8.149)

=
1

10
!2

I��
2
⇣

3 + ⌘2
⌘ ⌧D

1 + !2
I ⌧

2
D
, (8.150)

1
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2

=
1
2
!2

I�
2
iso jC0 (0) + !2

I��
2
⇣

3 + ⌘2
⌘
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1
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jC2 (0) +
1

40
jC2 (!I)

#

(8.151)

= !2
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2
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3 + ⌘2
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1
15
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1
20

⌧D

1 + !2
I ⌧

2
D

3

7

7

7

7

5

. (8.152)

It is easily verified that these expressions are the same as those calculated previously by substituting in the

expressions for the shielding tensor parameters in Equations 8.142–8.146. In particular we note that the

isotropic shielding interaction contributes only to T C
2 , and not to T C

1 , as it does not correspond to a transition

between nuclear energy levels, as shown by the dependence on jC0 (0). In addition this term only contributes in

the presence of fast chemical exchange. The anisotropic shielding contributes both to T C
1 and T C

2 relaxation

due to modulation by both fast chemical exchange and rotational di↵usion.

8.7.5 The importance of the Curie term

Following the discussion of Curie relaxation, the obvious practical question is under what circumstances does

the Curie contribution become an important contribution to the overall PRE? We recall that under the typical

conditions of high-resolution NMR, namely high magnetic field and high temperature, we can approximate

the expression of the Curie spin in the high-temperature limit, with the result that |S C| ⌧ 1. Therefore

we might expect the contribution to the PRE to be insignificant since it is proportional to S 2
C, whereas the

corresponding factors in the modified Solomon–Bloembergen–Morgan contribution are S (S + 1)/3� S 2
C and

S (S + 1). For example, an ensemble of electronic spins S = 1 immersed in a magnetic field of 11.74 T at

a temperature of 298 K induces a Curie spin of �0.035, and the corresponding Curie term is weighted by

S 2
C = 0.001.

Nevertheless the Curie term can become the dominant factor in T2 relaxation under conditions of fast

electronic relaxation and long rotational correlation times, so that T1e,T2e ⌧ ⌧R, as is observed for proteins

in solution. Additionally we can expect the Curie term to become more important at high field, since S 2
C / B2

0,

in complete analogy to the increase in the importance of CSA-induced relaxation at high field in diamagnetic
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systems. This is illustrated in Figure 8.6, which shows the Curie and modified Solomon–Bloembergen–

Morgan contributions to the spin-dipolar R1 and R2 rates of a 1H nucleus plotted as functions of ⌧R, for

two di↵erent electronic relaxation times (T1e is assumed to be equal to T2e) of 0.1 and 1.0 ps, using the

parameters for the Curie spin given in the previous paragraph, and assuming there is no chemical exchange.

For electronic relaxation times of 1.0 ps, the longitudinal relaxation rate is dominated by the Solomon–

Bloembergen–Morgan contribution, as shown in (a). The Curie term varies according to the spectral density

jC2 (!I), which reaches a maximum value at ⌧R = 0.3 ns. By contrast the Solomon–Bloembergen–Morgan

contribution is independent of ⌧R in the slow-rotation limit as the overall correlation time is dominated by the

rapid electron relaxation, i.e. ⌧c,q ⇡ Tqe. The transverse relaxation rate, shown in (b), shows very di↵erent

behaviour with the Curie contribution becoming larger than the Solomon–Bloembergen–Morgan contribution

when ⌧R is longer than approximately 1 ns. At longer ⌧R, the Curie term dominates completely due to the

dependence jC2 (0), which is larger than j21(0) as ⌧R � ⌧c,q ⇡ Tqe. If we reduce the electronic relaxation times

to 0.1 ps, the Solomon–Bloembergen–Morgan contributions to both the longitudinal and transverse relaxation

rates, shown in (c) and (d), are reduced, with the result that the Curie term is a larger contribution still to the

overall relaxation rates. We note here that for large paramagnetic systems with slow rotational dynamics, the

transverse relaxation rate is completely dominated by Curie relaxation, whereas the longitudinal relaxation

rate is dominated by Solomon–Bloembergen–Morgan relaxation. For systems with rotational dynamics that

are intermediate between those of small molecules in solution and large systems, with correlation times of

approximately 1 ns, both the Curie and Solomon–Bloembergen–Morgan mechanisms are important for both

longitudinal and transverse relaxation.

8.8 Cross-correlation between the paramagnetic and diamagnetic re-

laxation mechanisms in solution

We now turn our attention to an interesting feature of relaxation in paramagnetic systems that is observed in

large biomolecules, which is the interference between the relaxation mechanisms resulting in the PRE and

the relaxation mechanisms due to non-paramagnetic interactions. So far we have assumed that the random

modulations of di↵erent interactions that act as local fields for relaxation vary independently of each other,

so that the relaxation rates are purely additive. However in some cases the fluctuations are not independent,
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Figure 8.6: Comparison of the size of the Curie and Solomon–Bloembergen–Morgan terms in the spin-dipolar
relaxation rate constants under the influence of slow rotational di↵usion. The plots in (a) and (b) show the
longitudinal and transverse rate constants T�1

1 and T�1
2 as a function of ⌧R, which takes relatively long values

of up to 10 ns, and constant electron relaxation time constants T1e = T2e = 1 ps. The corresponding plots in
(c) and (d) show the longitudinal and transverse rate constants T�1

1 and T�1
2 as a function of ⌧R with shorter

electronic relaxation time constants of T1e = T2e = 0.1 ps. The relaxation curves correspond to a 1H nucleus
coupled to an electronic spin S = 1 at 11.74 T. The Curie spin is calculated at 298 K, and takes the value
S C = �3.5 ⇥ 10�2. The constant C =

⇣

3 + (⌘SD)2
⌘

(ÃSD
zz /~)2/12, or (bS I/~)2.
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(a) (b)

Figure 8.7: Illustration of a combined nuclear–electronic spin system in which we observe cross-correlated
relaxation between the nuclear–nuclear dipolar coupling and Curie mechanisms. The spin system is shown
in (a). The Larmor frequencies of the two nuclear spins I1 and I2, denoted !0,1 and !0,2 are assumed to
be positive and negative respectively, so that the system represents a 1H–15N spin system in a protein. The
dipolar coupling between the two nuclei is b12. The electronic spin S has Larmor frequency !S and interacts
with the two nuclei via point-dipolar-coupling interactions with constants bS 1 and bS 2. The nuclear energy
levels and transition frequencies are shown in (b).

but are strongly correlated. One example that is commonly encountered is that of the dynamic processes in

a protein that cause fluctuations in both the 15N CSA and 1H–15N dipolar coupling interactions. Here is it

clear that the same source of fluctuations causes random modulations of both the interactions, which are then

obviously not mutually independent. This phenomenon is referred to as cross-correlated relaxation (CCR),

and results in an additional relaxation rate constant that is added to the others.

Here we investigate the e↵ect of cross correlation observed in a spin system comprising two spin-1/2

nuclei I1 and I2, coupled together by a dipolar coupling interaction with constant b12, both of which expe-

rience a spin-dipolar interaction with an electronic spin S with constants bS 1 and bS 2. The spin system and

nuclear-spin energy levels are illustrated in Figure 8.7 (a) and (b). In this spin system we have defined the

Larmor frequency of I1, !0,1, to be negative and the Larmor frequency of I1, !0,2, to be positive. Therefore

we may interpret Figure 8.7 as representing the spins in an H–N amide group in a paramagnetic protein, with

I1 =
1H and I2 =

15N. To simplify the discussion we neglect chemical exchange, and assume that the only

sources of the stochastic fluctuations are unrestricted rotational di↵usion and electronic relaxation.
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8.8.1 Nuclear–nuclear dipolar-coupling relaxation and cross-correlation with the Curie

mechanism

We proceed to calculate the full form of the relaxation superoperator corresponding to the spin system in

Figure 8.7 (a). The Hamiltonian Ĥ1(t) that contains all the time-dependent random interactions is given by

Ĥ1(t) = Ĥ(1)
C (t) + Ĥ(2)

C (t) + Ĥ(S 1)
SBM(t) + Ĥ(S 2)

SBM(t) + Ĥ(12)
DD (t). (8.153)

The first two terms Ĥ(1)
C (t) and Ĥ(2)

C (t) represent the interactions of nuclear spins I1 and I2 with the Curie

spin of the paramagnetic centre. As discussed in section 8.7.4, both interactions can be represented by the

corresponding SA subject to rotational di↵usion, and so they also include the orbital contributions to the SA

that are present in diamagnetic systems. The spin operators are T̂C1,2m and T̂C2,2m, which take the expressions

in Table 8.4. Both of these terms are responsible for the Curie PREs, and the CSA-contributions to relaxation

in diamagnetic systems. The third and fourth terms in the Hamiltonian are Ĥ(S 1)
SBM(t) and Ĥ(S 2)

SBM(t), which

represent the time-dependent spin-dipolar interactions between I1 and S , and I2 and S respectively that are

modulated by rotational di↵usion and electronic relaxation. The spin operators are given in Table 8.2. Both

terms are responsible for the modified Solomon contribution to the PREs. The final term in the Hamiltonian

is Ĥ(12)
DD (t), which represents the nuclear–nuclear dipolar coupling interaction that is modulated by rotational

di↵usion. The spin operators T̂ (n)
DD,2m are given in Table 8.2 with the substitutions I ! I1 and S ! I2.

We can now write the total relaxation superoperator ˆ̂� as a sum of terms:

ˆ̂� = ˆ̂�(1)
PRE +

ˆ̂�(2)
PRE +

ˆ̂�(12)
DD +

ˆ̂�(1)
CCR +

ˆ̂�(2)
CCR. (8.154)

The terms ˆ̂�(1)
PRE and ˆ̂�(2)

PRE are responsible for the total PRE experienced by spins I1 and I2 due to both the

Solomon and Curie relaxation mechanisms. Both superoperators and the corresponding relaxation rates as

the same as calculated previously. The relaxation contribution from the nuclear–nuclear dipolar interaction is

due to the term ˆ̂�(12)
DD , which takes the expresssion

ˆ̂�(12)
DD Ô =

3b2
12

5~2

X

mn



T̂ (n)
DD,2�m,



⇣

T̂ (n)
DD,2�m

⌘†
, Ô

��

jR
⇣

�!(n)
�m

⌘

. (8.155)
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The spectral density function jR(!) = 2⌧R/
⇣

1 + !2⌧2
R

⌘

represents unrestricted rotational di↵usion. Finally the

relaxation contributions due to CCR for I1 and I2 are represented by the superoperator terms ˆ̂�(1)
CCR and ˆ̂�(2)

CCR.

We only consider the cross correlation between the Curie and nuclear–nuclear dipolar interactions. Assuming

the SAs of both nuclear spins are axially symmetric (which is the case for a single point-spin-dipolar hyperfine

interaction), with anisotropies ��S
2 and ��S

2 respectively, the two CCR superoperators have the expressions:

ˆ̂�(1)
CCRÔ =

3�1b12��S
1

10~
d(2)

00 (#1)
X

m

⇢

T̂ (0)
DD,2�m,



⇣

T̂C1,2�m
⌘†
, Ô

��

+


T̂C1,2�m,
✓

h

T̂ (0)
DD,2�m

⌘†
, Ô

���

jR
⇣

�!(0)
�m

⌘

,

(8.156)

ˆ̂�(2)
CCRÔ =

3�2b12��S
2

10~
d(2)

00 (#2)
X

m

⇢

T̂ (0)
DD,2�m,



⇣

T̂C2,2�m
⌘†
, Ô

��

+


T̂C2,2�m,
✓

h

T̂ (0)
DD,2�m

⌘†
, Ô

���

jR
⇣

�!(0)
�m

⌘

,

(8.157)

where �1 and �2 are the two nuclear gyromagnetic ratios. The angle #1 is the angle between the PAF of the

SA tensor of I1 and the I1–I2 internuclear vector; and likewise for #2.

Using these expressions we compute the relaxation rates for both longitudinal and transverse relaxation

in turn.

8.8.2 Longitudinal relaxation

The Solomon equations

When we apply the total relaxation superoperator in Equation 8.154 to the total nuclear-spin density operator,

we obtain a set of di↵erential equations that link the relaxation behaviour of the expectation values of the

operators that represent the total I1 longitudinal magnetization Î1z, the total I2 longitudinal magnetization Î2z,

and the longitudinal two-spin order 2Î1z Î2z. These equations are referred to as the Solomon equations for two

nuclear spins, and are given by

dI1z

dt
= �R(1)

1

⇣

I1z � I(0)
1z

⌘

� �12
⇣

I2z � I(0)
2z

⌘

� �(1)
1 2I1zI2z, (8.158)

dI1z

dt
= ��12

⇣

I1z � I(0)
1z

⌘

� R(2)
1

⇣

I2z � I(0)
2z

⌘

� �(2)
1 2I1zI2z, (8.159)

d 2I1zI2z

dt
= ��(1)

1

⇣

I1z � I(0)
1z

⌘

� �(2)
1

⇣

I2z � I(0)
2z

⌘

� R(1,2)
1 2I1zI2z, (8.160)
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where I1z and I2z are the expectation values of Î1z and Î2z, I(0)
1z and I(0)

2z are the corresponding expectation values

at equilibrium, and 2I1zI2z is the expectation value of 2Î1z Î2z (which has an equilibrium value of zero). The

rate constants R(1)
1 , R(2)

1 , and R(1,2)
1 are the self-relaxation rate constants for I1z, I2z, and 2I1zI2z and describe

their return to their equilibrium values. The cross-relaxation rate constant �12 describes the process by which

Î1z and Î2z are interconverted, and is responsible for the nuclear Overhauser e↵ect which is used to establish

the close spatial proximity of nuclei in molecules. The last two cross-relaxation rate constants �(1)
1 and �(2)

1

describe the interconversion between Î1z and 2I1zI2z, and Î2z and 2I1zI2z respectively.

Longitudinal self-relaxation

The three longitudinal self-relaxation rate constants are given by:

R(1)
1 = RPRE,(1)

1 +

 

b12

~

!2
h

3
20 jR(!0,1) + 3

10 jR(!0,1 + !0,2) + 1
20 jR(!0,1 � !0,2)

i

|                                                                         {z                                                                         }

RDD,(1)
1

, (8.161)

R(2)
1 = RPRE,(2)

1 +

 

b12

~

!2
h

3
20 jR(!0,2) + 3

10 jR(!0,1 + !0,2) + 1
20 jR(!0,1 � !0,2)

i

|                                                                         {z                                                                         }

RDD,(2)
1

, (8.162)

R(1,2)
1 = RPRE,(1)

1 + RPRE,(2)
1

|                {z                }

RPRE,(1,2)
1

+

 

b12

~

!2
h

3
20 jR(!0,1) + 3

20 jR(!0,2)
i

|                                    {z                                    }

RDD,(1,2)
1

. (8.163)

Each rate constant is the sum of a PRE term and a contribution from the nuclear–nuclear dipolar coupling

relaxation mechanism. For example the self-relaxation rate constant for spin I1 is the sum of the longitudinal

PRE RPRE,(1)
1 , which is given by Equation 8.131, and the longitudinal nuclear–nuclear dipolar coupling rate

constant RDD,(1)
1 . The corresponding expression for spin I2 takes a similar expression. The rate constant for

the longitudinal two-spin order is the sum of a PRE term RPRE,(1,2)
1 , which is the sum of the two one-spin

longitudinal PREs RPRE,(1)
1 and RPRE,(2)

1 , and a longitudinal nuclear–nuclear dipolar coupling rate constant

RDD,(1,2)
1 . We note that the three rate constants do not have a term due to the CCR.
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Longitudinal cross-relaxation

The cross-relaxation rate constant �12 is given by the expression

�12 =

 

b12

~

!2
h

3
10 jR(!0,1 + !0,2) � 1

20 jR(!0,1 � !0,2)
i

. (8.164)

This rate constant is due only to the nuclear–nuclear dipolar coupling interaction, as this is the only term

in the Hamiltonian that connects the two nuclear spins. Therefore we expect no paramagnetic relaxation

contribution to the conventional NOE. However the situation is di↵erent for cross relaxation between each

longitudinal magnetization term and the longitudinal two-spin order term. Here the two cross-relaxation rate

constants �(1)
1 and �(2)

1 are only non-zero because of the CCR between the nuclear–nuclear dipolar coupling

and the Curie mechanism. They are given by

�(1)
1 =

3
10

⇣

b12
~

⌘

�1B0��S
1 d(2)

00 (#1) jR(!0,1), (8.165)

�(2)
1 =

3
10

⇣

b12
~

⌘

�2B0��S
2 d(2)

00 (#2) jR(!0,2). (8.166)

This is also observed for cross correlation between a dipolar coupling and a CSA in diamagnetic systems

[254]. In the absence of CCR both relaxation rate constants are zero. Hence the detection of polarization

transfer, such as Î1z ! 2Î1z Î2z, may indicate the presence of CCR.

8.8.3 Transverse relaxation

The Solomon equations

We now examine transverse relaxation processes that a↵ect coherences. The observable single-quantum

coherences for a spin system comprising two nuclei have a more complicated form than for a simple one-spin

system. For a system of two nuclear spins-1/2 there are four such coherences, which are indicated on energy

levels in Figure 8.7 (b). Two of the coherences involve a spin-state flip of spin I1, with the second spin I2 in

an unchanged spin state of either ↵ or �. These two coherences form a doublet, and are represented by the

product operators Î1+ Î2↵ and Î1+ Î2�, where Îi+ is the raising operator for spin Ii, and Îi↵ and Îi� are the two

projection operators for spin Ii in the two spin states. Likewise there are two coherences representing a spin

flip of I2, which are represented by the product operators Î1↵ Î2+ and Î1� Î2+.
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The two spin-I1 coherences Î1+ Î2↵ and Î1+ Î2� may have di↵erent phases. Therefore we may represent their

superposition as a combination of an in-phase coherence operator Î1+, in which both Î1+ Î2↵ and Î1+ Î2� have

the same phase, and an anti-phase coherence operator 2Î1+ Î2z, in which both Î1+ Î2↵ and Î1+ Î2� have phases

that di↵er by ⇡. Likewise we can also define the in-phase Î2+ and anti-phase 2Î1z Î2+ coherence operators for

I2. The four operators are given by:

Î1+ = Î1+ Î2↵ + Î1+ Î2�, (8.167)

2Î1+ Î2z = Î1+ Î2↵ � Î1+ Î2�, (8.168)

Î2+ = Î1↵ Î2+ + Î1� Î2+, (8.169)

2Î1z Î2+ = Î1↵ Î2+ � Î1� Î2+. (8.170)

The relaxation behaviour of the magnetization terms representing the in-phase and anti-phase coherence of

spin I1 is described by a pair of connected di↵erential equations that are given by

dI1+

dt
= �R(1)

2 I1+ � �(1)
2 2I1+I2z, (8.171)

d 2I1+I2z

dt
= ��(1)

2 I1+ � R(1,2)
2 2I1+I2z. (8.172)

The in-phase and anti-phase magnetization terms both relax according to the transverse self-relaxation rate

constants R(1)
2 and R(1,2)

2 , and cross relax with rate constant �(1)
2 . Likewise the in-phase and anti-phase

magnetization terms of spin I2 are connected by the following pair of di↵erential equations:

dI2+

dt
= �R(2)

2 I2+ � �(2)
2 2I1zI2+, (8.173)

d 2I1zI2+

dt
= ��(2)

2 I2+ � R(2,1)
2 2I1zI2+. (8.174)

The in-phase and anti-phase self-relaxation rate constants are R(2)
2 and R(2,1)

2 , and the cross-relaxation rate

constant is �(2)
2 .

345



Transverse self-relaxation

The four self-relaxation rate constants are given by:

R(1)
2 = RPRE,(1)

2 +
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10 jR(0) + 3
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i
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(8.175)
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The two rate constants for in-phase relaxation R(i)
2 are each the sum of a transverse PRE term, given by

Equation 8.133, and a diamagnetic term due to the nuclear–nuclear dipolar coupling RDD,(i)
2 . The two anti-

phase self-relaxation rate constants are more complicated. For example the PRE contribution to the rate

constant for 2I1+I2z, R(1,2)
2 , is the sum of the one-spin PRE terms for transverse relaxation of I1 RPRE,(1)

2 and

longitudinal relaxation of I2 RPRE,(2)
1 . The remaining contribution RDD,(1,2)

2 is due to the nuclear–nuclear dipolar

coupling. We note that none of the self-relaxation rate constants has a contribution from CCR. However this

is not the full story; the relaxation rate constants above give only the average relaxation rate of the two

coherences represented by each in-phase or anti-phase operator. As we will see each component of the

doublet relaxes at a di↵erent rate.

Relaxation-induced coherence transfer

The cross-relaxation between the in-phase and anti-phase coherence terms is very interesting. The two cross-

relaxation rate constants are only non-zero in the presence of CCR between the nuclear–nuclear dipolar
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coupling and Curie relaxation mechanisms. They are given by:
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i
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This is intriguing because it implies that during a delay an in-phase coherence on I1 can evolve into an

anti-phase coherence, also on I1, via a relaxation-induced transformation of the form Î1+ ! 2Î1+ Î2z. A

subsequent pulse or combination of pulses can then transform this anti-phase term into an anti-phase term on

the second spin I2. This is an example of relaxation-allowed coherence transfer [264].

In solution NMR in the absence of CCR the only way in which such a coherence transfer can occur is

if the isotropic J-coupling J12 between the two spins is non-zero. In this case the transformation from the

in-phase to anti-phase coherences is

Î1+ ! Î1+ cos (⇡J12t) � i2Î1+ Î2z sin (⇡J12t) . (8.181)

The anti-phase term can then be transferred to a coherence on I2. Therefore in the absence of CCR, as for

small molecules, the observation of such a coherence transfer indicates that the two spins are coupled by a

J-coupling interaction. This is used extensively in correlation spectroscopy to identify the bonding networks

within molecules. However for large macromolecules in solution which exhibit measurable CCR we may

observe relaxation-induced coherence transfer, which complicates the interpretation of the spectrum. This

is particularly important to bear in mind for homonuclear correlation spectroscopy (COSY) of paramagnetic

proteins [265].

Di↵erential line broadening due to cross-correlation between the nuclear–nuclear dipolar and Curie

relaxation mechanisms

The self-relaxation rate constants given in Equations 8.175–8.178 are the average rate constants for the in-

and anti-phase coherences of the two spins. However, as we have already pointed out, this does not provide a

complete picture of the transverse self-relaxation of the system, for which we need to consider the relaxation

properties of the expectation values I1+I2↵, I1+I2�, I1↵I2+, and I1�I2+ which represent the four individual
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coherences. In large paramagnetic macromolecules experiencing slow rotational di↵usion, CCR between the

nuclear–nuclear dipolar coupling and Curie mechanisms results in di↵erent transverse relaxation rates for the

two coherences I1+I2↵ and I1+I2�, and therefore di↵erent linewidths in the spectrum. We calculate this e↵ect

here in the spin-di↵usion limit where |!I⌧R| � 1, where we can approximate the spectral density functions

as jR(0) = 2⌧R, and jR(!0,1) ⇡ jR(!0,2) ⇡ jR(!0,1 +!0,2) ⇡ jR(!0,1 �!0,2) ⇡ 0. Under this condition the two

expectation values I1+I2↵ and I1+I2� relax independently with di↵erent self-relaxation rate constants R(1,↵)
2 and

R(1,�)
2 that are given by:
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Both rate constants have the same contribution from the dipolar (DD) and Curie relaxation mechanisms, and

the di↵erence arises only from the di↵erent sign of the CCR contribution. The conclusion is that the e↵ect of

CCR is to reduce the relaxation rate of one coherence in the doublet, and to increase the relaxation rate of the

second. Which rate is increased and which is reduced depends on the overall sign of the CCR contribution,

which depends in turn on the signs of b12, �1, �S
1 , and d(2)

00 (#1). This e↵ect is also utilized for large proteins

in solution in a method called Transverse Relaxation-Optimized SpectroscopY (TROSY), where the CCR

between the diamagnetic CSA and DD relaxation mechanisms is used to maximise the resolution at high

magnetic fields [266].

If, as predicted by the relaxation di↵erential equations, the decay due to transverse relaxation is expo-

nential, the linewidths of the two peaks (defined as the full-width at half-maximum) are equal to 2R(1,↵)
2 and

2R(1,�)
2 . This means that the CCR manifests itself in the spectrum by the two components of the doublet

having di↵erent linewidths, with one peak being narrowed and the other broadened. Figure 8.8 illustrates the

form of the in-phase and anti-phase doublets that are obtained with and without CCR for di↵erent values of

the J-coupling constant. The average linewidth is set to 100 Hz, with the CCR contribution equal to ±50

Hz. Spectra with values of J12 ranging from 200 Hz down to 0 Hz are depicted. In the absence of CCR both

components of the doublet have the same linewidth. In the absence of CCR the e↵ect of reducing J12 on the

in-phase doublet is to reduce the separation between the two components of the doublet, until the splitting is
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Figure 8.8: Simulated in-phase and anti-phase doublets with and without cross-correlation between the
dipolar-coupling and Curie relaxation mechanisms for di↵erent J-coupling constants. In the absence of CCR
the linewidth of both components is 100 Hz. The CCR contribution to the two components is 50 Hz, with the
high-frequency line being narrowed and the low-frequency line broadened. The coupling constants J12 are as
indicated.
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no longer resolved. Finally, at J12 = 0, the two components are at the same frequency and we see a singlet.

For the anti-phase doublet, reducing J12 causes increased cancellation between the intensities of the peaks as

their separation is reduced. At zero coupling the intensities cancel exactly resulting in no spectrum. Thus,

in the absence of CCR e↵ects, anti-phase coherences can only be generated and observed if the two spins

interact via a non-zero J-coupling.

However if we introduce the CCR e↵ect the result is di↵erent. The two components of the doublet have

di↵erent linewidths with one being narrowed (here the high-frequency component) and the other broadened.

This superposition of di↵erent linewidths is still seen with zero J-coupling as it results from the incoherent

e↵ect of the dipolar coupling between the spins and of their paramagnetic SAs. The most notable e↵ect at

zero J-coupling is seen in the anti-phase doublet in which the intensities due not cancel due to the di↵erent

linewidths; the result is that this anti-phase doublet can still be observed, in complete contrast to the situation

without CCR. Hence in the presence of CCR it is possible both to generate anti-phase coherences via cross-

relaxation-allowed coherence transfer, and to observe the resulting anti-phase doublet [264]. As noted earlier

this means that the interpretation of NMR spectra that correlate between pairs of spins via the J-coupling need

to be interpreted with care, since cross-relaxation-allowed coherence transfer results in correlations even with

zero J-coupling [265].

8.9 Paramagnetic relaxation enhancements in non-dynamic solid in-

sulators

We now turn to a di↵erent motional regime to those considered so far, in which chemical exchange and

random reorientation of the interaction tensor, on a timescale that is conducive to e�cient relaxation, are

completely absent. This situation is regularly encountered in rigid solids, including materials and crystalline

phases of small molecules in a rigid lattice with no flexible parts, so there is neither overall tumbling nor

internal motional dynamics on the relevant timescale. The only motions that are present are due to vibrations,

which are not an e�cient source of nuclear relaxation, and so such diamagnetic systems often exhibit very

long T1 relaxation times, of the order of minutes or hours. On the other hand, paramagnetic systems still

exhibit short relaxation times as the vibrational motion still causes e�cient electronic relaxation [119], and

the relaxing electrons act to relax the nuclei.
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When deciding on the model to use for the PRE in these systems, it is tempting to use the Curie model

of Gueron [99], and Vega and Fiat [100], and extend ⌧R and ⌧M to infinity. However this is not valid as the

extension of the correlation times in this way would cause a violation of one of the basic assumptions of

Redfield theory, which is that the observation time must be longer than the correlation times. We therefore

begin instead from the Solomon–Bloembergen–Morgan model and ignore chemical exchange and stochastic

reorientation from the beginning, so that the overall correlation times are simply equal to the electronic

longitudinal and transverse relaxation time constants:

⌧E,q = ⌧c,q = Tqe, q = 1, 2. (8.184)

We then take the Solomon–Bloembergen–Morgan equations and make the substitution of the correlation

times directly, resulting in the following nuclear T1 relaxation time constant

1
T1
=

2
3

S (S + 1)
 

AFC

~

!2 T2e

1 + (!S � !I)2T 2
2e

+
2
15

S (S + 1)
 

bS I

~

!2 2

6

6

6

6

4

3T1e

1 + !2
I T 2

1e

+
6T2e

1 + (!S + !I)2T 2
2e

+
T2e

1 + (!S � !I)2T 2
2e

3

7

7

7

7

5

, (8.185)

and the following nuclear T2 relaxation time constant
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These expressions assume a point-dipole model for the electrons. However the correction for delocalisation

e↵ects is relatively straightforward, as we have seen.

Figure 8.9 shows a general comparison of the Solomon and Bloembergen longitudinal and transverse

relaxation rates for a 1H nucleus in a field of 11.74 T, for a range of electronic relaxation times, with the

assumption that T1e = T2e ⌘ ⌧S . In (a) and (b) are shown the Solomon and Bloembergen contributions

to the longitudinal relaxation rates plotted against ⌧S . We see that the Solomon contribution is always the

larger of the two, and completely dominates for all electronic relaxation times, apart from the shortest below
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Figure 8.9: Comparison of the sizes of the longitudinal and transverse relaxation rates due to the Solomon and
Bloembergen mechanisms in a non-dynamic solid as a function of the electron relaxation time. It is assumed
that T1e = T2e ⌘ ⌧S . The variation of the longitudinal rates is shown in (a), and the transverse rates in (c),
both up to a ⌧S of 10 ns. In (b) and (d) are shown expansions of the plots in (a) and (b), up to a ⌧S of 2 ps.
The nuclear spins are 1H in an external field of 11.74 T. The constant C = S (S + 1)

⇣

3 + (⌘SD)2
⌘

(ÃSD
zz /~)2/12,

i.e. S (S + 1)(bS I/~)2 for the Solomon mechanism, and S (S + 1)(AFC/~)2 for the Bloembergen mechanism.
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approximately 1.0 ps where the Bloembergen contribution is still smaller, but nevertheless significant. Both

the Solomon and overall relaxation rate are dominated by the reduced spectral density j21(!I) which, for an

external field of 11.74 T, reaches a maximum at T1e = 0.32 ns. Shorter electronic relaxation times, such as

those of the order of 0.1–1.0 ps that are observed for lanthanides, therefore lead to longer values of T1. We

see a di↵erent variation for the transverse relaxation rates in (c) and (d). Here the Solomon and Bloembergen

terms are comparable, and are dominated by the reduced spectral densities j21(0) and j01(0) respectively, both

of which depend on T1e. Both contributions to the relaxation rate therefore simplify increase with T1e.

The trends shown in Figure 8.9 indicate a general property of the relaxation properties of paramagnetic

systems, which is that, in the absence of dynamic or motional e↵ects, the enhancements in both R1 and R2

are dominated by electronic longitudinal relaxation via the time constant T1e. Slower electronic longitudinal

relaxation rapidly increases the rate of the transverse PRE, and rapidly increases the longitudinal PRE to a

maximum at T1e = 1/ |!I |, after which it slowly drops o↵.

8.10 Paramagnetic relaxation enhancements due to lanthanide ions

We now round o↵ this chapter with a very brief review of the expressions for the relaxation rate constants that

could be applied to lanthanide systems. As we saw in chapter 6, the EPR interaction and paramagnetic shift

tensors due to lanthanide ions can be extremely complicated, as a result of the need to consider the e↵ects

of strong SO coupling and the low-lying excited states due to the crystal-field interaction and higher-energy

SO coupling levels. However we also saw that we can simplify matters by assuming that kT is su�ciently

large that the crystal-field energy levels are all significantly populated, and treating the lanthanide ions as

free metal ions [61]. To a reasonable approximation, we can then take the expressions for the relaxation rate

constants derived earlier, and replace S with J, and ge with gJ to obtain the correct expressions.

In the Solomon–Bloembergen–Morgan relaxation model, we take the Fermi-contact coupling constant

AFC and spin-dipolar coupling constant to be:

AFC =
µ0µBgJ~�I

3S
⇢↵��(0), (8.187)

bJI =
µ0µBgJ~�I

4⇡R3 . (8.188)

353



Then replacing S with J we obtain the following expression for T1:
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Likewise the T2 time constant is
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For relaxation due to slow molecular motions we can use the Curie model, in which the “Curie spin” is

now defined as the thermal average of the z component of the total angular momentum operator Ĵz:

JC ⌘
D

Ĵz
E

(8.191)

= � µBgJ J(J + 1)B0

3kT
. (8.192)

The expressions for the total T1 and T2 relaxation time constants including both the Fermi-contact and spin-

dipolar contributions, are

1
T1
=

2
3

J(J + 1)
 

AFC

~

!2
⌧E,2

1 + (!S � !I)2⌧2
E,2
+

2
15

 

bJI

~

!2 2

6

6

6

6

4

J2
C

9⌧D

1 + !2
I ⌧

2
D
+

 

1
3

J(J + 1) � J2
C

!

9⌧c,1

1 + !2
I ⌧c,1

+J(J + 1)
0

B

B

B

B

B

@

6⌧c,2

1 + (!S + !I)2⌧2
c,2
+

⌧c,2

1 + (!S � !I)2⌧2
c,2

1

C

C

C

C

C

A

3

7

7

7

7

7

5

, (8.193)

354



and
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For lanthanide ions the Fermi-contact coupling interaction is relatively small compared to the spin-dipolar

interaction, due to the contracted nature of the 4 f orbitals and the corresponding reduced electronic-spin

transfer. Therefore we expect the Solomon mechanism to dominate the Bloembergen mechanism in the

overall relaxation behaviour. Furthermore electronic relaxation for lanthanide ions is considerably faster than

for 3d ions, as we see in the following section, and so for typical ranges of rotational and chemical-exchange

correlation times we are able to approximate the overall correlation times as ⌧c,q ⇡ ⌧E,q ⇡ Tqe, with the result

that electronic relaxation is the stochastic process that dominates the PRE.

8.11 Relaxation properties of specific paramagnetic metal ions

Following the examination of the theory of the PRE we now quantify the PREs of di↵erent paramagnetic

metal ions in di↵erent motional regimes, and due to the Solomon, Bloembergen, and Curie mechanisms.

To compare the PREs due to di↵erent metal ions on a particular nucleus in a particular system requires a

quantification of the values of T1e and T2e of that particular metal ion in that particular system. Electronic

relaxation times have been measured extensively for complexes and metalloproteins in solution and glasses,

and these values have been used to estimate the PREs of nuclei in similar complexes by Bertini et al [15].

Table 8.5 gives the ranges of electronic relaxation times for a selection of first-, second-, and third-row d-block

transition-metal ions, and also the calculated longitudinal PREs R1 and R2, and Table 8.6 gives the equivalent

values for the lanthanide ions. The tables include calculations for a 1H nucleus in a small complex in solution

with a rotational correlation time of ⌧R = 10�10 s, and a large biomolecule in solution with ⌧R = 10�8 s

assuming spin-dipolar Solomon and Curie mechanisms respectively at 298 K and a nucleus–ion separation

of 5 Å, and at a 1H Larmor frequency of �800 MHz. Also included are calculations for the Bloembergen
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mechanism for a one-electron Fermi-contact coupling constant of 4.47 MHz.

The nuclear relaxation of molecules in solution is very well understood [95, 246, 252, 253], and the pre-

dominant di�culty in calculating PREs is the incorporation of the details relating to the electronic relaxation

processes [95]. On the other hand, in solids both nuclear and electronic relaxation are poorly understood by

comparison. Tables 8.5 and 8.6 also include estimates of the PREs obtained in solid materials assuming that

the range of electronic relaxation times matches that in solution.

8.11.1 The d-block transition-metal ions

The electronic relaxation times in Table 8.5 have been grouped together into a generic electronic correlation

time ⌧S . There is a very wide range of such times, which lie between 10�8 and 10�13 s. The electronic relax-

ation of d-block transition-metal ions is due to the stochastic modulation of both the permanent anisotropic

EPR tensors, and any transient changes in their values due to distortions of the coordination sphere. Of the

EPR tensors the ZFS provides the dominant e↵ect, followed by the g-anisotropy. Both are due to SO coupling

e↵ects, and their sizes depend on the size of the many-electron SO coupling parameter �. Therefore there is

a general trend for a larger SO coupling energy to result in faster electronic relaxation.

High-spin metal ions with half-full d-shells essentially have zero SO coupling energy, and therefore the

ZFS and g-anisotropy are very small. This is the reason for the relatively long ⌧S of 10�8 s for Mn2+.

Transition-metal ions of other configurations relax more quickly due to the presence of SO coupling. However

ions with S = 1/2 have no ZFS, and so the electronic relaxation is due principally to the g-anisotropy. The

result is that the relaxation for such ions may also be comparatively slow, as can be seen for VO2+ and Cu2+,

which have ⌧S values between 10�8 and 10�9 s.

The expression for the longitudinal PRE R1 is dominated by the spectral density j(!I), which is a

maximum when ⌧c = 1/ |!I | which, for the examples given here, is 2.0 ⇥ 10�10 s. Therefore for electronic

relaxation times below this value, increasing T1e and T2e increases R1, whereas increasing T1e and T2e above

2.0 ⇥ 10�10 s has the e↵ect of reducing R1. The transverse PRE R2 is dominated by the spectral density

j(0) at longer correlation times, which increases linearly with the correlation time. By contrast, in the

extreme-narrowing limit, such that ⌧c ⌧ 1/ |!I |, the Solomon longitudinal and transverse PREs are equal.

This explains why the overall longitudinal PRE is dominated by the Solomon mechanism, rather than the

Bloembergen mechanism, as only the former depends on the spectral density j(!I), and the latter depends
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only on j(!S ±!I), which is much smaller in these motional regimes. The Bloembergen mechanism, however,

makes a more important contribution to the transverse PRE due to the dependence on j(0). Transition-metal

ions with electronic relaxation times in the range 10�11–10�13 s, such as low-spin Fe3+, high-spin 5- and

6-coordinate Co2+, Ru3+, and Re3+, have Solomon relaxation rates for rigid solids and small complexes that

are approximately equal. On the other hand metal ions with slowly relaxing electrons, with time constants

in the range 10�8–10�9 s such as Mn2+ and Cu2+, exhibit transverse Solomon PREs that are significantly

larger than their longitudinal counterparts. In the slow-rotation regime, such that Curie-spin relaxation

becomes important, we see that the most significant e↵ects are seen on the transverse PREs, which increase

substantially due to the increasing ⌧R.

Superimposed upon the dependence on the electronic relaxation times is the observation that metal ions

with higher spins S give larger PREs due to the dependence on S (S + 1).

8.11.2 The lanthanide ions

For molecules in solution the electronic relaxation times T1e and T2e of the lanthanide ions generally take

values from 0.01 to 0.1 ps, and so are shorter than those of the first-row transition-metal ions. This is due to

the larger SO coupling of the former. The smaller electronic relaxation times of the lanthanides tend to result

in lower PREs, particularly for transverse relaxation, than for the 3d metal ions. Table 8.6 summarises the

range of electronic relaxation times, grouped together as ‘electronic correlation times’ ⌧S , and the resulting

calculated PREs. For the non-dynamic solid and small molecule T1 ⇡ T2, and so the relaxation properties are

in the extreme-narrowing limit. We leave this regime as ⌧R increases, as for large biomolecules dominated by

slow rotational di↵usion. These systems are then subject to Curie relaxation, and the the transverse relaxation

rates are several orders of magnitude larger than the longitudinal rates.

The Gd3+ ion: 4 f 7, 8S 7/2

An important exception to the general relaxation behaviour of the trivalent lanthanides is Gd3+, which

possesses a half-full 4 f shell and therefore e↵ectively has an SO coupling interaction of zero. The Gd3+

ion exhibits electronic relaxation times of the order of 1 to 10 ns, which are up to six orders of magnitude

greater than for the other lanthanides. These longer electronic correlations result in larger PREs for all

relaxation mechanisms with the exception of longitudinal relaxation due to the Bloembergen mechanism,
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which is negligible compared to the other lanthanides. In particular the larger ⌧S values have the e↵ect of

increasing the rate of transverse relaxation, which is now dominated by the term proportional to ⌧S , in all

cases so that it is orders of magnitude faster than for the other ions. The large relaxation e↵ects result in Gd3+

complexes exerting long-range PREs, which make these systems good contrast agents for MRI [127, 129].

However it is di�cult to study the paramagnetic NMR e↵ects within these complexes as the large short-range

PRE tends to render the nuclei unobservable.

8.12 Key concepts

• Under conditions of fast stochastic dynamics, such that the timescale of motion is much shorter than the

reciprocal of the relevant interaction, electronic and nuclear relaxation can be described using Redfield

theory.

• Redfield theory is usually valid for nuclear relaxation in solution, and in solids containing rapidly

fluctuating electrons.

• Redfield theory does not usually provide a good description of electronic relaxation, and is only valid

in highly-symmetric complexes.

• The principal mechanisms of electronic relaxation are modulation of the transient and/or static zero-

field splitting, and phonons.

• Under high-field and fast-motional conditions, nuclear relaxation is described by the Solomon–Bloembergen–

Morgan equations.

• The principal mechanisms of nuclear relaxation are the spin-dipolar hyperfine interaction (the Solomon

mechanism), and the Fermi-contact interaction (Bloembergen mechanism).

• In systems where the rotational dynamics are slow compared to the rates of electronic relaxation the

nuclear transverse relaxation is dominated by the Curie mechanism.

• In paramagnetic biomolecules with slow rotational di↵usion in solution there is cross correlation

between the nuclear–nuclear dipolar coupling to a second nuclear spin and paramagnetic SA, which
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results in the two components of the doublet having di↵erent linewidths. Relaxation-allowed coherence

transfer can therefore occur between the two nuclei even in the absence of a J-coupling between them.

• In solids with no rotational dynamics, Curie relaxation is absent.

• Metal ions with S = 1/2 and half-full d5 configurations have relatively long electronic relaxation times

due to the absence of the ZFS.

• Electronic relaxation times tend to decrease down a triad due to the increasing spin-orbit coupling.

• The paramagnetic relaxation enhancement due to lanthanide ions is typically smaller than that for

first-row d-block transition-metal ions, due to the faster electronic relaxation.
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Chapter 9

Relaxation in paramagnetic systems

under general conditions

In chapter 8 a treatment of nuclear relaxation was presented, valid for (1) high-field conditions, (2) fast mo-

tional dynamics, (3) a non-relativistic description of the electron spin, and (4) incorporating a phenomenologi-

cal description of the electronic relaxation. In this chapter we expand on the previous description, by adopting

a full quantum-mechanical treatment of the relaxation processes. This enables us to derive expressions for

the PRE where the electronic relaxation is outside the Redfield limit, and including relativistic e↵ects such

as SO coupling. The electronic relaxation is therefore treated properly, and the resulting expressions for the

PRE are valid at all fields.

We begin by deriving a general expression for the PRE under general conditions, employing a version

of Redfield theory in which we treat both the spin system and lattice using quantum mechanics. Whilst this

expression is correct and general, it resembles a ‘black box’ in that it is not always obvious how to use it to

obtain usable expressions that are easily understood. We therefore illustrate the scope of the formalism by

deriving the expressions for the PRE in a number of special cases, including low external field, fast rotational

motion in solution, and including the e↵ects of vibrations on electronic relaxation. In all cases the treatments

are valid for arbitrary electronic spin S . Finally we examine the case of relaxation in metallic solids.

Further reading on the general theory of paramagnetic relaxation can be found in the reviews of Kowalewski
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et al. [93, 94].

9.1 Introduction to the slow-motion theory of relaxation

9.1.1 The di↵erent approaches for slow relaxation dynamics

In the description of the PRE in chapter 8 we modelled the problem as a quantum mechanical spin system,

comprising both the nuclear and electronic spins, coupled to a lattice that is treated classically, and which

comprises the remaining parts of the system such as the molecular framework. The random time variation

of the classical degrees of freedom of the lattice is the cause of the relaxation of the spin system. This time

dependence is included in the Hamiltonian describing the spin–lattice coupling Ĥ1(t), which is characterised

by a strength parameter which is !IL in angular units. The validity of the entire semi-classical Redfield

description is restricted to the motional-narrowing, or Redfield, limit which we quoted as |!IL| ⌧c ⌧ 1, where

⌧c is the correlation time we defined earlier. If the spin–lattice coupling strength is su�ciently large, or else

the correlation time is su�ciently long so that the Redfield limit is violated, we must formulate the problem

in another way. This problem is frequently encountered when the spin system contains electronic spins, as

they are frequently subject to very large anisotropic interactions, such as the ZFS. In fact the electron–lattice

coupling parameters are typically so large that we find ourselves in the slow-motion limit |!IL| ⌧c � 1.

Three practical approaches to resolving this problem can be found in the literature. The first is the Swedish

slow-motion theory, which introduces the concept of a nuclear spin interacting with a composite lattice,

comprising both the quantized electronic degrees of freedom, and the classical degrees of freedom due to

rotational di↵usion, distortions, chemical exchange, etc. [93, 102, 105, 106]. The second approach is the

Grenoble method, which models the rotational di↵usion and collision dynamics using a large number of

random configurations of the spin system, with each given a random trajectory of the relevant parameters

describing the fluctuations of the spin-dipolar coupling vector, and static and transient ZFS parameters [110,

111]. The third approach is the Ann Arbor method, in which the electronic dynamics are treated using

electronic wavefunctions rather than in Liouville space [112–114]. Although these three methods represent,

at first sight, very di↵erent formulations of electronic relaxation and the PRE, it has been shown by Belorizky

et al. that they predict very similar results under certain conditions, implying that the underlying physics is

the same in each case [251].
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Figure 9.1 shows comparisons of the NMRD PREs simulated using the Swedish slow-motion, Grenoble,

and Ann Arbor models for two di↵erent metal ions, and two di↵erent rotational correlation times [251]. In

all cases the simulations were performed under the following conditions:

• Two values of the electronic spin quantum number were chosen, S = 7/2 corresponding to Gd3+, and

S = 1 corresponding to high-spin Ni2+. The nucleus was 1H;

• The ZFS Hamiltonian comprises both a static and transient part, which were chosen to be axially

symmetric, with magnitudes given by �s and �t respectively. These interactions were the sources of

electronic relaxation;

• The source of the nuclear relaxation was the spin-dipolar interaction. The PAF of this interaction did

not coincide with that of the static ZFS, but they were assumed to be separated from each other by the

polar angle ✓, which was assumed fixed;

• Both the spin-dipolar and ZFS interactions were modulated by rotational di↵usion with correlation

times ⌧r;

• The transient ZFS was modulated by distortions of the metal coordination geometry due to solvent

collisions with correlation time ⌧v.

The simulations for S = 7/2 were performed with static and transient ZFS parameters of �s = 0.01 cm�1

and �t = 0.05 cm�1, a spin-dipolar coupling constant of 16.7 MHz, and ✓ angles of 0� and 90�. These ZFS

parameters are typical values for Gd3+, and the coupling constant corresponds to a dipolar interaction with

1H at a distance of 310 pm from the metal ion. The distortional correlation time was ⌧v = 5 ps. The 1H

PRE profiles are shown in Figure 9.1 (a) and (b) for rotational correlation times of ⌧r = 100 ps and 1 µs

respectively. In both cases modulation of the transient ZFS is within the Redfield approximation. However

the rotational modulation of the ZFS and spin-dipolar interaction only satisfy the Redfield condition for the

shorter rotational correlation time in (a). We also see that all three slow-motion theories predict essentially

the same behaviour, being indistinguishable above fields of 0.1 T, and with only a small deviation of the Ann

Arbor method from the others at lower fields.

The simulations for S = 1 were performed for larger static and transient ZFS parameters of �s = 1 cm�1

and �t = 10 cm�1, typical for high-spin Ni2+, with all other parameters the same as for S = 7/2. The results,
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(a) τr = 100 ps

S = 7/2

Δs = 0.01 cm-1

Δt = 0.05 cm-1

S = 1

Δs = 1 cm-1

Δt = 10 cm-1

τr = 1.0 μs(b)

(c) (d)

Figure 9.1: Simulated proton PRE NMRD profiles, calculated using the three slow-motion models for two
di↵erent metal ions. The profiles in (a) and (b) are calculated for an electronic spin quantum number S = 7/2,
and rotational correlation times of (a) ⌧r = 100 ps and (b) 1 µs. The static and transient ZFS parameters are
�s = 0.01 cm�1 and �t = 0.05 cm�1. The profiles in (c) and (d) are calculated for S = 1, rotational
correlation times of (c) ⌧r = 100 ps and (d) 1 µs, and static and transient ZFS parameters of �s = 1 cm�1 and
�t = 10 cm�1. Note that no Ann Arbor data are shown for (c) and (d) as the results diverge. In all cases the
spin-dipolar coupling constant is bS I = 16.7 MHz, and the distortional correlation time is ⌧v = 5 ps. N the
Ann Arbor method;  the Swedish slow-motion method; ⌅ the Grenoble method. Adapted from [251], with
the permission of AIP Publishing.
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for the rotational correlation times of ⌧r = 100 ps and 1 µ s, are shown in Figure 9.1 (c) and (d). Here the

static and transient ZFS dynamics are outside the Redfield limit in both cases, and the spin-dipolar interaction

dynamics are only within the Redfield limit for the shorter rotational correlation time in (c). This proved to be

a di�cult problem that was beyond the Ann Arbor method, for which the results deviated considerably (data

not shown) [251]. However it is striking that both the Swedish slow-motion and Grenoble methods predict

the same behaviour at all fields.

In the light of the similarities between the Swedish and Grenoble approaches, we choose a single method

when describing the formalism of electronic and nuclear relaxation in paramagnetic systems, namely the

Swedish slow-motion theory.

9.1.2 The Swedish slow-motion theory

We often encounter the situation where the interactions between the nuclei and their surroundings are suf-

ficiently weak to satisfy the Redfield condition, and so can be treated using Redfield theory, even when the

interactions between the electrons and their surroundings are not. This situation has been treated separately

by Hwang et al. [304, 305], and a number of groups in Sweden [102–104, 107]. The idea is to sidestep the

problem of the strong coupling between the electrons and their surroundings by treating the electrons as part

of the lattice. Therefore the lattice is now a composite comprising both the classical degrees of freedom,

such as the rotational dynamics, and the quantised degrees of freedom of the electronic interactions. The spin

system now comprises only the nuclear spin, the coupling of which to the lattice can be treated properly using

Redfield theory.

Clearly this description can only be realised by treating the lattice as a quantum object, requiring the full

quantum formulation of the Redfield theory [93, 183, 253], which we give in the following section using

the stochastic Liouville formalism. In addition to catering for the slow-motion dynamics of the unpaired

electrons, the stochastic Liouville formalism also has the advantage of being able to treat the electronic

relaxation of spins S > 1 properly, rather than phenomenologically as in the Solomon–Bloembergen–Morgan

theory. The Solomon–Bloembergen–Morgan theory also assumes that the only electronic interaction is

the spatially isotropic Zeeman interaction, meaning that the resulting equations are only valid at external

magnetic fields that are su�ciently high that the ZFS can be neglected. This restriction is lifted in the

stochastic Liouville formalism and all relevant electronic spin interactions, including SO coupling e↵ects
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such as the g-anisotropy and the ZFS, are included.

9.2 The stochastic Liouville formalism

We now introduce the stochastic Liouville formalism, and derive the form of the relaxation superoperator.

9.2.1 The Hamiltonian and Liouvillian

The Hamiltonian Ĥ describing the entire system, including the nuclear spin system and the composite lattice

comprising both the classical degrees of freedom of motion and the quantized electronic degrees of freedom,

is

Ĥ = ĤI + ĤL + ĤIL. (9.1)

The Hamiltonian is divided into three parts describing the nuclear spin system (ĤI), the lattice (ĤL), and the

coupling between the two (ĤIL). Note that, unlike in the semi-classical formulation of the Redfield theory,

all the terms are time-independent. In the Liouville formalism the total Hamiltonian is associated with a total

Liouvillian ˆ̂L. The Liouvillian is a commutation superoperator which is defined so that is acts on an operator

Ô to produce a new operator according to the following transformation [257]:

ˆ̂LÔ =
h

Ĥ, Ô
i

. (9.2)

The total Liouvillian is the sum of the three Liouvillians describing the spin system ˆ̂LI , lattice ˆ̂LL, and

spin–lattice coupling ˆ̂LIL:
ˆ̂L = ˆ̂LI +

ˆ̂LL +
ˆ̂LIL. (9.3)

Each Liouvillian is defined by a relation analogous to that in Equation 9.2.

The nuclear spin system

The Hamiltonian and Liouvillian describing the nuclear spin system contain in principle all the terms associ-

ated with the nuclear spin interactions, such as the Zeeman interaction, chemical and paramagnetic shielding,

nuclear quadrupolar interaction, and dipolar and J-couplings. As in chapter 8 we restrict the discussion to a
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single nuclear spin 1/2 and neglect the e↵ects of the chemical shielding. Therefore the spin Hamiltonian is

simply the nuclear Zeeman interaction

ĤI = ~!I Îz, (9.4)

as before.

The spin–lattice coupling

In this formulation of the Redfield theory, the spin–lattice coupling Hamiltonian is simply the hyperfine

coupling Hamiltonian. However there is an important di↵erence in the exact form of the Hamiltonian in

this formalism compared to the semi-classical Redfield theory. Before, we wrote down the (spin–lattice)

hyperfine interaction Hamiltonian in the irreducible spherical tensor basis as

ĤIL =

2
X

l=0

+l
X

m=�l

(�1)mAlmT̂l�m, (9.5)

where the operators T̂lm contain both nuclear and electronic spin operators. This form is appropriate in the

semi-classical Redfield formalism as we have separated the nuclear–electronic spin system (in T̂lm) from

the classical degrees of freedom of the lattice (in Alm). However this form is not appropriate in the present

formalism as the electronic spins are now part of the lattice. We therefore rewrite Equation 9.5 as follows:

ĤIL =

2
X

l=0

+l
X

m=�l

(�1)mAlm

+1
X

m0=�1

⌦

11,�m0,�m + m0|l � m
↵

Î1�m0 Ŝ 1,�m+m0 (9.6)

=

+1
X

m0=�1

Î1�m0

2
X

l=0

+l
X

m=�l

(�1)m ⌦

11,�m0,�m + m0|l � m
↵

Ŝ 1,�m+m0Alm. (9.7)

The nuclear spin properties are now contained in the rank-one operators Î1m, and the composite lattice

properties are encoded in the products Ŝ 1,�m+m0Alm. To complete the formulation of the hyperfine interaction

Hamiltonian we define the rank-one lattice operators L̂1m as

L̂1m =

2
X

l=0

+l
X

m0=�l

(�1)m+m0 ⌦11,�m,�m0 + m|l � m0
↵

Ŝ 1,�m0+mAlm0 , (9.8)
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and write the hyperfine interaction Hamiltonian as the scalar contraction of Î1m and L̂1m:

ĤIL =

+1
X

m=�1

(�1)mÎ1�mL̂1m. (9.9)

For completeness we simplify the expression for the lattice operator in Equation 9.8 by introducing the index

q = m � m0 to give

L̂1m =

2
X

l=0

+1
X

q=�1

(�1)q h11,�m, q|l, q � mi Ŝ 1qAlm�q (9.10)

=(�1)m
2

X

l=0

(�1)l
p

2l + 1
+1
X

q=�1

0

B

B

B

B

B

B

B

B

B

@

l 1 1

m � q q �m

1

C

C

C

C

C

C

C

C

C

A

Ŝ 1qAlm�q. (9.11)

In the following discussion on the expressions for the PRE rate constants it proves convenient to write the

lattice operator L̂1m as a sum of contributions of di↵erent ranks l:

L̂1m = (�1)m
2

X

l=0

L̂(l)
1m, (9.12)

where the term L̂(l)
1m is given by

L̂(l)
1m = (�1)l

p
2l + 1

+1
X

q=�1

0

B

B

B

B

B

B

B

B

B

@

l 1 1

m � q q �m

1

C

C

C

C

C

C

C

C

C

A

Ŝ 1qAlm�q. (9.13)

Hence L̂(0)
1m describes the contact contributions to the spin–lattice coupling, L̂(1)

1m gives the contribution due to

antisymmetric part of the hyperfine interaction, and L̂(2)
1m describes the spin-dipolar contribution.

The lattice

The electronic-spin part of the lattice is described by a Hamiltonian ĤS which comprises the electronic

Zeeman interaction ĤZ , the static ZFS ĤZFS,S, and the transient ZFS ĤZFS,T:

ĤS = ĤZ + ĤZFS,S + ĤZFS,T. (9.14)
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With each contribution and with the sum is associated a Liouvillian. The total electronic spin Liouvillian ˆ̂LS

is the sum of the electronic Zeeman ˆ̂LZ , static ZFS ˆ̂LZFS,S, and transient ZFS ˆ̂LZFS,T Liouvillians:

ˆ̂LS =
ˆ̂LZ +

ˆ̂LZFS,S +
ˆ̂LZFS,T. (9.15)

As discussed in chapter 8 the static part of the ZFS is the time average of the ZFS interaction during the

rapid distortions of the coordination geometry due to vibrations and collisions, and the transient ZFS is the

deviation from the average.

The total lattice Liouvillian is obtained by adding the electronic spin Liouvillian to other Liouvillians that

describe the stochastic motion within the relevant degrees of freedom, which for example include stochastic

rotational di↵usion, stochastic distortions, stochastic translational motion, chemical exchange, and vibrations.

The total lattice Liouvillian is therefore written as

ˆ̂LL =
ˆ̂LS +

ˆ̂LR +
ˆ̂LD +

ˆ̂LT +
ˆ̂LM +

ˆ̂LV . (9.16)

The stochastic rotational di↵usion Liouvillian is ˆ̂LR = �i ˆ̂�R, where ˆ̂�R is the stationary Markov operator that

describes the conditional probability distributions of orientations via the di↵erential equation

d
dt

P(⌦|⌦0) = � ˆ̂�RP(⌦|⌦0), (9.17)

where P(⌦|⌦0) is the probability that at time t the orientation is given by the Euler angles ⌦ if the orientation

was ⌦0 at t = 0. The Liouvillian ˆ̂LD describing the stochastic distortions of the lattice geometry due to

collisions can similarly be written in terms of the stationary Markov operator ˆ̂�D as ˆ̂LD = �i ˆ̂�D. The

stochastic translational motion is described by ˆ̂LT , and chemical exchange is represented by ˆ̂LM . The

quantum vibrational motion of the lattice is represented by the Liouvillian ˆ̂LV .

9.2.2 The density operator

The quantum states of the system |Ni are written as the direct product of the nuclear spin states |IMIi with

the lattice states |Li:

|Ni = |IMIi ⌦ |Li. (9.18)
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In addition the entire system is described by a density operator X̂(t), which is the direct product of the density

operators that represent the nuclear spin system ⇢̂(t) and the lattice P̂(t):

X̂(t) = ⇢̂(t) ⌦ P̂(t). (9.19)

The lattice is a much larger entity than the spin system, and so we can assume that it remains in thermal

equilibrium at a temperature TL that is unchanged by exchanges of energy with the spin system. The lattice

density operator is therefore time-independent and equal to the equilibrium lattice density operator P̂0,

P̂0 =
exp

⇣

��LĤL
⌘

TrL
h

exp
⇣

��LĤL
⌘i , (9.20)

where TrL is the trace taken over all the lattice states |Li, and �L = 1/(kTL). From the definition in Equation

9.20, it is easy to see that the trace of P̂0 over the lattice states is unity:

TrL
⇣

P̂0
⌘

= 1. (9.21)

Combining this property with Equation 9.19 we see that

TrL
⇣

X̂(t)
⌘

=⇢̂(t)TrL
⇣

P̂0
⌘

(9.22)

=⇢̂(t), (9.23)

i.e. that the nuclear spin density operator is equal to the total density operator after taking the trace over the

lattice states. This property is important in the derivation of the nuclear spin relaxation superoperator in the

following section.

9.3 Derivation of the stochastic Liouville equation

In this section we derive the equation of motion for nuclear relaxation, the form of the relaxation superoper-

ator, and the longitudinal and transverse relaxation rate constants using the stochastic Liouville formalism.
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9.3.1 The relaxation superoperator

The starting point is the Redfield master equation for the evolution of the density operator of the combined

nuclear spin system and lattice, which takes a similar form to the corresponding expression in the semi-

classical Redfield theory in Equation 8.5:

dX̂T(t)
dt

= � 1
~2

Z 1

0

h

ĤT
IL(t),

h

ĤT
IL(t � ⌧), X̂T(t)

ii

d⌧. (9.24)

As for the semi-classical theory described in the previous chapter, the application of Equation 9.24 is subject

to two key approximations concerning the strength of the coupling between the spin system and the lattice,

and the correlation time. Firstly the strength of the coupling must be su�ciently small compared to the

inverse of the correlation time that it satisfies the motional-narrowing condition in Equation 8.6, which is

adapted here:

|!IL| ⌧c ⌧ 1. (9.25)

Secondly, in order to truncate the perturbation expansion to second order and extend the upper time limit in

the integral to infinity, we assume that the spin system is only observed at times satisfying the inequalities in

Equation 8.7:

⌧c ⌧ t ⌧
�

�

�

�

�

1
!IL

�

�

�

�

�

. (9.26)

Equations 8.5 and 9.24 are therefore subject to the same set of approximations in Redfield theory. However

there are two key di↵erences between them. Firstly Equation 9.24 is not averaged over an ensemble of

systems. We will see that this average is replaced by the sum over all lattice states in the full quantum-

mechanical treatment of the lattice. Secondly the double commutator in Equation 9.24 contains the density

operator X̂T(t) rather than the di↵erence between X̂T(t) and the equilibrium density operator X̂0. The inclusion

of the equilibrium density operator in the semi-classical master equation (8.5) was phenomenological, and

was required because otherwise the semi-classical theory would predict that ⇢̂(t) ! 0 rather than ⇢̂0 as

t ! 1, i.e. it predicts a steady state corresponding to an infinite temperature. This anomaly arises because of

the failure to treat the lattice ‘properly’ as a quantum object. However, as the lattice is modelled as a quantum

object here, this phenomenological correction is not needed. The superscript ‘T’ of the spin–lattice coupling

Hamiltonian and density operator indicates that these operators are in the interaction representation of the
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spin and lattice Hamiltonians, which is defined as

ĤT
IL(t) = exp

h

i
⇣

ĤI + ĤL
⌘

t/~
i

ĤIL exp
h

�i
⇣

ĤI + ĤL
⌘

t/~
i

, (9.27)

X̂T(t) = exp
h

i
⇣

ĤI + ĤL
⌘

t/~
i

X̂(t) exp
h

�i
⇣

ĤI + ĤL
⌘

t/~
i

, (9.28)

using the conventional notation of operator transformations. In terms of the corresponding Liouvillians the

transformations have the form

ĤT
IL(t) = exp



i
✓

ˆ̂LI +
ˆ̂LL

◆

t/~
�

ĤIL, (9.29)

X̂T(t) = exp


i
✓

ˆ̂LI +
ˆ̂LL

◆

t/~
�

X̂(t). (9.30)

We are interested in the relaxation behaviour of the nuclear spin system, rather than the combined spin

system and lattice, and so we require an equation of motion of the nuclear-spin-system density operator ⇢̂(t).

This is derived from Equation 9.24 by taking the trace over all lattice states, and using Equation 9.23 to

obtain:

d⇢̂T(t)
dt

=
d
dt

TrL
⇣

X̂T(t)
⌘

(9.31)

= � 1
~2

Z 1

0
TrL

nh

ĤT
IL(t),

h

ĤT
IL(t � ⌧), ⇢̂T(t)P̂0

iio

d⌧, (9.32)

where, for reasons of compactness, we have omitted the direct product symbol in the product ⇢̂T(t)P̂0 both

here and in the subsequent equations. Equation 9.32 is valid for any coupling interaction between the nuclear

spin system and lattice. However we are interested in the particular case of a hyperfine interaction as described

by the Hamiltonian in Equation 9.9. When transformed into the interaction representation this Hamiltonian

has the form

ĤT
IL(t) =

+1
X

m=�1

(�1)mÎT
1�m(t)L̂T

1m(t) (9.33)

=

+1
X

m=�1

(�1)m


exp
✓

i ˆ̂LI t/~
◆

Î1�m

� 

exp
✓

i ˆ̂LLt/~
◆

L̂1m

�

, (9.34)

where ÎT
1�m(t) and L̂T

1m(t) are the forms of the nuclear-spin and lattice operators in the spin and lattice
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m Î1m !m
0 Îz 0

±1 ⌥
q

1
2 Î± ±!I

Table 9.1: The rank-one nuclear-spin operators Î1m, and frequencies !m used for the calculation of the PRE
in the stochastic Liouville formalism.

interaction representations, which are defined respectively by the Liouvillians ˆ̂LI and ˆ̂LL. The form of the

lattice operators in the lattice interaction representation depends on which terms we include in the lattice

Liouvillian, which we do not specify at this stage. By contrast the nuclear-spin Liouvillian simply contains

the nuclear Zeeman interaction, and so the spin-operators ÎT
1�m(t) and their adjoints have a very simple form:

ÎT
1�m(t) =Î1�m exp(i!�mt), (9.35)

ÎT
1�m(t)† =Î†1�m exp(�i!�mt). (9.36)

The rank-one operators Î1m and their characteristic frequencies !m are specified in Table 9.1.

On substituting the hyperfine Hamiltonian into Equation 9.32 we obtain

d⇢̂T(t)
dt

= � 1
~2

X

m,m0
(�1)m+m0 exp [i (!�m0 � !�m) t]

⇥
Z 1

0
TrL

nh

Î1�m0 L̂T
1m0 (t),

h

Î†1�mL̂T
1m(t � ⌧)†, ⇢̂T(t)P̂0

iio

exp (i!�m⌧) d⌧. (9.37)

The double commutator is simplified by using the identity

h

ÂB̂, ĈD̂
i

= ÂĈ
h

B̂, D̂
i

+ Â
h

B̂, Ĉ
i

D̂ + Ĉ
h

Â, D̂
i

B̂ +
h

Â, Ĉ
i

D̂B̂. (9.38)

Noting that all nuclear-spin operators commute with all lattice operators, and that the trace of a commutator

is zero, we obtain, after some e↵ort, the following expression for the trace of the double commutator:

TrL
nh

Î1�m0 L̂T
1m0 (t),

h

Î†1�mL̂T
1m(t � ⌧)†, ⇢̂T(t)P̂0

iio

=
h

Î1�m0 , Î†1�m ⇢̂
T(t)

i

TrL
nh

L̂T
1m(t � ⌧)†, P̂0

i

L̂T
1m0 (t)

o

+
h

Î1�m0 ,
h

Î†1�m, ⇢̂
T(t)

ii

TrL
n

P̂0L̂T
1m(t � ⌧)†L̂T

1m0 (t)
o

. (9.39)
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The equation of motion of the nuclear-spin density operator is now

d⇢̂T(t)
dt

= � 1
~2

X

m,m0
(�1)m+m0 exp [i (!�m0 � !�m) t]

⇥
Z 1

0

hh

Î1�m0 ,
h

Î†1�m, ⇢̂
T(t)

ii

TrL
n

P̂0L̂T
1m(t � ⌧)†L̂T

1m0 (t)
o

�
h

Î1�m0 , Î†1�m ⇢̂
T(t)

i

TrL
nh

P̂0, L̂T
1m(t � ⌧)†

i

L̂T
1m0 (t)

oi

⇥ exp (i!�m⌧) d⌧. (9.40)

Although at first sight this equation has a rather complicated form, the second term in the integrand can be

simplified (see Appendix F) to give [253]

h

Î1�m0 , Î†1�m ⇢̂
T(t)

i

TrL
nh

P̂0, L̂T
1m(t � ⌧)†

i

L̂T
1m0 (t)

o

=
h

Î1�m0 ,
h

Î†1�m, ⇢̂0
ii

TrL
n

P̂0L̂T
1m(t � ⌧)†L̂T

1m0 (t)
o

, (9.41)

from which the equation of motion can now be written as

d⇢̂T(t)
dt

= � 1
~2

X

m,m0
(�1)m+m0 exp [i (!�m0 � !�m) t]

h

Î1�m0 ,
h

Î†1�m, ⇢̂
T(t) � ⇢̂0

ii

⇥
Z 1

0
TrL

n

P̂0L̂T
1m(t � ⌧)†L̂T

1m0 (t)
o

exp (i!�m⌧) d⌧. (9.42)

The equilibrium nuclear-spin density operator is present in the double commutator as a direct consequence

of the fact that we are now treating the lattice as a quantum-mechanical object. It is no longer a phenomeno-

logical correction, as it is in the semi-classical theory.

In the equation of motion 9.42 we see that the individual terms have been factored into a part that depends

only on the nuclear spin, and a factor that depends only on the composite lattice. We associate the latter with

the correlation function and spectral density. Hence we define the correlation function Gmm0 (⌧) as

Gmm0 (⌧) =TrL
h

P̂0L̂T
1m(t � ⌧)†L̂T

1m0 (t)
i

=TrL
h

P̂0 exp
⇣

iĤL(t � ⌧)
⌘

L̂†1m exp
⇣

�iĤL(t � ⌧)
⌘

exp
⇣

iĤLt
⌘

L̂1m0 exp
⇣

�iĤLt
⌘i

=TrL
h

L̂†1m exp
⇣

�iĤL(t � ⌧)
⌘

exp
⇣

iĤLt
⌘

L̂1m0 exp
⇣

�iĤLt
⌘

exp
⇣

iĤL(t � ⌧)
⌘

P̂0
i

=TrL
h

L̂†1m exp
⇣

iĤL⌧
⌘

L̂1m0 exp
⇣

�iĤL⌧
⌘

P̂0
i

=TrL



L̂†1m

⇢

exp
✓

i ˆ̂LL⌧
◆

L̂1m0

�

P̂0

�

, (9.43)
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where, to go to the third line, we have noted that P̂0 commutes with ĤL by definition, and that the trace of

a product of operators is invariant to a cyclic permutation of those operators. We see that in this definition

of the correlation function, the ensemble average in the semi-classical theory has been replaced by the trace

over the lattice functions. We now define the spectral density at frequency !, Kmm0 (!), as the Fourier–Laplace

transform of the correlation function:

Kmm0 (!) =
Z 1

0
Gmm0 (⌧) exp(�i!⌧)d⌧. (9.44)

Substituting these expressions into Equation 9.42 we obtain

d⇢̂T(t)
dt

= � 1
~2

X

m,m0
(�1)m+m0 exp [i (!�m0 � !�m) t]

h

Î1�m0 ,
h

Î†1�m, ⇢̂
T(t) � ⇢̂0

ii

Re (Kmm0 (�!�m)) . (9.45)

Note that the imaginary part of the spectral density has a negligible e↵ect on the relaxation behaviour of the

nuclear spins, and so we retain only the real part [95]. In the semi-classical Redfield theory we implemented

the same assumption by extending the lower limit of the Fourier transform from 0 to �1.

The final part of the derivation concerns the oscillating phase factor exp [i (!�m0 � !�m) t] that is present

in each of the terms of the double sum. The frequency di↵erence !�m0 � !�m takes values that are equal to

0, ±!I , or ±2!I depending on the indices m and m0. As noted in the derivation of the semi-classical Redfield

equation of motion, the terms associated with a non-zero frequency di↵erence oscillate too rapidly (on the

order of the nuclear Larmor frequency) to contribute to the relaxation process, which occurs on a much longer

timescale. Therefore the only terms that contribute significantly to the relaxation behaviour of the nuclear

spins are the secular terms with m0 = m. Following the retention of only the secular terms the equation of

motion simplifies to

d⇢̂T(t)
dt

= � 1
~2

X

m

h

Î1�m,
h

Î†1�m, ⇢̂
T(t) � ⇢̂0

ii

Re (Kmm(�!�m)) . (9.46)
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We can now write this equation in terms of the relaxation superoperator ˆ̂� as

d⇢̂T(t)
dt

= � ˆ̂�
⇣

⇢̂T(t) � ⇢̂0
⌘

, (9.47)

ˆ̂�· = 1
~2

X

m

h

Î1�m,
h

Î†1�m, ·
ii

Re (Kmm(�!�m)) . (9.48)

As we have seen in chapter 8 it is the relaxation superoperator that is the key to calculating and understanding

the relaxation properties of the spin system.

9.3.2 The longitudinal and transverse relaxation times

The longitudinal and transverse nuclear relaxation times due to the PRE can be calculated from the relaxation

superoperator using expressions that are analogous to those in Equations 8.83 and 8.86. The expression for

T1 is

1
T1
=

✓

Îz

�

�

�

�

ˆ̂�
�

�

�

�

Îz

◆

⇣

Îz|Îz
⌘ (9.49)

=
TrI

✓

Îz
ˆ̂�Îz

◆

TrI
⇣

Î2
z

⌘ . (9.50)

This bears a clear resemblance to Equation 8.83, with the important di↵erence that the trace is now taken

only over the nuclear spin states, rather than over the nuclear and the electronic spin states. We recall that

the latter are now accounted for in the trace over the lattice states in the expression for the time-correlation

function. The corresponding expression for T2 is

1
T2
=

✓

Î�
�

�

�

�

ˆ̂�
�

�

�

�

Î+
◆

⇣

Î�|Î+
⌘ (9.51)

=
TrI

✓

Î� ˆ̂�Î+
◆

TrI
⇣

Î� Î+
⌘ . (9.52)
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Applying the relaxation superoperator in Equation 9.48 we obtain the following expressions for T1 and T2 in

terms of the spectral densities:

1
T1
=

1
~2 Re (K�1�1(�!I) + K11(!I)) , (9.53)

1
T2
=

1
~2 Re (K00(0) + K�1�1(�!I)) . (9.54)

It is shown in appendix F that, to a very good approximation, we can write

Re (K�1�1(�!I)) = Re (K11(!I)) , (9.55)

from which we obtain the following simplified expressions for the relaxation time constants:

1
T1
=

2
~2 Re (K11(!I)) , (9.56)

1
T2
=

1
~2 Re (K00(0) + K11(!I)) . (9.57)

The expressions in Equations 9.56 and 9.57 are completely general, and also somewhat deceptively

simple. However we must remember that there is considerable complexity hidden in the form of the time-

correlation function and spectral density, in Equations 9.43 and 9.44 respectively. We can gain some insight

into the PRE expressions by writing the lattice operators as sums of terms of di↵erent ranks l, as in Equation

9.12. From Equation 9.43, the time-correlation functions then have the form

Gmm(⌧) =
X

l,l0
G(ll0)

mm (⌧), (9.58)

where the G(ll0)
mm (⌧) are equal to

G(ll0)
mm (⌧) = TrL



⇣

L̂(l)
1m

⌘† ⇢
exp

✓

i ˆ̂LL⌧
◆

L̂(l0)
1m

�

P̂0

�

. (9.59)

The Fourier–Laplace transform is linear, and so the spectral density can also be written as a sum of terms that
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depend on the double index ll0:

Kmm(!) =
X

l,l0
K(ll0)

mm (!), (9.60)

K(ll0)
mm (!) =

Z 1

0
G(ll0)

mm (⌧) exp(�i!⌧)d⌧, (9.61)

where we have used Equation 9.44. It can be shown (cf. appendix F) that the spectral densities K(ll0)
mm (!) satisfy

the following relation

Re
⇣

K(l0l)
�m�m(�!m)

⌘

⇡ Re
⇣

K(ll0)
mm (�!�m)

⌘

. (9.62)

The expressions for T1 and T2 can now be written as a sum of terms, as follows:

1
T1
=

2
~2

X

l,l0
Re

⇣

K(ll0)
11 (!I)

⌘

, (9.63)

1
T2
=

1
~2

X

l,l0
Re

⇣

K(ll0)
00 (0) + K(ll0)

11 (!I)
⌘

. (9.64)

In both expressions the ‘self’ terms with l = l0 = 0 are those in which both lattice operators that appear

in the expression for the spectral density depend on the rank-zero component of the hyperfine tensor, and

therefore depend only on the contact interaction terms. They therefore correspond to the part of the PRE

that is a generalisation of the Bloembergen mechanism discussed chapter 8. The self terms with l = l0 = 2

depend only on the spin-dipolar terms, and therefore represent a generalisation of the part of the PRE that is

due to the Solomon mechanism. Both of these contributions are present in their NR forms in the Solomon–

Bloembergen–Morgan theory. There are additional contributions, not seen in the Solomon–Bloembergen–

Morgan formalism, that arise from terms with l = 0 and l0 = 2, and l = 2 and l0 = 0, which represent cross-

correlations between the contact and spin-dipolar interactions [93]. There are also self- and cross-correlation

terms involving the antisymmetric hyperfine terms, but these are usually neglected.

9.3.3 Summary of the formalism

We have outlined the stochastic Liouville formalism of nuclear relaxation in a paramagnetic system. Unlike

the previous treatment in chapter 8, the present formalism has the advantage that it can be applied under

conditions of arbitrary external magnetic field, slow motional dynamics, incorporating relevant SO coupling
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e↵ects describing the electronic spin, and treating electronic relaxation explicitly rather than phenomenolog-

ically. However, unlike the Solomon–Bloembergen–Morgan and Curie formalisms, the stochastic Liouville

treatment has a disadvantage in that it is something of a ‘black box’ and does not permit easy interpretation

of the forms of the relaxation time constants without detailed calculations. The expressions for T1 and T2

in Equations 9.56 and 9.57 are deceptive in their apparent simplicity, with the spectral density hiding a

considerable amount of complexity.

Following a discussion of electronic relaxation in the Redfield limit in section 9.4, we devote the re-

mainder of this chapter to reestablishing some of the insight lost in the increased complexity of the relax-

ation model by examining some very specific applications of the theory. Firstly we revisit the Solomon–

Bloembergen–Morgan theory and establish the connection between it and the present formalism in section

9.5. Then we examine the PRE properties of low-symmetry complexes with S � 1 in solution at low field

in section 9.6 [138, 139], complexes with S � 1 in solution under fast-rotational dynamics [306] in section

9.7, and the e↵ects of vibrations on the PRE in solution [119] in section 9.8. This final section includes a

perspective for calculating the PRE in solids [307, 308].

9.4 Electronic relaxation in the Redfield limit

We have seen that in many cases electronic relaxation cannot be described by the Redfield theory, especially

when the coupling of the electronic spin to the rest of the lattice is large, and the timescale of modulation

is su�ciently long. This is why, when describing nuclear relaxation, we include the electronic spin in the

composite lattice, so that the e↵ects of electronic relaxation can still be accounted for whilst treating the

coupling of the nuclear spin to the composite lattice in the Redfield limit. However there are cases when

the electronic relaxation processes are within the Redfield limit, and under such circumstances we may want

to describe this relaxation explicitly. This is also done with the stochastic Liouville formalism, as we now

outline.
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9.4.1 The spin system, lattice, and spin–lattice coupling

As for nuclear relaxation we can write the Hamiltonian Ĥ as a sum of terms due to the spin system ĤS , the

lattice ĤF , and the coupling between them ĤS F :

Ĥ = ĤS + ĤF + ĤS F . (9.65)

The way in which we partition the various interactions between the spin system, lattice, and spin–lattice

coupling is a rather delicate matter, and depends on the dynamics of the system we are studying. For example

under conditions of fast rotational di↵usion, the rotational motion modulates the spatially anisotropic inter-

actions, such as the static ZFS and anisotropic Zeeman interactions. The electronic spin system Liouvillian
ˆ̂Lfast

S then contains the unmodulated isotropic Zeeman interaction ˆ̂LZ,iso:

ˆ̂Lfast
S = ˆ̂LZ,iso. (9.66)

The spin-lattice coupling Liouvillian ˆ̂Lfast
S F then contains the rotationally-modulated static ZFS ˆ̂LZFS,S and

anisotropic Zeeman ˆ̂LZ,aniso interactions, as well as the transient ZFS ˆ̂LZFS,T, which is modulated by distor-

tions of the metal-ion coordination site:

ˆ̂Lfast
S F =

ˆ̂LZ,aniso +
ˆ̂LZFS,S +

ˆ̂LZFS,T. (9.67)

The lattice Liouvillian ˆ̂Lfast
F contains the terms that lead to modulation of the spin–lattice coupling interactions

due to rotational di↵usion ˆ̂LR, distortions due to solvent collisions ˆ̂LD, and vibrational motions ˆ̂L(0)
V � i ˆ̂�V :

ˆ̂Lfast
F = ˆ̂LR +

ˆ̂LD +
ˆ̂L(0)

V � i ˆ̂�V . (9.68)

The rotational di↵usion term is responsible for motional modulation of the static ZFS and g-anisotropy, whilst

the collisions and vibrations modulate the transient ZFS.

In the other limit of slow rotational di↵usion, the rotational motion is unable to completely average out

the static ZFS and anisotropic Zeeman interactions. These interactions are e↵ectively stationary, and are

therefore removed from the spin–lattice coupling Liouvillian and included in the electronic spin Liouvillian
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ˆ̂Lslow
S , which is given by

ˆ̂Lslow
S = ˆ̂LZ +

ˆ̂LZFS,S, (9.69)

where ˆ̂LZ is the sum of the isotropic and anisotropic Zeeman interactions. The modulation of the transient

ZFS by collisions and vibrations still occurs on a su�ciently fast timescale, and so the spin–lattice coupling

Liouvillian ˆ̂Lslow
S F still contains this interaction:

ˆ̂Lslow
S F =

ˆ̂LZFS,T. (9.70)

Finally the lattice Liouvillian ˆ̂Lslow
F is given by the fast-motional expression, but with the rotational di↵usion

term removed:
ˆ̂Lslow

F = ˆ̂LD +
ˆ̂L(0)

V � i ˆ̂�V . (9.71)

We now discuss the form of the spin–lattice coupling Hamiltonian, which for S � 1 always contains the

transient ZFS, and may also contain the anisotropic Zeeman, and static ZFS interactions. However we can

usually neglect the Zeeman term and consider only the ZFS terms, which dominate the electronic relaxation

properties. The Hamiltonians of both the static and transient ZFS contributions have the same operator form,

namely

ĤS F =

+2
X

m=�2

(�1)mF̂2mŜ 2�m, (9.72)

where F̂2m are the lattice operators that describe the size and spatial properties of the interaction. If we

consider only classical (non-quantized) degrees of freedom of the lattice, such as rotational di↵usion of the

static ZFS or distortional motion of the transient ZFS in the pseudo-rotation model, the lattice operators F̂2m

can be replaced by functions describing the spatial variation. As before we transform this Hamiltonian into

the interaction representation of the spin system and the lattice to give the new operator ĤT
S F(t):

ĤT
S F(t) = exp

✓

i ˆ̂LS t
◆

exp
✓

i ˆ̂LFt
◆

ĤS F (9.73)

=

+2
X

m=�2

(�1)mF̂T
2m(t)Ŝ T

2�m(t). (9.74)
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The interaction-representation spin- and lattice operators Ŝ T
2m(t) and F̂T

2m(t) are given by

Ŝ T
2m(t) = exp

✓

i ˆ̂LS t
◆

Ŝ 2m, (9.75)

F̂T
2m(t) = exp

✓

i ˆ̂LFt
◆

F̂2m. (9.76)

As we have seen before it is usual to write the spin operator Ŝ 2m as the sum of terms Ŝ (n)
2m, each of which

evolves at a characteristic frequency !(n)
m under the action of the electronic spin Liouvillian:

exp
✓

i ˆ̂LS t
◆

Ŝ 2m =
X

n

Ŝ (n)
2m exp

⇣

i!(n)
m t

⌘

. (9.77)

The exact form of this partitioning, and indeed whether it needs to be done at all, depends on the form of ˆ̂LS ,

and whether or not, in the slow-motion limit, it includes the static ZFS.

9.4.2 The electronic spin relaxation superoperator

In the Redfield limit we can describe the relaxation of the electronic density operator ⇢̂S (t) with the following

equation of motion:

d⇢̂T
S (t)
dt

= � 1
~2

X

m,m0

X

n,n0
(�1)m+m0 exp

h

i
⇣

!(n0)
�m0 � !

(n)
�m

⌘

t
i



S̃ (n0)
2�m0 ,



⇣

S̃ (n)
2�m

⌘†
, ⇢̂T

S (t) � ⇢̂S ,0

��

Jmm0
⇣

�!(n)
�m

⌘

. (9.78)

where ⇢̂T
S (t) is the electronic density operator in the interaction representation and ⇢̂S ,0 is the equilibrium

electronic density operator. As for nuclear relaxation the electronic relaxation behaviour is defined by a

time-correlation function, which we denote
D

F̂2m(0)⇤F̂2m0 (�⌧)
E

, and which is given by

D

F̂2m(0)†F̂2m0 (�⌧)
E

= TrF



L̂†2m

⇢

exp
✓

i ˆ̂LF⌧
◆

L̂2m0

�

P̂0

�

. (9.79)

The trace is taken over the lattice states, and P̂0 is the equilibrium lattice density operator. The spectral

density functions Jmm0 (!) in Equation 9.78 are then defined as the real part of the Fourier–Laplace transform
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of the time-correlation functions:

Jmm0 (!) = Re
"

Z 1

0

D

F̂2m(0)†F̂2m0 (�⌧)
E

exp(�i!⌧)d⌧
#

. (9.80)

If we remove the oscillating non-secular terms with m , m0 and n , n0 from the equation of motion, we

obtain the following expression
d⇢̂T

S (t)
dt

= � ˆ̂�e
⇣

⇢̂T
S (t) � ⇢̂S ,0

⌘

, (9.81)

where ˆ̂�e is the electronic relaxation superoperator, which is given by

ˆ̂�eÔ =
1
~2

X

m

X

n



S̃ (n)
2�m,



⇣

S̃ (n)
2�m

⌘†
, Ô

��

Jmm
⇣

�!(n)
�m

⌘

. (9.82)

However we note that the secular approximation must be applied with care. As we will see, non-secular terms

can sometimes make an important contribution to the relaxation properties of the electronic spin.

9.5 The Solomon–Bloembergen–Morgan theory revisited

In this section we briefly revisit the Solomon–Bloembergen–Morgan theory originally examined in section

8.6 using the semi-classical Redfield theory. We will once again obtain the Solomon–Bloembergen–Morgan

equations, showing that the theory of relaxation derived using the stochastic Liouville formalism is exactly

equivalent to the semi-classical theory when subject to the same set of restrictions, namely high-field condi-

tions, and a classical description of chemical exchange and rotational di↵usion.

9.5.1 The lattice

The lattice comprises the quantised electronic states, the classical rotational degrees of freedom, and the

degrees of freedom associated with chemical exchange. The corresponding Liouvillian must account for all

these parts of the lattice, and is therefore written as follows:

ˆ̂LL =
ˆ̂LZ +

ˆ̂Le +
ˆ̂LR +

ˆ̂LM . (9.83)
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The Liouvillian superoperators ˆ̂LR and ˆ̂LM account for the stochastic rotational di↵usion and exchange

processes. The former superoperator changes the spatial orientation of the system by acting on the classical

Wigner rotation matrix elements as follows:

D(l)
mm0 (⌦PL(t)) = exp

✓

�i ˆ̂LRt
◆

D(l)
mm0 (⌦PL(0)) , (9.84)

i.e. the orientation of the PAF is changed from ⌦PL(0) at time t = 0, to ⌦PL(t) at time t.

Chemical exchange has the e↵ect of shuttling the nuclear spin between di↵erent sites in which the

hyperfine interaction tensor components are di↵erent. This can be described by the action of ˆ̂LM on the

PAF components of the hyperfine tensor Ãlµ(t) as follows:

Ãlµ(t) = exp
✓

�i ˆ̂LMt
◆

Ãlµ(0). (9.85)

Once again we have assumed that the chemical exchange and rotational di↵usion processes occur on su�-

ciently di↵erent timescales to be independent of each other.

As we have seen previously with the Solomon–Bloembergen–Morgan theory the only coherent electronic

interaction that we consider is the electronic Zeeman interaction, with Liouvillian ˆ̂LZ . The electronic Zeeman

Liouvillian transforms the electronic spin operators Ŝ 1q as follows:

exp
✓

�i ˆ̂LZt
◆

Ŝ 1q = Ŝ 1q exp (�iq!S t) , (9.86)

i.e. the operator evolves at frequency �q!S . We also need a mechanism for electronic relaxation, which

is accounted for here by ˆ̂Le = �i ˆ̂�e, where ˆ̂�e is the electronic relaxation superoperator. We recall that in

the Solomon–Bloembergen–Morgan theory the relaxation processes are not accounted for explicitly, but are

modelled phenomenologically by the e↵ective electronic longitudinal and transverse relaxation times T1e and

T2e. The transformations are:

exp
✓

�i ˆ̂Let
◆

Ŝ 10 = Ŝ 10 exp (�⌧/T1e) , (9.87)

exp
✓

�i ˆ̂Let
◆

Ŝ 1±1 = Ŝ 1±1 exp (�⌧/T2e) , (9.88)
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where ˆ̂Le = �i ˆ̂�e is the Liouvillian that describes electronic relaxation via the Markov superoperator ˆ̂�e.

9.5.2 The spectral densities

The nuclear relaxation times are calculated from Equations 9.63 and 9.64. The Solomon–Bloembergen–

Morgan theory ignores the e↵ects of cross-correlation between the hyperfine coupling interactions of di↵erent

spatial ranks, and only considers the NR Fermi-contact and spin-dipolar contributions. Hence the relaxation

times have the following simplified expressions

1
T1
=

2
~2 Re

⇣

KFC
11 (!I) + KSD

11 (!I)
⌘

, (9.89)

1
T2
=

1
~2 Re

⇣

KFC
00 (0) + KFC

11 (!I) + KSD
00 (0) + KSD

11 (!I)
⌘

, (9.90)

where we have replaced the superscripts (00) and (22) with ‘FC’ and ‘SD’ respectively. Hence the spectral

densities KFC
mm(!) contribute to the Bloembergen mechanism, and the spectral densities KSD

mm(!) contribute to

the Solomon mechanism.

To proceed we write down the form of the time-correlation function G(ll)
mm(⌧) by combining Equation 9.13

for the lattice operator of spatial rank l with Equation 9.59, and write the components of the hyperfine tensor

in the PAF of the spin-dipolar interaction tensor. The result is

G(ll)
mm(⌧) =(2l + 1)
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C

C

C

A

⇥
+l

X

µ,µ0=�l

TrL



Ãlµ(0)⇤D(l)
µ,m�q (⌦PL(0))⇤ Ŝ †1q

⇢

exp
✓

i ˆ̂LL⌧
◆

Ãlµ0 (0)D(l)
µ0,m�q0 (⌦PL(0)) Ŝ 1q0

�

P̂0

�

. (9.91)

We factorize the trace into three parts, comprising the product of the PAF hyperfine tensor components, an
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orientational part comprising the Wigner rotation matrix elements, and a trace over the electronic spin states:

G(ll)
mm(⌧) =(2l + 1)
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X

µ,µ0=�l

⌧

Ãlµ(0)⇤
⇢

exp
✓

i ˆ̂LM⌧
◆

Ãlµ0 (0)
�� ⌧

D(l)
µ,m�q (⌦PL(0))⇤

⇢

exp
✓

i ˆ̂LR⌧
◆

D(l)
µ0,m�q0 (⌦PL(0))

��

⇥ TrS



Ŝ †1q

⇢

exp
✓

i
✓

ˆ̂LZ +
ˆ̂Le

◆

⌧
◆

Ŝ 1q0

�

P̂0,S

�

(9.92)

=(2l + 1)
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X
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D

Ãlµ(0)⇤Ãlµ0 (�⌧)
E D

D(l)
µ,m�q (⌦PL(0))⇤ D(l)

µ0,m�q0 (⌦PL(�⌧))
E

⇥ TrS



Ŝ †1q

⇢

exp
✓

i
✓

ˆ̂LZ +
ˆ̂Le

◆

⌧
◆

Ŝ 1q0

�

P̂0,S

�

, (9.93)

where P̂0,S is the equilibrium density operator of the electronic spin. Equation 9.93 now contains three

independent correlation functions. The rotational correlation function, which correlates the Wigner rotation

matrix elements, can be written as an integral over all Euler angles ⌦PL as follows:

D

D(l)
µ,m�q (⌦PL(0))⇤ D(l)

µ0,m�q0 (⌦PL(�⌧))
E

=

"

1
8⇡2

Z

⌦

D(l)
µ,m�q (⌦PL)⇤ D(l)

µ0,m�q0 (⌦PL) d⌦PL

#

gR
l (⌧) (9.94)

=
1

2l + 1
�µµ0�qq0gR

l (⌧), (9.95)

where gR
l (⌧) is the reduced rotational correlation function used in the Solomon–Bloembergen theory, as

defined in chapter 8, and we have assumed isotropic tumbling. The chemical exchange correlation function

can be simplified by setting µ = µ0:

D

Ãlµ(0)⇤Ãlµ(�⌧)
E

=
�

�

�Ãlµ
�

�

�

2 gM(⌧), (9.96)

where gM(⌧) is the chemical exchange reduced correlation function. We note that we have encountered

both of these results before, in chapter 8. The remaining correlation function is the electronic correlation

function, which has the form of the trace of a product of electronic spin operators over the spin states. In the
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high-temperature limit the equilibrium density operator can be approximated by P̂0,S = 1̂S /(2S + 1), with

only a small deviation of order �L. This allows us to simplify the electronic correlation function as follows

TrS



Ŝ †1q

⇢

exp
✓

i
✓

ˆ̂LZ +
ˆ̂Le

◆

⌧
◆

Ŝ 1q

�

P̂0,S

�

=
1

2S + 1
TrS

h

Ŝ †1qŜ 1q
i

exp (iq!S ⌧) gS
q (⌧), (9.97)

where we have set q = q0 as required by the form of the rotational correlation function, and gS
q (⌧) is the

reduced electronic correlation function we defined in chapter 8. The trace can be simplified to give

1
2S + 1

TrS
h

Ŝ †1qŜ 1q
i

=
1

2S + 1
(�1)qTrS

h

Ŝ 1�qŜ 1q
i

(9.98)

=
1
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(�1)2q 2S + 1

3
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�

�

�Ŝ 1
�

�

�

�

�

� S
E2

(9.99)

=
1
3

S (S + 1). (9.100)

Combining Equations 9.93–9.100 we obtain the final expression for the time-correlation function:
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exp (iq!S ⌧) glq(⌧), (9.101)

where glq(⌧) is the total correlation function. Taking the Fourier–Laplace transform of the correlation function

finally gives us the spectral density
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jl,|q|+1(! � q!S ), (9.102)

where jlq(!) is the total reduced spectral density in the Solomon–Bloembergen–Morgan theory.

9.5.3 The Solomon–Morgan–Bloembergen equations

The Solomon mechanism

Focussing on the spin-dipolar part of the hyperfine interaction we remember that

+2
X

µ=�2

�

�

�Ã2µ
�

�

�

2
=

1
2

✓

3 +
⇣

⌘SD
⌘2

◆

⇣

ÃSD
zz

⌘2
, (9.103)
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and obtain the following expression for the spectral density:

KSD
mm(!) =

1
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The important spectral densities for calculating the relaxation times are KSD
11 (!I) and KSD

00 (0), which are

calculated to be:

KSD
11 (!I) =

1
2

S (S + 1)
✓
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⌘SD
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.

When the unpaired electronic spin behaves as a point dipole moment, ÃSD
zz = 2bS I , ⌘SD = 0, and the spectral

densities become:

KSD
11 (!I) =

1
2

S (S + 1)b2
S I

"

1
5

j21(!I) +
2
5

j22(!S + !I) +
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15
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,

KSD
00 (0) =S (S + 1)b2

S I

"

2
15
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1
5

j22(!S )
#

.

The Bloembergen mechanism

We now turn our attention to the Bloembergen mechanism, where the PRE is due to the Fermi-contact

interaction. Noting that

|A00|2 = 3
⇣

AFC
⌘2
, (9.105)

we obtain the following spectral density function:
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The two spectral density functions that determine the PRE KFC
11 (!I) and KFC

00 (0) are therefore:
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=
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KFC
00 (0) =

1
2

S (S + 1)
⇣

AFC
⌘2

0

B

B

B

B

B

B

B

B

B

@

0 1 1

0 0 0

1

C

C

C

C

C

C

C

C

C

A

2

j01(0) (9.109)
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The PRE

On substituting the expressions for the spectral densities into Equations 9.89 and 9.90 we obtain the Solomon–

Bloembergen–Morgan equations for the PRE. The expression for T1 is
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and the corresponding expression for T2 is
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(9.112)

where we have used the explicit Lorentzian expressions for the reduced spectral densities. We note that these

are exactly the same expressions given in Equations 8.107 and 8.108 in chapter 8.
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9.6 Low-field theory of the PRE in low-symmetry complexes in solu-

tion

9.6.1 Introduction

The Solomon–Bloembergen–Morgan equations describe the PRE under high-field conditions, where the

Zeeman interaction is the dominant electronic spin interaction. However the theory is not applicable under

conditions of low magnetic field where the ZFS dominates the electronic energy level structure. This low-field

limit is of interest when studying the field-dependent behaviour of relaxation rates in NMR dispersion

(NMRD) experiments, for which it is important to have corresponding expressions for the PRE [95]. Here we

summarise the low-field theory of the PRE in paramagnetic complexes in solution as described by Westlund

[137], Bertini et al. [108], and Nilsson and Kowalewski [138, 139], derive the PRE due to an electronic

spin S = 1 subject to an axially symmetric static ZFS, and highlight the di↵erences from the high-field

Solomon–Bloembergen–Morgan approach. Finally we summarize the work done in deriving expressions for

an S = 1 subject to a rhombic static ZFS, and electronic spins S = 2, 5/2, 3, and 7/2.

The low-field theory is subject to the following assumptions:

1. We are in the limit of low magnetic field, which we define as the regime where the axial ZFS anisotropy

D is much greater than the electronic Zeeman splitting, |D| � µBgeB0.

2. The electronic relaxation can be described in the Redfield limit, which requires that the electronic

relaxation processes occur on a su�ciently fast timescale.

3. The dynamics which cause nuclear relaxation are much slower than the electronic spin dynamics, so

that we can apply the decomposition approximation. Hence this is also an example of a slow-motion

theory, where |!IL| ⌧c � 1.

4. The relevant electronic spin interactions, namely the static ZFS and Zeeman interactions, are not

fully averaged by molecular reorientation, and so do not contribute to electronic relaxation. This is

a consequence of assumption 3.

5. For S > 3/2, quartic and higher-order ZFS terms are neglected.
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6. The spin-dipolar hyperfine interaction and static ZFS tensor share a common PAF.

As in the previous section we now define the lattice and the corresponding Liouvillian, and derive the spectral

densities for an arbitrary electronic spin S . We then restrict the discussion to S = 1 and derive the electronic

relaxation rates, and incorporate these into the calculation and discussion of the PRE.

9.6.2 The lattice

The paramagnetic complex is assumed to be of low symmetry, so that the electronic spin is subject to a

static ZFS in addition to the Zeeman interaction. The combined lattice is a composite of the electronic and

rotational degrees of freedom, and is represented by a Liouvillian that is given by the sum of the electronic

and rotational di↵usion Liouvillians:
ˆ̂LL =

ˆ̂LS +
ˆ̂LR, (9.113)

where
ˆ̂LS =

ˆ̂LZFS,S +
ˆ̂LZ +

ˆ̂Le. (9.114)

The electronic Zeeman Liouvillian can be neglected at low magnetic fields such that |D| � µBgeB0, as

outlined in assumption 1 above. The superoperator ˆ̂Le describes the electronic relaxation due to the transient

ZFS, which can be modelled by the pseudo-rotation model of Rubinstein et al [115]. The overall lattice

equilibrium density operator P̂0 is the direct product of the equilibrium density operators of the electron spin

P̂0,S and rotational degrees of freedom P̂0,L:

P̂0 = P̂0,S ⌦ P̂0,L. (9.115)

As in the Solomon–Bloembergen–Morgan theory, the electronic equilibrium density operator in the high-

temperature limit is simply 1̂S /(2S + 1).

9.6.3 The spectral densities

As we have seen before the PRE is due to the hyperfine interaction, which couples the nuclear spin to the

unpaired electrons in the lattice. Here we consider only the spin-dipolar interaction, which is represented by
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the following Hamiltonian ĤSD and lattice operator L̂SD
1m :

ĤSD =
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where ⌦PL is the set of Euler angles that gives the orientation of the common PAF of the spin-dipolar and

static ZFS tensors in the laboratory frame, and we have assumed that the electronic spin can be modelled as

a point dipole moment. The spectral density functions KSD
mm(!) are therefore given by
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The expression in Equation 9.118 is identical to that used in the slow-motion theory. However to proceed

into the low-field regime we need further steps. Firstly, because the electron spin dynamics are dominated by

the static ZFS, we need to express the electronic spin operators Ŝ 1q in terms of the spin operators in the PAF

S̃ 1q, through the following relation:

Ŝ 1q =
X

p

S̃ 1pD(1)
pq (⌦PL) . (9.119)

Secondly we apply the following contraction law for the products of Wigner rotation matrix elements [190]:
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Applying Equations 9.119 and 9.120 to Equation 9.118 we obtain
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where we have retained only those contacted Wigner rotation matrix elements with rank C = 1 [138].

We now invoke assumption 3, and apply the decomposition approximation to separate the rotational

di↵usion dynamics from the electronic spin dynamics. The lattice trace is therefore given by
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As the molecule is tumbling isotropically the spatially-dependent factor simplifies to

D

D(1)
nm (⌦PL(0))⇤ D(1)

pm (⌦PL(�⌧))
E

=
1
3
�pn exp (�⌧/(3⌧R)) . (9.123)

The rotational correlation time ⌧R above corresponds to a rank-two tensor. However since we are describing

the reorientational motion of a rank-one tensor, we require a factor of 1/3 in the exponent. We now simply

the spectral density to
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The Wigner 3 j symbols can be written in terms of their numerical values [190]:
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to give the final expression for the spectral density:

KSD
mm(!) =

b2
S IS (S + 1)

9

h

sSD
�1�1(!) + 4sSD

00 (!) + sSD
11 (!)

i

, (9.127)

which we note is independent of m. The functions sSD
pp (!) are the electronic spin spectral density functions

defined in the common PAF, which are defined as

sSD
pp (!) =

3
S (S + 1)(2S + 1)

Z 1

0
TrS



S̃ †1p

⇢

exp
✓

i ˆ̂LS ⌧
◆

S̃ 1p

��

exp [�(i! + 1/(3⌧R))⌧] d⌧. (9.128)

The functions sSD
pp (!) contain all the information pertaining to the electron spin dynamics. In particular

sSD
00 (!) describes the spin dynamics of longitudinal relaxation, and sSD

±1±1(!) describes transverse relaxation

in the common PAF of the spin-dipolar and ZFS tensors.

The nuclear relaxation rates can now be written down in terms of the sSD
pp (!) as follows. The longitudinal

PRE is given by
1
T1
=

2b2
S IS (S + 1)

9~2 Re
h

sSD
�1�1(!I) + 4sSD

00 (!I) + sSD
11 (!I)

i

, (9.129)

and the transverse PRE is

1
T2
=

b2
S IS (S + 1)

9~2 Re
h

sSD
�1�1(0) + 4sSD

00 (0) + sSD
11 (0) + sSD

�1�1(!I) + 4sSD
00 (!I) + sSD

11 (!I)
i

. (9.130)

So far these expressions are general for any electronic spin S , subject to a static ZFS of any symmetry, under

the assumptions 1–6 above. We have not yet specified explicitly the form of the electronic relaxation, which

is our next step.
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9.6.4 Electronic relaxation

The relaxation of the unpaired electronic spin is due to the transient ZFS interaction, the Hamiltonian of

which is written in the PAF of the static ZFS as

ĤZFS,T =

+2
X

m=�2

(�1)mF2mS̃ 2�m, (9.131)

where F2m are the spatial functions in the irreducible spherical tensor basis. The electronic relaxation

superoperator is ˆ̂Ldel = �i ˆ̂�ZFS,T, where ˆ̂�ZFS,T is the superoperator representing the stochastic modulation

of the transient ZFS. This modulation is described by the pseudo-rotation model of Rubinstein et al, which

assumes that the transient ZFS has a constant amplitude and a direction that changes with time according to a

rotational di↵usion equation [115]. Therefore, as we have seen before, the transient ZFS is described by two

parameters: the magnitude �t and correlation time ⌧v. As before the magnitude is defined as follows:

�2
t =

+m
X

m=�2

�

�

�F̃2m
�

�

�

2 (9.132)

=
2
3

D2
t + 2E2

t , (9.133)

where the F̃2m are the transient ZFS spatial functions in their (time-dependent) PAF, and Dt and Et are the

axial and rhombic anisotropies that are assumed to be constant in the pseudo-rotation model.

We assume that the electronic relaxation is in the Redfield limit (assumption 2), and so can be described

by the equation of motion in Equation 9.78:

d⇢̂T
S (t)
dt

= � 1
~2

X

m,m0

X

n,n0
(�1)m+m0 exp

h

i
⇣
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�m0 � !

(n)
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t
i



S̃ (n0)
2�m0 ,



⇣

S̃ (n)
2�m

⌘†
, ⇢̂T

S (t) � ⇢̂S ,0

��

Jmm0
⇣

�!(n)
�m

⌘

. (9.134)

The relaxation rates are defined in terms of the spectral density functions Jmm0 (!), which are given in terms

of the correlation functions hF2m(0)⇤F2m0 (�⌧)i by Equation 9.80:

Jmm0 (!) = Re
"

Z 1

0
hF2m(0)⇤F2m0 (�⌧)i exp(�i!⌧)d⌧

#

. (9.135)
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In the pseudo-rotation model the correlation functions hF2m(0)⇤F2m0 (�⌧)i are

hF2m(0)⇤F2m0 (�⌧)i =
X

µ,µ0
F̃⇤2µF̃2µ0

D

D(2)
µm (⌦FP(0))⇤ D(2)

µ0m0 (⌦FP(�⌧))
E

(9.136)

=
X
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F̃⇤2µF̃2µ0

1
5
�µµ0�mm0 exp(�⌧/⌧v) (9.137)

=
1
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X
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�F̃2µ
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�
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2 (9.138)

=
1
5
�mm0�

2
t exp(�⌧/⌧v), (9.139)

where ⌦FP(t) are the time-dependent Euler angles that describe the constantly-changing orientation of the

PAF of the transient ZFS in the PAF of the static ZFS. The spectral density functions are therefore

Jmm0 (!) =
�2

t

5
⌧v

1 + !2⌧2
v
�mm0 , (9.140)

which we note are non-zero only for m = m0. The equation of motion now simplifies to
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. (9.141)

If we remove the non-secular terms with n , n0 from the equation of motion, we obtain the following

expression:
d⇢̂T

S (t)
dt

= � 1
~2

X

m

X

n



S̃ (n)
2�m,


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⌘†
, ⇢̂T

S (t) � ⇢̂S ,0

��

Jmm
⇣

�!(n)
�m

⌘

. (9.142)

As in section 9.4.2, we note that non-secular terms can sometimes make an important contribution.

Electronic relaxation of S = 1 in an axially-symmetric environment

We now illustrate the theory of electronic relaxation in low-field conditions with the calculation of the

relaxation time constants of the simplest spin system that is subject to a ZFS interaction, namely an electronic

spin S = 1 in an axially-symmetric complex. This case was originally treated by Bertini et al [108]. We can

neglect the electronic Zeeman interaction for integer spin at low field, and so the coherent part of ˆ̂LS is

simply the static ZFS interaction. The static ZFS is axially symmetric with an anisotropy D and an associated

frequency of transition!D = D/(2⇡), whilst the transient ZFS possesses both an axial and rhombic anisotropy
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Ŝ (n)
2m !(n)

m
m n = 1 n = 2 n = 1 n = 2

0
q

1
6

⇣

Ŝ 2
z � S (S + 1)1̂S

⌘

— 0 —
±1 ⌥ 1

2 Ŝ zŜ ± ⌥ 1
2 Ŝ ±Ŝ z !D �!D

±2 1
2 Ŝ 2
± — 0 —

Table 9.2: The spin operators Ŝ (n)
2m and associated frequencies !(n)

m of an electronic spin S = 1 subject to an
axially symmetric static ZFS interaction.

Dt and Et, as the instantaneous distortion of the coordination environment need not necessarily be axial. The

electronic relaxation superoperator is

ˆ̂�ZFS,T· =
1
~2

X

m

X

n,n0



S̃ (n0)
2�m,


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S̃ (n)
2�m

⌘†
, ·

��

J|m|
⇣

�!(n)
�m

⌘

, (9.143)

where we have retained the sum over both n and n0. The operators Ŝ (n)
2m of the transient ZFS and their

characteristic frequencies !(n)
m due to evolution under the static ZFS are given in Table 9.2. We also write

the spectral density functions as J|m|(!) ⌘ J+m+m(!) = J�m�m(!), where we take +m as positive, as they are

independent of the sign of m.

The longitudinal relaxation of the spin is described by two time constants T (10)
1e and T (20)

1e , which describe

the relaxation of the expectation values of the operators Ŝ 10 and Ŝ 20 respectively. They are determined from

the following expressions:

1
T (10)

1e

=

✓

Ŝ 10

�

�

�

�

ˆ̂�ZFS,T

�

�

�

�
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Ŝ 10|Ŝ 10
⌘ , (9.144)

1
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Ŝ 20

�

�

�

�

ˆ̂�ZFS,T
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�
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�

Ŝ 10

◆

⇣

Ŝ 20|Ŝ 20
⌘ . (9.145)

Explicit calculations give the following time constants:

1
T (10)

1e

=J1(!D) + 4J2(0), (9.146)

1
T (20)

1e

=3J1(!D). (9.147)

We see that the two spectral densities present in these expressions are J1(!D) and J2(0). The reason why
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these spectral densities are evaluated at these frequencies is readily understood by reference to Figure 4.3. The

former spectral density function refers to a transition between either the states |1�1i ! |10i or |1+1i ! |10i,

both of which occur with transition frequency !D at zero field. Hence J1(!) is evaluated at frequency !D.

The latter spectral density refers to a transition between the states |1 � 1i ! |1 + 1i, which occurs at zero

frequency due to the degeneracy at zero field. Hence J2(!) is evaluated at zero frequency.

The transverse relaxation is described by three time constants T (1±1)
2e , T (2±1)

2e , and T (2±2)
2e , which refer to the

relaxation of the operators Ŝ 1±1, Ŝ 2±1, and Ŝ 2±2 respectively. They are calculated from:

1
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=
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⌘ , (9.148)

1
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which, in turn, give the expressions:

1
T (1±1)

2e

=
3
2

J0(0) +
5
2

J1(!D) + J2(0), (9.151)

1
T (2±1)

2e

=
3
2

J0(0) +
1
2

J1(!D) + J2(0), (9.152)

1
T (2±2)

2e

=J1(!D) + 2J2(0). (9.153)

We will see that the important electronic relaxation processes that determine the PRE at low field are those

that contribute to T (10)
1e and T (1+1)

2e .

9.6.5 Nuclear relaxation

Nuclear relaxation due to S = 1 in an axially-symmetric environment

We now derive the closed expressions for the longitudinal and transverse relaxation times constants for the

PRE due to an electronic spin S = 1 in an axially-symmetric coordination environment, as treated by Bertini
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et al [108]. In order to calculate the forms of the PRE time constants we must evaluate the electronic spectral

density functions in Equation 9.128 for the electronic spin system in question. We begin by determining the

transformation of the electronic Liouvillian ˆ̂LS on the rank-one electronic spin operators. For the S = 1 spin

at low field, the Liouvillian is given by ˆ̂LS =
ˆ̂LZFS,S� i ˆ̂�ZFS,T. The coherent static ZFS Liouvillian transforms

the rank-one spin operators as follows:

exp
✓

�i ˆ̂LZFS,St
◆

S̃ 10 =S̃ 10, (9.154)

exp
✓

�i ˆ̂LZFS,St
◆

S̃ 1±1 = cos(!Dt)S̃ 1±1 ⌥ i
p

2 sin(!Dt)S̃ 2±1, (9.155)

where we are in the PAF of the static ZFS. The incoherent transient ZFS Liouvillian causes the expectation

values of the rank-one operators to decay in a mono-exponential fashion according to their longitudinal or

transverse relaxation time constants:

exp
✓

� ˆ̂�ZFS,Tt
◆

S̃ 10 =S̃ 10 exp
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�t/T (10)
1e

⌘

, (9.156)
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⌘

. (9.157)

The traces in Equation 9.128 therefore evaluate to

TrS



S̃ †10

⇢

exp
✓

i ˆ̂LS ⌧
◆

S̃ 10

��

=
1
3

S (S + 1)(2S + 1) exp
⇣

�⌧/T (10)
1e

⌘
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= 2 cos(!D⌧) exp
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�⌧/T (1+1)
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. (9.161)

Following Fourier transformation we obtain the following expressions for the electronic spectral density

functions:
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where ⌧c,1 and ⌧c,2 are correlation times that depend upon the electronic longitudinal and transverse relaxation

times respectively, and the rotational correlation time:

⌧�1
c,1 =

⇣

T (10)
1e

⌘�1
+

1
3
⌧�1

R , (9.164)

⌧�1
c,2 =

⇣

T (1+1)
2e

⌘�1
+

1
3
⌧�1

R . (9.165)

The expressions for T1 and T2 are given by Equations 9.129 and 9.130, and have the following forms:
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In the limit of low field, large static ZFS, and slow motional dynamics such that
�

�

�!D⌧c,2
�

�

� � 1, the relaxation

rates are dominated by the terms that do not contain the ZFS frequency:

1
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16b2
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, (9.168)
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. (9.169)

Hence for both relaxation processes the characteristics of the PRE are dominated by the terms that contain the

correlation time ⌧c,1, which in the slow-motion limit is dominated by the electronic longitudinal relaxation

properties.

Nuclear relaxation due to higher electronic spins

The expressions for the PRE in the low-field, slow-motion limit have also been derived for systems of higher

electronic spin, and in environments of lower symmetry. Westlund derived the PRE expression for T1 due

to an electronic S = 1 in a rhombic environment [137]. The expression is clearly more complicated than

for the axial case, as it depends on both the static axial and rhombic ZFS anisotropies, as well as three

electronic relaxation times rather than two. Corresponding expressions have also been derived by Nilsson

et al. for S = 3/2 in both axial and rhombic environments, and S = 2, S = 5/2, S = 3, and S = 7/2
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in axially-symmetric environments [138, 139]. For low-field expressions of the PRE for arbitrary electronic

spin, we use the general expressions in Equations 9.129 and 9.130.

9.7 The PRE under fast-rotation conditions in solution

9.7.1 Introduction

When the rotational motion of the paramagnetic complex is rapid, the application of the decomposition

approximation to the rotational and electronic spin dynamics is not as straightforward as it is under slow-

motion conditions. One significant di↵erence the fast-motion regime has from the slow-motion regime is that

the rapid motion modulates both the static ZFS and the spin-dipolar hyperfine interactions, with the former

acting as a source of electronic relaxation, and the latter resulting in nuclear relaxation. This situation was

investigated by Kruk and Kowalewski, under conditions of high and low external field [306].

This situation is of considerable interest for studying the relaxation properties of contrast agents in

aqueous solution in MRI [127, 129]. A specific class of systems that we focus on here is paramagnetic

complexes in solution, where the bound ligands are taken from the solvent, an example of which being the

aqueous hexaaquairon(II) complex [Fe(H2O)6]2+. It is assumed that the solvent molecules are in chemical

exchange between the bound (ligand) and unbound (bulk) sites. Under these circumstances we can identify

two separate contributions to the PRE, known as the inner-sphere and outer-sphere contributions. In the

inner-sphere mechanism the solvent molecules experience a substantial PRE when bound to the metal ion

in the complex. The measured contribution to the nuclear relaxation rate depends upon this PRE, and upon

the rate of exchange between the bound and unbound sites. The second, and less important, outer-sphere

mechanism is the PRE experienced by solvent molecules that never enter into the complex with the metal

ion. It depends on the translational di↵usion of the solvent molecules through the bulk.

The fast rotational theory of the PRE describes both of these mechanisms. The main assumptions are:

1. The unperturbed electronic Hamiltonian is the Zeeman interaction at high field, and the static ZFS

interaction at low field.

2. The fast motion results in orientational averaging of the static ZFS interaction, so that it acts as a source

of electronic relaxation in addition to the transient ZFS.

403



3. The electronic relaxation is in the Redfield limit.

4. The spin-dipolar hyperfine and static ZFS interactions share the same PAF.

5. For outer-sphere relaxation the translational and rotational di↵usion and electronic spin relaxation are

all uncorrelated with each other.

Note that the second assumption is the opposite to that made in the slow-motion theory.

9.7.2 A simple model of inner- and outer-sphere relaxation

Before we examine the inner- and outer-sphere mechanisms in the stochastic Liouville formalism we sum-

marise a simple theory for the PRE due to a complex in solution, proposed by Luz and Meiboom [120]. The

overall longitudinal PRE 1/T1 is written as the sum of the inner-sphere and outer-sphere contributions. These

contributions have a complicated form, which are characterised by the longitudinal inner- and outer-sphere

PREs 1/T1,IS and 1/T1,OS. However, as we will see, the inner-sphere contribution is not simply equal to

1/T1,IS.

The model of Luz and Meiboom deals specifically with inner-sphere relaxation in which the solvent

molecules are in exchange between the bound (B) and unbound (U) sites. These two sites have lifetimes of

⌧B and ⌧U respectively, and are associated with di↵erent longitudinal relaxation times T1,B and T1,U. The

central assumption is that the paramagnetic species is dilute, so that the number of bound molecules nB is

much lower than the number of unbound molecules nU. Hence the ratio of bound to unbound molecules f ,

which is defined as

f =
nB

nU
=
⌧B

⌧U
, (9.170)

is much less than unity, i.e. f ⌧ 1.

The nuclear spins of solvent molecules in both sites give bulk magnetization vectors. As we are, at

present, only considering longitudinal relaxation, we focus on the z-components of the magnetization vectors

of the spins in their bound and unbound states Mz,B(t) and Mz,U(t). Following the assumption of the dilute

nature of the paramagnetic species these magnetization components satisfy
�

�

�Mz,B(t)
�

�

� ⌧
�

�

�Mz,U(t)
�

�

� at all times.

The equilibrium values of the magnetization vector components, M(0)
z,B and Mz,U(t)(0), are related to the ratio f

via f = M(0)
z,B/M

(0)
z,U. The longitudinal relaxation behaviour of the magnetizations in the two sites is governed
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by a pair of simultaneous di↵erential equations [257]:

dMz,B(t)
dt

= � 1
T1,IS

⇣

Mz,B(t) � M(0)
z,B

⌘

� 1
⌧B

Mz,B(t) +
1
⌧U

Mz,U(t), (9.171)

dMz,U(t)
dt

= � 1
T1,U

⇣

Mz,U(t) � M(0)
z,U

⌘

� 1
⌧U

Mz,U(t) +
1
⌧B

Mz,B(t), (9.172)

where we have noted that the longitudinal relaxation time in the bound state T1,B is simply the inner-sphere

relaxation time T1,IS. We should note that the treatment of chemical exchange in this model is di↵erent to that

in the Solomon–Bloembergen–Morgan theory of the PRE. In the Solomon–Bloembergen–Morgan theory the

rate of chemical exchange is assumed to be su�ciently fast that it falls into the Redfield limit where it can be

treated as a relaxation process, and the exchange lifetime used as a correlation time. However in the present

situation the exchange need not be fast, and we note that Equations 9.171 and 9.172 are also valid in the limits

of slow and intermediate exchange, which are outside the Redfield regime.

Since the fraction of bound solvent molecules f is small, we can approximate dMz,B(t)/dt ⇡ 0, and

simplify Equation 9.171 to give an expression for the z-magnetization of the nuclear spins in the bound

molecules in terms of the z-magnetization from the spins in the unbound molecules:

Mz,B(t) = f

0

B

B

B

B

B

B

@

⌧BM(0)
z,U + T1,ISMz,U(t)
⌧B + T1,IS

1

C

C

C

C

C

C

A

. (9.173)

By substituting this into Equation 9.172 and simplifying we obtain an expression for the relaxation behaviour

of the nuclear spins in the unbound molecules:

dMz,U(t)
dt

= �
 

1
T1,U

+
f

⌧B + T1,IS

!

⇣

Mz,U(t) � M(0)
z,U

⌘

. (9.174)

This expression is of the form
dMz,U(t)

dt
= � 1

T1,e↵

⇣

Mz,U(t) � M(0)
z,U

⌘

, (9.175)

where T1,e↵ is an e↵ective longitudinal relaxation time constant which is given by

1
T1,e↵

=
1

T1,U
+

f
⌧B + T1,IS

. (9.176)
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In the NMR experiment the observed signal is dominated by the nuclear spins in the unbound solvent

molecules, as
�

�

�Mz,B(t)
�

�

� ⌧
�

�

�Mz,U(t)
�

�

�, and so Equation 9.176 is the longitudinal relaxation time constant that

is actually measured. The second term in Equation 9.176 is the enhancement of the relaxation rate, 1/T1,U,

that would otherwise be observed in the absence of the paramagnetic species and so we associate it with the

inner-sphere PRE:
1
T1
=

f
⌧B + T1,IS

, (9.177)

which we see is related to the longitudinal nuclear relaxation time constant T1,IS, the lifetime ⌧B associated

with the bound site, and the fraction f of bound molecules.

The outer-sphere relaxation contribution to the overall PRE is included by simply adding the term 1/T1,OS

to Equation 9.177:
1
T1
=

f
⌧B + T1,IS

+
1

T1,OS
. (9.178)

A description of outer-sphere relaxation is more di�cult, as it requires a description of the stochastic variation

of the distance between the nucleus and paramagnetic centre. We can also derive an analogous expression for

the inner- and outer-sphere transverse PREs. The following sections are concerned with the calculation of the

expressions for the inner- and outer-sphere relaxation time constants Tq,IS and Tq,OS that are used in Equation

9.178, using the stochastic Liouville formalism.

9.7.3 Inner-sphere relaxation at high field

In formulating the inner-sphere PREs 1/T1,IS and 1/T2,IS we model the ligand as being bound to the metal ion

so that the distance between the nuclear spin and paramagnetic centre is fixed. The PRE is then calculated

using the expression for the spectral density KSD
mm(!):
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mm(!) =30b2
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⇥ exp(�i!⌧)d⌧. (9.179)
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The relevant degrees of freedom in the lattice are those pertaining to the electronic spin, the rotational

di↵usion, and the distortion of the complex geometry via collisions. The Liouvillian is therefore given by:

ˆ̂LL =
ˆ̂LS +

ˆ̂LR +
ˆ̂LD, (9.180)

where the electronic spin Liouvillian comprises terms for the electronic Zeeman interaction and the static and

transient ZFS interactions:
ˆ̂LS =

ˆ̂LZ +
ˆ̂LZFS,S +

ˆ̂LZFS,T. (9.181)

The equilibrium lattice density operator is given by the direct product of the electronic spin and rotational

di↵usion density operators: P̂0 = P̂0,S ⌦ P̂0,R.

In the high-field limit the electronic Zeeman interaction dominates the electronic energy levels, and the

static and transient ZFS interactions cause electronic relaxation via their stochastic time dependence, the

former by rapid rotational di↵usion and the latter by collisional distortions. The spin-dipolar hyperfine tensor

is also modulated by the rotational di↵usion. We can reformulate Equation 9.179 as follows:
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��

D(2)
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�

⇥ exp(�i!⌧)d⌧, (9.182)

where we have assumed that the static ZFS and spin-dipolar interactions have the same PAF, and so are both

modulated according to the same time-dependent set of Euler angles ⌦PL(t). If we further assume that the

rotational motion is so rapid that the electronic spins experience only the average e↵ect of the reorientation

we can factorize the part of the correlation function containing the electronic spin degrees of freedom from
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the part containing the rotational di↵usion, as we have done before:
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=6b2
S I

X

q

0

B

B

B

B

B

B

B

B

B

@

2 1 1

m � q q �m

1

C

C

C

C

C

C

C

C

C

A

2
Z 1

0
TrS


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⇥ exp [� (i! + 1/⌧R) ⌧] d⌧, (9.184)

where the electronic relaxation Liouvillian ˆ̂�e is the sum of two terms corresponding to electronic relaxation

under the static ZFS ˆ̂�ZFS,S and transient ZFS ˆ̂�ZFS,T, i.e. ˆ̂�e =
ˆ̂�ZFS,S +

ˆ̂�ZFS,T.

We define the electronic spectral density in the laboratory frame as

sSD
pp (!) =

3
S (S + 1)(2S + 1)

Z 1

0
TrS



Ŝ †1p

⇢

exp
✓

i
✓

ˆ̂LZ � i ˆ̂�e

◆

⌧
◆

Ŝ 1p

��

exp [�(i! + 1/⌧R)⌧] d⌧, (9.185)

which is the high-field equivalent of Equation 9.128, but with the factor of 1/3 removed from the exponent

as the correlation time now describes the e↵ect of rotational di↵usion on rank-two spatial tensors. We

note the following di↵erences: in the present expression the spin operators are expressed in the laboratory

frame, rather than the PAF of the static ZFS tensor, and the static ZFS interaction appears as a relaxation

superoperator. The spectral densities that are used to calculate the PREs are therefore given by:

KSD
11 (!I) =

1
15

b2
S IS (S + 1)

⇣

sSD
11 (!I) + 3sSD

00 (!I) + 6sSD
�1�1(!I)

⌘

, (9.186)

KSD
00 (0) =

1
15

b2
S IS (S + 1)

⇣

3sSD
11 (0) + 4sSD

00 (0) + 3sSD
�1�1(0)

⌘

. (9.187)

The resulting expressions for the longitudinal and transverse inner-sphere relaxation time constants are
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therefore:

1
T1,IS

=
2b2

S I

15~2 S (S + 1)Re
⇣

sSD
11 (!I) + 3sSD

00 (!I) + 6sSD
�1�1(!I)

⌘

, (9.188)

1
T2,IS

=
b2

S I

15~2 S (S + 1)Re
⇣

3sSD
11 (0) + 4sSD

00 (0) + 3sSD
�1�1(0) + sSD

11 (!I) + 3sSD
00 (!I) + 6sSD

�1�1(!I)
⌘

. (9.189)

These are the time constants that are used in the expressions of the form of Equation 9.177 to describe

the overall inner-sphere PRE at high field. These expressions are valid for arbitrary electronic spin, and

for electronic relaxation outside the Redfield limit. Further simplification requires both the selection of a

particular electronic spin, and the assumption that the electronic relaxation processes are within the Redfield

limit. If we assume the latter, the electronic relaxation rates are defined by spectral densities of the form

already computed in Equation 9.140. The spectral densities due to relaxation under reorientational motion

of the static ZFS tensor JS
mm0 (!) and collisional modulation of the transient ZFS tensor JT

mm0 (!) are therefore

given by

JS
mm0 (!) =

�2
s

5
⌧R

1 + !2⌧2
R
�mm0 , (9.190)

JT
mm0 (!) =

�2
t

5
⌧v

1 + !2⌧2
v
�mm0 , (9.191)

where �2
s = 2D2/3 + 2E2 is the strength of the static ZFS interaction. We now explore the special case of the

inner-sphere PREs due to an electronic spin S = 1.

Inner-sphere relaxation for electronic S = 1 at high field

In the case of a paramagnetic centre with electronic spin S = 1, the electronic spectral densities in Equation

9.185 are characterised by the longitudinal and transverse electronic time constants T (10)
1e and T (1±1)

2e . When

combined with the rotational correlation time we obtain the following overall correlation times ⌧c,1 and ⌧c,2:

1
⌧c,1
=

1
T (10)

1e

+
1
⌧R
, (9.192)

1
⌧c,2
=

1
T (1±1)

2e

+
1
⌧R
. (9.193)
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We recall that these correlation times are those encountered in the Solomon–Bloembergen–Morgan theory,

but without the contribution from chemical exchange, which is included separately in the expression for the

inner-sphere PRE in Equation 9.177.

The real parts of the electronic spectral densities are given by

Re
h

sSD
±1±1(!)

i

=
⌧c,2

1 + (! ⌥ !S )2 ⌧2
c,2

, (9.194)

Re
h

sSD
00 (!)

i

=
⌧c,1

1 + !2⌧2
c,1
. (9.195)

Inserting these into Equations 9.188 and 9.189 we obtain the same Solomon contributions to the longitudinal

and transverse relaxation rate constants that are calculated from the Solomon–Bloembergen–Morgan theory:
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(9.197)

Here the electronic relaxation has been calculated explicitly, rather than included phenomenologically in the

Solomon–Bloembergen–Morgan theory, and so these expressions are more rigorous. However we should

note that they are only exact for a paramagnetic centre with electronic spin S = 1, and are not valid for

higher electronic spins where the electronic relaxation requires more than two time constants for a proper

description. In this case we either use Equations 9.188 and 9.189 directly, or else resort to the Solomon–

Bloembergen–Morgan theory with a phenomenological description of the electronic relaxation via e↵ective

longitudinal and transverse relaxation time constants.

9.7.4 Outer-sphere relaxation at high field

The outer-sphere PRE is due to stochastic modulation of the spin-dipolar hyperfine tensor by translational

di↵usion. As for the inner-sphere case electronic relaxation is still due to rotational modulation of the static

ZFS and distortional modulation of the transient ZFS. The total lattice Liouvillian is therefore the same as for
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the inner-sphere case, with the addition of the stochastic translational-motion Liouvillian ˆ̂LT :

ˆ̂LL =
ˆ̂LS +

ˆ̂LR +
ˆ̂LD +

ˆ̂LT . (9.198)

We also extend the lattice density operator to include the translational degrees of freedom, which are repre-

sented by the equilibrium density operator P̂0,T. The overall equilibrium lattice density operator is now the

direct product of the equilibrium density operators for the electronic, rotational, and translational subsystems:

P̂0 = P̂0,S ⌦ P̂0,R ⌦ P̂0,T.

The outer-sphere longitudinal and transverse PREs 1/T1,OS and 1/T2,OS are given by

1
T1,OS

=
2
~2 Re

⇣

KOS
11 (!I)

⌘

, (9.199)

1
T2,OS

=
1
~2 Re

⇣

KOS
00 (0) + KOS

11 (!I)
⌘

, (9.200)

where the outer-sphere spectral density function KOS
mm(!) is:
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Ŝ †1q

D(2)
0,m�q (⌦OL(0))⇤

r(0)3

8

>

>

>

<

>

>

>

:

exp
✓

i ˆ̂LL⌧
◆
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⇥ exp(�i!⌧)d⌧, (9.201)

where cS I = µ0µBgiso~�I/(4⇡) is a constant describing the strength of the spin-dipolar coupling. There

are two di↵erences between this function and the corresponding inner-sphere spectral density in Equation

9.179. Firstly the distance between the nuclear and electronic spins r(t) is allowed to vary stochastically in

the outer-sphere case. We recall that we treat r as constant in the inner-sphere case. Secondly the angular

dependence of the outer-sphere dipolar coupling vector is encoded in the Euler angles ⌦OL, which give the

orientation of the dipolar coupling PAF in the laboratory frame. We note that this PAF does not necessarily

coincide with the common PAF of the inner-sphere spin-dipolar hyperfine interaction and static ZFS tensors.

We assume that the translational motion is statistically uncorrelated with the electronic spin dynamics, and

that the solvent molecules in the outer sphere move independently of the complex. Hence the translational
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motion is also uncorrelated with the rotational motion of the complex. Thus we can factor the trace in

Equation 9.201 into a part containing only the translational degrees of freedom, and a part pertaining only to

the electronic spin:
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A description of the correlation function for translational di↵usion is provided by Kruk et al [121, 122].

The translational di↵usion in the presence of intermolecular interactions is described by the Smoluchowski

equation. Formally this equation gives the time variation of the probability P (r(t)|r(0)) of locating a molecule

at position r(t) at time t, given that it started at position r(0) at time t = 0:

@P (r(t)|r(0))
@t

= D12r ·
"

rP (r(t)|r(0)) + P (r(t)|r(0))r
 

U(r(t))
kT

!#

. (9.203)

This equation considers two molecules, namely the metal-ion complex and the solvent molecule in the outer

sphere, with translational di↵usion coe�cients D1 and D2, and is parameterised by D12 = D1 + D2, which is

the relative translational di↵usion coe�cient of the two molecules. The mutual interaction energy is denoted

U(r(t)), and is assumed to depend only on the distance r(t) between the complex and outer-sphere solvent

molecule, i.e. U(r(t)) = U(r(t)). The potential can then be calculated from a radial distribution function

grdf(r) according to

ln
⇥

grdf(r)
⇤

= �U(r)
kT
. (9.204)

The translational time-correlation function can then be shown to be equal to

* D(2)
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=
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5

NS gT(⌧)�mm0�kk0 , (9.205)
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where NS is the density of the electronic spins, and gT(⌧) is the reduced translational correlation function that

is given by

gT(⌧) =
Z

dr(�⌧)
Z

dr(0)
* D(2)

mk (⌦OL(0))⇤

r(0)3

D(2)
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r(�⌧)3

+

P (r(�⌧)|r(0)) grdf(r(0)). (9.206)

With this form of the translational correlation function the outer-sphere spectral density function in Equation

9.202 takes the form:
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We see that the outer-sphere PREs are proportional to the density of paramagnetic centres, as expected. This

expression can be written more simply by defining the outer-sphere electronic spectral density functions

sOS
qq (!) as

sOS
qq (!) =

3
S (S + 1)(2S + 1)
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This is has the same form as the expression for inner-sphere relaxation in Equation 9.185, with the di↵erence

that the factor containing the rotational correlation time has been replaced with the translational-motion

correlation function. Combining Equations 9.207 and 9.208 gives us the following expressions for the

longitudinal and transverse PREs for outer-sphere relaxation at high field:
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, (9.209)

1
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=
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(9.210)

which are valid for arbitrary electronic spin. Further simplification, say for a particular spin S . requires a

closed expression for the translational correlation function.
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9.7.5 Inner- and outer-sphere relaxation at low field

Under conditions of low field the static ZFS interaction dominates the electronic Zeeman interaction, and the

latter can be neglected. The electronic relaxation is caused by the distortional modulation of the transient

ZFS, independently of the rate of rotation, and both the electronic relaxation properties and the inner-sphere

relaxation rates behave according to the low-field model of Nilsson and Kowalewski, and as already described

in section 9.6 [138, 139].

The corresponding low-field outer-sphere relaxation behaviour is slightly di↵erent, and needs special

consideration. The e↵ects have been described by Kruk et al [121, 122]. We start from the outer-sphere

spectral density in Equation 9.201:
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where the lattice Liouvillian is now given by

ˆ̂LL =
ˆ̂LS +

ˆ̂LR +
ˆ̂LT , (9.212)

ˆ̂LS =
ˆ̂LZFS,S +

ˆ̂LZ � i ˆ̂�ZFS,T. (9.213)

Following the derivation of the slow-motion theory spectral density in section 9.6, we recall that in the

low-field limit the electronic spin is quantized in the PAF of the static ZFS interaction, and so we write the

electronic spin operators in that PAF using the relation in Equation 9.119. This gives the following general
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expression for the spectral density function:
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This function is simplified by applying the following three assumptions:

1. The translational and rotational motion are completely uncorrelated. Therefore the Euler angles ⌦PL

are independent to the angles ⌦OL.

2. The rotational di↵usion occurs on a su�ciently slow timescale compared to the electronic dynamics

that the two are uncorrelated.

3. The electronic dynamics are uncorrelated with the translational motion.

We can now factorize the translational, rotational, and electronic parts of the spectral density to obtain:
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The two factors in angular brackets can be simplified as before, to give us the final expression for the spectral

density:

KOS
mm(!) =

8⇡
9

NS c2
S IS (S + 1)

⇣

sOS
11 (!) + sOS

00 (!) + sOS
�1�1(!)

⌘

, (9.216)
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where the sOS
pp (!) are electronic spectral density functions, which have the form

sOS
pp (!) =

3
S (S + 1)(2S + 1)

Z 1
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S̃ †1p
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✓
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S̃ 1p

��

gT(⌧) exp[�(i! + 1/(3⌧R))⌧]d⌧. (9.217)

These spectral density functions have a similar form to those used to calculate the inner-sphere relaxation

spectral density at low field, but with the di↵erence that the outer-sphere function contains information about

the translational dynamics through the reduced spectral density gT(⌧). The resulting low-field outer-sphere

PREs are:

1
T1,OS

=
16⇡NS c2

S IS (S + 1)
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sOS
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00 (!I) + sOS
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1
T2,OS
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8⇡NS c2
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9~2 Re
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sOS
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00 (0) + sOS
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. (9.219)

As for the high-field case, further simplification requires a closed-form expression for the translational

correlation function.

9.8 The e↵ect of vibrational motion on the PRE

9.8.1 Introduction

We now turn our attention to the role of vibrational motions (phonons) on the PRE, and expand on the

discussion in section 8.4.4. Vibrational motions occur on a timescale of the order of 100 fs, which is too short

to influence nuclear relaxation directly [183]. This is because the correlation time where the contribution of

the spectral density to the relaxation rate is a maximum is ⌧c = |1/!I |, which for a nuclear Larmor frequency

of 500 MHz, corresponding to a 1H at 11.74 T, is 0.3 ns. However phonons do have a more substantial e↵ect

on electronic relaxation, as the magnitude of the electronic Larmor frequency is 658 times higher than that of

1H [309]. For example an unpaired electron at 11.74 T experiences optimum relaxation with a correlation time

of 500 fs. This mechanism for electronic relaxation provides an alternative to the modulation of the transient

ZFS due to solvent collisions. The pseudo-rotation model of the latter process, where the transient ZFS is

assumed to have constant amplitude and a PAF that changes direction with time, is clearly an over-simplified

description of the distortion of the coordination environment, and can only be applied to molecular systems
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in solution. The inclusion of phonons removes many of these restrictions, and results in a theory of electronic

relaxation, and therefore the PRE, that can be extended to solid systems.

In this section we follow Kruk et al. [119] and explore the e↵ects of phonons on the PRE, to reveal a

hierarchy of events: the relaxation of the vibrational degrees of freedom leads to electronic-spin relaxation,

which in turn leads to nuclear-spin relaxation. We begin by treating the vibrational motion of the lattice

using quantum mechanics, assuming that it lies within the Redfield limit. The e↵ect of this motion on the

transient ZFS is then highlighted, leading to a description of the electronic relaxation behaviour, which we

also assume can be described by the Redfield theory. We assume that the paramagnetic centre is located

in an environment with a vibrationally-averaged geometry that is cubic, so we may ignore the static ZFS

interaction. We then calculate the electronic relaxation times for the specific case of a spin S = 1 in high

field. Finally we derive the expressions for the PRE, and show that for S = 1 at high field we recover the

Solomon–Bloembergen–Morgan equations.

9.8.2 The vibrational subsystem

We begin by considering a paramagnetic molecule in solution. In this case the vibrational motion can be

modelled using a Hamiltonian Ĥ that comprises three terms [117]:

Ĥ = ĤV + ĤB + ĤVB. (9.220)

The first term ĤV describes the vibrational motion of the isolated molecule. The second term ĤB describes

the liquid bath (lattice), to which the molecule is coupled via the third term ĤVB. We note that the form of

Ĥ is reminiscent of the Hamiltonian in the stochastic Liouville formalism used to describe a combined spin

system and lattice.

An isolated molecule comprising N atoms possesses 3N � 6 normal modes of vibration if non-linear, or

3N�5 if linear. For a particular normal mode i the displacement of the atoms during the vibration is described

by the normal coordinate operator q̂i, which is a particular mass-weighted linear combination of the atomic

displacements. The motion for each mode can be approximated by a simple harmonic oscillator that vibrates
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at frequency !V,i. The Hamiltonian ĤV is a sum of terms ĤV,i, each one of which represents a single mode:

ĤV =
X

i

ĤV,i, (9.221)

where each ĤV,i is given by

ĤV,i = �
~2

2
@2

@q̂2
i
+

1
2
!2

V,iq̂
2
i . (9.222)

We note that the normal modes are mutually orthogonal, and therefore independent of each other. For brevity

we define a normal-coordinate vector q̂ of all the normal coordinates. Note that we have defined the system

so that the equilibrium displacement of the molecule corresponds to q̂ = 0̂. The vibrational state of the

molecule is described by a wavefunction |n1n2 . . .i, where ni is the vibrational quantum number for normal

mode i, which takes values ni = 0, 1, 2, . . .. The total energy of the system En1n2... is the sum of individual

terms Eni for each mode:

En1n2... =
X

i

Eni , (9.223)

Eni =
⇣

ni +
1
2

⌘

~!V,i. (9.224)

The vibrational Liouvillian ˆ̂L(0)
V corresponds to ĤV, and therefore represents the coherent vibrational motion

of all normal modes. The vibrational frequencies generally take values of the order 100–1000 cm�1, and so

the populations of the energy levels do not conform to the high-temperature approximation. Therefore the

equilibrium population p(0)
n1n2... of each state |n1n2 . . .i is given by the full Boltzmann distribution:

p(0)
n1n2... =

exp
���LEn1n2...

�

ZV
, (9.225)

where ZV is the partition function:

ZV =TrV
h

exp
⇣

��LĤV
⌘i

(9.226)

=
X

n1,n2,...

exp
���LEn1n2...

�

, (9.227)

and the trace is taken over all the vibrational states.
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The Hamiltonian describing the bath ĤB need not be stated explicitly. However the coupling of the

normal modes of vibration to the bath is of particular interest. The corresponding Hamiltonian is equal to the

intermolecular potential V(q̂1, q̂2, . . .) with which the normal modes interact. We expand the potential as a

Taylor series in the qi to give the expression for ĤVB:

ĤVB =
X

i

 

@V
@q̂i

!

q̂=0̂

q̂i +
1
2

X

i, j

 

@2V
@q̂i@q̂ j

!

q̂=0̂

q̂iq̂ j + . . . , (9.228)

where we have defined the potential in the equilibrium molecular geometry V(0̂, 0̂, . . .) to be zero. The

relaxation of the vibrational subsystem is due to fluctuations in ĤVB. For example the first term in Equation

9.228 contains the intermolecular forces Fi = @V/@qi, and so fluctuations in this first term are due to the time

modulation of these forces, which can be shown to occur on a sub-picosecond timescale [117, 118]. These

fluctuations occur on a timescale that is much shorter than the timescale of vibrational relaxation, and so we

are in the Redfield limit. The relaxation is governed by the relaxation superoperator ˆ̂�V , and is characterized

by two time constants associated with each normal mode, T1V,i and T2V,i, with the former giving the lifetime

of a vibrational state, and the latter governing the width of the transition observed in the vibrational spectrum.

We determine the time evolution of the vibrational density operator for the entire system ⇢̂V(t) via the

Liouville–von Neumann equation
d⇢̂V(t)

dt
= �

✓

i ˆ̂L(0)
V +

ˆ̂�V

◆

⇢̂V(t), (9.229)

where we have included the e↵ects of coherent vibrational motion via ˆ̂L(0)
V , and vibrational relaxation via ˆ̂�V .

We now focus on a simplified system possessing a single normal mode of vibration with normal coordinate q,

vibrational frequency !V, and longitudinal and transverse relaxation times T1V and T2V. Further we assume

that only the ground state |0i and first excited state |1i, with energies E0 and E1, need be considered, as these

are the only states with non-negligible equilibrium populations p(0)
0 and p(0)

1 . In Liouville space this system is

described by a set of four basis operators ⇢̂V,mn ⌘ |mihn|. As with NMR the operators with m = n correspond

to the population of state |ni, and those with m , n correspond to a coherence between states |mi and |ni.

419



Writing the Liouville–von Neumann equation (9.229) explicitly for the matrix elements ⇢V,mn we obtain
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(9.230)

The block-diagonal form of the Liouville supermatrix allows us to solve the equation separately for the

populations, and each of the coherences. The matrix elements of the two population operators are coupled by

two simultaneous di↵erential equations, which have the following solutions:

⇢V,00(t) =
h

p(0)
1 ⇢V,00(0) � p(0)

0 ⇢V,11(0)
i

exp(�|t|/T1V) + p(0)
0 , (9.231)

⇢V,11(t) =
h

�p(0)
1 ⇢V,00(0) + p(0)

0 ⇢V,11(0)
i

exp(�|t|/T1V) + p(0)
1 . (9.232)

We see that at infinite time both population operators relax according to the time constant T1V, and tend to

their equilibrium expressions of p(0)
n . The matrix elements of the two coherence operators evolve indepen-

dently of each other according to

⇢V,10(t) = ⇢V,10(0) exp(�i!Vt) exp(�|t|/T2V), (9.233)

⇢V,01(t) = ⇢V,01(0) exp(+i!Vt) exp(�|t|/T2V). (9.234)

The coherence operators precess at frequency ±!V, and decay to zero with the time constant T2V.

9.8.3 Electronic relaxation

The electronic spin is coupled to the lattice of quantum vibrations through the ZFS interaction. We now derive

the form of the electronic relaxation rates by considering the resulting fluctuations in the transient ZFS. The

evolution of the electronic spin is governed by the following Liouville–von Neumann equation

d⇢̂S (t)
dt

= �
✓

i ˆ̂LZ +
ˆ̂�e

◆

⇢̂S (t), (9.235)
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where the coherent evolution is due to the electronic Zeeman interaction (we recall that the static ZFS is

zero), and the relaxation is governed by the relaxation superoperator ˆ̂�e in Equation 9.82. This relaxation is

due to the modulation of the transient ZFS by the phonons, and so we can write ˆ̂�e in terms of the transient

ZFS and relaxation Liouvillians as

�i ˆ̂�e =
ˆ̂LZFS,T +

ˆ̂L(0)
V � i ˆ̂�V. (9.236)

The transient ZFS Hamiltonian is

ĤZFS,T =

+2
X

m=�2

(�1)mF̂2mŜ 2�m, (9.237)

where we have written the spatial tensors F̂2m explicitly as operators to acknowledge that they depend on the

normal coordinate operators q̂. As before we write F̂2m in terms of the corresponding tensors F̃2m in the PAF

of the interaction:

F̂2m =

+2
X

m0=�2

F̃2m0D(2)
m0m(⌦FL). (9.238)

The PAF tensor components F̃2m0 are functions of the normal coordinates, and so fluctuate with time during

the vibrations. We can therefore define a set of functions h2m0 (q̂), which depend on q̂, and write the operators

explicitly as

F̂2m =

+2
X

m0=�2

hm0 (q̂). (9.239)

We assume that the transient ZFS is independent of rotational motion, and so the form of F̂2m does not depend

on m. For small displacements of the atomic positions from their equilibrium positions we can expand hm0 (q̂)

as a Taylor series in the normal coordinates as follows:

hm0 (q̂) = hm0 (0̂) +
X

i

 

@hm0

@q̂i

!

q̂=0̂

q̂i +
1
2

X

i, j

 

@2hm0

@q̂i@q̂ j

!

q̂=0̂

q̂iq̂ j + . . . . (9.240)

The zeroth order term hm0 (0̂) gives the magnitude and direction of the ZFS after motional averaging due to

the vibrations, and therefore corresponds to the static ZFS. As already stated we treat this term as zero. The

higher-order terms in the Taylor expansion correspond to the transient ZFS.

The electronic relaxation rates depend on the following spectral density function J(!):

J(!) = Re
"

Z 1

0

D

F̂2m(0)†F̂2m(�⌧)
E

exp(�i!⌧)d⌧
#

, (9.241)
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which, in turn, depends on the following the time-correlation function:

D

F̂2m(0)†F̂2m(�⌧)
E

= TrV



L̂†2m

⇢

exp
✓

i
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V � i ˆ̂�V

◆

⌧
◆

L̂2m

�

P̂V,0

�

, (9.242)

where the trace is taken over all vibrational states, and P̂V,0 is the equilibrium lattice density operator for

the vibrational subsystem. We note that, since F̂2m do not depend on the index m, neither does the spectral

density nor the correlation function. Because there is no coupling between the normal modes we are able to

write the total spectral density as the sum of terms Ji(!) due to each normal mode:

J(!) =
X

i

Ji(!). (9.243)

To facilitate the discussion we therefore restrict ourselves again to considering a system with a single normal

mode. The final result can then be easily generalised to several normal modes. From Equation 9.240 we write

the transient ZFS spatial tensor operators F̂2m as Taylor series in q̂, truncating at second order to give

F̂2m = Aq̂ + Bq̂2, (9.244)

where the constants A and B are given by

A =
+2
X

m0=�2

 

@hm0

@q̂i
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q̂=0̂

, (9.245)

B =
1
2

+2
X

m0=�2

 

@2hm0

@q̂i@q̂ j

!

q̂=0̂

. (9.246)

We can now write the correlation function in terms of the normal coordinate as follows:

D

F̂2m(0)†F̂2m(�⌧)
E

= A2
D

q̂(0)†q̂(�⌧)
E

+ B2
D

q̂2(0)†q̂2(�⌧)
E

+ AB
D

q̂(0)†q̂2(�⌧)
E

+ BA
D

q̂2(0)†q̂(�⌧)
E

. (9.247)

The terms in angular brackets denote correlation functions of powers of the normal coordinate operators,
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which have the following general expressions:

D
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=
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TrV
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(9.249)

=
X

m,n

exp (��LEm)
ZV

D

m
�
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�q̂x(0)†
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�

� n
E

hn |q̂y(�⌧)|mi . (9.250)

We therefore compute the correlation function by evaluating all the terms in Equation 9.247 in turn. Once

again we consider only the states n = 0 and n = 1.

We begin by evaluating the first term in A2 in Equation 9.247, which corresponds to the first-order

coupling between the electronic spin and the vibrational lattice. To facilitate the calculation we write the

normal coordinate operator as a linear combination of the vibrational basis operators ⇢̂V,mn:

q̂ =
X

m,n

hm |q̂| ni ⇢̂V,mn, (9.251)

The matrix elements hm |q̂| ni can be shown to be given by [206]

hm |q̂| ni =
 

~

2µ!V

!1/2
h

(n + 1)1/2�m,n+1 + (n)1/2�m,n�1
i

, (9.252)

where µ is the reduced mass associated with the normal mode. Restricting ourselves to the two lowest-lying

states we obtain the following expression for q̂:

q̂ =
 

~

2µ!V

!1/2
⇥

⇢̂V,10 + ⇢̂V,01
⇤

, (9.253)

which we see depends only on the two coherence operators. The time dependence of q̂ is determined by using

the expressions for the time dependence of the vibrational coherence operators ⇢̂V,10(t) and ⇢̂V,01(t) which we

have previously computed in Equations 9.233 and 9.234. The resulting expression for q̂(t) is therefore

q̂(t) =
 

~

2µ!V

!1/2
⇥

⇢̂V,10(0) exp (�i!Vt) + ⇢̂V,01(0) exp (i!Vt)
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=
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2µ!V
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⇥|1ih0| exp (�i!Vt) + |0ih1| exp (i!Vt)

⇤

exp (�|t|/T2V) .
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Combining this expression and Equation 9.250 gives us the correlation function
D

q̂(0)†q̂(�⌧)
E

, which is:

D

q̂(0)†q̂(�⌧)
E

=
~

2µ!V

h

p(0)
0 exp (i!V⌧) + p(0)

1 exp (�i!V⌧)
i

exp (�⌧/T2V) . (9.254)

The corresponding contribution to the spectral density J(1)(!) is given by the Fourier–Laplace transform, and

is equal to

J(1)(!) =
A2~

2µ!V

2

6

6

6

6

6

4

p(0)
0

T2V

1 + (! � !V)2 T 2
2V

+ p(0)
1

T2V

1 + (! + !V)2 T 2
2V

3

7

7

7

7

7

5

. (9.255)

We see that the first-order contribution contains spectral-density components at frequencies ! � !V and

! + !V, and contains a correlation time that is equal to the transverse relaxation time constant T2V of the

vibrational subsystem.

The second term (in B2) in Equation 9.247 represents a second-order coupling between the electronic spin

and the vibrational lattice. Repeating the analysis for the first-order term, we begin by writing the operator

q̂2 in terms of the basis operators ⇢̂V,mn:

q̂2 =
X

m,n

D

m
�

�

�q̂2
�

�

� n
E

⇢̂V,mn, (9.256)

where the matrix elements
D

m
�

�

�q̂2
�

�

� n
E

are [206]

D

m
�

�

�q̂2
�

�

� n
E

=
~

2µ!V

h

((n + 1)(n + 2))1/2 �m,n+2 + (2n + 1)�mn + (n(n � 1))1/2 �m,n�2
i

, (9.257)

Considering only the states n = 0 and n = 1 we obtain:

q̂2 =
~

2µ!V

⇥

⇢̂V,00 + 3⇢̂V,11
⇤

. (9.258)

In contrast to the expression for q̂, which depends only on the coherence operators, q̂2 depends only on the

population operators. The time dependence of the population operators in Equations 9.231 and 9.232 gives

us the following time-dependent expression for q̂2(t):

q̂2(t) =
~

µ!V

h

p(0)
0 |1ih1| � p(0)

1 |0ih0|
i

exp (�|t|/T1V) +
~

2µ!V

h

p(0)
0 + 3p(0)

1

i

1̂V. (9.259)
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The first term in Equation 9.259 is time dependence due to the longitudinal relaxation of the vibrational

lattice, whereas the second represents its equilibrium configuration. In determining the electronic relaxation

properties we are interested in the deviation of the vibrational lattice from its equilibrium configuration, and

so we remove this second term and replace Equation 9.259 with the following:

q̂2(t) =
~

µ!V

h

p(0)
0 |1ih1| � p(0)

1 |0ih0|
i

exp (�|t|/T1V) . (9.260)

The correlation function is therefore evaluated to be

D

q̂2(0)†q̂2(�⌧)
E

=

 

~

µ!V

!2


p(0)
0

⇣

p(0)
1

⌘2
+

⇣

p(0)
0

⌘2
p(0)

1

�

exp (�⌧/T1V) (9.261)

=

 

~

µ!V

!2 exp (��L~!V)
�

1 + exp (��L~!V)
�2 exp (�⌧/T1V) . (9.262)

The resulting second-order contribution from this normal mode to the spectral density J(2)(!) is

J(2)(!) = B2
 

~

µ!V

!2 exp (��L~!V)
�

1 + exp (��L~!V)
�2

T1V

1 + !2T 2
1V
. (9.263)

We see that this contribution to the spectral density does not depend on the vibrational frequency, and is

characterised by a correlation time equal to the longitudinal vibrational relaxation time constant T1V. This

is because the operator q̂2 depends on the population operators, and not on the coherence operators, of the

vibrational subsystem.

The remaining terms in Equation 9.247 do not contribute to the spectral density, as the mixed-order

correlation functions are zero:
D

q̂(0)†q̂2(�⌧)
E

=
D

q̂2(0)†q̂(�⌧)
E

= 0. (9.264)

Therefore the total spectral density J(!) for this single normal mode, up to second order, is

J(!) =J(1)(!) + J(2)(!) (9.265)

=
A2~

2µ!V

2

6

6

6

6

6
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p(0)
0

T2V

1 + (! � !V)2 T 2
2V

+ p(0)
1

T2V

1 + (! + !V)2 T 2
2V

3

7

7

7

7

7
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+ B2
 

~

µ!V

!2 exp (��L~!V)
�

1 + exp (��L~!V)
�2

T1V

1 + !2T 2
1V
. (9.266)
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In a system with more than one normal mode, we simply sum the individual contributions to the spectral

density to obtain the total spectral density, as in Equation 9.243. The resulting spectral density is then

J(!) =
X

i

2

6

6

6

6

6

6

4

A2
i ~

2µi!V,i

8

>

>

<

>

>

:

p(0)
0,i

T2V,i

1 +
�

! � !V,i
�2 T 2

2V,i

+ p(0)
1,i

T2V,i

1 +
�

! + !V,i
�2 T 2

2V,i

9

>

>

=

>

>

;

+ B2
i

 

~

µi!V,i

!2 exp
���L~!V,i

�

�

1 + exp
���L~!V,i

��2

T1V,i

1 + !2T 2
1V,i

3

7

7

7

7

7

5

, (9.267)

where we have added a subscript i to the parameters that are di↵erent for di↵erent normal modes. These

results are general for an arbitrary electronic spin. We now examine the special case of S = 1.

Electronic relaxation of a spin S = 1

As already discussed the electronic relaxation properties of a paramagnetic centre with S = 1 are charac-

terised by a relaxation time constant for each spin basis operator. The relaxation processes of the two basis

operators Ŝ 10 and Ŝ 20 are described by the two time constants T (10)
1e and T (20)

1e , whilst the operators Ŝ 1±1, Ŝ 2±1,

and Ŝ 2±2 relax according to the transverse time constants T (1±1)
2e , T (2±1)

2e , and T (2±2)
2e . The time constants are

calculated from the electronic relaxation superoperator ˆ̂�e in Equation 9.82, and in the current formalism are

given by

1
T (10)

1e

=J(!S ) + 4J(2!S ), (9.268)

1
T (20)

1e

=3J(!S ), (9.269)

1
T (1±1)

2e

=
3
2

J(0) +
5
2

J(!S ) + J(2!S ), (9.270)

1
T (2±1)

2e

=
3
2

J(0) +
1
2

J(!S ) + J(2!S ), (9.271)

1
T (2±2)

2e

=J(!S ) + J(2!S ). (9.272)

We recall that we have neglected the static ZFS throughout this section, and only the electronic Zeeman

interaction is considered.
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9.8.4 The PRE

The electronic relaxation behaviour derived in the preceding section can be included in the spectral density

functions describing the nuclear-spin relaxation. We can then use the following familiar equations to derive

expressions for the longitudinal and transverse PREs:

1
T1
=

2
~2 Re

⇣

KFC
11 (!I) + KSD

11 (!I)
⌘

, (9.273)

1
T2
=

1
~2 Re

⇣

KFC
00 (0) + KFC

11 (!I) + KSD
00 (0) + KSD

11 (!I)
⌘

. (9.274)

These expressions can be evaluated in any motional regime, and at any field, as discussed in this chapter. As

stressed at the beginning of this section the main role of the vibrational motions is to influence the electronic

relaxation. Once this has been characterised the electronic relaxation properties are used in the common

expression for the PRE.

The high-field PRE due to an electronic spin S = 1

A final example of a calculation of nuclear-spin relaxation concerns the PRE due to an electronic spin S = 1

at high field, and in the absence of a static ZFS interaction. The relevant electronic relaxation time constants

are given in Equations 9.268 and 9.270. If we include them in the expressions for the PRE, we simply recover

the Solomon–Bloembergen–Morgan equations:

1
T1
=

2
3

S (S + 1)
 

AFC

~

!2
⌧E,2

1 + (!S � !I)2⌧2
E,2

+
2

15
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bS I
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!2 2

6

6

6

6

6

4

3⌧c,1

1 + !2
I ⌧

2
c,1
+

6⌧c,2

1 + (!S + !I)2⌧2
c,2
+

⌧c,2

1 + (!S � !I)2⌧2
c,2

3

7

7

7

7

7

5

, (9.275)

1
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=
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S ⌧

2
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+
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I ⌧

2
c,1
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.

(9.276)

As we discussed in chapter 8, these expressions are also relevant for solid-state paramagnetic systems.
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9.9 Longitudinal relaxation in metallic solids

9.9.1 Introduction

The final topic that we review in our discussion of relaxation in paramagnetic systems is nuclear spin

relaxation in solid metals. The primary interest here is to compare the result with the expressions for the PRE

in solid insulators that have been derived in previous sections. Here we restrict the discussion to high-field

conditions, so that we can compare the PRE calculated for a metal with the Solomon–Bloembergen–Morgan

expression for a solid insulator in Equations 8.185 and 8.186.

As for the other cases discussed in this chapter, understanding the PRE in metallic systems requires

us to treat the lattice as a quantum mechanical object, because the degrees of freedom include the energy

levels associated with the electronic bands in addition to the electronic spins. However in contrast to the

other cases of relaxation that we have discussed we do not employ Redfield theory. Instead we restrict the

discussion to longitudinal relaxation, which we describe as being due to energy exchange between the nuclear

spin system and the lattice, via transitions between the nuclear spin states accompanied by simultaneous

transitions between the electronic states. The longitudinal relaxation rates were first described in this way by

Korringa [310], whose treatment was later expanded upon by Abragam [183] and Slichter [245]. However this

description is wholly inadequate for describing transverse relaxation, for which we would require a Redfield

treatment [95, 252].

We proceed according to the following assumptions:

1. We are in the high-field regime, so that the nuclear-spin dynamics are dominated by the nuclear Zeeman

interaction.

2. The temperature is su�ciently high that the nuclear-spin-state populations are described by the high-

temperature approximation to the Boltzmann distribution.

3. We expect the only significant contributions to the PRE to be due to conduction electrons near the

Fermi energy. It is assumed that the corresponding wavefunctions have substantial s-character, so that

the hyperfine interaction is dominated by the Fermi-contact part.

4. The stochastic process that causes nuclear relaxation is the motion of the conduction electrons. The

correlation time is given by the average duration over which the electron remains localized on a given

428



nuclear
spin

MI = +1/2

MI = -1/2 k, ms

k´, ms´

electronic
levels

Figure 9.2: Illustration of the nuclear relaxation process for a nuclear spin coupled to an electronic lattice.
Here the nuclear-spin absorption transition is accompanied by an emission transition in the lattice, so that
energy is exchanged between the two parts of the system.

atom.

9.9.2 Longitudinal relaxation due to transitions between energy levels

As we have pointed out above, the longitudinal relaxation rate of a system can be calculated by considering

the transitions between the energy levels of the system that are induced by stochastic processes. In order to

conserve energy, any transition between the nuclear spin states must be accompanied by a transition of equal

energy and in the opposite direction between the lattice states. This is illustrated in Figure 9.2, which shows

an absorptive transition for a nuclear spin 1/2 from the state |+1/2i to |�1/2i occurring simultaneously with

an emissive transition in the lattice from state |k,msi to
�

�

�k0,m0s
↵

. We are interested in the return to equilibrium

of the populations of the nuclear spin states |ni, as this corresponds to longitudinal relaxation. We can explain

the relaxation process as arising from the rates of change of the state populations pn, which are given by:

dpn

dt
=

X

m

(pmWmn � pnWnm) . (9.277)

The positive term pmWmn in Equation 9.277 describes the increase in pn due to a transition from state |mi,

whereas the negative term �pnWnm describes a reduction in pn due to a transition to state |mi. The transition

coe�cient Wmn is the number of transitions from |mi to |ni that occur per unit time. At equilibrium the

populations have their equilibrium values p(0)
n , and their rate of change is zero. Therefore from Equation

9.277, we are able to deduce the following relationship between Wmn and Wnm:

p(0)
m Wmn = p(0)

n Wnm. (9.278)
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The longitudinal relaxation rate governing this return to equilibrium depends on the transition coe�cients

and the energies of the states. It can be shown that the expression is

1
T1
=

1
2

P

m,n Wmn (Em � En)2

P

n E2
n

. (9.279)

It we only consider the e↵ects of the conduction electrons near the Fermi surface, Equation 9.279 corresponds

to the longitudinal PRE. We now require expressions for the transition coe�cients.

9.9.3 The longitudinal PRE of nuclei in a metal

We first consider transitions of the combined spin system from the initial occupied state |MIkmsi to the final

unoccupied state
�

�

�M0Ik
0m0s

E

. The corresponding transition coe�cients WMIkms,M0Ik0m
0
s are given by the Fermi

golden rule:

WMIkms,M0Ik0m
0
s =

2⇡
~

�

�

�

�

D

MIkms
�

�

�ĤIL
�

�

� M0Ik
0m0s

E

�

�

�

�

2
�
⇣

EMI + Ekms � EM0I � Ek0m0s

⌘

, (9.280)

where EMI is the energy of nuclear spin state |MIi, and Ekms is the energy of the lattice state |kmsi, and the

Hamiltonian ĤIL is describes the coupling between the nuclear spin system and the lattice, which here is due

to the Fermi-contact interaction. We see that, due to the Dirac delta function, the rate of transition is non-zero

only if the total energy is conserved, i.e. EMI + Ekms = EM0I = Ek0m0s . These transition coe�cients refer to

transitions from the nuclear spin state |MIi to
�

�

�M0I
E

that are accompanied by a transition between particular

lattice states. However the same nuclear spin transitions can also occur simultaneously with other lattice

transitions. We are therefore interested in the overall transition coe�cient WMI ,M0I that describes the number

of nuclear-spin transitions per unit time that occur, irrespective of the lattice-state transitions involved. This

is computed by summing the WMIkms,M0Ik0m
0
s both over all occupied initial lattice states |kmsi, and over all

unoccupied final lattice states
�

�

�k0m0s
↵

:

WMI ,M0I =
X

kms occ.

X

k0m0s unocc.

WMIkms,M0Ik0m
0
s (9.281)

=
X

kms,k0m0s

WMIkms,M0Ik0m
0
s fms (k)

h

1 � fm0s (k
0)
i

. (9.282)
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The Fermi–Dirac function fms (k) can be interpreted as the probability that the state |kmsi is occupied, and so
h

1 � fm0s (k
0)
i

is the corresponding probability that
�

�

�k0m0s
↵

is unoccupied. Therefore the inclusion of the factor

fms (k)
h

1 � fm0s (k
0)
i

in the second line allows us to remove the restriction of only summing over occupied or

unoccupied states.

The coupling between the nuclear spin system and the lattice is described by the Fermi-contact interaction

Hamiltonian from Equation 2.191. Here we consider the coupling to a single electron, which gives us the

following Hamiltonian ĤIs:

ĤIs =
2
3
µ0µBge~�I�(r)Î · ŝ, (9.283)

where the nucleus is at r = 0. The first step in the calculation of the transition coe�cients is to evaluate the

matrix element of ĤIs in Equation 9.280 using the combined states |MIkmsi = |MIi |�k(r)i |msi:

D

MIkms
�

�

�ĤIs
�

�

� M0Ik
0m0s

E

=
2
3
µ0µBge~�I�k(0)⇤�k0 (0)

D

MI
�

�

�Î
�

�

� M0I
E

· ⌦ms |ŝ|m0s
↵

. (9.284)

Inserting this into the expression for the transition coe�cient in the combined spin–lattice system, we obtain

WMIkms,M0Ik0m
0
s =

2⇡
~

4
9
µ2

0µ
2
Bg2

e~
2�2

I |�k(0)|2 |�k0 (0)|2 �
⇣

EMI + Ekms � EM0I � Ek0m0s

⌘

⇥
X

i, j

D

MI
�

�

�Îi
�

�

� M0I
E D

M0I
�

�

�Î j
�

�

� MI
E

⌦

ms |ŝi|m0s
↵

D

m0s
�

�

�ŝ j
�

�

� ms
E

. (9.285)

We see that the rate of the transition is proportional to the electronic spin density at the nucleus in both the

initial and final states.

We obtain the total transition coe�cient for each pair of nuclear spin states by combining Equations 9.282

and 9.285. Recalling that the sums over k and k0 can be replaced by integrals according to Equation 2.30, we
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obtain the double integral:

WMI ,M0I =V2
X

ms,m0s

x

D

WMIkms,M0Ik0m
0
s

E

Ek,Ek0
fms (Ek)

h

1 � fm0s (Ek0 )
i

gms (Ek)gm0s (Ek0 )dEkdEk0 (9.286)

=
2⇡
~

4
9
µ2

0µ
2
Bg2

e~
2�2

I V2
X

i, j

D
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�

�

�Îi
�

�

� M0I
E D

M0I
�

�

�Î j
�

�

� MI
E

X

ms,m0s

⌦

ms |ŝi|m0s
↵

D

m0s
�

�

�ŝ j
�

�

� ms
E

⇥
x

D

|�k(0)|2
E

Ek

D

|�k0 (0)|2
E

Ek0
fms (Ek)

h

1 � fm0s (Ek0 )
i

gms (Ek)gm0s (Ek0 )

⇥ �
⇣

EMI + Ekms � EM0I � Ek0m0s

⌘

dEkdEk0 , (9.287)

where we have used the density of states for electrons in a particular spin state gms (Ek), and V is the volume

of the metal. The first integral over the energy Ek0 is easy to compute due to the Dirac delta function. The

result is

WMI ,M0I =
2⇡
~

4
9
µ2

0µ
2
Bg2

e~
2�2

I V2
X

i, j

D

MI
�

�

�Îi
�

�

� M0I
E D

M0I
�

�

�Î j
�

�

� MI
E

X

ms,m0s

⌦

ms |ŝi|m0s
↵

D

m0s
�

�

�ŝ j
�

�

� ms
E

⇥
Z

D

|�k(0)|2
E

Ek

D

|�k0 (0)|2
E

Ek0
f (Ekms )

h

1 � f (Ek0m0s )
i

gms (Ek)gm0s (Ek0 )dEk, (9.288)

where we have replaced fms (Ek) with f (Ekms ), and Ek0 is equal to

Ek0 = Ek + Ems � Em0s + EMI � EM0I . (9.289)

To make further progress we now make some simplifications. In the expression relating the energies

of the two k-states in Equation 9.289, we neglect the electronic and nuclear transition energies Em0s � Ems

and EM0I � EMI , and set Ek0 = Ek ⌘ E. This statement amounts to saying that Wmn = Wnm, which we

recall results in zero nuclear polarization, which is unphysical. However we are able to neglect the di↵erence

between Wmn and Wnm here as this e↵ect has already been included in Equation 9.278 [245]. Therefore a

better interpretation of this statement is that it amounts to assuming low nuclear polarization. Hence this

theory of relaxation implicitly contains a high-temperature approximation. This further allows us to replace

the density of states for a particular spin state gms (E) with g(E)/2, where g(E) is the total density of states.
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This gives us

WMI ,M0I =
2⇡
~

1
9
µ2

0µ
2
Bg2

e~
2�2

I V2
X

i, j

D

MI
�

�

�Îi
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E D

M0I
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�Î j
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� MI
E

X

ms,m0s

⌦

ms |ŝi|m0s
↵

D

m0s
�

�

�ŝ j
�

�

� ms
E

⇥
Z 1

0

D

|�k(0)|2
E2

E
f (E)

⇥

1 � f (E)
⇤

g(E)2dE. (9.290)

The integral is evaluated by noting that the factor containing the Fermi–Dirac functions f (E)
⇥

1 � f (E)
⇤

is

proportional to a Dirac delta function:

f (E)
⇥

1 � f (E)
⇤

= �kT f 0(E) (9.291)

= kT �(E � EF), (9.292)

from which we obtain

Z 1

0

D

|�k(0)|2
E2

E
f (E)

⇥

1 � f (E)
⇤

g(E)2dE =
D

|�k(0)|2
E2

EF
g(EF)2kT. (9.293)

We see that the integral is proportional to the square of the one-electron spin density
D

|�k(0)|2
E

EF
at the Fermi

level that is present at the nucleus, the square of the density of states at the Fermi level, and the temperature.

The sum over the product of the electronic spin matrix elements is simply

X

ms,m0s

⌦

ms |ŝi|m0s
↵

D

m0s
�

�

�ŝ j
�

�

� ms
E

= Trs
⇣

ŝi ŝ j
⌘

(9.294)

=
1
2
�i j. (9.295)

The final expression for the transition coe�cients is therefore:

WMI ,M0I =
⇡

9
µ2

0µ
2
Bg2

e~�
2
I V2

D

|�k(0)|2
E2

EF
g(EF)2kT

X

i

D

MI
�

�

�Îi
�

�

� M0I
E D

M0I
�

�

�Îi
�

�

� MI
E

. (9.296)

The transition coe�cient is proportional to the square of the average single-electron spin density at the Fermi

level
D

|�k(0)|2
E

EF
, and to the square of the density of states at the Fermi level g(EF). This means that the rate

of nuclear-spin transitions is dominated by the conduction electrons at the Fermi level. As the temperature
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increases the number of electrons that are promoted into excited states increases. Since these electrons are

all in the vicinity of the Fermi level this means that we can expect the rate of nuclear transitions mediated by

the Fermi-contact interaction with these electrons to also increase. This is observed by the proportionality of

WMI ,M0I to T .

It now remains to compute the longitudinal PRE, which is done by inserting Equation 9.296 into Equation

9.279 to obtain

1
T1
=
⇡

18
µ2

0µ
2
Bg2

e~�
2
I V2

D

|�k(0)|2
E2

EF
g(EF)2kT
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where to go to the second line we have invoked the high-field approximation and assumed that the nuclear

spin Hamiltonian is dominated by the Zeeman Hamiltonian ĤIZ = �~�I B0 Îz. The numerator and denominator

of the quotient are evaluated to be
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, (9.299)
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and since the following identity applies for all nuclear spins I:
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, (9.301)

we calculate the quotient to be �2. The final expression for the longitudinal PRE is therefore

1
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EF
g(EF)2kT. (9.302)

As we have already commented for the transition coe�cient WMI ,M0I , we see that the PRE increases with the

square of the total electron spin density at the nucleus
D

|�k(0)|2
E

EF
g(EF), which is dominated by the electrons

close in energy to the Fermi level, and with the temperature.
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9.9.4 The Korringa relation

There is an important relationship between the longitudinal PRE in Equation 9.302 and the Knight shift in

Equation 7.165, which is known as the Korringa relation [183, 245, 310]. Specifically the two expressions

can be combined to give a quantity T1K2 that is equal to

T1K2 =

 

�P

g(EF)

!2 4
⇡kT

1
µ2

0µ
2
Bg2

e~�
2
I
. (9.303)

We see that this quantity depends only on the magnetic susceptibility, the density of states at the Fermi level,

and the temperature. In the special case of non-interacting electrons the magnetic susceptibility is given by

the Pauli expression in Equation 7.178, and the Korringa relation becomes [310]:

T1K2 =
~

4⇡kT

 

�S

�I

!2

, (9.304)

where T1K2 depends only on the temperature, and the ratio of the electronic and nuclear gyromagnetic ratios.

In principle it should be possible to use the Korringa relation to calculate T1 relaxation times from Knight

shifts. However care should be taken in the application of the Korringa relation, since it has been shown that,

for simple metals, the experimental T1 values are greater than the values predicted. This is because of the

neglect of e↵ects such as electron–electron interactions, and other relaxation mechanisms.

9.9.5 Comparison of the longitudinal PRE in solid insulators and metals

An initial comparison of the longitudinal PRE in a metal in Equation 9.302 with the corresponding expression

for a solid insulator from the Solomon–Bloembergen–Morgan theory in Equation 8.185 appears to indicate

that there is little similarity between the two expressions. The most obvious di↵erence is that in a metal

the dominant source of relaxation is a Bloembergen-type mechanism due to the Fermi-contact interaction,

whereas we have shown that in an insulator the Bloembergen contribution is negligible compared to the

Solomon contribution. However on closer examination there is greater similarity than one would expect.

Here we compare the longitudinal PRE in a metal to the Bloembergen expression in a solid insulator.

In order to facilitate the discussion we take the expression for the metal in Equation 9.302, and assume

the free-electron model. The density of states at the Fermi level then takes the simple expression g(EF) =
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3N/(2VEF), where N is the number of electrons, and we obtain:
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We can rationalize this expression as follows. The factor N
D

|�k(0)|2
E

EF
is the total electronic density at the

nucleus due to the N electrons, which is computed from the average one-electron density due to the electrons

at the Fermi surface. The factor ~/EF can be interpreted as follows. The fluctuation local field exerted by the

electronic spin on the nucleus has a correlation time which is the average duration for which the conduction

electron remains localized at the nucleus. The order of magnitude of this correlation time is ~/EF [183]. For

typical values of the Fermi energy in simple metals ~/EF ⌧ |!S � !I |, indicating that we are in the extreme

narrowing limit. Finally the factor kT/EF gives the fraction of electrons that participate in the relaxation

process at finite temperature, with the remainder having no overall contribution due to the spin pairing.

For a solid insulator the longitudinal PRE due to the Bloembergen mechanism is give in Equation 8.185.

If we assume that the paramagnetic centre has a single unpaired electron, so that S = 1/2, and also assume

that we are in the extreme-narrowing limit we obtain the following expression:

1
T insul.

1

=
2
9

(µ0µBge�I)2 ⇢↵��(0)2T2e. (9.306)

This expression bears some similarity to Equation 9.305. The electron-spin density at the nucleus is now

given by ⇢↵��(0) which, unlike in the metal, is a contribution from a single unpaired electron. This reflects

the fact that in an insulator the Fermi-contact interaction is short-range, as the electrons are largely localised

in the metal coordination site, rather than delocalised throughout the material as in a metal. In addition the

PRE is proportional to the electron T2e, which plays the role of the correlation time. However we should note

that T2e has a very di↵erent interpretation to the correlation time in the metal, as in the insulator the electrons

are largely localised, and the electronic relaxation is largely due to the vibrational motions.

9.10 Key concepts

• A general treatment of electronic and nuclear relaxation can be made using the stochastic Liouville–von

Neumann equation.
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• The resulting expressions for nuclear relaxation include the e↵ects of electronic relaxation for spins

S > 1 that is outside the Redfield limit, spin-orbit coupling e↵ects on the electronic spin (g-anisotropy,

and static ZFS), and low-field conditions.

• Under high-field conditions and for S = 1 we recover the Solomon–Bloembergen–Morgan equations

(Equations 9.111 and 9.112). For higher electronic spins we recover the Solomon–Bloembergen–

Morgan equations assuming a phenomenological treatment of electronic relaxation.

• Under conditions of low field and slow motions the PREs are given by Equations 9.129 and 9.130 for

arbitrary electronic spin, and Equations 9.166 and 9.167 for S = 1.

• Metal ions in solution that coordinate to the solvent molecules have a complicated relaxation process

that can be separated into inner- and outer-sphere mechanisms (Equation 9.178). The expressions for

the inner-sphere relaxation rates at high field determined by Redfield theory are given in Equations

9.188 and 9.189. For inner-sphere relaxation at high field the expressions for S = 1 reduce to the

Solomon–Bloembergen–Morgan equations. The expressions for the outer-sphere relaxation rates are

given in Equations 9.209 and 9.210 at high field, and Equations 9.218 and 9.219 at low field.

• Vibrational motions are an important source of electronic relaxation both in solution and in solid

insulators. The PRE expressions at high field are the Solomon–Bloembergen–Morgan equations.

• In a metal the PRE is mainly due to the Fermi-contact interaction with the delocalised electrons, and so

shares some similarities with the Bloembergen mechanism in solid insulators. The longitudinal PRE is

given in Equation 9.302.
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Chapter 10

Inhomogeneous broadening due to the

bulk paramagnetic susceptibility

The description of the paramagnetic shielding tensor has so far focussed on the local e↵ects of the paramag-

netic metal centres on the observed nuclear spin. However in certain cases we must also consider the bulk

magnetic properties of the system, which can a↵ect the measured values of the shift and the inhomogeneous

linewidth in the spectrum. Such e↵ects can be present in solution, single crystals, and solid powders.

The important points to consider are the shape of the crystal containing the nucleus in solid samples, any

neighbouring crystallites, and the shape of the sample container. These bulk properties are collectively known

as bulk magnetic susceptibility (BMS) e↵ects as they depend on the susceptibility tensor of the entire sample.

The BMS has been shown to influence both the measured paramagnetic shift and shift anisotropy, and the

line shape and linewidth [153, 154]. The treatment of the BMS e↵ects in this chapter is based on the theory

of classical electrodynamics, on which further information can be found in standard textbooks such as the

one by Jackson [186]. Here we focus on paramagnetic solids, considering first single crystals, and then

microcrystalline powders.
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10.1 The BMS shift in a single crystal

10.1.1 The demagnetising field in a single crystal

In section 2.2 we introduced the concept that a magnetic field can be described either in terms of the H-field

H(r) or the B-field B(r), which are related by Equation 2.9, which is repeated below for convenience:

B(r) = µ0(H(r) +M (r)), (10.1)

where we have explicitly written in the dependence on position of both fields and the magnetization. The

H-field H(r) is equal to the sum of the applied H-field H0 and a demagnetising H-field HD(r), which is

produced by the combined e↵ect of all the magnetic moments in the solid crystal. The magnetic B-field B(r)

is therefore given by

B(r) =µ0(H0 +HD(r) +M (r)) (10.2)

=B0 +BD(r), (10.3)

where B0 = µ0H0 is the applied B-field, and BD(r) = µ0(HD(r) +M (r)) is the demagnetising B-field. So

far this description is valid for any magnetic solid. Restricting the discussion to paramagnetic solids, the bulk

magnetization inside the crystallite Mc is due to the applied field H0, and can be written as

Mc = �V ·H0, (10.4)

where �V is the bulk magnetic susceptibility tensor per unit volume, which in general is anisotropic. By

contrast the magnetization outside the crystallite M (r) is zero.

For an object of micrometre dimensions or larger, the demagnetising fields can be calculated from

classical magnetostatics, where we model the crystallite as a uniformly-magnetized object occupying a spatial

volume V that is bounded by a surface S . The demagnetising H-field HD(r) is then given by the vector

gradient of a scalar potential �D(r) [186]

HD(r) = �r�D(r), (10.5)
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where we have acknowledged that both the field and scalar potential vary with position r, the origin of which

is the centre of mass of the crystallite. Note that the nucleus can be located either inside this crystallite, or

outside in a second crystallite. The scalar potential is given by the following integral expression:

�D(r) = � 1
4⇡

y

V

r0 ·M (r0)
|r � r0| dV 0 +

1
4⇡

{

S

n0 ·M (r0)
|r � r0| da0, (10.6)

where r0 is the vector giving the position of the paramagnetic centre, r is the position of the nucleus, n0

is the unit vector normal to the surface pointing outwards, and da0 is an infinitesimal area located on the

surface S . The first integral is over the volume of the crystallite, and the second integral is taken over the

bounding surface of the crystallite. Both integrals are evaluated with respect to the primed coordinates. In

the paramagnetic regime we assume that within the crystallite M (r) =Mc and is uniform throughout V , and

hence both r0 ·M (r0) and the volume integral are equal to zero, which leaves us with

�D(r) =
1

4⇡

{

S

n0 ·Mc

|r � r0| da0. (10.7)

From Equations 10.4, 10.5, and 10.7 the magnetic field HD takes the following form [151]:

HD(r) = �N (r) · �V ·H0, (10.8)

where N (r) is the demagnetising tensor, which has the following components Ni j(r):

Ni j(r) =
1

4⇡
@

@ri

{

S

n0j
|r � r0|da0 (10.9)

= � 1
4⇡

{

S

ri � r0i
|r � r0|3

n0j da0. (10.10)

The demagnetising H-field is therefore a matrix product of three parts, each of which is due to a di↵erent

physical property of either the system or the experimental conditions. The demagnetising field has a mag-

nitude proportional to H0, but with a reduced size, and has a di↵erent direction due to the demagnetising

and volume susceptibility tensors. The latter tensor �V encodes the influence of the (generally anisotropic)

magnetic moments of the paramagnetic ions in the crystallite, in the same way as the single-ion susceptibility

influences the local paramagnetic shielding tensor as shown in section 4, via the g- and ZFS tensors. The
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demagnetising tensor N (r) contains all the information about the shape of the crystallite via the surface

integral. We therefore expect it to be anisotropic for crystallites that deviate from spherical symmetry. This

is also the only contribution to HD(r) that is position dependent. The trace of the demagnetising tensor can

be calculated to be

Tr(N (r)) = � 1
4⇡

{

S

(r � r0) · n0
|r � r0|3

da0 (10.11)

= � 1
4⇡

y

V

r0 ·
(

(r � r0)
|r � r0|3

)

dV 0 (10.12)

=
y

V

�(r0 � r)dV 0 (10.13)

=

8

>

>

>

>

<

>

>

>

>

:

1, if r is inside the crystallite,

0, if r is outside the crystallite,
(10.14)

where to go to the second line we have used the divergence theorem for the integrals of vector fields [189].

Figure 10.1 gives three examples of demagnetising tensors for crystals of di↵erent shapes that can be used

for calculating the internal demagnetising field. We see that for each tensor the trace is equal to unity. In all

three examples the form of N (r) matches the symmetry of the crystal shape. With the axis system shown this

results in all three matrices being diagonal, and so these axes give the PAF of the tensor. If instead we take an

axis system that is fixed to the laboratory frame of reference the tensor N (r) is of course not diagonal. We

note that in any direction i where the crystal dimension extend to infinity there is no bounding surface, and

so Nii = 0.

Once we have calculated HD(r) we can calculate the demagnetising B-field from

BD(r) =µ0(HD +M (r)) (10.15)

= � µ0N (r) · �V ·H0 + µ0M (r) (10.16)

= �N (r) · �V ·B0 + µ0M (r), (10.17)

where M (r) is equal to �V · H0 = �V · B0/µ0 inside the crystallite, and zero outside the crystallite.
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(a) (b) (c)

Figure 10.1: The demagnetising tensors of three uniformly-magnetized crystals of di↵erent three-dimensional
shapes that give the demagnetising field at any point within each crystal. The crystal shapes are (a) a sphere,
(b) an infinitely-long cylindrical rod, and (c) a plane extending to infinity in two dimensions. The arrows in
(b) and (c) indicate the directions in which the crystals extend to infinity. The axis system is shown to the
left.
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Alternatively we can calculate BD(r) directly from the vector potential AD(r) from the relation

BD(r) =r ⇥AD(r), (10.18)

where the vector potential is given by

AD(r) =
µ0

4⇡

y

V

r0 ⇥M (r0)
|r � r0| dV 0 +

µ0

4⇡

{

S

M (r0) ⇥ n0
|r � r0| da0. (10.19)

If we, once again, assume that M (r) is independent of position within the crystallite the volume integral is

equal to zero and the vector potential reduces to

AD(r) =
µ0

4⇡

{

S

Mc ⇥ n0
|r � r0| da0. (10.20)

The calculation of BD(r) directly from the vector potential gives the same result as the calculation starting

from the scalar potential via HD(r). The former method was used by Kubo et al [151], whereas the latter is

the approach of Dickinson et al [152].

The demagnetising B-field can be thought of as inducing a chemical shielding at the nuclear spin. This

BMS chemical shielding �BMS can be calculated by equating the two forms of the nuclear Zeeman interaction:

�~�IB(r) · Î = � ~�IB0 ·
⇣

1 � �BMS(r)
⌘

· Î (10.21)

[B0 +BD(r)] · 1 =B0 ·
⇣

1 � �BMS(r)
⌘

, (10.22)

which gives

BD(r) · 1 = �B0 · �BMS(r). (10.23)

The final expression for the BMS shielding tensor is therefore

�BMS(r) =

8

>

>

>

>

<

>

>

>

>

:

�V ·
⇣

N (r)T � 1
⌘

, inside the crystallite,

�V ·N (r)T , outside the crystallite.
(10.24)

Both the isotropic and anisotropic parts of the BMS shielding tensor depend on the nature of the paramagnetic
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centres via the bulk susceptibility tensor, and the crystallite shape via the demagnetizing tensor.

10.1.2 The BMS shift of a spherical crystallite

We now consider the simple case of a spherical crystallite with radius ac. The scalar potential is given by

Equation 10.7 following a conversion to spherical polar coordinates r ! (r, ✓, �) and r0 ! (r0, ✓0, �0):

�D(r) =
a2

c

4⇡

Z 2⇡

0
d�0

Z ⇡

0
d✓0 sin ✓0

Mc,x sin ✓0 cos �0 + Mc,y sin ✓0 sin �0 + Mc,z cos ✓0

|r � r0| . (10.25)

The integrals can be computed by using the following identity for |r � r0|�1 [186]:

1
|r � r0| = 4⇡

1
X

l=0

+l
X

m=�l

1
2l + 1

rl
<

rl+1
>

Ylm(✓0, �0)⇤Ylm(✓, �), (10.26)

where the Ylm(✓, �) are spherical harmonic functions of rank l and order m. The distance r< is equal to the

smaller of r and r0, and likewise r> to the larger of the two. Of the terms in Equation 10.26, only those with

l = 1 give a non-zero contribution to the integral, and so the scalar potential has the simple expression

�D(r) =
1
3

a2
c

 

r<
r2
>

!  

Mc · r
r

!

. (10.27)

If the observed nuclear spin is located inside the crystallite the scalar potential becomes �in
D(r), which is

�in
D(r) =

1
3
Mc · r, (10.28)

and the corresponding demagnetising H-field H in
D is

H in
D = �

1
3
Mc (10.29)

= � 1
3
�V ·H0. (10.30)

Comparing this with Equation 10.8 we see that the demagnetising tensor N (r) is equal to

N (r) =
1
3
1, (10.31)
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which is isotropic, as expected for a spherical crystallite. The BMS shielding of the nucleus inside the

crystallite is now easily calculated from Equation 10.24, giving

�BMS = �2
3
�V , inside the crystallite. (10.32)

If the observed nuclear spin is outside the crystallite in question the scalar potential �out
D (r) is:

�out
D (r) =a3

c
Mc · r

3r3 (10.33)

=Vc
Mc · r
4⇡r3 (10.34)

=
mc · r
4⇡r3 , (10.35)

where Vc = 4⇡a3
c/3 is the volume of the crystallite, and mc = VcMc is its total magnetic moment. The

demagnetising field Hout
D evaluates to

Hout
D =

1
4⇡

"

3r (mc · r)
r5 � mc

r3

#

, (10.36)

which we immediately recognise as the field exerted by a point dipole moment mc at position r. We therefore

obtain the result that a nucleus outside the crystallite experiences a dipolar coupling interaction with the

crystallite, and that the crystallite can be modelled as a point dipole with a magnetic moment equal to the

bulk value mc. The demagnetising tensor has the components

Ni j(r) = �VcC
dip
i j (r), (10.37)

where Cdip is the reduced point-dipolar coupling tensor:

Cdip
i j (r) =

3rir j � r2�i j

4⇡r5 . (10.38)

Equation 10.24 gives the corresponding BMS shielding tensor:

�BMS(r) = �Vc�V ·Cdip(r), outside the crystallite, (10.39)
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Location Type �BMS

Term Expression Rank

inside IBMS 1 � 2
3�

iso
V 0

ABMS 2 � 2
3�

an
V 2

outside IBMS 3 �Vc �iso
V Cdip(r) 2

ABMS 4 �Vc�an
V ·Cdip(r) 0, 1, 2

Table 10.1: Terms contributing to the BMS paramagnetic shielding tensor of a nucleus due to a single
spherical crystallite. The individual contributions 1–4 are separated according to whether they act on a
nucleus that is either inside or outside the crystallite in question, and whether they are due to the isotropic
(IBMS) or anisotropic (ABMS) part of the volume susceptibility tensor of the crystallite.

which is an analogous expression to that obtained for the spin-dipolar contribution to the local paramagnetic

shielding tensor in terms of the single-paramagnetic-centre susceptibility tensor in Equation 4.182.

10.1.3 The IBMS and ABMS contributions to the paramagnetic shielding tensor

The contributions to the BMS shielding tensor of a nucleus both inside and outside a given crystallite can

be separated into two groups: those due to the isotropic volume susceptibility of the crystallite, and those

due to the volume susceptibility anisotropy. The former contributions give rise to isotropic bulk magnetic

susceptibility (IBMS) e↵ects, whilst the latter are responsible for the anisotropic bulk magnetic susceptibility

(ABMS) e↵ects. Four terms can be clearly distinguished, which are listed in Table 10.1 for a spherical

crystallite, along with their irreducible spherical tensor ranks.

If the observed nucleus is within the crystallite in question, the two contributions to the BMS shielding

tensor are 1 and 2. Term 1 is the IBMS contribution, with a size that is proportional to the isotropic volume

susceptibility �iso
V and simply changes the isotropic shift. Term 2, on the other hand, is the ABMS contribution

which is purely anisotropic, with anisotropy parameters that are proportional to those of the anisotropic

volume susceptibility �an
V . These IBMS and ABMS shielding parameters are

�IBMS,1
iso = � 2

3
�iso

V , (10.40)

��ABMS,2 = � 2
3
��V , (10.41)

⌘ABMS,2 =⌘�V , (10.42)

where �IBMS,1
iso , ��ABMS,2, and ⌘ABMS,1 are the isotropic shielding, SA, and asymmetry parameter of the BMS

shielding tensor, and �iso
V , ��V , and ⌘�V are the isotropic part, anisotropy, and asymmetry parameter of the
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volume susceptibility. Both the IBMS and ABMS contributions depend only on the volume susceptibility,

and so are independent of both the size of the crystallite, and the position of the nucleus within the crystallite.

Terms 1 and 2 are the “bulk equivalents” of the local shielding terms in the susceptibility formalism, given in

Table 5.1, that are the contact shift ��isoCcon and SA ���Ccon.

For a nuclear spin outside the crystallite, the IBMS and ABMS contributions to the shielding tensor are

terms 3 and 4, both of which depend on the dipolar coupling between the nucleus and the whole crystallite.

Term 3 is purely anisotropic, with anisotropic shielding parameters that depend solely on the dipolar coupling

tensor. The resulting anisotropy ��IBMS,3 and asymmetry ⌘IBMS,3 are

��IBMS,3 = � Vc

2⇡r3 �
iso
V , (10.43)

⌘IBMS,3 =0. (10.44)

The ABMS term 4 is a matrix product between the anisotropic part of the volume susceptibility tensor and the

dipolar coupling tensor, and so contains parts of irreducible spherical tensor ranks 0 (isotropic), 1 (anisotropic

and antisymmetric), and 2 (anisotropic and symmetric). The isotropic part �ABMS,4
iso has the form of a PCS:

�ABMS,4
iso = � Vc

12⇡r3

"

��V,ax
⇣

3 cos2(✓) � 1
⌘

+
3
2
��V,rh sin2(✓) cos(2�)

#

, (10.45)

where ��V,ax and ��V,rh are the axial and rhombic anisotropies of the volume susceptibility tensor, and ✓ and

� are the spherical polar angles which give the orientation of �an
V with respect to the vector r connecting the

nucleus to the centre of the crystallite. In contrast to the situation where the nucleus is inside the crystallite,

the BMS shielding tensor contributions of a nucleus outside the crystallite are proportional to the volume Vc.

This is because the dipolar coupling constant is proportional to the bulk magnetic moment of the crystallite,

which is itself proportional to its volume. Therefore, doubling the volume of the crystallite has the e↵ect

of doubling both the isotropic and anisotropic parts of the BMS shielding tensor. In addition the tensor

parameters all vary with the distance between the nucleus and the centre of the crystallite as 1/r3. Terms 3

and 4 are the “bulk equivalents” of the local terms ��isoCdip and ��� · Cdip in Table 5.1, which are the

spin-dipolar parts of the local paramagnetic shielding tensor.

If the crystallite is non-spherical the expressions in Table 10.1 no longer apply, and we must use Equation
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10.24 in its most general form. In this case terms 1 and 2 both contain mixtures of parts of ranks 0, 1,

and 2 as N has an anisotropic component. Term 3 still has no isotropic part as Tr(N (r)) = 0 outside the

crystallite. Analytical and numerical calculations of the demagnetising fields have been made for a range

of geometries, both in the fields of NMR in chemistry and MRI of living organisms. Notable examples of

geometries that have been considered include cylinders [311, 312], parallelepipeds [313], triangular surfaces

[314], and cones, ellipsoids, paraboloids, and hyperboloids [152].

If the nucleus is outside a non-spherical crystallite, the resulting demagnetising tensor no longer has the

form of a simple dipolar coupling interaction to a point dipole mc. Nevertheless we can still interpret N (r)

as the spatial part of a coupling interaction that approximately resembles a point-dipolar coupling interaction

for approximately spherical crystallites. If the nuclear spin is su�ciently far from the crystallite so that

r � r0, we can approximate the interaction as a point-dipolar coupling. This can be seen by writing the scalar

potential as

�D(r) =
1

4⇡

{

S

n0 ·Mc

|r � r0| da0 (10.46)

=
1

4⇡

y

V

r0 ·
(

Mc

|r � r0|

)

dV 0 (10.47)

=
1

4⇡

y

V

Mc ·
(

r � r0
|r � r0|3

)

dV 0, (10.48)

where to the go the second line we have used the divergence theorem [189]. This result is so far general for a

nuclear spin in any location. However if we now assume that r � r0, we can simplify the expression for the

scalar potential as follows

�D(r) =
Mc · r
4⇡r3

y

V

dV 0 (10.49)

=
Mc · r
4⇡r3 Vc (10.50)

=
mc · r
4⇡r3 , (10.51)

which gives the expression for the scalar potential of a point-dipolar coupling interaction in Equation 10.35

[186]. The demagnetising tensor is therefore the dipolar coupling tensor in Equation 10.37.
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10.2 The BMS shift in a polycrystalline powder

10.2.1 The IBMS and ABMS contributions to the paramagnetic shielding

The treatment of the BMS e↵ects of a single crystallite can now be extended to the case of polycrystalline

solids, which represents a far larger number of studies in solid-state NMR. This case was originally considered

by both VanderHart and Earl [147], and Alla and Lippmaa [148], for both diamagnetic and paramagnetic

samples. The model we use is that of Kubo et al [151], which is itself a modification of the model of Schwerk

et al [150], and is shown in Figure 10.2. As shown in Figure 10.2 (a) we assume that the observed nucleus I is

inside crystallite c0, and possesses a local paramagnetic shielding tensor �S which is a sum of contributions

from the nearby paramagnetic centres S (A). The form of this tensor is the subject of chapters 3–7. The

nuclear spin is at the centre of an Ewald sphere [186], with dimensions that are much smaller than those of

the crystallite, within which the sum of contributions from the paramagnetic centres A converges. It is then

assumed that the remainder of the crystallite is a uniformly-magnetised continuum which contributes a BMS

shielding tensor �BMS
0 to the total shielding of I, which can be calculated using the methods described both

in this section and in section 10.1. The sample itself contains a number of crystallites ck that are assumed

to occupy the sites of a close-packed lattice with occupancy pk, which either takes between 0 or 1 if the site

is unoccupied or occupied respectively. Each crystallite contributes a term �BMS
k to the total BMS shielding

tensor of I. Once again it is assumed that the sum of these contributions converges with an Ewald sphere

with dimensions that are smaller than those of the sample container (Figure 10.2 (b)). The remainder of the

sample is assumed to be uniformly magnetised, as shown in Figure 10.2 (c).

The total paramagnetic shielding tensor � of the nuclear spin I is equal to the sum of the local �S and

BMS �BMS contributions:

� = �S + �BMS, (10.52)
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uniformly-magnetized
continuum

(c)

(b)

Ewald sphere of
crystallites

sample container

(a)

ck

c0

Ewald sphere of
crystallites

c0

S(A) I

uniformly-magnetized
continuum

Ewald sphere

Figure 10.2: Illustration of the model of a polycrystalline sample. In (a) is shown a single crystallite c0 that
contains the nucleus I of interest. The nucleus experiences a local paramagnetic shielding �S that is due
to the nearby paramagnetic metal ions S (A). The Ewald sphere is a sphere centred on the nucleus with a
radius that is much smaller than the dimensions of the crystallite within which the sum of contributions to
�S converges. The remainder of the crystallite is modelled as a uniformly-magnetized continuum (shown
in grey) which contributes to the BMS shielding tensor �BMS

0 of I. In (b) is shown a set of closely-packed
crystallites ck, with k , 0, within a Ewald sphere, each of which contributes a BMS shielding tensor �BMS

k .
We assume that the distribution of the orientations of the bulk magnetic susceptibility tensors is random. This
Ewald sphere is part of the entire sample which is held in a container as shown in (c). The remainder of the
sample is assumed to be uniformly magnetised.
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where �BMS is given by

�BMS =�(0)
V ·

 

N (0)
⇣

r � r(0)
⌘T � 1

3
1

!

+
X

k,0

pk�
(k)
V ·N (k)

⇣

r � r(k)
⌘T

+ �(R)
V ·

 

N (R)
⇣

r � r(R)
⌘T � 1

3
1

!

, (10.53)

where �(k)
V and r(k) are the volume susceptibility and the position of the centre of mass of crystallite k. The

terms in Equation 10.53 can be summarised as follows. The first term is due to the uniformly-magnetized

region of the crystallite c0, and the second is a sum of all the shielding contributions from the other crystallites

ck. The third term is due to the uniformly-magnetized region of the sample container, the centre of mass of

which is located at position r(R), and which has a bulk volume susceptibility �(R)
V , and produces a demagnetis-

ing tensor N (R)
⇣

r � r(R)
⌘

. It is important to note that in calculating both the first and third terms in Equation

10.53 we have subtracted the contributions from the respective Ewald spheres. The two Ewald spheres would

contribute the shielding tensors �2�(0)
V /3 and �2�(R)

V /3 to the first and third terms respectively. Subtracting

these contributions from each respective term prevents the double counting of the parts of the sample included

in the Ewald spheres. In the case of the first term, the contribution from the Ewald sphere in Figure 10.2 (a)

is already included in �S , whereas for the third term the contribution is already included in �S and the first

two terms of the BMS shielding tensor.
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The BMS contribution can be written as the sum of the IBMS and ABMS parts �IBMS and �ABMS:

�BMS =�IBMS + �ABMS, (10.54)

�IBMS =�(0),iso
V

 

N (0)
⇣

r � r(0)
⌘T � 1

3
1

!

+
X

k,0

pk�
(k),iso
V N (k)

⇣

r � r(k)
⌘T

+ �(R),iso
V

 

N (R)
⇣

r � r(R)
⌘T � 1

3
1

!

, (10.55)

�ABMS =�(0),an
V ·

 

N (0)
⇣

r � r(0)
⌘T � 1

3
1

!

+
X

k,0

pk�
(k),an
V ·N (k)

⇣

r � r(k)
⌘T

+ �(R),an
V ·

 

N (R)
⇣

r � r(R)
⌘T � 1

3
1

!

, (10.56)

where �(k),iso
V and �(k),an

V are the isotropic and anisotropic parts of the volume susceptibility tensor of the kth

crystallite, and �(R),iso
V and �(R),an

V are the isotropic and anisotropic parts of the volume susceptibility tensor of

the uniformly-magnetised continuum part of the sample.

If all the crystallites and the sample container are perfectly spherical, the first and third terms drop out of

Equation 10.53, and we are left with the sum over the dipolar coupling tensors of the neighbouring crystallites.

The IBMS and ABMS parts of the BMS shielding tensor are then

�IBMS = �
X

k,0

pkV (k)
c �(k),iso

V Cdip
⇣

r � r(k)
⌘

(10.57)
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, (10.58)

�ABMS = �
X

k,0

pkV (k)
c �(k),an

V ·Cdip
⇣

r � r(k)
⌘

(10.59)

= � 1
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X
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7

7

5

, (10.60)

where V (k)
c is the volume of the kth crystallite. We see that, in this case, the IBMS shielding is purely

anisotropic and symmetric, and has the spatial properties of the total dipolar coupling field experienced by

the nucleus, whereas the ABMS shielding tensor has components of irreducible spherical tensor ranks 0, 1,
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and 2.

10.2.2 BMS inhomogeneous broadening

It was shown in section 2.6 that the chemical shielding tensor depends on the two Euler angles describing

the orientation of the PAF in the laboratory frame, ↵PL and �PL. As we will see in the following section 11,

in a static powder where crystallites of all orientations are present, this leads to a broadening of the NMR

resonance with the width of the line proportional to the SA. Whilst this description is complete as far as

the local shielding tensor �S is concerned, the BMS contribution is more complicated and requires more

careful consideration. It was shown by both VanderHart and Earl [147], and Alla and Lippmaa [148], that the

presence of BMS e↵ects, particularly the ABMS, leads to a broader distribution of shifts, and is therefore an

additional source of inhomogeneous broadening.

In the high-field approximation the chemical shielding � of a nuclear spin in a particular crystallite q can

be written in terms of the irreducible spherical tensor components �00 and �20 as

�(q,↵PL, �PL) = �
r

1
3
�00(q) +

r

2
3
�20(q,↵PL, �PL), (10.61)

where we have explicitly written the dependence of the terms on q and the Euler angles ↵PL and �PL. We

emphasise that q labels all the crystallites with the same orientation, as defined by (↵PL, �PL). In order to

calculate the spectrum of the whole powder, we first average over the crystallites q with the same orientation,

and then perform the average over the Euler angles.

For the local shielding this first averaging step is easy as �S depends only on the Euler angles (↵PS,L, �PS,L):

�S (↵PS,L, �PS,L) = �
r

1
3
�S

00 +

r

2
3
�S

20(↵PS,L, �PS,L), (10.62)

where (↵PS,L, �PS,L) are the Euler angles giving the orientation of the PAF ‘PS’ of �S
20 in the laboratory frame

‘L’. We therefore see that the subset of crystallites q with the same orientation have exactly the same shielding

tensor, and so an average over this subset will result in a sharp resonance in the NMR spectrum.

The IBMS and ABMS contributions both depend on q and the Euler angles giving the orientations of their
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respective PAFs:

�IBMS(q,↵PI,L, �PI,L) =

r

2
3
�IBMS

20 (q,↵PI,L, �PI,L), (10.63)

�ABMS(q,↵PA,L, �PA,L) = �
r

1
3
�ABMS

00 (q) +

r

2
3
�ABMS

20 (q,↵PA,L, �PA,L), (10.64)

where ‘PI’ and ‘PA’ refer to the PAFs of the anisotropic parts of the IBMS and ABMS shielding tensors

respectively and we have used the fact that, from Equation 10.58, the isotropic part of the IBMS shielding

tensor is zero. If we average over the crystallites q with the same orientation q we obtain a very di↵erent

result than for the local shielding tensor. This is because, from Equations 10.58 and 10.60, both the IBMS and

ABMS shielding tensors of a particular crystallite depend on the configurations of the surrounding crystallites

k, via pk, their sizes, via V (k)
c , and the orientations of their volume susceptibility tensors. As each crystallite is

orientated independently of the others, this means that averaging over q results in a distribution of anisotropic

shifts from the IBMS of the surrounding crystallites, and a distribution of both isotropic and anisotropic shifts

from their ABMSes. Both e↵ects are a source of inhomogeneous broadening in the NMR spectrum, and are

often collectively referred to as BMS broadening.

10.3 Key concepts

• A sample (solution or single crystal) containing an ensemble of paramagnetic ions generates a de-

magnetising field that adds to the local paramagnetic magnetic fields. The demagnetising field can be

described in terms of a bulk magnetic volume susceptibility tensor.

• The bulk magnetic susceptibility tensor leads to a BMS contribution to the shielding tensor (Equation

10.24).

• In a spherical crystal the bulk isotropic susceptibility changes the isotropic shift, and the bulk suscep-

tibility anisotropy changes the shift anisotropy (Table 10.1).

• In a non-spherical crystal the bulk susceptibility anisotropy also a↵ects the isotropic shift.

• In a powder sample the demagnetising fields of the surrounding crystallites result in bulk isotropic and

anisotropic contributions to the paramagnetic shielding (Equations 10.58 and 10.60).
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• The bulk susceptibility anisotropies of the surrounding crystallites result in inhomogeneous broadening

of the resonance (the anisotropic bulk magnetic susceptibility broadening).
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Chapter 11

The NMR spectrum for non-interacting

spins

Up until now we have examined in some detail the theoretical aspects of the paramagnetic shielding interac-

tions, the PRE, and bulk susceptibility e↵ects. Now we focus on the impact these e↵ects have on the NMR

spectrum. We begin by summarising the quantum mechanical description of the nuclear-spin interactions,

with a focus on the chemical shielding and quadrupolar interactions up to second order, and how we can

use this description to calculate the resulting NMR spectrum for systems in solution, and static and spinning

powders. Then we examine the specific forms of the conventional one-dimensional NMR spectra for spin

I = 1/2 nuclei subject to a paramagnetic shielding interaction, and quadrupolar nuclei subject to both

paramagnetic shielding and first- and second-order quadrupolar interactions.

11.1 The quantum mechanics of NMR

11.1.1 The Hamiltonian, propagator, and density operator

In NMR a sequence of pulses and delays is referred to as a pulse sequence. The e↵ects of the sequence on

the spin system are described by a Hamiltonian Ĥ(t) that is in general time-dependent, and comprises all the

relevant interactions of the spin system and the e↵ects of the radiofrequency (RF) pulses. This Hamiltonian
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is written as the sum of a term Ĥ0(t) that describes the spin interactions, and a term Ĥ1(t) that describes the

RF pulses:

Ĥ(t) = Ĥ0(t) + Ĥ1(t). (11.1)

The former term is time-dependent when the sample is rotated, for example under magic-angle spinning

(MAS), and is time-independent otherwise. The latter term is time-dependent because the RF field amplitudes

and phases vary throughout the sequence. This time dependence can either be piecewise, where the sequence

can be broken down into sections within each of which the pulse amplitudes and phases are constant, or

continuous, where the amplitudes and phases vary throughout the sequence.

The response of the nuclear spin system to the pulse sequence is described by the time evolution of the

density operator ⇢̂(t) during the sequence. The coherent time evolution of ⇢̂(t) is governed by the Liouville–

von Neumann equation:
d⇢̂(t)

dt
= � i
~

h

Ĥ(t), ⇢̂(t)
i

. (11.2)

Note that here we neglect the e↵ects of incoherent processes such as relaxation. To include them in Equation

11.2 we need to add an additional term, which for relaxation process is described in chapters 8 and 9. The

solution to the Liouville–von Neumann equation in Equation 11.2 has the general form

⇢̂(t) = Û(t, 0)⇢̂(0)Û(t, 0)�1, (11.3)

where Û(t, 0) is the propagator corresponding to Ĥ(t). In general the expression for the Hamiltonian at an

arbitrary time point t1, Ĥ(t1), does not commute with the Hamiltonian evaluated at a second arbitrary time

point t2, Ĥ(t2). In this case the propagator describing the evolution between t1 and t2 has the general form

Û(t2, t1) = T̂ exp
 

� i
~

Z t2

t1
dt Ĥ(t)

!

, (11.4)

where T̂ is the Dyson time-ordering operator, which ensures that the events described by the Hamiltonian

occur in the proper order. Whilst this form of the propagator is general it is not analytically useful, and

further analysis of the sequence generally requires other methods such as average Hamiltonian theory [192]

or Floquet theory [315–318]. However in certain special cases the propagator does reduce to a simpler and

more useful form.
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In the first case, if the Hamiltonian evaluated at an arbitrary time always commutes with the Hamiltonian

at a second arbitrary time, the propagator is:

Û(t2, t1) = exp
 

� i
~

Z t2

t1
dt Ĥ(t)

!

. (11.5)

This situation is encountered in solid-state MAS NMR when the spin interactions contain only single-spin

operators of rank � and order zero Î�0, such as the nuclear interactions discussed in chapter 2, during a period

of free precession where there are no pulses, so that Ĥ1(t) is zero.

In the second case the Hamiltonian Ĥ is time-independent, and the propagator reduces to the simple form

Û(t2, t1) = exp
 

� i
~

Ĥ(t2 � t1)
!

. (11.6)

For example this situation is encountered in solution NMR, and the solid-state NMR of static systems, during

periods of free precession. In NMR sequences where the time dependence due to the pulses is piecewise, the

propagator describing the evolution during the whole sequence can be written as the product of propagators

of the form of Equation 11.7. For instance consider a sequence comprising two consecutive sections, which

are labelled S12 and S23 respectively. Section S12 starts at time t = t1 and ends at t2 and is described by the

Hamiltonian Ĥ12, and the second section S23 described by Ĥ23 commences at t2 and continues until time t3.

The overall propagator describing the evolution of the spin system between times t1 and t3 is given by

Û(t3, t1) = Û(t3, t2)Û(t2, t1) = exp
 

� i
~

Ĥ23(t3 � t2)
!

exp
 

� i
~

Ĥ12(t2 � t1)
!

. (11.7)

The equilibrium density operator ⇢̂0 represents the state of the system in the absence of RF irradiation,

and where there is no dynamic change due to the interactions of the spins with either the external magnetic

field or each other. We therefore see that, from Equation 11.2, ⇢̂0 must commute with the system Hamiltonian

Ĥ0(t). We have seen that the nuclear-spin interactions are dominated by the Zeeman interaction, and so the
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general expression for ⇢̂0 is

⇢̂0 =
exp(��ĤZ)

TrI
h

exp(��ĤZ)
i (11.8)

=
exp(�~�I B0 Îz)

TrI
h

exp(�~�I B0 Îz)
i . (11.9)

In the high-temperature limit we expand the exponentials to first-order in a Taylor series, and obtain the

following expression for ⇢̂0:

⇢̂0 ⇡
1̂ � �~�I B0 Îz

2I + 1
. (11.10)

The first term in 1̂ commutes with all Hamiltonians, does not produce any observable signal, and so we can

ignore it. The second is proportional to Îz and has a magnitude ~�I B0/((2I + 1)kT ). The maximum amplitude

of the observable signal following excitation is equal to this factor, and so we see that we obtain higher

sensitivity for nuclei with larger gyromagnetic ratios, and under conditions of larger applied magnetic fields

and lower temperatures. In practice, when analysing pulse sequences, we usually ignore this factor and write

⇢̂0 = Îz.

11.1.2 Radiofrequency pulses and sequences

A general RF pulse of duration ⌧p with a time-dependent RF field amplitude !1(t) and phase �1(t) applied to

a nuclear spin I has the following Hamiltonian:

Ĥ1(t) = !1(t)R̂z (�1(t)) ÎxR̂z (�1(t))�1 (11.11)

= !1(t)
h

cos (�1(t)) Îx + sin (�1(t)) Îy
i

, (11.12)

where R̂a(�) = exp
⇣

�i�Îa
⌘

is the unitary operator that represents a rotation of the spin operator in spin space

through an angle � about an axis a. The propagator representing the Hamiltonian Ĥ1(t) at arbitrary time takes

the general form in Equation 11.4. Neglecting the spin interactions in Ĥ0(t) and considering only the e↵ect

of Ĥ1(t) during the pulse, the net evolution can be represented as an overall rotation through a net angle ⇠

about a net axis with orientation relative to z specified by the spherical polar angles (✓, �). The propagator
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that describes this net transformation due to the sequence Ûseq then has the form

Ûseq = R̂z(�)R̂y(✓)R̂z(⇠)R̂y(✓)�1R̂z(�)�1. (11.13)

In the case where both the amplitude !1 and phase �1 are constant during the pulse, the net pulse propagator

is

Ûseq = R̂z(�1)R̂z(⇠1)R̂z(�1)�1, (11.14)

where ⇠1 = !1⌧p is the flip angle of the pulse.

11.1.3 The spin interactions

We recall that the internal spin interactions are treated as perturbations to the nuclear Zeeman interaction, that

the Zeeman Hamiltonian is removed from Ĥ0(t), and that the remaining system Hamiltonians are calculated

using the secular approximation [183]. The particular spin interactions with which we concern ourselves in

this chapter are the secular chemical shift and quadrupolar interactions to second order. Hence all the terms

in Ĥ0(t) commute with each other at all times t1 and t2, i.e.
h

Ĥ0(t2), Ĥ0(t1)
i

= 0. The total Hamiltonian is

written as a sum of terms each of which is the product of a spatial tensor K(⇤)
�,l0(t) of space rank l, and a spin

tensor operator Î(⇤)
�0 of spin rank �:

Ĥ0(t) =
X

⇤,l,�

K(⇤)
�,l0(t)Î(⇤)

�0 , (11.15)

where ⇤ labels the distinct interactions. We note that the space tensor components K(⇤)
�,l0(t) are generally

time-dependent if sample rotation is employed, and are time-independent otherwise. We also point out that

for some interactions di↵erent spatial tensors of the same space rank may couple to spin tensors of di↵erent

spin ranks. For example in the case of the second-order quadrupolar interaction there are two spatial tensors

of space rank zero, one of which couples to the rank-one spin tensor and the other of which couples to the

rank-three spin tensor. These two spatial tensors are di↵erent, and so we also indicate a dependence of K(⇤)
�,l0(t)

on � via the subscript. Likewise there are two spatial tensors of ranks two that couple the spin tensors of

ranks one and three, and also two rank-four spatial tensors. To facilitate the calculation of the frequencies of

evolution under Ĥ0(t) we rewrite the Hamiltonian in terms of the frequency components ⌦(⇤)
�,l0(t) and reduced
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spin tensor operators t̂(⇤)
�0 as follows:

Ĥ0(t) = ~
X

⇤,l,�

⌦(⇤)
�,l0(t)t̂(⇤)

�0 . (11.16)

The reduced tensor operators are given in terms of the Î(⇤)
�0 by

t̂(⇤)
�0 = N(⇤)

�0 Î(⇤)
�0 , (11.17)

where N(⇤)
�0 are normalizing factors that are equal to

N(⇤)
00 = 1, N(⇤)

10 = 1, N(⇤)
20 =

r

2
3
, N(⇤)

00 =

p
10
3
. (11.18)

The operators therefore have the expressions

t00 = 1̂, (11.19)

t10 = Îz, (11.20)

t20 = Î2
z �

1
3

I(I + 1)1̂, (11.21)

t30 =
1
3

h

5Î3
z � (3I(I + 1) � 1) Îz

i

. (11.22)

The frequency components are related to the spatial tensor components via

K(⇤)
�,l0(t) = ~N(⇤)

�0 ⌦
(⇤)
�,l0(t). (11.23)

For the one-spin interactions that we have so far considered the frequencies of the components with di↵erent

spatial and spin ranks are given in Table 11.1.

The overall propagator Û0(t2, t1) that describes the time evolution of the density operator under these

interactions, in the absence of RF irradiation, is

Û0(t2, t1) = exp
 

� i
~

Z t2

t1
dt Ĥ0(t)

!

. (11.24)
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Remembering the commutation properties of all the terms of Ĥ0(t), we can write Û0(t2, t1) as

Û0(t2, t1) =
Y

⇤,l,�

exp
⇣

�i�(⇤)
�,l0(t2, t1)t̂(⇤)

�0

⌘

, (11.25)

where the phase factor �(⇤)
�,l0(t2, t1) is the integral of the frequency ⌦(⇤)

�,l0(t) between times t1 and t2:

�(⇤)
�,l0(t2, t1) =

Z t2

t1
dt⌦(⇤)

�,l0(t). (11.26)

We note that in this case the order of multiplication of the terms in Equation 11.25 does not matter as all the

Hamiltonian terms commute with each other.

11.1.4 Basis operators

The nuclear spin wavefunction of a single nuclear spin I is conveniently written as a linear combination

of 2I + 1 basis operators. These basis operators are usually taken to be the eigenfunctions of the Zeeman

Hamiltonian |IMi, which are orthonormal:

hIM1|IM2i = �M1,M2. (11.27)

In addition the description of the nuclear spin dynamics is facilitated by writing the density operator as a

superposition of basis operators
n

B̂i
o

, of which there are (2I + 1)2 and which are chosen to be orthogonal

according to

⇣

B̂i|B̂ j
⌘

= TrI
⇣

B̂†i B̂ j
⌘

(11.28)

= N�i j, (11.29)

where N is a normalization factor.

Of course there is a choice of several bases. One common basis is the set of irreducible spherical tensor

operators
n

Î�µ
o

of ranks � from 0 to 2I, and orders µ from �� to +�, in integer steps [190]. These operators

have been used extensively in this review for both nuclear and electronic spins. However for the subsequent

discussion we adopt the single-element basis operators, which are denoted {|IM1i hIM2|}. These operators
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are so-called because in the Zeeman function basis each operator represents a single element of the density

matrix. The single-element basis operators can be grouped as follows. There are 2I + 1 operators for which

M1 = M2, and which represent the populations of the corresponding states. We refer to these as population

operators and denote them Î(M)
p :

Î(M)
p = |IMi hIM| . (11.30)

The remaining 2I(2I + 1) operators each represent a coherence between two di↵erent states. Half of these

have M1 < M2, and are referred to as lowering operators Î(M2,M1)
� . They are given by

Î(M2,M1)
� = |IM1i hIM2| . (11.31)

The remaining coherence operators have M1 > M2 and are referred to as raising operators Î(M1,M2)
+ :

Î(M1,M2)
+ = |IM1i hIM2| . (11.32)

These basis operators can be used to write down expressions for other operators. For example the Cartesian

operators
n

1̂, Îz, Î�, Î+
o

are given by:

1̂ =
+I
X

M=�I

Î(M)
p , (11.33)

Îz =

+I
X

M=�I

M Î(M)
p , (11.34)

Î� =
+I
X

M=�I+1

p

I(I + 1) � M(M � 1) Î(M,M�1)
� , (11.35)

Î+ =
+I�1
X

M=�I

p

I(I + 1) � M(M + 1) Î(M+1,M)
+ . (11.36)

We see that both 1̂ and Îz are written in terms of the 2I + 1 population operators. The identity operator

represents the total population of all the spin states, and remains invariant as required. The operator Îz

represents the di↵erences in populations of the spin states. The operator Î� is written in terms of the 2I

coherence operators Î(M,M�1)
� with M1 � M2 = �1, and so represents nuclear spin magnetization in the

transverse plane. Likewise Î+ is written in terms of the 2I coherence operators Î(M+1,M)
+ with M1 � M2 = +1.
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11.1.5 NMR frequencies and spin order

In order to make use of the advantages a↵orded by decomposing the density operator into a sum of basis

operators, we need to determine how each basis operator evolves under the Hamiltonian Ĥ0(t) that describes

the internal spin interactions. We do this by calculating the evolution over time of a single basis operator

⇢̂(0) = |IMii hIMj| subject to a single term in the Hamiltonian with a particular space-rank and spin-rank.

The propagator is given by a single factor from Equation 11.25. Applying this to ⇢̂(0) and allowing the

system to evolve we obtain the density operator ⇢̂(t) at time t:

⇢̂(t) = exp
⇣

�i�(⇤)
�,l0(t, 0)t̂�0

⌘

⇢̂(0) exp
⇣

+i�(⇤)
�,l0(t, 0)t̂�0

⌘

, (11.37)

where we have dropped the superscript (⇤) from the reduced spherical tensor spin operator t̂�0 as these

operators are the same for all one-spin interactions. The spin states |IMii are also eigenstates of the operators

t̂�0, and so we can determine ⇢̂(t) in a straightforward manner:

⇢̂(t) = exp
⇣

�i�(⇤)
�,l0(t, 0)t̂�0

⌘

|IMii hIMj| exp
⇣

+i�(⇤)
�,l0(t, 0)t̂�0

⌘

(11.38)

= exp
⇣

�i⌅�,Mi Mj�
(⇤)
�,l0(t, 0)

⌘

|IMii hIMj|. (11.39)

We see that the basis operator simply acquires a phase �⌅�,Mi Mj�
(⇤)
�,l0(t, 0) that is proportional to the intrinsic

phase �(⇤)
�,l0(t, 0) of the interaction, multiplied by a factor ⌅�,Mi M j that is given by

⌅�,Mi Mj =
D

IMi
�

�

�t̂�0
�

�

� IMi
E

�
D

IMj
�

�

�t̂�0
�

�

� IMj
E

. (11.40)

The factor ⌅�,Mi Mj is the spin-order of rank � that defines the single-element basis operator |IMii hIMj| [319].

The spin orders of ranks 0, 1, 2, and 3 are given the symbols sMi Mj , pMi Mj , dMi Mj , and fMi Mj in analogy with
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the hydrogen-like atomic orbitals in electronic structure theory [319]. They take the forms:

sMi M j = ⌅0,Mi Mj (11.41)

= 0, (11.42)

pMi M j = ⌅1,Mi Mj (11.43)

= Mi � Mj, (11.44)

dMi Mj = ⌅2,Mi Mj (11.45)

= M2
i � M2

j , (11.46)

fMi Mj = ⌅3,Mi Mj (11.47)

=
1
3

h

5
⇣

M3
i � M3

j

⌘

� (3I(I + 1) � 1) (Mi � Mj)
i

. (11.48)

The s-order sMi Mj is associated with the identity operator and does not a↵ect the evolution of the density

operator, so we do not consider it further. The p-order pMi Mj is also known as coherence order, which is an

important concept in signal selection in multiple-pulse NMR experiments [320]. The rank-two spin order

dMi M j is known as either d-order or satellite order [321]. Finally the rank-three order fMi Mj is referred to as

f -order. If for a particular interaction the Hamiltonian term of a particular space rank l is associated with

more than one spin rank �, we can use the spin-order defined in Equation 11.40 to define a total frequency

⌦(⇤)
l0,Mi Mj

(t) that depends only on l:

⌦(⇤)
l0,Mi M j

(t) = �
X

�

⌅�,Mi M j⌦
(⇤)
�,l0(t). (11.49)

For the interactions considered here this only applies to the second-order quadrupolar interaction, where the

terms of spatial ranks 0, 2, and 4 are each associated with two spin ranks 1 and 3. For this interaction we

can write the frequencies in Equation 11.49 for the three space ranks l = 0, 2, and 4 in terms of the c-order
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parameters cl,Mi M j , which are given by:

c0,Mi M j =
9
5

fMi M j +
4I(I + 1) � 3

5
pMi M j , (11.50)

c2,Mi M j = �
18
5

fMi Mj +
4I(I + 1) � 3

10
pMi Mj , (11.51)

c4,Mi M j = �
51
5

fMi Mj �
3 [4I(I + 1) � 3]

10
pMi Mj . (11.52)

For all the one-spin interactions in Table 11.1, the frequencies defined in Equation 11.49 are given in Table

11.2. Using these definitions we can write down the evolution of the density operator term |IMii hIMj| under

the action of a Hamiltonian term corresponding to a particular interaction ⇤ and space rank l summed over

the relevant spin ranks �. The result is:

⇢̂(t) = exp
✓

i�(⇤)
l0,Mi Mj

(t, 0)
◆

|IMii hIMj|, (11.53)

�(⇤)
l0,Mi Mj

(t2, t1) =
Z t2

t1
dt⌦(⇤)

l0,Mi M j
(t). (11.54)

The accrued phase factor �(⇤)
l0,Mi M j

(t, 0) is simply the time integral of the frequency component.

During signal detection in the NMR experiment we acquire the two transverse components of the bulk

nuclear magnetization, Mx and My, simultaneously using quadrature detection, and combine them into a

single quadrature quantity M+ = Mx + iMy. The magnetization components Mx and My are proportional to

the expectation values of Îx and Îy. Hence the quantity M+ is proportional to the expectation value of Î+, and

so the signal s(t) is given by

s(t) =
TrI

⇣

Î+⇢̂(t)
⌘

TrI
⇣

Î+ Î�
⌘ . (11.55)

The only term of the density operator that contributes to the trace in the numerator is Î�, which we see from

Equation 11.35 represents the sum of the basis operators of coherence (p-) order �1. Each operator Î(M,M�1)
�

contributing to Î� evolves under a characteristic frequency to accrue a phase �(⇤)
l0,M�1,M(t, 0), which gives the

following expression for ⇢̂(t):

+I
X

M=�I+1

Î(M,M�1)
�

p

I(I + 1) � M(M � 1) exp
⇣

i�(⇤)
l0,M�1,M(t, 0)

⌘

. (11.56)
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Following summation over all relevant interactions ⇤, we obtain the following signal in the time domain,:

s(t) =
3

2I(I + 1)(2I + 1)

+I
X

M=�I+1

[I(I + 1) � M(M � 1)]
Y

⇤

exp
⇣

i�(⇤)
l0,M�1,M(t, 0)

⌘

. (11.57)

We see that a nuclear spin I has 2I observable signal components, which in general evolve with di↵erent

frequencies to give 2I distinct peaks in the NMR spectrum.

11.1.6 Solution NMR

In the absence of sample rotation the frequency components ⌦(⇤)
l0,Mi Mj

are time-independent, and are related to

the PAF components of the irreducible spherical spatial tensor in its PAF K̃(⇤)
�,lm0 by the expression

⌦(⇤)
l0,Mi M j

= �
X

�

⌅�,Mi Mj

~N(⇤)
�0

X

mm0
K̃(⇤)
�,lm0D

(l)
m0m(⌦⇤C)D(l)

m0(⌦CL). (11.58)

The Euler angles ⌦⇤C describe the orientation of the PAF ⇤ in a frame of reference that is fixed relative to the

molecular geometry in molecular systems, or the crystal geometry for solid crystals C. The ⌦⇤C are a fixed

property of the system under study. The Euler angles ⌦CL give the orientation of the crystal/molecular-fixed

reference frame relative to the laboratory reference frame L, and so depend on the orientation of that particular

crystal or molecule in the sample container. We see that for static systems at high field the frequency depends

only on two of the Euler angles, ↵CL and �CL, of the latter set.

In an isotropic solution of molecules, there are no restrictions on the orientations that the molecules,

and therefore the PAFs of the interaction tensors, are able to take. Furthermore the molecules are tumbling

rapidly in comparison to the Larmor frequency, so that each molecule samples all possible orientations,

resulting in the overall frequency component being given simply by the orientational average over the Euler

angles (↵CL, �CL, �CL). The orientational dependence is contained wholly within the Wigner rotation matrix

elements D(l)
m0(↵CL, �CL, �CL), and so the relevant integral is

1
8⇡2

Z 2⇡

0
d↵PL

Z ⇡

0
d�CL sin (�CL)

Z 2⇡

0
d�CLD(l)

m0(↵CL, �CL, �CL) = �l0�m0, (11.59)

which we have simplified using the orthogonality relations of D(l)
mm0 (↵CL, �CL, �CL). We see that the only

terms that survive the orientational averaging are those of rank l = 0, which are, by definition, the isotropic
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terms. Each term in the density operator therefore evolves under a total isotropic frequency ⌦iso,Mi Mj , which

is given by sum of the isotropic first-order shift frequency ⌦(C)
00,Mi Mj

, the second-order isotropic quadrupolar

frequency ⌦(Q,Q)
00,Mi Mj

, the second-order isotropic frequency due to the cross-term between the quadrupolar and

shift interactions ⌦(Q,C)
00,Mi Mj

, and the second-order isotropic shift frequency ⌦(C,C)
00,Mi Mj

:

⌦iso,Mi M j = ⌦
(C)
00,Mi Mj

+⌦(Q,Q)
00,Mi M j

+⌦(Q,C)
00,Mi Mj

+⌦(C,C)
00,Mi M j

. (11.60)

Therefore the total phase acquired during signal acquisition is simply ⌦iso,Mi Mj t:

⌦iso,Mi Mj t =
h

⌦(C)
00,Mi M j

+⌦(Q,Q)
00,Mi Mj

+⌦(Q,C)
00,Mi M j

+⌦(C,C)
00,Mi Mj

i

t. (11.61)

11.1.7 Solid-state NMR of static powders

In a solid sample with no tumbling the frequency components ⌦(⇤)
l0,Mi Mj

are given by Equation 11.58, with

all spatial ranks contributing. In a single crystal the evolution frequency depends on the crystal orientation

through the pair of Euler angles (↵CL, �CL). The corresponding time-domain signal is s(↵CL, �CL; t) given by

s(↵CL, �CL; t) =
3

2I(I + 1)(2I + 1)

+I
X

M=�I+1

[I(I + 1) � M(M � 1)]
Y

⇤

exp
⇣

i⌦(⇤)
l0,M�1,M(↵CL, �CL)t

⌘

, (11.62)

which gives a spectrum containing 2I distinct lines. The spectral positions of all these lines are, in general,

orientation-dependent, varying with the crystal orientation.

If we have an ensemble of such crystallites with random orientations, such as in a solid powder, the total

signal s(t) is the average over all orientations (↵CL, �CL) of the individual signals s(↵CL, �CL; t). For a large

ensemble of crystallites this average is given by the double integral

s(t) =
1

4⇡

Z 2⇡

0
d↵CL

Z ⇡

0
d�CL sin (�CL) s(↵CL, �CL; t). (11.63)

The resulting NMR spectrum therefore contains a continuum of spectral intensity the width and shape of

which is defined by the anisotropies �K and asymmetry parameters ⌘K of the interactions. Hence the

anisotropic interactions result in resonance broadening, with the centre of mass of the resonance located

at the isotropic frequency.
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11.1.8 Solid-state NMR of spinning powders

In a spinning solid sample the Euler angles that specify the orientation of the crystal in the laboratory frame

are time-dependent [322]. To recognise this we define the orientation of the PAF in the laboratory frame

via three frame transformations, each of which is associated with its own set of Euler angles. As for static

samples we first specify the orientation of the PAF ⇤ in the crystal-fixed frame C with the Euler angles ⌦⇤C,

which are fixed according to the geometry of the system. Secondly we specify the orientation of the crystal

frame in a rotor-fixed frame R with Euler angles ⌦CR. This second set of angles changes as we change the

orientation of the crystal in the sample container, and so are the angles we average over in a powder. Finally

the orientation of the rotor frame relative to the laboratory frame L is defined by a set of time-dependent Euler

angles⌦RL(t). If the spinning axis of the rotor is inclined at a fixed angle �RL relative to the external magnetic

field, and the rotor spins at frequency !r from an initial angular position ↵RL(0), this set of Euler angles is

⌦RL(t) = (↵RL(0) + !rt, �RL, 0). We can now rewrite the frequencies ⌦(⇤)
c,l0,Mi Mj

(�CR; t) as Fourier series [323]

⌦(⇤)
c,l0,Mi Mj

(�CR; t) =
+l

X

m=�l

!(⇤)
c,lm,Mi Mj

(�CR) exp (�im!rt) , (11.64)

where the coe�cients !(⇤)
c,lm,Mi M j

(�CR) are frequencies that are given by the following expression:

!(⇤)
c,lm,Mi Mj

(�CR) = � exp(�im↵RL(0)) d(l)
m0(�RL)

X

�

⌅�,Mi M j

~N(⇤)
�0

X

m00m0
K̃(⇤)

lm00D
(l)
m00m0 (⌦⇤C)D(l)

m0m(⌦CR). (11.65)

The frequency is periodic over the rotor period ⌧r = 2⇡/!r. Note that, although the expression in Equation

11.64 is a sum of complex plane waves, the frequencies are in fact real. This is because the coe�cients in

Equation 11.65 satisfy !(⇤)
c,l�m,Mi Mj

(�CR) = !(⇤)
c,lm,Mi M j

(�CR)⇤, and so the terms in the sum with m , 0 form

conjugate pairs, and the remaining term with m = 0 is real. At this point it is useful to introduce the concept

of a carousel c, which is a subset of crystallites that during the sample rotation occupy the same orientations

but at di↵erent times. As shown by Levitt a single carousel contains crystallites with the same Euler angles

↵CR and �CR, but di↵erent �CR [324]. Therefore the dependence of the frequencies and phases on ↵CR and

�CR is indicated with a subscript c, while the dependence on �CR is given explicitly. From Equation 11.65 the
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�CR-dependence has the simple form:

!(⇤)
c,lm,Mi Mj

(�CR) = !(⇤)
c,lm,Mi Mj

(0) exp(�im�CR). (11.66)

In Equation 11.64 we see that a frequency component of spatial rank l comprises 2l + 1 components m

that oscillate at frequencies �m!r. This proves to be important when calculating the signal from a powder

sample. We see that the component with m = 0 is time-independent, and corresponds to a constant frequency.

In particular we note that the time-independent coe�cient with m = 0 is also independent of �CR.

The phase �(⇤)
c,l0,Mi Mj

(�CR; t2, t1) accrued during evolution under the Hamiltonian is calculated from the

time integral of the frequency in Equation 11.64:

�(⇤)
c,l0,Mi M j

(�CR; t2, t1) = !(⇤)
c,l0,Mi Mj

(t2 � t1) +
X

m,0

!(⇤)
c,lm,Mi Mj

(�CR)

�im!r

⇥

exp (�im!rt2) � exp (�im!rt1)
⇤

. (11.67)

The phase is the sum of a part due to the time-independent frequency, and another part due to the time-

dependent and periodic frequency. The complex exponential phase factor due to the latter is both peri-

odic and cyclic, and so can be written as a complex Fourier series. The combined phase factor is then

exp
✓

i�(⇤)
c,l0,Mi M j

(�CR; t, 0)
◆

:

exp
✓

i�(⇤)
c,l0,Mi Mj

(�CR; t, 0)
◆

= exp
✓

i!(⇤)
c,�,l0,Mi Mj

t
◆

+1
X

µ=�1
A(⇤),(µ)

c,l0,Mi M j
(�CR) exp



i�(⇤),(µ)
c,l0,Mi M j

(�CR)
�

exp
⇥

iµ!rt
⇤

.

(11.68)

The complex coe�cients of the Fourier series have magnitudes A(⇤),(µ)
c,l0,Mi Mj

(�CR) and phases �(⇤),(µ)
c,l0,Mi Mj

. The

evolution under the periodic part of the Hamiltonian therefore results in a spectral resonance that is split into

a manifold of spinning sidebands. The µth-order sideband appears at frequency !(⇤)
c,�,l0+µ!r, with an intensity

A(⇤),(µ)
c,l0,Mi Mj

(�CR) and a phase �(⇤),(µ)
c,l0,Mi M j

(�CR) that are given by

A(⇤),(µ)
c,l0,Mi M j

(�CR) exp


i�(⇤),(µ)
c,l0,Mi Mj

(�CR)
�

=
1
⌧r

Z ⌧r

0
exp

2

6

6

6

6

6

6

6

4

i
X

m,0

!(⇤)
c,lm,Mi M j

(�CR)

�im!r

⇥

exp (�im!rt) � 1
⇤

3

7

7

7

7

7

7

7

5

exp
⇥�iµ!rt

⇤

dt.

(11.69)

We can elucidate an important symmetry property relating to the dependence on �CR of the sideband in-

tensities and phases, which was first described by Levitt [324]. Due to the �CR-dependence of the coe�cients
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given in Equation 11.66 we deduce that the frequency component at time t of a crystallite with angle �CR is

equal to the frequency of a di↵erent crystallite with �CR = 0 evaluated at time t + �CR/!r:

⌦(⇤)
c,l0,Mi M j

(�CR; t) = ⌦(⇤)
c,l0,Mi M j

(0; t + �CR/!r). (11.70)

From this we can derive the following symmetry relation pertaining to the accrued phase:

�(⇤)
c,l0,Mi Mj

(�CR; t, 0) = �(⇤)
c,l0,Mi Mj

(0; t + �CR/!r, 0) � �(⇤)
c,l0,Mi Mj

(0; �CR/!r, 0). (11.71)

Substituting this into Equation 11.68 we obtain

exp
✓

i!(⇤)
c,�,l0,Mi Mj

t
◆

+1
X

µ=�1
A(⇤),(µ)

c,l0,Mi M j
(�CR) exp



i�(⇤),(µ)
c,l0,Mi M j

(�CR)
�

exp
⇥

iµ!rt
⇤

= exp
✓

i!(⇤)
c,�,l0,Mi Mj

t
◆

+1
X

µ=�1
A(⇤),(µ)

c,l0,Mi M j
(0) exp



i�(⇤),(µ)
c,l0,Mi Mj

(0)
�

exp
⇥

iµ(!rt + �CR)
⇤

exp

2

6

6

6

6

6

6

6

4

�i
X

m,0

!(⇤)
c,lm,Mi Mj

(0)

�im!r

⇥

exp (�im�CR) � 1
⇤

3

7

7

7

7

7

7

7

5

,

(11.72)

from which we see that the sideband intensities are independent of �CR, and the sideband phases have the

following well-defined �CR dependence:

A(⇤),(µ)
c,l0,Mi Mj

(�CR) = A(⇤),(µ)
c,l0,Mi Mj

(0) ⌘ A(⇤),(µ)
c,l0,Mi M j

, (11.73)

�(⇤),(µ)
c,l0,Mi Mj

(�CR) = �(⇤),(µ)
c,l0,Mi Mj

(0) + µ�CR �
X

m,0

!(⇤)
c,lm,Mi Mj

(0)

�im!r

⇥

exp (�im�CR) � 1
⇤

. (11.74)

Henceforth we denote the sideband intensity as A(⇤),(µ)
c,l0,Mi M j

.

The signal component due to evolution under the Hamiltonian of a particular interaction for a single

crystal is

s(⇤)
c (�CR; t) =

3
2I(I + 1)(2I + 1)

+I
X

M=�I+1

[I(I + 1) � M(M � 1)] exp
⇣

i�(⇤)
c,l0,M�1,M(�CR; t, 0)

⌘

. (11.75)

The signal due to the whole powder is conveniently calculated in two steps. Firstly we average the signal
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s(⇤)
c (�CR; t) over all the �CR angles to obtain the signal s(⇤)

c (t) from carousel c:

s(⇤)
c (t) =

1
2⇡

Z 2⇡

0
d�CR s(⇤)

c (�CR; t), (11.76)

and secondly we average s(⇤)
c over the remaining Euler angles ↵CR and �CR to obtain the signal from the

whole powder s(⇤)(t):

s(⇤)(t) =
1

4⇡

Z 2⇡

0
d↵CR

Z ⇡

0
d�CR sin (�CR) s(⇤)

c (t). (11.77)

For the first step we start from Equation 11.72 and expand the final phase factor as a Fourier series:

s(⇤)
c (�CR; t) =

3
2I(I + 1)(2I + 1)

+I
X

M=�I+1

[I(I + 1) � M(M � 1)]

⇥ exp
⇣

i!(⇤)
c,�,l0,M�1,Mt

⌘

+1
X

µ,µ0=�1
A(⇤),(µ)

c,l0,M�1,MA(⇤),(µ0)
c,l0,M�1,M exp

h

i
⇣

�(⇤),(µ)
c,l0,M�1,M(0) � �(⇤),(µ0)

c,l0,M�1,M(0)
⌘i

exp
⇥

i�CR(µ � µ0)⇤ exp
⇥

iµ!rt
⇤

.

(11.78)

Following integration over the angle �CR the only terms that remain are those with µ = µ0, which gives the

following time-domain signal for the carousel:

s(⇤)
c (t) =

3
2I(I + 1)(2I + 1)

+I
X

M=�I+1

[I(I + 1) � M(M � 1)] exp
⇣

i!(⇤)
c,�,l0,M�1,Mt

⌘

+1
X

µ=�1

h

A(⇤),(µ)
c,l0,M�1,M

i2
exp

⇥

iµ!rt
⇤

.

(11.79)

All the sidebands have zero phase, and each has an intensity that is equal to the square of the corresponding

single-crystal sideband intensity. Finally the signal from the whole powder is given by

s(⇤)(t) =
3

2I(I + 1)(2I + 1)

+I
X

M=�I+1

[I(I + 1) � M(M � 1)]
+1
X

µ=�1
Iµ,M�1,M(t) exp

⇥

iµ!rt
⇤

, (11.80)

where the time-dependent sideband functions are given by

Iµ,M�1,M(t) =
1

4⇡

Z 2⇡

0
d↵CR

Z ⇡

0
d�CR sin (�CR) exp

⇣

i!(⇤)
c,�,l0,M�1,Mt

⌘



A(⇤),(µ)
c,l0,Mi M j

�2
. (11.81)

The overall e↵ect on the powder spectrum of the sample rotation is two-fold. Firstly the broad resonance

due to the anisotropic interaction observed under static conditions is split into a manifold of spinning side-
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Figure 11.1: Plot of the reduced Wigner rotation matrix elements d(2)
00 (�RL) and d(4)

00 (�RL) as a function of the
rotor angle �RL. The angles at which the broadening due to the rank-two and rank-four anisotropic interactions
is completely removed by spinning are indicated by arrows.

bands. Secondly the linewidth of each spinning sideband is given by the range of the static frequencies !(⇤)
c,�,l0

that we obtain following powder averaging. From Equation 11.65 we see that these frequency components

are proportional to the reduced Wigner matrix elements d(l)
00(�RL). For frequencies with l = 0 this factor is

d(0)
00 (�RL) = 1, indicating that these frequencies are una↵ected by the sample rotation. This is exactly as

expected as these frequencies are due to spatially isotropic interactions that are, by definition, independent

of crystallite orientation. These frequencies always appear in the NMR spectrum, but do not cause any

orientation-dependent broadening of the resonance. For anisotropic frequencies of rank l = 2 the scaling

factor is:

d(2)
00 (�RL) =

⇣

3 cos2(�RL) � 1
⌘

/2. (11.82)

This factor, plotted as a function of �RL in Figure 11.1, is zero if we set the angle of the rotor axis �RL to

the magic angle, which is given by tan�1(
p

2) = 54.74� [322, 325]. Hence magic-angle spinning (MAS)

completely removes the broadening of the spinning-sidebands from rank-two interactions.

Interactions of spatial rank l = 4 have static frequencies that are scaled down by

d(4)
00 (�RL) =

⇣

35 cos4(�RL) � 30 cos2(�RL) + 3
⌘

/8. (11.83)

476



This factor is also plotted as a function of rotor angle in Figure 11.1. Spinning at the magic angle does not

completely remove these frequency components, which are instead scaled down by a factor of �7/18. Hence

the broadening due to this spread of frequencies is decreased by the same factor. The matrix element d(4)
00 (�RL)

does have two angles at which it is zero, namely 30.56� and 70.12�, and inclining the rotor axis at either of

these two angles has the result of completely removing the broadening due to rank-four interactions. However

spinning at either of these two angles does not suppress the broadening due to the rank-two interactions, which

are then scaled down by factors of 0.61 and �0.33 respectively.

11.2 The shift and shift anisotropy in paramagnetic NMR

11.2.1 The chemical shielding frequencies

The Hamiltonian describing the chemical shielding interaction, truncated to first order in the secular approx-

imation, is given by Equation 2.94 and reproduced here for convenience:

Ĥ = �~!0

0

B

B

B

B

B

@

�
r

1
3
�00 +

r

2
3
�20

1

C

C

C

C

C

A

Îz. (11.84)

The terms in parentheses combine to give the chemical shielding, the irreducible spherical tensor components

of which transform under a spatial rotation according to

�lm =

+l
X

m0=�l

�̃lm0D(l)
m0m(↵PL, �PL, �PL). (11.85)

The tensor is given in its most general form, without reference to the various contributions that are specific

to the metal ion under consideration, or to the chemical environment. This enables us to highlight the

features of the spectrum that are common to all paramagnetic systems. We do not consider the second-order

shielding interaction, as it is predicted to be negligible compared to the other second-order interactions we

have discussed.

From Table 11.2 we can write down the isotropic and anisotropic frequencies, ⌦iso,Mi M j and ⌦SA,Mi Mj ,
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under which a coherence represented by the basis operator |IMii hIMj| evolves, as:

⌦iso,Mi M j = �pMi Mj!0�iso, (11.86)

⌦SA,Mi M j = �pMi Mj

r

2
3
!0�20. (11.87)

For any nuclear spin I all the observable coherences have the same coherence order pMi M j = �1, and so all

2I components in Equation 11.57 evolve at the same isotropic and anisotropic frequencies, which we denote

⌦iso and ⌦SA. If the chemical shielding is the only interaction present this means that the 2I components

appear at the same position in the NMR spectrum, and so only a single distinct resonance is observed. This

section therefore provides a complete description of the paramagnetic e↵ects both for nuclear spins-1/2, and

for quadrupolar nuclei in cubic environments for which CQ = 0. To complete the picture for quadrupolar

nuclei in non-cubic environments we also need to consider the quadrupolar interaction.

11.2.2 Solution NMR

We first consider a paramagnetic complex in an isotropic solution. The general features of solution NMR

have been reviewed many times and can be found, for example, in the textbooks by Ernst et al [257], Levitt

[1], and Keeler [254].

In solution we have seen that only the isotropic interactions remain during molecular tumbling. Therefore

the only shielding contribution is the isotropic frequency ⌦iso = �!0�iso, which contains the local contribu-

tions due to the hyperfine coupling to the paramagnetic centres, including contact and pseudo-contact terms.

The lineshape and linewidth in the spectrum originate from two di↵erent sources: incoherent homoge-

neous, and inhomogeneous1. The former is due to the stochastic fluctuation of the local field experienced by

the nucleus, which gives rise to relaxation as discussed in chapters 8 and 9, whereas the latter is due to the

distribution of Larmor frequencies over the sample volume. In the absence of inhomogeneous broadening the

1Here we note that our usage of the terms ‘homogeneous’ and ‘inhomogeneous’ di↵ers from the usage by Maricq and Waugh [322].
We use the terms to refer to the sources of line broadening in the spectrum, whilst Maricq and Waugh use the same terms to refer
to the commutation properties of the Hamiltonians of spin interactions. Nevertheless, we note that there is a correspondence between
the conventions. For instance the shift interaction is term inhomogeneous by Maricq and Waugh, and a distribution of shifts leads
to inhomohgeneous broadening according to the convention used here; homonuclear dipolar coupling interactions are homogeneous
interactions, and lead to coherent homogeneous broadening in the spectrum of solids. The only contribution to spectral broadening not
considered by Maricq and Waugh is due to relaxation, which is homogeneous.
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time-domain signal, referred to as the free-induction decay (FID), s(t) due to a single resonance is

s(t) = shom
e (t) exp (i⌦isot) , (11.88)

where shom
e (t) is the envelope function describing the signal decay due to relaxation. The spectrum S (!) is

the Fourier transform of s(t), which is given by

S (!) =
Z 1

0
dt s(t) exp(�i!t). (11.89)

As we saw in chapters 8 and 9, for a single spin I = 1/2 nucleus in the Redfield relaxation limit we can model

the relaxation envelope function as a mono-exponential decay with a time constant T2, giving the following

FID:

s(t) = exp (i⌦isot) exp (�t/T2) . (11.90)

For quadrupolar nuclei with I > 1 the decay is in general multi-exponential. However we still model it here

using a mono-exponential decay function that is parameterized by an e↵ective T2. For small paramagnetic

complexes in solution, the T2 relaxation time constant is given by the Solomon–Bloembergen–Morgan ex-

pression in Equation 8.108. The T2 time constants of large biomolecules, on the other hand, are dominated by

Curie relaxation processes, and T2 is given by Equation 8.152. The Fourier transform of this function gives a

spectrum with the Lorentzian lineshape:

S (!) = LA(T2;! �⌦iso) + iLD(T2;! �⌦iso). (11.91)

The real and imaginary parts of the spectrum are the absorption-mode and dispersion-mode Lorenztian

functions LA(T ;!) and LD(T ;!), which are given by

LA(T ;!) =
T

1 + !2T 2 , (11.92)

LD(T ;!) = � !T 2

1 + !2T 2 . (11.93)

In high-resolution NMR we examine only the real part of the spectrum with the absorption-mode lineshape.
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The spectrum therefore contains a single, sharp peak at position ⌦iso and with a linewidth (defined as the

full-width at half-maximum, FWHM) of 2/T2 rad s�1. An example is shown in Figure 11.2 (a).

In many cases the inhomogeneous broadening cannot be neglected, with notable contributions from the

inhomogeneity of the applied magnetic field B0 due to instrumental limitations, and a BMS contribution due

to the non-spherical shape of the sample container, as discussed in section 10.2. The e↵ect of the container

shape, usually cylindrical, on the spectral resolution has been studied at length [312, 326, 327]. In the

presence of inhomogeneity of the local magnetic field, the o↵set frequency becomes a function of position

r, and so can be written as ⌦(r). We define it in terms of the position-dependent deviation �⌦(r) from the

nominal o↵set ⌦iso:

⌦(r) = ⌦iso + �⌦(r). (11.94)

The FID is then given by averaging over all positions to give

s(t) = sinhom
e (t)

⇥

exp (i⌦isot) exp (�t/T2)
⇤

, (11.95)

which is the product of the inhomogeneous envelope function sinhom
e (t), and, in brackets, the FID in the

absence of inhomogeneous e↵ects. The envelope function depends on the function f (r) that describes the

distribution of �⌦(r) and, assuming the ideal case of constant signal per unit volume inside the active volume

and zero signal outside, is given by an integral over the sample volume V:

sinhom
e (t) =

1
V

y

V

d3r f (r) exp (i�⌦(r)t) . (11.96)

The inhomogeneous spectral lineshape S inhom
e (!) is defined as the Fourier transform of sinhom

e (t):

S inhom
e (!) =

Z 1

0
dt sinhom

e (t) exp(�i!t). (11.97)

The FID in Equation 11.95 is the product of two functions, and so the resulting spectrum S(!) is simply the

convolution of the inhomogeneous linewidth function S inhom
e (!) and the Lorentzian in Equation 11.91:

S(!) = 2⇡ [LA(T2;! �⌦iso) + iLD(T2;! �⌦iso)] ⇤ S inhom
e (!), (11.98)
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Figure 11.2: Simulated spectra of paramagnetic systems subject to a shielding interaction, and in the absence
of inhomogeneous broadening. This picture is complete for spins-1/2, and quadrupolar nuclei in cubic
environments where CQ = 0. The high-resolution, isotropic solution spectrum is shown in (a), showing a
single peak at the isotropic o↵set. A powder sample in the solid-state gives the classic CSA powder pattern
in (b), which splits into a series of spinning sidebands under MAS, as shown in (c). The chemical shielding
parameters are �!0��S /2⇡ = 500 kHz, and ⌘S = 0.3, and the frequency is measured relative to the isotropic
o↵set ⌦iso. The MAS spectrum was simulated at 60 kHz MAS.
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where the convolution of two functions is indicated by the ⇤, and is defined as

( f ⇤ g)(!) =
Z +1

�1
f (x)g(! � x)dx. (11.99)

The overall spectral lineshape is therefore a mixture of the Lorentzian from the homogeneous decay, and

the inhomogeneous lineshape. It is common to assume that the inhomogeneous lineshape is a Gaussian, or

Lorentzian. In the latter case we can define an overall rate of signal decay which is mono-exponential, and

characterised by a time constant T?
2 , which is equal to

1
T?

2
=

1
T2
+

1
T †2
, (11.100)

where T †2 is the time constant associated with the mono-exponential inhomogeneous decay.

11.2.3 Solid-state NMR of static powders

The case of static powder solids is more complex than isotropic solutions, as we must now explicitly consider

the e↵ect of the anisotropic shielding terms on the form of the spectrum. The Hamiltonian in the absence of

BMS e↵ects was derived in section 2.6. For a crystallite q in which the PAF of the shielding tensor has an

orientation relative to the crystal frame given by the Euler angles (↵PC, �PC, �PC), the Hamiltonian is given by

Equation 2.109 [194]:

Ĥ = ~ (⌦iso +⌦SA (⌦PC,⌦CL)) Îz, (11.101)

where we have written the isotropic o↵set ⌦iso = �!0�iso as before, and ⌦SA (⌦PC,⌦CL) is the anisotropic

contribution to the o↵set of crystallite q, and is given in terms of the anisotropic shielding �SA (⌦PC,⌦CL):

⌦SA (⌦PC,⌦CL) = � !0�SA (⌦PC,⌦CL) , (11.102)

�SA (⌦PC,⌦CL) =
1
2
��

n

3 cos2(�PL) � 1 � ⌘ cos(2↵PL) sin2(�PL)
o

. (11.103)

We have written �SA (⌦PC,⌦CL) in terms of the Euler angles (↵PL, �PL) that describe the overall rotation from

the PAF to the laboratory frame via the crystal frame. Note that�SA (⌦PC,⌦CL), and therefore⌦SA (⌦PC,⌦CL),

depends on neither �PL nor �CL. The homogeneous decay of the corresponding coherence during acquisition
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now depends on two processes: incoherent homogeneous, and coherent homogeneous. The former process is

due to transverse relaxation, characterised by the time constant T2 as described in chapters 8 and 9, and the

latter is a non-random dephasing due to the extended network of dipolar couplings in each crystallite [194].

The coherent homogeneous decay is commonly assumed to be mono-exponential and characterised by a time

constant T coh
2 . The time constant that describes the overall homogeneous decay is T 02, and is calculated from

the following expression:
1
T 02
=

1
T2
+

1
T coh

2

. (11.104)

The FID of the single crystallite following excitation s(⌦PC,⌦CL; t) also depends on the same Euler

angles, and has a form that is similar to the FID of an isotropic solution, with the di↵erence that the o↵set

includes the anisotropic term, and the decay time constant is T 02 and not T2:

s(⌦PC,⌦CL; t) = exp (i⌦isot) exp (i⌦SA (⌦PC,⌦CL) t) exp
��t/T 02

�

. (11.105)

The Fourier transform yields the spectrum, which contains a Lorentzian peak S (⌦PC,⌦CL;!) at position

⌦iso +⌦SA (⌦PC,⌦CL), with a linewidth equal to 2/T 02 rad s�1. The real part of the spectrum is

S (⌦PC,⌦CL;!) = LA(T 02;! �⌦iso �⌦SA (⌦PC,⌦CL)). (11.106)

In order to obtain the form of the spectrum of the complete powder we must average the single-crystallite

spectrum S (⌦PC,⌦CL;!) over all possible orientations, giving

S (!) =
1

4⇡

Z 2⇡

0
d↵CL

Z ⇡

0
sin(�CL) d�CL

⇥

LA(T 02;! �⌦iso �⌦SA (⌦PC,⌦CL)) + iLD(T 02;! �⌦iso �⌦SA (⌦PC,⌦CL))
⇤

.

(11.107)

The powder spectrum has a width that is proportional to the SA
�

�

�!0��S
�

�

�, as shown by the example in Figure

11.2 (b). We note that neither the FID nor the spectrum of the powder depends on the Euler angles ⌦PC.

This is a result of all crystallite orientations being represented in the spectrum, so that the information about

the absolute orientation of the PAF in the crystal frame is lost. One consequence of this is the well-known

observation that one cannot extract the absolute values of ⌦PC from the spectrum of a powder sample.

Hitherto we have neglected the inhomogeneous broadening we would expect from the BMS e↵ects. We
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have shown that these e↵ects can be partitioned into IBMS and ABMS contributions. The former gives

a purely anisotropic o↵set ⌦IBMS
SA (⌦PI,C(q),⌦CL, q), whilst the latter gives both isotropic and anisotropic

contributions⌦ABMS
iso (q) and⌦ABMS

SA (⌦PA,C(q),⌦CL, q). They are given in terms of the corresponding chemical

shieldings:

⌦IBMS
SA (⌦PI,C(q),⌦CL, q) = � !0�

IBMS
SA (⌦PI,C(q),⌦CL, q), (11.108)

⌦ABMS
iso (q) = � !0�

ABMS
iso (q), (11.109)

⌦ABMS
SA (⌦PA,C(q),⌦CL, q) = � !0�

ABMS
S (⌦PA,C(q),⌦CL, q), (11.110)

where ⌦PI,C and ⌦PA,C give the orientations of the IBMS and ABMS PAFs in the crystal reference frame.

Here we have defined a parameter q which describes the variation of the isotropic shift, SA, asymmetry,

and Euler angles giving the orientation of the BMS tensor in the crystal frame. If we assume that the

crystallites are spherical, and make the somewhat unrealistic assumption that they are held in a spherical

sample container, the BMS shielding contribution to a particular crystallite depends only on the dipolar

coupling interaction with the neighbouring crystallites, and has no part from the internal bulk susceptibility.

Hence the BMS shielding of the crystallite under consideration depends only on the configuration of the

surrounding crystallites, which is defined by q.

In order to calculate the spectrum from the complete sample, we average over all the crystallites in

two steps: firstly for all crystallites with the same configuration parameter q we average over the Eu-

ler angles ⌦CL; secondly we average over the configurations q. If we define the total BMS frequency

�⌦(⌦PI,C(q),⌦PA,C(q),⌦CL, q) as

�⌦(⌦PI,C(q),⌦PA,C(q),⌦CL, q) = ⌦IBMS
SA (⌦PI,C(q),⌦CL, q) +⌦ABMS

iso (q) +⌦ABMS
SA (⌦PA,C(q),⌦CL, q), (11.111)

we can write the FID s(q,⌦CL; t) from a particular crystallite orientation with a particular BMS configuration

as

s(q,⌦CL; t) = exp (i⌦isot) exp (i⌦SA (⌦PC,⌦CL) t) exp
�

i�⌦(⌦PI,C(q),⌦PA,C(q),⌦CL, q)t
�

exp
��t/T 02

�

.

(11.112)
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The signal from the whole powder is then

S (!) =
1

4⇡

Z 2⇡

0
d↵CL

Z ⇡

0
sin(�CL) d�CL

1
Nq

Z

dq f (q)s(q,⌦CL; t), (11.113)

where f (q) is a function describing the distribution of configurations, and Nq is a normalization factor.

The integral over the configurations q only a↵ects the phase factor exp
�

i�⌦(⌦PI,C(q),⌦PA,C(q),⌦CL, q)t
�

exp
⇣

�t/T 02
⌘

.

At this point, to simplify the discussion, we make the simplifying assumption that the integral over q is inde-

pendent of the crystallite orientation ⌦CL, which is equivalent to stating that the inhomogeneous broadening

depends only on the surrounding crystallites. This assumption is justified if the sum over the configurations

contains a complete average over the orientation of the PAFs in the crystal frame, i.e. an average over all

values of ⌦PI,C(q) and ⌦PA,C(q). If this is the case the integral over q is independent of the Euler angles ⌦CL,

in the same way that the integral over ⌦CL in the absence of inhomogeneous broadening is independent of

⌦PC. We can then define a BMS decay envelope function sBMS
e (t) that describes the coherent decay due to the

inhomogeneous broadening. This envelope function has a similar form to that for the isotropic solution:

sBMS
e (t) =

1
Nq

Z

dq f (q) exp
�

i�⌦(⌦PI,C(q),⌦PA,C(q),⌦CL, q)t
�

. (11.114)

The Fourier transform of the envelope function S BMS
e (!) is defined in the same way as in Equation 11.97.

The FID from the sample is

s(t) = sBMS
e (t)

1
4⇡

Z 2⇡

0
d↵CL

Z ⇡

0
sin(�CL) d�CL exp (i⌦isot) exp (i⌦SA (⌦PC,⌦CL) t) exp

��t/T 02
�

, (11.115)

which is the product of the FID in the absence of the BMS, and the BMS envelope function. The overall

spectrum S (!) is then the convolution of S BMS
e (!) with the expression in Equation 11.107:

S (!) =2⇡
"

1
4⇡

Z 2⇡

0
d↵CL

⇥
Z ⇡

0
sin(�CL) d�CL

⇥

LA(T 02;! �⌦iso �⌦SA (⌦PC,⌦CL)) + iLD(T 02;! �⌦iso �⌦SA (⌦PC,⌦CL))
⇤

#

⇤ S BMS
e (!),

(11.116)

The BMS lineshape has a complicated form which is non-trivial to model since it ultimately requires a
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description of how particles of di↵erent sizes and shapes are packed in a compressed powder [150, 328]. It

may, however, be approximated as a Gaussian, for which case an example of the resulting overall spectrum

is shown in Figure 11.3 (a). It can be seen that the inhomogeneous broadening smears out the distinctive

spectral features of the classic SA powder pattern. Some notable experimental examples of this lineshape in

static solid-state NMR spectra include the battery samples presented by Kim et al [53].

11.2.4 Solid-state NMR of spinning powders

Under MAS conditions the anisotropic frequency is time-dependent, periodic, and cyclic over the rotor period

⌧r. Therefore, as we have seen, the single-crystal FID sc(�CR; t) is split into a series of sideband contributions:

sc(�CR; t) = exp (i⌦isot) exp
⇣

i�SA
c (�CR; t, 0)

⌘

exp
��t/T 02

�

(11.117)

= exp (i⌦isot) exp
��t/T 02

�

+1
X

m=�1
A(m)

c exp
⇣

i(�(m)
c (�CR) + m!rt)

⌘

. (11.118)

We note that T 02 depends on the MAS frequency, since faster spinning has the e↵ect of weakening the

extended dipolar coupling network, thus reducing the rate of coherent dephasing. The single-crystal sideband

amplitudes and phases are denoted A(m)
c and �(m)

c (�CR). Following Fourier transformation we obtain the

spinning sideband manifold in the spectrum:

S c(�CR;!) =
+1
X

m=�1
A(m)

c exp
⇣

i(�(m)
c (�CR)

⌘

⇥

LA
�

T 02;! �⌦iso � m!r
�

+ iLD
�

T 02;! �⌦iso � m!r
�⇤

. (11.119)

The orientation dependence is contained wholly within the sideband amplitudes A(m)
c and phases �(m)

c (�CR).

The former depend only on ↵RL and �RL, whereas the latter depend on all three angles. The spectrum of the

whole powder is therefore obtained by averaging the complex sideband coe�cients over all orientations. The

resulting spectrum is

S (!) =
+1
X

m=�1
I(m) ⇥LA

�

T 02;! �⌦iso � m!r
�

+ iLD
�

T 02;! �⌦iso � m!r
�⇤

, (11.120)
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Figure 11.3: The e↵ect of the inhomogeneous BMS broadening on static and MAS NMR spectra of a
paramagnetic powder. The static spectra are shown in (a), and the MAS spectra are shown in (b). In both
cases we partition the spectrum into two parts. The first is the spectrum in the absence of BMS e↵ects, which
exhibits either the classic CSA powder pattern, or the spinning-sideband manifold. The second shows the
spectral lineshape due solely to BMS e↵ects which, for the static case can be assumed to be Gaussian, and
for the MAS case to be a manifold of spinning sidebands, each with a Gaussian lineshape. In both cases
the final spectrum is given by the convolution of these two parts. The chemical shielding parameters are
�!0��S /2⇡ = 500 kHz, and ⌘S = 0.3, and the frequency is measured relative to the isotropic o↵set ⌦iso.
The MAS spectrum was simulated at 60 kHz MAS. For the static case the Gaussian function has a mean of 0
kHz and a standard deviation of 200 kHz. For the MAS case each individual sideband is a Gaussian function
with a standard deviation of 10 kHz, and the intensities of the Gaussians in the manifold are weighted by a
Gaussian function with a standard deviation of 200 kHz.
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where the mth-order sideband intensity I(m) is equal to

I(m) =
1

4⇡

Z 2⇡

0
d↵CR

Z ⇡

0
sin(�CR)d�CR

h

A(m)
c

i2
. (11.121)

An example of the spectrum obtained by MAS is shown in Figure 11.2 (c), which has been simulated using

the same SA parameters as the spectrum of the static powder in Figure 11.2 (b).

The e↵ect of the IBMS and ABMS on the inhomogeneous broadening can be considered in a similar

way as for the static powder, but with the inclusion of the MAS. The isotropic ABMS shift frequency is

labelled ⌦ABMS
iso (q), and we group together the IBMS and ABMS contributions to the SA to give the total

BMS anisotropic frequency ⌦BMS,SA
c (q, �CR; t). During evolution under MAS the observable coherences

accrue a periodic phase �BMS,SA
c (q, �CR; t, 0) due to the evolution of the BMS SA. We compute the complete

FID by averaging over the Euler angles �CR all the contributions from crystallites with the same q, and then

averaging over q. As for the static case, we assume that the average of the BMS phase factors over q results

in a BMS time-domain envelope function that is the same for all crystallite orientations ⌦CR. This function

is then given by

sBMS
e (t) =

1
Nq

Z

dq f (q) exp
⇣

i⌦ABMS
iso (q)t

⌘

exp
⇣

i�BMS,SA
c (q, �CR; t, 0)

⌘

=
1

Nq

Z

dq f (q) exp
⇣

i⌦ABMS
iso (q)t

⌘

⇥
+1
X

m=�1
B(m)

c (q) exp
⇣

i(⇠(m)
c (q, �CR) + m!rt)

⌘

, (11.122)

where we have expanded the periodic phase factor due to the BMS SA as a Fourier series with sideband

intensities B(m)
c (q) and phases ⇠(m)

c (q, �CR). We are able to write sBMS
e (t) in the following form:

sBMS
e (t) =

+1
X

m=�1
s(m)

e (t) exp (im!rt) , (11.123)

where

s(m)
e (t) =

1
Nq

Z

dq f (q) exp
⇣

i⌦ABMS
iso (q)t

⌘

B(m)
c (q) exp

⇣

i(⇠(m)
c (q, �CR)

⌘

(11.124)

are sideband functions that decay with time. The envelope function is therefore a spinning-sideband manifold,
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Figure 11.4: Solid-state 7Li MAS NMR spectra of the cathode materials LiTMPO4, TM =Mn, Fe. For both
spectra the full spinning-sideband manifold is shown in (a), and an expansion of the centreband is shown in
(b). The MAS frequency is 60 kHz.

in which each sideband experiences an inhomogeneous decay. The intensities B(m)
c (q) only a↵ect the overall

magnitudes of the s(m)
e (t), whereas ⌦ABMS

iso (q) changes the overall rate of inhomogeneous decay. Therefore

all the sidebands exhibit the same inhomogeneous broadening. The Fourier transform of sBMS
e (t) gives the

function S BMS
e (!) which specifies the inhomogeneous broadening that we observe in the spinning-sideband

manifold of the spectrum. This function has the form

S BMS
e (!) = 4⇡2

+1
X

m=�1
S (m)

e (!) ⇤ �(! � m!r). (11.125)

The delta functions �(! � m!r) in Equation 11.125 are the Fourier transforms of the complex exponentials

exp (im!rt), and the lineshape functions S (m)
e (!) are the Fourier transforms of the decay functions s(m)

e (t).

The spectral inhomogeneous broadening function S BMS
e (!) therefore comprises a series of spinning side-

bands whose e↵ect is to broaden the spinning sidebands in the final spectrum, which is the convolution

of Equations 11.120 and 11.125, as shown in Figure 11.3 (b) for Gaussian broadening. In addition to the

ABMS broadening of the individual sidebands, we also see a perturbation of the sideband intensities from

the ‘nominal’ intensities we would expect from a simple SA. The distribution of intensities shows a Gaussian

distribution superimposed upon the nominal pattern.

The predicted form of the spinning-sideband manifold in the presence of BMS e↵ects is illustrated with

the solid-state 7Li MAS NMR spectra of LiMnPO4 and LiFePO4 shown in Figure 11.4 [30]. Both transition

metals are in the +2 oxidation state and occupy distorted octahedral sites as part of a TMO6 unit, where

TM refers to the transition metal, and have high-spin electronic configurations. The metal ion Mn2+ has
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the octahedral electronic configuration t3
2ge2

g corresponding to a ground term 6A1g in the standard notation

of group theory. For this system the SO-coupling e↵ects can be neglected, and the metal ion behaves as a

spin-only paramagnetic centre with an isotropic g-tensor that is close to the free-electron value, and a small

ZFS. The susceptibility is approximately isotropic, and so the ABMS is negligible. The metal ion Fe2+, on

the other hand, has an electron configuration of t4
2ge2

g, giving an orbitally-degenerate ground term of 5T2g. The

EPR parameters are therefore influenced by SO coupling, giving an anisotropic g-tensor and non-zero ZFS

as a result of the distortion from cubic symmetry. Both the susceptibility anisotropy and ABMS are therefore

non-zero. As can be seen from the full spectra in Figure 11.4 (a), both spinning-sideband manifolds show

a Gaussian distribution of sideband intensities superimposed on the nominal pattern, which can be ascribed

to the influence of the IBMS in both cases. The manifold of LiFePO4 is also expected to be distorted by

the ABMS, though we expect this e↵ect to be smaller. In addition if we examine the centrebands of both

manifolds, we see that the linewidth of 90 ppm for LiFePO4 is considerably larger than that for LiMnPO4,

despite the former sample giving a longer T 02 value for 7Li. The larger linewidth for LiFePO4 can be ascribed

to the ABMS inhomogeneous line broadening that is absent in the spectrum of LiMnPO4.

11.3 Paramagnetic NMR of integer-spin quadrupolar nuclei

We now examine the form of the NMR spectrum of an integer-spin quadrupolar nucleus subject to a first-order

quadrupolar interaction. We focus on the simplest case of nuclei with nuclear spin I = 1. The first-order

quadrupolar interaction is wholly anisotropic, and so does not influence the observed resonance frequencies

in solution. We therefore consider the spectra of solid-state powders under both static and MAS conditions.

11.3.1 Static solid powders

We derived the Hamiltonian for the first-order quadrupolar interaction in chapter 2, with the result given in

Equation 2.145. The Hamiltonian is characterised by a frequency of interaction⌦Q(⌦QC,⌦CL), which is given

in terms of the quadrupolar splitting frequency !Q, asymmetry parameter ⌘Q, the Euler angles specifying the

orientation of the PAF in the crystal frame ⌦QC, and the orientation of the crystal frame in the laboratory

490



frame ⌦CL:

⌦Q(⌦QC,⌦CL) =

r

2
3
!Qv20 (11.126)

=
1
2
!Q

h

3 cos2(�QL) � 1 + ⌘Q sin2(�QL) cos(2↵QL)
i

. (11.127)

There are two observable coherences, represented by the operators |10i h1 + 1| and |1 � 1i h10|, which result in

two distinct resonances in the spectrum. The two frequencies ⌦Q,Mi Mj (⌦QC,⌦CL) are given by the expression

in Table 11.2 in terms of the satellite order d by

⌦Q,Mi Mj (⌦QC,⌦CL) = �dMi M j⌦Q(⌦QC,⌦CL). (11.128)

The two coherences have d-values of �1 and +1 respectively, and so the two resonance frequencies are:

⌦Q,Mi M j (⌦QC,⌦CL) =

8

>

>

>

>

<

>

>

>

>

:

+⌦Q(⌦QC,⌦CL), |10i h1 + 1| ,

�⌦Q(⌦QC,⌦CL), |1 � 1i h10| .
(11.129)

The resulting FID for a single crystallite is calculated from Equation 11.62, and is given by

s(⌦QC,⌦CL; t) =
1
2

⇥

exp
⇥

+i⌦Q(⌦QC,⌦CL)t
⇤

+ exp
⇥�i⌦Q(⌦QC,⌦CL)t

⇤⇤

(11.130)

= cos
⇥

⌦Q(⌦QC,⌦CL)t
⇤

. (11.131)

The resulting spectrum contains two peaks at frequencies ±⌦Q(⌦QC,⌦CL) and is symmetrical about the

reference frequency, which here is zero. Following the calculation of the powder average over the Euler

angles ⌦CL, the two resonances broaden to give the same characteristic lineshapes as for the SA interaction

in Figure 11.2 (b), with one lineshape related to the other by a reflection about the reference frequency. The

resulting symmetrical spectrum is shown in Figure 11.5 (a), and exhibits a shape known as a Pake pattern

[194].
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Figure 11.5: Simulated powder spectra of a spin I = 1 nucleus subject to a first-order quadrupolar and
shielding interaction. The spectrum of a static powder with the first-order quadrupolar interaction only is
shown in (a). Inclusion of the shift anisotropy under static conditions gives the more complicated spectrum
in (b). Under MAS each resonance splits into a manifold of spinning sidebands, as shown in (c) and (d).
The spectrum in (c) was simulated with the same first-order quadrupolar coupling parameters as (a) and in
the absence of the shift anisotropy. Inclusion of the shift anisotropy gives the MAS spectrum in (d). The
quadrupolar interaction parameters are CQ = 1.19 MHz (corresponding to !Q/2⇡ = 892.5 kHz), ⌘Q = 0.52,
and ⌦QC = (0�, 0�, 0�). The chemical shielding parameters are �!0��S /2⇡ = 500 kHz, ⌘S = 0.3, and
⌦PC = (0�, 90�, 0�). The frequency is measured relative to the isotropic o↵set ⌦iso. The MAS spectrum was
simulated at 60 kHz MAS.
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11.3.2 Solid powders under MAS

Under MAS conditions the quadrupolar frequency, now denoted ⌦Q
c (�CR; t), is time dependent and periodic.

Therefore the two components of the FID each split into a spinning-sideband manifold, with the two mani-

folds related to each other by complex conjugation.

sc(�CR; t) =
1
2

h

exp
h

+i�Q
c (�CR; t, 0)

i

+ exp
h

�i�Q
c (�CR; t, 0)

ii

(11.132)

=
1
2

+1
X

m=�1

h

E(m)
c exp

⇣

i(✏(m)
c (�CR) + m!rt)

⌘

+ E(m)
c exp

⇣

�i(✏(m)
c (�CR) + m!rt)

⌘i

(11.133)

=

+1
X

m=�1
E(m)

c cos
⇣

i(✏(m)
c (�CR) + m!rt)

⌘

, (11.134)

where �Q
c (�CR; t, 0) is the periodic phase accrued by evolution of the frequency ⌦Q

c (�CR; t). The intensity and

phase of the mth order sideband of the |10i h1 + 1| coherence are E(m)
c /2 and ✏(m)

c (�CR) respectively, whereas

for the |1 � 1i h10| coherence they are E(�m)
c /2 and �✏(�m)

c (�CR). Therefore the mth-order sideband of the sum

of the two manifolds has a total complex intensity of
h

E(m)
c exp

⇣

i✏(m)
c (�CR)

⌘

+ E(�m)
c exp

⇣

�i✏(�m)
c (�CR)

⌘i

/2,

which is equal to the complex intensity of the �mth-order following complex conjugation. This results in a

spectrum that is symmetrical about the reference frequency. This symmetry is also preserved in the powder

average, as shown by the MAS spectrum in Figure 11.5 (c).

11.3.3 First-order quadrupolar and paramagnetic shift anisotropy interactions

In paramagnetic systems the NMR spectrum contains information about the paramagnetic shift and SA, as

described in section 11.2, in addition to the first-order quadrupolar interaction. An example is given in Figure

11.5, in which the spectra in (a) and (c) are modified by including an SA interaction. The spectrum of the

static powder is shown in Figure 11.5 (b), and the corresponding spectrum under MAS is in Figure 11.5 (d).

Both spectra contain information about the size of the quadrupolar interaction, via !Q and ⌘Q, and the size

of the SA, via ��S and ⌘S , and information about the relative orientation of one PAF relative to the other.

Extracting all the available information can be a di�cult task due to the complexity of the spectrum, which

is exacerbated by the presence of substantial inhomogeneous broadening and multiple nuclear sites.
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11.4 Paramagnetic NMR of half-integer-spin quadrupolar nuclei

We now examine the form of the NMR spectrum of a half-integer-spin quadrupolar nucleus subject to a

first-order quadrupolar interaction, using the simplest case of I = 3/2 as an example. The principal di↵erence

between half-integer spins and integer spins is that the observable coherences of the former can be divided

into a central transition (CT), which does not evolve under the first-order quadrupolar interaction, and a

series of satellite transitions (STs) which do. For quadrupolar nuclei in symmetric environments with no

CSA/SA, the resulting spectra are dominated by a narrow peak due to the CT, with the STs resulting in

broader features that may be di�cult to observe. However for nuclei with broad CT resonances, due either

to a particularly large quadrupolar interaction or an SA, the STs cannot be neglected and must be considered

for a proper interpretation of the spectra. In contrast to the previous section we also consider the e↵ect of

the second-order quadrupolar interaction, and the second-order cross term between the quadrupolar and SA

interactions. Unlike the first-order interaction, the second-order interaction does a↵ect the evolution of the

CT coherence, and leads to broadening of the corresponding peak.

11.4.1 First-order quadrupolar interaction

Static solid powders

The frequencies of evolution under the first-order quadrupolar interaction are given by the expression in

Equation 11.128 in terms of the satellite order d. For a spin I = 3/2 there are two observable ST coherences
�
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3
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�, which have d values of �2 and +2 respectively and so evolve under the

first-order interaction with distinct frequencies. By contrast the CT coherence
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The single-crystal FID is calculated from Equation 11.62, and has the expression

s(⌦QC,⌦CL; t) =
1
10

⇥

3 exp
⇥

+2i⌦Q(⌦QC,⌦CL)t
⇤

+ 4 + 3 exp
⇥�2i⌦Q(⌦QC,⌦CL)t

⇤⇤

(11.136)

=
1
5

⇥

3 cos
⇥

2⌦Q(⌦QC,⌦CL)t
⇤

+ 2
⇤

. (11.137)

An example of a spectrum of a powder sample is shown in Figure 11.6 (a). The spectrum is dominated by a

sharp peak due to the CT, which is at zero frequency. The two STs give considerably broader resonances of

lower intensity. A vertical expansion of the spectrum, shown in Figure 11.6 (c), reveals the form of the two

ST resonances which, like the spectrum of the spin I = 1 nucleus in Figure 11.5 (a), combine to give a Pake

pattern [194].

Solid powders under MAS

Under MAS the quadrupolar frequency⌦Q
c (�CR; t) is time-dependent and periodic. As the spin system evolves

the two ST coherences evolve at frequencies ±2⌦Q
c (�CR; t), and accrue periodic phases of ±2�Q

c (�CR; t, 0),

whereas the CT coherence does not evolve. The result is that the FID contains a time-independent contribution

from the CT, and two periodic contributions from the STs that each split into spinning-sideband manifolds:

sc(�CR; t) =
3

10

h

exp
h

+2i�Q
c (�CR; t, 0)

i

+ exp
h

�2i�Q
c (�CR; t, 0)

ii

+
2
5

(11.138)
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(11.139)

=
3
5

+1
X
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c (�CR) + m!rt)

⌘

+
2
5
, (11.140)

where F(m)
c and ✓(m)

c (�CR) are the intensity and phase of the mth-order sideband in the manifold of the
�

�

�

3
2 +

1
2

E D

3
2 +

3
2

�

�

� ST. As for the spin I = 1 MAS spectrum, the spinning-sideband manifold of the second

ST is related to the first by a reflection about the reference frequency. The resulting MAS spectrum of the

powder contains a single sharp peak due to the CT and a symmetrical and broad spinning-sideband manifold

due to the two STs, whose centrebands are coincident with each other and with the CT peak, as shown in

Figure 11.6 (e).
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quad: 1st and 2nd order, CQ 3.30 MHz, etaQ 0.21
CSA: aniso 500 kHz, eta 0.30, betaCSA-betaQ 90 deg

Figure 11.6: Simulated powder spectra of a spin I = 3/2 nucleus subject to a first- and second-order
quadrupolar interaction. The spectrum of a static powder with the first-order quadrupolar interaction only
is shown in (a). In (b) is shown the same spectrum calculated with the second-order quadrupolar interaction.
The spectra in (c) and (d) are vertical expansions of (a) and (b) in order to highlight the broad ST resonances.
Under MAS the ST resonances split into spinning-sideband manifolds, giving the spectra in (e) and (f).
The spectrum in (e) was simulated with the first-order quadrupolar interaction only, whereas (f) includes
the second-order interaction. The quadrupolar interaction parameters are CQ = 3.3 MHz (corresponding to
!Q/2⇡ = 825 kHz), ⌘Q = 0.21, and ⌦QC = (0�, 0�, 0�). The nuclear Larmor frequency is !0/2⇡ = �105.9
MHz, giving !2

Q/(2⇡!0) = �6.4 kHz. The MAS spectrum was simulated at 60 kHz MAS.
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11.4.2 Second-order quadrupolar interaction

We now turn our attention to the second-order quadrupolar interaction, the Hamiltonian of which is given in

Equation 2.149. The frequency components, in Table 11.2, comprise an isotropic term, a rank-two term, and

a rank-four term, that are proportional to the spin-order parameters c0,Mi Mj , c2,Mi Mj , and c4,Mi Mj respectively.

For all three contributions to the frequency both STs have the same value of ci, which is di↵erent to that of

the CT. Hence the value of c0 is �6 for both STs and +3 for the CT, c2 takes values of +6 and �12 for the

STs and CT, and c4 is equal to +24 and �27 for the STs and CT. The resulting frequencies of evolution for

the three transitions are therefore:
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The e↵ect of these second-order contributions is shown in the spectra in Figure 11.6, with the spectra

calculated to first-order also shown for comparison. The full spectrum of the static powder in Figure 11.6 (b),

the vertical expansion highlighting the STs in (d), and the MAS spectrum in (f) show a negligible change in

the form of the ST resonances, since the broadening due to the first-order quadrupolar is much larger than the

second-order broadening. In fact the only change that is immediately apparent is the reduction in the intensity

of the CT peak, which is due to the broadening from the rank-four frequency component. Since the CT is

una↵ected by the first-order interaction, this second-order rank-four term is the only source of broadening in

the CT peak due to the quadrupolar interaction, and so is non-negligible.

The CT peak is highlighted more clearly in the spectra of Figure 11.7, which are expansions of those

shown in Figure 11.6. The spectra in Figure 11.7 (a) and (c) are calculated under static conditions and MAS

respectively assuming the first-order quadrupolar interaction only. In the spectrum of the static powder in (a)

the sharp peak of the CT is superimposed on the broad ST resonances, which here cannot be seen. Under MAS

the sharp CT peak also contains a small contribution from the centrebands of the two ST spinning-sideband

manifolds, as shown in (c). We recall that, to first order, the centrebands of the two STs are resonant both

with each other and the CT, here at zero frequency. The introduction of the second-order interaction has
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Figure 11.7: Expansions of the simulated powder spectra of a spin I = 3/2 nucleus shown in Figure 11.6 to
highlight the CT. The spin is subject to a first- and second-order quadrupolar interaction. The CT resonance
of a static powder with the first-order quadrupolar interaction only is shown in (a). In (b) is shown the same
CT resonance calculated with the second-order quadrupolar interaction. The spectra in (c) and (d) were
simulated under MAS. The spectrum in (c) was simulated with the first-order quadrupolar interaction only,
whereas (d) includes the second-order interaction. The quadrupolar interaction parameters are CQ = 3.3 MHz
(corresponding to !Q/2⇡ = 825 kHz), ⌘Q = 0.21, and ⌦QC = (0�, 0�, 0�). The frequency is measured relative
to the isotropic o↵set⌦iso. The nuclear Larmor frequency is!0/2⇡ = �105.9 MHz, giving!2

Q/(2⇡!0) = �6.4
kHz. The MAS spectrum was simulated at 60 kHz MAS.
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two noticeable e↵ects on the spectrum of the static powder, in Figure 11.7 (b). Firstly we see that the

CT resonance is broadened due to the combination of the rank-two and rank-four frequency components.

Secondly the centre of mass of the resonance is shifted from zero frequency due to the second-order isotropic

frequency. Under MAS the broadening of the CT is reduced but not eliminated, as shown by the spectrum in

Figure 11.7 (d). This is because, whilst the rank-two broadening is indeed removed the rank-four broadening

is only scaled by a factor of �7/18. We note that this negative factor also results in a reversal of the lineshape

relative to the frequency axis. Magic-angle spinning also reveals an additional feature of the second-order

interactions. Because the CT and STs have di↵erent values of c0 the former no longer appears at the same

isotropic frequency as the latter. The opposite signs of the two c0 values results in the CT and ST centrebands

being shifted in opposite directions. Clearly care must be taken to recognize the ST centrebands and not to

confuse them with additional nuclear sites.

11.4.3 Second-order quadrupolar and paramagnetic shift anisotropy interactions

In paramagnetic systems, NMR spectra are also a↵ected by the SA interaction. Under static conditions the

SA leads to an additional broadening of the spectrum, as shown in Figure 11.8 (a). The CT and ST resonances

are both broadened by the rank-two SA, which leads to a complicated lineshape. As for the spin I = 1 case

this spectrum also depends on the relative orientation of the SA tensor relative to the EFG tensor. Under MAS

the broad lineshape splits into a manifold of spinning sidebands, as shown in Figure 11.8 (b). Like the static

spectrum, the sideband manifold is very complicated and di�cult to interpret, as it contains contributions

principally from the first-order quadrupolar and SA interactions for the STs, and the SA for the CT. An

expansion of the region containing the centrebands, Figure 11.8 (c), shows that the sidebands are broadened

by the rank-four frequency components.

Finally we briefly mention the second-order cross term between the quadrupolar and SA interactions, the

Hamiltonian of which is given in Equation 2.152. The frequency components, given in Table 11.2, comprise

an isotropic, a rank-two, and a rank-four term, all of which are proportional to the satellite order dMi M j . The
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Figure 11.8: Simulated powder spectra of a spin I = 3/2 nucleus subject to a second-order quadrupolar
interaction and a shift anisotropy. The spectrum of the static powder is shown in (a), which under MAS splits
into the spinning-sideband manifold in (b). The spectrum in (c) is an expansion of (b) showing the centreband
and the first-order sidebands of both the CT and ST resonances. The quadrupolar interaction parameters are
CQ = 3.3 MHz (corresponding to !Q/2⇡ = 825 kHz), ⌘Q = 0.21, and ⌦QC = (0�, 0�, 0�). The chemical
shielding parameters are �!0��S /2⇡ = 500 kHz, ⌘S = 0.3, and ⌦PC = (0�, 90�, 0�). The frequency is
measured relative to the isotropic o↵set ⌦iso. The nuclear Larmor frequency is !0/2⇡ = �105.9 MHz, giving
!2

Q/(2⇡!0) = �6.4 kHz. The MAS spectrum was simulated at 60 kHz MAS.
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evolution frequencies of the three transitions are therefore:
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We see that the CT is una↵ected by this cross term, and so experiences no additional broadening or resonance

shift, whereas the two ST coherences evolve with frequencies of opposite sign. One consequence of this is

that the centrebands of the two STs no longer appear at the same isotropic frequency. Hence the centreband

region of the MAS spectrum now contains three distinct peaks instead of two, one for each transition.

11.5 Key concepts

• A paramagnetic solution results in an NMR spectrum where the shift is dominated by the isotropic

paramagnetic shift, and the linewidth is given by a combination of the paramagnetic relaxation en-

hancement, and the inhomogeneous broadening due to the non-spherical shape of the sample container.

• A static paramagnetic powder results in an NMR spectrum where the shift is dominated by the isotropic

paramagnetic shift, and the lineshape and linewidth are due to the shift anisotropy and bulk magnetic

susceptibility broadening.

• A spinning paramagnetic powder produces a spinning-sideband manifold with an isotropic frequency

given by the isotropic paramagnetic shift. The pattern of sideband intensities is due to both the shift

anisotropy and the bulk magnetic susceptibility. The linewidth of each spinning sideband is due to

a combination of the anisotropic bulk magnetic susceptibility broadening, paramagnetic relaxation

enhancement, and the extended network of dipolar couplings between nuclei.

• Quadrupolar nuclei in paramagnetic systems have additional interactions due to the first- and second-

order quadrupolar interactions.

• For integer-spin quadrupolar nuclei the quadrupolar interaction is an additional source of resonance
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broadening under static conditions, and gives rise to a spinning-sideband manifold under MAS.

• For half-integer-spin quadrupolar nuclei the central transition is broadened by the second-order quadrupo-

lar interaction in both static and spinning powders. The satellite transitions are broadened by the first-

order quadrupolar interaction under static conditions, and give rise to an extensive spinning-sideband

manifold under MAS. The isotropic peak of the satellite manifold is shifted relative to the isotropic

peak of the manifold of the central transition by the second-order quadrupolar interaction, and so care

must be taken not to confuse the former with an additional nuclear site.
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Chapter 12

A survey of NMR methods for

paramagnetic systems

In this chapter we survey the experimental NMR methods that have either been used on, or are applicable

to, paramagnetic systems. There are many NMR pulse sequences that have been designed for diamagnetic

systems, including small- to medium-sized molecules in solution [254], large biomolecules in solution [329],

solid materials [2, 330], and biosolids [331]. However many of these methods cannot be easily applied to

equivalent paramagnetic systems due to the large shifts, SAs, and short relaxation times. The methods we

survey can be divided into two groups: the relatively small proportion of those which were designed for

diamagnetic systems but can be applied to paramagnetic systems with little or no modification, and those

which are designed specifically for paramagnetic systems in order to evaluate quantitatively paramagnetic

e↵ects. In addition we provide some general guidance on how to acquire NMR spectra of paramagnetic

species.

We divide the survey into two parts. Firstly we discuss methods for solution NMR. Many of the topics

covered here have already been discussed by Bertini et al [15, 332, 333], and so we keep the discussion

brief. Secondly we discuss solid-state NMR methods. The development and application of solid-state NMR

methods for paramagnetic materials and biomolecules is a field that has seen considerable progress in recent

years, and so we devote more space to it here.
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Figure 12.1: General schemes for one- and two-dimensional NMR pulse sequences. The general
one-dimensional scheme is shown in (a), and the two-dimensional scheme is in (b).

We also add that this survey is not intended to be the final word on paramagnetic NMR methodology.

There are still many potential improvements in RF probe technology and experimental schemes to be made

in order to be able to study ever more demanding systems.

12.1 NMR pulse sequences

One- and two-dimensional NMR pulse sequences follow the general scheme in Figure 12.1. The general

one-dimensional scheme in Figure 12.1 (a) comprises a preparation period, which contains an excitation

sequence of duration ⌧exc. This sequence is either a single RF pulse or a combination of pulses, and generates

observable coherences of order p = �1. The coherences are then observed in the detection period of time t.

The resulting FID is then subjected to Fourier transformation to produce the spectrum.

The general two-dimensional sequence, shown in Figure 12.1 (b), is more complex. Here the preparation

period generates coherences which may or may not be directly observable. These coherences evolve during

the evolution period, which comprises a time variable t1 that is incremented stepwise. This is followed by a

mixing period, during which magnetization is transferred from one nuclear species to another via a coupling

interaction. The mixing period generates observable coherences of order p = �1, which are observed during

the detection period t2. The acquisition strategy is as follows. Firstly we set t1 = 0 and acquire a spectrum

during t2 in real time. We then increment t1 by an amount �t1 and repeat the experiment to acquire a second

FID in t2. This process is repeated until we have extended the evolution time t1 to the desired value. The data

are stored as data points sampled at discrete values of t1 and t2, resulting in a two-dimensional FID s(t1, t2)

which is stored as an array, as shown in Figure 12.2 (a). This FID is subjected to a two-dimensional Fourier

transform to give a two-dimensional spectrum S (!1,!2), which is a function of the indirect frequency !1 and
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Figure 12.2: Array representation of the FID and spectrum from a two-dimensional experiment. The FID is
shown in (a), and the spectrum is in (b).

the direct frequency !2:

S (!1,!2) =
Z 1

0
dt1

Z 1

0
dt2s(t1, t2) exp (�i!1t1) exp (�i!2t2) . (12.1)

This is also presented as an array (Figure 12.2 (b)).

12.2 Solution NMR methods for paramagnetic systems

12.2.1 The general strategy

There are two principal observations associated with obtaining an NMR spectrum of a paramagnetic com-

pound in solution. Firstly the large isotropic shifts result in a spectrum with a spectral dispersion that is

considerably larger than that for diamagnetic molecules. This means that it is harder to excite the full

spectral range e�ciently with the RF powers that are typically available for solution NMR probes. Since

the range of frequencies that are excited by a pulse, known as the bandwidth, is generally proportional to

the RF field amplitude !1, we expect pulse sequences containing only short, high-power RF pulses to be

more applicable than sequences with longer periods of low-power irradiation, such as spin lock pulses and

periods of decoupling. High-power spin-lock periods and decoupling sequences are not advisable as they

may damage both the probe and the sample.

505



The second observation we encounter is that the relaxation times are typically very short due to the large

PREs. On the one hand, the short T1 and T2 time constants result in a considerable loss of signal during

an experiment, which severely limits the length of the pulse sequence that we can successfully employ. In

addition the short T2 gives very broad peaks in the spectrum. This is particularly problematic for large

molecules such as proteins, where there is an appreciable Curie contribution to transverse relaxation. Both

e↵ects lead to low sensitivity, and some peaks may be missing altogether. On the other hand the short T1

can be a useful property, as the dominant factor that determines the total length of the experiment is the

recycle delay, which is the time between the individual scans we allow for the spin system to relax back to

equilibrium, which is set to between 3T1 and 5T1 for a quantitative spectrum. The short T1 values allow us to

reduce the recycle delay, so that we can acquire more scans in a certain experiment time. This partly o↵sets

the reduction in sensitivity resulting from broad peaks and signal losses during the sequence.

Spectral editing using relaxation time di↵erences

When acquiring NMR spectra of paramagnetic molecules in solution one di�culty that may arise is that the

broad, low-intensity signals from the paramagnetic species are di�cult to observe as they are dominated by

sharper, more intense signals from diamagnetic species, for example the solvent. This is frequently the case

for paramagnetic proteins, where the solvent peak(s) dominate the spectrum. Fortunately solvent peaks can

be suppressed easily by exploiting the fact that their longitudinal relaxation time constants are significantly

longer than those for paramagnetic species. We denote the solvent and paramagnetic-species T1 times T long
1

and T short
1 respectively. If we set the recycle delay so that it is equal to 5T short

1 , but shorter than T long
1 , and

acquire several scans, the signals components from the paramagnetic species are fully-relaxed at the start of

each new scan, whereas the solvent signals are not. The former signals are acquired with maximum intensity,

reflecting the size of their equilibrium longitudinal magnetization, whereas the latter are almost completely

saturated. The resulting spectrum then contains far more of the signals from the paramagnetic species, with

the longer-relaxing solvent signals being largely suppressed. This is a simple example of spectral editing,

where the signal components with longer T1 values are selectively suppressed to allow the observation of the

signals with shorter T1 time constants. The saturation is usually not perfect, and so improved techniques are

required.

A more e↵ective T1-spectral-editing technique is based on the Water Eliminated Fourier Transform
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Figure 12.3: Pulse sequences for the selective suppression of signals from nuclear species with long T1. The
basic sequence for the WEFT and super WEFT experiments is shown in (a), and (b) shows the MODEFT
sequence. The filled and unfilled rectangles indicate pulses with nominal flip angles of 90� and 180�
respectively, and phase x.

(WEFT) pulse sequence, which is shown in Figure 12.3 (a) [334]. The sequence is the simple inversion–

recovery sequence, which can be used to measure T1. The z-magnetization vectors from all the signal

components are inverted by the 180� pulse, and then relax during the subsequent recovery delay ⌧. For

WEFT the delay ⌧ is set to T long
1 ln 2, at which time the z-magnetization due to the solvent passes through

zero. If however T short
1 is su�ciently short the z-magnetization of the paramagnetic species is fully relaxed.

The second pulse of 90� flip angle then excites coherences the magnitudes of which are proportional to

the recovered z-magnetization, with the result that the spectrum contains only the rapidly-relaxing signal

components from the paramagnetic species.

The WEFT experiment has been improved by employing the same sequence, but using di↵erent values of

the recovery delay ⌧ [335]. It has been shown that if the recycle delay is shortened so that the solvent peaks are

saturated, but is also su�ciently long to enable full relaxation of the paramagnetic signals, then one can find

a value of the delay ⌧ at which the solvent signals have zero intensity after several scans. This experiment has

been applied to paramagnetic proteins in solution in order to separate signals from the protein experiencing

a moderate PRE from those that relax with a larger PRE. Aa an example, 200 MHz 1H super WEFT NMR

spectra of a heme-containing cytochrome c mutant Ala80cytc are shown in Figure 12.4 [333, 336]. The super

WEFT spectrum obtained with both ⌧ and the recycle delay set to 250 ms, spectrum (a), shows several signals

with paramagnetic shifts that take them outside the normal diamagnetic region, and which exhibit T1 times

of approximately 100 ms. However these signals obscure the peaks from the axially-coordinated histidine,

which have shorter T1 times, of the order of a few ms. These more rapidly-relaxing signals can be observed

in the spectrum of Figure 12.4 (b), which was acquired by setting the ⌧ and the recycle delays to 20 ms and

33 ms respectively.
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intensity after each cycle. Weft [ 13 ] and S~perweft [ 14] pulse sequences (Fig. 9.1(H)) 
are based on the 180 ~ 90 acquisition pulse sequence. When T = T~ In 2 the signal 
with that Tt has an intensity of zero. If the recycle time is longer than 5T~ (i.e. the 
system has fully recovered at each cycle) zero intensity of the signal of interest is 
maintained all over the experiment. This is the Weft pulse sequence [ 13]. During 
the time T the fast relaxing signals have essentially recovered their magnetization 
and are detected. If the recycle time is chosen to be short with respect to the Tt 
values of the signals to be suppressed, but long with respect to the T~ values of the 
signals of interest, it has been shown that a t value exists that after a few cycles, i.e. 
at steady state conditions, effectively zeroes the intensities of the signals with long 
T~ [14]. An example of application of Superweft is provided in Fig. 9.4(A), where 
the spectrum of a protein containing a heine with low spin iron(III) in D20 is 
reported [ 15]. This is obtained with a Superweft sequence with T -  250 ms and 
recycle time = 250 ms. The spectrum shows a number of well-resolved signals outside 
the diamagnetic region. When the signals of the axially-coordinated histidine are 
looked for, advantage is taken of the fact that they have T~ values of the order of a 
few milliseconds, whereas the other hyperfine shifted signals have T~ values of about 
100 ms. Therefore, a Superweft with ~--20 ms and recycle time of 33 ms provides 
the spectrum of Fig. 9.4(B) where only the two non-exchangeable histidine ring 
protons are evident [ 15]. 

Weft or Superweft sequences are also widely used in 2D spectroscopies (see 
Section 9.4); in general, it is sufficient to place the 180°-3 part of the sequence in 
front of any 2D sequence to achieve the desired signal suppression. 

The Modeft pulse sequence [ 16] drives the slow relaxing signals to equilibrium 
when the acquisition pulse is delivered. Modeft means modified driven equilibrium 
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Fig, 9,4, 200 MHz ~H NMR spectra in DaO of the cycnide adduct of a cytochrome c mutant lacking the 
axial methionine (AlaS0eyt c) recorded using the Superweft sequence with ~ = 250 ms and recycle time of 
2S0 ms (A) and r - -20 ms and recycle time--33 ms (B). In the latter spectrum the two signals of the 
axially~coordinated histidino are apparent at 16, I and - 3.4 ppm [: 15]. 

Figure 12.4: 1H NMR spectra of the cyanide adduct of a cytochrome c mutant Ala80cytc acquired using the
super WEFT pulse sequence. In (a) is shown the spectrum acquired with ⌧ = 250 ms and a recycle delay of
250 ms. The spectrum in (b) was acquired with ⌧ = 20 ms and a recycle delay of 33 ms, and clearly shows
the two signals of the axially-coordinated histidine at 16.1 and �3.4 ppm [336]. Reproduced from [333], with
permission from Elsevier.
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Figure 12.3 (b) shows an alternative pulse sequence for suppressing the solvent signals, which is referred

to as MOdified Driven Equilibrium Fourier Transform (MODEFT) [337]. Here the delay ⌧ is chosen to

be short compared to T long
1 , and long compared to T short

1 . If these conditions are met, the solvent signals

experience no significant relaxation during the spin echo, and the combined e↵ect of the two 90� and 180�

pulses is to rotate the equilibrium solvent magnetization by 360� so that it returns to its equilibrium position

and the solvent signals are not excited. However the paramagnetic signals experience significant relaxation

during the spin echo, at the end of which the magnetization has returned to equilibrium. The final pulse then

acts as a simple excitation pulse, and we observe the paramagnetic signals. Typically super WEFT performs

better than MODEFT when a single signal is to be suppressed, but MODEFT has comparable, or better,

results when more than one slowly-relaxing signal needs to be suppressed [333].

12.2.2 Small molecules

There is an extensive suite of pulse sequences available for small molecules in solution, a comprehensive

survey and explanation of which can be found in Keeler [254]. Here we provide a brief overview of sequences

that have been employed in paramagnetic NMR.

Homonuclear through-bond correlations

One very important class of experiments is that of homonuclear through-bond correlation experiments. Cor-

relations are observed between nuclear spins that are coupled to each other via a through-bond J-coupling

interaction. The strength of this interaction is quantified by the J-coupling constant J, which typically has a

magnitude of of 0–20 Hz for 1H–1H interactions, and 0–100 Hz for 13C–13C couplings. In the experiments

described here the observation of a correlation requires that the indirect evolution time t1 be su�ciently long

to allow measurable evolution of the J-coupling. The desired signal varies as sin(⇡Jt1) and so the evolution

time required for maximum cross-peak signal is of the order 1/(2J) [254], which for 1H–1H correlation

experiments means that t1 must extend to times of the order of 25 ms. Clearly this may present a problem for

systems with large transverse PREs.

Figure 12.5 shows three pulse sequences that have been successfully used [332]. The simplest experiment,

shown in Figure 12.5 (a) is the COrrelation SpectroscopY (COSY) sequence, which has a mixing period

comprising a single 90� pulse. There are only two pulses in the sequence, which is an advantage in that this
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Figure 12.5: Pulse sequences and coherence-transfer pathways for two-dimensional homonuclear correlation
experiments. The basic COSY sequence in shown in (a), the DQF-COSY sequence is shown in (b), and (c)
shows the TOCSY sequence. The filled rectangles indicate pulses with a nominal flip angle of 90� and phase
x. In the TOCSY experiment the grey rectangle represents continuous irradiation during an isotropic mixing
sequence such as DIPSI-2.
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Figure 12.6: Examples of homonuclear through-bond correlation spectra of a two-spin system. The basic
COSY spectrum shown in (a), the DQF-COSY spectrum is shown in (b), and in (c) is the TOCSY spectrum.
The chemical shift o↵set frequencies of the two spins are ⌦1 and ⌦2, and the coupling between them, in
Hz, is J. The one-dimensional traces shown above each two-dimensional spectrum are taken parallel to the
!2-axis at !1 = ⌦1 + ⇡J, as indicated by the arrow. Positive contours are coloured red, and negative contours
are black.

minimizes the potential for problems with non-ideal excitation to occur. A simulated example of a spectrum

is shown in Figure 12.6 (a). The spectrum contains both diagonal-peak multiplets, and cross-peak multiplets

that indicate the presence of homonuclear correlations. Each diagonal-peak multiplet appears as an in-phase

array, meaning that all the individual peaks have the same phase. By contrast the cross peaks are anti-phase

in each dimension, so that the two components have intensities of opposite sign. The resulting multiplet

appears as an anti-phase square array in the two-dimensional spectrum. This form of the spectrum has a

disadvantage when the linewidth is comparable to or larger than the J-coupling, as the components of the

cross-peak multiplet cancel to an extent, resulting in a low-intensity multiplet, whereas the diagonal peaks

reinforce. Therefore it is often observed in rapidly-relaxing systems that COSY spectra exhibit very intense

diagonal-peak multiplets that dominate the cross-peak multiplets. Furthermore the diagonal peaks are out

of phase with the cross peaks by 90� in both dimensions. Hence if the cross peaks are phased to double

absorption (i.e. absorption mode in both dimensions), as is conventionally done, the diagonal peaks are in

double dispersion, and therefore have lineshapes with broad bases that can mask the presence of nearby

cross-peaks.

The Double-Quantum-Filtered COSY (DQF-COSY) experiment (Figure 12.5 (b)) is an improvement over

the basic COSY sequence. The mixing period comprises a double-quantum filter of two 90� pulses between
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which only double-quantum coherences (with p = ±2) are retained. The main advantage over basic COSY is

that the diagonal- and cross-peak multiplets have the same phase, and both appear as anti-phase square arrays

so that there is a more equal balance of intensities. This is seen in the simulated spectrum in Figure 12.6 (b).

In addition the double-quantum filter ensures that any nuclear spins that are not J-coupled do not contribute

to the spectrum, and so there are no intense singlet resonances. The only disadvantage of the DQF-COSY

experiment is that the double-quantum filter reduces the sensitivity relative to conventional COSY by a factor

of two.

The 1H–1H COSY spectrum of (2-NCH3-21-CH3CTPP)-NiCl in CDCl3 is shown in Figure 12.7 [338].

Here the Ni2+ ion coordinates to a porphyrin ring 2-NCH3-21-CH3CTPPH, the structure of which is also

shown, with the result that the 1H nuclei experience appreciable paramagnetic shifts. Despite the larger

dispersion of 60 ppm the COSY experiment yields a substantial number of 1H–1H through-bond correla-

tions. This is in part because the transverse PREs, which cause losses in sensitivity during the COSY pulse

sequence, due to Ni2+ are relatively modest compared to other 3d metal ions, as seen from Table 8.5. Hence

complexes of these other ions may be less suitable for 1H–1H COSY.

It should be noted that, in order to maximize the signal-to-noise ratio of the cross peaks in the two-

dimensional COSY spectrum, it is important to tailor the time-domain weighting functions to the expected

T2 time constants [257]. For a two-spin system the time modulation of the cross-peak multiplet between spins

1 and 2 in the FID has the form sin (⌦1t1) sin (⇡Jt1) exp (i⌦2t2) sin (⇡Jt2) exp
⇣

�t1/T (1)
2

⌘

exp
⇣

�t2/T (2)
2

⌘

, where

T (i)
2 is the transverse relaxation time constant for spin i. When relaxation is negligible the signal maximum in

the FID is at t1 = t2 = 1/(2J), and so we require a weighting function with a maximum at this point. However

for paramagnetic systems where JT2 ⌧ 1 we require a weighting function with maxima at approximately

t1 = t2 = T2. Typically we then acquire data points in the t1 dimension only out to a maximum time of 2T2.

The TOtal Correlation SpectroscopY (TOCSY) sequence is shown in Figure 12.5 (c). The mixing period

is a z-filter, comprising two pulses between which coherences are suppressed and only longitudinal terms are

retained, that contains a period of isotropic mixing. The latter, which is a period of continuous low-power RF

irradiation with duration ⌧m, which is referred to as the mixing time, is responsible for correlating signals.

Transfer from one nuclear spin to another occurs due to the J-coupling, which for maximum signal requires

⌧m to be of the order of 1/(2J). This mixing may result in low sensitivity due to (1) the length of the

mixing time giving large relaxation losses, and (2) ine�cient transfer due to the low RF field amplitude of
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Figure 12.7: Experimental two-dimensional 1H–1H COSY spectrum of (2-NCH3-21-CH3CTPP)-NiCl in
CDCl3. The upper spectrum shows the high chemical shift range of the pyrrole protons, and the lower
spectrum shows the meso-phenyl region with lower shifts. The structure of the porphyrin ring 2-NCH3-21-
CH3CTPPH is shown above the spectra. Adapted with permission from [338]. Copyright (1996) American
Chemical Society.

513



the irradiation being insu�cient to cover the spectral range of the paramagnetic shifts. The former problem

is mitigated by compromising on the length of the mixing time, and ensuring that it is no longer than T2.

However the form of the spectrum has a distinct advantage over COSY and DQF-COSY as all the multiplets

are in phase. This means the cross-peak multiplets due to J-couplings that are comparable to the linewidth

have a larger intensity, and so are easier to observe. An example of the simulated spectrum is shown in

Figure 12.6 (c). One additional di↵erence between TOCSY and the other experiments is that, for su�ciently

long mixing times, we observe ‘relay’ cross peaks between spins that are not directly coupled to each other,

provided that both are within the same continuously-coupled network of spins. For example consider a linear

spin system A–M–X, in which A is coupled to M and M is coupled to X, but A and X are not coupled to

each other. Both COSY and DQF-COSY give cross-peak multiplets between A and M, and M and X, only.

However TOCSY also gives a cross-peak multiplet between A and X, due to a relayed transfer from A to

M, and then from M to X (and vice versa). This allows TOCSY to be used to identify isolated spin systems

within a molecule.

An example of a 1H–1H TOCSY spectrum is shown in Figure 12.8 (b) [339]. The system is the medium-

sized lanthanide-ion complex YbH(oep)(tpp), the structure of which is shown in (a). Here the isotropic

shift dispersion is relatively modest, as the 1H shifts are dominated by a small PCS, and the Yb3+ induces a

comparatively modest PRE. For this reason the isotropic mixing sequence is able to induce a transfer with

su�cient e�ciency across the spectrum in order to observe a number of cross-peaks.

Homonuclear through-space correlations

A second type of homonuclear correlation experiment that is very important for structure determination

involves through-space magnetization transfers between nuclear spins via the dipolar coupling. In solution

the dipolar couplings are averaged to zero by molecular tumbling of the molecules. However the stochastic

fluctuations of the internuclear vectors result in a cross-relaxation mechanism in which magnetization is

transferred from one nuclear spin to the other. This transfer mechanism, referred to as the nuclear Overhauser

e↵ect (NOE), is useful for determining both the conformations adopted by flexible molecules, and relative

stereochemistry.

There are two pulse sequences that are commonly used. This first is the Nuclear Overhauser E↵ect

SpectroscopY (NOESY) sequence, which is shown in Figure 12.9. The sequence has the same form as
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Figure 12.8: Experimental two-dimensional 1H–1H homonuclear correlation spectra of YbH(oep)(tpp)
complex acquired in solution at 11.74 T and 298 K. The structure of the complex is shown in (A) with
Ln3+ = Yb3+. The spectra shown are (B) a TOCSY spectrum with an isotropic mixing time of 40 ms, (C) a
NOESY spectrum with a mixing time of 40 ms, and (D) a ROESY spectrum with a spin-lock time of 20 ms.
Adapted with permission from [339]. Copyright (1996) American Chemical Society.
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Figure 12.9: Pulse sequence and coherence-transfer pathway for the two-dimensional NOESY and EXSY
experiments. The filled rectangles indicate pulses with a nominal flip angle of 90� and phase x.
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Figure 12.10: Example of a homonuclear through-space correlation spectrum of a two-spin system in a small
molecule acquired using either the NOESY or ROESY pulse sequence. The two-dimensional spectrum is
shown in (a) The chemical shift o↵set frequencies of the two spins are ⌦1 and ⌦2. Positive contours are
coloured red, and negative contours are black. The plot in (b) shows the variation of the intensity of the cross
peak divided by the intensity of the diagonal peak as a function of correlation time for both two-dimensional
NOESY and ROESY. The plot in (b) was calculated for two 1H nuclei separated by 5 Å, in a magnetic field
of 11.74 T. The NOE/ROE mixing time is 100 ms. Here the correlation time at which the NOE enhancement
is zero is 360 ps.

the TOCSY sequence, but without the isotropic mixing element; instead the mixing sequence is a simple

z-filter of duration ⌧m. The transfer of z-magnetization from one spin to another occurs during ⌧m, which

for diamagnetic systems is usually between 100 ms and 1 s. For paramagnetic systems, on the other hand,

one should set ⌧m so that is does not exceed T1. The two-dimensional spectrum contains both diagonal and

cross peaks, both with the absorption lineshape. One interesting feature of the NOESY experiment is that the

relative signs of the cross and diagonal peaks changes with the correlation time ⌧c. For small molecules with

rotational correlation times, of the order of 10�10 s, the cross peaks are of opposite sign to the diagonal peaks.

Hence if we process the spectrum so that the diagonal peaks are of negative intensity, the cross-peaks are

positive. A NOESY spectrum simulated for such a small molecule is shown in Figure 12.10 (a). On the other
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Figure 12.11: Pulse sequence and coherence-transfer pathway for the two-dimensional ROESY experiment.
The filled rectangles indicate pulses with a nominal flip angle of 90� and phase x, and the grey rectangle is a
spin-lock pulse of duration ⌧m and phase y.

hand, large biomolecules with longer correlation times, of the order of 10�8 s, the sign of the cross-peaks

is inverted so that it is the same as that of the diagonal peaks. This is shown in the plot of the ratio of

the cross-peak and diagonal peak as a function of correlation time for a two-spin system in Figure 12.10

(b). It can be seen that there is a intermediate correlation time at which the rate of cross relaxation is zero;

the precise value depends on the Larmor frequencies of the nuclei, and therefore the magnetic field, but is

generally of the order of 5 ⇥ 10�10 s. This is disadvantageous if the molecule under study happens to have

such a correlation time, as no cross peaks are observed.

The second experiment avoids this problem. The pulse sequence of this Rotating frame Overhauser E↵ect

SpectroscopY (ROESY) experiment is shown in Figure 12.11. Here the mixing period comprises a spin lock

of the single-quantum coherences, during which cross-relaxation takes place. The spin lock is often applied

o↵ resonance to avoid transfer via the TOCSY mechanism. The advantage of ROESY over NOESY is that

the cross and diagonal peaks are always of opposite sign for any correlation time, as shown by the plot of

the ratio of the intensities of the cross peak and diagonal peak in Figure 12.10 (b), and so the spectrum has

the same form as that in Figure 12.10 (a). The disadvantage of ROESY is that it is necessary to spin lock for

times of the order of 100 ms, and so only low RF field amplitudes can be used. This may be problematic for

paramagnetic molecules with large spectral dispersion.

A comparison between the NOESY and ROESY spectra of the lanthanide complex YbH(oep)(tpp) is

shown in Figure 12.8 (c) and (d) [339]. For this system it can be seen that there are a number of cross peaks

observed in the ROESY spectrum (19–22) that are not seen by NOESY. As for the TOCSY spectrum applied

to this complex, we note that the modest shift dispersion and PRE induced by Yb3+ ensure that the spin-lock

transfer in the ROESY sequence is relatively e�cient.
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Figure 12.12: Pulse sequences for the (a) one-dimensional steady-state, and (b) one-dimensional selective-
inversion-transfer NOESY experiments. The filled rectangles indicate pulses with a nominal flip angle of
90�, and unfilled rectangles indicate pulses with a nominal flip angle of 180�. The grey rectangle indicates a
saturation pulse-sequence element.

The through-space NOE transfer can also be achieved using one-dimensional techniques, such as the

steady-state and selective-inversion NOE pulse sequences shown in Figure 12.12 (a) and (b). In the steady-

state experiment the longitudinal magnetization of one spin is perturbed from its equilibrium value by selec-

tive saturation for a time of the order of 1–100 ms. During the irradiation the magnetization is transferred via

cross relaxation. A final 90� pulse then excites the resonances, which are observed during acquisition. The

NOE transfer leads to an enhancement or diminution of the resonance intensities of the spins that are close in

space to the irradiated spin. This enhancement can be seen more easily by subtracting from the steady-state

spectrum a reference one-dimensional spectrum in which the amplitude of the irradiation field is set to zero

or, more commonly, the irradiation frequency is set well outside the spectrum of interest. Furthermore it is

found experimentally that it is preferable not to fully saturate the signal of interest, but rather to irradiate with

just su�cient power to reduce the intensity to 60% of its initial value [340, 341]. The full set of NOE transfers

can be obtained by repeating the experiment, irradiating each spin in turn. The inversion-transfer experiment

follows a similar principle. Here one spin is perturbed from equilibrium by a selective 180� inversion pulse.

The NOE transfer happens during the subsequent mixing time ⌧m, and the spectrum is excited by the final 90�

pulse. Once again the signal changes caused by the NOE are observed following subtraction of a reference

spectrum.

Figure 12.13 shows a series of di↵erence spectra acquired for YbH(oep)(tpp) using the steady-state NOE

sequence [339]. In the di↵erence spectra the positive peaks from nuclei experiencing an NOE transfer are of

low intensity, but can still be easily identified even when they are close to the more intense negative peak of

the irradiated nuclear spin. The selective steady-state method has also been used to provide an unequivocal

assignment of the resonances in the small paramagnetic molecule YbDOTMA in solution, which is an
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Figure 12.13: One-dimensional NOE di↵erence spectra of the YbH(oep)(tpp) complex acquired at 11.74
T and 298 K. The upper trace is the reference spectrum, labelled with the integrals of selected regions.
The six spectra (A)–(D), (F), and (J) are the NOE di↵erence spectra acquired following saturation of the
corresponding 1H indicated in the reference spectrum. In all cases the irradiated 1H gives a negative peak in
the di↵erence spectrum, and the 1H nuclei experiencing an NOE transfer give positive peaks. The structure
of YbH(oep)(tpp) is given in Figure 12.8 (a). Reproduced with permission from [339]. Copyright (1996)
American Chemical Society.
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Figure 12.14: Example of a homonuclear EXSY spectrum of a two-spin system in which the two nuclear
spins are in slow exchange. The chemical shift o↵set frequencies of the two spins are ⌦1 and ⌦2. Positive
contours are coloured red.

analogue of the MRI contrast agent GdDOTA[342]. This assignment was used to elucidate the confirmation

adopted in solution.

Homonuclear exchange correlations

The final homonuclear correlation experiment we consider is EXchange SpectroscopY (EXSY). This method

correlates between nuclear species that are in slow chemical exchange, which is defined as being when the

rate of exchange is small compared to the di↵erences in chemical shifts expressed in frequency units. The

pulse sequences are the same as for the NOESY and ROESY experiments in Figures 12.9 and 12.11. In both

cases the transfer of magnetization between nuclear spins occurs during the mixing periods ⌧m, and result in

similar spectra. We note that when we are in the fast exchange limit, such that the rate of exchange is large

compared to the di↵erence in chemical shifts, the two distinct peaks in the spectrum collapse into a single

resonance the linewidth of which depends in part on the exchange lifetime ⌧M. Figure 12.14 gives an example

of a simulated spectrum that would be observed for slow exchange between two sites with o↵set frequencies

⌦1 and ⌦2.

Two-dimensional 1H EXSY has been used to study the slow-exchange dynamics of the two isomeric

forms of molecules derived from the MRI contrast agent GdDOTA. Expansions of the 1H EXSY spectra of

YbDOTA� acquired at two temperatures are shown in Figure 12.15 [295]. The spectrum acquired at 25�C in

Figure 12.15 (a) shows several cross peaks between resonances of the two isomeric forms of the molecule.

When the temperature is lowered to 0�C in Figure 12.15 (b), the rate of exchange is reduced and fewer cross

peaks are observed at the same mixing time. An analogous study has been made of the molecule YbDOTMA
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Figure 12.15: Expanded region of the two-dimensional 1H EXSY spectrum of YbDOTA� acquired at two
temperatures. The structure of YbDOTA� is given above the spectra. The spectrum acquired at 25�C is shown
in (a), and the spectrum at 0 �C is shown in (b). The 1H Larmor frequency is �400 MHz, and the mixing time
is 5 ms. Adapted with permission from [295]. Copyright (1992) American Chemical Society.
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in solution [342].

Heteronuclear through-bond correlations

A central experiment in any spectral assignment strategy is correlation between di↵erent types of nuclear spin.

For the NMR of small organic molecules the most acquired correlations are between 1H and a heteronucleus

X, which may for example be 13C or 15N at natural abundance. When choosing a pulse sequence we have a

choice over which nucleus to excite at the beginning of the sequence, and which to observe. If the excited

nuclear spin has gyromagnetic ratio �exc and longitudinal relaxation time constant T exc
1 , and the observed

nucleus has gyromagnetic ratio �obs, it can be shown that the overall sensitivity is approximately proportional

to [257]

�exc�
3/2
obs

h

1 � exp
⇣

�T/T exc
1

⌘i

, (12.2)

where T is the recycle delay. Equation 12.2 represents an optimistic expectation for the achievable sensitivity,

and in practice must be multiplied by factors that account for the e�ciency of the coherence transfer(s) in the

sequence, the quality factor of the probe for the observed nucleus, and the inverse linewidth of the observed

nucleus. For diamagnetic molecules there is a sensitivity advantage to both exciting and detecting 1H (via two

transfers), as it has firstly both the larger gyromagnetic ratio, and secondly generally lower T1 values which

allow us to shorten the recycle delay. For paramagnetic molecules the advantage is less clear as the shorter

1H T2 time constants lead both to a loss in the e�ciency of the coherence transfers, which is exacerbated by

the use of a second transfer back to 1H, and to broader 1H lines. Nevertheless it is generally observed that

for small paramagnetic molecules 1H excitation and detection is preferable, whereas for large paramagnetic

biomolecules with significant Curie broadening better sensitivity can be obtained by detecting the narrower

heteronucleus resonances.

One experiment that has been successfully applied to paramagnetic molecules is the Heteronuclear Multiple-

Quantum Correlation (HMQC) sequence for one-bond correlations shown in Figure 12.16 (a). The 1H spin

is excited by the first pulse, and then evolves under the heteronuclear J-coupling during the delay ⌧1. The

coherence is transferred to X by the first X pulse, which generates multiple-quantum coherences between the

two spins of total coherence orders �2, 0, and +2. The chemical shift of X then evolves during t1, before the

second X pulse regenerates the 1H single-quantum coherence and the J-coupling evolves during the second
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Figure 12.16: Pulse sequences and coherence-transfer pathways for the two-dimensional HMQC and HSQC
experiments. The basic HMQC sequence is shown in (a), in which we detect the in-phase doublet during
acquisition. Heteronuclear decoupling may be employed in order to observe a singlet. Alternatively we can
observe the anti-phase doublet using the sequence in (b). The delays ⌧1 have an optimum value of 1/(2JIS ) in
the absence of relaxation. The basic HSQC sequence is shown in (c), in which we observe either the in-phase
doublet or, using heteronuclear decoupling, a singlet. We can also observe the anti-phase doublet directly
using the HSQC sequence in (d). The delays ⌧2 have an optimum value of 1/(4JIS ). The filled rectangles
indicate pulses with a nominal flip angle of 90�, and unfilled rectangles indicate pulses with a nominal flip
angle of 180�. The grey rectangle represents broadband heteronuclear decoupling. All pulses have phase x.
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Figure 12.17: Examples of heteronuclear correlation spectra of a two-spin heteronuclear spin system I–S
acquired using either the HMQC or HSQC experiment. The chemical shift o↵set frequencies of the two
spins are ⌦I and ⌦S , and the heteronuclear J-coupling constant is J. In (a) is shown the spectrum obtained
with heteronuclear S -spin decoupling during acquisition. In the absence of decoupling we obtain a doublet
with an in-phase splitting in !2, as shown in (b). Alternatively we can acquire immediately after the final 90�
pulse(s), and obtain a spectrum with an anti-phase doublet, as shown in (c). Positive contours are coloured red,
and negative contours are black. In (d) are shown the peak intensities obtained with and without transverse
relaxation for the HMQC (as a function of ⌧1) and HSQC (as a function of ⌧2) pulse sequences that generate
the in-phase and anti-phase doublets. These curves were generated with J = 140 Hz and T2 = 4 ms.

delay ⌧1. Finally 1H is detected during t2. If heteronuclear decoupling is applied to X during detection the

spectrum contains a single peak, as shown by the simulated spectrum in Figure 12.17 (a). For paramagnetic

systems heteronuclear decoupling may be ine↵ective, or deleterious to the quality of the spectrum. In this

case the decoupling pulses can be omitted during acquisition, resulting in a spectrum containing a doublet

with an in-phase splitting in the direct dimension, as shown in Figure 12.17 (b).

The advantage of this experiment is its simplicity: there are only four pulses in the sequence, which

reduces the e↵ects of imperfections when applied to paramagnetic systems. The two most significant sources

of error are the 180� pulse on 1H, and the heteronuclear decoupling during acquisition. The first problem

arises because the bandwidths of 180� pulses are generally lower than those of 90� pulses. However if the

conventional pulse proves to have insu�cient bandwidth to excite the whole 1H spectrum it can be replaced

by more broadband composite 180� pulses, such as the broadband inversion pulses (BIPs) of Smith et al
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[343]. The second problem is due to the large spectral dispersion of paramagnetic systems, which may make

decoupling ine�cient. However if this is the case the decoupling can simply be omitted.

The peak intensity is proportional to sin2 (⇡JIS ⌧1), where JIS is the one-bond heteronuclear J-coupling

constant, and so the optimum value for ⌧1 is 1/(2JIS ). For one-bond correlations between 1H and 13C the

coupling constant is typically 140 Hz, resulting in an optimum ⌧1 of 3.6 ms, as shown in Figure 12.17 (d).

However for short T2 it is usually found that the optimum delay is shorter, as shown in Figure 12.17 (d)

where a T2 of 4 ms reduces the optimum value of ⌧1 to 2.4 ms. The maximum peak intensity is reduced to

0.22 of the value expected with no relaxation. Such losses are expected for paramagnetic systems, but may

be unacceptable when sensitivity is at a premium. In these cases we can simply omit the second delay ⌧1 to

mitigate this sensitivity loss, which gives the pulse sequence in Figure 12.16 (b). The resonance now appears

as an anti-phase doublet, as shown in Figure 12.17 (c), with an intensity proportional to sin (⇡JIS ⌧1) with no

relaxation. However when we account for relaxation with the same T2 of 4 ms, we see in Figure 12.17 (d)

that the optimum ⌧1 is again reduced to 2.4 ms, but that the intensity of the peak is reduced only to 0.48. Thus

the omission of the second delay ⌧1 can result in double the sensitivity compared to the first sequence.

A second heteronuclear correlation experiment that is widely used is the Heteronuclear Single-Quantum

Correlation (HSQC). The basic pulse sequence, which contains more pulses than the HMQC sequence, is

shown in Figure 12.16 (c). This experiment correlates the anti-phase single-quantum coherences of the S -

spin in t1 against the in-phase single-quantum coherence of the I-spin in t2. The anti-phase coherences are

generated and reconverted by a pair of heteronuclear spin-echo sequences, with half-echo delays ⌧1. The

form of the spectra in the presence and absence of heteronuclear decoupling during acquisition is, as shown

in Figure 12.17 (a) and (b), the same as for the corresponding HMQC spectra. The intensity of the resonance

is proportional to sin2 (2⇡JIS ⌧2), which is a maximum when ⌧2 is set to 1/(4JIS ), if we neglect relaxation

e↵ects. For a coupling constant of 140 Hz, the optimum ⌧2 is 1.8 ms. As for the HMQC experiment,

the reconversion of the I-spin coherences from anti-phase to in-phase immediately prior to acquisition in the

HSQC experiment can be omitted for systems with short T2 times. The arguments for the improved sensitivity

resulting from the omission of the second spin echo are the same as for the HMQC experiment given above,

and so the plots in Figure 12.17 (d) also apply to the HSQC sequences with ⌧1 = 2⌧2. This resulting HSQC

pulse sequence is shown in Figure 12.16 (d), and produces a spectrum with an anti-phase splitting as shown

in Figure 12.17 (c).
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When any of these HMQC or HSQC sequences are applied to proteins in aqueous solution, it is very

important to suppress the water signal. This can be done, for example, by incorporating pulse-sequence ele-

ments based on experiments like WEFT. This has been done recently by Ciofi-Ba↵oni et al. who incorporated

water suppression in an HSQC sequence to give the IR-HSQC-AP experiment [344].

12.3 Solution NMR of paramagnetic proteins

The study of the structure and dynamics both of paramagnetic metalloproteins [345] in solution, and proteins

carrying a paramagnetic tag [346], has seen substantial progress over the years. As for small molecules

the paramagnetic ion in the protein is a rich source of structural information that can be exploited, but also

presents spectroscopic challenges. Many of these challenges are the same as for small molecules. However

there is an additional problem that we meet when studying paramagnetic proteins, which is that the transverse

PREs are augmented by substantial Curie relaxation, which leads to very severe line broadening. These

features are briefly discussed here, beginning with drawing a parallel with diamagnetic proteins.

12.3.1 General strategy for resonance assignment and structural restraints

When used to describe a protein the term ‘structure’ has a more complex meaning than for a small molecule.

This is because a protein is a macromolecule, and exhibits structural features on four di↵erent levels. All

proteins are formed from a sequence of amino acids, of which there are twenty with the basic structure

H2NC⇤HRCO2H, via a series of peptide bonds. Each amino acid comprises a carboxylic acid group, and an

amine and sidechain R joined to the ↵ carbon. The precise sequence of amino acids that forms the protein, and

example of which is shown in Figure 12.18 (b), is referred to as the primary structure. The primary structure

comprises two parts, referred to as the backbone and the sidechains. The former comprises a repeating

sequence of the directly-bonded atoms of an amide nitrogen (N), which is joined to an ↵ carbon (CA), which

is joined to a carbonyl carbon (CO, or C0). To this basis sequence we also add the amide proton (HN), ↵

proton (HCA), and the � carbon (CB), to give an extended backbone. The sidechains (SC) comprise the R

groups of the amino acids.

The amino acid sequence can then form local structural conformations, such as ↵-helices or �-sheets; an

example of the latter is shown in Figure 12.18 (b). These structural features are due to cooperative hydrogen
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Figure 12.18: Illustration of the structure of a protein. The primary structure, comprising the sequence of
amino acids, is shown in (a). The first step in the NMR structural analysis of the protein is to perform a
sequential assignment of the nuclear spins along the backbone (HN, CO, CA, CB), and of the nuclear spins
in the sidechains (SC). Following this the three-dimensional secondary and tertiary structures are determined
by measuring distance restraints. This may involve measuring distances between 1H nuclei in the backbone
or sidechains via dipolar-based methods (b), or measuring the PCS induced by a paramagnetic centre (c).

bonds, and are referred to as secondary structure. The tertiary structure is the overall three-dimensional shape

that the protein adopts when it folds, as shown in Figure 12.18 (c). Finally, individual protein units can

aggregate to form larger assemblies, the quaternary structure.

Frequently a strategy for obtaining structural information about the protein comprises two parts. Firstly

we need to obtain a complete assignment of the nuclear resonances along the protein backbone and sidechains.

For the backbone this requires a so-called sequential assignment in which the connectivities of the N, CO,

CA, CB, HN, HCA, and possibly HCB are established using three- and higher-dimensional triple-resonance

experiments that correlate the 1H, 13C, and 15N nuclear spins. These experiments combine heteronuclear one-

bond coherence transfers, using schemes based on either the HSQC or HMQC experiments and homonuclear

1H–1H and 13C–13C transfers either following spin-echo pulse sequence elements, or using TOCSY. There are

experimental schemes that accomplish one-bond coherence transfers between spins within each amino acid,

and other schemes that perform transfers across the CO–N bonds in order to establish connectivities between

the resonances of one amino acid and those of the neighbouring residue. These experimental schemes are

well-established, and generally follow the pattern that 1H is both excited and directly detected in order to

maximize sensitivity as in the HSQC experiment [347]. In addition similar techniques are used for the
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sequential assignment of the amino acid sidechains [347].

Secondly, having obtained the assignment of the full set of resonances, we employ experimental schemes

to establish which nuclear spins have a close spatial proximity. These distance restraints are then used

in a restrained molecular dynamics simulation to determine how the protein folds in the tertiary structure.

Typically we employ three- and higher-dimensional triple-resonance experiments which contain a NOESY

through-space transfer block in order to measure HN–HN, HN–HCA, and HCA–HCA distance restraints between

the backbone protons, restraints between protons on the backbone and those on the sidechains, and restraints

between sidechain protons [347].

In paramagnetic proteins we have the additional advantage that the paramagnetic e↵ects can be used to

measure the positions of the nuclear spins relative to the metal ion. These so-called paramagnetic restraints

can then be combined with the other distance restraints described above. However we also encounter prob-

lems that arise from the large shifts and PREs that are experienced by nuclei close to the metal ion. These

mean that nuclear spins close to the metal centre are harder to observe using conventional experimental

schemes which use practicable RF fields and contain several coherence-transfer steps with an overall duration

of several milliseconds. The result is that the protein contains a so-called blind sphere centred on the metal

ion, within which we do not observe the nuclear spins using conventional experimental pulse sequences. This

is illustrated in Figure 12.19, which also includes the other regions into which we can divide the protein,

depending upon the e↵ect of the paramagnetic centre. The size of the blind sphere depends on the nature

of the metal ion, and in particular the size of the PRE. For example metal ions which induce large PREs,

such as Mn2+, Cu2+, and Gd3+, have larger blind spheres than metal ions associated with substantially lower

induced PREs, such as the other trivalent lanthanide ions. If we employ both the excitation and detection

of protons the typical radius of the blind sphere is in the range 8–10 Å for a 10 kDa protein, and becomes

larger for increasing molecular mass. One key reason for the presence of the blind sphere is that the nuclear

spins close to the metal ion experience a large SA which, in combination with the slow rotational di↵usion

of the protein, results in severe line broadening due to transverse Curie relaxation. However we can reduce

the size of the sphere by employing protonless NMR methods, in which the strategies for both assignment

and distance restraints are based only on 13C and 15N, which are of lower gyromagnetic ratio and therefore

experience a lower PRE [345, 348–351]. Here we trade sensitivity for increased resolution. In such cases the

blind sphere radius may be reduced to approximately 5.5 Å.
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paramagnetic centre

blind sphere
(1H and 13C)

visible to 13C,
blind to 1H

visible with measurable
paramagnetic effects
(1H and 13C)

no measurable
paramagnetic effects

Figure 12.19: Schematic highlighting the di↵erent regions of a metalloprotein containing a paramagnetic
metal ion that behave di↵erently in the NMR experiment. There is a so-called ‘blind sphere’ centred on the
metal ion, of typical radius 8–10 Å, where the nuclear spins cannot be observed using conventional NMR
pulse sequences. The size of this sphere for any given protein is reduced if we employ protonless NMR
methods and observe 13C instead. Beyond the blind sphere there is a region where the nuclear spins can be
observed using conventional methods, and which exhibit long-range paramagnetic e↵ects, such as PCS and
PRE, that are measurable. Beyond this region the nuclear spins are su�ciently far from the paramagnetic
centre for the paramagnetic shifts and relaxation e↵ects to be unmeasurable.

At distances from the metal centre beyond the blind sphere there is a region in which the nuclear spins

are observable by conventional (or adapted) NMR experiments and exhibit measurable paramagnetic e↵ects,

such as the PCS and PRE, as shown in Figure 12.19. It is in this region that paramagnetic restraints can be

used to refine the tertiary structure of the protein. Finally in very large proteins there is a further region at

longer distances from the metal ion in which there are no paramagnetic shifts or relaxation e↵ects. However

we may see broadening from the BMS due to a non-spherical sample. Here standard NMR experiments can

be used exactly as for diamagnetic proteins.

12.3.2 Paramagnetic NMR methods

Inside the blind sphere

Despite being referred to as the ‘blind sphere’ it is actually possible to observe and assign the nuclear spins

within this region if we use pulse sequences that are optimized for large shifts and large PREs. Residue-

specific assignments of the protons can be performed using simple NMR pulse sequences such as the one-

dimensional steady-state NOE experiment [352], and two-dimensional COSY and NOESY[353, 354]. If

necessary, additional sequences can be employed to aid the assignment, such as 1H TOCSY and 1H–13C
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HMQC [46].

Great care must be taken in interpreting the COSY spectra of paramagnetic biomolecules with slow

rotational di↵usion. It has been shown by Bertini et al. that in addition to the expected cross peaks that

indicate J-coupling, cross peaks may also appear due to relaxation-induced coherence transfer even in the

absence of a J-coupling [265]. This is due to cross-correlation between the relaxation mechanism involving

the dipolar coupling of the two spins in question with the Curie relaxation mechanism of one of the spins.

As discussed in section 8.8.3, the presence of the cross-peak multiplet is due to cross-relaxation between

the in-phase and anti-phase coherences of the spin that is induced by cross-correlated relaxation (CCR).

In addition the CCR results in the two components of the doublet having di↵erent linewidths in the two

dimensions, and so for zero J-coupling we do not obtain the perfect cancellation that we would see without

CCR. The result is that with CCR, even in the limit of zero J-coupling, we can both generate an anti-phase

coherence which is transferred to the second spin by the mixing period, and observe an anti-phase doublet in

the cross-peak multiplet. However the COSY experiment remains an extremely useful assignment aid in the

blind sphere of paramagnetic proteins [355].

Outside the blind sphere

Nuclear species outside the so-called blind sphere can be observed by employing the standard NMR ex-

periments for diamagnetic proteins. For example two-dimensional 1H–15N HSQC spectroscopy has been

performed on the 30 kDa complex between the N-terminal domain of the ✏ subunit and the ✓ subunit of

Escherichia coli DNA polymerase III both in the absence and presence of a paramagnetic metal ion [356].

In order to reduce sensitivity losses due to transverse Curie relaxation, the sequence in Figure 12.16 (d) was

used in which the anti-phase splitting is detected in the direct 1H dimension in the absence of 15N decoupling.

Since 1H has a larger gyromagnetic ratio than either 13C or 15N, both initial excitation and detection of

1H are used in conventional sequences is used to maximize the sensitivity, according to Equation 12.2 [347].

However the larger gyromagnetic ratio also leads to a larger Curie transverse PRE in paramagnetic proteins,

which leads to a reduction in sensitivity due to the increased line broadening observed in the 1H dimension,

and coherence decay during transfer steps that involve 1H. For nuclei that are close to the metal ion the

relaxation losses incurred may negate any increase in sensitivity from the initial excitation and detection of

1H. In these cases it has been shown that protonless NMR experiments, in which the initial excitation and
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Figure 12.20: Illustration of the sequential assignment procedure using 13C/15N experiments. The relevant
one-bond J-coupling constants are given. Reproduced with permission [345]. Copyright John Wiley and
Sons.

observation are both on 13C lead to better sensitivity closer to the metal centre, and allow us to detect nuclei

closer to the paramagnetic ion, reducing the radius of the blind sphere from 8–10 Å to 4–5 Å [345, 348–351,

357–361]. For example single-resonance 13C COSY, 13C multiple-quantum experiments between CO and

CA (COCAMQ), and 13C NOESY have been shown to be useful for the detection of signals in Cu2+/Zn2+

superoxide dismutase (SOD), allowing detection as close as 4 Å to the Cu2+ ion [348], and in Tb3+-substituted

human oncomodulin (OM), where the use of protonless methods reduces the radius of the blind sphere from

16 Å to 8 Å [357].

A sequential assignment of the backbone and sidechain resonances can be achieved using a combination

of the 13C/15N experiments CON, CANCO, CACO, CBCACO, and 13C TOCSY [345, 349]. The assignment

procedure is illustrated in Figure 12.20. We begin with the CACO experiment, which correlates between

the CO and CA nuclei of the same amino acid residue. The CO is correlated to the CB via the CBCACO

experiment, and the CA is correlated with the other carbons of the sidechain via the TOCSY. We then connect

the sequence of amino acid residues together by measuring correlations between CO and N via the CON

experiment, and the CA and CO via the CANCO experiment.
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Figure 12.21: The IPAP and S3E pulse sequences for direct detection of CO with removal of the splitting due
to the CO–CA J-coupling. The IPAP sequences are shown in (a) and (b). The sequence in (a) acquires the
in-phase (IP) spectrum, and the anti-phase (AP) spectrum is acquired by (b). As shown in (c) the sum and
di↵erence of the two spectra give di↵erent components of the doublet. A frequency shift of each component
to the position of the CO shift followed by a second summation gives the final decoupled spectrum. The
same result can be achieved with the S3E experiment in (d), but with a shorter sequence. The delay � is set
to 1/(2JCOCA). Narrow and broad shapes indicate CO- or CA-selective 90� and 180� pulses respectively. The
phases are: (a) �IPAP = x,�x, and �rec = x,�x; (b) �IPAP = �y, y, and �rec = x,�x; (d) �S3E(1) = ⇡/4, ⇡/4,
�1(1) = x, y, �2(1) = x, y, �rec(1) = x,�x, and �S3E(2) = ⇡/4, 5⇡/4, �1(1) = x, y, �2(1) = �x,�y, �rec(1) =
x,�x, where (1) and (2) are the two experiments required to separate the in-phase and anti-phase spectra.
Reproduced from [361], with permission from Elsevier.

In the resulting spectra a significant limitation in the available 13C resolution is the one-bond homonuclear

J-coupling between the CO and CA, and the CA and CB carbons. Therefore it is of advantage to decouple

these interactions, to obtain narrower resonances. Whilst in general homonuclear J-decoupling is very

di�cult, we are assisted in the present case by the uniformity of CO–CA and CA–CB J-coupling constants,

which take values of 55 Hz and 35 Hz respectively. This uniformity allows us to apply methods such as the

In-Phase Anti-Phase (IPAP) and Selective-Spin-State Excitation (S3E) methods shown in Figure 12.21 [361].

In the IPAP method two sequences are employed (Figure 12.21 (a) and (b)) which acquire two spectra of

the CO resonances, in which the splitting due to the CO–CA coupling is in-phase (IP) and anti-phase (AP)

respectively. This is achieved by allowing the CO coherence to evolve during selective spin-echoes in which

the total echo delay is � = 1/(2JCOCA) = 9.1 ms. As shown in Figure 12.21 (c), the sum of the IP and AP

spectra yields a spectrum in which only one component of the doublet is present, and the di↵erence yields

the other component. Finally a frequency shift of the components in the two spectra so that they lie at the

CO shift followed by summation results in a CO spectrum that is homonuclear JCOCA-decoupled. The S3E
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Figure 12.22: The DIPAP pulse sequences for direct detection of CA with removal of the two splittings due to
the CO–CA and CA–CB J-couplings. The four sequences acquire spectra that are (a) in-phase with respect to
both couplings (IP-IP), (b) anti-phase with respect to the CO–CA coupling only (AP-IP), (c) anti-phase with
respect to the CA–CB coupling only (IP-AP), and (d) anti-phase with respect to both couplings (AP-AP).
In (e) are shown the four spectra acquired from a single amino acid, plus the decoupled spectrum obtained
from a suitable combination of the four spectra. The delays � and ⇠ are set to 1/(2JCACB) and 1/(2JCOCA)
respectively. Narrow and broad shapes indicate CO- or CA-selective 90� and 180� pulses respectively. The
phases are: �DIPAP(A) = y,�y, �DIPAP(B) = x,�x, �DIPAP(C) = �y, y, �DIPAP(D) = x,�x, and �rec = x,�x.
Reproduced from [361], with permission from Elsevier.

method achieves the same result, but using the sequence in Figure 12.21 (d). Here two spectra are acquired

following evolution during two selective spin-echo sequences with total echo delays of �/2 = 1/(4JCOCA) =

4.5 ms. These are combined as for the IPAP method to give the decoupled CO spectrum. It is worth noting

that the S3E method has the advantage of using the shorter pulse sequences, and so incurs lower losses due

to transverse Curie relaxation. Both methods can be incorporated into any more sophisticated correlation

experiment in which the CO dimension is directly acquired.

Both the IPAP and S3E methods can also be implemented for direct observation of the CA resonances

in order to remove the splitting due to the CO–CA coupling. The resulting spectra will, of course, still

contain the splitting due to the other large J-coupling between CA and CB. However this latter splitting can

be removed too by employing the Double IPAP (DIPAP) method shown in Figure 12.22 [361]. Here we

acquire four spectra using the pulse sequences in Figure 12.22 (a)–(d), in which the the CA resonance is

(a) in-phase with respect to both couplings (IP-IP), (b) anti-phase with respect to the CO–CA coupling only
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Experiment Correlations Reference
2D
CACO–IPAP/S3E CAi–COi [351, 358]
CBCACO–IPAP/S3E CBi–COi, CAi–COi [349, 351]
CCCO–IPAP/S3E C(B,G,D,E)i–COi, CAi–COi [351]
CON–IPAP Ni–COi�1 [351, 362]
CANCO–IPAP CAi–COi�1, CAi�1–COi�1 [359, 360]
CBCANCO–IPAP CAi–COi�1, CAi�1–COi�1, CBi–COi�1, CBi�1–COi�1 [351]
3D
CBCACO–IPAP/S3E CBi–CAi–COi, CAi–CAi–COi [349]
CCCO–IPAP/S3E C(B,G,D,E)i–CAi–COi, CAi–CAi–COi [351]
CANCO–IPAP CAi–Ni–COi�1, CAi�1–Ni–COi�1 [359, 360]
CBCANCO–IPAP CAi�1–Ni–COi�1, CBi�1–Ni–COi�1 [351]
CCCON–IPAP CAi�1–Ni–COi�1, C(B,G,D,E)i�1–Ni–COi�1 [351]
CBCANCO–IPAP CAi–Ni–COi�1, CAi�1–Ni–COi�1, CBi–Ni–COi�1, CBi�1–Ni–COi�1 [351]

Table 12.1: Two- and three-dimensional protonless NMR experiments available for obtaining sequential
assignments of the C and N spins [361]. For each experiment the observed correlations are given, where the
subscript refers to the residue number in the sequence.

(AP-IP), (c) anti-phase with respect to the CA–CB coupling only (IP-AP), and (d) anti-phase with respect to

both couplings (AP-AP) as shown in Figure 12.22 (e). These four spectra are then summed and subtracted to

give four new spectra, each one of which contains a single component of the doublet of doublets. Following

a frequency shift and sum, we obtain the homonuclear-decoupled CA spectrum. As for the simple IPAP and

S3E methods, the DIPAP method can be incorporated into any pulse sequence which detects the CA spins

directly. The disadvantage of the DIPAP method compared to the simple IP method is that the selective spin

echoes have a longer total echo time �, which is required for the complete conversion of the CA–CB in-phase

coherence to an anti-phase coherence. Hence � = 1/(2JCACB) = 14.3 ms, which reflects the shorter CA–CB

coupling constant compared to the CO–CA coupling constant.

A large number of two- and three-dimensional protonless NMR experiments has been proposed for the

sequential assignment of the backbone and sidechains of paramagnetic proteins, incorporating the IPAP

or S3E methods where appropriate. These are listed in Table 12.1 [361] Once the assignment has been

obtained we can acquire structural restraints with the 13C NOESY experiment, and combine these with a set

of paramagnetic structural restraints as described in section 12.3.3.

12.3.3 Paramagnetic structural restraints

The NMR methods described in the previous section for observing the nuclei outside the blind sphere are

used to obtain structural restraints describing the position of either the nucleus or a nucleus–nucleus bond
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Figure 12.23: Illustration of the information available from the di↵erent paramagnetic restraints in a
paramagnetic protein, applied to the N–H amide bond. The pseudo-contact shift (PCS) of the 1H can be used
to determine the position of the H with respect to the magnetic susceptibility tensor of the unpaired electrons,
via the distance between the nucleus and paramagnetic centre r, and the angles (✓, �) that define the orientation
of the electronic–nuclear vector with respect to the PAF of the susceptibility tensor (a). The 1H paramagnetic
relaxation enhancement (PRE) is used to determine the distance r of the H from the paramagnetic centre (b).
Both the cross-correlated relaxation (CCR) and residual dipolar coupling (RDC) provide structural restraints
for the H–N bond. The CCR broadening of 1H provides both the distance r between the paramagnetic centre
and H, and the angle # between the electronic–H vector and the H–N bond vector (c). The RDC depends on
the angles (⇥,�) that describe the orientation of the N–H bond and the PAF of the magnetic susceptibility
tensor.

with respect to the paramagnetic centre. These restraints can then be used in combination with conventional

restraints, such as those obtained from NOESY, to obtain the three-dimensional protein structure. Here we

describe four such restraints, namely the PCS, PRE, cross-correlated relaxation (CCR) between the Curie

and diamagnetic dipolar mechanisms, and the residual dipolar coupling (RDC). The distance and orientation

information that can be obtained from these four restraints is illustrated in Figure 12.23 [356]. In addition we

comment on the measurement of contact shifts inside the so-called blind sphere, and their use as structural

restraints for nuclei located in the metal binding site.

Intrinsic paramagnetic centres and paramagnetic tagging

When discussing paramagnetic structural restraints in protein NMR, we divide proteins into two groups. The

first group comprises metalloproteins with one or more metal binding sites [345]. This includes proteins

where the bound metal ion is paramagnetic or else becomes paramagnetic during the relevant metabolic

process, such as in superoxide dismutase (SOD) where the copper ion changes between the Cu+ and Cu2+

oxidation states. However we also include proteins that bind diamagnetic ions, such as Ca2+ or Zn2+, which

can be substituted with paramagnetic ions for the purpose of introducing paramagnetic e↵ects into the NMR

spectrum.
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The second group contains all other types of protein that do not have an intrinsic metal binding site, but

for which it would be desirable to introduce a paramagnetic species into the structure in order to measure the

resulting paramagnetic e↵ects to give more information on the structure and dynamics. The paramagnetic

centre is introduced in the form of a tag, which is a molecular fragment that is attached to part of the protein

[346]. There is a wide variety of di↵erent tags, each with di↵erent paramagnetic shift and PRE properties and

which are optimized for the measurement of di↵erent paramagnetic restraints. A selection of organic-radical

and metal-binding tags is summarized in Figure 12.24 [346]. The simplest tags are nitroxide labels (Figure

12.24 (1)–(3)), which have an unpaired electron in the NO group, and which can be easily attached to a

cysteine amino acid residue that is exposed on the surface of the protein. The NO radical exhibits relatively

slow electronic relaxation, and so is particularly useful for inducing large PREs in the region immediately

surrounding the tag. The other tags are molecular fragments that bind metal ions. For instance peptides that

are used to mimic a metal-binding site can be attached to either terminus of the protein. Other examples

include tags based on ethylenediamine tetraacetic acid (EDTA) ((Figure 12.24 (4)–(6)), caged lanthanide-

binding tags ((Figure 12.24 (7)–(9)), and tags based on dipicolinic acid ((Figure 12.24 (10)–(12)), which can

be used to introduce metal ions onto specific surface-exposed amino acid residues. Such tags can bind to

either 3d-transition-metal ions or lanthanide ions, depending on the particular paramagnetic restraint we wish

to measure. The metal ions Mn2+, Cu2+, and Gd3+ can be used to induce large PREs, whereas Co2+ and

non-Gd3+ lanthanide ions induce large PCS and RDC e↵ects [346].

The diamagnetic reference

When performing measurements on a paramagnetic system, we should note that the paramagnetic contribu-

tions cannot be measured in isolation. Rather the quantity we measure contains contributions both from the

diamagnetic (orbital) and paramagnetic e↵ects. Therefore when obtaining paramagnetic restraints we need to

perform two sets of measurements, one on a diamagnetic reference protein and the other on the paramagnetic

protein. If the two proteins have the same structure, and the same diamagnetic electronic properties, the

di↵erence between a quantity measured on one and that measured on the other is equal to the paramagnetic

contribution. For a paramagnetic metallotprotein with a Co2+-binding site, a suitable diamagnetic reference

would be the same protein with the metal ion substituted with the diamagnetic Zn2+ ion. The question

whether the two systems really do have the same structure and diamagnetic electronic properties is rather a
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Figure 12.24: Structures of molecular fragments used as paramagnetic tags. Fragments (1)–(3) are nitroxide
radicals, (4)–(6) are metal-binding tags based on EDTA, (7)–(9) are caged lanthanide-binding tags, and (10)–
(12) are metal-binding tags based on dipicolinic acid. Reproduced from [346], with permission from Elsevier.
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Figure 12.25: The 1H–15N HSQC spectrum of the 30 kDa complex between the N-terminal domain of
the ✏ subunit and the ✓ subunit of Escherichia coli DNA polymerase III in the absence and presence of a
paramagnetic metal ion. The spectrum contains the anti-phase doublets of the two proteins, one binding
paramagnetic Dy3+ (yellow and blue peaks) and the other with no metal ion (red and blue peaks). Straight
dotted lines connect each paramagnetic resonance with the diamagnetic equivalent. Also shown is the
one-dimensional trace in the 1H dimension taken at �1 = 115 ppm and �2 = 7.4 ppm. The PCS is given
by the overall change in chemical shift of the resonance, the transverse PRE is given by the overall line
broadening, the CCR e↵ects are measured from the di↵erence in linewidth of the two components of the
anti-phase doublet, and the RDC is calculated from the change in the splitting across the doublet. Reproduced
with permission from [356]. Copyright (2004) American Chemical Society.

delicate one. However we can assume that any local structural distortions resulting from the change of metal

ion are limited to within a few Å of the ion, and so are not measurable on the spins we observe outside the

blind sphere, tens of Å from the metal ion. For short-range e↵ects such as the contact shifts, however, the

distortions of the metal binding site are more problematic, and the use of a diamagnetic reference may not be

appropriate.

The measurement of paramagnetic restraints is illustrated with 1H–15N HSQC spectra of the 30 kDa com-

plex between the N-terminal domain of the ✏ subunit and the ✓ subunit of Escherichia coli DNA polymerase

III in the absence and presence of a paramagnetic metal ion, shown in Figure 12.25 [356].
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Pseudo-contact shifts

The paramagnetic shifts of nuclei outside the blind sphere can be ascribed entirely to the PCS, which in the

point-dipole approximation is given by Equation 5.77, reproduced below for convenience:

�PCS =
1
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3 cos2(✓) � 1
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+
3
2
��rh sin2(✓) cos(2�)

#
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The PCS is calculated from the di↵erence in chemical shift between corresponding resonances in the para-

magnetic and diamagnetic proteins, as shown in Figure 12.25. The PCS can be used to back-calculate the

distance r of the nucleus (here H) from the metal ion, and the angles (✓, �) that fix the orientation of the

ion–nucleus vector relative to the PAF of the magnetic susceptibility tensor ��, as shown in Figure 12.23

(a) [16, 42]. Clearly a PCS is only observed for metal ions that have an anisotropic susceptibility tensor.

Contact shifts

For amino-acid residues close to the metal ion the shifts may also have an appreciable contribution from

the contact interaction. The contact shifts have a sign and size that depend on the orbital occupancy of the

metal ion, and the overlap between these metal orbitals and the s-orbitals of the observed nuclear spin, via

any intermediate orbitals of bridging atoms. Therefore measurement of the contact shifts should provide

important information regarding the geometry and unpaired electronic-spin transfer within the metal binding

site [363]. However the measurement and interpretation of the contact shifts presents some di�culties.

Firstly the distortion of the metal-binding site on substituting the paramagnetic metal ion with a diamagnetic

analogue is expected to be significant enough that the orbital shifts also change, and so we cannot simply

subtract one shift from another. Secondly these nuclei are also expected to have a significant PCS, which

cannot be separated from the contact shift. Thirdly, even with reliable experimental contact shifts, their

use as structural restraints is not straightforward without the use of first-principles quantum-chemistry or

DFT calculations. For these reasons, contact shifts are currently not as widely used as PCS. However they

have been used extensively for certain types of system, such as iron–sulphur proteins [354, 363–366], heme

proteins [367–370], and blue copper proteins [371–373].
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Paramagnetic relaxation enhancements

The PRE of a nuclear spin is calculated from the di↵erence in measured relaxation rate constants between

paramagnetic and diamagnetic systems. As shown in chapter 8 for both the Solomon–Bloembergen–Morgan

and Curie mechanisms, the PRE has a simple variation with the distance of the nucleus from the metal ion

of 1/r6; it can therefore be used to back-calculate this distance, as shown in Figure 12.23 (b) [99, 100]. The

paramagnetic contribution to the linewidth �PRE is dominated by the transverse Curie PRE and, from Equation

8.128, is given by
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in the absence of chemical exchange, and where k is a constant. This PRE can be measured either from the

decay during a spin-echo sequence or, as shown in Figure 12.25, from the di↵erence in linewidth between the

paramagnetic and diamagnetic systems.

Cross-correlated relaxation

As shown in chapter 8 the e↵ect of the CCR between the Curie and nuclear–nuclear dipolar coupling relax-

ation mechanisms on the H–N amide relaxation properties is to give a doublet in the 1H dimension in which

the two components have di↵erent linewidths. The di↵erence between the two linewidths is given by
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where # is the angle between the N–H vector and the vector connecting the paramagnetic centre to the

observed nucleus, the latter being of length r, and  is a constant. This dependence on r and # is shown in

Figure 12.23 (c). The CCR restraint is determined from the di↵erence in linewidth between the two doublet

components as shown in Figure 12.25 [374–377].

Residual dipolar couplings

For a protein in isotropic solution, unrestricted rotational di↵usion has the e↵ect of completely averaging

out anisotropic NMR interactions such as nuclear–nuclear dipolar couplings. Therefore the splitting in the

resonances in the 1H–15N HSQC spectrum is equal to the one-bond 1H–15N J-coupling JIS . The same is true
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of a paramagnetic protein in which the magnetic susceptibility of the metal ion is isotropic. However for a

paramagnetic protein with a susceptibility anisotropy, there is an energetic preference for the susceptibility

tensor to orientate so that the axis of the PAF with the largest susceptibility component is parallel to the

external field. Hence the rotational di↵usion is no longer unrestricted, and the nuclear–nuclear dipolar

couplings are averaged to a value that is non-zero, and referred to as the RDC. Therefore the splitting in

the HSQC resonance is given by JIS + DRDC, where the RDC DRDC is given by

DRDC = K
"

��ax
⇣

3 cos2(⇥) � 1
⌘

+
3
2
��rh sin2(⇥) cos(2�)

#

. (12.6)

This is illustrated in Figure 12.25. The RDC depends on the angles (⇥,�) which specify the orientation of

the N–H bond relative to the PAF of the susceptibility tensor, as shown in Figure 12.23 (d), and so can be

used to back-calculate these restraints [16, 378, 379]. In practice the RDCs are measured from the di↵erences

in the splittings measured in paramagnetic and diamagnetic systems.

12.3.4 Solvent PREs for measuring protein–solvent interactions

In addition to refining the three-dimensional protein structure it has been shown that paramagnetic restraints

can be used to study the interactions between protein residues and solvent molecules. A key restraint used in

these studies is the solvent PRE [380–383]. Here the solvent is doped with a paramagnetic molecule, which

enhances the relaxation rates of any nuclei in residues that are exposed to the solvent via the spin-dipolar

interaction. Therefore this solvent PRE can be used to distinguish between residues that are located on the

solvent-exposed surface of the protein, and those that are located in the protein core and are not in contact

with the solvent. In order for this technique to be e↵ective it is crucial that we use a paramagnetic centre that

induces a relatively large PRE. For this reason the popular choices of paramagnetic centres for measuring

solvent PREs are those with slow electronic relaxation such as Gd3+ complexes similar to those used as MRI

contrast agents, nitroxyl radicals, or molecular oxygen.
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12.4 Measuring chemical exchange in solution NMR and MRI

In this section we briefly review the role of paramagnetic systems in the measurement of chemical ex-

change, and the observation of species with low concentrations in both solution NMR of small molecules and

biomolecules, and in MRI. The specific methods we discuss are Chemical Exchange dependent Saturation

Transfer (CEST) [384], and application of CEST with paramagnetic shift reagents (PARACEST) [385–387].

12.4.1 Chemical exchange dependent saturation transfer (CEST)

The CEST and PARACEST experiments are generally used to observe the NMR signals of dilute concen-

trations of a solute species in aqueous solution, where the former has exchangeable protons that are in slow

chemical exchange with the water molecules of the latter [388]. We recall that slow chemical exchange

is defined as when the exchange rate constants k describing the process are smaller than the di↵erence in

resonance frequencies of the signals of the two environments �⌦, i.e. k  |�⌦|. The peak of the protons in the

solute environment may be of too low intensity to be observable in a conventional NMR spectrum. However

we are able to detect the presence of this environment by performing a saturation–transfer experiment in

which we irradiate the solute peak with a low-power presaturation pulse of RF field amplitude !1  |�⌦|,

which causes a transfer of saturation via chemical exchange with the solvent proton sites. Therefore we

observe the presence of the solute indirectly by direct detection of the solvent, resulting in an e↵ective

sensitivity enhancement of the solute signals. In addition CEST also enables us to measure the rate constants

of the chemical exchange process, which are a probe of the pH of the system, and to perform imaging

experiments on dilute species [388].

The CEST experiment can be described easily using the Bloch–McConnell equations:

dMB(t)
dt

= �IMB(t) ⇥B(t) �RB
⇥

MB(t) �M0,B
⇤ � kBUMB(t) + kUBMU(t), (12.7)

dMU(t)
dt

= �IMU(t) ⇥B(t) �RU
⇥

MU(t) �M0,U
⇤ � kUBMU(t) + kBUMB(t). (12.8)

Here we assume two-site exchange between the ?bound? protons in the solute (B) and the ?unbound?

protons in the solvent (U). The magnetization vectors from each environment are denoted MB(t) and MU(t)

respectively, and the equilibrium magnetization vectors are M0,B and M0,U. The longitudinal and transverse
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relaxation of each environment is governed by the relaxation supermatrices RB and RU, and the chemical

exchange processes B ! U and U ! B are described by the exchange supermatrices kBU and kUB. The

magnetic field, incorporating both the static B0 field and that due to the RF pulse, is B(t). We focus on

the z-magnetization components from the two environments, as it is these that give the observable signal

components following the selective saturation and excitation. The relevant parts of the Bloch–McConnell

equations are:

dMz,B(t)
dt

= !1My,B �
1

T1,B

⇥

Mz,B(t) � M0,B
⇤ � kBUMz,B(t) + kUBMz,U(t), (12.9)

dMz,U(t)
dt

= !1My,U �
1

T1,U

⇥

Mz,U(t) � M0,U
⇤ � kUBMz,U(t) + kBUMz,B(t), (12.10)

where Mi,B(t) and Mi,U(t) are the i-components of the magnetization vectors for the solute and solvent

protons, M0,B and M0,U are the equilibrium values of the z-components, T1,B and T1,U are the two longitudinal

relaxation time constants, and kBU and kUB are the exchange rate constants for the two processes B! U and

U ! B. We assume that
�

�

�Mz,B(t)
�

�

� ⌧
�

�

�Mz,U(t)
�

�

� so that we can only observe the peak due to the solvent.

To simplify the description of CEST we focus on three limiting cases. Firstly we take the situation where

the low-power presaturation is far o↵ resonance for both the solvent and solute protons. In this case the

Bloch–McConnell equations show that neither Mz,B nor Mz,U is perturbed from its equilibrium value, and the

excitation following the presaturation gives the conventional spectrum. Secondly if the carrier is resonant

with the solvent peak and we achieve complete saturation Mz,U is zero at the end of the spin lock, and we

observe no solvent signal in the corresponding spectrum. The final case is the most interesting, and is when

the carrier frequency is resonant with the solute peak. Here we saturate the solute magnetization so that

Mz,B = 0. The solvent magnetization reaches a time-independent steady-state MSS
z,U, the expression for which

is calculated from Equation 12.10:

MSS
z,U =

1
1 + T1,UkUB

M0,U. (12.11)

From this expression we see immediately that the steady-state solvent magnetization is of the same sign as

the equilibrium magnetization, but has a reduced magnitude. In the resulting spectrum we still observe the

solvent peak, but with a reduced intensity compared to the conventional spectrum. This reduction in intensity

of the solvent peak is easier to detect than the solute peak in the conventional spectrum, and so CEST is able
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to detect the solute indirectly with an e↵ective sensitivity enhancement [388]. This description is simplified

for perfect saturation and ignores imperfect saturation and near-o↵-resonance e↵ects of the presaturation.

However these can be accounted for as described by Zhou and van Zijl [388].

In practice we apply CEST by performing a series of saturation–excitation experiments with di↵erent

carrier frequencies, and acquiring the spectrum of the solvent peak for each. When the carrier is resonant

with the solute peak we observe a decrease in the solvent resonance, and are therefore able to identify the

chemical shift of the solute resonance. Further the complete solvent intensity profile as a function of carrier

frequency can be fitted to the Bloch–McConnell equations to extract the chemical exchange rate constants.

12.4.2 Paramagnetic shift reagents in chemical exchange dependent saturation trans-

fer (PARACEST)

To be able to perform a CEST experiment we need to be able to selectively irradiate the exchangeable proton

of the solute, which also requires the exchange to be slow or intermediate, i.e. k  |�⌦|. For diamagnetic

systems the proton chemical shift of the solute is typically within 6 ppm of the bulk water, and so CEST

is limited to the study of exchange rate constants of up to the order of 1 kHz. However we can employ

paramagnetic solute systems, such as chelated lanthanide ions, to study faster exchange processes. In these

systems the bound protons experience paramagnetic shifts which increase the chemical shift di↵erence from

the bulk water, and so increase the upper bound of the exchange rate constant we are able to study by orders

of magnitude. This application of CEST is referred to as PARACEST [385–387].

The first examples of PARACEST were demonstrated for lanthanide complexes by Zhang and Sherry

[385, 386]. The studied the lanthanide complexes Ln–DOTA–4AmCE, with Ln = Pr, Nd, Eu, and Yb, which

bind water molecules via a slow exchange process. Two PARACEST profiles for Eu–DOTA–4AmCE and

Nd–DOTA–4AmCE are shown in Figure 12.26 (a) and (b) [388]. In both cases the intensity of the bulk

water signal (assigned a shift of 0 ppm) was monitored as a function of the frequency of the presaturation

pulse. For both profiles the observed features can be explained with reference to the simple saturation model

described in section 12.4.1. In the case of Eu–DOTA–4AmCE in Figure 12.26 (a), we observe no reduction

in the intensity of the bulk water signal when the presaturation is far o↵-resonance from both the bulk and

bound water signals, for example at ±80 ppm. When the presaturation frequency is at 0 ppm we completely

saturate the magnetization due to bulk water with the result that the peak is completely suppressed. The
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Figure 12.26: PARACEST data acquired from aqueous solutions of two lanthanide complexes Ln–DOTA–
4AmCE with a concentration of 63 mM, pH of 7, and at room temperature. The PARACEST profiles were
obtained at 4.7 T with a 1.0 s presaturation pulse, and the two 1H spectra at the top were acquired at 11.74
T in order to be able to identify the signal from the bound water The two lanthanide ions are (a) Eu3+ and
(b) Nd3+. In both cases the signal due to the bulk solvent water is assigned a shift of 0 ppm, and the bound
water signals appear at 50 ppm and �32 ppm for Eu–DOTA–4AmCE and Nd–DOTA–4AmCE respectively.
On irradiation of the bound water signals the bulk water signal is reduced in intensity by 57% and 48%
respectively [385, 386]. Reproduced from [388], with permission from Elsevier.
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feature that is of particular interest is the reduction in the intensity of the bulk water peak that is observed

when the presaturation frequency is set to 57 ppm, which corresponds to the chemical shift of the bound

water molecule. The saturation of the magnetization of this bound water molecule caused a transfer in the

polarization to the bulk water signal resulting in a reduction of 57%. Furthermore the width of this dip in

the PARACEST profile was used to estimate the exchange lifetime of the bound water, which was found to

be 380 µs [385, 386]. Similar features were observed in the PARACEST profile of Nd–DOTA–4AmCE in

Figure 12.26 (b). Here the reduction in the bulk water peak was observed with a carrier frequency of �32

ppm, and the broader dip indicated a faster exchange process with a lifetime of 80 µs [385, 386].

In vivo, the form of the PARACEST profiles is sensitive to a number of physiological conditions, such

as pH and temperature. This has been exploited in a number of studies, and lanthanide complexes have been

used to measure pH [387], detect the presence of particular metabolites [389], perform imaging within cells

[390], and measure temperature [391].

12.5 Solid-state NMR methods for paramagnetic systems

12.5.1 The general strategy

When applying NMR methods to paramagnetic materials in the solid state we are faced with a task which has

many similarities to, but also many di↵erences from, the analysis of paramagnetic molecules in solution.

Some features of a paramagnetic NMR spectrum do not change between the two cases. Notably, a nucleus

next to a paramagnetic centre displays identical isotropic paramagnetic shifts, contact or pseudo-contact in

origin, independently of whether the NMR analysis is performed in solution or in the solid state. Therefore in

both cases the spectroscopist may be confronted with the acquisition of signals with very large chemical

shift dispersions, and with the interpretation of peak positions significantly di↵erent from conventional

diamagnetic chemical shifts. This is a situation that already falls within the expertise of a solid-state NMR

spectroscopist, as the community already has considerable experience in working with broad resonances in

diamagnetic samples, due to the CSA and quadrupolar interactions.

The Solomon–Blombergen–Morgan relaxation mechanisms operate in the solid state in an analogous way

to solution, and accelerate nuclear relaxation. As experienced in solution NMR, the resulting PREs may lead

to a reduction in sensitivity due to signal loss during the pulse sequence, but at the same time have the e↵ect
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of allowing rapid acquisition of a large number of scans by reducing the recycle delay.

However a first main di↵erence comes from the Curie broadening, which is the limiting factor in the

study of large paramagnetic molecules by solution NMR. In solids, whilst there may still be a contribution to

Curie relaxation from slow internal motions of the system, the overall rate of Curie relaxation, and the cor-

responding contribution to the linewidth, is generally lower than in solution. This is of particular importance

for the study of systems containing paramagnetic centres for which the correlation times for the electronic

fluctuations are short (< 10�11 s). In solids, these centres (typically CoII, FeII, LnIII) significantly enhance the

longitudinal relaxation of the surrounding spins, but have a negligible e↵ect both on their observed linewidths

and their coherence lifetimes, and so do not significantly reduce the e�ciency of magnetization transfers.

A number of other phenomena a↵ect a paramagnetic NMR spectrum specifically in the solid state. In

addition to the features of paramagnetic systems in solution, we now also need to account for large anisotropic

interactions, such as the paramagnetic shift anisotropy and quadrupolar interactions. These lead to broader

spectra than are generally observed in solution NMR, which can lead to further di�culties in obtaining

broadband excitation. This spectral broadening therefore also leads to a reduction in sensitivity. The strength

of the SAs in particular is very large in solid materials that contain a dense array of paramagnetic ions, as the

paramagnetic contributions add up.

Another important di↵erence in solids is the presence of BMS e↵ects, which lead to large inhomogeneous

broadening in both static and MAS spectra. In solid materials containing paramagnetic ions with rapid

electronic relaxation, it is generally found that it is this e↵ect, and not the transverse PRE, that gives the

largest contribution to the linewidth, and hence is the factor that limits resolution.

The sizes of the shift and SA, and the inhomogeneous broadening, scale with the external magnetic field,

and so a low magnetic field (200 MHz or lower) results in a spectrum with lower dispersion that is easier

to excite with practicable RF field amplitudes. However, this has the primary disadvantage that the overall

sensitivity is reduced. A workaround can be adopted for nuclei with more than one NMR-active isotope, for

example 1/2H and 6/7Li. As the shift and SA scale with the gyromagnetic ratio, studying the isotope with

the lower �I produces a narrower spectrum, which is easier to excite. However, as in the case of reducing

the magnetic field, nuclei with lower �I also have lower intrinsic sensitivity. In addition the second-order

quadrupolar interaction scales inversely with the external field, and so a low field increases the resonance

broadening associated with this interaction in the spectra of quadrupolar nuclei such as 23Na.
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All of these observations suggest that the development of pulse sequences incorporating broadband exci-

tation that can excite a wide range of shifts and SAs at high field would be advantageous. In recent years there

has been growing interest in studying solids with increasingly strong paramagnetic e↵ects, such as battery

materials with a large density of paramagnetic ions in the lattice [53]. This has provided strong motivation

for developing broadband NMR sequences specifically optimized for paramagnetic materials, as described in

section 12.5.7 [56]. These methods provide a solution to studying nuclei with high gyromagnetic ratios and

large SAs at high field. They include the development of tailored RF pulse schemes, and their combination

into more sophisticated sequences, for example to resolve individual local environments [7, 30], or otherwise

to separate the spectral features of a local environment due to di↵erent spin interactions [199, 392, 393].

In the presence of multiple nuclear local environments, each experiencing multiple interactions, these tools

help to resolve complicated spectra with multiple overlapping features, and to extract the required interaction

parameters with site-specific resolution.

Another di↵erence between the NMR of solids and solutions is the presence of large homonuclear and

heteronuclear dipolar couplings in the former, which are generally di�cult to decouple.

It was recognized early on by Clayton et al. that heteronuclear 1H decoupling is ine↵ective for increasing

the resolution in the NMR spectra of paramagnetic complexes, due to the di�culty in e�ciently irradiating

the very broad resonances [22]. In addition, the use of high-power decoupling requires that the recycle delay

is set to a minimum of five times the total decoupling time to prevent damage to the probe. This requirement

often extends the recycle delay to longer than is required for complete longitudinal relaxation, which for

paramagnetic systems means that the short T1 is not being exploited. This idea was taken further by Ishii et

al. who suggested that, because decoupling is at best ine↵ective and at worse has a deleterious e↵ect on the

spectrum, it is better not to decouple and to rely instead on fast MAS to average out the dipolar couplings

[6, 25].

Increasing the MAS frequency also has an additional beneficial e↵ect on resolution and sensitivity, as the

signal in the spinning-sideband manifolds is concentrated in fewer sidebands that are more widely separated

in the spectrum. Furthermore, the recycle delay now only reflects the short T1 of the system, and not any

requirements due to the decoupling, and so scans can be acquired more rapidly. An example of the benefits of

fast spinning, rapid pulsing, and no decoupling are shown by the 1H and 13C MAS spectra of a paramagnetic

organometallic complex in Figure 12.27 [7]. The 1H spectra acquired at 11 kHz and 33 kHz in (a) and (b)
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Figure 12.27: MAS NMR spectra of the compound 1 acquired at 11.74 T. The 1H spectra acquired at 11
kHz and 33 kHz MAS are shown in (a) and (b). The corresponding 13C spectra acquired without decoupling
at 11 kHz and 33 kHz MAS are shown in (c) and (d). All experiments were acquired using the spin-echo
pulse sequence shown, with an echo delay of 90 µs. Adapted with permission from [7]. Copyright (2006)
American Chemical Society.
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Figure 12.28: Pulse sequences and coherence-transfer pathways, and the simulated MAS NMR spectra due
to an SA, for the one-pulse and spin-echo experiments. The pulse sequence for the one-pulse experiment is
shown in (a). If the FID is collected immediately after an ideal pulse the spinning-sideband manifold of the
MAS spectrum (b) has uniform phase. However in reality there is a short dead time �de between excitation
and acquisition, as seen in the sequence in (c), which results in the loss of the first points of the FID, and a
phase-distorted spectrum (d). The phase distortion is removed by employing the spin-echo sequence (e) [20],
in which the isotropic and anisotropic shifts are refocused at the start of acquisition, resulting in a spectrum
of uniform phase (f). Unless otherwise indicated filled rectangles indicate pulses with a nominal flip angle of
90� and unfilled rectangles indicate pulses with a nominal flip angle of 180�, and all pulses have phase x.

show that there is a clear improvement in both resolution and sensitivity on increasing the MAS frequency.

The improvement is even more marked for 13C. The spectacular enhancement experienced in sensitivity and

resolution as compared to slower rates is nowadays amplified by the continuous development of new probes

capable of faster MAS, allowing e�cient detection of previously unobservable nuclei in highly paramagnetic

substances.

12.5.2 One-dimensional NMR

One-pulse and spin-echo spectroscopy

The simplest pulse sequence for obtaining a one-dimensional MAS spectrum is the one-pulse sequence shown

in Figure 12.28 (a). The sequence comprises a single pulse which generates p = �1 coherences that are

observed during acquisition. In order to obtain maximum sensitivity the pulse flip angle should be set to a

nominal value of 90�. However under circumstances where the pulse is of too low an RF field amplitude

to ensure broadband excitation, a shorter pulse of the same amplitude can deliver a more uniform excitation

response as there is less time for substantial deviations from ideal behaviour. The resulting sensitivity is lower,
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but this can be o↵set when we note the partial excitation means that the system is closer to its equilibrium

configuration than after a 90� pulse, and so a shorter recycle delay can be used. In the ideal case this excitation

pulse gives a spectrum with a uniformly-excited spinning-sideband manifold, as shown in Figure 12.28 (b).

However we encounter a problem imposed by instrumental limitations, which means that this ideal

performance is not observed in practice. In practice the acquisition period does not immediately follow

excitation, since (1) the pulse has a non-zero duration, and (2) we require a delay of a few µs, known as the

dead time �de, to switch from excitation mode to observation mode. Both e↵ects lead to significant phase

dispersion across the spectrum. As shown in the sequence in Figure 12.28 (c), the inclusion of the dead time

means that we miss the initial points of the FID, and therefore do not acquire the initial evolution of both

the isotropic shift and SA. This is more problematic for the larger spectral widths needed for paramagnetic

systems, as the sampling rate of the FID is inversely proportional to the spectral width. The quality of the

spectrum, shown in Figure 12.28 (d), is severely degraded by the resulting large frequency-dependent phase

errors.

A solution to this problem is to employ the rotor-synchronised spin-echo pulse sequence shown in Figure

12.28 (e) [20]. Here the 90� excitation pulse is followed by two delays each of which is of the same duration

n⌧r, equal to an integer number of rotor periods n, that sandwich a 180� pulse, and we absorb the dead

time into the second delay. The coherence-transfer pathway shown is the sole pathway available for ideal

pulses, but in practice phase cycling of the 180� pulse phase is employed to eliminate unwanted pathways

that arise from non-ideal behaviour such as insu�cient bandwidth [320]. The sequence has the property that it

refocuses the evolution of both the isotropic chemical shift and time-dependent SA at the start of acquisition.

The refocussing process can be explained as follows. During a delay ⌧ the sum of the frequencies due to both

the isotropic and anisotropic shifts is proportional to the coherence order, and is given by �p⌦iso � p⌦SA
c (⌧).

During the first delay n⌧r the time-dependent SA self-refocusses due to the periodicity under MAS, and the

total acquired phase is �⌦iso(n⌧r � 0) � �SA
c (n⌧r, 0) = �⌦ison⌧r. In the same way we can calculate the phase

acquired following the 180� pulse as ⌦iso(2n⌧r � n⌧r) + �SA
c (2n⌧r, n⌧r) = ⌦ison⌧r. The two phases accrued

before and after the 180� pulse then sum to zero. This refocussing means that at the start of acquisition we

have e↵ectively put the spin system into the same state as we would obtain from ideal one-pulse excitation,

and we obtain the same spectrum without phase errors, as shown in Figure 12.28 (f). If the 180� pulse

is su�ciently broadband, the only di↵erence between the two sequences is the signal loss from dephasing
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during the spin echo. This dephasing is due to relaxation and coherent homogeneous processes, but not to

inhomogeneous decay as the chemical shift distribution of the latter is refocussed by the echo.

Experimental examples of spectra obtained from the one-pulse and spin-echo pulse sequences are shown

in Figure 12.29 [34]. The system is the battery cathode material LiFe0.5Mn0.5PO4, which has two species of

paramagnetic transition-metal ions Fe2+ and Mn2+ in a 1:1 ratio. The 7Li one-pulse and spin-echo spectra

are shown in Figures 12.29 (a) and (b). The former clearly shows a frequency-dependent phase error across

the spectrum, due to evolution of the SA during the dead time, which is removed in the latter. The range of

isotropic shifts of the multiple Li sites is comparatively small at 90 ppm, which is approximately equal to the

inhomogeneous broadening of the individual sidebands. The 31P spectrum, by contrast, displays overlapping

spinning-sideband manifolds from 32 distinct local environments with a range of isotropic shifts of 4000 ppm

[30]. The one-pulse spectrum in Figure 12.29 (c) also has a frequency-dependent phase error, and a very poor

signal-to-noise ratio that is worse than for 7Li. This is due to the larger range of isotropic shifts which leads

to a greater degree of di↵erential evolution during the dead time. The spin-echo spectrum in Figure 12.29 (d)

has improved phase properties and sensitivity, despite the T 02 decay during the echo, but also shows a smaller

excitation bandwidth. This is because the range of isotropic frequencies over which we obtain quantitative

inversion (the inversion bandwidth) with a 180� pulse is lower than the corresponding isotropic frequency

range over which we obtain quantitative excitation (the excitation bandwidth) with a 90� pulse. This can be

seen from the simulated 90� pulse excitation and 180� pulse inversion profiles shown in Figures 12.29 (e) and

(f). Nevertheless the spin-echo sequence is an indispensable experiment in solid-state paramagnetic NMR. In

addition to one-dimensional spectroscopy, the spin-echo pulse sequence can be appended to any of the more

complex sequences presented here, such as those used for two-dimensional correlations, in order to obtain

uniform phase in the direct dimension.

We make a final comment about the application of these pulse sequences to quadrupolar nuclei, consider-

ing half-integer and integer spins separately. In the solid state the NMR spectrum of an half-integer nuclear

spin is dominated by the sharp and intense resonance due to the CT, with the ST resonances broadened to the

point where they are sometimes di�cult to detect. Hence in practice the spectrum is sometimes obtained by

applying excitation pulses that are of low power, so that !1 ⌧ !Q, and are therefore selective for the CT.

In this case the excitation Hamiltonian due to an excitation pulse phase x applied to a spin experiencing a
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Figure 12.29: Experimental one-pulse and spin-echo spectra of the cathode material LiFe0.5Mn0.5PO4 at 11.74
T and 60 kHz MAS. The one-pulse (0.55 µs at 455 kHz RF field amplitude) 7Li spectrum with 8192 scans
is shown in (a), and exhibits poor phase properties. Using a spin-echo pulse sequence gives the spectrum in
(b) with uniform phase. The reduced excitation bandwidth of the spin echo presents no problems because the
isotropic chemical shifts of the di↵erent sites lie within a range of 60 kHz. The one-pulse (0.60 µs at 417 kHz
RF field amplitude) 31P spectrum with 32768 scans has very poor sensitivity and phase, as shown in (c). Use
of the spin echo gives some improvement in the phase across the spectrum, and a much better signal-to-noise
ratio, but at the expense of excitation bandwidth, as the isotropic shifts cover a range of 800 kHz. The spectra
in (a)–(d) have been plotted against both chemical shift and frequency scales. For the latter the frequency is
calculated as !0�rel, where �rel is the chemical shift measured relative to 0 ppm for 7Li and 6000 ppm for 31P.
In (e) and (f) are shown simulations of the excitation profile of a 400 kHz 90� pulse, and the inversion profile
of a 400 kHz 180� pulse at 60 kHz MAS, for a range of CSAs. Reproduced from [34], with permission from
Elsevier.
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first-order quadrupolar interaction can be approximated as

H
(1)
Q + !1 Îx ⇡ H

(1)
Q + !1(I + 1/2)Î(+1/2,�1/2)

x . (12.12)

where Î(+1/2,�1/2)
x =

⇣

Î(+1/2,�1/2)
+ + Î(+1/2,�1/2)

�
⌘

/2. We see that the e↵ective RF field amplitude is !1(I + 1/2),

i.e. it has been scaled up by the spin-dependent factor (I + 1/2) [330]. Therefore we only apply the pulse

for a time that is shorter by a factor (I + 1/2) than the nominal pulse length. In paramagnetic systems we

often need to apply higher-power pulses to fully excite the CT resonance, which is broadened by a large SA

interaction. For nuclear species with small quadrupolar interactions, such as 7Li, this means that the RF field

amplitude is comparable to or greater than !Q, so that no scaling of the pulse length is required. However

nuclear species with larger !Q frequencies, such as 23Na and 27Al, often still require a scaling of the pulse

length. For example this means that the spin-echo sequence applied to 23Na with I = 3/2 is 45�–⌧r–90�–⌧r,

where the flip angles are the nominal values calibrated in the absence of the quadrupolar interaction.

For integer-spin nuclei such as 2H and 6Li, all the observable transitions are a↵ected by the quadrupolar

interaction to first order. In powder samples we generally excite all the observable transitions, and so do not

scale the pulse length.

Frequency stepping

A simple method to overcome the bandwidth problem and obtain a quantitative, broadband one-dimensional

spectrum is to set the transmitter o↵set to di↵erent values, with a step size that is equal to or smaller than the

RF field amplitude, and to acquire a of sub-spectrum for each o↵set. The sub-spectra are then summed to

give the final spectrum. The concept is illustrated for MAS NMR in Figure 12.30, which shows a spectrum in

(a) obtained by summing the sub-spectra shown in (b) [394]. This method has usually been applied to static

solids, for both quadrupolar nuclei and paramagnetic systems with large interactions, and has been referred

to as spin-echo mapping [53, 396–402], Variable-O↵set Cumulative Spectroscopy (VOCS) [403–405], and

frequency stepping [406–411]. The accurate reconstruction of the spectrum is a delicate matter, particularly

under MAS where the number of published examples is smaller [395, 412]. However a recent theoretical

treatment of frequency stepping under MAS has shown that the spinning-sideband manifolds can be properly

reproduced by careful summation of the sub-spectra [394]. Accordingly the number of experimental exam-
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Figure 12.30: Illustration of the frequency-stepping method for obtaining a wideline MAS NMR spectrum
[394, 395]. The complete spectrum is shown in (a) with the frequencies to which the transmitter is tuned in
turn indicated by arrows. The individual sub-spectra, shown in (b), are summed to recover the spectrum in
(a). Adapted from [394], with the permission of AIP Publishing.

ples in material science is currently increasing [56, 57, 413]. An example of frequency stepping applied to

a particularly challenging material is the solid-state 17O MAS NMR spectrum of La2NiO4+� [413], shown in

Figure 12.31. The crystal structure in Figure 12.31 (a) shows three distinct 17O sites which, with an additional

resonance due to a LaAlO3 impurity phase, give at least four resonances with isotropic shifts over a range of

8000 ppm as shown in the sum-spectrum in (b). There is additional broadening due to the SA interactions,

which broaden the spectrum over 20000 ppm. The sum-spectrum was acquired with the spin-echo pulse

sequence 30�–⌧r–60�–⌧r, where the nominal pulse lengths are reduced by a factor of three in the CT-selective

regime. An expansion of the spectrum between 2000 and �1000 ppm is shown in Figure 12.31 (c).

Traditionally the acquisition of frequency-stepped solid-state NMR spectra has necessitated a manual

retuning of the probe for each new sub-spectrum, making the whole process rather cumbersome. However

Pecher et al. have recently developed an external automatic tuning and matching (eATM) robot, applicable

to both static and MAS experiments, which allows the whole acquisition to be automated [414]. This has

resulted in an increase in the e�ciency of acquisition of frequency-stepped NMR spectra, for example outside

normal working hours without regular user input.

Homonuclear signal enhancement of spin-1/2 nuclei: CPMG

One important limitation on the sensitivity that can be obtained in the one-dimensional spectrum of para-

magnetic systems is the rapid decay of the FID due to both relaxation and inhomogeneous e↵ects. For

paramagnetic solids it is generally found that for metal ions with SO coupling the inhomogeneous broadening

of each sideband is an order of magnitude greater than the linewidth due to relaxation, and so represents the
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Figure 12.31: Solid-state 17O MAS NMR spectrum of La2NiO4+� acquired using frequency stepping, with
assignments [413]. The crystal structure of La2NiO4.17 is shown in (a), with the oxygen sites in axial
Oax, equatorial Oeq, and interstitial Oi positions. The individual sub-spectra were acquired at the indicated
transmitter o↵sets and summed to the give the sum spectrum in (b). Each sub-spectrum was acquired with
the rotor-synchronized spin-echo pulse sequence 30�–⌧r–60�–⌧r, where the pulse lengths were scaled down
by I + 1/2 = 3. An expansion of the spectral region between 2000 and �1000 ppm is shown in (c), showing
the assignments to the LaAlO3 impurity phase, and interstitial Oi in La2NiO4+�. The spectra were acquired
at 7.05 T and 12.5 kHz MAS, with 120000 scans per sub-spectrum and a recycle delay of 0.5 s. Spinning
sidebands are indicated with asterisks. Reproduced with permission from [413]. Copyright (2016) American
Chemical Society.
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Figure 12.32: Pulse sequence and coherence-transfer pathway for the one-dimensional CPMG experiment
[415, 416]. The time points at which the isotropic shift is refocussed are indicated with arrows. Unless
otherwise indicated, filled rectangles indicate pulses with a nominal flip angle of 90� and unfilled rectangles
indicate pulses with a nominal flip angle of 180�, and all pulses have phase x.

larger sensitivity limitation. However greater sensitivity can be obtained by refocussing the inhomogeneous

decay during the FID by applying the Carr–Purcell–Meiboom–Gill sequence in Figure 12.32 [415, 416]. Here

the acquisition period comprises a series of concatenated spin-echoes with delays equal to the rotor period,

during which the points of the FID are acquired. Both the isotropic shift and inhomogeneous decay are

refocussed at the end of each echo, as indicated by the arrows on the coherence-transfer pathway in Figure

12.32, and so the decay envelope of the FID is given by the longer homogeneous decay time constant T 02,

resulting in greater sensitivity.

Heteronuclear signal enhancement of spin-1/2 nuclei: CP and TEDOR

One important method used in solid-state MAS NMR to enhance the signal from nuclei with a low gyromag-

netic ratio is to transfer coherence from nuclear spins with a higher gyromagnetic ratio. For instance this idea

is commonly employed for organic microcrystalline solids in order to enhance the low-natural-abundance 13C

signal by transferring coherences from the large bath of highly-abundant 1H nuclei. For diamagnetic systems

the most commonly-used pulse sequence is the Cross-Polarization (CP) experiment, which is shown in Figure

12.33 [18, 417]. The enhancement experiment is run here as a one-dimensional version of this sequence,

where t1 is set to zero. The coherence-transfer step comprises a pair of spin-lock pulses that are applied to

the two channels simultaneously for a contact time ⌧con (typically 1 ms), and with RF-field amplitudes !1,I

and !1,S that satisfy either a zero-quantum Hartmann–Hahn condition
�

�

�!1,I � !1,S
�

�

� = n!r (n = 1, 2) [18],

or a double-quantum condition !1,I + !1,S = n!r (n = 1, 2). It is generally found that applying a ramp

to the 1H spin lock improves the Hartmann–Hahn transfer, as this compensates for mismatching due to RF

557



(a)

+1

-1
0pI

t1
τcon

I

S

t2

+1

-1
0pS

y

Figure 12.33: Pulse sequences and coherence-transfer pathway of the CP-HETCOR experiment with direct
detection [18, 417]. The filled rectangle indicates a pulse with a nominal flip angle of 90� with phase x.
The two shaded rectangles indicate the spin-lock pulses applied during cross polarization. The spin-lock
pulses are applied simultaneously for a contact time ⌧con during which the nominal I-spin and S -spin RF field
amplitudes are set to a Hartmann–Hahn matching condition:

�

�

�!1,I � !1,S
�

�

� = n!r, or !1,I +!1,S = n!r, where
n = 1, 2.

inhomogeneity and o↵set e↵ects [417]. For paramagnetic systems the e�ciency of the CP transfer is reduced

considerably compared to diamagnetic systems, as shown by the comparison of the direct 13C MAS and

1H–13C CP spectra of an paramagnetic organometallic solid in Figure 12.34 (a) and (b) [7]. The comparison

shows that the optimum CP experiment can actually be less sensitive than the direct-excitation experiment!

The reasons for this are (1) the di�culty of e�ciently spin-locking a resonance with a large SA under MAS

with practicable RF field amplitudes, and (2) signal losses due to relaxation during the spin-lock pulses. The

latter problem results in short optimum contact times, here 500 µs, but even then the former problem still

results in poor transfer.

An improvement in the heteronuclear coherence transfer can be used by employing the Transferred-Echo

DOuble-Resonance (TEDOR) sequence [418], as first demonstrated by Kervern et al [7]. The basic pulse

sequence is shown in Figure 12.35 (a), with t1 set to zero. Here the I-spin in-phase coherences excited

by the first pulse evolve during the I-spin-echo. During each half of the echo a series of recoupling 180�

inversion pulses is applied to the S -spin, resulting in the recoupling of the heteronuclear dipolar coupling

and the generation of anti-phase coherences. The coherence is then transferred to the S -spin by the pair of

90� pulses, after which the observable in-phase coherences on S are regenerated by the second recoupling

sequence. The S -spin FID is then observed following a z-filter. The advantage of TEDOR over CP is that
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Figure 12.34: Comparison between the direct-excitation 13C MAS spectrum, 1H–13C CP spectrum, and 1H–
13C TEDOR spectrum of the compound 1, the structure of which is shown in Figure 12.27 [7]. The direct-
excitation 13C spectrum acquired at 33 kHz MAS is shown in (a). The CP spectrum in (b) was acquired with
a contact time of 500 µs, and the TEDOR spectrum in (c) was obtained with a recoupling time of 60 µs.
Adapted with permission from [7]. Copyright (2006) American Chemical Society.

it uses only short, high-power pulses, which allows the use of higher RF field amplitudes, and avoids the

need to spin-lock the large anisotropic resonances. This leads to a more e�cient transfer, as shown by the

1H–13C TEDOR spectrum in Figure 12.34 (c) which was acquired with a short recoupling time of 60 µs.

We should note that although TEDOR is more e�cient than CP, it still does not give a signal enhancement

compared to the direct excitation spectrum, which is due to the short relaxation times leading to a reduction

in the coherence intensities during the recoupling sequence. However the strength of this method is that it

enables the e�cient acquisition of two-dimensional heteronuclear correlation spectra, as described in section

12.5.5.

Signal enhancement of half-integer-spin quadrupolar nuclei: RAPT

We have seen in section 11.4 that quadrupolar nuclei of half-integer spin give NMR spectra with ST res-

onances that are broadened to the point of being undetectable, and relatively sharp CT resonances. For

this reason solid-state NMR of quadradrupolar nuclei usually employs low-power RF excitation pulses of

amplitudes!1 ⌧
�

�

�!Q
�

�

� that are selective for the CT [198]. In paramagnetic systems however the CT resonance

is broadened by the large SA, which gives a broad spinning-sideband manifold, and therefore requires a
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Figure 12.35: Pulse sequences and coherence-transfer pathways for the TEDOR experiments with direct- and
indirect-detection. The pulse sequence for direct detection of the heteronucleus is shown in (a) [418]. The
sequence in (b) is designed for indirect (proton) detection. The numbers of repetitions of the inversion pulses
n1 and n2 must be odd in order to ensure refocussing of the SA of the active spin. For n0 = n2 = 0, these
sequences are referred to as the DINEPT [26] and DHSQC respectively [27]. Unless otherwise indicated,
filled rectangles indicate pulses with a nominal flip angle of 90� and unfilled rectangles indicate pulses with a
nominal flip angle of 180�. All pulses have phase x, with the exception of the 180� TEDOR recoupling pulses
inside the loops, which have phases �i that vary independently according to the XY-8 supercycle xyxyyxyx
[419].
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Figure 12.36: Illustration of the RAPT sequence for enhancing the signal from the CT of a half-integer-spin
quadrupolar nucleus [420]. The e↵ect of ST saturation is illustrated on the nuclear-spin energy level diagrams
for a spin I = 3/2 in (a). Saturation of the two STs leads to the simultaneous removal of the ST polarization,
and enhancement of the CT polarization. The RAPT pulse sequence is shown in (b). The saturation period
comprises a pair of pulses with flip angle � and alternating phases +x and �x with total length ⌧c, that is
repeated N times. The final pulse is a CT-selective, low-power pulse calibrated to deliver a 90� rotation to the
CT polarization.

higher-power pulse for excitation [55]. Practicable RF field amplitudes of the order of 100 kHz still result in

a pulse that is CT selective for quadrupolar nuclei such as 23Na, where a typical CQ value of 3 MHz results in

a quadrupolar splitting frequency of 750 kHz. One consequence of this is that the polarization that is excited,

given by the population di↵erence of the two states connected by the CT, is lower than the maximum available

if we consider all the states, as shown in Figure 12.36 (a) for a spin I = 3/2. This results in a spectrum with

a lower signal-to-noise ratio than is theoretically feasible.

In order to quantify the intensity of the CT that is available we can write the equilibrium density operator

Îz as a linear combination of the z-spin operators involving the pairs of states |IMi and |I � Mi, which we

write as Î(M,�M)
z =

⇣

Î(M)
p � Î(�M)

p

⌘

/2. Hence the available polarization for the CT is represented by Î(1/2,�1/2)
z .

Using these operators Îz is given by

Îz =

I
X

M=1/2

2MÎ(M,�M)
z . (12.13)

Therefore we see the pair of levels giving the MQ transition has a polarization that is greater than that of the

CT by a factor of 2M. In principle we can increase the polarization of the CT by saturating all the STs so that

their net polarization is reduced to zero, as shown for the spin I = 3/2 in Figure 12.36 (a). This has the e↵ect

of transforming the equilibrium density operator into a non-equilibrium population operator in which all the

terms have the same polarization I + 1/2:

I
X

M=1/2

(I + 1/2)Î(M,�M)
z . (12.14)

561



Hence the polarization of the CT has increased from 1 to I + 1/2, which results in a sensitivity enhancement

of the CT resonance by a factor of I + 1/2, i.e. a factor of 2 for I = 3/2.

Enhancement of the CT polarization can be achieved in practice by using the Rotor-Assisted Population

Transfer (RAPT) pulse sequence shown in Figure 12.36 (b) [420]. The CT-selective excitation pulse is

preceded by the saturation sequence which comprises N pairs of RF pulses of flip-angle � and with alternating

phases of +x and �x separated by short delays �. Each unit of �+x—�—��x—� has a total length of ⌧c. The

e↵ect of this sequence is to apply a net rotation to the ST magnetization terms, leaving the CT magnetization

along z, whilst increasing its magnitude. The excitation of this enhanced CT polarization is achieved with

a CT-selective pulse [421]. It has been shown by Prasad et al. that the optimum value of the cycle time ⌧c

is the inverse of the quadrupolar splitting frequency 2⇡/!Q, and is independent of ⌘Q [422]. This provides

a simple method to allow the CQ parameter to be estimated, where we acquire a series of RAPT spectra

with varying ⌧c to obtain the value corresponding to the maximum enhancement. This is of particular

interest for paramagnetic systems, where the presence of the SA and inhomogeneous broadening in addition

to the broadening from the quadrupolar interaction means that it is essentially impossible to measure the

quadrupolar interaction parameters from a single one-dimensional spectrum.

The application of RAPT to paramagnetic Mg-ion battery materials is particularly striking. The only

stable isotope of Mg that is NMR active is 25Mg, which is of spin I = 5/2 and su↵ers from very low

sensitivity due to both a low gyromagnetic ratio, and a low natural abundance of 10%. Figure 12.37 shows

the experimental application of RAPT to the material Mg6MnO8 [58]. In (a) is shown the enhancement

obtained as a function of the RAPT repetition frequency ⌫ = 1/⌧c. A maximum enhancement of 1.6 is

obtained for repetition rates 250–270 kHz. This is half of the theoretical maximum of I + 1/2 = 3, but

nevertheless represents a very useful tool for increasing the sensitivity of the NMR experiment. Furthermore

this maximum in the profile at the optimum repetition frequency ⌫opt = 3CQ/40 gives an estimate of the

CQ value of between 3.3 and 3.6 MHz, which is in remarkably good agreement with the range of values of

3.64–3.69 MHz predicted from DFT [58]. The optimum spectrum showing the spinning-sideband manifold

of the CT is shown in Figure 12.37 (b).
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Figure 12.37: Illustration of the application of RAPT to the 25Mg NMR of the battery material Mg6MnO8.
The enhancement profile showing the RAPT enhancement as a function of repetition frequency ⌫ is shown in
(a). The optimum enhancement is obtained with values of ⌫ between 250 and 270 kHz, corresponding to an
estimated CQ of 3.3–3.6 MHz. A spectrum acquired separately with a repetition rate of 270 kHz is shown in
(b), and exhibits an enhancement of 1.6. Reproduced by permission of the PCCP Owner Societies [58].
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Figure 12.38: Pulse sequences and coherence-transfer pathways for the spin-di↵usion and RFDR homonu-
clear correlation experiments. The basic spin-di↵usion pulse sequence is shown in (a). Modification of this
sequence to include RFDR homonuclear recoupling during the z-filter gives the sequence in (b) [424]. Unless
otherwise indicated filled rectangles indicate pulses with a nominal flip angle of 90� and unfilled rectangles
indicate pulses with a nominal flip angle of 180�. All 90� pulses have phase x. The phases � of the 180�
RFDR pulses vary according to the XY-8 supercycle xyxyyxyx [419].

12.5.3 Homonuclear through-space correlations

One important mechanism for homonuclear correlation spectroscopy in solids is spin di↵usion, in which we

transfer longitudinal magnetization from one spin to another via the homonuclear dipolar coupling [423].

This mechanism is particularly e↵ective for 1H nuclei, where it is referred to as proton spin di↵usion (PSD),

as the large gyromagnetic ratio gives large dipolar coupling constants, and therefore relatively rapid transfer.

This mechanism bears a superficial resemblance to the NOE transfer in solution, but there is a fundamental

di↵erence. In solution the coherent dipolar coupling is averaged to zero by isotropic molecular tumbling, and

so the NOE transfer occurs entirely through the stochastic modulation of the dipolar interaction. It is therefore

a relaxation process. On the other hand the spin-di↵usion mechanism in solids is due to the coherent dipolar

coupling interaction, which is not averaged as there is no isotropic molecular tumbling. It can therefore occur

in systems with no rotational dynamics. The basic pulse sequence is the same as used for NOESY in solution

(Figure 12.9 (a)), and is shown in Figure 12.38 (a). This sequence has been shown to be e�cient for 1H–1H

transfer in systems experiencing moderate PREs and at moderate MAS (20–30 kHz), where typical mixing

times are of the order of 100 µs [27]. The rate of transfer due to spin di↵usion is reduced with increasing MAS

frequency, and under fast MAS conditions (> 40 kHz) may require mixing times of 100 ms. For paramagnetic

systems this causes a severe reduction in sensitivity due to the rapid longitudinal relaxation that also occurs

during the mixing period.
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Figure 12.39: Experimental two-dimensional 13C–13C dipolar correlation spectrum acquired with 13C- and
15N-labelled Cu(DL-Ala)2 with RFDR mixing at 40 kHz MAS. The two-dimensional correlation sequence
was preceded by a 1H–13C dipolar transfer with the DINEPT sequence [26]. The RFDR mixing period
comprised a train of 4 µs 180� pulses (125 kHz) and was of total duration 1.6 ms. Reproduced from [425],
with the permission of AIP Publishing.

However the rate of transfer can be increased by employing a homonuclear dipolar recoupling sequence

during the mixing time. One suitable sequence is the Radio-Frequency Driven Recoupling (RFDR) scheme,

which comprises a chain of elements ⌧r/2—180�—⌧r/2 comprising a high-power 180� pulse, giving the

sequence in Figure 12.38 (b) [424]. As for the previous sequences discussed, the suitability for paramagnetic

systems is due to the use of short, high-power pulses to obtain the best possible inversion bandwidth.

An experimental example of a homonuclear 13C–13C RFDR correlation spectrum of 13C- and 15N-labelled

Cu(DL-Ala)2 acquired at 40 kHz MAS is shown in Figure 12.39 [425]. The spectrum shows the correlations

between the three 13C nuclei within each alanine molecule, due to both the short-range (one-bond) transfers

between CA and CO and CA and CB, and to the longer-range transfer between CO and CB. The use of RFDR

is crucial to obtaining any transfer as the fast MAS completely suppresses any direct spin di↵usion between

the 13C nuclei on the timescale of longitudinal relaxation.

In order to ensure pure-phase lineshapes in the two-dimensional spectra, it is recommended that the t1

increment is set to an integer multiple of the rotor period, so that there is no net evolution of the SA and only

the isotropic shifts appear in the !1 dimension. The spectrum therefore has the form given in Figure 12.14,

with the exception that the resonance is split into a spinning-sideband manifold in !2. In cases where the
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Figure 12.40: Experimental two-dimensional 6Li EXSY spectra acquired with monoclinic Li3Fe2(PO4)3 at
25 kHz MAS. The one-dimensional spectrum contains three distinct resonances for the three Li sites A, B,
and C. The spectrum in (a) was acquired with a mixing time of 0.5 ms, and shows no cross peaks. The
spectrum in (b) was recorded with a longer mixing time of 3.0 ms, and exhibits cross peaks due to exchange
between all three sites. The temperature is 311 K. Reproduced with permission from [427]. Copyright (2010)
American Chemical Society.

dispersion of isotropic shifts is larger than the spinning frequency, it is necessary to employ a t1 increment

that is shorter than the rotor period. In this case we also obtain spinning sidebands in the !1 dimension, and

no longer have pure-phase lineshapes [426]. This problem may be removed by refocussing the evolution of

the SA during t1 using the methods described in section 12.5.6 to obtain an !1 dimension free from spinning

sidebands.

12.5.4 Homonuclear exchange correlations

Correlations between nuclear sites experiencing slow chemical exchange can be obtained using the same

two-dimensional EXSY sequence as for solution NMR in Figure 12.9 (a), and with the same requirement

that the mixing time take a maximum value of the order of T1. One interesting application of EXSY in

paramagnetic solids has been the study of lithium exchange dynamics in lithium-ion-conducting materials

[427, 428]. An example is the two-dimensional 6Li EXSY spectra acquired on monoclinic Li3Fe2(PO4)3

at moderate MAS of 25 kHz shown in Figure 12.40. The conventional one-dimensional spectrum contains

three resonances A, B, and C corresponding to the three distinct Li sites in the material. The 7Li spins have
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comparatively short T1 times of 1.1 ms, and so 6Li was used to measure the exchange as the lower �I gives

smaller PREs, thus allowing the use of longer mixing times. Spectra acquired using two mixing times are

shown. A short mixing time of 0.5 ms gives the spectrum in Figure 12.40 (a) with no cross peaks. However

increasing the mixing time to 3.0 ms gives correlations between all three sites, as shown in Figure 12.40 (b),

indicating that there is exchange amongst all the sites.

12.5.5 Heteronuclear through-space correlations

The two-dimensional heteronuclear correlation experiments that have been most successfully employed for

paramagnetic systems are based on the TEDOR [7] (Figure 12.35 (a)), Dipolar Insensitive Nucleus Enhanced

by Polarization Transfer (DINEPT) [26], and Dipolar Heteronuclear Single-Quantum Correlation (DHSQC)

[27] experiments. As we have already seen for one-dimensional spectroscopy, these sequences give superior

sensitivity compared to the CP-based HETeronuclear CORrelation (HETCOR) experiment in Figure 12.33.

As for heteronuclear correlation spectroscopy in solution, there is a choice to whether we observe the 1H

spin or heteronuclear spin in these experiments. In solid-state NMR there is a preference for direct detection

of the heteronucleus as the observation of the narrower peaks usually o↵sets any penalty in sensitivity from

the lower gyromagnetic ratio. Figure 12.35 (a) shows the TEDOR sequence that would be used for direct

detection. When the loop counters n1 and n2 are both set to 1 we obtain a sequence that is closely related to the

DINEPT experiment of Wickramasinghe and Ishii [26]. An example of a two-dimensional 1H–13C TEDOR

spectrum acquired for a paramagnetic organometallic complex is shown in Figure 12.41 (a) [7]. A short

recoupling time of 60 µs was used to selectively transfer the coherences over a distance scale corresponding

to a single H–C bond. The spectrum allows the unambiguous assignment of the corresponding resonances.

We also note that the resonances are broadened along a ridge that is inclined relative to both axes. This is

due to the inhomogeneous broadening which is a consequence of the ABMS e↵ects discussed in chapter

10. Because the broadening is a distribution of chemical shifts it leads to an elongation of the resonance in

the two-dimensional spectrum that is inclined relative to the !1 axis with a gradient of �!2/�!1 = |�S /�1|,

which is here equal to 1/4 [257]. We are able to recover the intrinsically higher resolution in the absence of

the ABMS broadening by shearing the two-dimensional spectrum parallel to !2 to give a new frequency axis

!02 = !2+!1, where  is a shear ratio equal to � |�S /�1|, and then projecting onto !02. The spectra are shown

in Figure 12.41 (b).
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Figure 12.41: Experimental two-dimensional 1H–13C TEDOR spectra acquired with compound 1 of Figure
12.27 using the pulse sequence in Figure 12.35 (a). The MAS frequency is 30 kHz, the loop counters
were both set to 1, and the z-filter was omitted. The recoupling time of 60 µs is selective for short-range
transfers over the distance scale of a single H–C bond. The spectrum in (a) shows the region of the spectrum
with the isotropic peaks. The black one-dimensional spectra along the 1H and 13C dimensions represent
projections of the two-dimensional spectrum onto those axes, and the red traces are cross-sections extracted
at the frequencies indicated by the dashed lines. The lines are broadened into ridges by inhomogeneous
broadening. Applying a shearing transformation to the spectrum (see text for details) gives the spectrum in (b)
where the horizontal dimension represents the high-resolution zero-quantum (ZQ) dimension. Reproduced
with permission from [7]. Copyright (2006) American Chemical Society.

With the use of faster MAS it becomes possible to observe the 1H spectrum directly. This allows us

to employ a version of the TEDOR sequence with indirect detection, as shown in Figure 12.35 (b), which

benefits from the higher sensitivity of observing the nucleus with the larger �I . This sequence is related to

the DHSQC experiment used by Swamy et al. by setting n1 = n2 = 0 [27]. A comparison of the directly and

indirectly-detected 1H–13C correlation spectra of a paramagnetic Cu(II) complex is shown in Figure 12.42

[27]. The DINEPT spectrum acquired at 30 kHz MAS and a recoupling time of 33.33 µs is shown in (a).

The corresponding DHSQC spectrum is shown in (b). In both cases the combination of fast MAS and short

recoupling times enabled the acquisition of spectra with good sensitivity and resolution.

12.5.6 Separation of shift and shift anisotropy interactions

The experimental methods presented in the previous sections are designed to measure correlations between

the isotropic shifts of di↵erent nuclear sites. However in paramagnetic solids there are other interactions

which lead to spectral broadening and a loss of resolution, but are also useful sources of structural information

where they can be measured. One such interaction is the SA, which we have seen appears in the MAS NMR
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(a)

(b)

Figure 12.42: Two-dimensional 1H–13C correlation spectra of a paramagnetic Cu(II)-cyclam complex at 30
kHz MAS. The DINEPT spectrum is shown in (a), and the DHSQC spectrum is shown in (b). The recoupling
times for the generation of anti-phase coherences and reconversion back to in-phase coherences were both
33.33 µs. Adapted with permission from [27]. Copyright John Wiley and Sons.

spectrum as a spinning-sideband manifold. In solid materials in which a particular nucleus is present in more

than one site, the NMR spectrum contains multiple spinning-sideband manifolds that, in general, overlap. It

is therefore a matter of great interest to use an experiment that can separate the SA from the isotropic shifts,

so that both can be measured.

There are two widely-used two-dimensional experiments that remove the overlap between the spinning-

sideband manifolds, that are referred to as the Phase-Adjusted Spinning Sidebands (PASS) experiment [429],

and the Magic-Angle Turning (MAT) experiment [430]. They both have the same basic pulse sequence,

which comprises a 90� excitation pulse followed by a sequence of n 180� refocussing pulses that occupy a

recoupling delay T = N⌧r, where N is an integer. This recoupling period forms the evolution period of the

two-dimensional experiment, and is followed by direct acquisition. An example pulse sequence with five

180� pulses is shown in Figure 12.43 (a). We define the timings in the pulse sequence so that acquisition

begins at t = 0, which means that the time point immediately following the excitation pulse is t = �T . The

timing of the qth pulse is defined as �T + ⌧q. Hence the total phase accrued during the evolution period

569



In
cr

em
en

t

N-type (echo)

PASS pulse timings with N=1

(a)

(b)

MAT pulse timings(c)

P-type (anti-echo)

In
cr

em
en

t

t / τr

0 N

n-1

n-1

n/2

0

n/2

0

N/2

Nτr

t2

+1

-1
0p

t / τr

Θ
 / 

2π

0.0

0.0

0.5

1.0
0.5 1.0

Figure 12.43: Pulse sequence, coherence-transfer pathway, and pulse timings of the two-dimensional PASS
and MAT experiments for separating the isotropic shift and SA. The pulse sequence is shown in (a). To obtain
a PASS spectrum the timings for the 180� refocussing pulses shown in (b) are used [429]. The timings in (c)
are used for a MAT experiment, for which both N- and P-type datasets are required [430]. Unless otherwise
indicated, filled rectangles indicate pulses with a nominal flip angle of 90� and unfilled rectangles indicate
pulses with a nominal flip angle of 180�, and all pulses have phase x.
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�c(�; 0,�T ) is given by the sum of the phases due to the isotropic and anisotropic shifts, and is given by:

�c(�; 0,�T ) = ⌦iso⌧seq + �
SA
c (�; 0,�T + ⌧n) � (�1)n

n
X

q=1

(�1)q�SA
c (�;�T + ⌧q,�T + ⌧q�1), (12.15)

where we define ⌧0 = 0, and the e↵ective evolution time of the isotropic shift ⌧seq is

⌧seq = T � 2
n

X

q=1

(�1)n+q⌧q. (12.16)

Whilst in conventional two-dimensional spectroscopy we map the evolution during the indirect dimension by

incrementing the evolution time, we do not do so in the PASS and MAT experiments. Instead the total length

of the evolution period is kept constant at T , and we map out the evolution of the isotropic shift or SA by

varying the timings ⌧q of the n refocusing pulses. In order to quantify the extent of evolution we define a

“pseudo-t1” variable⇥, which is known as the pitch. If we have Ninc increments the pitch for the jth increment

( j = 1, 2,. . . ,Ninc) is ⇥ = 2N⇡( j � 1)/Ninc. We now make a decision as to whether we wish to refocus the

isotropic shift or SA during the evolution period. In the former case we obtain the PASS experiment, and in

the latter we obtain MAT.

PASS

In the PASS experiment we refocus the isotropic shift in all the increments, and allow the SA to evolve

progressively. Therefore the phase acquired during the evolution block in Equation 12.15 becomes

�c(�; 0,�T ) = �SA
c (�; 0,⇥/!r), (12.17)

and the e↵ective evolution time of the isotropic shift is zero for all increments:

⌧seq = 0. (12.18)

If we define the pulse timings in terms of angles ✓q = !r⌧q and the total length of the evolution block via an

angle ✓T = !rT , we obtain a set of five simultaneous equations that must be solved for each value of the pitch

571



in order to obtain the required pulse timings. Four equations pertain to the evolution of the SA, and are:

2
n

X

q=1

(�1)q exp
⇣

�im✓q
⌘

+ 1 � (�1)n exp(�im (⇥ + ✓T)) = 0, m = ±1,±2, (12.19)

whilst the fifth is the requirement that the isotropic shift is refocussed for all increments:

✓T � 2
n

X

q=1

(�1)n+q✓q = 0. (12.20)

If we employ a sequence with n = 5 180� pulses these simultaneous equations can be solved to give

unambiguous timings for each increment. The solutions are non-trivial, but can be obtained by numerical

solution of the five equations [429]. An example of the pulse timings is plotted in Figure 12.43 (b) for a

recoupling block with a length of one rotor period.

When implementing the PASS experiment we set the number of increments Ninc to a power of two that

is larger than the expected number of sidebands in the broadest manifold. A simulated PASS spectrum

in shown in Figure 12.44 (b). We see that the two spinning-sideband manifolds that overlap in the one-

dimensional spectrum are aligned parallel to the main diagonal !1 = !2 in the two-dimensional spectrum,

and are separated. The isotropic shifts can be obtained by extracting a one-dimensional trace at !1 = 0,

which contains the centrebands. We note here that both the homogeneous and inhomogeneous linewidth in

the indirect dimension are exactly zero. This is because firstly the evolution block has a constant length, and

so there is no di↵erential T 02 dephasing as we increment the pitch; the T 02 dephasing therefore only reduces

the overall intensity of the spectrum. Secondly the refocussing of the isotropic shift in the indirect dimension

also has the e↵ect of refocussing the inhomogeneous decay. Therefore both sources of line broadening only

lead to broadening in !2.

MAT

The second strategy for separating the spinning-sideband manifolds is to allow the isotropic shift to evolve

progressively during the evolution block, and to refocus the SA for all increments, which results in the MAT

experiment [430]. In this case the pitch is used to define the increase of ⌧seq from zero to a maximum value
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Figure 12.44: Simulated spectra illustrating the two two-dimensional spectroscopic methods for separating
overlapping spinning-sideband manifolds. The conventional one-dimensional spectrum contains two
overlapping spinning-sideband manifolds, both with Gaussian inhomogeneous broadening of the isotropic
shifts. The PASS spectrum, in which the isotropic shift is refocussed in !1, is shown in (a). The sidebands
of the two manifolds are aligned parallel to the !1 = !2 main diagonal, and centred at !1 = 0. The isotropic
resonances, indicated by arrows, are now clearly separated in the one-dimensional trace to the right taken
parallel to !2 through the centrebands. The inhomogeneous broadening is also parallel to !2. The MAT
spectrum is shown in (b). Here the two spinning-sideband manifolds are parallel to !2, and centred at the
isotropic frequencies in !1. The isotropic projection onto the !1 axis containing only the isotropic resonances
is shown to the right. The inhomogeneous broadening is parallel to the !1 = !2 main diagonal.
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via

⌧seq = ±
⇥

!r
, (12.21)

where the + sign refers to the P-type spectrum, and the � sign to the N-type spectrum. The total phase

acquired during the evolution block is then

�c(�; 0,�T ) = ±⌦iso
⇥

!r
. (12.22)

As for PASS these restrictions give us five simultaneous equations that need to be solved to obtain the correct

pulse timings. The first refers to the evolution of the isotropic shift:

✓T � 2
n

X

q=1

(�1)n+q✓q = ±⇥, (12.23)

and the remaining four to the refocussing of the SA:

2
n

X

q=1

(�1)q exp
⇣

�im✓q
⌘

+ 1 � (�1)n exp (�im✓T) = 0, m = ±1,±2. (12.24)

The solution to these five equations is simpler than for PASS. We again employ n = 5 180� pulses, but with

timings that are now given by [430]:

⌧q =
N⌧r

6

"

q ±
 

1 � (�1)q

2Ninc

!

( j � 1)
#

, (12.25)

where the number of rotor periods N can take any integer value that is not an integer multiple of 3. These

solutions are plotted graphically in Figure 12.43 (c) for the N-type and P-type experiments.

The MAT spectrum simulated with the same parameters as for the PASS spectrum discussed above is

shown in Figure 12.44 (c). Here the spinning-sideband manifolds are parallel to the !2 dimension, and the

!1 dimension contains the isotropic spectrum that can be obtained by a projection onto this axis. We also

note that the inhomogeneous broadening is parallel to !1 = !2, in contrast to PASS, since now the isotropic

shift evolves during the evolution block.

An example of MAT performed at slow MAS (0.5–1.5 kHz) is given in Figure 12.45 [431]. Figure

12.45 (a) shows the two-dimensional 13C MAT spectrum of the system [(C2H5)4N]2[Fe4S4(S13CH2C6H5)4],
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Figure 12.45: Two-dimensional 13C MAT spectrum at room temperature of
[(C2H5)4N]2[Fe4S4(S13CH2C6H5)4]. The two-dimensional spectrum is shown in (a) The resonance
marked by the vertical arrow is due to the strongest sharp line at 0 ppm from the natural abundance 13C spins
in the terminal methyl groups of the counterions. In (b) is shown the one-dimensional trace taken from the
horizontal slice at 101 ppm. Reproduced with permission from [431]. Copyright (2000) American Chemical
Society.
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Figure 12.46: Pulse sequence and coherence-transfer pathway of the two-dimensional MAT-PASS experiment
for separating the isotropic shift and SA [432]. The experiment comprises Ninc increments, where Ninc is a
power of 2. The evolution time t1 is incremented from an initial value of ⌧r to a final value of 2⌧r in steps of
�t1 = ⌧r/Ninc. The length of the sequence between the first pulse and start of acquisition therefore increases
from 11⌧r/3 to 14⌧r/3. Filled rectangles indicate pulses with a nominal flip angle of 90�, and all pulses have
phase x.

in which a single C atom has been 13C labelled. The correlation reveals a broad spinning-sideband manifold

with an isotropic shift of 101 ppm, which is shown in Figure 12.45 (b).

MATPASS

The PASS and MAT methods are both potentially very powerful for obtaining interpretable NMR data that

would otherwise be of too low resolution to be usable. However both experiments have a weakness, which

is that they employ a train of 180� pulses, which we have seen have a comparatively low bandwidth. One

solution to this is to instead use more broadband pulse schemes, as described in section 12.5.7. A second

solution, proposed by Hung et al., replaces all of the 180� pulses by 90� pulses which have a greater bandwidth

[432]. The resulting MAT-PASS pulse sequence is shown in Figure 12.46. The sequence also reintroduces

the real t1 evolution variable, which takes values from ⌧r to 2⌧r in steps of �t1 = ⌧r/Ninc. The spectrum has

the same form as the conventional PASS spectrum in Figure 12.44 (c). However the overall improvement

in the bandwidth comes at the cost of reduced sensitivity. Whereas the coherence-transfer pathway in

the conventional PASS/MAT sequence is the only one produced under ideal conditions, in the MAS-PASS

sequence the coherence-transfer pathway shown is only one of the four possible pathways that are generated

by the pulses. Hence the overall sensitivity is reduced by a factor of four compared to conventional PASS;

one reduction by two is due to the transfer p = +1 ! 0 ! +1 by the combination of the second and third

pulses, the second factor of two is due to the transfer p = +1 ! 0 ! �1 by the combination of the fourth

and fifth pulses. A second disadvantage is that the evolution block does not have a fixed duration, and but

increases by one rotor period from 11⌧r/3 to 14⌧r/3. For materials with large PREs this leads to a measurable
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Figure 12.47: The 31P MATPASS spectrum of Li3Fe2(PO4)3 acquired at 19.6 T and 30 kHz MAS. The one-
dimensional spectrum shown in (a) comprises three overlapping resonances, which are completely separated
in the two-dimensional MATPASS spectrum in (b). The isotropic spectrum that is shown was obtained
following a shear (described in section 12.5.8) and projection. The MATPASS spectrum was acquired using
the frequency-stepping scheme with two sub-spectra with the carrier positions denoted by Tx1 and Tx2 [394].
Reproduced with permission from [432]. Copyright (2012) American Chemical Society.

di↵erence in coherence dephasing for di↵erent increments, and hence a coherent linewidth in the indirect

dimension, and therefore an imperfect separation of the spinning-sideband manifolds [429].

Nevertheless the sequence has been used successfully in separating the spinning-sideband manifolds of

multiple sites in paramagnetic battery materials. An example of such an application is the application of

MATPASS to the 31P MAS NMR of Li3Fe2(PO4)3, as shown in Figure 12.47 [432]. The one-dimensional

spectrum in Figure 12.47 (a) comprises overlapping resonances from three distinct local environments. These

three environments are fully separated in the two-dimensional MATPASS spectrum shown in Figure 12.47

(b). Whilst this pulse sequence does have a greater bandwidth than conventional PASS or MAT, it should

be noted that here the MATPASS spectrum had to be acquired as two sub-spectra, using the frequency-

stepping method [394]. This issue of broadband NMR is addressed in the following section 12.5.7. A second

compelling example of MAT-PASS is its use in monitoring the change in the multiple 7Li sites in the Na-ion

cathode material P2–Na0.8[Li0.12Ni0.22Mn0.66]O2 during the first electrochemical cycle [55]. Figure 12.48
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Figure 12.48: Isotropic slices extracted from the 7Li MATPASS spectra of as-synthesized P2–
Na0.8[Li0.12Ni0.22Mn0.66]O2 and three di↵erent states of charge along the first electrochemical cycle. The
spectra were acquired at a magnetic field strength of 4.70 T and at 60 kHz MAS. Reproduced with permission
from [55]. Copyright (2014) American Chemical Society.

shows both the electrochemical cycle and the isotropic slices taken from MAT-PASS spectra recorded at four

di↵erent stages of the electrochemical cycle.

12.5.7 Broadband NMR methods for spin-1/2 nuclei

Adiabatic pulse schemes

The methods for solid-state paramagnetic NMR have hitherto focussed on the pulse sequences that can be

used to obtain the desired information about the system under study, such as the isotropic shifts, heteronuclear

correlations etc. However the discussion has focussed only on the sequence and, with the exception of

the section on frequency stepping, not on how may we achieve a broadband spectrum in the case where

the width of the spectrum is substantially larger than the practicable RF field amplitude. When this is the

case, conventional pulses are not suitable for excitation and alternative schemes are needed. The frequency-
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pulse scheme !1(t) �p(t) !rf(t)
hyperbolic secant [434] !max

1 sech
⇣

�(2t/⌧p � 1)
⌘

� �!⌧p
4�

h

ln
⇣

sech
⇣

�(2t/⌧p � 1)
⌘⌘i

�!
2 tanh

⇣

�(2t/⌧p � 1)
⌘

tanh/tan [435]
!max

1 tanh
✓

2⇠t
⌧p

◆

, 0  t  ⌧p/2

!max
1 tanh

✓

2⇠
✓

1 � t
⌧p

◆◆

, ⌧p/2 < t  ⌧p
� �!⌧p

4 tan  ln
⇣

cos
⇣

(1 � 2t/⌧p)
⌘⌘

� 1
2�! cot() tan

⇣

(1 � 2t/⌧p)
⌘

WURST [436] !max
1

 

1 �
�

�

�

�

�

sin
✓

⇡
✓

t
⌧p
� 1

2

◆◆

�

�

�

�

�

n!
�!
2

✓

t2
⌧p
� t + ⌧p

4

◆

�!
2

✓

2t
⌧p
� 1

◆

Table 12.2: Amplitude !1(t), phase �p(t), and frequency sweep !rf(t) profiles for a selection of swept-
frequency adiabatic pulses. For each scheme the transmitter o↵set is swept through a range of frequencies
�! during the pulse length of ⌧p with a maximum RF field amplitude of !max

1 . For the hyperbolic secant
pulse � is a dimensionless parameter given by � = sech�1( f ), where f is the fraction of !max

1 at which the
beginning and end of the amplitude profile are truncated. Typically this truncation factor is set to 1%, and so
� = sech�1(0.01) = 5.2983. For the tanh/tan pulse ⇠ and  are dimensionless parameters which take values
⇠ = 10 and  = tan�1(20). For the WURST pulse n is a factor controlling the rate at which the amplitude
profile is smoothed from zero to !max

1 at the start and end of the pulse; typically n = 20.

stepping scheme that has already been discussed has proved useful for obtaining one-dimensional spectra,

but is not a universal solution to the problem of broadband NMR as (1) there is a substantial increase in the

experiment time required to acquire all the sub-spectra, and (2) this increase limits the practical application

to one-dimensional spectroscopy. There is a requirement for pulse schemes that can acquire a broadband

spectrum in a single experiment, and which can be easily incorporated into the more sophisticated multi-

dimensional experimental pulse sequences that we have presented here.

One broadband pulse scheme that has been used widely in both solution NMR and MRI is the swept-

frequency adiabatic pulse [433]. The important defining feature of all adiabatic pulses is that they are designed

to have a transmitter o↵set which sweeps through the spectrum, rather than being fixed at a predefined

frequency. The pulse is defined by a pulse length ⌧p, a time-dependent RF field amplitude !1(t) and a

time-dependent phase �p(t) that are both symmetric about the mid-point of the pulse. The RF field amplitude

is designed so that it increases smoothly from zero at the start of the pulse to a maximum value of !max
1 ,

and then decreases back to zero at the end of the pulse. The time-dependent phase is designed so that it

induces a time-dependent sweep of the transmitter o↵set, !rf(t) = d�p(t)/dt, which sweeps through a range of

frequencies �!, and that is approximately linear at t = ⌧p/2. Many such pulse schemes have been designed,

including the hyperbolic secant [434], tanh/tan [435], and WURST [436] pulses. The expressions for the RF

field amplitude, phase, and induced transmitter o↵set are given in Table 12.2. These amplitude, phase, and

frequency profiles are plotted in Figure 12.49. The profiles for the tanh/tan pulse are shown in Figure 12.49

(a)–(c), for the WURST pulse in Figure 12.49 (d)–(f), and the hyperbolic secant pulse in Figure 12.49 (g)–(i).
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Figure 12.49: The amplitude, phase, and frequency-sweep profiles of three widely-used adiabatic pulse
schemes. The amplitude, phase, and frequency-sweep profile for the tanh/tan pulse scheme are shown in
(a), (b), and (c) [435]. This class of pulse is suitable for the broadband SHAP. The plots in (d), (e), and (f)
show the amplitude, phase, and frequency-sweep profiles for WURST, which is used as a low-power S3AP
[436]. Finally (g), (h), and (i) show the amplitude, phase, and frequency-sweep profiles for the hyperbolic
secant, which can also be used as an S3AP [434].
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The theory by which these pulses achieve inversion of a spin has been described in detail for isotropic

systems in solution [433, 437], and for solids under MAS [34], and so we give only the salient points here.

The rotating-frame Hamiltonian Ĥ(t) describing an adiabatic pulse applied to a spin with a time-dependent

shift frequency ⌦(t) due to, for example, an SA under MAS, is given by

Ĥ(t) = ⌦(t)Îz + !1(t)R̂z(�p(t))ÎxR̂z(�p(t))�1. (12.26)

We can also define this Hamiltonian in the frequency-modulated frame, where the phase modulation of the

pulse is converted into the modulation of the transmitter o↵set to give Ĥ0(t):

Ĥ0(t) = R̂z(�p(t))�1Ĥ(t)R̂z(�p(t)) �
d�p(t)

dt
Îz (12.27)

= (⌦(t) � !rf(t)) Îz + !1(t)Îx. (12.28)

We can now define e↵ective field of magnitude !(0)
e↵ (t) and angle of tilt from z ✓(0)(t), which are given by

h

!(0)
e↵ (t)

i2
= (⌦(t) � !rf(t))2 + !1(t)2, (12.29)

tan
h

✓(0)(t)
i

=
!1(t)

⌦(t) � !rf(t)
, (12.30)

and rewrite Ĥ0(t) as

Ĥ0(t) = !(0)
e↵ (t)R̂y

⇣

✓(0)(t)
⌘

ÎzR̂y
⇣

✓(0)(t)
⌘�1
. (12.31)

For the schemes shown in Table 12.2 and Figure 12.49 we see that the e↵ective field is aligned along +z at

the beginning of the pulse. During the pulse, the RF field amplitude increases to its maximum value, the

transmitter o↵set increases from a negative value to a positive value, and the e↵ective field is rotated about

the y-axis from +z to �z, and is therefore inverted.

If we are describing population inversion of a nuclear spin with initial density operator Îz, the magne-

tization at the start of the pulse is aligned parallel to the e↵ective field, and so is spin-locked to it. If the

e↵ective field inverts su�ciently slowly, the magnetization remains spin-locked throughout the pulse, and so

is also inverted. If on the other hand we are describing refocusing of coherences, as occurs during a spin

echo, the initial magnetization is orthogonal to the e↵ective field at the start of the pulse. Here it is the plane
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in which the magnetization evolves during the pulse that is tilted as the e↵ective field inverts, and which leads

to refocussing.

The question is, what do we mean by “if the e↵ective field inverts su�ciently slowly”? This question

can be answered by transforming the frame of reference of the adiabatic pulse from the frequency-modulated

frame to the first adiabatic frame as follows, to give the Hamiltonian Ĥ1(t) [433]:

Ĥ1(t) = R̂y
⇣

✓(0)(t)
⌘�1

Ĥ0(t)R̂y
⇣

✓(0)(t)
⌘

� d✓(0)(t)
dt

Îy (12.32)

= !(0)
e↵ (t)Îz � ✓̇(0)(t)Îy, (12.33)

in which the e↵ective field is now along +z, and we have introduced the transverse field ✓̇(0)(t) along �y to

account for the motion of the first adiabatic frame relative to the frequency-modulated frame. To achieve

perfect inversion or refocussing we require the total field in the first adiabatic frame to remain along z

throughout the pulse, which is achieved if
�

�

�!(0)
e↵ (t)

�

�

� �
�

�

�✓̇(0)(t)
�

�

� throughout the pulse. This is quantified via

the quality factor Q(1), which is defined by

1
Q(1) = max

�

�

�

�

�

�

�

✓̇(0)(t)
!(0)

e↵ (t)

�

�

�

�

�

�

�

(12.34)

= max

�

�

�

�

�

�

�

�

!̇1(t) [⌦(t) � !rf(t)] � !1(t)
h

⌦̇(t) � !̇rf(t)
i

!(0)
e↵ (t)3

�

�

�

�

�

�

�

�

. (12.35)

For good inversion or refocussing behaviour we require Q(1) � 1; this is the so-called adiabatic condition.

In an isotropic solution, where the shift o↵set is time-independent and equal to zero, and for typical

values of the sweep width �! and RF field amplitude, the adiabatic condition is weakest at t = ⌧p/2 where

the transmitter is resonant with the spin. Here !1(⌧p/2) = !max
1 , !rf(⌧p/2) = 0, !(0)

e↵ (⌧p/2) = !max
1 , and the

adiabatic condition simplifies to
h

!max
1

i2 �
�

�

�!rf(⌧p/2)
�

�

�. Therefore it can be seen that if a particular pulse is

not adiabatic, it can be made so simply by raising the RF field amplitude.

For solid samples under MAS the application of adiabatic pulses is generally very di�cult since the

modulation of the SA leads to rapid oscillations in both the size and tilt angle of the e↵ective field, and hence

a weakening of the adiabatic condition. This is particularly problematic for paramagnetic species where the

combination of large SAs and fast spinning results in quality factors that are typically much lower than unity
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for typical pulse schemes. Therefore special measures need to be taken in order for adiabatic pulses to work

properly [34]. Two such methods have been developed, which are referred to as short high-power adiabatic

pulses (SHAPs) [28], and single-sideband-selective adiabatic pulses (S3APs) [31–33].

Short, high-power adiabatic pulses (SHAPs)

The first, and currently most successful, adiabatic pulse scheme for paramagnetic systems is the short high-

power adiabatic pulse (SHAP) [28]. These pulses are designed with a large sweep width to give a large

bandwidth, and a short duration to minimize signal losses due to the PRE. In order to compensate for the

weakening of adiabicity due to the modulation of the SA during MAS, we also use an RF field amplitude that

is significantly larger than would be needed for isotropic spin systems. The SHAP represents a “brute force”

solution to obtaining an adiabatic response for a system with a large SA under MAS. The class of pulse that is

used to satisfy these requirements is the tanh/tan, which is used in MRI to obtain a large bandwidth [435]. The

expressions for the amplitude, phase, and frequency-sweep profiles are given in Table 12.2. When designing

a pulse suitable for paramagnetic MAS NMR the following optimization protocol should be followed:

1. The dimensionless parameters ⇠ and  are set to ⇠ = 10 and  = tan�1(20), and are not varied.

2. The sweep width �! is set so that it is greater than the expected width of the spectrum. Typically we

choose 5 MHz as an initial value, and may increase this if necessary.

3. The pulse length ⌧p is chosen to be as short as possible, whilst still maintaining the adiabatic condition;

typical values are 50–100 µs. For inversion and the spin-echo experiment it is not necessary for the

pulse length to be an integer number of rotor periods. However this restriction does apply to more

complex experiments such as MAT.

4. Once the pulse has been created the RF field amplitude is optimized. This is done either by optimizing

the spectral intensity in a spin-echo experiment, or the inversion performance, by increasing the RF

power.

In addition to broadband inversion, SHAPs can also be incorporated into a spin-echo experiment using the

pulse sequence in Figure 12.50 (a). This sequence, referred to as the double-SHAP-spin-echo experiment,

comprises two echoes the separation between the starting points of which is an integer number of rotor
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Figure 12.50: Broadband pulse sequences employing adiabatic refocussing pulses, and coherence-transfer
pathways, for the double adiabatic spin-echo and aMAT experiments. The double adiabatic spin-echo
sequence is shown in (a) with the coherence-transfer pathway [28]. The arrow indicates the time point at
which the isotropic shift is refocussed. The SHAP need not be an integer multiple of the rotor period in
length. The aMAT sequence is shown in (b) [30]. Here the length of the SHAP is an integer multiple m of the
rotor period. Filled rectangles indicate pulses with a nominal flip angle of 90�, and unfilled rectangles with a
diagonal stroke indicate SHAPs. All pulses have phase x.

periods. The reason why two echoes are required is that the first SHAP imparts a frequency-dependent phase

error to the coherences which leads to a dephasing of the signal in the powder. However the second SHAP

refocusses this phase error, leading to a complete refocussing of both the shift and SA at the end of the

second echo. This refocussing property of the double echo is referred to as the excitation-sculpting principle

[34, 438–440].

The inversion and refocussing performance are illustrated experimentally on the cathode material LiFe0.5Mn0.5PO4

at 11.74 T and 60 kHz MAS in Figure 12.51 [34]. A comparison between the 7Li conventional spin-echo and

double-SHAP-echo experiments is given in Figure 12.51 (a) and (c). The two spectra appear to be identical,

which is due to the small range of isotropic shifts of 90 ppm, and the relatively long relaxation times of

approximately 1 ms [30]. However the 31P double-SHAP-echo in Figure 12.51 (d) shows a significant

improvement in the broadband excitation bandwidth compared to the conventional spin-echo spectrum in

Figure 12.51 (b). This is due to the 32 distinct local 31P environments having an isotropic shift dispersion of

4000 ppm (800 kHz at 11.74 T) which is too large for the practicable RF field amplitude of 417 kHz [30].

This improvement in bandwidth comes at the expense of reduced sensitivity due to the larger PRE losses

during the two SHAPs which have a combined length of 100 µs, which is comparable to the range of 31P T 02

times of 130–330 µs.

The inversion performance is also given for both 7Li and 31P with varying RF field amplitude in Figure

12.51 (e) and (f). For 7Li we obtain complete inversion of the spectrum for a range of MAS frequencies
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Figure 12.51: Experimental examples of the improved inversion and refocussing properties of SHAPs when
applied to paramagnetic materials compared to conventional pulses. In (a) and (b) are shown the conventional
7Li and 31P rotor-synchronized spin-echo spectra of the cathode material LiFe0.5Mn0.5PO4 at 11.74 T and 60
kHz MAS. The RF field amplitudes are 455 kHz for 7Li and 417 kHz for 31P. The 7Li and 31P double-SHAP-
echo spectra are shown in (c) and (d) at 60 kHz MAS, with the latter showing increased bandwidth. The
SHAP is a tanh/tan pulse sweeping through 5 MHz in 50 µs at RF field amplitudes of 455 kHz for 7Li and
417 kHz for 31P. Panel (e) shows the integrated intensity of the 7Li spectrum following SHAP inversion at
di↵erent RF field amplitudes and MAS frequencies. The integrated intensity of the 31P spectrum following
SHAP inversion at di↵erent RF field amplitudes is shown in (f). Reproduced from [34], with permission from
Elsevier.
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and sweep widths with RF field amplitudes above 350 kHz. We note that higher RF field amplitudes are

required at higher MAS rates, as the faster modulation of the SA leads to a greater weakening of the adiabatic

condition. For 31P we obtain 75% inversion at an RF field amplitude of 400 kHz. In this case higher RF fields

may only give a moderate increase in performance as there are intensity losses due to the short T1 and T 02

times.

One advantage of SHAPs is that they are easily incorporated into more sophisticated experimental pulse

schemes to give a more broadband spectrum. Figure 12.52 illustrates the use of a tanh/tan SHAP in the CPMG

experiment at 66 kHz MAS. The system is the lanthanide-binding organometallic complex Tb[C5H3N(COO)2Na]3,

which gives a broad 1H spectrum with a large SA, and has substantial inhomogeneous broadening of the

sidebands due to the ABMS [29]. The 1H spectra acquired using the double-SHAP-echo experiment at 20,

33, and 66 kHz MAS are shown in Figure 12.52 (a)–(c). Here we again see the benefit of applying fast

MAS to a system with a very large SA. We see that the sidebands are broadened considerably, with baseline

resolution only being obtained at 66 kHz MAS. Incorporating the SHAPs into the CPMG sequence gives the

SHAP-CPMG experiment in Figure 12.52 (d), which was used to acquire the FID in Figure 12.52 (e). This

FID exhibits a relatively slow decay corresponding to a T 02 of 1.68 ms. This indicates that the losses due to T 02

to be expected in longer pulse sequences are not as severe as from the large inhomogeneous line broadening

in the conventional spectra would suggest. The SHAP-CPMG spectra are shown in Figure 12.52 (f) and (g).

They have a higher sensitivity than the double-SHAP-echo spectra, and a homogeneous linewidth of 190

kHz.

A second striking application of SHAPs to paramagnetic NMR is in the two-dimensional MAT experiment

used to separate overlapping spinning-sideband manifolds. The resulting adiabatic magic-angle turning

(aMAT) sequence is shown in Figure 12.50 (b). Here a sixth pulse q = 0 is inserted immediately after the first

excitation pulse in order to complete the refocussing of the phase errors from the other SHAPS, and remains

fixed in this position for all increments. The other five SHAPs are inserted with timings that are the same as

those in the conventional MAT sequence. Figure 12.53 shows the experimental 31P aMAT spectrum acquired

on LiFe0.5Mn0.5PO4 at 11.74 T and 60 kHz MAS [30]. The 32 local 31P environments each have a broad

spinning-sideband manifold with isotropic shifts covering a range of 4000 ppm. These resonances overlap in

the one-dimensional spectrum, as illustrated in Figure 12.51 (d), but have been partially separated into eight

distinct groups of resonances in the aMAT spectrum, thus allowing the assignment and interpretation [30].
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Figure 12.52: 1H MAS spectra of the organometallic compound Tb[C5H3N(COO)2Na]3 acquired using
double-SHAP-spin-echo and SHAP-CPMG pulse sequences [29]. The double-SHAP-spin-echo spectra
acquired at MAS frequencies of 20, 33, and 66 kHz are shown in (a), (b), and (c). Panel (d) shows the
SHAP-CPMG pulse sequence that was used to acquire the FID at 66 kHz MAS in (e). The corresponding
spectra are shown in (f) and (g). Reproduced with permission from [29]. Copyright (2007) American
Chemical Society.
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Figure 12.53: The two-dimensional 31P aMAT spectrum of the cathode material LiFe0.5Mn0.5PO4 acquired
at 11.74 T and 60 kHz MAS. The SHAP is a tanh/tan pulse sweeping through 5 MHz in 50 µs at an RF
field amplitude of 417 kHz. The length of the MAT recoupling period is 7 rotor periods, excluding the pulse
lengths.
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The SHAP is both e↵ective and versatile, and has been successfully applied to a range of paramagnetic

systems [10, 29, 30, 55, 56, 59, 71, 441–444]. However the main weakness in the SHAP scheme is that

the RF field amplitude required increases with faster MAS rates Therefore it may not be possible to obtain

complete inversion at very fast MAS, such as 100 kHz, especially for nuclei of low gyromagnetic ratio where

the RF field amplitude is limited. This issue is addressed by the second adiabatic pulse scheme

Single-sideband-selective adiabatic pulses (S3APs)

The second adiabatic pulse scheme is the single-sideband-selective adiabatic pulse S3AP, which employs a

lower-power pulse in which the transmitter frequency is swept through a single sideband [31]. The basic

method had been previously used to invert the broad spinning-sideband manifolds of ST resonances of

quadrupolar nuclei in diamagnetic systems, where it was shown that both the hyperbolic secant and WURST

pulse schemes are suitable for single-sideband irradiation [445–448]. The theory of broadband inversion

by single-sideband adiabatic was then developed by employing a formalism from Caravatti et al. [449], and

combining this with a Floquet-theory description of the resulting e↵ective Hamiltonian [315–318] to provide

a complete description of the S3AP [31, 32].

The basic idea behind a S3AP is that the bandwidth of the pulse is limited so that it a↵ects only the

irradiated sideband. The resonance of the SA is modulated by the MAS, and so shifts in and out of the

e↵ective pulse bandwidth during the course of the pulse, with the result that the spin is only resonant for a

fraction of the total irradiation time. An alternative view is that the pulse is resonant for the whole of the

irradiation time, and it is the RF field amplitude that is scaled down. If the pulse irradiates the mth-order

sideband the e↵ective Hamiltonian Ĥ(1)
e↵ (t) for a single crystallite is [31]:

Ĥ(1)
e↵ (t) = !1(t)A(m)

c R̂z
⇣

�p � �(m)
c (�PR)

⌘

ÎxR̂z
⇣

�p � �(m)
c (�PR)

⌘�1
, (12.36)

which corresponds to a pulse with an e↵ective RF field amplitude !1(t)A(m)
c that is scaled down by the

sideband intensity, and an e↵ective phase �p � �(m)
c (�PR) that is o↵set by minus the sideband phase. This

Hamiltonian describes the part of the spin dynamics that gives rise to adiabatic inversion and refocussing,

provided the RF field amplitude is su�ciently high to o↵set the weakening of the condition by the scaling

down of the e↵ective RF field amplitude by A(m)
c . There is also a contribution to the spin dynamics from
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the rapidly-oscillating SA which is not included in this e↵ective Hamiltonian. However this oscillation is

averaged out over the course of the a rotor period, and has no overall e↵ect [31].

The advantage of the S3AP over the SHAP is that the typical RF field amplitudes are equal to or lower

than the spinning frequency, and so broadband inversion can be achieved using much lower power. This is

shown by the simulations in Figure 12.54 [34], where the inversion performance of a spin subject to an SA

of 200 kHz with a WURST-20 S3AP of duration 1 ms is compared at 20, 40, 60, 80, and 100 kHz MAS.

The extent of inversion is plotted against both the RF field amplitude and carrier frequency in Figure 12.54

(a). We see that the performance of the S3AP increases with MAS frequency, as a greater proportion of the

sideband intensity is then concentrated in the centreband m = 0, and the weakening of the adiabatic condition

is reduced. Additionally the one-dimensional plots of inversion as a function of carrier frequency in Figure

12.54 (b) indicate that a larger spinning frequency allows the use of a larger sweep width without irradiating

the neighbouring sidebands, thus increasing the bandwidth of isotropic shifts over which we invert. Finally

the use of faster MAS also increases the range of RF field amplitudes (up to the MAS frequency) over which

we obtain complete inversion, as shown by the one-dimensional RF field profiles in Figure 12.54 (c). The

disadvantage of the S3AP is that the pulses are longer by at least an order of magnitude, and so significant

signal losses due to the short relaxation times are expected.

The general recommendations for implementing an S3AP are:

1. Select either the hyperbolic-secant or WURST waveform. For the hyperbolic secant set the amplitude

truncation factor to 1%, and therefore � = sech�1(0.01) = 5.2983. For the WURST set n = 20. For

both waveforms set the sweep width to the MAS frequency.

2. Set the pulse length between 0.5 and 5 ms. Longer pulse lengths result in greater relaxation losses

during the pulse, but an adiabatic condition that is more easily satisfied.

3. Optimize the peak RF field amplitude from 0 kHz to the spinning frequency.

Figure 12.55 shows two experimental examples of S3AP inversion at slow and fast MAS. The spectra in

Figure 12.55 (a)–(c) show the 77Se NMR spectra of the diamagnetic compound 1 at 11 kHz MAS. The

conventional 1H–77Se CP spectrum in (a) was inverted both with a high-power conventional 180� pulse

(b) and with a low-power (10 kHz), 5 ms WURST-20 S3AP tuned to the centreband (c). Here the S3AP

gives complete inversion, which matches the theoretical prediction from the simulated inversion profiles as a
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Figure 12.54: Simulated inversion performance of S3APs under MAS. In (a) are shown contour plots of the
inversion of the powder sample as a function of RF field amplitude and carrier frequency at MAS frequencies
of 20, 40, 60, 80, and 100 kHz. In each case, the S3AP is a WURST-20 pulse of length 1 ms with a sweep
width equal to the spinning frequency. The best inversion occurs when the transmitter is resonant with
one of the sidebands and the RF field amplitude is su�ciently high to satisfy the adiabatic condition for
all crystallites. In (b) are shown horizontal cross sections through the contour plots, taken at the positions
shown by the horizontal white dashed lines. The plots show the inversion as a function of transmitter o↵set.
The RF amplitude profiles in (c) are cross sections taken at the positions of the vertical white dashed lines
in the contour plots. The arrows in the plots in (b) and (c) indicate the transmitter o↵set and lowest RF
field amplitude at which the best inversion performance is obtained for each MAS frequency. Each pair of
optimum values is also indicated by the intersection of the two white dashed lines in each contour plot in (a).
The optimum values of (sideband order, RF field amplitude) for the five MAS frequencies are: (�2, 20 kHz)
at 20 kHz MAS, (+2, 30 kHz) at 40 kHz MAS, (+2, 50 kHz) at 60 kHz MAS, (0, 30 kHz) at 80 kHz MAS,
and (0, 20 kHz) at 100 kHz MAS. The shift tensor parameters are: isotropic shift 0 kHz, SA +200 kHz, and
asymmetry parameter 0.3. Reproduced from [34], with permission from Elsevier.
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respectively, and the inversion performance with an S3AP [31]. The conventional spectra are shown in (a) and
(e). The spectra obtained following inversion with a 69 kHz and 200 kHz hard pulse, respectively, are shown
in (b) and (f). Spectra obtained following inversion by irradiation of the centreband with an S3AP are shown
in (c) and (g). The inversion of the spectrum of 1 was achieved with a WURST-20 S3AP with a sweep width
of 10 kHz, duration of 5 ms, and peak RF field amplitude of 10 kHz. The inversion of 2 was achieved with
a hyperbolic secant S3AP with a sweep width of 70 kHz, duration of 495 µs, and peak RF field amplitude of
60 kHz. Simulations showing the expected degree of inversion vs RF power are shown in (d) and (h). The
77Se spectra of 1 were obtained with 1H–77Se CP followed by a z-filter during which the inversion pulse was
applied. The 1H spectra of 2 were obtained with a double-SHAP-echo sequence, using a tanh/tan SHAP of
sweep width 5 MHz, length 60 µs, and peak RF field amplitude 60 kHz. The centrebands are marked with an
asterisk. Reproduced from [31], with the permission of AIP Publishing.
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function of RF field amplitude in Figure 12.55 (d). The second example is the paramagnetic compound 2 at

60 kHz MAS which presents a more exacting test. The one-dimensional 1H double-SHAP-echo spectrum is

shown in Figure 12.55 (e). Inversion with a conventional pulse at the high RF field amplitude yields a poor

performance as shown in Figure 12.55 (f). A hyperbolic secant S3AP applied to the centreband of length 495

µs and RF field amplitude 60 kHz performs considerably better, delivering 75% inversion, as shown in Figure

12.55 (g). The simulated inversion performance as a function of RF field amplitude is shown in Figure 12.55

(h), which includes the e↵ects of T1 relaxation and T 02 dephasing. The imperfect inversion performance is

attributable mainly to relaxation losses. This method is expected to be more widely used with the advent of

faster MAS, where shorter S3APs with larger isotropic bandwidths can be used.

12.5.8 Separation of shift-anisotropy and quadrupolar interactions

In this section we present experimental schemes that are designed to separate the contributions to the spectral

lineshape from the paramagnetic SA and quadrupolar interactions. The motivation for developing experi-

ments of this type is that quadrupolar nuclei in paramagnetic systems have complicated spectra, as seen in

Figure 11.5 for I = 1 and Figure 11.8 for I = 3/2, from which the information about the two interactions

cannot easily be extracted. Nevertheless the tensor parameters are useful indicators of the structural and

electronic properties. We present the current state-of-the-art schemes that are applicable to integer and

half-integer spins. We recall that there is a fundamental di↵erence between the two types of quadrupolar

nucleus, with half-integer spins having a CT but not the integer spins. Therefore the two types of spin

can have di↵erent symmetry pathways, and so needs di↵erent, specifically-tailored, pulse sequences. We

therefore treat integer and half-integer spins di↵erently. For the former we review two experimental methods

for static conditions [199, 392], and for the latter we present a technique for a powder spinning at 70.12� to

the field [393]. Before exploring these methods in detail we first introduce the idea of a two-dimensional

echo, which is a concept used to understand the time points in a pulse sequence where a particular interaction

is refocussed, and then discuss shearing and scaling transformations, which are processing operations used

to convert a two-dimensional FID into a spectrum where di↵erent interactions are separated along di↵erent

principal frequency axes.
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Two-dimensional echoes

The experimental schemes presented here are based on two-dimensional pulse sequences in which the evo-

lutions due to the shift/SA and quadrupolar interactions are refocussed at di↵erent points in the sequence.

Therefore the two interactions give rise to resonance broadening along di↵erent dimensions in the two-

dimensional spectrum, thus leading to their separation. We begin by illustrating the concept of a general

⌅-echo in two-dimensional spectroscopy, where ⌅ is the spin-order parameter that defines the frequency

of evolution of the interaction in question, and how the corresponding tensor parameters can be extracted.

The discussion here is limited to frequency components of interactions that are time-independent, such as

isotropic interactions, all interactions in static solids, or the residual components of anisotropic interactions

that remain time-independent under MAS such as the residual rank-four second-order quadrupolar interaction

which broadens the resonance.

The two-dimensional experiments presented here are designed so that di↵erent coherences |M1i hM2| and

|M3i hM4| evolve during t1 and t2. Under a particular interaction ⇤, the two coherences evolve at di↵erent

frequencies ⌦(⇤)
l0,M1 M2

and ⌦(⇤)
l0,M3 M4

in t1 and t2, and so the total phase acquired in the FID �(⇤)
l0 (t1, t2) is given

by

�(⇤)
l0 (t1, t2) = ⌦(⇤)

l0,M1 M2
t1 +⌦(⇤)

l0,M3 M4
t2. (12.37)

We are already familiar with the concept of refocussing in a spin-echo experiment, where the total phase

accrued due to evolution of the chemical shift is equal to zero at the end of an echo. We can generalize this

concept and define an echo in a two-dimensional FID to be the time points at which �(⇤)
l0 (t1, t2) = 0 [319].

The two evolution frequencies⌦(⇤)
l0,M1 M2

and⌦(⇤)
l0,M1 M2

di↵er only in their spin-order parameters, which we here

refer to as a1 and a2. Therefore the refocussing condition can be expressed succinctly as [319]

a1t1 + a2t2 = 0. (12.38)

Therefore the refocussing of the interaction ⇤ occurs at all time points that lie on a straight line in (t1, t2) that

is inclined at a gradient of �a1/a2 from the t1-axis and passes through the origin, as shown in Figure 12.56 (a).

This line is referred as an echo ridge. In principle we can perform a skew projection of the two-dimensional

FID onto this line to obtain a one-dimensional FID in which there is no evolution of this interaction ⇤, and
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Figure 12.56: Illustration of echo formation in, and shear of, a two-dimensional FID. A two-dimensional
FID s(t1, t2) is shown in (a), sampled on a Cartesian grid (t1,2 ). The red arrow indicates the formation of an
echo of a particular interaction with spin-order a1 and a2 in t1 and t2. After an active shear, where the time
domain data rather than the coordinate axes are transformed, parallel to t2 with shear ratio 2 = a1/a2 we
obtain the FID s(t01, t

0
2) in (b), in which the Cartesian grid of sample points is distorted into a parallelogram.

The green area has been sheared out of the original sampling grid. In (c) the shear has been calculated from
the inverse Fourier transform of exp (+i!22t1) S (t1,!2). Here the Cartesian grid is preserved, and the green
area is folded back into the original acquisition window.
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which can be Fourier transformed to give a one-dimensional spectrum in which the spectral features due

to this interaction are not present. Hence we have separated the interaction ⇤ from any others that may

be present, therefore leading to a simpler spectrum. However skew projections are di�cult to perform in

practice, and we prefer instead to shear the FID so that the echo ridge is transformed to lie along either the

t1- or t2-axis [319].

Shearing and scaling transformations

A shear transformation is characterized by both a “direction” and “size”. The former is defined by the axis

along which the transformation takes place, and the latter by the shear ratio . We have two obvious choices

of axis, namely the two principal axes t1 and t2. If we perform an active shear parallel to t2, as shown in Figure

12.56 (b), we transform the rectangular sampling grid of the FID into a parallelogram. The time points of the

sheared spectrum are measured relative to a new coordinate system (t01, t
0
2) which is calculated from the old

coordinate system (t1, t2) by

t0 = T 2t. (12.39)

The matrix T 2 defines the mapping due to the shear, and is given by
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where 2 is the shear ratio for the shear parallel to t2. The explicit expressions relating (t01, t
0
2) to (t1, t2) are
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The result of the shear is to shift the orientation of the echo ridge so that it lies closer to the new t01 axis. If we

set the shear ratio to

2 =
a1

a2
, (12.42)

then we can see that after the shear the echo ridge is parallel to t01, as shown in Figure 12.56 (b). The extraction

of the slice of the two-dimensional FID along this axis yields a one-dimensional FID in which there is no
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evolution of the interaction at any time point, and the resulting spectrum contains no spectral features due to

this interaction. However before extracting the slice we should note that the apparent evolution frequencies

of the other interactions along t01 are not necessarily equal to the nominal frequencies we would expect from

a conventional one-dimensional spectrum. In general these remaining frequencies are scaled up or down by

some factor. Therefore in order to recover the correct frequencies we need to scale the t01 times by some

scaling factor ⇣01. The coordinate transformation matrix is T ⇣01
, and is given by

T ⇣01
=

0
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. (12.43)

Hence the total transformation comprises a shear parallel to t2 with a ratio 2, followed by a scaling of the

new t01 axis by a factor ⇣01. The coordinate system resulting from both transformations is then related to the

old system by

t0 = T ⇣01
T 2t (12.44)
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The illustration of the shear in Figure 12.56 (b) is as a simple translation of the rows parallel to t2 by a

distance that is defined by the shear ratio. Whilst this is conceptually the simplest way to implement a shear,

it is also inconvenient in practice since the Cartesian grid of sampling points in Figure 12.56 (a) is distorted

into a parallelogram, and part of the FID (in green) is transformed outside the original sampling window. A

more convenient method for performing the shear is to first compute the Fourier transform of the FID with

respect to t2 to give the mixed time–frequency domain function S (t1,!2):

S (t1,!2) =
Z 1

0
s(t1, t2) exp (�i!2t2) dt2. (12.46)

We then multiply each point in this domain by a complex phase factor exp (+i!22t1). The result can be

shown to be equal to the Fourier transform of the sheared FID s(t1, t2 + 2t1) [189]:

s(t1, t2 + 2t1)$ exp (+i!22t1) S (t1,!2). (12.47)
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Hence the inverse Fourier transform of exp (+i!22t1) S (t1,!2) with respect to !2 yields the sheared FID,

which is shown in Figure 12.56 (c). This method has the advantage over the simple translation that now the

Cartesian grid of sampling points is preserved, and the green region of points which was sheared outside the

grid in Figure 12.56 (b) is folded back inside to the rectangular sampling space in Figure 12.56 (c).

Finally we can calculate the evolution frequencies of an arbitrary interaction following the combined

shear and scale. The original evolution frequencies during t1 and t2, which are ⌦1 and ⌦2, are transformed

into ⌦01 and ⌦02 in the new coordinate system. These frequencies are calculated from:
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and are given by the following expressions:

✓

⌦01 ⌦02

◆

=
✓

⌦1 ⌦2

◆

0

B

B

B

B

B

B

B

B

B

@

⇣01 0

2 1

1

C

C

C

C

C

C

C

C

C

A

�1

(12.50)

=
✓

⌦1�2⌦2
⇣01

⌦2

◆

. (12.51)

We note that the two evolution frequencies⌦01 and⌦02 are associated with new e↵ective spin-order parameters

a01 and a02 in the new coordinate system.

Alternatively we can shear the FID parallel to t1 to map the echo ridge onto the new t02 axis and scale then

scale t02. The coordinate transformation is

t0 = T ⇣02
T 1t, (12.52)

where T 1 is the shear matrix characterised by the shear ratio 1, and T ⇣02
represents the subsequent scaling

of t02 by the factor ⇣02:
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The explicit expressions for the new time coordinates are:
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In order to map the echo ridge onto t02 we require the shear ratio to be equal to

1 =
a2

a1
. (12.55)

In analogy with the shear parallel to t2 it is more convenient in practice to implement the shear parallel to

t1 by first computing the mixed frequency–time domain S (!1, t2) by Fourier transformation with respect to

t1 and then multiplying each point by the phase factor exp (+i!11t2). The inverse Fourier transform of the

result is then the sheared FID s(t1 + 1t2, t2):

s(t1 + 1t2, t2)$ exp (+i!11t2) S (!1, t2). (12.56)

Finally we can calculate the evolution frequencies relative to the transformed coordinate system to be:
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Here the slice of the sheared FID along t02 is a one-dimensional FID in which the interaction ⇤ does not

evolve. The Fourier transform of this slice is therefore a one-dimensional spectrum with no spectral features

due to this interaction.

We now use these shearing methods in combination with state-of-the-art pulse sequences to obtain two-

dimensional separation of the paramagnetic SA and quadrupolar interactions for both integer-spin [199, 392],

and half-integer-spin nuclei [393].
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Figure 12.57: Pulse sequences and symmetry-transfer pathways for correlating the paramagnetic shift
anisotropy and quadrupolar lineshapes for spin I = 1 nuclei. Also shown are the transfer pathways for
the coherence order p and satellite order d. The sequence in (a) is for the shifting p-echo experiment of
Antonijevic and Wimperis in which the first-order quadrupolar interaction is refocussed at the end of t1
[392]. The sequence for the shifting d-echo sequence of Walder et al. is shown in (b) [199]. Here the SA
is refocussed at the end of t1. The time points at which the shift and shift anisotropy, and the quadrupolar
interaction are refocussed are indicated on the relevant symmetry pathways with arrows. Filled rectangles
indicate pulses with a nominal flip angle of 90� and unfilled rectangles indicate pulses with a nominal flip
angle of 180�. All pulses have phase x.

Integer-spin quadrupolar nuclei

Two related experimental methods have been developed for separating the spectral broadening from the SA

and first-order quadrupolar interactions of nuclear spins I = 1 in static solids. Under static conditions we can

in principle measure the e↵ects on the spectrum of two di↵erent interactions: the isotropic shift and SA both

evolve in the same way with frequencies that are proportional to the coherence order p, and the first-order

quadrupolar interaction evolves with a frequency that is proportional to the satellite order d.

The first pulse sequence that was developed to separate these two interactions is the shifting p-echo

experiment of Antonijevic and Wimperis, and is shown in Figure 12.57 (a) [392]. The p- and d-symmetry

pathways are also shown. The former is explicitly selected unambigously by phase cycling [320], whereas the

latter is only selected implicitly. This means that the d-symmetry pathways shown are those that correspond

to the p-symmetry pathway that is explicitly selected. The sequence contains a solid echo during the evolution

period t1/2–90�–t1/2 in which the pulse does not change the sign of p, but does change the sign of d.

This means that the shift and SA evolve uninterrupted throughout t1, whereas the quadrupolar interaction is

refocussed at the end of t1. Prior to acquisition there is a second solid echo which refocusses the evolution of
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Figure 12.58: Illustration of the single shear parallel to t1 with ratio 1 = �1 required for the separation of the
paramagnetic shift and shift anisotropy from the first-order quadrupolar interaction in (a) the shifting p-echo
of Antonijevic and Wimperis [392], and (b) the shifting d-echo sequence of Walder et al. [199].

both interactions during the two delays ⌧, and leads to the formation of a p-echo during acquisition. Therefore

there are two echoes formed during the pulse sequence: the p-echo is formed at points where t1 = t2, and the

d-echo is formed at t2 = 0. This is shown in the representation of the two-dimensional FID in Figure 12.58

(a). The quadrupolar interaction echo ridge is therefore aligned along the t1-axis, whereas the shift/SA ridge

echo is along t1 = t2. In order to complete the separation of the evolution of the two interactions in the FID

we map the shift/SA echo ridge onto t02 by applying a shear parallel to t1 with shear ratio 1 = �1. We then

obtain the correct signs of the frequencies in t01 by applying a scaling along this axis with factor ⇣01 = �1.

The resulting FID is shown in Figure 12.58 (a), with the quadrupolar and shift/SA ridge echoes along t01 and

t02 respectively. A two-dimensional Fourier transform therefore yields a spectrum in which the quadrupolar

broadening is present only in the !02 dimension, and the shift/SA appears only in the !01 dimension.

There is room for improvement in this experiment as the coherence-order selection in each solid echo only

retains half the total signal components, and so the sequence gives a maximum sensitivity that is one quarter

of that theoretically attainable in the one-dimensional experiment. Secondly the selection of the symmetry
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pathways as shown, when the RF field amplitude is not much larger than both the SA and quadrupolar

frequencies, results in a spike appearing at zero frequency in the quadrupolar frequency dimension.

An improvement to the shifting p-echo experiment was proposed by Walder et al. who developed the

shifting d-echo pulse sequence shown in Figure 12.57 (b) [199]. Here the solid echo during the evolution

period is replaced with a spin echo, with the result that the p- and d-symmetry pathways are altered so

that it is the p-echo that is now formed at t2 = 0 and the d-echo that is formed at t1 = t2. The two-

dimensional FID is shown in Figure 12.58 (b). As for the shifting p-echo experiment, complete separation of

the two interactions is achieved using the same shearing and scaling transformations, with the result that the

quadrupolar frequency is present only in the!01 dimension, and the shift/SA appears only in the!02 dimension.

The use of the spin echo is advantageous for two reasons: firstly the zero-frequency spike in the quadrupo-

lar dimension is eliminated, and secondly the spin echo does not su↵er from the reduction in signal intensity

of the solid echo, with the result that the shifting d-echo experiment has double the sensitivity of the shifting

p-echo experiment. The disadvantage of the shifting d-echo sequence is the lower bandwidth of the 180�

pulse compared to the 90� pulse.

Simulated two-dimensional spectra generated using these methods are shown in Figure 12.59, showing

the e↵ect that the relative orientation between the PAFs of the two tensors (↵, �, �) has on the two-dimensional

spectrum [199]. It should be noted that for all the spectra the projections onto the quadrupolar and shift/SA

frequency axes give the same spectra. An experimental example is given in Figure 12.60, which show the 2H

shifting p-echo and shifting d-echo spectra of solid CuCl2 · 2D2O in (ia) and (iia) respectively. In both cases

a clean separation of the shift/SA and quadrupolar spectra is achieved, with the shifting d-echo spectrum in

Figure 12.60 (iia) giving the superior result, with suppression of the zero-frequency spike and a signal-to-

noise ratio that is higher by a factor of two. In both cases it is possible to extract unambiguous shift/SA and

quadrupolar tensor parameters, which would be di�cult to do from the one-dimensional spectrum only. The

simulated spectra from the best-fit tensor parameters are shown in Figure 12.60 (ib) and (iib) respectively,

with the best-fit residuals shown in Figure 12.60 (ic) and (iic).

This experiment is extremely useful for extracting the tensor parameters in paramagnetic systems contain-

ing a single I = 1 nuclear site. However for more complex materials there are potential di�culties. Firstly the

presence of inhomogeneous broadening due to BMS e↵ects distorts the spectrum in the shift/SA dimension,

so that it may not be easily interpretable. However it should be noted that this broadening does not appear
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Figure 12.59: Simulated spectra of the shifting p-echo and shifting d-echo experiments, illustrating the e↵ect
of changing the relative orientation of the PAFs of the paramagnetic shielding and quadrupolar interaction
tensors for an I = 1 nucleus. The Euler angles (↵, �, �) define the coordinate transformation from the PAF
of the quadrupolar interaction tensor to the PAF of the paramagnetic shielding tensor. Other simulation
parameters include !0/2⇡ = 61.496022 MHz, CQ = 120 kHz, ⌘Q = 0.8, ��S = 150 ppm, and ⌘S = 0.8.
Note that the projection onto each axis remains unchanged as the relative orientation changes. Reproduced
from [199], with the permission of AIP Publishing.
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Figure 12.60: Experimental 2H spectra acquired using the shifting p-echo and shifting d-echo experiments
on polycrystalline CuCl2 · 2D2O. The experimental shifting p-echo spectrum and best-fit simulated spectrum
are shown in (ia) and (ib), with the best-fit residuals in (ic). Note that the experimental spectrum contains a
sharp spike at zero frequency in the quadrupolar dimension. The experimental shifting d-echo spectrum and
best-fit simulated spectrum are also shown in (iia) and (iib), with the best-fit residuals in (iic). Here there
is no zero-frequency spike, and the experimental shifting d-echo spectrum has a signal-to-noise ratio that is
larger by a factor of two. Reproduced from [199], with the permission of AIP Publishing.
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in the quadrupolar dimension, which remains clean, and so we have the intriguing possibility of being able

to extract quadrupolar coupling parameters even when there is severe BMS broadening. A second di�culty

is that in materials with multiple sites there is expected to be considerable overlap in the two-dimensional

spectrum and in both projections. If the number of sites is not already known this may lead to uninterpretable

spectra. Nevertheless this method is extremely powerful, and is expected both to be widely used, and to

inspire other methods for separating two or more large anisotropic interactions.

Half-integer-spin quadrupolar nuclei

A related method for separating the shift/SA interaction from the quadrupolar interaction for half-integer-

spin nuclei, known as the COrrelation of Anisotropies Separated Through Echo Refocusing (COASTER)

experiment, has been presented by Ash et al [393]. It was initially designed for separating the CSA from the

second-order quadrupolar broadening in diamagnetic materials, and is included in this survey as it represents

an elegant method that is potentially applicable to paramagnetic species, even though there are as yet no

paramagnetic examples. The COASTER pulse sequence is shown in Figure 12.61. It is a simple sequence that

comprises two pulses, and is designed to correlate a symmetrical multiple-quantum coherence |IMi hI � M|,

such as the triple-quantum coherence p = +3, in t1 with the CT coherence |I � 1/2i hI + 1/2| with p = �1

in t2. The experiment is carried out on a spinning powder, but with the rotor aligned at 70.12� to the field,

rather than at the magic angle. This choice of angle ensures that the rank-four second-order quadrupolar

broadening is completely removed by the sample rotation. It we assume that the increments in both t1 and

t2 are rotor-synchronised, so that the sidebands are folded onto the centreband, the remaining interactions

that evolve are those that are time-independent. They include the isotropic shift and residual SA remaining

due to spinning o↵ the magic angle, both of which evolve at frequencies proportional to p, the rank-zero

second-order quadrupolar shift, the frequency of which is proportional to c0, and the rank-two second-order

quadrupolar anisotropy the frequency of which is proportional to c2. We can define a symmetry pathway for

all three symmetry-order parameters, which are also shown in Figure 12.61 for I = 3/2 (a) and I = 5/2 (b).

Each of these interactions is refocussed along a distinct echo ridge. For the shift and SA this echo ridge is

p1t1 + p2t2 = 0, (12.59)
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Figure 12.61: Pulse sequences and symmetry-transfer pathways for the COASTER experiment, which
correlates the paramagnetic shift anisotropy and quadrupolar lineshape for half-integer-spin quadrupolar
nuclei [393]. In this sequence we correlate a signal due to a symmetry multiple-quantum coherence in t1
(in this case the p = +3 coherence) against the observable (p = �1) CT coherence in t2. The sets of
symmetry pathways in (a) and (b) show the p-, c0-, and c2-order during experiments for I = 3/2 and 5/2
respectively. The arrows on the symmetry pathways indicate the time points at which the relevant interactions
are refocussed. Both pulses have phase x.
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Figure 12.62: Illustration of the double shear and scaling transformations applied to a two-dimensional FID
acquired using the COASTER experiment. The first shear is parallel to t2 and maps the c2-echo of the
rank-two second-order quadrupolar interaction onto the t01 axis. The second shear is parallel to t01 and maps
the p-echo of the rank-two SA interaction onto the t002 axis.

where for all spins p1 = +3 for the triple-quantum experiment and p2 = �1. For the rank-zero and rank-two

quadrupolar interactions the echo ridges are:

c0,1t1 + c0,2t2 = 0, (12.60)

c2,1t1 + c2,2t2 = 0. (12.61)

We note that both of these echo ridges are di↵erent for di↵erent spins and, for the coherence-transfer pathway

in Figure 12.61 (a) there is no c0 echo. Both the residual SA and rank-two second-order quadrupolar

interaction are manifested as spectral broadening and therefore require separation in the two-dimensional

experiment. By contrast the rank-zero second-order quadrupolar interaction does not broaden the spectrum

and only shifts the resonances, and so we do not consider it further.

A schematic of the FID showing both the p and c2 echo ridges is shown in Figure 12.62. Here we have two

echo ridges which require mapping onto the two principal time axes, which we achieve with two combined

shear and scale transformations. Firstly we apply a shear parallel to the t2 axis to give a new coordinate

system (t01, t
0
2), followed by a scaling of the t01 axis. If we set the shear and scaling parameters to

2 =
c2,1

c2,2
, ⇣01 = 1 + |2| , (12.62)

the result is the FID shown in Figure 12.62 in which the c2-echo is now along the t01 axis. The result of this
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I c(1)
2 c(1)

2 2 ⇣01 p(2)/p(2)0 p(1) p(1)0 01 ⇣002
3/2 0 �12 0 1 �1 3 3 �1/3 4/3
5/2 60 �32 �15/8 23/8 �1 3 9/23 �23/9 32/9
7/2 144 �60 �12/5 17/5 �1 3 3/17 �17/3 20/3
9/2 252 �96 �21/8 29/8 �1 3 3/29 �29/3 32/3

Table 12.3: The shear ratios and scaling factors 2 and ⇣01, and 01 and ⇣002 required for the COASTER
experiment that correlates the p1 = +3 coherence |I + 3/2i hI � 3/2| with the observable CT coherence with
p2 = �1, |I � 1/2i hI + 1/2|, for di↵erent nuclear spins I.

first transformation is to change the p echo ridge so that it is aligned in the (t01, t
0
2) coordinate system so that

p01t01 + p02t02 = 0, (12.63)

where p01 and p02 are given by

p01 =
p1 � 2 p2

⇣01
, p02 = p2. (12.64)

We now need a second shear parallel to t01, giving a new coordinate system (t001 , t
00
2 ), to map the p-echo onto

the t002 axis followed by a scaling of this axis. The shearing and scaling parameters are:

01 =
p02
p01
, ⇣002 = 1 +

�

�

�01
�

�

� . (12.65)

The final FID, shown in Figure 12.62, exhibits a c2 echo along t002 and a p-echo along t001 . The resulting

two-dimensional spectrum in which the shift/SA and second-order quadrupolar interactions appear in the !001

and !002 dimensions respectively. The shearing ratios and scaling parameters required for the triple-quantum

COASTER experiment are given for nuclear spins I = 3/2 to 9/2 in Table 12.3.

Simulated examples of sheared COASTER spectra are given in Figures 12.63 and 12.64 [319]. Figures

12.63 shows the e↵ect on the two-dimensional lineshape of varying both the SA and quadrupolar asymmetry

parameters, whilst Figure 12.64 shows the e↵ect of varying the relative orientation of the two tensors (↵, �, �)

and keeping other parameters constant. We see that the two one-dimensional projections can be used to

obtain ��S , ⌘S , CQ, and ⌘Q and that the relative orientation of the two PAFs can be obtained from the

two-dimensional lineshape.

An experimental COASTER spectrum is shown in Figure 12.65 along with a simulation taken from

the best-fit tensor parameters [393]. The spectrum is of the 59Co resonance in low-spin (diamagnetic)

608



Figure 12.63: Comparison of simulated two-dimensional COASTER spectra showing the e↵ect of changing
the quadrupolar interaction and chemical shielding asymmetry parameters in the case where the two tensors
have the same PAF. Other simulation parameters included I = 3/2, !0/2⇡ = 100 MHz, CQ = 3 MHz, �iso = 0
ppm, and ��S = 33 ppm. The one-dimensional projections onto the quadrupolar anisotropy axis !02(Q) are
the same for each ⌘Q value. Similarly the one-dimensional projections onto the shielding anisotropy axis
!01(�) are the same for each ⌘S value. Reproduced from [319], with permission from Elsevier.
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Figure 12.64: Comparison of simulated COASTER spectra showing the e↵ect of the relative orientation of
the quadrupolar and shift anisotropy tensors on the two-dimensional spectrum. Other simulation parameters
included I = 3/2, !0/2⇡ = 100 MHz, CQ = 3 MHz, ⌘Q = 0.25, �iso = 0 ppm, ��S = 33 ppm, and ⌘S = 0.5.
Note that the projection onto each axis remains unchanged as the relative orientation of the quadrupolar
coupling and chemical shift tensors changes. Reproduced from [319], with permission from Elsevier.

Figure 12.65: Sheared 59Co COASTER spectrum of K3[Co(CN)6] at 9.4 T (left), with a simulation (right)
using the parameters CQ = 6.2 MHz, �iso = 14 ppm, ⌘Q = 1.0, �� = �62 ppm, ⌘ = 0.25, and Euler angles
describing the relative orientation of the two tensors ↵ = 90� and � = � = 0�. Reproduced with permission
from [393]. Copyright (2008) American Chemical Society.

610



K3[Co(CN)6], and is indispensable for obtaining unambiguous tensor parameters.

The main disadvantages of COASTER are the same as for the shifting p- and d-echo experiments. Whilst

high-quality spectra can be obtained for single-site materials, more complex systems containing multiple sites

will be more di�cult to interpret. In addition the use of sample spinning at 70.12� means that this experiment

cannot be easily implemented with commercial MAS probes. Nevertheless we expect this method to be of

interest to paramagnetic solid-state NMR.

12.6 Solid-state NMR of paramagnetic proteins

The solid-state NMR of proteins has experienced significant advances in recent years, having moved from

a position where very few previously-unknown structures had been solved, to the point where systems of

significant complexity and interest to the field of biology are being studied. The driving force behind

these advances has been twofold. Firstly developments in fast-spinning probe technology, allowing up

to 100 kHz MAS and beyond, have improved the spectral resolution and allowed the second advance,

which is the development and application of more sophisticated pulse sequences for obtaining the sequential

assignment and distance restraints. One crucial aspect of these advances is the employment of 1H-detection,

which improves sensitivity and allows us to obtain unambiguous distance restraints. Here we focus on

the application to paramagnetic proteins, highlighting experimental schemes that have either been already

applied, or otherwise have significant potential.

12.6.1 General strategy

In solid-state NMR of proteins the extensive network of large 1H–1H dipolar couplings results in very short

1H coherence lifetimes T 02 at moderate MAS rates. The peaks in the 1H spectrum are therefore very broad, and

any coherence-transfer blocks involving 1H are often very ine�cient, with the result that direct 1H-detection

is not used routinely. Therefore 13C detection is normally used, as part of pulse sequences that correlate

resonances of NH, CO, CA, and CB. In addition to the large coherence broadening, the solid-state spectra

also exhibit substantial inhomogeneous broadening due to structural disorder and, in the case of paramagnetic

proteins, the ABMS. The result is that, even employing 13C detection, small proteins give broader lines than

in solution. However one advantage of solid-state NMR for large, paramagnetic proteins is that in the solid
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state there is no overall slow rotational di↵usion, with rotational dynamics due only to the internal motions

of the protein, and so the Curie broadening is substantially reduced for large systems compared to solution.

This indicates that solid-state NMR can potentially be used to study large systems which in solution would

have peaks broadened beyond detection due to the slow rotational di↵usion.

As in solution NMR, the solid protein can be divided into regions in which the nuclear spins exhibit

di↵erent e↵ects due to the paramagnetic centre, as shown in Figure 12.19. As in solution there is a blind

sphere centred on the metal ion, in which the nuclear spins cannot be observed using conventional experi-

mental methods. Beyond the blind sphere is a region which can be observed using these methods, and in

which the nuclear spins are subject to measurable long-range paramagnetic e↵ects, such as the PCS and PRE.

The outermost region was characterized in solution NMR as showing no measurable paramagnetic e↵ects.

However in the solid state this description is not completely accurate. This is because the extended network

of 1H–1H dipolar couplings allows polarization to be transferred from one nuclear spin in this region, to

another nuclear spin closer to the metal ion, and vice versa. For example one consequence of spin di↵usion

is that the measured T1 relaxation times of a particular spin are the average of the T1 values of the spins from

which polarization has been transferred. This is not because the true relaxation times have changed, but rather

the polarization spends only a fraction of the total time on any particular spin, due to rapid spin di↵usion.

Hence the nuclear spins in this outermost region are expected to exhibit T1 times that are shorter than their

true values, due to the exchange of polarization with nuclear spins that are closer to the metal ion, and

exhibit a measurable PRE. Hence the two outermost regions in Figure 12.19 can be more accurately labelled

as follows when discussing solid proteins. The inner of the two can be labelled as ‘visible with measurable

direct paramagnetic e↵ects’, as the nuclear spins exhibit a direct long-range interaction with the paramagnetic

centre. The outermost region can then be labelled as ‘no measurable direct paramagnetic e↵ects, but shows

indirect paramagnetic e↵ects due to spin di↵usion’. As discussed, one such indirect paramagnetic e↵ect

would be a relayed longitudinal PRE. The precise distances from the metal ion that define the boundaries

between these di↵erent regions depend upon the nuclear species that are excited and observed, for example

1H or 13C, whether the proton concentration is diluted by deuteration, the MAS frequency, and the types of

experiments that are used, for example utilizing scalar- or dipolar-based coherence transfers.

If we employ fast MAS (in the 60 kHz regime and above) and proton dilution by deuteration we weaken

the coherent e↵ect of the dipolar coupling network, which has the e↵ect of slowing spin di↵usion su�ciently
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Figure 12.66: Two-dimensional 13C-detected solid-state NMR spectra of the paramagnetic metalloprotein
[U-13C,15N]-Cu2+–Zn2+ SOD. The assigned NCACB double-quantum spectrum is shown in (a). The black
contours correspond to positive cross peaks indicating one-bond 15N–13C correlations, and red contours
indicate negative cross peaks due to two-bond 15N–13C correlations. Extracts from the 13C–13C PDSD
correlation spectrum are shown in (b) and (c). The MAS frequency is 15 kHz. Reproduced with permission
from [450]. Copyright John Wiley and Sons.

to suppress this relayed transfer. Under such conditions we approach the situation in solution NMR, and

Figure 12.19 resumes its original interpretation.

12.6.2 13C-detection

Historically the solid-state NMR of proteins has been performed under moderate MAS of 20 kHz and

employing 13C-detection. The experimental schemes used include two-dimensional correlation experiments

to establish the connectivity between the NH and the CO, CA, or CB resonances along the backbone, and

spin-di↵usion to measure 13C–13C distance restraints between C resonances on the backbone and sidechains.

These methods have been used on paramagnetic proteins for the assignment [450] and the measurement of

paramagnetic restraints [44]. They mainly concern two enzymes in microcrystalline form, human superoxide

dismutase (SOD) and the catalytic domain of matrix-metalloproteinase-12 (MMP-12), two proteins with

high-a�nity binding sites for divalent paramagnetic cations such as Cu2+ (SOD) or Co2+ (MMP and SOD).

Example spectra are shown in Figure 12.66 [450] for a paramagnetic metalloprotein [U-13C,15N]-Cu2+–Zn2+
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superoxide dismutase (SOD). The NCACB and 13C–13C through-space correlation spectra acquired using

proton-driven spin di↵usion (PDSD) are shown in Figure 12.66 (a), and Figure 12.66 (b)–(c) respectively.

Here resonances as close to the paramagnetic Cu2+ ion as 5 Å are observed. An additional notable example

is the study of the reactive state of a copper-binding misfolded amyloid � (A�) fibril [451]. Proton relaxation

data lead to the conclusion that the Cu2+/+ ions are bound to histidine amino acid residues, and act as reaction

centres for the redox reaction with ascorbate and oxygen to produce H2O2. This cycle was followed by

measuring 1H T1 data to monitor the interconversion between the Cu2+ and Cu+ oxidation states.

In addition to studying metalloproteins, paramagnetic e↵ects have been used to accelerate acquisition

of NMR spectra of low concentrations of diamagnetic proteins following doping with a paramagnetic agent

[452]. For diamagnetic proteins the total experiment time required to obtain a spectrum is limited by the

relatively long recycle delays of 1–4 s required for complete longitudinal relaxation. This so-called T1 barrier

often means that data cannot be acquired on low concentrations of protein in a practicable time. To address

this problem Wickramasinghe et al. proposed a method in which the protein sample is prepared so that it

is doped with a paramagnetic complex which enhances the relaxation rates of the 1H nuclei, resulting in a

shorter recycle delay, and thus allowing accelerated acquisition even for nanomolar concentrations of protein

[452]. The protein sample studied was a fibrillized and uniformly 13C- and 15N-labeled A� peptide of 87 nM

concentration, which had been doped with a 200 mM concentration of Cu2+-binding EDTA. The PRE was

transmitted directly to the surface-exposed 1H of the protein, and then transferred throughout the protein via

1H spin di↵usion. This enabled the acquisition of a 13C–13C correlation spectrum in a time of 2.7 h with a

recycle delay of 55 ms.

The combined use of faster spinning (initially between 40 and 60 kHz) and lower-power decoupling

reduces the coherent broadening, leading to both longer coherence lifetimes T 02, and reduced linewidths in

the spectrum [9]. The lengthening of the coherence lifetimes is a particularly important advantage as it

increases the e�ciency of coherence transfer blocks, and thus allows the use of longer and more sophisticated

pulses sequences for sequential assignment [453]. Experiments were developed employing 13C-detection

and fast MAS at 60 kHz for sequential assignment of the backbone resonances, in analogy to the protonless

experiments employed in solution [361]. These experiments, which are listed in listed in Table 12.4, were

designed to correlate the amide N resonance to either the CO and CA resonances in either the same or

preceding amino acid residue in a two-dimensional spectrum. In all cases the S3E block was used in the
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Experiment Correlations Reference
2D
(H)NCA-S3E Ni–CAi [454]
(H)N(CA)CO-S3E Ni–COi [455]
(H)NCO-S3E Ni+1–COi [454]
(H)N(CO)CA-S3E Ni+1–CAi [455]

Table 12.4: Two-dimensional 13C-detected experiments for establishing the sequential assignment of the
protein backbone. The sequence of spins indicates the order, from left to right, in which the coherences are
transferred. Heteronuclear transfers are performed using CP, and homonuclear 13C–13C are performed via the
J-coupling. An atomic label in parentheses indicates that the coherence is transferred to the corresponding
spin, but does not evolve during the evolution period or acquisition. An atomic label without parentheses
indicates that the chemical shift of that nuclear spin evolves during either the evolution period or acquisition.
For each experiment the correlations observed given, where the subscript refers to the residue number in the
sequence.

direct 13C dimension in order to decouple the CO–CA one-bond J-coupling.

The (H)NCA-S3E pulse sequence works as follows [454]. We begin with excitation of all the 1H nuclei,

and then transfer the coherence to the amide N via CP. The N chemical shifts are then encoded during

the evolution period, forming the indirect dimension of the FID and spectrum. Following this there is a

second CP transfer from N to the closest CA nucleus (corresponding to the directly-bonded CA), after which

we detect the CA directly with S3E. The (H)NCO-S3E sequence works in the same way, and correlates

the directly-bonded N and CO resonances [454]. The remaining two sequences (H)N(CA)CO-S3E and

(H)N(CO)CA-S3E are more complicated, as they both include a J-based coherence-transfer block to transfer

unambiguously between the directly-bonded CO and CA resonances of the same amino acid residue [455].

Here, following the CP transfer from N to CO/CA, the J-based sequence transfers the coherence to the other

carbon immediately prior to acquisition. The assigned (H)N(CO)CA-S3E spectrum of [U-2H,13C,15N]-Cu2+–

Zn2+ SOD is shown in Figure 12.67 (a) [455]. In this sample of SOD the protons were uniformly deuterated,

and the exchangeable amide deuterons were 100% back-exchanged for protons in H2O. In this 13C-detected

experiment resonances up to 8 Å in proximity to the Cu2+ ion are observed. This is an improvement on

the corresponding three-dimensional 1H-detected experiment (H)CA(CO)NH, the NC plane of which is

superimposed upon the (H)N(CO)CA-S3E spectrum in Figure 12.67 (a), and which has peaks within 11

Å of the Cu2+ ion missing.
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Figure 12.67: Two-dimensional solid-state NMR spectra at 60 kHz MAS of the paramagnetic metalloprotein
[U-2H,13C,15N]-Cu2+–Zn2+ SOD. The (H)N(CO)CA-S3E spectrum is shown in (a). The expansion shown
is reproduced in (b) (red contours) superimposed upon the NC projection of the three-dimensional
(H)CA(CO)NH spectrum (grey contours). Reproduced with permission from [455]. Copyright John Wiley
and Sons.

12.6.3 1H-detection

More recently, with the availability of faster-spinning probes, 13C-detection in solid-state protein NMR has

been superseded by 1H-detection. The advantages of the latter include increased sensitivity, and the ability

now to measure dipolar-based distance restraints between protons.

In order to obtain useful resolution in the 1H-dimension of spectra, initial strategies employed the com-

plete deuteration of the amino acid residues in order to weaken the dipolar coupling network, followed by

either complete [456, 457] or partial reprotonation at the exchangeable amide sites [458–460]. The choice

of the level of reprotonation is a compromise between sensitivity and resolution: higher reprotonation levels

give greater sensitivity, but also reintroduce more 1H–1H dipolar couplings that lead to shorter coherence

lifetimes and lower resolution. At moderate MAS frequencies of 10–20 kHz, 10%–30% reprotonation is

typically used.

At faster MAS frequencies of 60 kHz, the spinning is able to suppress the coherent decay and broadening

su�ciently to allow us to use 100% amide reprotonation in a deuterated background [461]. The sensitivity

is increased due both to the higher concentration of amide protons, and to the longer coherence lifetimes due

to fast spinning and perdeuteration, which allow J-based 13C–13C transfer to be used in combination with

heteronuclear coherence transfers. This allows the application of pulse sequences for sequential backbone

assignment, such as the two-dimensional (H)NH sequence [461], and the three-dimensional (H)CONH,
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Experiment Correlations Reference
2D
(H)NH Ni–HN

i [461, 463]
(H)CH CAi–HCA

i , C–H sidechains [464]
3D
(H)NCAH Ni–CAi–HCA

i [464]
(H)CANH CAi–Ni–HN

i [461, 463]
(H)CO(CA)NH COi–Ni–HN

i [461, 463]
(H)(CA)CB(CA)NH CBi–Ni–HN

i [462, 463]
(H)CO(N)CAH COi–CAi+1–HCA

i+1 [464]
(H)CA(CO)NH CAi–Ni+1–HN

i+1 [461]
(H)(CO)CA(CO)NH CAi–Ni+1–HN

i+1 [462, 463]
(H)CONH COi–Ni+1–HN

i+1 [461, 463]
(H)(CA)CB(CA)(CO)NH CBi–Ni+1–HN

i+1 [463]
(H)N(CA)(CO)NH Ni–Ni+1–HN

i+1 [464]
(H)N(CO)(CA)NH Ni+1–Ni–HN

i [464]
(H)CCH TOCSY sidechains [464]

Table 12.5: Two- and three-dimensional 1H-detected experiments for establishing the sequential assignment
of the protein backbone and sidechains. The sequence of spins indicates the order, from left to right, in which
the coherences are transferred. Heteronuclear transfers are performed using CP, and homonuclear 13C–13C
transfers are performed via the J-coupling. An atomic label in parentheses indicates that the coherence is
transferred to the corresponding spin, but does not evolve during an evolution period or acquisition. An
atomic label without parentheses indicates that the chemical shift of that nuclear spin evolves during either an
evolution period or acquisition. For each experiment the correlations observed are given, where the subscript
refers to the residue number in the sequence.

(H)CANH, (H)CO(CA)NH, (H)CA(CO)NH [461], (H)(CO)CA(CO)NH, (H)(CA)CB(CA)NH [462], and

(H)(CA)CB(CA)(CO)NH [463] sequences. Furthermore, the increased amide concentration gives increased

sensitivity in the measurement of 1H–1H distance restraints using three-dimensional sequences such as the

(H)NHH RFDR experiment [461].

Whilst this method provides us with a complete backbone assignment and with information about the

protein fold, it does not give us an unambiguous and high-precision structure as we have used neither the CA

protons nor the sidechains to provide distance restraints. In order to detect these resonances we need to use

fully-protonated proteins with a more extensive dipolar-coupling network. Recently the advent of very-fast

spinning probes capable of 100 kHz MAS has enabled high-resolution 1H-detected spectra with su�ciently

long coherence lifetimes to be acquired on such fully-protonated systems [464]. This in turn has led to

the suite of experiments for backbone and sidechain assignment being greatly expanded with the complete

set of experiments given in Table 12.5. In turn the assignment of the CA and sidechain protons allows us to

interpret the distance restraints measured between these protons, using the set of experiments in Table 12.6. It

is anticipated that 100 kHz MAS and 1H-detection will provide invaluable tools for the study of paramagnetic
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Experiment Contacts Reference
3D
H(H)NH RFDR HN–HN, HCA–HN [464]
H(H)CH RFDR HCA–HCA, sidechains [464]
H(H)CH aromatic RFDR sidechains [464]
(H)NHH RFDR HH–HH, HN–HCA [461]
(H)CHH RFDR HCA–HCA, sidechains [464]

Table 12.6: Three-dimensional 1H-detected experiments for measuring dipolar-coupling-based distance
restraints between protons on the protein backbone and sidechains. The sequence of spins indicates the order,
from left to right, in which the coherences are transferred. Heteronuclear transfers are performed using CP,
and homonuclear 1H–1H through-space transfers are performed using the RFDR pulse sequence. An atomic
label in parentheses indicates that the coherence is transferred to the corresponding spin, but does not evolve
during an evolution period or acquisition. An atomic label without parentheses indicates that the chemical
shift of that nuclear spin evolves during either an evolution period or acquisition. For each experiment the
correlations observed are given, where the subscript refers to the residue number in the sequence.

proteins in the solid state.

12.6.4 Paramagnetic restraints

In complete analogy with solution NMR, paramagnetic restraints have also been used in solid-state NMR to

give information on the position of an observed nucleus with respect to the paramagnetic centre. Pseudo-

contact shifts have been measured, using 13C-detection and MAS frequencies between 8 and 12 kHz, for

the protein matrix metalloproteinase (MMP) [44]. The 13C PCS values were determined by comparing the

Co2+-substituted protein CoMMP with the diamagnetic Zn2+-substituted protein ZnMMP. Here dilution of the

paramagnetic protein into a diamagnetic sample, or vice versa, prior to crystallization was needed to suppress

the intermolecular or intramolecular PCSs respectively from the total contributions. While intramolecular

PCSs allowed the refinement of the three-dimensional structure in combination with spin-di↵usion and chem-

ical shift data, the intermolecular PCSs allowed the determination of the relative orientations of neighbouring

molecules in the crystals. Longitudinal amide N PREs have also been used as structural restraints for the B1

immunoglobulin-binding domain of protein G (GB1) by utilizing six cysteine–EDTA–Cu2+ mutants [101].

The relaxation rates were measured using 13C-detected S3E experiments at 40 kHz MAS.

Measurements of both PREs and PCSs have been performed on SOD using perdeuteration and 100%

back-exchange of the amide protons, fast MAS at 60 kHz, and 1H-detection. This experimental setup

allows the rapid measurement of hundreds of site-specific paramagnetic e↵ects, as discussed in section 13.8

Relaxation rates were measured on the Cu-Zn2+-SOD protein with the Cu ion in both the diamagnetic +1 and
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Figure 12.68: Solid-state (H)NH spectra of SOD acquired at 60 kHz MAS. The spectrum in (a) is of
the diamagnetic reference protein Cu+-Zn2+-SOD, and in (b) is shown the corresponding spectrum of the
paramagnetic form Cu2+-Zn2+-SOD.

paramagnetic +2 oxidation states [11]. The two assigned two-dimensional (H)NH spectra are shown in Figure

12.68 (a) and (b) respectively. For both proteins, amide 15N T1 and T1⇢ relaxation times and 13CO T1 and T1⇢

relaxation times were measured. The PCS values for 1HN, amide 15N, 13CO, and 13CA were measured by

comparing the shifts obtained in the three-dimensional (H)CONH and (H)CANH spectra of the diamagnetic

reference (Zn2+-SOD) with a paramagnetic protein Co2+-SOD. The two (H)NH spectra exhibiting a PCS

are shown in Figure 12.69. Both sets of structural restraints were used in combination with RFDR distance

restraints obtained between the amide protons to provide structural refinement.

619



Figure 12.69: Measurement of the PCS values of the protein SOD at 60 kHz MAS. The two-dimensional
(H)NH spectra of Co2+-SOD (magenta) and Zn2+-SOD (black) are superimposed in (a). The magnetic
susceptibility tensor of Co2+ in SOD is represented in (b) as a set of PCS isosurfaces with positive (blue) and
negative (red) values of ±1, ±0.25, and ±0.1 ppm. The spectrum in (c) is taken from the three-dimensional
(H)CONH spectrum and exhibits a PCS in the 1H, 15N, and 13CO dimensions. The spectra in (d)–(g) are
taken from the NH planes in the (H)CONH spectrum, and show the shift of the peak due to a PCS in both
the 1H and 15N dimensions. Reproduced with permission from [45]. Copyright (2012) American Chemical
Society.
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12.7 Key concepts

• Small paramagnetic molecules in solution can be studied using homonuclear through-bond corre-

lation experiments COSY, DQF-COSY, TOCSY, through-space correlation experiments such as 1D

saturation-transfer NOE and 2D NOESY, and the heteronuclear correlation experiments HSQC and

HMQC. Exchange processes can be measured using EXSY.

• Conventional 1H-detected methods for paramagnetic proteins in solution can be used to observe nuclei

far (>5–8 Å) from the paramagnetic centre. Nuclei closer to the paramagnetic centre cannot generally

be observed with these methods, and so are in the so-called blind sphere.

• The use of protonless 13C experiments enables observation closer to the metal, and can reduce the

radius of the blind sphere to 5 Å in some cases.

• For proteins in solution, PCS, PRE, CCR, and RDC measurements can be used for structural restraints.

• Solid-state NMR of paramagnetic materials is best performed using very fast MAS, short recycle

delays, and no 1H-decoupling even in 1H-containing systems. Cross polarization is rarely useful for

obtaining a sensitivity enhancement or establishing heteronuclear correlations.

• Low external magnetic fields, or the use of nuclei with low gyromagnetic ratios give smaller param-

agnetic shifts and shift anisotropies, but inevitably result in sensitivity losses. In particular, if isotopic

enrichment to improve sensitivity (e.g., with 6Li) is possible, this is a useful and simple strategy for

spectral simplification.

• Care should be used in interpreting a spectrum acquired with a spin-echo sequence, as the band width

excited with a 180� pulse is much narrower than that excited with a shorter (less than or equal to 90�)

pulse.

• Frequency-stepping experiments or shaped RF pulses may be required to excite the full spectrum.

• Solid-state homonuclear correlation spectra can be acquired using RFDR and EXSY. Heteronuclear

correlations can be acquired using TEDOR sequences. Quadrupolar nuclei can be studied using signal-

enhancement methods such as RAPT, and two-dimensional techniques to separate the quadrupolar and
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SA interactions such as shifting d/p-echo experiments (for I = 1) and COASTER (for half-integer

spins).

• Solid-state NMR of proteins can be performed using both 13C and 1H-detected experiments.

• For proteins in the solid state, PCS and PRE measurements can be used for structural restraints.
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Chapter 13

Case studies in paramagnetic NMR

13.1 Introduction

The presentation of the theory of paramagnetic NMR in the first part of this review aimed to do two things.

Firstly we attempted a completely general description of the paramagnetic properties that a↵ect the NMR

spectrum and its interpretation. The result was a full, if sometimes complicated, formulation. Secondly we

adapted the resulting formulations to di↵erent situations such as di↵erent types of metal ion, molecules in

solution vs solid state materials, etc., showing how the general treatment may be simplified or modified to pro-

vide a more accessible explanation of the features in the NMR spectrum for di↵erent systems. In this chapter

we now see how these theoretical ideas are translated into practice by presenting some specific case studies in

paramagnetic NMR from the literature. The examples comprise studies of small molecules in solution, solid

materials such as battery cathodes, metalloproteins both in solution and the solid state, lanthanide-containing

systems with interesting luminescent properties, actinide-containing systems, and multi-domain polymers

used in pharmaceutical controlled-release formulations. In addition the case studies present the di↵erent

paramagnetic e↵ects arising from di↵erent types of paramagnetic centres, including isolated 3d transition-

metal ions, coupled clusters of such metal ions, lanthanide ions, actinide ions, and organic radicals.

We attempt to answer questions such as the following: When should we use the EPR and susceptibility

formalisms for the paramagnetic shift? In which situations do we need to consider relativistic e↵ects, and

which particular relativistic e↵ects are important? What is the relative importance of the contact and pseudo-
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contact shifts, under what circumstances do we only need to consider one of these contributions, and how do

we use them to obtain information on the structure and/or electronic properties? What is the impact of the

paramagnetic relaxation enhancement, how does the consequent broadening compare with bulk susceptibility

contributions, and how may these e↵ects be used to obtain structural information? How do all these di↵erent

e↵ects vary with the metal ion or organic radical, and the type of system? This chapter is not intended to be

a comprehensive review of the literature. Rather, the examples presented have been chosen to highlight how

these specific paramagnetic e↵ects vary depending on the nature of the paramagnetic centre and the system

as a whole.

The following sections in this chapter are organized to separate the case studies according to the nature of

the paramagnetic centre. Sections 13.2–13.8 describe systems containing 3d metal ions, sections 13.9–13.11

lanthanide-containing systems, sections 13.12 and 13.13 recent work on actinide systems, and section 13.14

the paramagnetic e↵ects due to organic radicals, such as those used for DNP.

Section 13.2 summarizes the experimental and theoretical work performed in the EPR-formalism calcu-

lation of the paramagnetic shifts of metallocene complexes [39, 41]. Here the shifts are dominated by the

Fermi-contact contribution, and it is shown how the magnitude and size of the shift vary considerably with

the electronic configuration of the 3d metal ions. This work provided a validation of the EPR formalism for

the paramagnetic shift of 3d-block metal ions, and the contact shifts provided an experimental probe of the

electronic structure.

In section 13.3 we examine the theoretical study of cobalt pyrazolylborates in solution [465]. In contrast

to the metallocenes it is shown here that the larger SO coupling e↵ects of the Co2+ ion induce large SO

coupling contributions to the total paramagnetic shift, including contact and pseudo-contact shifts due to the

ZFS. The calculated shifts were used to correct an error in the original assignment of the experimental NMR

spectra, demonstrating the importance of such computations.

In section 13.4 the focus changes to solid materials, with the specific case of layered LiMO2 Li-ion

cathode materials [48, 54]. Here the 3d metal ions induce large shifts at the Li sites that are dominated

by the contact interaction, and which vary with the metal ion and coordination geometry of the M–O–Li

bonding. It is highlighted how the pathway contribution model can be used to rationalize the shifts in terms

of the delocalization and polarization spin-transfer mechanisms. We also see how the combined NMR/DFT

study of these materials was used to investigate dynamic distortions in the local structure of the metal binding
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site due to the dynamic Jahn–Teller e↵ect.

The next section 13.5 presents a study on a di↵erent class of solid materials, the Prussian blue analogues

[4, 8]. These examples provide a particularly elegant illustration of the polarization mechanism of spin

transfer using the observation of contact shifts.

The final case study involving 3d metal ions in solid materials is presented in section 13.6, and focusses

on Li-ion cathode materials based on LiFePO4 [30, 54, 466]. Here it is shown how the di↵erent metal

ions induce very di↵erent paramagnetic e↵ects in the NMR spectrum, such as variations in the contact shifts,

relaxation enhancements, and inhomogeneous broadening. As in section 13.4 it is shown how the total

shifts can be decomposed into distinct pathway contributions which reveal the nature of the spin-transfer

mechanism over each bonding pathway. It is also shown how the pathway model can be used to rationalize

the NMR spectra for LiMPO4 materials with mixed metal compositions [30]. By simulating the spectra of

these materials and assigning all of the multiple and overlapping resonances, it was shown that these materials

form a random distribution of transition metal ions in the metal sites. Finally we describe the first application

of the EPR formalism to a solid material, focusing on the pure-composition materials LiMPO4.

The next two sections describe case studies of proteins that bind 3d metal ions. Section 13.7 describes

a solution NMR study of a ferredoxin protein comprising Fe4S4 clusters [363]. We focus on the contact

shifts of the amino-acid residues that bind directly to the cluster. In particular we examine how the exchange

interactions between the metal ions a↵ects the temperature dependence of the shifts, and how the geometry of

the bonding between the observed nucleus and the cluster influences the signs and sizes of the contact shifts.

In particular the temperature dependence was used to gain insight into the electronic structure of the Fe4S4

cluster.

The second biological example is the use of long-range paramagnetic distance restraints for determining

the structure of a metalloprotein in the solid state, as described in section 13.8 [45, 461]. Here pseudo-

contact shifts and paramagnetic relaxation enhancements are used to refine the three-dimensional structure of

superoxide dismutase (SOD).

The next three studies concern the paramagnetic shifts in systems containing lanthanide ions. Section 13.9

presents a case study of the shifts in solid lanthanide stannates [64, 68]. It is shown that they are dominated

by contact shifts, and that the lanthanide-dependent trends are described well by the Golding–Halton theory.

This study therefore provided evidence for a covalent interaction between the 5d orbitals of the lanthanide

625



ion and the coordinated ligands.

Section 13.10 presents the study of a lanthanide complex with interesting luminescent applications in

bio-imaging [467]. The system forms a supramolecular complex with the guanidinium cation in solution.

The shifts of the cation have a paramagnetic contribution that is due to the pseudo-contact shift, and which is

accurately described by the Bleaney theory.

Section 13.11 presents a detailed study of the e↵ects of di↵erent lanthanide ions when incorporated into

a metal-binding site of the protein calbindin D9k [74]. The measured pseudo-contact shifts due to 11 out

of 13 of the paramagnetic lanthanides are used to calculate the susceptibility anisotropy parameters, which

are shown to agree well with the Bleaney theory. The use of the Bleaney theory then allows the crystal-field

splitting parameters to be extracted.

The next two sections concern recent contributions to the use of paramagnetic NMR spectroscopy to study

actinide systems. Section 13.12 presents computational work on rationalizing the shifts obtained in three

actinyl tris-carbonate complexes in solution. The calculations are a sophisticated application of relativistic

quantum chemistry to NMR and EPR parameters [91, 92].

Section 13.13 describes an experimental study of five actinide oxides by 17O MAS solid-state NMR

[13]. This work demonstrated the first acquisition of high-resolution MAS NMR for these highly radioactive

materials, and opened the door to obtaining a better understanding of the behaviour of actinides in solid-state

chemistry and materials science. In particular it was used to measure and rationalize trends in the actinide

electronic magnetic moments.

Finally we present a recent contribution which describes and applies a new method for measuring domain

sizes in materials comprising multiple components, such as pharmaceutical controlled-release formula-

tions, in section 13.14 [468]. Here selective doping of the material with a solution of an organic biradical

induces a paramagnetic relaxation enhancement which, when combined with spin di↵usion, can be used to

measure domain sizes on the nm–µm length scale. This work provided a direct measurement of the domain

sizes in these materials, of direct relevance to the pharmaceutical industry.
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Figure 13.1: The structure and d-orbital splitting of the 3d metallocene complexes. The nominal forms of
the 3d orbitals are also shown. Two sets of symmetry labels are given for each orbital set, corresponding to
both the point group of the staggered conformation (D5d: a1g, e1g, and e2g), and the symmetry of the orbitals
relative to the five-fold rotation axis (d�, d⇡, and d�).

13.2 Transition-metal metallocenes M(C5H5)2

13.2.1 Background

Transition-metal metallocene complexes are classic examples of molecular magnetic materials. They adopt

the sandwich structure shown in Figure 13.1 in which one divalent d-block metal ion bonds to two cyclopen-

tadienyl anions (C5H�5 , or Cp�) via an ⌘5 covalent interaction with the conjugated ⇡-orbitals. The nominal

forms of the 3d orbitals are also shown, along with their energy splitting as predicted from ligand-field theory.

More details about the molecular orbitals, including energy level diagrams calculated from hybrid-functional

DFT, are given by Xu et al [469]. Discussions about the metallocenes usually consider the two Cp� ligands

to adopt either an eclipsed conformation (point group D5h), or to be staggered (D5d). Energy calculations

of the two conformations indicate that the eclipsed forms are the energetically more stable for ferrocene,

nickelocene, and vanadocene [470]. However the energy di↵erences between the two conformers are very

small, being 3.0, 0.4, and 0.7 kJ mol�1 for ferrocene, nickelocene, and vanadocene respectively, and at room

temperature, where kT corresponds to 2400 kJ mol�1, the Cp� ligands rotate freely. Thus, it makes little

di↵erence which conformation we examine, and so here we consider the staggered conformation.

Here we compare the experimental 13C and 1H shifts of the family of metallocene complexes Cp2V,

Cp2Cr, Cp2Mn, Cp2Fe, Cp2Co, and Cp2Ni, and show that they can be used, in combination with hybrid
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Figure 13.2: The d-orbital splitting and electronic configurations of the metallocene compounds Cp2M in
D5d symmetry. The corresponding electronic terms are 4A2g (V), 3E2g (Cr), 6A1g (Mn), 1A1g (Fe), 2E1g (Co),
and 3A2g (Ni).

DFT calculations, as an experimental probe of the electronic structure. The electronic configurations of

the d-orbitals in the six metallocene complexes are shown in Figure 13.2. These diagrams are helpful aids

for counting the number of unpaired electrons. However, when a system contains unpaired electrons, it

is not correct to assume that the energies of the up- and down-spin (↵ and �) electrons are the same, as

implied by these diagrams. We see that Cp2Fe has a low-spin d6 configuration, which gives a closed-shell

diamagnetic compound. Hence the shifts in this molecule are due entirely to the orbital (i.e. chemical shift)

contribution. However the other five compounds are all paramagnetic, and the orbital angular momentum is

quenched to first order as the electronic states are either singly or doubly degenerate (i.e. are A or E states).

The Mn2+ has a half-filled d-shell, and behaves as a spin-only ion, but for the other compounds we expect

second-order SO coupling e↵ects to be present due to the mixing of the electronic excited states with the

ground state. Furthermore, due to the axial symmetry of the complex, the hyperfine, g-, and ZFS tensors are

axially symmetric, i.e. the asymmetry parameters of the hyperfine and g-tensors, ⌘A and ⌘g, and the rhombic

ZFS parameter E are all zero.

The rationalization of the metallocene shifts has a long history in the literature, beginning with the work

of McConnell and Holm who o↵ered two di↵erent explanations for the observed proton shifts in nickelocene.
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Figure 13.3: Solution 1H spectrum of a mixture of Cp2V, Cp2Cr, Cp2Fe, Cp2Co, and Cp2Ni in toluene-d8
at 305 K. The peaks labelled S are due to the residual protonated solvent. Reproduced from [41], with
permission from Elsevier.

They initially suggested that ↵ electronic spin density is transferred from the Ni d-orbitals into the ligand

⇡ orbitals [471], and later reversed this argument to propose a mechanism where � spin density (i.e., spin

density of the opposite sign) is instead transferred from the ligand to the partially-occupied d-orbitals [472].

This proposal has since been corroborated with the aid of hybrid DFT calculations [473].

13.2.2 Paramagnetic shifts

There have been numerous NMR studies of metallocene complexes over the years, both in solution [474–479]

and in the solid state [3, 480–482]. A 1H spectrum of a solution of a mixture of the five metallocene com-

pounds Cp2V, Cp2Cr, Cp2Fe, Cp2Co, and Cp2Ni is shown in Figure 13.3 [41]. The variation of the chemical

shift with the metal ion, 600 ppm, is very large compared to the standard 10 ppm range of diamagnetic 1H

shifts. The only compound with a shift that falls into this standard region is the diamagnetic Cp2Fe, which

exhibits both a small shift and narrow line. The large value of the shifts from the other compounds, which

has recently been discussed by Kaupp and Köhler [41], is due to unpaired electron density that is transferred

between the metal ion and the Cp� ligands. The 13C and 1H orbital shifts are both approximately constant

across the series of compounds, with the result that the trend in the total chemical shift matches that of the

Fermi-contact shift. One striking feature that is immediately apparent is that in the compounds Cp2V and

Cp2Cr, the unpaired electrons of which occupy the e2g and a1g orbitals, both give large positive paramagnetic

shifts, whereas Cp2Co and Cp2Ni, the unpaired electrons of which reside in the e1g orbitals, both give large

negative shifts.
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Figure 13.4: Breakdown of the contributions to the total 13C and 1H chemical shifts of selected metallocenes
determined by first-principles calculations (with PBE0), and comparison with the experimental shifts, at 298
K. The 13C shift contributions are shown in (a), and the 1H shifts are shown in (b). The calculated shift
contributions for Cp2V, Cp2Cr, Cp2Mn, and Cp2Ni are taken from Refs. [39] and [41], and the calculated
shifts for Cp2Co are taken from Refs. [483] and [41]. The experimental 13C chemical shifts in solution are
taken from Ref. [475] (Ni), [477] (Co), [476] (Mn), [474] (Cr), and [479] (V). The experimental 1H chemical
shifts in solution are taken from Refs. [474] (Ni), [477] (Co), and [478] (Mn, Cr, V). All solid-state chemical
shifts are taken from Ref. [481], with the exception of the 13C shift for Cr which is taken from Ref. [483].

The isotropic paramagnetic shift is calculated from Equation 4.109 to be

�S
iso =

µB

3~�I
Tr [g ·Z ·A] , (13.1)

where the cross-terms between the di↵erent components of g, Z, and A are given in Table 5.1. In total there

are nine contributions to the total shift, of which four are a contact shift and four a pseudo-contact (dipolar)

shift, with the remaining term being the orbital shift. The values of the di↵erent terms have been calculated

[39, 483], and tabulated by Kaupp and Köhler [41], and the results are presented here in Figure 13.4. The

terms are grouped together as follows. Firstly the orbital shift is separated from the other terms, in order

to isolate the e↵ect of the unpaired electrons. Secondly three of the contact-shift terms are separated into

two groups, corresponding to the NR Fermi-contact shift proportional to geAFCZ, and an SO contribution

geAFC,2Z + �gisoAFCZ, where AFC is given by Equation 2.171, which are non-zero even in the absence of

the ZFS. Thirdly there is a single term in the PCS which is non-zero in the absence of a ZFS: �g ·Z ·ASD,
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Compound g-tensor ZFS tensor
gk g? Ref. D / cm�1 Ref.

Cp2Ni 2.00 2.06 ± 0.10, 2.11 ± 0.03 [484, 485] 25.6–33.6 [484–486]
Cp2Co 2.012 1.981–1.994 [487] — —
Cp2Mn 1.99–2.01 1.99–2.01 [488] 0.25–0.50 [489]
Cp2Cr 2.012 1.988 [490] �15.1 [491]
Cp2V 2.002, 2.002 ± 0.001 1.99, 1.990 ± 0.002 [492, 493] 0.83–2.7 [492–494]

Table 13.1: Experimental principal values of the g- and ZFS tensors for selected metallocene complexes.

where ASD is given by Equation 2.172. Finally the remaining four terms are grouped together. In general

whilst all the paramagnetic terms change in size with the introduction of the ZFS, the defining feature of the

last group is that all the terms in it are only non-zero if the ZFS is also non-zero. The shift contributions were

all computed using calculated values for the ZFS anisotropy D and g-shift tensor, and it is these values that

are presented in Figure 13.4 [39, 483]. However there are two exceptions. The calculated values of the ZFS

anisotropy for both Ni and Cr, 104.4 and �2.0 cm�1, were shown to be far from the experimental values of

30 and �15.1 cm�1, being severely over- and underestimated respectively. For this reason the corresponding

ZFS contributions to the paramagnetic shift for both 13C and 1H were recalculated accordingly [41]. Whilst

the presentation of these ‘mixed results’ appears to be inconsistent, we should remind ourselves that the

ZFS contributions to the shift, which are only non-zero if we include the ZFS, are generally a↵ected to a

proportionately greater extent than the other contributions in the high-temperature limit |D| < kT (kT is

approximately 200 cm�1 at the temperatures under consideration). Therefore we gain a better picture of the

relative importance of the di↵erent contributions if we adjust the ZFS contributions accordingly.

Inspection of Figure 13.4 immediately shows that the only significant contributions to both the 13C and

1H chemical shifts are the orbital and NR Fermi-contact terms, with the latter being dominant, i.e. the e↵ect

of the SO coupling, via the g-shift, ZFS, and hyperfine tensor, is negligible. This is also reflected in the

comparatively small values observed experimentally for the g-shift and ZFS tensor parameters, which are

given in Table 13.1. The g-shift and ZFS tensor parameters are particularly small for Cp2Mn, due to the

d-shell being half filled resulting in the quenching of the SO coupling to second-order. The largest ZFS

contribution is for Cp2Ni, as the Ni2+ ion has the largest D value, and the smallest is for Cp2Co, where the

electronic spin S = 1/2 results in the complete absence of the ZFS interaction.
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Compound �FC(13C) / ppm ⇢(↵��)(13C) / 10�3a.u. �FC(1H) / ppm ⇢(↵��)(1H) / 10�3a.u.
Cp2Ni 1537.1 9.73 �239.7 �1.52
Cp2Co 602.9 5.09 �38.9 �0.33
Cp2Mn 1706.1 6.17 �0.8 0.00
Cp2Cr �342.9 �2.17 302.1 1.91
Cp2V �537.2 �2.72 333.4 1.69

Table 13.2: Calculated Fermi-contact shifts and transferred electronic spin densities for 13C and 1H in selected
metallocenes [41].

(a) Cp2Ni (b) Cp2V

Figure 13.5: The unpaired electronic spin density in (a) Cp2Ni and (b) Cp2V. Red and blue isosurfaces
indicate positive and negative spin density respectively, and are evaluated at ±10�4 a.u. Adapted from [483],
with the permission of AIP Publishing.

13.2.3 Interpretation

We have seen that the Fermi-contact coupling constant is proportional to the unpaired electronic spin density

in the s-orbital of the nucleus N ⇢(↵��)(N), and so the Fermi-contact shift has a size that is also proportional to

⇢(↵��)(N) and has the same sign. This is seen in Table 13.2, where the Fermi-contact shifts and the associated

electronic spin densities are given. Visual representations of the electronic spin density are also shown for

Cp2Ni and Cp2V in Figure 13.5 (a) and (b) respectively [483]. Here we can see immediately that for both

complexes the spin densities at the 13C and 1H nuclei have opposite sign. This e↵ect is reproduced for all

the paramagnetic metallocene complexes, and results in the signs of the 1H Fermi-contact coupling constants

(and shifts) having opposite signs to the 13C coupling constants (and shifts). This change in sign is due to

spin polarization of the C–H � bond by the unpaired electron density in the ⇡ orbital [495].
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We now focus on rationalizing the 13C Fermi-contact shifts, concentrating on the two particular cases

of Cp2Ni and Cp2V. The 13C Fermi-contact shift of Cp2Ni is large and positive, whereas the corresponding

shift for Cp2V has smaller magnitude and is negative. The corresponding opposite sign in the 13C spin

densities, which is clearly seen in Figure 13.5 [483], can be explained by decomposing total Fermi-contact

coupling constants into contributions from the individual molecular orbitals, to determine which of the two

spin-transfer mechanisms proposed by McConnell is correct [473]. This analysis also explains why Cp2V

has a smaller shift than Cp2Ni, despite having more unpaired electrons.

In Cp2Ni the two e2g orbitals (of d� symmetry) and the single a1g orbital (of d� symmetry) are fully

occupied, and each of the two e1g orbitals (of d⇡ symmetry) has a single unpaired electron, as shown in Figure

13.2. Aquino et al. showed that the two d⇡ orbitals do indeed donate ↵ electron spin density into unoccupied

orbitals of the Cp� ligands according to McConnell’s first mechanism, resulting in a positive spin density

at 13C and a positive Fermi-contact shift [473]. However this mechanism only accounts for approximately

15% of the total 13C Fermi-contact shift, and so is not the dominant e↵ect. The more important contribution

is the donation of � spin density from the occupied ligand ⇡ orbitals into the d⇡ of the Ni2+, according to

McConnell’s second mechanism. The corresponding reduction in � spin density in the ligand ⇡ system leaves

an excess of ↵ spin density, which in turn polarizes the � orbitals, giving a positive 13C Fermi-contact shift.

This second e↵ect accounts for the remaining 85% of this shift.

There is an alternative description of the electron transfer due to McConnell’s second mechanism in terms

of the di↵erence between the molecular orbitals (MOs) containing the ↵ and � electron spins. Although this

description gives us a superficially di↵erent explanation of the process, the underlying chemistry is the same.

The important idea is that the MOs containing the ↵ and � electrons are not the same, and have di↵erent

energies. As we have already remarked, this is a feature of the electronic structure that is missing from

the simplified d-orbital splitting diagrams shown in Figure 13.2. Of particular relevance to metallocenes,

the metal d-orbitals lie close in energy to the ⇡-orbitals of the Cp� ligands. For Cp2Ni, the lower energy,

bonding, and occupied (formally ligand-based) � e1g MOs lie close in energy to the ↵ d-orbitals (formally the

Ni d-orbital-dominated MOs). The coe�cient of the occupied e1g d↵⇡ orbital (containing the ↵ electron) in the

e1g MO wavefunction is di↵erent to that of the d�⇡ orbital, and it is this inequality that results in the di↵erence

in ↵ and � electronic spin densities on both Ni2+ and the ligand. A similar explanation is invoked to explain

the polarization mechanism involving O 2p orbitals in section 13.4.2.
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The case of Cp2V is much more complex. Here, as seen in Figure 13.2, the V2+ ion formally has three

unpaired 3d-electrons, one each in the two e2g (d�) orbitals and single a1g (d�) orbital. Aquino et al. showed

that the contribution from the two d� orbitals to the Fermi-contact coupling constant is very small, with a

magnitude of 7% of the total [473]. In order to properly understand the negative shift, we need to include

a number of contributions. Firstly there is some transfer of ↵ electron spin from the V2+ d� into the ligand

� orbitals, according to McConnell’s first mechanism, giving a positive Fermi-contact coupling constant and

shift. Secondly donation of � spin density from the ligand to the metal d� results in excess ↵ spin density

in the � valence orbitals at the 13C, which in turn polarizes the 13C 1s orbitals with � spin density. This

gives a large negative contribution to the Fermi-contact shift. Thirdly there are further negative contributions

from non-nearest-neighbour � orbitals and polarization of the ⇡ orbitals [473]. The overall Fermi-contact

shift is a sum of these contributions, and turns out to be negative overall. We can also rationalize the smaller

magnitude of the shift relative to that of Cp2Ni. In Cp2V only one unpaired electron (the d�) contributes to

the Fermi-contact interaction, and there is signicant cancellation of the di↵erent contributions, in Cp2Ni there

are two unpaired electrons (the d⇡) and the two main contributions to the shift reinforce each other.

13.2.4 The delocalization error

The final point that we make here concerns a practical point in the calculation of the Fermi-contact shift.

Accurate values of the Fermi-contact shift can only be obtained if we calculate the transfer of the electronic

spin density correctly, i.e. if we treat the delocalization of the electrons properly. Failure to do so results in a

so-called delocalization error.

In practice calculations of the paramagnetic shift employ some formulation of DFT to describe the spin

densities. The spin densities can vary strongly with the choice of exchange–correlation functional, potentially

leading to a large range of Fermi-contact shifts! The resulting delocalization errors are well known, and have

been observed in a range of systems including metallocenes [496], acetylacetonato complexes [496, 497],

and solid Li-ion battery materials [30, 53, 56–59, 498, 499].

In particular the calculation of the spin density donated from the ligand to the metal, such as that observed

in metallocene complexes, is particularly sensitive to delocalization errors [500]. The general trend is that

this electron transfer is underestimated when calculated using pure Hartree–Fock methods, which result in

electrons that are too strongly localized, and is overestimated when calculated with non-hybrid functionals,
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Figure 13.6: Structures of the high-spin Co2+ pyrazolylborate complexes. The three complexes are referred
to as (a) system 1, (b) system 2, and (c) system 3. For each complex the chemically distinct 1H environments
are labelled. Reproduced with permission from [465]. Copyright (2015) American Chemical Society.

which result in electrons that are too extensively delocalized. The use of hybrid functionals results in a

situation that is between these two extremes, and their use is therefore very important in DFT calculations of

Fermi-contact shifts, as described in section 13.4.

13.3 Co(II) pyrazolylborate complexes in solution

13.3.1 Background

The paramagnetic NMR properties of the metallocene complexes in the previous section are dominated by

non-relativistic e↵ects, with the isotropic shift being dominated by the Fermi-contact interaction. However

this is not a general observation for all small molecular complexes. We illustrate this point here by presenting

a combined experimental and theoretical study of three Co2+ complexes, the structures of which are shown

in Figure 13.6. These three molecules are referred to as systems 1 (a), 2 (b), and 3 (c). The 1H shifts of these

complexes have been measured in solution by Długopolska et al. [501], and more recently calculated by Rouf

et al. [465].

The Co2+ ion is in a slightly-distorted octahedral coordination environment, and has a high-spin elec-

tronic configuration which can be approximated by the orbital splitting diagram shown in Figure 13.7.

The electronic ground state therefore has spin S = 3/2, and can be labelled using the term 4T1g. In this
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Figure 13.7: Splitting and occupancy of the Co2+ d-orbitals in an octahedral coordination site.

distorted coordination environment the Co2+ is expected to have larger SO coupling e↵ects than seen in the

metallocenes, which in turn lead to greater SO coupling contributions to the paramagnetic shifts.

13.3.2 The EPR tensor parameters

Rouf et al. calculated the total hyperfine tensor using DFT, and the g- and ZFS tensors using the ab initio

CASSCF and NEVPT2 methods [465]. Both the g-shift and ZFS tensor parameters are larger than for the

metallocenes, with system 1 giving a total isotropic g-value of 2.119, and ZFS anisotropies of D = �112.3

cm�1 and E = �15.7 cm�1. In particular the large D value is expected to give a substantial contribution to

both the contact and pseudo-contact shift.

13.3.3 Paramagnetic shifts

The paramagnetic shift is given by Equation 13.1, with the components listed in Table 5.1. The total

calculated shifts of the three systems are compared with the experimental values in Figure 13.8, along with

the breakdown of the former into the di↵erent components. There is a large degree of variation between the

systems, and for the individual 1H sites within each complex, but there are some general trends that we can

establish. Firstly there are generally only three significant contributions to each paramagnetic shift, which

are the contact-shift term geAFCZ, and the two PCS contributions geZ ·ASD and �g ·Z ·ASD. The two PCS

terms are particularly significant in gauging the contribution of the SO coupling, as both are only non-zero if

we account for the ZFS or, for �g ·Z ·ASD, g-anisotropy. The relatively large values of the ZFS parameters

can therefore be attributed to the significant PCS.

The variation of the shifts immediately illustrates the di�culties of assigning NMR spectra of param-

agnetic molecules without using calculations. If we examine the contact shifts for system 1 in more detail

(Figure 13.8 (a)), we see that the the values for 3-H, 4-H, and 5-H are similar, falling in the range 30–40
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Figure 13.8: Breakdown of the contributions to the total 1H chemical shifts of the three Co(II) pyrazolylborate
complexes determined by first-principles calculations, and the comparison with the experimental shifts. The
shifts for system 1 are shown in (a), system 2 in (b), and system 3 in (c). The calculated and experimental
shifts are taken from Ref. [501] and [465].
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ppm. This cannot be intuitively explained simply by reference to the structure in Figure 13.6 (a), as 3-H is

nominally three bonds from the Co2+ ion, whereas 4-H and 5-H are both four bonds away. This observation

emphasizes that the size of the unpaired electron transfer depends on more complicated factors than the

number of bonds involved, but also on the coordination geometry, as all these factors influence the overlap

between the relevant orbitals. The overall shifts cannot be assigned correctly by considering only the contact

shift, as the two PCS contributions are significant. This is particularly important for 5-H in system 1, as the

negative PCS is larger in magnitude than the positive contact shift, resulting in an overall shift that is negative.

System 2 is a modification of system 1 where the 3-H has been replaced by a methyl group, which is

labelled 3-Me. If we compare the chemical shifts obtained from system 2, in Figure 13.8 (b), with those in

system 1 we see some interesting similarities and di↵erences. The total shift, and associated contributions,

for 4-H and B-H have similar values in the two systems, although the experimental shift of the latter is

significantly less positive in system 2. These observations indicate that 4-H and B-H have similar chemical

environments in the two complexes, and that the two protons occupy similar spatial positions with respect

to the Co2+ ion. However we see significant di↵erences for 5-H in the two complexes. In system 2,

there is a comparatively poor agreement between experiment and calculation, but the significant reduction

in the magnitude of the experimental shift compared to system 1 indicates that the two environments are

significantly di↵erent. According to the calculations this is because the PCS is now positive, rather than

negative, indicating that the spatial geometry of the ring containing 5-H is di↵erent.

System 3 is a significantly larger complex in which the 3-Me is replaced by a –C4H3S ring. The three

protons 3-H0, 4-H0, and 4-H0 all have smaller shifts than the other protons, which is due to the greater distance

and bond separation of the former from the metal ion. Nevertheless we see that both the contact shift and

PCS are still significant, which in the case of the former indicates that the spin transfer still persists over more

than five bonds. The significant PCS is due to the long-range nature of the dipolar coupling.

13.4 Layered transition-metal oxides LiMO2

13.4.1 Background

Paramagnetic materials are of particular interest in the field of energy storage as, for example, they form key

constituents of Li-ion battery electrodes. The electrochemical properties of a battery are driven by the redox
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Fe3! (t2g
3 eg

2), Co3! (t2g
6 eg

0), Ni3! (t2g
6 eg

1). The LiCrO2 ,
LiFeO2 , LiCoO2 cells are all rhombohedral (R"3m). The
Ni3! and Mn3! ions can exhibit a Jahn-Teller distortion,
leading to a monoclinic distortion !space group C2/m) of the
unit cells. However, a macroscopic distortion has only been
observed for LiMnO2.36,37 In LiNiO2, a local distortion was
seen by x-ray absorption analysis,38 but on average the struc-
ture remains rhombohedral. The lithium ions in LiMO2 com-
pounds with the R"3m or C2/m structure can interact with
transition metal ions as first or second neighbors !Fig. 1".
These two interactions are termed the 90° and 180°
(M -O-Li" interactions, respectively, because of the angle of
the M-O-Li bond.
In order to also consider M-O-Li interactions with differ-

ent geometries, we chose to study the La4LiMO8 (M#Cr,
Mn, Ni" phases, which are isostructural to K2NiF4.39–41 To
our knowledge, only the La4LiMnO8(Mn3!) and La4LiNiO8
(Ni3!) materials have been synthesized, but as Cr3! is iso-
electronic to Mn4!, and as the Mn4!-containing material
La3SrLiMnO8 has been synthesized,40 we also studied the
hypothetical La4LiCrO8 material by first principles calcula-
tions. The charge difference between the Li and Ni or Mn
ions leads to a strong ordering interaction, and hence, the
La4LiMO8 (M#Ni, Mn" phases exhibit a chessboard-type
Li/M ordering in the xy plane, leading to a !2$!2$1
supercell of the original K2NiF4 tetragonal unit cell !Fig.
2".39–41 The symmetry of these phases is then A-centered

orthorhombic (Ammm). This symmetry lowering was ob-
served by x-ray diffraction for La4LiNiO8 !Ref.39" and
La3SrLiMnO8 in one study,40 but not for La4LiMnO8. Very
recently, Burley et al. showed by electron diffraction and
NMR that both La3SrLiMnO8 and La4LiMnO8 exhibit cation
ordering in the perovskitelike sheets of the K2NiF4 structure,
but that the stacking of the sheets is disordered along #001$
in both these compounds.41 The lithium first coordination
sphere is identical in the ordered and disordered structures,
the lithium ion interacting through 180° oxygen bonds with
four transition metal ions !Fig. 2". The transition metals are
in a distorted tetragonal environment in this material, allow-
ing the effect of lifting the degeneracy of the eg orbitals on
the electron spin densities to be explored in the calculations.
In this paper, we present DFT calculations of the spin

density around the transition metal, the oxygen and the
lithium ions, and use this information to predict the magni-
tudes and signs of the Li hyperfine shifts as a function of the
electronic structure of the surrounding transition metals. A
brief introduction to the NMR theory and to the relevant
DFT methodology is presented in the following two sections
!Secs. II and III, respectively" before comparing the experi-
mental !NMR" results and the DFT calculations in Secs. IV
and V.

II. NMR CONTACT SHIFTS

The NMR shift (%&/&0) induced by the Fermi contact
interaction in materials with 3d metal ions is proportional to
the electron spin !i.e., unpaired electron" density at the
nucleus '(r#0). This quantity depends itself on the Fermi
constant Ac and on the time-averaged value of the electron
spin in the material (Sz):42,43

%&

&0
#"

Ac

&0*
(Sz). !1"

Ac indicates how much of the spin density is at the site of
the nucleus of interest and governs the direction of the shift.
(Sz) is proportional to the magnetic molar susceptibility
+M(m3/mol) and can be expressed by44

FIG. 1. Structure of the O3-LiMO2 and the LiMyCo1"yO2
phases !a" with the different types of interactions (90° and 180°)
!b". The same notation for the Li!2" and Li!3" sites is used through-
out this paper for the LiMyCo1"yO2 phases !see Table III".

FIG. 2. Structure of the ordered La4LiMO8 phases. The (xy)
plane Li/M ordering is shown on the left.

CARLIER, MÉNÉTRIER, GREY, DELMAS, AND CEDER PHYSICAL REVIEW B 67, 174103 !2003"

174103-2

Figure 13.9: Structure of the O3-LiMO2 materials. The alternating LiO6 and MO6 layers are shown in (a). In
(b) are shown the two Li sites Li(2) and Li(3) in the dilute materials LiMyCo1�yO2 that exhibit large contact
shifts. Reproduced with permission from [48]. Copyright (2003) by the American Physical Society.

processes of the metal ions in the electrodes, and so understanding the changes to the local structure of metal

ion and the electron-spin transfer to the surrounding atoms is key to gaining insight into the mechanisms

of charge and discharge, and how these processes both function and fail. Many of these materials are

either paramagnetic in their pristine phases, or become paramagnetic on electrochemical cycling, and so

paramagnetic solid-state NMR is an indispensable method for studying them.

Layered lithium transition-metal oxide materials of the form LiMO2 are a promising class of cathode

materials. The diamagnetic material LiCoO2, which was first used as a cathode by Goodenough et al. [502],

has been used since 1991 in commercial Li-ion batteries by Sony. Considerable e↵ort has been invested in

using other metal ions in these materials which have lower toxicity and are cheaper than the Co3+ ion, or that

improve electrochemical properties such as the capacity. These materials adopt a layered O3 (ordered rock

salt) structure comprising alternating layers of edge-sharing LiO6 and MO6 octahedra, as shown in Figure

13.9 (a) [48]. Here we present the influence of three species of metal ion on the 7Li chemical shifts, namely

Cr3+, Co3+, and Ni3+, as initially described by Carlier et al. [48] and later elaborated on by Middlemiss et
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Figure 13.10: The d-orbital splitting and occupancy of the Cr3+, Co3+, and Ni3+ metal ions in the octahedral
coordination sites of LiMyCo1�yO2.

al. [54]. The electronic configurations of these three metal ions in an octahedral environment are given in

Figure 13.10. The Cr3+ ion has a paramagnetic term 4A2g corresponding to a quenched singly-degenerate

orbital state with spin S = 3/2, and the Co3+ ion has a low-spin diamagnetic configuration of 1A1g. In both

cases the non-degenerate spatial configurations result in no significant distortions from the nominal octahedral

symmetry. The Ni3+ ion, on the other hand, has a doubly-degenerate spatial term of 2E2g, which we expect to

result in a Jahn–Teller distortion parallel to the C4 rotation axis of the metal site. It will be seen that the 7Li

solid-state NMR combined with hybrid DFT calculations can be used to detect such a distortion.

13.4.2 Spin-transfer pathways in LiMyCo1�yO2

In the oxide materials with a single transition-metal species the total paramagnetic shift is dominated by the

contact interaction with the six nearest-neighbour (nn) metal ions via a 90� M–O–Li electron transfer, and

the six next-nearest-neighbour (nnn) metal ions via 180� M–O–Li electron transfers, the bonding geometries

of which are shown in Figure 13.9 (b). Carlier et al. [48] and Middlemiss et al. [54] investigated these

individual pathways by DFT calculations on the mixed-metal species LiCr1/8Co7/8O2 and LiNi1/8Co7/8O2,

in which the concentration of the metal ion is diluted. This dilution enables us to obtain experimental shifts

from each of these individual isolated pathways, which can then be compared to the calculated values. We

can then rationalize these individual contributions directly according to the Goodenough–Kanamori rules.

For both materials the 7Li solid-state NMR spectrum contains three peaks with distinct shifts, which are

given in Table 13.3. Both mixed materials have a shift at 0 ppm which can be assigned by comparison with

the diamagnetic LiCoO2 as being due to the Li(1) site for which all the nn and nnn metal ions are Co3+. Each

mixed material also has two additional shifts, one positive and one negative, which are due to the Li(2) and
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Material Shift / ppm Sign of calculated spin density Assignment Ref.
LiCr0.10Co0.90O2 35 + Li(3) [503]

0 Li(1)
�70 � Li(2)

LiCoO2 0 All [504]
LiNi0.30Co0.70O2 110 + Li(2) [505]

0 Li(1)
�15 � Li(3)

Table 13.3: Experimental 7Li chemical shifts observed in three LiMyCo1�yO2 layered oxides, with
assignments.

Li(3) sites illustrated in Figure 13.9 (b). Density-functional theory calculations were helpful in confirming

the assignments of these shifts.

The dominant contributions to the chemical shifts in these materials is the contact shift. The important

contributions in the EPR formalism are expected to be those that are proportional to the NR Fermi-contact

coupling constant, namely geAFCZ, �gisoAFCZ, and AFC�g ·Z with the term due to AFC,2 being negligible.

However it is more convenient to express the contact shift �con in terms of the susceptibility formalism in

Equation 7.126,

�con =
�

µ0µBge~�I

 AFC

2S

!

, (13.2)

where AFC = AFC/(2S ), and the SO coupling e↵ects giving rise to the g-shift and ZFS, as well as the exchange

interactions, are contained in the isotropic magnetic susceptibility �. Assuming a Curie–Weiss temperature

expression for the susceptibility we obtain

�con =
µ2

e↵

3µBge~�Ik(T � ⇥)

 AFC

2S

!

. (13.3)

Hence the size of the contact shift is proportional to the size of the unpaired electronic spin density transferred

to the Li 2s orbital, and both quantities have the same sign. When more than one metal ion i transfers

spin density to the nucleus N via a pathway Pi, the total spin density ⇢(↵��)(N) is the sum of the individual

contributions ⇢(↵��)
Pi

(N) [54]:

⇢(↵��)(N) =
X

i

⇢(↵��)
Pi

(N), (13.4)

which in turn means that the total contact shift can be written as the sum of the individual pathway contribu-
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Figure 13.11: The di↵erent M–O–Li spin-transfer mechanisms in LiMyCo1�yO2. The delocalization
mechanisms for 90� and 180� are shown in (a), and the corresponding polarization mechanisms are shown in
(b).

tions �con
Pi

as follows:

�con =
X

i

�con
Pi
, (13.5)

where each contribution is given by an expression such as in Equation 13.2 or 13.3.

In section 7.9 we saw that the sign of the transferred electronic spin density, and therefore the sign of

the contact shift, can be deduced from the Goodenough–Kanamori rules for 90� and 180� M–O–Li bonding

geometries. Here we must distinguish between electron delocalization and polarization transfer mechanisms.

In the former the metal 3d-orbital containing the unpaired electron overlaps with the Li 2s via an O 2p-

orbital, resulting in a positive electron density at Li, whereas in the latter the metal 3d and Li 2s overlap with

di↵erent orthogonal O 2p-orbitals, which results in a polarization of negative electron density at Li. These

two mechanisms are illustrated in Figure 13.11 for both 90� and 180� M–O–Li bonding geometries. The two

delocalization mechanisms shown in Figure 13.11 (a) occur for the 90� geometry when the unpaired electron
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is in the metal t2g, and the 180� geometry when the unpaired electron is in the metal eg. The two polarization

mechanisms shown in Figure 13.11 (b) are operative for the 90� geometry when the unpaired electron is in

the metal eg, and the 180� geometry when the unpaired electron is in the metal t2g.

In the case of LiCr1/8Co7/8O2 the unpaired electrons reside only in the t2g orbitals, which indicates that

the 90� Cr–O–Li results in spin delocalization, and the 180� Cr–O–Li in spin polarization. The delocalization

and polarization mechanisms can be readily interpreted by using simple MO theory [5]. The delocalization

mechanism for the Cr3+ ion results from the anti-bonding MO formed from the half-occupied t2g d-orbital

and the nearby (overlapping) O 2p-orbital, which results in a direct transfer of spin density to the 2p-orbital,

and thus into the adjacent Li 2s orbital. The polarization mechanism results from a bonding MO involving

the overlap of the empty eg orbital with the relevant (overlapping) filled O 2p-orbital. The spin density in

this case results from the di↵erent coe�cients of the atomic orbitals in the ↵ and � MOs, with an increased

contribution of the coe�cient of the eg orbital to the ↵ MO being driven by the exchange interaction, which

serves to lower the overall energy of the system. Hence the spin density transferred to the two lithium sites

Li(2) and Li(3) is negative and positive respectively. This is indeed the case as shown by the electron spin

density map calculated by Carlier et al. in Figure 13.12 (a) [48]. The exact orbitals involved for each transfer

are shown in Figure 13.13. Hence the shifts of 35 ppm and �70 ppm can be assigned to Li(3) and Li(2)

respectively, as shown in Table 13.3.

In LiNi1/8Co7/8O2 the unpaired electron resides in the eg orbital, and so we expect the spin-transfer

mechanisms to be di↵erent. For the 90� bonding geometry the half-filled eg polarizes the t2g orbitals, resulting

in negative spin density on the Li 2s as shown in Figure 13.11 (b), which now gives a negative contact shift for

Li(3). For the 180� bonding geometry the situation is more complicated, as there are two competing transfer

mechanisms. Firstly the half-filled eg delocalizes positive spin density into the Li 2s, as shown in Figure

13.11 (a). However this same eg orbital also polarizes the other unfilled eg orbital, resulting in an additional

transfer of negative spin density to Li, as shown in Figure 13.11 (b). The overall spin density is due to the

combination of these two transfers. It turns out that the electron delocalization is the dominant process, giving

a positive spin transfer and therefore a positive contact shift for Li(2), as shown by the spin-density map in

Figure 13.12 (b) [48]. The relevant orbital interactions are summarized in Figure 13.13.
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La4LiNiO8 whereas it is only 0.2 eV in monoclinic
LiNiO2.57 Two mechanisms with opposite spin transfer occur
for the 180° Ni3!-O-Li interaction !Table IV": a delocaliza-
tion mechanism involving the Ni3!dz2, O p# , and Li 2s
orbitals, leading to a positive spin on Li and a polarization of
the bonding dx2"y2-p#-s orbital by the dz2 unpaired electron,
as seen in the Ni3! partial DOS !Fig. 8", although clearly
weaker than for the Cr3! case !Fig. 7". Some positive spin
density is located in the dx2"y2 orbital lobes that point to-
wards the oxygen ions $Fig. 6!c"%. This mechanism leads to
negative spin in the Li s orbital.
The calculated map in the (xy) plane of the spin polar-

ization density for this compound is given in Fig. 6!c". Since
the spin density on Li, i.e., the resulting NMR shift due to
Ni3! is predicted to be positive $Figs. 3 and 6!c"%, the polar-
ization effect is weaker than the delocalization one in this
case.
In La4LiMnO8, the Mn3! ion exhibits a high-spin

dxy
1 ,dxz

1 ,dyz
1 ,dz2

1 ,dx2"y2
0 configuration !DOS not shown" and,

hence, several 180° Mn3!-O-Li spin transfer mechanisms
need to be considered !Table IV": a delocalization mecha-
nism via the oxygen ion involving the dz2 orbital in the (xy)
plane !as described for La4LiNiO8), leading to a positive
spin on Li and a polarization of the bonding dx2"y2-p# or-
bital by the unpaired spins in the dxy , dyz , dxz , and dz2
orbitals, leading to a negative spin on the O p# and Li 2s
orbitals.
The electron spin difference in the xy plane $Fig. 6!b"% is

similar to that obtained for La4LiCrO8 and a negative spin
density is seen on the lithium site !Fig. 3". Therefore the
polarization of the dx2"y2 orbitals represents the predominant
effect. While the polarization effect is the smaller of the two
interactions in La4LiNiO8, it predominates in La4LiMnO8,
consistent with the larger total moment on the Mn3! ions.
The LiMyCo1"yO2 phases (M#Cr, Ni). In the

LiMyCo1"yO2 phases (M#Cr, Ni", Li interacts with M 3!

with either a 90° or 180° M-O-Li angle. The spin polariza-
tion !up minus down spin" in a (M , O, Li" plane of the
structure is plotted in order to visualize both types of inter-
action !Fig. 9". The positions of the different ions are also
indicated. Table V summarizes the spin transfer mechanisms
that occur in LiCr1/8Co7/8O2 and LiNi1/8Co7/8O2.
In LiCr1/8Co7/8O2, the unpaired electrons are located in

the t2g orbitals of Cr3!. Therefore, the following transfer
mechanisms can take place, depending on the geometry of
the interaction !Table V".
90° interaction: the hybridization of the Cr3! t2g , O p& ,

and Li!3" 2s orbitals leads to a positive transferred spin den-
sity on Li by the delocalization mechanism. The calculated
spin density is shown in Fig. 5!a".
180° interaction: the polarization of the bonding eg-p#-s

orbital leads to a negative spin on the O p# orbital that points
towards M and Li!2", as already discussed in the case of
La4LiCrO8. The resulting spin transfer on Li!2" is therefore
negative $Fig. 5!b"%. As a result, a positive NMR shift is
predicted for Li!3" (90° interaction" and a negative one is
predicted for Li!2" (180° interaction" in good agreement
with the previous signal assignments $Figs. 9!a" and 3%.10

The NiO6 octahedra in LiNi1/8Co7/8O2 are not Jahn-Teller
distorted, as shown in the DOS for Ni !Fig. 10" !see also the
dNi- O bondlengths in Table II". Therefore, the two Ni3! eg
orbitals are almost degenerate and are both involved in the
transfer mechanism. The following transfer mechanisms can
occur !Table V".
90° interaction: the polarization by the eg electron spin,

of the doubly occupied t2g-p&-s orbitals resulting from the
hybridization of the Ni3! t2g , O p& , and Li!3" 2s orbitals,
leads to a negative spin on Li!3". Note that another polariza-
tion effect can occur on O (eg-p#-p&-s overlap", leading to a
negative spin on Li, but as it requires two O 2p orbitals it is
weaker that the first one describe above.
180° interaction: !a" the delocalization mechanism in-

volving the singly occupied orbital results in a positive spin
on the O p# orbital that points towards Ni and Li!2". !b" The
spin in the partially occupied eg orbital polarizes the bonding
eg-p#-s orbital involving the second eg orbital, leading to a
negative spin on Li.

FIG. 9. Calculated spin polarization density map in a M-O-Li
plane in LiM 1/8Co7/8O2 with M#Cr !a" and M#Ni !b" from DFT
calculations: solid line and dashed contours indicate positive and
negative spin densities, respectively. Different contour steps were
taken around O and M since the spin difference is much larger on
M. The position of each ion is also indicated. The Li!2" and Li!3"
are the notations also used in Fig. 1 and Table III: Li!1" has a M 3!

ion as its second cation coordination shell and Li!2" has a M 3! ion
in its first cation coordination shell.

CARLIER, MÉNÉTRIER, GREY, DELMAS, AND CEDER PHYSICAL REVIEW B 67, 174103 !2003"

174103-10

Figure 13.12: Calculated spin-density transfer map in a M–O–Li plane in the LiMyCo1�yO2 materials, for
Cr3+ (a) and Ni3+ (b). The DFT calculations were performed using the generalized gradient approximation
(GGA) in the Vienna ab initio Simulation Package (VASP). Positive and negative contours are shown with
solid and dashed lines respectively. Reproduced with permission from [48]. Copyright (2003) by the
American Physical Society.
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Figure 13.13: Illustration of the orbitals involved in the spin-transfer mechanisms in the LiMyCo1�yO2 for the
specific cases of Cr3+ and Ni3+. Reproduced with permission from [48]. Copyright (2003) by the American
Physical Society.
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Material M–O bond lengths / Å µe↵/µB ⇥ / K
Short (S) Long (L)

LiCr1/8Co7/8O2 1.96 1.97 3.87 0
LiNi1/8Co7/8O2 1.89 2.02 1.73 0

Table 13.4: The M–O bond lengths obtained from the Hyb20 DFT calculations, and magnetic parameters for
LiMyCo1�yO2 with M=Cr3+ and Ni3+, and y = 1/8. The e↵ective magnetic moments were calculated from
the spin-only values, and it was assumed that the Weiss constants are zero.

13.4.3 7Li contact shifts in LiMyCo1�yO2

The spin-density calculations of Carlier et al. established the link between the electronic spin transfer and

the NMR shifts observed in the spectrum, via the contact interaction. However they did not obtain the

actual values of the interaction, and nor was the e↵ect of the expected Jahn–Teller distortion of the metal

coordination sites accounted for. Both of these issues were addressed in a DFT study by Middlemiss et al [54].

The first principles solid-state DFT calculations were performed using the CRYSTAL09 linear combination

of atomic orbitals code, with two hybrid exchange correlation functionals. Firstly the B3LYP functional

incorporating 20% Hartree–Fock exchange (Hyb20) was employed, as this is known to perform well in

the calculation of the electronic structure and band gaps of a range of materials, particularly those with

transition-metal ions. Secondly a related functional with 35% Hartree–Fock exchange (Hyb35) was used as

this gives values of magnetic coupling constants that are in good agreement with experiment. In particular

the Hyb20 and Hyb35 calculations provide a range of values of the contact shift that are in good agreement

with the experimental values.

The Hyb20 structural optimization of the two mixed transition-metal oxides confirms the presence of

a Jahn–Teller elongation along one of the pseudo-C4 rotation axes, resulting in two long (L) M–O bonds

and four short (S) M–O bonds, the values of which are given in Table 13.4. No Jahn–Teller distortion is

expected for LiCr1/8Co7/8O2 due to the non-degenerate orbital ground state of the octahedral configuration,

as shown by the negligible di↵erence in calculated bond lengths, whereas there is a substantial distortion

for LiNi1/8Co7/8O2. One e↵ect of these distortions is to lift the chemical equivalence of the Li sites, so that

instead of the three sites expected from the octahedral environment we obtain five, which are shown in Figure

13.14 [54]. The Li(1) site with only Co3+ in the nn and nnn remains distinct, and is now labelled Li(b). The

Li(2) with the 180� M–O–Li bonding geometry is now split into two distinct sites Li(c) and Li(d) in the ratio

1:2, which are defined by a long (L) and short (S) M–O bond respectively. Finally the Li(3) site with the
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Figure 13.14: Local coordination environment for the Cr3+ and Ni3+ metal ion in the LiM1/8Co7/8O2 structure
subject to a Jahn–Teller distortion. Shown are the four short (S) and two long (L) M–O bonds to the equatorial
and axial oxygens O and O0, and four of the five Li sites. The Li(b) site with no M nn or nnn interactions is
not shown. Reproduced with permission from [54]. Copyright (2013) American Chemical Society.

90� M–O–Li bonding geometry is split into two distinct sites Li(a) and Li(e). Site Li(a) is defined by a spin

transfer via two short M–O and O–Li bonds (SS) bonds, whereas for Li(e) the transfer is via two long and

two short (SL) bonds.

The contact shifts were obtained from the Fermi-contact coupling constant from Equation 13.2 using the

values of µe↵ and ⇥ in 13.4. The two e↵ective magnetic moments correspond to electronic configurations

with quenched orbital angular momenta and S = 3/2 and S = 1/2 respectively. It was assumed that there are

no measurable exchange interactions between the dilute paramagnetic metal ions, giving Weiss constants of

zero. The results of the calculations of the contact shifts using the Hyb20 and Hyb35 functionals are given in

Table 13.5 [54]. The results for LiCr1/8Co7/8O2 are in agreement with the prior calculations of Carlier et al.,

namely that the 90� M–O–Li sites correspond to the positive shift, and the 180� M–O–Li sites to the negative

shift. Examining the calculated values in more detail we see that the small Jahn–Teller elongation gives a

negligible di↵erence between the shifts of the two Li(3) sites, Li(a) and Li(e), with both functionals, and also

a negligible di↵erence between the shifts of the two Li(2) sites Li(c) and Li(d). In addition the small shift for

Li(b) confirms the prior assertion that M–Li spin transfer beyond next-nearest neighbour is negligible.
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Pathways LiCr1/8Co7/8O2 LiNi1/8Co7/8O2
Li Site Bond lengths Hyb20 / ppm Hyb35 / ppm Expt / ppm Hyb20 / ppm Hyb35 / ppm Expt / ppm

90� nn pathways
a SS 46.0 29.8 4.2 10.0
e SL 44.3 26.6 �23.1 �21.6

axial average 44.9 27.7 35 �14.0 �11.1 �15
180� nnn pathways
d S �81.2 �79.4 34.4 21.2
c L �87.4 �84.7 314.8 259.2

axial average �83.3 �81.2 �70 127.9 100.6 110
No nn or nnn pathways

b — 1.5 �0.4 0 �2.2 �2.0 0

Table 13.5: Computed 7Li contact shifts for the di↵erent sites in LiCr1/8Co7/8O2 and LiNi1/8Co7/8O2 using
Hyb20 and Hyb35 functionals. Axial average values (assuming fast dynamic Jahn–Teller distortion) of the
90� nn shifts equal to (�con(a) + 2�con(e)) /3, and of the 180� nn shifts equal to (�con(c) + 2�con(d)) /3. Values
taken from Ref. [54].

As expected, the Jahn–Teller distortion in LiNi1/8Co7/8O2 results in a greater shift di↵erence between

Li(a) and Li(e), and also between Li(c) and Li(d). This highlights the sensitivity of the contact shift to

such structural distortions. Therefore, if the distortion is static, as assumed in the calculations, we would

expect to see five distinct resonances in the NMR spectrum instead of three. In particular we would be able

to distinguish between the two shifts for Li(c) and Li(d). However the observation of only three distinct

shift indicates that the Jahn–Teller distortion is not static, but rather dynamic in nature. If we assume rapid

dynamics this process can be accounted for simply by averaging the shifts of the Li(a) and Li(e) sites to give

a single axial average, and equivalently for Li(c) and Li(d). The values obtained for both LiCr1/8Co7/8O2 and

LiNi1/8Co7/8O2 are in excellent agreement with experiment.

The results of the combined NMR and DFT approach of Middlemiss et al. present a compelling body

of evidence for the observation of a dynamic Jahn–Teller distortion in the Ni3+-containing materials, and

highlight the power of paramagnetic NMR to distinguish between static and dynamic structural distortions

[54].

13.5 Prussian blue analogue materials AnM0
x[M(CN)6]y · zH2O

13.5.1 Background

Prussian blue analogues (PBAs) constitute one of the most important families of inorganic polymer materials.

The original Prussian blue, ferric ferrocyanide Fe4[Fe(CN)6]3 · zH2O, is a synthetic dye that was discovered
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Figure 13.15: The ideal cubic structure for a PBA AnM0x[M(CN)6]y · zH2O. The grey octahedra indicate
the M(CN)6 units; large light grey spheres are A/M0 metal ions; small black spheres are structural H2O
molecules; small dark grey spheres are C atoms; and small light grey spheres are N atoms. The interstitial
H2O is omitted. Reproduced with permission from [8]. Copyright John Wiley and Sons.

by the Berlin dye maker Diesbach in 1703 [506]. More recently a large variety of PBAs have attracted interest

in diverse fields such as hydrogen gas storage [507], biosensors [508], waste recovery [509], molecular sieves

[510], and battery electrode materials [511].

The formula for a general PBA is AnM0x[M(CN)6]y · zH2O, where A an alkali metal cation, and M and

M0 are six-coordinate octahedral transition-metal cations. The structure, shown in Figure 13.15, is a cubic

lattice comprising alternating M(CN)6 octahedra and A/M0 metal ions, which are linked by the CN� ligands

[8]. Only a certain proportion of the M(CN)6 sites are occupied (as low as 60%), with each resulting vacancy

being filled with z0 ‘structural’ H2O molecules that coordinate to the nearest z0 M0 metal ions, and additional

‘crystallization’ interstitial H2O molecules. This results in PBAs readily absorbing water from the air.

The bonding interactions in PBAs can be understood as follows. Firstly each metal ion M coordinates to

six CN� anions in an octahedral complex. The molecular orbital energy diagram of a CN� ligand is shown

in Figure 13.16. The highest-occupied molecular orbital (HOMO) is the 3�, which is mainly formed from

the C 2p� orbital. The electron pair is therefore aligned along the C–N axis pointing away from N. The
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Figure 13.16: Molecular orbital energy diagram for the CN� ligand in PBAs.

six 3� orbitals of the six ligands interact with the eg set of metal 3d-orbitals. Since the electrons in each

3� are predominantly located on C, this results in the formation of six M–C �-bonds. If we only consider

these �-bonds the t2g set of metal 3d-orbitals remains non-bonding. However the six 2⇡ lowest unoccupied

molecular orbitals (LUMOs) of the six ligands do have symmetry that is compatible with an interaction with

the t2g. These anti-bonding orbitals are mainly formed from the C 2p⇡. The interaction stabilizes the t2g

containing the d-electrons relative to the eg, resulting in an increase in the ligand energy splitting parameter

�oct, and thus a low-spin electronic configuration. A simplified molecular orbital diagram for Fe(CN)3�
6 that

accounts for the important interactions is shown in Figure 13.17, in which 1t2g HOMO and 2eg LUMO are

highlighted [512]. When incorporated into the cubic lattice of the PBA the M(CN)6 octahedra alternate with

the A/M0 metal ions, so that the latter interact with the N atoms of the CN� ligands.

The magnetic exchange interactions between the paramagnetic centres result in magnetic ordering at low

temperatures, which may persist up to room temperature. For example the PBA V[Cr(CN)6]0.86·2.8H2O

exhibits magnetic ordering with a Curie temperature of 315 K [513]. However many other PBAs are in the

high-temperature paramagnetic regime at room temperature, many of which have been studied extensively

with solid-state NMR by Köhler et al [4, 8, 217, 514, 515]. Here we present a case study comprising two

particular examples, namely the materials Cs2K[Fe(CN)6] [4], and Cd3[FexCo1�x(CN)6]2 · 15H2O [8], in

which the Fe3+ and Co3+ ions are low-spin, with S = 1/2 and S = 0 respectively.
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Figure 13.17: Simplified molecular orbital energy diagram for the Fe(CN)3�
6 octahedral unit in PBAs, showing

the most important contributions to the �- and ⇡-bonds between the Fe3+ ion and CN� ligands. The 1t2g and
2eg orbitals that are predominantly due to the metal 3d are highlighted by the dashed box.
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Figure 13.18: 15N and 13C solid-state MAS NMR spectra of Cs2K[Fe(CN)6] at 326.4 K. The 15N and 13C
spectra were acquired at 5 and 15 kHz MAS respectively. The centrebands of the resonances due to axial
and equatorial CN� ligands are indicated with a ⇤ and � respectively. Adapted with permission from [4].
Copyright John Wiley and Sons.

13.5.2 Solid-state NMR spectra

The 13C and 15N solid-state MAS NMR spectra of Cs2K[FeIII(CN)6] acquired at 326.4 K are shown in Figure

13.18 [4]. In the 13C spectrum, acquired at 15 kHz MAS, we can resolve two spinning-sideband manifolds

with negative isotropic chemical shifts of �3269 and �3295 ppm which are ascribed to CN� ligands in the

axial and equatorial positions. The orbital contributions to these shifts are assumed to be equal to those of the

diamagnetic analogue Cs2K[Co(CN)6]. Following subtraction of the orbital shifts, we obtain paramagnetic

shifts of �3134 and �3160 ppm for the axial and equatorial positions. As for the transition-metal oxide

materials of the previous section, these paramagnetic contributions are dominated by the contact shift, which

indicates that the Fe3+ ion transfers a negative spin density to C. The spinning-sideband manifolds are mainly

due to the NR spin-dipolar interaction. A fit of the sideband intensities yields anisotropy parameters of 603

and 628 ppm for the axial and equatorial C.

The 15N spectra were acquired at 5 kHz MAS, and also exhibit two spinning-sideband manifolds due

to axial and equatorial N with chemical shifts of 727 and 704 ppm respectively. Following adjustment by

subtracting the orbital shifts we obtain positive paramagnetic shifts of 810 and 783 ppm respectively, which

are also dominated by the contact contribution, and indicate that the spin density transferred to both N 2s
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orbitals is positive. The shift anisotropy values, again dominated by the NR spin-dipolar interaction, are 1073

and 1023 ppm for axial and equatorial N.

To aid in the interpretation of the NMR shifts observed for 13C and 15N it would also be instructive

to be able to monitor the transfer of unpaired electronic spin density to the metal ions in the A/M0 posi-

tions. However neither Cs nor K has favourable nuclear spin properties for NMR, and so a di↵erent PBA

analogue with a di↵erent metal ion in this position is needed. Flambard et al. studied a series of PBAs

CdII
3 [FeIII

x CoIII
1�x(CN)6]2 · 15H2O, with x =0, 0.25, 0.5, 0.75, and 1, using 113Cd solid-state MAS NMR [8].

The 113Cd nucleus has spin I = 1/2, su�cient sensitivity, and a diamagnetic shift range of 500 to �125 ppm,

and so the authors were able to determine the spin-transfer mechanism to this metal position for the first time.

From the stoichiometry of these PBAs it can be seen that only two thirds of the M(CN)6 sites are occupied,

leaving one third vacancies (vac), each of which contains six ‘structural’ water molecules coordinated to

the nearest Cd2+ metal ion, and a variable quantity of ‘crystallization’ water. The unit cell formula is

therefore [CdII
4 {MIII(CN)6}8/3(vac)4/3]·xH2O with x =12–20, and the coordination of the Cd2+ metal ion can

be described as CdII(NCM)6�a(OH2vac)a. One important question that can be answered by solid-state NMR

is whether the vacancies are ordered in the lattice, with limits on the values of a, or distributed randomly,

with a taking all possible values from 0 to 6.

The solid-state 113Cd NMR spectrum acquired at 15 kHz MAS and 310 K of the diamagnetic material

CdII
3 [CoIII(CN)6]2 · 15H2O (with x = 0) is shown in Figure 13.19 position 1 [8]. Two peaks are observed

in the paramagnetic region at 63 and 81 ppm, which can be ascribed to the cis and trans isomers of the Cd

sites CdII(NCCo)4(OH2vac)2, suggesting some ordering of the vacancies. By contrast the all-Fe material

CdII
3 [FeIII(CN)6]2 · 15H2O (with x = 1) gives a 113Cd spectrum with four distinct sites, as shown in Figure

13.19 position 5. All four peaks are shifted to large negative values centred on �1300 ppm, which immedi-

ately suggests a contact interaction due to a transfer of negative electronic spin density along Fe–C–N–Cd

to the Cd s-orbital, i.e. of the same sign as for C and opposite to N. The two most intense peaks at �1275

and �1327 can be attributed to the cis and trans isomers of CdII(NCFe)4(OH2vac)2, with each shift being

the sum of four pathway contributions Fe–C–N–Cd. Taking the average of the two contact shifts (i.e. the

average deviation from the diamagnetic shifts from the all-Co compound) allows us to compute an average

contribution from each pathway of �343 ppm. Immediately this allows us to assign the two lower-intensity

peaks at �1000 ppm and �1537 ppm to the CdII(NCFe)3(OH2vac)3 and CdII(NCFe)5(OH2vac) sites, where
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Figure 13.19: 113Cd solid-state MAS NMR spectra of Cd3[FexCo1�x(CN)6]2 · 15H2O acquired at 310 K and
15 kHz MAS. The Fe3+ contents are x = (1) 0, (2) 0.25, (3) 0.5, (4) 0,75, and (5) 1. Dashed lines indicate
the shifts at which 113Cd experiences a contact shift pathway contribution from 0, 1, 2, 3, 4, and 5 Fe3+ ions.
Reproduced with permission from [8]. Copyright John Wiley and Sons.

the Cd2+ ion is connected to Fe3+ by three and five pathways respectively. We note that there is no peak

at �1880 ppm, which would be due to CdII(NCFe)6, again indicating that the vacancies are not randomly

distributed.

The pathway contribution model of the contact shifts is further supported by the 113Cd spectra of Cd3[FexCo1�x(CN)6]2·

15H2O with x =0.25, 0.5, and 0.75, which are shown in Figure 13.19 positions 2–4. A total of six distinct

Cd environments is observed, in which the shifts are equally spaced by 300–350 ppm, which correspond

to Cd sites coordinating to between zero and five Fe3+ ions via similar pathways. The sites can be written

explicitly as Cd(para)6�a(dia)a, with para corresponding to NCFe and dia to either OH2vac or NCCo. Within

each resonance multiple peaks can be resolved, which correspond to di↵erent cis/trans or mer/fac isomers of

the di↵erent Cd(para)6�a(dia)a sites. Once again the non-observation of the Cd site with a = 6 indicates that

the vacancies are partially ordered in the lattice [8].
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Figure 13.20: Diagram indicating the sign of the transferred electronic spin density in Cd3[Fe(CN)6]2 ·15H2O.
The atoms are denoted as follows: Cd, large white circle; Fe, large light grey circle; N, small white circle; C
small dark grey circle. The arrows represent both the magnitude of the transferred density, via their length,
and the sign, with up indicating positive spin, and down indicating negative spin. Reproduced with permission
from [8]. Copyright John Wiley and Sons.

13.5.3 Interpretation of the contact shifts

The NMR data can be used to elucidate a mechanism for the unpaired electronic spin transfer from the Fe3+

ion throughout the lattice to the s-orbitals of the other atoms. The measured chemical shifts are dominated

by the contact shift, and are negative for both 13C and 113Cd, and positive for 15N. This can be explained by

the polarization mechanism as follows. Firstly the unpaired electron in the Fe3+ t2g orbital is delocalized into

an anti-bonding ⇡ orbital of the CN� ligand. However this ⇡-orbital has a node along the C–N axis, and is

therefore of incompatible symmetry for overlap with the C 2s. Therefore this unpaired electron polarizes the

eg orbital of the Fe3+ with a positive density. The result is negative electron density polarized in the C 2s,

and a negative 13C contact shift. This negative density then polarizes the N 2s orbital with electron density

of the opposite sign, i.e. positive, leading to a positive 15N contact shift. Finally the s-orbital of the Cd is

polarized by the N 2s, resulting in negative electron density and a negative contact shift. This ‘relay’ of the

polarization e↵ect through the lattice is shown in Figure 13.20. We expect the electron transfer to become

weaker as we move further from the Fe3+ ion, which is why the 13C contact shifts have a greater magnitude

than the 15N contact shifts (�3100 vs 800 ppm). For Cd that receives electron density along a single pathway

the magnitude of the transfer is smaller still, giving a relatively small contact shift of �343 ppm. However

for Cd sites with multiple transfer pathways, the individual transferred densities and pathway contributions

are additive giving relatively large negative shifts up to �1900 ppm.

On a final point we note that the spin-polarization transfer has the e↵ect of aligning the electronic spins of
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the Fe3+ ions, and so we might expect the materials Cd3[FexCo1�x(CN)6]2 · 15H2O to exhibit ferromagnetic

ordering at low temperature. However magnetic susceptibility measurements indicate that there is no such

e↵ect, suggesting that the polarization mechanism is ine�cient at ordering metal ions that are separated by

six bonds [8].

13.6 Olivine-type lithium transition-metal phosphate cathode materi-

als LiMPO4

13.6.1 Background

The olivine class of materials LiMPO4 with M = Mn2+, Fe2+, Co2+, and Ni2+ has attracted a lot of interest

in recent years as providing potential candidates for cathode materials in Li-ion batteries [516]. The pure-Fe

phase, which is used commercially, has a Fe2+/Fe3+ couple of 3.4 V vs Li+/Li. However this is not high

enough for many applications, and so higher-voltage materials, such as with M = Mn2+ and Co2+ for which

the corresponding redox couples are of 4.1 V and 4.8 V vs Li+/Li respectively, have been extensively studied.

Whilst these metal ions have been exploited both in pure Mn and Co phases, the mixed phases LiFexM1�xPO4,

where M is in a solid solution with Fe, tend to have better electrochemical performance, which in part

is attributed to the local and long-range distortions of the lithiated and partially delithiated phases caused

by cation substitution. Understanding these local structural e↵ects is therefore key to understanding the

electrochemistry.

The olivine structure of LiMPO4 is shown in Figure 13.21. The material has Pbnm symmetry, and

comprises edge- and corner-sharing MO6 octahedra and PO4 tetrahedra. There are three crystallographically

distinct O positions O1, O2, and O3 that have occurences in the ratio 1:1:2. The Li ions occupy the octahedral

LiO6 sites in the [010] channels, along which they have greater mobility compared to other directions. On

delithiation the Li ions are removed from the channels, with the connectivity of the other structural units

remaining largely unaltered. This accounts for the favourable electrochemical performance of the material.

In the lithiated phases LiMPO4 the octahedral transition metal sites are slightly distorted, but the splitting of

the d-orbitals is nevertheless accurately described by the idealized splitting in the Oh point group. As shown

in Figure 13.22 the four metal ions Mn2+, Fe2+, Co2+, and Ni2+ all have a high-spin electronic configuration.
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Figure 13.21: Crystal structure of the olivine LiMPO4 materials showing the MO6 (yellow) and PO4 (grey)
polyhedra, and the Li sites (blue). The [010] channels with high Li mobility are vertical. Reproduced with
permission from [54]. Copyright (2013) American Chemical Society.
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Figure 13.22: The idealized d-orbital splitting and electronic configurations of Mn2+, Fe2+, Co2+, and Ni2+
in LiMPO4. The corresponding electronic states are denoted by the terms 6A1g, 5T2g, 4T1g, and 3A2g.
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Material µe↵/µB ⇥ / K
LiMnPO4 5.4 �58
LiFePO4 5.3 �72.5 ± 0.2
LiCoPO4 4.578 �77
LiNiPO4 3.1 �60

Table 13.6: The magnetic parameters defining the magnetic susceptibility and contact shifts of LiMPO4. Data
taken from Refs. [466, 517, 518].

In order to understand the e↵ect of the local structure of the metal ions on the NMR properties in the mixed

phases, it is necessary to fully understand the pure phases. We therefore present the combined NMR/DFT

case studies of Middlemiss et al. [54], and Pigliapochi et al. to describe the form of the shifts and SAs in

these materials in both the 7Li and 31P NMR spectra. In the former study we employ the scaling-factor

model, and describe the shift and SA in terms of the Fermi-contact and spin-dipolar hyperfine interactions,

using the values for the e↵ective magnetic moment and Weiss constant in Table 13.6. The total shift is the

sum of multiple pathways from more than one metal ion, and so in order to isolate the di↵erent pathway

contributions a spin-flip approach was employed, as is described in detail in the next section. In the latter

study the EPR formalism is used to investigate the explicit e↵ect of the g-shift tensor on the shift and SA.

Additionally we present some trends for the longitudinal relaxation times T1, coherence lifetimes T 02 and total

sideband linewidths in order to show the di↵erent e↵ects the di↵erent metal ions have on these quantities.

Finally the single-phase results can be exploited to investigate the multi-phase materials [30].

13.6.2 6/7Li NMR shifts and relaxation properties

The 7Li NMR spectra of the full series of pure-phase LiMPO4 acquired by Tucker et al. are shown in Figure

13.23 [466]. The spectra were recorded at an external field corresponding to a 7Li Larmor frequency of �38.9

MHz and under 10 kHz MAS. An initial inspection indicates that the isotropic chemical shifts for the four

materials fall in the range 70 ppm to �100 ppm. Whilst this is outside the standard diamagnetic range we will

see that the isotropic shifts are comparatively smaller than those measured in similar systems with a dense

network of paramagnetic metal ions. The shift anisotropy ��S is given in the scaling-factor formalism by an

expression analogous to the isotropic shift in Equation 13.3, which is proportional to the total spin-dipolar
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δ(7Li) / ppm

Figure 13.23: The 7Li MAS NMR spectra of LiMPO4 with M =Mn2+, Fe2+, Co2+, and Ni2+. The centrebands
are marked with an ⇤. The Larmor frequency is �38.9 MHz, and the MAS frequency is 10 kHz. Adapted
with permission from [466]. Copyright (2002) American Chemical Society.

anisotropy �ASD, and the asymmetry parameter ⌘S is equal to that of the spin-dipolar interaction

��S =
µ2

e↵

3µBge~�Ik(T � ⇥)

 

�ASD

2S

!

, (13.6)

⌘S = ⌘SD. (13.7)

We expect this to be the dominant contribution to the spinning-sideband intensities, with an additional

contribution to the apparent anisotropy due to the BMS e↵ects and in particular the IBMS. The envelope

of the sideband intensities in Figure 13.23 indicates that the e↵ective anisotropies for LiMnPO4, LiFePO4,

and LiCoPO4 have similar magnitudes, which are significantly larger than for LiNiPO4. Furthermore the

‘slant’ of the intensities around the centreband indicates that the asymmetry parameters for all the systems

have similar values, and that the SAs have the same sign. Finally we note that the individual spinning

sidebands have considerably larger linewidths for LiFePO4 and LiCoPO4 than for LiMnPO4 and LiNiPO4.

This is ascribed to the larger ABMS broadening due to the magnetic anisotropy of the Fe2+ and Co2+ metal

ions which have electronic ground states 5T2g, 4T1g respectively, compared to Mn2+ and Ni2+ (6A1g, and 3A2g)

in which the orbital angular momentum is quenched to first order. This is discussed in more detail later in

this section.
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Contact shifts

We can try to rationalize the form of the paramagnetic shifts using DFT calculations. Middlemiss et al.

computed the total 6/7Li Fermi-contact shifts for LiMnPO4, LiFePO4, and LiCoPO4 using the CRYSTAL09

code [54]. The total electronic spin density at the Li site ⇢(↵��)
sat (Li) was computed in the fictitious ferro-

magnetic, or saturated, state in which all the e↵ective electronic spins on the metal ions are aligned, giving

the total Fermi-contact coupling constant AFC. This result was then scaled in to the paramagnetic regime

using Equation 13.3, and the magnetism parameters in Table 13.6 used to give the total shift �con. In

addition the individual pathway contributions were also calculated using the spin-flip approach. Here, in

order to calculate the contribution from a metal ion i along pathway Pi we flip the electronic spin of one

metal ion within the supercell used in the calculations, and repeat the calculation to give a new electronic

spin density ⇢(↵��)
flip,Pi

(Li), and hence a new contact shift �con
flip,Pi

(Li). The di↵erence between the initial density

⇢(↵��)
sat (Li) and the new density gives the contribution to the electronic spin density from metal ion i along

pathway Pi, i.e. ⇢(↵��)
Pi

(Li) =
⇣

⇢(↵��)
sat (Li) � ⇢(↵��)

flip,Pi
(Li)

⌘

/2. This spin-flip approach is then repeated for all the

metal ions within the cell. Since the same scaling factor parameters are applied to all the metal ions, the

pathway contribution to the contact shift can be calculated from the di↵erence in the corresponding shifts:

�con
Pi

(Li) =
⇣

�con(Li) � �con
flip,Pi

(Li)
⌘

/2

In practice, the periodic boundary conditions used in the DFT calculation mean that a spin-flip applied

to a particular metal ion is also applied to all the other metal ions at symmetry-related positions outside the

supercell. Therefore in order to isolated a single pathway with each spin flip, it is necessary to use a supercell

that is significantly larger than the basic unit cell.

Figure 13.24 shows the local Li environment with the short-range pathways identified by Middlemiss

et al [54]. For Li there are six pathways in total that fall into three crystallographically distinct pairs for

LiMnPO4 and LiFePO4 that are labelled P1, P2, and P3. For LiCoPO4 the situation is more complex, since

there is a spontaneous lowering of the symmetry of the supercell which is characterized by the O3 sites

splitting into two sub-groups O3H and O3L which have higher and lower transferred spin densities than the

average. This structure is stabilized relative to the more symmetric space group by 8 kJmol�1. This results in

the equivalence being lifted within pairs of pathways, resulting in six distinct pathways in total. The lower

symmetry also results in the Li sites no longer being equivalent, but rather splitting into two distinct sub-sites

with distinct total contact shifts. However there is no conclusive evidence of two distinct sites in the 7Li NMR
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Figure 13.24: The Fermi-contact pathways and contributions for 6/7Li in LiMPO4. For Co2+ the values
marked a correspond to Li neighbouring O3H, and those marked b are Li neighbouring O3L. Reproduced with
permission from [54]. Copyright (2013) American Chemical Society.

Material 6/7Li shifts Hyb20 / ppm 6/7Li shifts Hyb35 / ppm Expt / ppm
Direct

P

i Pi total
P

i Pi short-range only Direct
P

i Pi total
P

i Pi short-range only
LiMnPO4 116.6 123.3 116.6 73.0 70.3 69.3 57, 68
LiFePO4 38.4 40.1 31.5 �0.2 �7.4 �8.1 �8, �15
LiCoPO4 7.6 7.7 0.3 �19.1 �19.2 �22.8 �86, �92

�39.7 �38.0 �41.2 �52.7 �52.8 �53.9

Table 13.7: Comparison of the experimental chemical shifts and calculated contact shifts of 6/7Li in LiMPO4.
See text for details. The calculated shifts are from Ref. [54], and the experimental shifts are from Refs.
[466, 519].

spectrum, suggesting that the lower-symmetry structure does not persist at the temperatures at which the data

were acquired. In addition there are several longer-range (distant) pathways that are not shown. The di↵erent

pathway contributions calculated from the Hyb20 and Hyb35 functionals are also given in Figure 13.24.

The individual short-range pathway contributions are all small, with values between �20 ppm and +40

ppm depending on the pathway and functional used. Therefore it is necessary to include the more distant

contributions in order to reproduce the total contact shift. We should also bear in mind that, given the small

contact shifts, the PCS may now represent a larger relative contribution to the total paramagnetic shift. This

is discussed later in the context of the EPR formalism.

The results for the contact shift are summarised in Table 13.7. The shifts calculated directly (‘Direct’)

are compared to the sums of the pathway contributions including and excluding the longer-range pathway

contributions. Whilst the general agreement is good, there are discrepancies between the calculated shifts and
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the experimental values, in some cases with the errors being of approximately the same order of magnitude

as the shifts themselves. This may be due to the basis set not being adequate in this case, or to the neglect of

the PCS.

Linewidths and PREs

The variation of the sideband linewidth, coherence lifetimes, and longitudinal relaxation times is also worth

discussing in detail. It is apparent that there is an increase in linewidth on replacing Mn2+ with either Fe2+

or Co2+, the source of which it is instructive to elucidate. Figure 13.25 (a) shows both the 7Li T1 and T 02

time constants for LiMnPO4 and LiFePO4 acquired at a di↵erent field of 11.74 T at 60 kHz MAS. Both time

constants are longer for the latter material than for the former. The PREs of the longitudinal and transverse

relaxation rates can each be modelled as a sum of contributions from the di↵erent metal ions, each of which

is given by the Solomon–Bloembergen–Morgan equations in 8.185 and 8.186. The trend can explained by

a combination of the reduction of S from 5/2 to 2 on going from Mn2+ to Fe2+, and possible changes in

the electronic relaxation times T1e and T2e. The values of T1e and T2e are both unknown, but it is likely

that the interactions between the electronic spins of the network of metal ions have the e↵ect of accelerating

electronic relaxation so that it is faster than in complexes in solution that contain a single metal ion. If the T1e

and T2e are su�ciently short for the nuclear relaxation to be in the extreme-narrowing limit, this means that

longer electronic relaxation times result in larger PREs. Generally we expect the half-filled d-shell of Mn2+

to have longer T1e and T2e times than the T -term of the Fe2+ ion, due to the SO coupling strength in the latter,

which would explain why the PREs in LiMnPO4 are longer. Strictly speaking the coherence lifetimes also

depend on the coherent dephasing, but we would also expect a lower transverse PRE to give a longer T 02.

The total sideband linewidth can be decomposed into a homogeneous part, equal to 2/T 02 rad s�1, and an

inhomogeneous part which is equal to the di↵erence between the total and homogeneous parts. The sideband

linewidths in the 7Li spectrum are shown in Figure 13.25 (b), and clearly indicate that the increase on going

from LiMnPO4 to LiFePO4 is due entirely to an increase in the inhomogeneous part, and occurs in spite of

an accompanying decrease in the homogeneous linewidth. In fact for LiMnPO4 the total linewidth is almost

entirely homogeneous and due to transverse relaxation and a residual coherent dephasing. The absence of

any significant inhomogeneous broadening is due to the Mn2+ ions having no bulk susceptibility anisotropy.

On the other hand, for LiFePO4 the line broadening is due almost entirely to the inhomogeneous contribution
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Figure 13.25: Longitudinal relaxation time constants, coherence lifetimes, and linewidths in the 7Li and 31P
NMR spectra of LiMPO4 acquired at 11.74 T and 60 kHz MAS. The 7Li and 31P T1 and T 02 time constants
are shown in (a). In (b) and (c) are plotted the contributions to the total sideband linewidth in the 7Li
and 31P spectra respectively. The total linewidth was measured from the average FWHM of the sidebands.
The homogeneous linewidth was computed from the coherence lifetime, and is equal to 2/T 02 rad s�1. The
inhomogeneous linewidth is estimated as the di↵erence between the total and homogeneous linewidths.
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Figure 13.26: The 31P MAS NMR spectra of LiMPO4 with M =Mn2+, Fe2+, and Co2+. The centrebands are
marked with an ⇤. The magnetic field is 11.74 T, and the MAS frequency is 60 kHz.

due to the ABMS of the magnetically anisotropic Fe2+ ion.

13.6.3 31P NMR shifts and relaxation properties

The 31P NMR spectra of LiMnPO4, LiFePO4, and LiCoPO4 acquired in a field of 11.74 T at 60 kHz MAS

are shown in Figure 13.26. An initial inspection shows a decrease in the isotropic shift on going from Mn2+

to Fe2+, and again from Fe2+ to Co2+, from 7866 ppm to 3558 ppm to 2926 ppm. This is accompanied by a

decrease in the width of the spinning-sideband manifold, indicating a reduction in the SA. Interestingly the

change in the slant of the sidebands around the centreband for LiFePO4 and LiCoPO4 compared to LiMnPO4

indicate a change in the sign of the anisotropy. This feature is discussed later in the context of the EPR

formalism. Finally we observe an increase in the sideband linewidth, which we can again ascribe to a larger
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Figure 13.27: The Fermi-contact pathways and contributions for 31P in LiMPO4. For Co2+ the P2 values
marked a correspond to P interacting via O3H, and those marked b are P interacting via O3L. Adapted with
permission from [54]. Copyright (2013) American Chemical Society.

ABMS e↵ect on going across the series.

Contact shifts

Compared to the 6/7Li shifts, it is noticeable that the 31P shifts are significantly larger, indicating a stronger

orbital overlap along the M–O–P pathways than for the M–O–Li pathways, and therefore a larger Fermi-

contact interaction. The calculation of the total contact shifts, and the individual pathways, proceeds using

the same method as for the 6/7Li shifts. There are five short-range pathways in total, which are shown in

Figure 13.27. For LiMnPO4 to LiFePO4 two of the pathways, denoted P2, are equivalent and give the same

contribution to the shift. However for LiCoPO4 the lower symmetry which lifts the equivalency of the two O3

sites, as described for 6/7Li, also lifts the equivalence of the two P2 pathways, with one transfer going via an

O3H and the other via an O3L. However the P sites remain equivalent, and therefore still give a single distinct

total contact shift, and in any case it should be reiterated that there is no evidence for the lower-symmetry

structure persisting at higher temperatures. The values of the di↵erent pathway contributions are also given

in Figure 13.27. They have a larger magnitude than the short-range M–O–Li pathway contributions, up

to 2000 ppm, with the result that longer-range pathways can be neglected. For each pathway the M–O–P

coordination angles are approximately 120�, with the exception of P1 where the angle is 94�, and so it is

di�cult to rationalize the sign of the electron-spin transfer. All the contributions are positive indicating
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Material 31P shifts Hyb20 / ppm 31P shifts Hyb35 / ppm Expt / ppm
Direct

P

i Pi total
P

i Pi short-range only Direct
P

i Pi total
P

i Pi short-range only
LiMnPO4 8650 8704 8661 7250 7225 7235 7296
LiFePO4 4361 4385 4385 3500 3451 3517 3352
LiCoPO4 3720 3755 3766 3054 3063 3069 2756

Table 13.8: Comparison of the experimental chemical shifts and calculated contact shifts of 31P in LiMPO4.
See text for details. The calculated shifts are from Ref. [54], and the experimental shifts are from Ref. [519].

a dominance of the delocalization spin-transfer mechanism, with the exception of P3 for LiFePO4 which is

small, and changes sign depending on the amount of Hartree–Fock exchange used, and P1 for LiCoPO4 which

is strongly negative indicating polarization. Generally it is likely that both delocalization and polarization

mechanisms are active.

The total calculated and experimental contact shifts are summarised in Table 13.8. We see that since the

contact interaction is larger, the agreement between experiment and theory is better for 31P than for 6/7Li. This

may be partly because the PCS is now insignificant. Furthermore, if we compare the results of the directly

calculated contact shift with the sum of the pathways we see that the longer-range pathway contributions are

negligible, and the shifts are dominated by the five nearest-neighbour interactions.

Linewidths and PREs

The 31P longitudinal relaxation time constants T1 and coherence lifetimes T 02 for LiMnPO4, LiFePO4, and

LiCoPO4 acquired at 11.74 T and 60 kHz MAS are plotted in Figure 13.25 (a). Generally speaking the

time constants are shorter than the corresponding values for 7Li, but exhibit the same trend, increasing from

LiMnPO4 to LiFePO4; the values for LiCoPO4 are longer still. The reason for this trend is the same as for 7Li,

a combination of the reduction in S from 5/2 to 2 to 3/2, and a possible reduction in the electronic relaxation

times on going from Mn2+ to Fe2+ to Co2+.

The trend in the linewidths shown in Figure 13.25 (c) is analogous to that for 7Li. The major di↵erence

is that the linewidths for all three materials are now dominated by the inhomogeneous contribution, which

increases across the series, dominating over an accompanying decrease in the homogeneous linewidths. For

LiFePO4 and LiCoPO4 the inhomogeneous line broadening can be attributed to the ABMS e↵ect, whilst for

LiMnPO4 it is due to a temperature gradient across the spinning sample [30].
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13.6.4 Shifts and shift anisotropies in the EPR formalism

The previous discussion of the paramagnetic shift employs the susceptibility (i.e. scaling factor) formalism,

which is the conventional approach for solid materials such as LiMPO4 and LiMO2. However it should also

be possible to describe the shift in terms of the EPR formalism, which is an approach that has recently been

adopted by Pigliapochi et al [498], and Mondal et al [499, 520]. Here the EPR tensors for each distinct metal

ion A are calculated, with each giving a contribution to the paramagnetic shielding tensor in Equation 7.147.

For solid-state systems, there are currently no reported SO hyperfine tensor calculations, and until the very

recent contribution from Mondal and Kaupp [520], there were no similar schemes for calculating the ZFS

tensor. The work by Pigliapochi et al. therefore restricted the SO coupling calculation to the g-tensor. The

total shift tensor s in the EPR formalism is then

�S =
µBS (S + 1)

3~�Ik(T � ⇥)

X

A,i

g(A) ·
 A(A,i)

2S

!

, (13.8)

where the sum is taken both over the distinct metal ions A in the supercell, and over the supercells i.

In LiMPO4 there is one crystallographically distinct M2+ ion per unit cell. However this does not mean

that the sum over A comprises a single term. Whilst the M2+ ions are indeed symmetry-related, and have

the same principal g-tensor components, there are actually four metal ions that are distinguished by having

di↵erent PAF orientations relative to the crystal frame of reference. This means that the four g-tensors have

the same principal components, and PAFs that are related to each other by the symmetry operations describing

the Pnma space group. This has profound consequences for calculating the e↵ect of the g-anisotropy on the

shift tensor, which are described below.

In the absence of the ZFS tensor there is a total of six terms in the EPR formalism that contribute to

either the isotropic shift, SA, or both. The isotropic shift comprises two contact terms, geAFC and �gisoAFC,

and a single pseudo-contact term, �g ·ASD. The two contact terms have a direct correspondence with the

susceptibility formalism, since the total isotropic g-tensor ge + �giso is hidden inside the e↵ective magnetic

moment µe↵ which is used in the factor that scales the Fermi-contact coupling constant. The AFC constant can

be calculated in the same way as previously described, either directly or using the pathway-decomposition

approach. The PCS term �g · ASD is a new contribution that is not accounted for in the scaling-factor

formalism, and the calculation of this term requires more care. The PCS contribution for each metal ion A is
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Figure 13.28: Breakdown of the contributions to the total 7Li and 31P chemical shifts in the EPR formalism
for the series of olivine phosphate materials LiMnPO4, LiFePO4, LiCoPO4, and LiNiPO4 determined by DFT
calculations, and the comparison with the experimental shifts. The 7Li shifts are shown in (a), and the 31P
shifts are shown in (b).

a matrix product of the site-specific g-tensor g(A) and the total hyperfine tensor due to the metals A from all the

supercells,
P

iA(A,i)/(2S ). This latter quantity can be calculated using a spin-flip approach in an analogous

way to obtaining the pathway contributions to the Fermi-contact coupling constant. The supercell is selected

so that it contains one each of the distinct metal ions A, the spins of which are aligned so that they are parallel.

The resulting electron spin density is then used to calculate the total hyperfine spin-dipolar tensor. Following

this each metal ion is spin-flipped in turn, and the new hyperfine coupling tensor calculated. If the supercell

contains only one metal ion of each distinct type, then the periodic boundary conditions ensure that the

flipping of A causes the same flipping of all the spins A in all the supercells. Therefore the di↵erence between

the two electron spin densities gives us the total though-space ‘pathway’ contribution from A,
P

iA(A,i)/(2S ).

The calculated 7Li and 31P paramagnetic shift contributions for the full series of LiMPO4 materials are

shown in Figure 13.28 [498]. The 7Li shifts in Figure 13.28 (a) indicate that, of the terms calculated, the

two contact shifts are generally dominant, with the exception of LiCoPO4 where there is an appreciable PCS.

Regarding the contact terms, for LiMnPO4 only the NR Fermi-contact shift geAFC contributes, due to the

zero SO coupling strength in the half-filled d-shell. For the other systems the SO contribution to the contact

shift �gisoAFC is important due to the significant isotropic g-shift of 0.17–0.35. The di↵erences between the

calculated and experimental shifts in Figure 13.28 (a) may be partly due to the neglect of the ZFS, and so it

would be of considerable interest to include this contribution.
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The dominance of the contact shift for Mn2+ and Fe2+ indicates that the scaling-factor formalism de-

scribed in the previous section should give an accurate description of the shift, as is indeed shown in Table

13.7. Furthermore for Co2+ the neglect of the PCS is one factor that explains the significant deviation of the

calculated and experimental shifts in Table 13.7. It has been recently shown by Mondal and Kaupp that the

ZFS interaction also introduces a substantial contribution to the PCS [520].

The 31P shifts in Figure 13.28 (b) are easier to rationalize. In all cases the PCS is negligible, and the

total shift is dominated entirely by contact contributions. Once again only the term geAFC is important for

Mn2+, with the SO part becoming more important across the series. The overall agreement between theory

and experiment is better, with the calculated shifts tending to slightly overestimate the experimental values.

We now turn to a feature of paramagnetic solid-state NMR that is all too often neglected in these studies,

which is the measurement and interpretation of the shift anisotropy. Part of the reason for the neglect of the

SA is the di�culty in measuring accurate values, since the intensity distributions of the spinning-sideband

manifolds are perturbed by BMS e↵ects. Nevertheless it is still possible to obtain a reasonable estimate of the

SA ��S from a fit of the sideband manifolds, and it proves instructive to compare these values to calculation.

The experimental and fitted 7Li and 31P spinning-sideband manifolds of LiMnPO4 and LiFePO4, acquired

at 11.74 T and 60 kHz MAS, are shown in Figure 13.29 [498]. There are some deviations between the

experimental and fitted sideband intensities, due to the neglect of BMS e↵ects in the latter, but the quality of

the fit is su�cient to extract a good estimate of the anisotropy. The comparison between the fitted values and

the calculations is shown in Figure 13.30 for 7Li (a) and 31P (b). The agreement is remarkably good, given

the di�culty of obtaining good experimental values. One noteworthy point is that the calculations manage to

reproduce the change in sign of the 31P SA in LiFePO4 relative to the other SAs.

The breakdown of the total calculated SAs into the individual terms is also given in Figure 13.30. There

are four contributions to the SA, comprising one contact term AFC�g and three spin-dipolar terms geA
SD,

�gisoA
SD, and �g ·ASD. For the material LiMnPO4 only the NR dipolar term geA

SD contributes to both the

7Li and 31P SA. For LiFePO4 there are significant contributions from the other dipolar terms �gisoA
SD and

�g ·ASD. However the most interesting feature is the large contact SA AFC�g contribution to the 31P SA of

LiFePO4, since it is this term that results in the negative overall SA. The importance of this term stems from

the fact that the total Fermi-contact interaction with 31P is large compared to 7Li. This result demonstrates

that it is not only the isotropic shift that provides information on the bonding environment of the metal ion
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Figure 13.29: Comparison of the experimental and fitted spinning-sideband manifolds of the 7Li (a) and 31P
MAS NMR spectra of LiMnPO4 and LiFePO4. The 7Li (a) and 31P spectra of LiMnPO4 are shown in (a) and
(c), and the corresponding spectra of LiFePO4 are shown in (b) and (d). The field is 11.74 T, and the spectra
were acquired at 60 kHz MAS. The centreband is marked with an ⇤. Adapted with permission from [498].
Copyright (2017) by American Physical Society.
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Figure 13.30: Breakdown of the contributions to the total 7Li and 31P shift anisotropies in the EPR
formalism for the olivine phosphate materials LiMnPO4 and LiFePO4 determined by DFT calculations, and
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and the nucleus, but also the SA. The measurement and interpretation of the SA in these systems points the

way forward to the use of the SA as a structural restraint in the NMR of paramagnetic materials.

13.6.5 Experiments and calculations on LiFexMn1�xPO4

The final topic in this case study is the use of paramagnetic solid-state MAS NMR and DFT calculations in the

investigation of the mixed-metal-ion olivine phosphates LiFexMn1�xPO4 with x = 0.25, 0.5, and 0.75. These

materials have the same basic structure as shown in Figure 13.21, and the same local Li and P environments

as in Figures 13.24 and 13.27. However the metal-ion sites are occupied by a solid-solution of the metal ions

Mn2+ and Fe2+. One consequence of this is that there are now multiple local P environments, as the chemical

environment of these sites is dominated by the short-range contact interactions between the five metal ions.

Hence there are 25 = 32 P sites in the material, the populations of which are given by the probability of a

random distribution of Mn2+ and Fe2+ resulting in the corresponding occupancies of the five metal sites.

The NMR spectra of LiFexMn1�xPO4 with x = 0, 0.25 0.5, 0.75, and 1 were acquired at 11.74 T and 60

kHz MAS [30] using the double-adiabatic spin-echo pulse sequence in Figure 12.50 (a) [34], and are shown

in Figure 13.31 (a). The spectra of the three mixed phases are very complicated, as each is a superposition of

32 spinning-sideband manifolds with di↵erent isotropic shifts. As such it is impossible to obtain any detailed

information from these spectra, and we can simply note that at lower values of x the overall spectral intensity

is biased towards the all-Mn shift of 7866 ppm due to the higher statistical probability of more metal sites

being occupied by Mn2+ than Fe2+. Similarly at higher Fe2+ content the spectral intensity is biased more

towards the all-Fe shift of 3558 ppm.

The lack of resolution between the di↵erent resonances is due in large part to the overlap between the

di↵erent spinning-sideband manifolds. This overlap was removed using the aMAT experiment in Figure

12.50 (b), giving a set of two-dimensional correlation spectra such as that for LiFe0.5Mn0.5PO4 shown in

Figure 12.53. The complete set of isotropic projection spectra is shown in Figure 13.31 (b). The beauty of

this experiment is that it enabled the resolution of eight distinct groups of isotropic resonances, in which are

located the resonances of the 32 local environments.

The total contact shifts for each site can be calculated from the pre-existing pathway contributions given

in Figure 13.27, which saves e↵ort otherwise required to calculate the shifts for each extended structure. The

calculated shifts were compared with the values obtained from a fit of the three spectra of the mixed phases
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Figure 13.31: 31P NMR spectra of the five LiFexMn1�xPO4 materials (x = 0, 0.25, 0.5, 0.75, 1), all of which
occur in the olivine-type structure. The one-dimensional spectra containing overlapping sideband patterns
are shown in (a), and the projections of the aMAT spectrum containing just the isotropic shifts are shown in
(b). Adapted with permission from [30]. Copyright (2012) American Chemical Society.
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using the same pathway-contribution model in order to obtain a full assignment, as shown in Figure 13.32.

The full set of 32 sites is given in (a), and the experimental and fitted spectra are compared in (b) labelled with

the assignments [30]. In this investigation, pathway contributions for the two metal ions were also calculated

for di↵erent coordination geometries in order to model the e↵ects of structural disorder due to the substitution

of one metal ion for another.

To summarize, this study concerns one of the most complex paramagnetic materials that has been in-

vestigated with solid-state NMR to date, and provides a notable benchmark for future NMR studies of

paramagnetic systems. It was successfully repeated on the mixed-phase LiCo1�xFexPO4 materials [56], and

the aMAT experiment has also been applied to other battery materials including P2–Nax[LiyNizMn1�y�z]O2

with (0 < x, y, z < 1) [55].

13.7 Contact shifts in ferredoxins due to coupled Fe4S4 clusters

13.7.1 Background

Ferredoxins are proteins containing iron–sulphur cores that mediate electron transfers in metabolic processes

[521]. The key constituent of a ferredoxin is a FexSy unit, which can either donate or accept electrons causing

a change in the oxidation state of the Fe ions, and catalysing biological redox reactions. We therefore present

an example of a solution paramagnetic NMR study here as it forms a link to the previous discussion of battery

materials.

The particular example we present is that of Bertini et al [363], which includes the assignment and

interpretation of the 1H and 13C contact shifts in the cysteine residues of ferredoxin from Clostridium acidi

urici, which catalyzes the reduction of CO2 to formate [522]. This and similar studies, are notable as they are

interesting examples of the application of solution NMR to observe nuclear spins from residues that directly

coordinate to the metal ion. Ferredoxin from Clostridium acidi urici, the structure of which is shown in

Figure 13.33 (a), contains two Fe4S4 cores, each one of which can either exist in an oxidized state [Fe4S4]2+

or reduced state [Fe4S4]+. In the oxidized state each cluster formally contains two Fe3+ ions and two Fe2+,

and has a diamagnetic electronic spin ground state of S = 0 indicating some antiferromagnetic alignment

f the spins. However some temperature-dependent paramagnetism arises from the population of the excited

electronic spin states. The reduced-state cluster contains one Fe3+ ion and three Fe2+, and has an electronic
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Figure 13.32: Results of the fitting of the isotropic projections of the aMAT spectra. Pathway contributions of
the Mn2+ and Fe2+ ions to the total contact shift were varied to fit the isotropic projections of the experimental
31P NMR spectra. The M–O–P pathway labels are shown in (a) together with the 32 possible configurations
in the mixed Mn2+/Fe2+ phases. The comparison of the experimental and fitted isotropic spectra is shown in
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dephasing e↵ects. Adapted with permission from [30]. Copyright (2012) American Chemical Society.
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(a) (b)(a)

Figure 13.33: Structure of a ferredoxin and the Fe4S4 cluster. The protein is shown in (a), and the Fe4S4
cluster is shown in (b). The cluster is coordinated to four cysteine residues, with each Fe ion in the bonding
to a S atom of a cysteine sidechain. The Fe ions are coloured pink, the S atoms are yellow, and the CB atoms
are coloured black.

spin ground state of S = 1/2. Each Fe4S4 cluster binds to four cysteine amino acid residues, with each Fe ion

forming a bond to the S of the –CBH2–SH sidechain, as shown in Figure 13.33 (b). The bonding between the

cluster and the cysteine residue can therefore be represented as Fe–S–CB(HB1,HB2)–CA(HA1)–. The nuclear

spins of the cysteine sidechain and backbone are therefore expected to experience large paramagnetic shifts

with a large contact contribution. In addition the exchange coupling constants within the cluster are of the

same order of magnitude as kT at room temperature, and so we expect a non-Curie temperature dependence

of the paramagnetic shifts of the type shown in section 7.5.2 [46].

Bertini et al. investigated both the oxidized form of the protein, with both clusters in the state [Fe4S4]2+,

and a partially reduced form [363]. Partial reduction gives the complex mixture of species shown in Figure

13.34, which are in exchange. There are two partially-reduced species, in which one cluster is oxidized and

the other reduced, which are in fast exchange on the NMR timescale. Both species are also in slow exchange

with both the fully-oxidized and fully-reduced species.
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Figure 13.34: Representation of the equilibrium between the oxidation states of the two Fe4S4 clusters in a
ferredoxin following the addition of a reducing agent to the fully-oxidized protein. The two intermediate-
reduced species are in fast exchange with each other, and in slow exchange with both the fully-oxidized
and fully-reduced species. Fast-exchange processes are indicated by thick solid arrows, and slow-exchange
processes are indicated by thin dashed arrows.

13.7.2 NMR spectroscopy and assignment

Figure 13.35 (a) shows the one-pulse 1H solution NMR spectrum of ferredoxin from C. acidi urici taken from

Bertini et al [363]. Eight resonances are resolved above 10 ppm (labelled A–H). These signals exhibited short

relaxation times and temperature-dependent shifts, and so were ascribed to 1Hs of the coordinated cysteine

residues. These signals were assigned using COSY and NOESY, which identified A–H as the CB protons

HB1 or HB2, and established correlations to the other geminal HB nuclei A0–H0. In addition correlations

to the CA protons HA were also observed in the NOESY spectrum. These were assigned using a structural

model of the related ferredoxin from Clostridium pasteurianum [363]. This resulted in the identification of

eight groups of two HB and one HA protons, each corresponding to a single cysteine residue. However this

was insu�cient to assign each cysteine to a particular cluster, and so further experiments were performed on

a partially-reduced sample of ferredoxin from C. acidi urici.

Figure 13.35 (b) shows the 1H spectrum of the partially-reduced ferredoxin. We note that the resonances

are broader than for the oxidized sample, which is due to the ground spin state of the cluster no longer being

diamagnetic, but paramagnetic with S = 1/2. The cross-peaks between these broad signals in the COSY and

NOESY spectra were expected to be weak, and so the assignment was performed using EXSY to identify

correlations between the slowly-exchanging oxidized and intermediate species. Comparison of the spectra in

Figure 13.35 (a) and (b) and subtraction results in two further spectra of the fully-reduced species (c), and

the two intermediate species (d). The full set of chemical shifts for the oxidized, intermediate, and reduced
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(a)

(b)

(c)

(d)

Figure 13.35: The 1H NMR spectra acquired at 600 MHz and 298 K of the ferredoxin from C. acidi urici. The
spectrum of the fully-oxidized species is shown in (a). Following partial reduction the spectrum in (b) was
obtained. The spectra in (c) and (d) are of the fully-reduced species, and the two intermediate reduced species
respectively. Spectrum (d) was obtained by acquiring a spectrum of a 90%/10% oxidized/partially-reduced
species and subtracting from it spectrum (a). Spectrum (c) was obtained by subtracting (d) from the spectrum
of a sample containing both partially- and fully-reduced ferredoxin. The reported assignment is given in
Table 13.9. Adapted with permission from [363]. Copyright (1994) American Chemical Society.
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Cluster I Cluster II
Residue Atom Assignment Residue Atom Assignment
Cys11 HB1 B0 Cys40 HB1 A0

HB2 B HB2 A
HA B00 HA A00

Cys14 HB1 D Cys43 HB1 C
HB2 D0 HB2 C0
HA D00 HA C00

Cys47 HB1 E0 Cys18 HB1 F0
HB2 E HB2 F
HA E00 HA F00

Cys8 HB1 G Cys37 HB1 H
HB2 G0 HB2 H0
HA G00 HA H00

Table 13.9: Assignment of the 1H NMR spectrum in Figure 13.35 (a) of the oxidized ferredoxin from C. acidi
urici.

ferredoxin species allowed the assignment of each set of cysteine 1H signals to either cluster I or II, i.e. the

eight groups of signals could now be assigned to specific clusters.

The final step in the assignment process was to identify the residue number of each of the eight cysteines

by establishing correlations to other residues in the amino acid sequence. This was achieved using a combina-

tion of NOESY and TOCSY on the fully-oxidized ferredoxin species. The full sequence-specific assignment

of HB1, HB2, and HA is given in Table 13.9.

Following the complete 1H assignment, a 1H–13C HMQC spectrum was acquired to identify the 13CA and

13CB resonances in each cluster, which was the first time this had been achieved at natural abundance [363].

From the HMQC spectrum all eight 13CB resonances and six out of eight 13CA resonances were assigned.

13.7.3 Temperature dependence of the contact shifts

Having obtained the assignment of the cysteine resonances, the paramagnetic shifts were extracted in order

to gain insight into both the electronic structure of the Fe4S4 cluster, and the mechanism of unpaired spin-

transfer from the Fe to the nuclear spins. As discussed in section 12.3.3 it is necessary to have a complete

assignment of a diamagnetic analogue of the paramagnetic system of interest in order to subtract the orbital

chemical shifts, and that this strategy relies on the orbital contributions to the shifts not changing significantly

on substitution of the paramagnetic ion for the diamagnetic one. In the present case the reference system was

a zinc-finger protein, where the orbital shifts were taken to be the chemical shifts of the nuclei in the cysteine

residues bound to Zn [363].
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Figure 6. Experimental temperature dependence of chemical shifts of 
cysteine @CHz proton signals of fully reduced ferredoxin from C. midi  
urici as obtained from EXSY experiments at different temperatures. The 
dashed lines represent estimates of the average angle-independent shifts 
for each @CH2 pair (see text). 
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Figure 7. Schematic view of the M-D-C-H dihedral angle 0 for metal 
donor CH2 moieties. A pz orbital of D orthogonal to the M-D-C plane 
is also shown. 

dihedral angles of the former HiPIP are referred to X-ray datag7 
and the latter to the MD-refined structure35 starting from the 
X-ray structure of HiPIP I.98 Furthermore, the hyperfine shifts 
of the six a-carbons assigned here (Table 2) can also be adjusted 
to the same behavior by a simple scaling down of the shifts (Figure 
8). Although the solid line is the best-fit curve only for the shifts 
of the C. acidi urici cysteine BCHz protons (O),  all other values 
are apparently in good agreement with the same functional form. 
This confirms that we are dealing with a general behavior and 
that the spin density transfer is essentially a p~ spin-transfer 
mechanism, as already qualitatively proposed by ~ 8 . ~ 3  

A result of this fitting is that the hyperfine coupling constants 
of the BCH2 protons of all cysteines coordinating [ Fe&]2+ clusters 
are essentially equal and are only modulated by the dihedral 
angle. Furthermore, the hyperfine shifts of the a-carbons have 
the same angular dependence of the PCH2 protons, although on 
a different scale. This is not surprising, since the a-carbons are 

(97) Carter, C. W. J.; Kraut, J.; Freer, S. T.; Alden, R. A. J .  Biol. Chem. 

(98) Breiter, D. R.; Meyer, T. E.; Rayment, I.; Holden, H. M. J .  Biol. 
1974, 249, 6339. 

Chem. 1991, 266, 18660. 

J.  Am. Chem. SOC., Vol. 116, No. 2, 1994 659 

geometrically similar to the PCHz protons. The result is that 
spin delocalization, even on the a-carbon, is more dictated by this 
angular dependence mechanism, which is also termed hyper- 
conjugative mechanism, rather than through u spin delocalization. 
The whole picture leads to the conclusion that the angle- 
independent part of the hyperfine coupling over the nuclei of the 
four cysteines is the ~ a m e . 9 ~  

The present finding of the angular dependence of the hyperfine 
coupling for many experimental data settles the debate12,16,3L33,76,1~ 
on the mechanism of spin density transfer in cysteine ligands and 
is enlightening with respect to the spin density transfer through 
any kind of donor atom.73-75.95,96 

The problem arises of whether the same equation with similar 
parameters holds when one electron is added to or removed from 
the cluster (Le., for reduced ferredoxins and oxidized HiPIPs, 
respectively). In these cases, low-symmetry components are 
introduced which make one iron ion or two iron ions (in the case 
of two-center delocalization) inequivalent with respect to the other 
two. If this inequivalencecan be theoretically handled, the further 
problem exists of different populations of d orbitals, which in 
principle provides different u or ?r spin delocalization ratios. 
Nevertheless, if sin2 8 or cos2 8 terms prevail, by simply comparing 
the hyperfine shifts of geminal protons with the 8 angle, the sin2 
8 or cos2 8 dependence can be ascertained. The available data 
on oxidized HiPIP32-35 and on a model complex76J0~ show a 
dominant sin2 8 dependence, except when temperature-dependent 
conformational changes occur.32~~~ Also in the case of the present 
reduced ferredoxin, a sin2 8 dependence is found to be dominant. 

A Comment on the Electronic Structure of the [Fe&]+ Cluster. 
The hyperfine shifts of each cysteine BCH2 proton in both the 
oxidized and the reduced species are related to the electronic 
structure of the cluster through the hyperfine coupling constant. 
The angular-independent part of the latter, for simplicity and in 
agreement with the present findings, is taken to be equal for all 
iron ions. We are interested here in discussing the reduced species, 
which shows evidence of low-symmetry components. We note 
that all the hyperfine shifts are downfield and sizable. We then 
note that half of them have a Curie and half of them an anti- 
Curie temperature dependence. This shows that the iron ions are 
at least pairwise inequivalent. In all the other cases in which 
Curie and anti-Curie behaviors are observed (Le., oxidized 
H ~ P I P S ~ ~ - ~ ~  and reduced Fe2S2+ cores102J03 ), the shifts of Curie 
type are much larger than the others. In some cases, upfield and 
downfield shifts have been observed. This was accounted for on 
the basis of a simplified model in which a larger subspin (associated 
with one or two iron ions depending on the system) determines 
the large downfield shifts and the Curie behavior and a smaller 
subspin determines the anti-Curie behavior and the upfield shifts. 

In an attempt to understand the experimental behavior, we 
have corrected the proton hyperfine shifts for the different 8 angles 
by assuming that eq 3 holds for [Fe&]+ clusters and that the 
8 angles are the same in both reduced and oxidized species. To 
do so, we have simply divided the hyperfine shift value of each 
signal in the reduced species by the hyperfine shift value in the 
oxidized species and multiplied the result by the average value 
of eq 3 calculated from the best-fit parameters of the oxidized 
form (&" = a / 2  + c) .  In this way we have rendered the shifts 
"angle independent". The result is that (dashed lines in Figure 
6 )  there are two signals of both Curie and anti-Curie type far 
shifted and two, again of both Curie and anti-Curie type, less 

~~ 

~ ( 9 9 ) y h e  j3Tarbons havesignificantly different shifts (75 f 15 ppm). 
Since the contributions to the @-carbon shifts may be several, in this case the 
inequivalence among the j3-carbon atoms seems to be magnified. 

(100) Nettesheim, D. G.; Harder, S. R.; Feinberg, B. A.; Otvos, J.  D. 
Biochemistry 1992, 31, 1234. 

(101) Actually, the authors of ref 76 have used a different functional form. 
However, their data well fit our eq 3 with a very small cos 0 term. 

(102) Dunham, W. R.; Palmer, G.; Sands, R. H.; Bearden, A. J.  Biochim. 
Biophys. Acta 1971, 253, 373. 

(103) Banci, L.; Bertini, I.; Luchinat, C. Struct. Bonding 1990, 72, 113. 

Figure 13.36: The experimental temperature dependence of the chemical shifts of the cysteine 1HB signals
of fully-reduced ferredoxin from C. acidi urici. The data were obtained from EXSY spectra acquired at
temperatures between 282 K and 300 K. The dashed lines give the estimated values of the angle-independent
shifts for each CBH2 pair. Reproduced with permission from [363]. Copyright (1994) American Chemical
Society.

The temperature dependence of the paramagnetic shifts due to a coupled cluster of paramagnetic ions

may be diagnostic of the spin state of the whole cluster and give estimates of the exchange coupling constant,

as shown in section 7.5.2. With this aim in mind the chemical shifts of the CB protons in the fully-reduced

protein were obtained from the EXSY spectrum over a range of temperatures between 282 and 300 K. The

results are shown in Figure 13.36 [363]. Although the temperature range is too narrow to obtain a curve

that is su�cient for a detailed analysis, it does show that for each cluster two pairs of CB protons have

chemical shifts that increase with temperature, and two pairs that with shifts that decrease with temperature.

This behaviour has been referred to as anti-Curie and Curie respectively. However we avoid the use of
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such terminology here as it oversimplifies the true temperature dependence, which we have seen may be

considerably more complicated.

Regarding the interpretation of the temperature dependence, it should be noted that the available tem-

perature range is insu�cient to obtain a detailed picture of the electronic structure of the Fe4S4 cluster.

Nevertheless the temperature dependence does o↵er some insight, and indicate that the Fe ions are at least

pairwise inequivalent [363]. The fact that half of the CB proton shifts increase with temperature indicates

the presence of at least one antiferromagnetic coupling, so that the increase in temperature leads to a larger

thermal population of a spin state with a larger spin S and hence a greater magnetic moment.

13.7.4 Angular dependence of the contact shifts

The CB nuclei are separated from the coordinating Fe by two bonds, the CA and HB by three bonds, and

the HA by four bonds. We expect the shifts of these nuclear spins to be dominated by the Fermi-contact

interaction, which we have seen depends on the bonding geometry relative to the metal ion. Hence we can

obtain information on the spin-transfer mechanism from the dependence of the paramagnetic shift on the

geometry of the cysteine relative to the Fe4S4 cluster. Here we focus on the contact shifts of the HB and

CA spins which, due to the three-bond separation, have a geometry relative to the Fe that can be described

by reference to Figure 13.37 (a). Here the geometry is specified by a dihedral angle ✓ which describes the

angular separation between the planes defined by the Fe–S–CB linkage and the S–CB–HB linkage. If the

unpaired electron density from the Fe resides mainly in the Fe–S � bond the contact shift ��con can be shown

to obey a Karplus relation of the form:

��con = a0 cos2(✓) + b0 cos(✓) + c0, (13.9)

where a0, b0, and c0 are coe�cients [525]. Equation 13.9 follows from the fact that the overlap of the Fe–S

� bond with the HB s-orbital is at a maximum when Fe–S and CB–HB bonds are either co- or anti-parallel,

corresponding to ✓ = 0 and ⇡, and a minimum when they are orthogonal with ✓ = ⇡/2. The magnitude of the

contact shift varies accordingly. On the other hand, if the unpaired electron density is mainly located in a F–S
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(a) (b)

Figure 13.37: Plots of the contact shifts of the nuclei three bonds away from a Fe ion against the dihedral
angle ✓. In (a) is shown the dihedral angle ✓ between the two planes defined by the Fe–S–CB atoms on
the one hand, and the S–CB–HB atoms on the other. The HB contact shift depends strongly on ✓ via a
Karplus relation. There is also an analogous dependence for the CA contact shift on the dihedral angle
between the planes containing the Fe–S–CB and S–CB–CA. The plot in (b) shows the 1H contact shifts from
the CBH2 protons (left-hand axis) from the following proteins: oxidized ferredoxin from C. acidi urici ( )
[363]; oxidizied ferredoxin from C. pasteurianum (#) [353]; reduced HiPIP from C. vinosum (M) [523]; and
reduced HiPIP II from E. halophila (O) [524]. Here the dihedral angle is between the two planes defined
by Fe–S–CB and S–CB–HB. The 13CA contact shifts in oxidized ferredoxin from C. acidi urici (right-hand
axis) are also plotted (⇤). Here the dihedral angle is between the planes defined by Fe–S–CB and S–CB–CA.
The curve is the best fit of Equation 13.11 to the 1H shifts from oxidized ferredoxin from C. acidi urici ( )
with a = 11.5, b = �2.9, and c = 3.7 ppm. Adapted with permission from [363]. Copyright (1994) American
Chemical Society.

681



⇡ bond a di↵erent Karplus relation is needed to give the contact shift �⇡con:

�⇡con = a00 sin2(✓) + c00, (13.10)

where a00 and c00 are di↵erent coe�cients [526, 527]. Here the maximum overlap between the orbital

containing the electron density and the HB s-orbital occurs when the Fe–S and CB–HB bonds are orthogonal.

In the general case both transfer mechanisms may contribute to the overall contact shift �con, which is then a

sum of Equations 13.9 and 13.10:

�con = a sin2(✓) + b cos(✓) + c, (13.11)

where a = a00 � a0, b = b0, and c = a0 + c0 + c00. The relative magnitudes of a and b indicate whether the

dominant electron transfer is via the ⇡ or � bonds. The same considerations also apply to the CA contact

shift, with the di↵erence that the dihedral angle is defined between the Fe–S–CB and S–CB–CA planes.

The Karplus hypothesis was tested by plotting the contact shifts against the observed dihedral angle

for a range of systems, including the 1HB and 13CA shifts of oxidized ferredoxin from C. acidi urici in

the present case study [363], and the 1HB contact shifts from oxidizied C. pasteurianum ferrdoxin [353],

reduced C. vinosum high-potential protein (HiPIP) [523], and reduced E. halophila HiPIP II [524]. The plot

is reproduced in Figure 13.37 (b). The data generally follow the trend in Equation 13.11. We firstly notice

that all the contact shifts are positive, which indicates that the electron delocalization mechanism dominates

the contact interaction. When fitted to the HB shifts from C. acidi urici ferredoxin, we obtain the following

parameters for the Karplus relation: a = 11.5, b = �2.9, and c = 3.7 ppm. Both the positive value of a

and the observation that |a| > |b| indicate that the electron transfer mechanism is dominated by delocalization

from the Fe–S ⇡ bond.
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13.8 Paramagnetic distance restraints in the metalloprotein superox-

ide dismutase (SOD)

13.8.1 Background

We now change to a paramagnetic NMR study of a di↵erent protein sample, with a case study that illustrates

the use of long-range paramagnetic structural restraints to determine the structure of a protein in the solid

state. The chosen study is that by Knight et al. on the metalloenzyme superoxide dismutase (SOD) [11, 45,

461]. Superoxide dismutase is a dimer comprising 2 ⇥ 153 amino-acid residues, each unit of which binds

to two metal ions Mm+
1 and Mn+

2 [528, 529]. The enzyme has the physiological function of oxidizing the

superoxide anion O�2 , which is produced as a by-product of metabolic processes and can cause cell damage if

not regulated. The form of the protein which binds one Cu and one Zn ion, (Cun+,Zn2+)-SOD, catalyses the

removal of superoxide via the following two reactions:

Cu2+-SOD + O�2 ! Cu+-SOD + O2 (13.12)

Cu+-SOD + O�2 + 2H+ ! Cu2+-SOD + H2O2. (13.13)

We see that the Cu ion is essential to the process, as the reactions are driven by the redox between the

paramagnetic Cu2+ and diamagnetic Cu+ oxidation states.

One advantageous aspect of SOD for the application of paramagnetic restraints is that di↵erent metal

ions can be incorporated into the binding sites depending on which restraints we wish to measure, as shown

in Figure 13.38 [530]. For example the (Cun+,Zn2+)-SOD form was used to measure PREs as the long

electronic relaxation times of 2.5 ns in the Cu2+ ion in the paramagnetic form resulted in large induced

nuclear relaxation rates [11]. A section of the (H)NH spectrum is shown in Figure 13.38 (a) [530]. Here

the diamagnetic reference protein was the reduced form (Cu+,Zn2+)-SOD. However the Cu2+ ion has a small

magnetic anisotropy, as defined by the axial and rhombic susceptibility anisotropies, and so gives only small

PCSs as seen in the (H)NH spectrum of Figure 13.38 (a) [530]. For this reason PCS values were measured

on (Co2+,E)-SOD, where E indicates that the second binding site is empty, as the larger magnetic anisotropy

of the Co2+ ion gives larger PCSs that are more easily measurable, as shown by the (H)NH spectrum of

this protein in Figure 13.38 (b) [530] [45]. The electronic relaxation times of the Co2+ ion are shorter than
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Figure 13.38: Two-dimensional (H)NH solid-state MAS NMR spectra of two forms of SOD. The spectra
of paramagnetic (Cu2+,Zn2+)-SOD and its diamagnetic reference (Cu+,Zn2+)-SOD, which are shown in (a),
were used to measure PREs due to the Cu2+ ion. In (b) are shown the spectra of paramagnetic (Co2+,E)-SOD
and its diamagnetic reference (Zn2+,E)-SOD, with the former showing PCSs in both frequency dimensions.
Reproduced with permission from [530]. Copyright (2013) American Chemical Society.

for Cu2+, taking typical values of 1–10 ps. The coherence lifetimes are therefore longer, which allowed for

more sensitive acquisition of PCS values closer to the metal ion. In this case the diamagnetic reference was

(Zn2+,E)-SOD.

In this study all the NMR data for the assignment, measurement of PCSs and PREs, and the 1H–1H dis-

tance restraints were acquired under 60 kHz MAS on a sample that was perdeuterated with the exchangeable

amide protons 100% back-exchanged. Triple-resonance proton-detected three-dimensional HCN experiments

were acquired using a subset of the pulse sequences summarized in Tables 12.5 and 12.6.

13.8.2 Resonance assignment and structure calculation using non-paramagnetic 1H–
1H distance restraints

The sequential assignment of the backbone amide 15N, 1HN, 13CO, and 13CA was performed using the

two-dimensional (H)NH sequence and the three-dimensional (H)CANH, (H)CONH, (H)CA(CO)NH, and

(H)CO(CA)NH pulse sequences. For the diamagnetic reference protein (Zn2+,E)-SOD all these resonances

were assigned for 145 out of a total of 147 non-proline amino acid residues [461]. The assignment of the

two Cu-bound proteins was performed using the same set of experiments, from which 136 amide resonances

were assigned for (Cu+,Zn2+)-SOD, and 116 for (Cu2+,Zn2+)-SOD respectively.

Paramagnetic distance restraints alone are insu�cient to generate a three-dimensional structure of a
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Figure 13.39: Structure bundles of SOD calculated from solid-state NMR data using di↵erent types of
restraint. The bundle in (a) were calculated with no paramagnetic restraints, and has an rmsd of 3.1 Å.
The structures in (b) were calculated using PREs, using an initial trial magnetic susceptibility tensor fitted
from the mean structure in (a). Here the rmsd is 1.6 Å. In (c) is shown the structure bundle calculated using
PCSs, with an rmsd of 1.7 Å. The final structure bundle, shown in (d), were calculated using both PCSs and
PREs and give an rmsd of 1.4 Å. The Co2+ and Cun+ ions are shown in pink and violet respectively, and
the aquamarine ribbon is the mean NMR structure for each case. Reproduced with permission from [530].
Copyright (2013) American Chemical Society.

protein, and must be combined with conventional restraints used for diamagnetic proteins. Therefore 1H–1H

distance restraints between the backbone 1HN were also measured on (Cu+,Zn2+)-SOD. Using the (H)NHH-

RFDR sequence 297 such distance restraints were obtained. These were combined with dihedral angle

restraints and ambiguous hydrogen-bond restraints in the programme Cyana. In the absence of any para-

magnetic restraints the structure calculation yielding the bundle of structures shown in Figure 13.39 (a). The

precision of the structure is comparatively low, having a root-mean-square deviation (rmsd) from the mean

of 3.1 Å.

13.8.3 Paramagnetic relaxation enhancement as structural restraints

The precision of the calculated structure was improved by the inclusion of PREs from (Cu2+/+,Zn2+)-SOD.

The resolution necessary to measure the relaxation rates was obtained from the two-dimensional (H)NH

spectra of the two proteins, which are shown in Figure 12.68. Here 103 resonances were resolved, indicating

that the (H)NH pulse sequence (shown in Figure 13.40 (a)) could be modified to include the necessary

relaxation-measurement elements. The 15N R1 relaxation rates were measured by incorporating an inversion–

recovery block after the first CP step in the (H)NH sequence as shown in Figure 13.40 (b). Measurements of

the 13CO R1 values were performed using the sequence in Figure 13.40 (d), which is based on the (H)CONH

sequence (shown in Figure 13.40 (c)) in which the 13CO evolution time is replaced with an inversion–recovery
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Figure 13.40: Pulse sequences used to measure relaxation rate constants of the backbone amide 15N and 13C
spins in solid-state proteins. Measurement of the 15N R1 rate constants was performed using a sequence based
on the standard (H)NH experiment shown in (a). To measure the 15N R1 values an inversion–recovery element
was incorporated to give the sequence in (b). The 13CO R1 rate constants were measured using a modification
of the (H)CONH pulse sequence in (c). Here the t1 evolution time was replaced by an inversion–recovery
element, giving the sequence in (d). Narrow rectangles indicate 90� pulses, and broader rectangles are 180�
pulses.
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block. The site-specific relaxation rates are shown in Figure 13.41. It should be noted that the measurement

of these rates benefitted substantially from 60 kHz MAS and perdeuteration, as the weakening of the 1N

dipolar-coupling network reduced any coherent e↵ects. This is particularly important for the measurement of

the 13CO R1 rate constants shown in Figure 13.41 (g) and (h).

The PREs were calculated by subtracting the (Cu+,Zn2+)-SOD relaxation rates constants from the cor-

responding (Cu2+,Zn2+)-SOD rate constants. This resulting in a total of 90 15N PREs and 85 13CO PREs

being obtained from spins between 10 Å and 24 Å from the Cu2+ ion. These PREs were ascribed to the

Solomon mechanism with the correlation time dominated by the electronic relaxation time, which was given

the literature value of 2.5 ns [15]. The PRE varies with the distance R from the Cu2+ ion as 1/R6, enabling

a distance to be calculated. In the structure calculation these distances were included with the other distance

restraints, but were allowed to vary by 3 Å either side of the predicted value. In addition 25 1H–15N cross

peaks that were observed in the (H)NH of the diamagnetic protein, but not the paramagnetic protein, were

assumed to be broadened beyond detection by a PRE due to the close proximity to the Cu2+ ion, and so were

assigned an upper distance R of 10 Å. The corresponding structure bundle is shown in Figure 13.39 (b). They

show an increase in precision compared to the bundle in (a), with a lower rmsd of 1.6 Å, and particularly

good definition around the metal binding sites.

This case study illustrates the utility of paramagnetic distance restraints in refining the structure of a

protein. These restraints are extremely useful both in solution studies [44], and particularly in the solid state,

where lower resolution and other di�culties often result in insu�cient diamagnetic restraints being available

for a high-precision structure calculation.

13.8.4 Pseudo-contact shifts as structural restraints

To further improve the precision of the calculated structure, PCS values from (Co2+,E)-SOD were mea-

sured and used. The initial assignment of the resonances of (Co2+,E)-SOD was achieved by comparing the

(H)CANH and (H)CONH spectra with those acquired for (Zn2+,E)-SOD, and assigning those resonances

that were easily identifiable, as shown in Figure 12.69 (d)–(g). From these assigned resonances PCS values

were extracted by subtracting the chemical shifts of (Zn2+,E)-SOD from those of (Co2+,E)-SOD. These PCSs

were then used in combination with the low-resolution structure in Figure 13.39 (a) to fit an approximate

magnetic susceptibility tensor, from which the PCSs of all hitherto unassigned resonances were predicted.
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Figure 13.41: The relaxation rate constants measured for microcrystalline (Cun+,Zn2+)-SOD. Four examples
of 15N and 13CO longitudinal relaxation decay curves are shown in (a)–(d). In all four cases the red curves
are from the diamagnetic reference protein (Cu+,Zn2+)-SOD, and the blue curves showing the enhanced
relaxation decay are from the paramagnetic form (Cu2+,Zn2+)-SOD. The plots in (e)–(h) show the 15N and
13CO R1 values for each residue for the two proteins. The shown data are: (e) 15N R1 of (Cu+,Zn2+)-SOD,
(f) 15N R1 of (Cu2+,Zn2+)-SOD, (g) 13CO R1 of (Cu+,Zn2+)-SOD, and (h) 13CO R1 of (Cu2+,Zn2+)-SOD. The
secondary structure, in which the Cu-coordinating histidine residues are marked with an ⇤, is shown at the
top of the figure. The parts highlighted in grey indicate where the residues are within 12 Å of the Cu metal
ion. Reproduced with permission from [530]. Copyright (2013) American Chemical Society.
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The determination of the susceptibility tensor required a total of eight parameters to be fitted, namely the

axial and rhombic anisotropies, the three Euler angles specifying the orientation, and the three Cartesian

coordinates of the Co2+ ion, with the initial position estimated from the positions of the amino acids with

resonances broadened by the PRE. If the predicted shifts matched those observed in the spectra the corre-

sponding resonances were assigned. The susceptibility tensor was then refitted until all the visible peaks were

assigned and a consistent susceptibility tensor obtained. The final susceptibility tensor that was obtained had

axial and rhombic anisotropies of (1.03 ± 0.03) ⇥ 10�32 m3 and (0.91 ± 0.02) ⇥ 10�32 m3, and a total of 445

PCSs were assigned comprising 111 1HN, 223 13C, and 111 15N PCSs.

The structure calculation then proceeded by combining the 445 PCSs with the 297 1H–1H contacts

and other diamagnetic restraints to obtain the structure shown in Figure 13.39 (c). The overall precision

was significantly improved, as indicated by the reduction in the rmsd from 3.1 Å to 1.7 Å. In particular a

substantial improvement was seen in the definition of the backbone in the vicinity of the Co2+ binding site.

The simultaneous use of the PRE and PCS paramagnetic restraints in combination with the 1H–1H

contacts was also evaluated. The final structure, which is shown in Figure 13.39 (d), showed a further increase

in resolution with an rmsd that dropped to 1.4 Å. Once again particularly high definition was observed in the

vicinity of the binding site of the paramagnetic metal ion.

To conclude this section we note that the work on the structure refinement of SOD described here made

the assumption that the PRE and PCS structural restraints were intramolecular only. To describe it another

way, the assumption was made there were no PRE or PCS e↵ects from the metal ions of neighbouring

dimers in the crystal, and that the measured restraints could therefore be interpreted as being due solely to

the metal ion in the same dimer as the observed nucleus. In the case of SOD this assumption is valid, since

the metal binding sites are su�ciently far from the protein surface to make any intermolecular spin-dipolar

interactions negligible. However for a general microcrystalline protein the total PCS measured is the sum of

the intermolecular and intramolecular parts, and it is usually necessary to account for both [531]. The concept

is illustrated in Figure 13.42 [532]. It is possible to separate the intermolecular PCS from the intramolecular

PCS using paramagnetic dilution, as has been demonstrated for the protein Co-MMP [12]. In order to isolate

the intramolecular part one crystallizes a dilute, uniformly 13C and 15N labelled, paramagnetic protein in the

presence of a greater concentration of the diamagnetic reference protein which has natural abundance 13C and

15N, as shown in Figure 13.42 [532]. The NMR spectra are therefore dominated by the labelled paramagnetic
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Figure 13.42: Illustration of the intra- and intermolecular contributions to the PCS in a microcrystalline
protein, and how they may be separated using two di↵erent dilution schemes. Paramagnetic metal ions are
indicated by the small PCS plots, and the diamagnetic reference ions are indicated by small red circles.
Reproduced from Ref. [532] with permission of The Royal Society of Chemistry.
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protein molecules which, for a su�ciently high degree of dilution, experience a negligible intermolecular

PCS. The PCS values that are measured can therefore be ascribed entirely to the intramolecular part, and can

be used to refine the tertiary structure of the protein as described in this section. If on the other hand we

wish to measure the intermolecular PCSs we can adopt an alternative dilution scheme, illustrated in Figure

13.42, in which only the diamagnetic reference protein is uniformly 13C and 15N labelled, and is diluted in the

presence of a greater concentration of the paramagnetic protein which has 13C and 15N at natural abundance

levels. Here we observe only the diamagnetic protein molecules in the NMR spectrum, and so there are

no intramolecular PCSs. The total PCSs that we do measure are entirely intermolecular, and can be used

to determine the crystal structure [532]. Finally it is also possible to use PCSs containing both inter- and

intramolecular contributions for structure determination without the need for dilution, as shown by Luchinat

et al [12].

13.9 Lanthanide stannates Ln2Sn2O7 in the solid state

13.9.1 Background

Lanthanide ions have unique luminescent properties which make them promising candidates for new materi-

als for including solid-state lighting, sensing, and imaging applications [533–536]. A full understanding of

their paramagnetic NMR properties is crucial both for assigning the NMR spectra, and for extracting details

about the electronic structure pertaining to the unpaired electrons. As has been discussed, the understanding

of the paramagnetic shifts due to lanthanide ions is less advanced than for d-block transition-metal ions.

However the simplified theories of Golding and Halton for the contact shift [60], and Bleaney for the PCS

[61], have proved very useful in this regard.

Here we present an early case study by Grey et al. who investigated a series of lanthanide stannate

compounds Ln2Sn2O7 incorporating di↵erent lanthanide ions with di↵erent concentrations [64, 65]. The

contact shifts were probed by studying the compositions Ln2Sn2O7 with 100% lanthanide content, where

the paramagnetic shifts are dominated by the short-range contact interaction in the first coordination shell.

In addition the e↵ects of lower lanthanide contents were also studied in the solid-solution compositions

Y2�xLnxSn2O7, in which shifts due to the longer-range PCS from ions in more distant coordination shells

could be probed. Here we focus on the former materials, and defer a discussion of the PCS to di↵erent
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Figure 13.43: Local environment of the Sn4+ ion in Y2Sn2O7. The SnO6 octahedron of the B site
coordinates to six nearest-neighbour Y atoms. The same coordination environment is expected in the
lanthanide-substituted materials Ln2Sn2O7.

systems in subsequent sections.

All the compounds Ln2Sn2O7 adopt the pyrochlore structure with space group Fd3m. These stannates are

known for all lanthanides ions, with the exception of Ce3+, and also for Y3+. The Sn4+ ion is located at the B

site of the structure, which is at the centre of an octahedral SnO6 coordination environment, which is shown

in Figure 13.43. The Ln3+ ions have a larger radius, and so occupy the larger A site which is coordinated to

a distorted cubic environment of eight O ions. The SnO6 is coordinated to six Ln3+ ions, which are expected

to dominate the contact shift of the 119Sn resonance.

13.9.2 Paramagnetic shifts

Grey et al. measured the 119Sn solid-state MAS NMR spectra of the diamagnetic materials with Ln3+ = La3+

and Lu3+, and of the paramagnetic materials with Ln3+ = Nd3+, Sm3+, Eu3+, and Yb3+ [68]. The spectra are

shown in Figure 13.44. It can be seen immediately that the isotropic chemical shift is highly dependent on

the nature of the lanthanide ion, varying from �4000 ppm for Nd3+ to 5000 ppm for Eu3+. The variation of

the width of the spinning-sideband manifold is also striking, with a comparatively small SA being observed

for Sm3+, and a particularly large value for Yb3+.

The two diamagnetic materials La2Sn2O7 and Lu2Sn2O7 have similar isotropic chemical shifts of �642

and �641 ppm respectively, which are due entirely to the orbital contribution. The fact that there is negligible

di↵erence between these two orbital shifts indicates that there is little variation across the entire lanthanide

series, and suggests that we can obtain the paramagnetic shifts simply by subtracting the average of �641.5

ppm from the total chemical shifts. In addition both La2Sn2O7 and Lu2Sn2O7 have a negligible SA, which
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Figure 13.44: Solid-state 119Sn NMR spectra of the pyrochlores Ln2Sn2O7 at a field of 4.7 T and MAS
frequencies of 3–4 kHz. The paramagnetic shifts are calculated by subtracting the chemical shifts of one
of the diamagnetic systems La2Sn2O7 or Lu2Sn2O7. Adapted with permission from [68]. Copyright (1989)
American Chemical Society.
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Figure 13.45: Plot of the experimental 119Sn paramagnetic shifts of Ln2Sn2O7 against the theoretical relative
contact shift coe�cients Ccon in Table 6.5, calculated by Golding and Halton [60]. The experimental shifts
are taken from Grey et al [68].

we can see from their spectra given that only the centreband is present under slow MAS of 3–4 kHz. This

indicates that the SA observed for the paramagnetic materials is due entirely to paramagnetic e↵ects.

We now turn to the question as to the nature of the paramagnetic shift, and whether it is dominated by the

contact or pseudo-contact contributions. Close examination of Figure 13.44 indicates that shifts are mainly

due to the contact interaction, as the variation of the chemical shifts relative to the mean orbital shift better

matches the Golding–Halton contact coe�cients in Table 6.5 than the Bleaney coe�cients in Table 6.4, as

noted by Grey et al [65]. This can be seen particularly for Eu3+, which has the largest shift measured here,

and which is predicted to have a small PCS and a large contact shift. The match is seen better in Figure 13.45,

which plots the measured paramagnetic shift against the theoretical Golding–Halton contact coe�cients in

Table 6.5. We observe a trend that is approximately linear as expected, and so the paramagnetic shifts are

dominated by the contact shift. As for the solid materials with transition-metal paramagnetic centres, we

expect the contact shift to be mainly due to the short-range contact interactions from the nearest-neighbour

Ln3+ ions in the first coordination shell. From reference to Figure 13.44 we see that there are six such

contributions to the contact shift, along six pathways Ln–O–Sn. Deviations from the ideal linear trend in

Figure 13.45 can be ascribed to shortcomings in the Golding–Halton theory of contact shifts.

If the spin-dipolar interaction were the sole contribution to the SA, we would expect the measured SA to

correlate with the coe�cients CSA = g2
J J(J + 1) in Table 6.4. This provides a qualitative explanation for the

increase in the SA on going from Sm3+ to Nd3+ and then to Yb3+, but does not explain the very large SA seen

for Eu3+. It is clear that we also have to consider other contributions to the spinning-sideband manifold, such
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Figure 13.46: Solid-state 119Sn MAS NMR spectra of Y2�xLnxSn2O7 with di↵erent compositions x. The
six spectra collectively reveal the presence of seven main resonances at positions A–G, which are due to a
number of nearest-neighbour Sm3+ ions that increases from zero to six, with an average contact-shift pathway
contribution of 79 ppm. Adapted with permission from Springer Nature [64], copyright 1987.

as the contact shift anisotropy and BMS e↵ects.

13.9.3 The Y2�xLnxSn2O7 materials with mixed composition

Grey et al. also studied the solid-solution compositions Y2�xLnxSn2O7 [64, 65]. Several isotropic resonances

were observed in the 119Sn NMR spectra, including those with paramagnetic shift contributions from the sec-

ond and third coordination shells. Figure 13.46 shows a series of 119Sn MAS NMR spectra for Y2�xLnxSn2O7

of di↵erent compositions [64]. The material with x = 0 gives a single sharp peak at �575 ppm (position A

in Figure 13.46). This is simply the orbital contribution to the total shift, and takes a similar value to the

shift for the diamagnetic materials La2Sn2O7 and Lu2Sn2O7 in Figure 13.44. Additionally the material with

x = 2 has a single resonance with a broad spinning-sideband manifold and an isotropic shift of �100 ppm,

which we have seen is mainly a contact shift (position G in Figure 13.46). In the mixed compositions we

see additional resonances centred at positions B–F which are discretely spaced. In the light of the previous

discussion of pathway contributions in sections 13.4–13.6 we can interpret the contact contributions to the

shifts at positions A and G as being due to zero and six nearest-neighbour Sm3+ ions respectively. Therefore
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the other resonances observed at B–F have contact contributions from between one and five nearest-neighbour

Sm3+ ions. From these spectra we are able to calculate the average pathway contribution to be 79 ppm.

In addition to the dominant contact contributions the observed shifts are likely to have a substantial PCS

part, giving rise to splittings in the isotropic resonances at each of the seven main positions, and which can

be rationalized by the Bleaney theory. However in order to study the PCSs due to a series of lanthanide ions,

we turn our attention to a di↵erent system.

13.10 The interaction between guanidinium and tris-dipicolinate lan-

thanide ions in solution: (Gua)3[Ln(DPA)3]

13.10.1 Background

The optical spectroscopy of lanthanide complexes is characterized by excited states with comparatively long

lifetimes, which may be of the order of µs–ms. These long lifetimes open up the possibility of using

these systems for sensitivity-enhanced bio-imaging [537]. One interesting feature of the spectroscopy of

some lanthanide-containing complexes is the ability to excite an electronic transition by the simultaneous

absorption of two photons, whose energies sum to the required energy of transition. The technique of

two-photon absorption-induced fluorescence represented a major breakthrough in bio-imaging [538].

One class of interesting biological systems is that of anionic lanthanide tris-dipicolinate complexes Ln(DPA)3�
3

co-crystallized with proteins such as hen egg-white lysozyme, thaumatin, and urate oxidase. There is an inter-

molecular interaction which is particularly favourable with the guanidinium part of the amino acid arginine

[539]. The nature of this interaction, and the luminescent properties of the complexes, were investigated

in some detail by D’Aléo et al. who prepared a series of Ln(DPA)3�
3 complexes in aqueous solution with

guanidinium cations (Gua+) [467]. The stoichiometric composition of (Gua)3[Ln(DPA)3] is shown in Figure

13.47. The interaction between Ln(DPA)3�
3 and Gau+ was probed with 15N solution NMR of the Gua+ cation

isotopically enriched with 15N. The spectra were dominated by the paramagnetic e↵ects of the unpaired 4 f

electrons of the lanthanide ions.
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onds).[8] Whereas a great deal of molecular engineering has
been developed to optimising TPEF properties of organic mol-
ecules, the sensitisation of LnIII by the two-photon antenna
effect remains in its infancy.[9]

Therefore, we are currently developing a research program
1) to study the fundamental NLO properties of lanthanide
complexes[9f,10] and 2) to carry out time-resolved non-linear mi-
croscopy imaging using lanthanide-based molecular probes, a
technique that combines the advantages of rare earth metals
and non-linear microscopy. Herein, we report the first steady-
state non-linear microscopy imaging study of biological and
bio-inspired crystals containing europium or terbium tris-dipi-
colinate complexes [Ln ACHTUNGTRENNUNG(DPA)3]3!, which are well known for
their luminescence properties in solution[11] and in the solid
state.[12]

Recently, we found that these complexes co-crystallize with
proteins like hen egg-white lysozyme, thaumatin and urate ox-
idase. Careful examination of the crystal structures showed
strong supramolecular interactions, especially with the guanidi-
nium fragment of the cationic amino acid arginine.[13] We take
advantage of this supramolecular interaction to prepare high-
quality crystalline material by using guanidinium (Gua) as
countercation for lanthanide tris-dipicolinate complexes. The
anion/cation interaction is studied in solution by 15N NMR
spectroscopy, and the crystal structures of (Gua)3[Eu-ACHTUNGTRENNUNG(DPA)3]·3H2O and (Gua)3[Tb ACHTUNGTRENNUNG(DPA)3]·0.25H2O are determined.
The photophysical properties (absorption, emission, lifetime,
two-photon absorption-induced luminescence) are described
in solution, in the crystalline state and in protein derivative
crystals prepared with the Eu and Tb complexes. Finally, we
report imaging of these biological and bio-inspired lanthanide-
containing crystals using classical microscopy under UV irradia-
tion and biphotonic microscopy using 532 nm as fundamental
laser wavelength.

Results and Discussion

Syntheses and Structures

The interaction between guanidinium and tris-dipicolinate lan-
thanide anions is studied by mixing three equivalents of guani-
dinium hydrochloride with various sodium or cesium salts of
[Ln ACHTUNGTRENNUNG(DPA)3]3! complexes (Ln=Nd, Eu, Gd, Dy, Tb, Er, Yb, Lu) and
is monitored by 15N NMR spectroscopy (Scheme 1). Commer-
cially available 15N-enriched guanidinium hydrochloride salt is
used to reduce acquisition time. In principle, the pseudo-con-
tact paramagnetic shift induced by the proximity of lanthanide
ions is well suited to probe long-range interactions, such as
those occurring in the second coordination sphere.[14] As
shown in Figure 1, changes in the 15N NMR signal of the guani-
dinium cation in the presence of lanthanide complexes (i.e. 15N

resonance shift and/or broadening) clearly indicate that supra-
molecular interaction takes place with the guanidinium cation
in the second coordination sphere of [LnACHTUNGTRENNUNG(DPA)3]3! com-
plexes.[13] When compared to the 15N signal of the free cation,
significant shifts of the 15N guanidinium resonance are ob-
served in the presence of all paramagnetic lanthanides (except
Gd). The magnitude and sign of the shifts directly depend on
the nature of the metal. As described in the literature, dyspro-
sium and terbium induce the largest pseudo-contact paramag-
netic shifts in the series.[14,15] Interestingly, the 15N NMR reso-
nances remain sharp even in the presence of strongly para-
magnetic ions, due to the more favourable relaxation proper-
ties of 15N compared to 1H nuclei,[16] and therefore 15N signals
are easily detectable. Note that the guanidinium 15N signal is
still observable in the presence of gadolinium, which is known
to induce the largest broadening of the signal, in agreement
with its long electronic relaxation time.[14]

In order to avoid the salt formed during cation metathesis
(Scheme 1), direct syntheses of (Gua)3[Ln ACHTUNGTRENNUNG(DPA)3] (Ln=Eu, Tb)
complexes using guanidinium carbonate as a base are carried
out (Scheme 2). The complexes spontaneously crystallized
from the crude mixture on cooling to 4 8C. Guanidinium as

Scheme 1. Equilibrium studied by 15N NMR (D2O, 70.95 MHz, room tempera-
ture).

Figure 1. 15N NMR spectra (D2O, 70.95 MHz) of guanidinium cation alone
and in the presence of various [Ln]= [Ln ACHTUNGTRENNUNG(DPA)3]3! trianions.

Scheme 2. Direct syntheses of (Gua)3[LnACHTUNGTRENNUNG(DPA)3] complexes.

2126 www.chemphyschem.org ! 2007 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim ChemPhysChem 2007, 8, 2125 – 2132
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Figure 13.47: Chemical structure of the (Gua)3[Ln(DPA)3] complexes. Adapted with permission from [467].
Copyright John Wiley and Sons.

13.10.2 Pseudo-contact shifts

D’Aléo et al. acquired the 15N NMR spectra of (Gua)3[Ln(DPA)3] with seven of the paramagnetic trivalent

lanthanide ions, and the diamagnetic lanthanide ion Lu3+. These spectra are shown in Figure 13.48, along

with the spectrum of Gua·HCl for comparison. The Gua+ cation can either be bound to the Ln(DPA)3�
3 anion

through an ionic intermolecular interaction, or unbound as a free cation. We expect the Gua+ to chemically

exchange between these two environments, a hypothesis that is confirmed by all the 15N NMR spectra where

the presence of a single peak further indicates that we are in the fast-exchange limit and observe the average

of the bound and unbound states. The substantial range of chemical shifts, from 64 to 70 ppm, is attributed

to the di↵erent paramagnetic shifts of the lanthanide ions. The solution of Gua·HCl gives a shift at 68.5 ppm,

attributed to the orbital contribution, which can be used as a diamagnetic reference to be subtracted from the

other shifts to give the paramagnetic contributions. This choice is supported by the observation that the shift of

(Gua)3[Lu(DPA)3] is only 0.04 ppm higher than that of Gua·HCl, which is a negligible di↵erence and within

the experimental linewidth. The linewidths are fairly uniform across the series, with the obvious exception

of Gd3+ where the peak is broadened considerably. Therefore it appears that the transverse PRE does not add

significantly to the observed broadening in the diamagnetic complexes, apart for (Gua)3[Gd(DPA)3] where

the long electronic relaxation times of the Gd3+ ion, due to the half-filled 4 f shell and subsequent zero SO

coupling strength, result in a short T2.

As stated above the supramolecular interaction is ionic in nature, and so we would expect the contact

interaction between the 15N and the Ln3+ ion to be zero, with the result that the shifts are entirely PCSs. One

initial observation suggesting that this is indeed the case is the very small paramagnetic shift of 0.14 ppm due
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onds).[8] Whereas a great deal of molecular engineering has
been developed to optimising TPEF properties of organic mol-
ecules, the sensitisation of LnIII by the two-photon antenna
effect remains in its infancy.[9]
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complexes[9f,10] and 2) to carry out time-resolved non-linear mi-
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[Ln ACHTUNGTRENNUNG(DPA)3]3! complexes (Ln=Nd, Eu, Gd, Dy, Tb, Er, Yb, Lu) and
is monitored by 15N NMR spectroscopy (Scheme 1). Commer-
cially available 15N-enriched guanidinium hydrochloride salt is
used to reduce acquisition time. In principle, the pseudo-con-
tact paramagnetic shift induced by the proximity of lanthanide
ions is well suited to probe long-range interactions, such as
those occurring in the second coordination sphere.[14] As
shown in Figure 1, changes in the 15N NMR signal of the guani-
dinium cation in the presence of lanthanide complexes (i.e. 15N
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molecular interaction takes place with the guanidinium cation
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plexes.[13] When compared to the 15N signal of the free cation,
significant shifts of the 15N guanidinium resonance are ob-
served in the presence of all paramagnetic lanthanides (except
Gd). The magnitude and sign of the shifts directly depend on
the nature of the metal. As described in the literature, dyspro-
sium and terbium induce the largest pseudo-contact paramag-
netic shifts in the series.[14,15] Interestingly, the 15N NMR reso-
nances remain sharp even in the presence of strongly para-
magnetic ions, due to the more favourable relaxation proper-
ties of 15N compared to 1H nuclei,[16] and therefore 15N signals
are easily detectable. Note that the guanidinium 15N signal is
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to induce the largest broadening of the signal, in agreement
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and in the presence of various [Ln]= [Ln ACHTUNGTRENNUNG(DPA)3]3! trianions.

Scheme 2. Direct syntheses of (Gua)3[LnACHTUNGTRENNUNG(DPA)3] complexes.

2126 www.chemphyschem.org ! 2007 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim ChemPhysChem 2007, 8, 2125 – 2132

C. Andraud, O. Maury et al.

Figure 13.48: Solution 15N NMR spectra of a series of (Gua)3[Ln(DPA)3] complexes with di↵erent lanthanide
ions in D2O at 16.44 T. The spectra each contain a single peak due to the 15N-enriched guanidinium cation.
The notation [Ln] is a shorthand for the [Ln(DPA)3]3� anion. Reproduced with permission from [467].
Copyright John Wiley and Sons.
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Figure 13.49: Plot of the experimental 15N paramagnetic shifts of (Gua)3[Ln(DPA)3] taken from Figure 13.48
against the theoretical relative PCS coe�cients Cpcs

J in Table 6.4, calculated by Bleaney [61].

to Gd3+. According to Golding and Halton the contact shift for Gd3+ is expected to be one of the largest in

the lanthanide series [60], whereas the PCS according to Bleaney is zero [61]. We therefore ascribe the shift

of 0.14 ppm to either a variation in the orbital shift, or an error that is within the experimental linewidth.

A more complete analysis is presented in Figure 13.49, in which the experimental paramagnetic shifts

are plotted against the Bleaney coe�cients Cpcs
J from Table 6.4. There is an excellent linear trend, which

is expected for shifts that are entirely pseudo-contact. The one significant discrepancy is for Eu3+, which is

expected as the populations of the excited J-levels are neglected in the plot. Nevertheless the correlation is

striking, and provides experimental evidence for the validity of the Bleaney theory in this particular case. It

would be satisfying to be able to calculate the crystal-field splitting parameters from this correlation. However

the slope of the line contains contributions from the crystal-field splitting, the spin-dipolar interaction, and

indeed the rate of chemical exchange, which cannot be separated here. To do so would require additional

information about the relative position of the 15N to the metal ion and the exchange properties. This is

explored in the following section.
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13.11 Paramagnetic e↵ects of lanthanide ions in the dicalcium protein

calbindin D9k

13.11.1 Background

In our final case study of the paramagnetic shifts due to lanthanide ions we present the work of Bertini et al.

who measured the PCSs due to a series of lanthanide ions incorporated into the protein dicalcium calbindin

D9k, which is denoted Ca2Cb [74]. The PCSs were used to refine the calculated structures, and the extracted

susceptibility anisotropy parameters for each lanthanide ion were studied in order to gauge the quality of the

agreement with the Bleaney theory.

Dicalcium calbindin D9k binds two Ca2+ ions [540]. It is found in mammalian intestinal epithelial cells

where it mediates the transport of Ca2+. In the present case study the Ca2+ ion in the C-terminal binding site

was replaced by the full series of lanthanide ions from La3+ to Lu3+, with the exceptions of Pm3+ and Gd3+,

to give a series of 13 protein derivatives that are denoted CaLnCb. The chemical shifts for each amide 1HN

and 15N were measured for all the the derivatives, and the paramagnetic shifts were obtained by subtracting

the corresponding shifts of either the CaLaCb or CaLuCb protein.

The advantages of using a protein such as D9k to measure these paramagnetic shifts are twofold. Firstly

as the NMR was performed using conventional pulse sequences the nuclei were observed outside the blind

sphere, the radius of which is dependent on the particular lanthanide ion in the binding site. This means

that the paramagnetic shifts could be ascribed entirely to PCSs, as the contact shifts drop to zero outside the

blind sphere. Secondly the large number of PCSs available can be used to determine both the orientation and

anisotropy parameters of the magnetic susceptibility tensor to a high degree of precision. Both of these points

enabled a comprehensive evaluation of the Bleaney theory, which we described in section 6.5 [74].

13.11.2 Pseudo-contact shifts

The chemical shifts of the amide 1HN and 15N resonances were measured by acquiring a 1H–15N HSQC

spectrum for each CaLnCb derivative. Four representative spectra are shown in Figure 13.50 [74]. The

spectra shown are of (a) diamagnetic CaLaCb (4 f 0), (b) an example with an early paramagnetic lanthanide

(4 f 2) CaPrCb, (c) a ‘mid’ lanthanide (4 f 8) CaTbCb, and (d) a late lanthanide (4 f 12) CaTmCb. The procedure
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be broadened beyond detection due to paramagnetism. For
CaEuCb, whose paramagnetism arises only from thermal
population of excited states of the europium(III) ion, nearly all
expected peaks are observed. On the other hand, in the case of
CaTbCb or CaDyCb the number of observable peaks is reduced
dramatically. Representative HSQC spectra are reported in
Figure 1, while the assigned cross-peaks for all the metal
derivatives are reported in the Supporting Information (Table
S1). Some non-negligible differences in chemical shifts were
observed between CaLaCb and CaLuCb, as well as differences
between the shifts of either CaLaCb or CaLuCb and the Ca2Cb
derivative. The largest are found in the lanthanide binding site
itself, but others are also found in the first Ca2+ binding site
(residues 14-27), as well as in other parts of the protein (Figure
2). The differences are more pronounced on the nitrogen than
on the proton shifts, as is expected since 15N shifts are more
sensitive to small structural changes.45
Determination of Pseudocontact Shifts. To achieve the

highest possible reliability for the magnetic susceptibility
anisotropy parameters, it is important that the uncertainty in
the diamagnetic reference for each lanthanide be kept as small
as possible. In any case, these uncertainties must be included
in the calculations. Therefore, PCS were calculated for each
paramagnetic lanthanide derivative by subtracting the shifts of
either the CaLaCb or the CaLuCb complexes. These values were
then fitted, for each metal, by adjusting the paramagnetic tensor
parameters using the program FANTASIA 40 and by taking as
an initial model the family of conformers representing the
solution structure of CaCeCb determined from NOEs only. For

the early lanthanides (Ce, Pr, Nd, Sm, Eu) a better fit of the
experimental data was achieved by subtracting the diamagnetic
shifts of CaLaCb, whereas for the late lanthanides (Tb, Dy, Ho,
Er, Tm, Yb), a better fit was obtained by subtracting the CaLuCb
shifts. This observation is in agreement with expectations, as
the ionic radii of lanthanides decrease along the series, so that
minor alterations in the protein structure can be expected on
passing from lanthanum to lutetium.17,46,47 These alterations
induce small changes in the diamagnetic shifts, which are
presumably progressive along the series. To take this into

(45) Walling, A. E.; Parge, H. E.; de Dios, A. C. J. Phys. Chem. 1997,
101, 7299-7303.

(46) Peters, J. A. J. Magn. Reson. 1986, 68, 240-251.
(47) Platas, C.; Avecilla, F.; de Blas, A.; Geraldes, C. F. G. C.; Rodriguez-

Blas, T.; Adams, H.; Mahia, J. Inorg. Chem. 1999, 38, 3190-3199.

Figure 1. Representative 1H-15N HSQC spectra at 300 K of different CaLnCb derivatives: (A) CaLaCb; (B) CaPrCb; (C) CaTbCb; and (D)
CaTmCb. Some of the peaks that (i) experience appreciable PCS in the three paramagnetic derivatives and (ii) are clearly resolved in all four
spectra are labeled.

Figure 2. Differences in chemical shifts (∆δ) observed between the
CaLuCb and CaLaCb derivatives for 1H (open squares) and 15N (filled
circles) nuclei.

4184 J. Am. Chem. Soc., Vol. 123, No. 18, 2001 Bertini et al.

Figure 13.50: Four examples of solution 1H–15N HSQC spectra of di↵erent CaLnCb derivatives acquired
at 18.79 T and 300 K. The four derivatives are (a) diamagnetic CaLaCb, (b) CaPrCb, (c) CaTbCb, and (d)
CaTmCb. Reproduced with permission from [74]. Copyright (2001) American Chemical Society.
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for assigning the PCSs and calculating the magnetic susceptibility tensor was similar to that described in

section 13.8.4 [45]. The PCSs themselves were calculated from the chemical shifts of each resonance by

subtracting the corresponding shifts of a suitable diamagnetic reference protein. Two diamagnetic derivatives

were available here, namely CaLaCb and CaLuCb, which were found to have measurably di↵erent sets of

orbital shifts. It was found that a better fit of the PCSs was obtained if the former derivative CaLaCb was

chosen as the reference for the early lanthanides Ce, Pr, Nd, Sm, and Eu, and if the latter reference CaLuCb

was chosen as the reference for the late lanthanides Tb, Dy, Ho, Er, Tm, and Yb. This observation is consistent

with the decrease in the ionic radius of the lanthanide ion across the series resulting in minor changes in the

protein structure [74]. For each sample a set of 1097 1HN and 15N PCSs were measured. For each of these

sets the susceptibility tensor was fitted to the PCS values using an initial trial structure of CaCeCb determined

in solution by NOEs, using the following expression for the PCS:

�pcs
iso =

1
12⇡R3

"

��ax
⇣

3 cos2 ✓ � 1
⌘

+
3
2
��rh sin2 ✓ cos 2�

#

, (13.14)

where R, ✓, and � define the position of the nuclear relative to the PAF of the susceptibility tensor, and ��ax

and ��rh are the axial and rhombic anisotropies of the tensor. Finally the protein structure and tensor param-

eters were simultaneously calculated by combining the total of 1097 PCSs for all lanthanides simultaneously

with 1539 NOEs and 39 3J-coupling constants.

The axial and rhombic susceptibility anisotropy parameters ��ax and ��rh, and the three axes specifying

the orientation of the PAF, were determined for all 11 paramagnetic derivatives. It was found that all the

axis orientations were within 15� of the average for all the derivatives, with the exception of CaSmCb for

which a larger deviation of 20� was found. This indicates that the coordination environments for all the ions

are broadly similar, with the small variations reflecting minor short-range structural changes. The values of

the axial and rhombic anisotropy parameters are plotted against the Bleaney coe�cients Cpcs
J from Table 6.4

in Figure 13.51 (a) and (b). An approximately linear correlation, indicated by the dashed best-fit lines, is

observed for both anisotropy parameters. A perfect correlation would indicate firstly that the Bleaney theory

is good description of the PCS of these systems, and secondly that the crystal-field splitting parameters
D

r2
E

A0
2

and
D

r2
E

A2
2 are the same for all the paramagnetic derivatives CaLnCb. Whilst there are some deviations from

the ideal case, the data in Figure 13.51 nevertheless allowed the determination of the average crystal-field
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Figure 13.51: Plots of the axial and rhombic susceptibility anisotropies, and associated errors, calculated for
the CaLnCb derivatives from PCSs plotted against the theoretical relative PCS coe�cients Cpcs

J in Table 6.4,
calculated by Bleaney [61]. The axial and rhombic anisotropies are plotted in (a) and (b). The susceptibility
anisotropies were calculated by Bertini et al [74].
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splitting parameters for the series of proteins [74].

13.11.3 Extracting the crystal-field splitting parameters

From Figure 13.51 we are in a position to calculate the average crystal-field splitting parameters. As discussed

in section 6.5, the Bleaney theory gives the following expressions for the axial and rhombic susceptibility

anisotropies in terms of the energy coe�cients
D

r2
E

A0
2 and

D

r2
E

A2
2 of the crystal-field interaction Hamiltonian

in Equation 6.51:

��ax = �
µ0µ2

B

30(kT )2 Cpcs
J

D

r2
E

3A0
2, (13.15)

��rh = �
µ0µ2

B

30(kT )2 Cpcs
J

D

r2
E

2A2
2. (13.16)

Hence the slopes of the best-fit lines to the plots of ��ax against Cpcs
J and ��rh against Cpcs

J in Figure 13.51

(a) and (b) yield
D

r2
E

A0
2 = 179 cm�1 and

D

r2
E

A2
2 = 143 cm�1. The corresponding crystal-field splitting

parameters for each protein were found to vary within ±30% of these averages.

Bertini et al. performed a more sophisticated analysis than that above, from which a refined value of

the axial crystal-field splitting parameter was obtained. In summary both the excited-state contributions to

the PCSs in CaSmCb and CaEuCb were taken into account, and the Bleaney expression was extended to

third order in 1/(kT ). The result was an improved agreement between the experimental and calculated axial

susceptibility anisotropy for each lanthanide, as shown in Figure 13.52 [74]. The average parameter
D

r2
E

A0
2

was refined to 169 cm�1, with a variation of ±15% for di↵erent lanthanide ions.

This case study represents the most compelling evidence to date for the validity of the Bleaney theory

for the PCS due to lanthanide ions. The reasons for this are that 11 out of 13 of the paramagnetic lanthanide

ions could be incorporated into the C-terminal Ca2+ binding site, that a large number of PCSs that could

be measured, and that the observed nuclei are su�ciently far from the lanthanide ion that only the PCS

contributes to the isotropic paramagnetic shift. This study was also able to quantify the variation of the

orientation of the PAF of the magnetic susceptibility tensor across the lanthanide series and the variation in

the crystal-field splitting parameters, and account for higher-order terms in the Bleaney theory. These are

factors that are sometimes erroneously cited as fundamental shortcomings of the Bleaney theory.
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tensor parameters (Table 1). It can be concluded that, at least
for the present series of lanthanide derivatives of calbindin D9k,
the variability of CFP values is much lower than what is reported
in previous publications,47,50,57 being in the range 15-30%.
Accurate magnetic susceptibility values for another, unrelated

series of lanthanide complexes are available also from single-
crystal measurements.15 If the labeling of the axes reported in
the original publication is scrambled for the sake of comparison
with the theory and with the present data, the solid-state data
are also completely consistent with our conclusions as shown
in Figure 5B.
The pattern of experimental and theoretical (calculated

including the above-mentioned T-3 correction) ∆!ax values along
the lanthanide series is shown in Figure 6. These values allow
the prediction of the degree of orientation of the molecule in a
high magnetic field, and, consequently, of the induced residual
dipolar couplings for each lanthanide (Figure 6, right-hand
scale). In a previous article, it has been shown that each protein
nucleus in a lanthanide-protein complex experiences a line
broadening that depends on the magnetic susceptibility of the

particular lanthanide. As a consequence, only nuclei that are
outside a sphere of given radius (different for each lanthanide,
and increasing with increasing magnetic susceptibility) can be
observed.25 With these two pieces of information at hand, one
can evaluate which is the most suitable lanthanide for structural
studies in terms of observability of nuclei, induced orientation-
dependent effects, and dependence of the size and characteristics
of the system under investigation.58,59
Conclusions. A reliable set of magnetic anisotropies for a

full series of lanthanides is reported in this paper, and the
parameters are critically evaluated with respect to the theoretical
analyses available in the literature. It appears that the magnetic
anisotropy values, especially the axial ones, not only closely
follow the pattern predicted from theory, but also have similar
values in different systems15,50 (compare also with refs 22 and
60). The present findings allow researchers to reasonably predict
the degree of orientation of the various lanthanide systems in
high magnetic fields.
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Figure 5. (A) Correlation (r2 ) 0.976) between experimental and
calculated ∆!ax values for the present series of lanthanides with a best
fit CFP of 172 cm-1 (0). The same correlation (r2 ) 0.995) after
introducing a 10% correction for the T-3 term with a best fit CFP of
169 cm-1 is also shown (O). (B) Correlation (r2 ) 0.998) between the
present ∆!ax values and experimental single-crystal values for a different
series of lanthanide complexes.15 The best fit CFP for the latter data is
282 cm-1.

Figure 6. Experimental (filled circles) and calculated (open squares)
pattern of ∆!ax values (left-hand scale) for the present series of
lanthanides. The calculated values have been obtained from eq 4 with
a 10% correction for the temperature and with a CFP of 169 cm-1 as
described in the text. The right-hand scale represents the residual dipolar
coupling expected at 800 MHz and 298 K for each lanthanide. The
accidental numerical coincidence of the right-hand scale (Hz) with the
left-hand scale (10-32 m3) is a useful mnemonic aid.

4188 J. Am. Chem. Soc., Vol. 123, No. 18, 2001 Bertini et al.

Figure 13.52: Experimental (filled circles) and calculated (open squares) axial susceptibility anisotropy values
for the series of CaLnCb derivatives. The calculated values used an axial crystal-field splitting parameter of
A0

2

D

r2
E

= 169 cm�1 as calculated by Bertini et al [74], and correction for temperature up to terms in 1/T 3. The
right-hand vertical axis shows the expected RDC at 18.79 T and 298 K in Hz. Reproduced with permission
from [74]. Copyright (2001) American Chemical Society.

13.12 Actinyl tris-carbonate complexes in solution

13.12.1 Background

Studies of actinide complexes and materials by NMR are currently very sparse, mainly due to the radioac-

tivity of such systems making it di�cult to obtain experimental data. Additionally, computations of the

paramagnetic shifts are di�cult to perform, as the heavy open-shell actinide ions require a full relativistic

treatment [212]. Nevertheless such calculations have been performed very recently by Gendron et al. on

small actinyl complexes containing either one or two 5 f electrons [91, 92]. Although there are many issues

still to be addressed, this work is of profound interest to theoreticians and experimentalists alike, and opens a

new frontier in paramagnetic NMR.

The compounds we examine in this section are the actinyl tris-carbonates UO2(CO3)5�
2 , NpO2(CO3)4�

2 ,

and PuO2(CO3)4�
2 , all of which adopt axial symmetry within the point group D3h, and for which experimental

13C NMR spectra have been obtained [229, 230]. The paramagnetic centres in the first two complexes are U5+

and Np6+ respectively, each with the same open-shell configuration 5 f 1. The metal ion in the third complex

is Pu6+, with configuration 5 f 2.
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13.12.2 Paramagnetic shifts

One point of interest for the original experimental studies of these complexes was to establish information

about the kinetics of these complexes in solution. The general actinyl tris-carbonate complexes are known to

exchange bound carbonate with free carbonate in aqueous solution according to the following scheme:

AnO2(CO3)n�
3 +

⇤CO2�
3 ⌦ AnO2(CO3)2(⇤CO3)n� + CO2�

3 . (13.17)

The experimental 13C NMR spectra of the three complexes UO2(CO3)5�
2 , NpO2(CO3)4�

2 , and PuO2(CO3)4�
2 in

aqueous solution are shown in Figure 13.53 (a), (b), and (c). In all three spectra we observe a single peak due

to the paramagnetic species AnO2(CO3)n�
3 which is generally broad, with the exception of NpO2(CO3)4�

3 , and

distinct from an additional resonance due to the CO2�
3 /HCO�3 species. The spectra indicate that the exchange

of carbonate bound to the complex with free carbonate is in the slow exchange limit, whereas the additional

exchange between the CO2�
3 and HCO�3 ions is in the fast-exchange limit. As was noted during the discussion

on CEST and PARACEST in section 12.4.1, the larger chemical shift dispersion of paramagnetic species in

solution allows us to obtain distinct chemical shifts for such species exchanging with larger rate constants

than is possible for diamagnetic complexes. Two additional peaks in the spectrum in Figure 13.53 (b) are due

to the additional complex (NpO2)3(CO3)6�
6 .

The paramagnetic shifts of the three actinyl tris-carbonate complexes were calculated by Gendron et al

[91, 92]. They employed the general formula for the paramagnetic shielding tensor of van den Heuvel and

Soncini given in Equation 4.103, which is reproduced below for convenience:

�S
i j =

2
~�I Q0

X

n

exp(��En)
X

m,n

X

⌫,µ

hn⌫ |m̂i|mµi
D

mµ
�

�

�F̂ j
�

�

� n⌫
E

Em � En

+
�
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exp(��En)
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⌫,⌫0

⌦

n⌫ |m̂i| n⌫0
↵

D

n⌫0
�

�

�F̂ j
�

�

� n⌫
E

. (13.18)

They divided the shielding tensor in Equation 13.18 into two parts, with the first referred to as linear-response

(LR) contribution, and the second as the Curie contribution. Here the sums are over all the electronic states,

which in practice include both the ground state and any low-lying excited states. When the only significant

contribution is from the electronic ground state, the shielding tensor can be written using Equation 6.24 in

terms of the EPR parameters for that manifold. Gendron et al. employed that form of the EPR formalism,
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Figure 13.53: 13C NMR spectra of a series of actinyl tris-carbonate complexes acquired in aqueous solution.
In (a) is shown in the spectra of a 4.598⇥10�2 M solution of UO2(CO3)5�

2 mixed with 1 M Na2CO3, acquired
at �75.45 MHz. The spectra were acquired at a series of temperatures between 273 and 313 K. The spectra
of a 0.05 M solution of NpO2(CO3)4�

2 mixed with Na2CO3 acquired at �62.9 MHz, 273 K, and variable pH
are shown in (b). The inset shows the resonances due to (NpO2)3(CO3)6�

6 at 303 K. The spectra in (c) are of a
0.2 M solution of PuO2(CO3)4�

2 mixed with 1 M Na2CO3 and 1 M NaClO4 acquired at �62.9 MHz, a pH of
9.5, and variable temperatures between 277 and 350 K. Adapted with permission from [229, 230]. Copyright
(1995 and 2005) American Chemical Society.
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using the lowest-order tensor components for the g-, hyperfine, and ZFS tensors and neglecting the higher-

order terms. In this case the paramagnetic shielding comprises only the Curie contribution, and the resulting

shift �Curie is calculated from Equation 4.109, giving

�Curie =
µB

3~�I
Tr [g ·Z ·A] , (13.19)

where the g-, hyperfine, and ZFS tensors g, A, and D refer to the pseudo-spin of the electronic ground state.

The components of the tensor Z are given by Equation 4.113, which is reproduced here:

Zkl =
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. (13.20)

Finally, the description of the shift is completed by noting that if the electronic ground state has pseudo-spin

1/2, the shift simplifies to the form calculated from Equation 4.118:

�Curie =
µBS (S + 1)

9~�IkT
Tr [g ·A] , (13.21)

where S = 1/2. The contributions to the shifts were separated into the Curie and LR contributions, with

each contribution further separated into the parts due to the Fermi-contact shift, PCS (due to the spin-dipolar

interaction), and PSO shift.

The calculations of the paramagnetic shifts were performed using the CASSCF and RASSCF methods.

The results quoted here are from calculations comprising 12 occupied orbitals and 100 unoccupied orbitals

in addition to the active space, and include corrections for solvent e↵ects.

13.12.3 Interpretation

The total calculated shifts were calculated using Equation 13.18 and are plotted, along with their individual

contributions and the experimental shifts, for the three actinyl tris-carbonate complexes in Figure 13.54. For

all three compounds the orbital shift was assumed to be equal to the chemical shift of 168.22 ppm of the dia-

magnetic isostructural analogue UO2(CO3)4�
2 (containing U6+ ions with no 5 f electrons). The experimental

708



UO
2
(CO

3
)

3
5- NpO

2
(CO

3
)

3
4- PuO

2
(CO

3
)

3
4-

-400

-300

-200

-100

0

100

δ
(1

3
C

) 
/ 
p

p
m

expt

total

PSO-LR

PCS-LR

FC-LR

PSO-Curie

PCS-Curie

FC-Curie

Figure 13.54: Breakdown of the contributions to the total 13C chemical shifts of the three actinyl tris-
carbonate complexes determined by first-principles calculations, and the comparison with the experimental
shifts. The quoted shifts are for experimental temperatures of 273 K (UO2(CO3)5�

2 and PuO2(CO3)4�
2 ), and

295 K (PuO2(CO3)4�
2 ). The calculated shifts are taken from Ref. [92], and the experimental shifts from Ref.

[230] (UO2(CO3)5�
2 ), and [229] (NpO2(CO3)4�

2 and PuO2(CO3)4�
2 . All shifts have been referenced relative to

the orbital shift of the diamagnetic complex UO2(CO3)4�
2 .

complex state energy / cm�1 population / % �Curie / ppm total �Curie / ppm
UO2(CO3)5�

2 ground, E3/2 0 79 �94.0 �99.5
lowest-lying excited, E1/2 132 21 �121.2

NpO2(CO3)4�
2 ground, E3/2 0 87 �106.5 �110.4

lowest-lying excited, E1/2 356 13 �136.6

Table 13.10: Comparison of the Curie shifts obtained from the two lowest-lying doublet states of UO2(CO3)5�
2

and NpO2(CO3)4�
2 at 273 K. The corresponding relative energies of the states and their populations (at 273

K) are also given relative to the ground state of each molecule. Data computed by Gendron et al [92].

shifts shown in Figure 13.54 were therefore re-referenced to UO2(CO3)4�
2 , and therefore comprise only the

contributions from paramagnetic e↵ects. For all three complexes, it can be seen that the Curie terms are the

dominant contributions to the total shift, with the LR parts representing only minor corrections.

For the two complexes with a single 5 f electron, UO2(CO3)5�
2 and NpO2(CO3)4�

2 , the single largest

contribution to the shift is from the PSO part of the Curie shift, with the next largest terms being the Curie

PCS and LR PSO. Interestingly, we see that the contact shifts are negligible in UO2(CO3)5�
2 . Gendron et al.

also employed the EPR representation of the shift. For these two 5 f 1 complexes both the ground state and

lowest-lying excited state are doublets, and can be modelled with pseudo-spin 1/2. Their Curie contributions

to the shift were therefore calculated from Equation 13.21. The results are given in Table 13.10 [92]. The
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pseudo-spin gk Atotal
k /MHz AFC

k /MHz ASD
k /MHz APSO

k /MHz D / cm�1 �Curie �Curie
FC �Curie

PCS �Curie
PSO

1/2 �5.687 3.76 �1.40 1.56 3.60 — �379.0 141.6 �157.6 �363.0
1 �2.843 1.88 �0.70 0.78 1.80 3974 �379.0 141.6 �157.6 �363.0

Table 13.11: EPR parameters and Curie shifts calculated for the electronic ground state of PuO2(CO3)4�
2

at 295 K. Two sets of parameters were computed, assuming either an electronic manifold of pseudo-spin
1/2 or 1. Both the hyperfine constants and their Curie shifts are also broken down into their Fermi-contact,
spin-dipolar (PCS), and PSO contributions. In all cases the rhombic EPR parameters (g?, Atotal

? , AFC
? , ASD

? ,
APSO
? , and E) are zero. Data computed by Gendron et al [92].

paramagnetic shift is therefore well approximated in the EPR formalism, here considering only the two

lowest-lying electronic states.

In the case of PuO2(CO3)4�
2 , the addition of the second 5 f electron has the e↵ect of increasing the

paramagnetic shift substantially. Here the Curie contact shift and Curie pseudo-contact shift are significant,

but are also of opposite sign and largely cancel, leaving the Curie PSO shift as the remaining dominant

contribution. All the LR terms were found to be negligible.

The lowest-lying excited state was calculated to be 3580 cm�1 above the ground state, and so could be

neglected in the EPR representation of the shift. The EPR parameters of the ground state were calculated

twice, once assuming a pseudo-spin of 1/2 and once assuming a pseudo-spin of 1, and are tabulated in

Table 13.11. We see that all the EPR parameters vary depending on which model we use for the ground

state. In particular we see that the inclusion of ZFS in the pseudo-spin-1 model has the e↵ect of reducing

the magnitude of all the other parameters relative to their values in the pseudo-spin-1/2 model, as expected.

Nevertheless, the two pictures give the same values for the shift in each case, and the same contributions

at this temperature. However we should note that the temperature dependence of the shift, within the range

where only the ground manifold is occupied, will be di↵erent for the two models. This is due to the inclusion

of the tensor Z in the pseudo-spin-1 model, which does not have a simple Curie temperature dependence.

For these carbonate systems, the accurate reproduction of the experimental paramagnetic shifts sets a

benchmark in computational paramagnetic NMR of actinide systems. The general trends identified for these

systems suggest that (1) the Curie terms dominate the LR contributions, and (2) the most important of the

Curie terms is that due to the PSO contribution. However it is currently unclear whether these trends are in

fact general, or only specific to these particular types of complex. Nevertheless, it is expected that calculations

of this type will become more widely employed in paramagnetic NMR of actinide complexes in the future.
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Figure 13.55: Solid-state 17O NMR spectra acquired on a series of five enriched actinide oxides, at a Larmor
frequency of �54.25 MHz, under both static conditions and 55 kHz MAS. Adapted with permission from
[13]. Copyright (2014) American Chemical Society.

13.13 Solid actinide oxides

13.13.1 Background

The second case study of paramagnetic actinide systems we present is the 17O MAS solid-state NMR study of

cubic actinide oxides by Martel et al [13]. Solid actinide systems have remained elusive to NMR due both to

their well-known high radiotoxicity, and to the technological challenges associated with fast spinning. This

study therefore represents an impressive contribution to our understanding of the NMR properties of such

solids.

13.13.2 Paramagnetic shifts

Five actinide oxides were enriched with 17O, and studied with 17O NMR at fast MAS of 55 kHz. The chosen

oxides were ThO2 (5 f 0, diamagnetic), UO2 (5 f 2), NpO2 (5 f 3), PuO2 (5 f 4), and AmO2 (5 f 5). The spectra

acquired under both static and MAS conditions are shown in Figure 13.55. In the spectra of the static powders
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we see that the measured shifts cover a large range, from +800 ppm to �800 ppm, and depend strongly on

the actinide ion. We also see that the diamagnetic oxide ThO2 has a comparatively large shift of 576 ppm,

indicating that all the oxides have substantial orbital shifts which may themselves vary considerably with

the actinide ion, and which therefore complicate the interpretation of the NMR spectra. In addition, the

resonances of the paramagnetic oxides are broad, each having linewidths in the range of 100–500 ppm. Since

the oxides have a long-range structure that is cubic, there is no contribution from the quadrupolar interaction

to the line broadening, and so the linewidths can be ascribed mainly to paramagnetic e↵ects.

When MAS is applied, the most striking change to the spectra is the narrowing of these resonances to a

few ppm, with the exception of that of AmO2. For the other oxides the broadening observed from the static

samples was therefore ascribed to the spin-dipolar shift anisotropy. The di↵erent behaviour seen for AmO2

was shown to be due to a combination of more than one disordered phase, and oxide vacancies [13]. A second

consequence of MAS is the shifting of all the resonances, with the exception of the peak from ThO2, closer

to zero. This is expected, since the increased temperature of the sample due to frictional heating reduces the

Curie spin, and therefore reduces the paramagnetic contribution to the shift.

As we saw in section 13.12, the interpretation of the paramagnetic shifts due to actinide ions is complex.

However in the present study, it was assumed that the cubic structure of the oxides results in a magnetic

anisotropy that is zero, and as a consequence there is no contribution from the PCS. Additionally, contribu-

tions from the PSO were neglected, and the paramagnetic contribution to the shift was interpreted as a contact

shift. This shift �S was calculated from the Curie spin using the expression in Equation 3.68:

�S = �
D

Ŝ z
E

AFC

~�I B0
. (13.22)

However we note that the expression for the Curie spin is more complicated than that used for 3d-metal ions,

in which only the electronic Zeeman interaction, and possibly the ZFS, is included. Martel et al. computed

the Curie spin using a Hamiltonian Ĥ that is given by [13]

Ĥ = ĤFI + ĤCF + ĤZ. (13.23)

Here ĤFI is the Hamiltonian representing all the free-ion interactions such as Coulomb repulsion, and SO cou-
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Figure 13.56: Plot of �A
D

Ŝ z
E

and the isotropic 17O shifts against the number of 5 f electrons for the five
actinide oxides. The constant A is given by A = �3kT/µBH0. Adapted with permission from [13]. Copyright
(2014) American Chemical Society.

pling which was here determined in the regime intermediate between the Russell–Saunders and j j schemes.

The crystal-field interaction Hamiltonian ĤCF was written in the form of Equation 6.6. For the cubic structure

of the oxides, the rank-two tensor components are zero, and we retain only a subset of the rank-four and

rank-six tensors, giving a Hamiltonian of the form:

ĤCF = B4
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. (13.24)

The interaction is described by the operators Ĉ(k)
q of rank k and order q, and the two crystal-field splitting

parameters B4 and B6, which indicate the strengths of the rank-four and rank-six contributions respectively.

The final term is the electronic Zeeman interaction comprising both the spin and orbital parts, given by

Equation 4.11.

ĤZ = µBB0
⇣

L̂z + 2Ŝ z
⌘

, (13.25)

where it is assumed that ge ⇡ 2. The total Hamiltonian Ĥ was diagonalized, and the Curie spin calculated.

Assuming that the Fermi-contact coupling constant is the same for all the actinides, �3
D

Ŝ z
E

kT/µBB0 is

proportional to the experimental shift. Both quantities are plotted in Figure 13.56. We see that, as an initial

approximation, the variation of the Curie spin does account for the underlying trend in the variation of shift

along the series of these actinides. However the quantitative agreement is comparatively poor, for example
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with the Curie spin alone unable to account for the observed changes in sign of the shift on moving from

PuO2 to AmO2. The agreement can presumably be improved by including other relevant terms in the shift,

such as the orbital contribution, which we can see is substantial for the diamagnetic oxide ThO2, the PSO,

and higher order terms describing the magnetic anisotropy in a cubic system.

Nevertheless this study is a very interesting milestone in paramagnetic NMR of actinide materials, and

is expected to encourage more work in this area. In particular, given the work described in section 13.12,

it is expected that calculations of the shift in this type of solid will evolve in parallel to the experimental

techniques, and provide a useful tool in the study of actinide chemistry.

13.14 Probing the nanostructure of composite materials using relayed

paramagnetic relaxation enhancement

13.14.1 Background

In the final case study of this review we consider a topic that is di↵erent to those we have studied in previous

sections. Previously we have highlighted studies where the system of interest contained isolated paramagnetic

metal ions, or where such ions could be easily introduced, and used the paramagnetic e↵ects to obtain both

local- and long-range structural information. The e↵ects considered were principally the paramagnetic shifts,

but some insight was also obtained from measurements of the PREs. In this final study however we highlight

the work of Schlagnitweit et al., who developed a new method to investigate the sizes of di↵erent domains of

nm–µm length scale in multi-component materials using a paramagnetic dopant [468].

Multi-component materials are defined as comprising two or more particles or domains with di↵erent

properties such as structural order and dynamics. Examples include multi-phase systems such as alloys,

composites, and mixtures of polymers. The bulk properties of such systems depend on the sizes of the

domains and particles, and can be altered accordingly. For this reason it is important to be able to characterize

the range of size and shape of the domains in situ. Schlagnitweit proposed an NMR method for doing this

utilizing the PRE of a paramagnetic dopant combined with spin di↵usion [468]. This method was applied

both to a model system comprising a suspension polymer nanoparticles, and then to a polymer mixture of

ethyl cellulose (EC)/hydroxypropyl cellulose (HPC) in a film. This latter system is of particular interest as a
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Figure 13.57: Illustration of the selective doping of a particular domain in bi-domain samples. On the left is
shown a water-based suspension of EC nanoparticles. The radical is impregnated in the solution (light blue),
and dopes the surface of the EC nanoparticles (red). On the right is shown a composite system containing
domains of EC (red) and HPC (blue) in films covering pellets in controlled-release formulations. The radical
solution impregnates the water-soluble HPC domain. This induces a PRE at the surface of the EC domains.
Reproduced with permission from [468]. Copyright (2015) American Chemical Society.

coating of the film on pellets is used as a pharmaceutical controlled-release formulation.

The following two sections outline the basic method for measuring the domain sizes, and describe the

application to the EC/HPC film.

13.14.2 The relay of the paramagnetic relaxation enhancement by spin di↵usion

Here we briefly describe the method to measure the domain sizes of a two-component material, comprising

domains A and B. Schlagnitweit et al. suggested that in order to measure the length scale of domain A we can

dope the second domain B with a solution of a paramagnetic molecule of known concentration. The doping

procedure is illustrated in Figure 13.57 (left panel), where the surface of an EC nanoparticle is impregnated

with a solution containing an organic radical [468]. The paramagnetic centres impregnate both domain B

and the surface of domain A, and therefore induce a large PRE throughout the former and at the latter.

The longitudinal relaxation time of a particular nuclear site in domain A T1(r) becomes position dependent,

decreasing as we approach the surface of A with a distance dependence 1/r6. We have seen that this direct

PRE can be used to probe distances from the metal ion up to 100 Å, and so is not able to probe longer length

scales of the order nm–µm, with the large region of the domain that is far from the surface not experiencing a

measurable PRE. However spin di↵usion transfers longitudinal magnetization from the centre of the domain
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A to the surface, where it experiences enhanced relaxation, which is referred to as a relayed paramagnetic

relaxation enhancement (R-PRE). The key to the method is that in smaller undoped domains spin di↵usion

transfers the magnetization to the surface more rapidly, thus resulting in a greater decrease in the apparent

T1 relaxation time from the whole domain. Hence a comparison of the longitudinal relaxation behaviour

of the domain A in the impregnated sample and the undoped sample reveals information about the size and

shape of domain A. In addition multiple measurements can be performed with di↵erent concentrations of

paramagnetic molecules in domain B, allowing an evaluation of the uncertainty of the measurements.

The longitudinal relaxation can be measured using a saturation–recovery experiment, where the longi-

tudinal magnetization is saturated and allowed to recover during a variable delay ⌧. This is followed by

a 90� pulse which converts the recovered polarization into observable coherences. The signal measured

during this experiment in the undoped and doped samples is denoted S core(⌧) and S doped(⌧) respectively, and

the comparison between the two used to determine the domain size and shape is quantified with a R-PRE

enhancement factor that is defined as "(⌧) = S doped(⌧)/S core(⌧).

In the undoped sample the longitudinal relaxation time constant is assumed to be constant throughout the

domain A, and is referred to as T core
1 . In the doped sample T1(r) is position dependent, and takes boundary

values of T core
1 in the centre of domain A, which is far from the surface, and a short value T surface

1 at the surface

due to the direct PRE. In practice the value of T surface
1 can be taken to be the same as the corresponding value

measured in the solvent in the doped domain B. Elsewhere in domain A we can calculate T1(r) since the

direct PRE decreases with the distance r from the surface as 1/r6.

Spin di↵usion in an extended domain is a complicated process to model rigorously using a full quantum-

mechanical treatment. Fortunately it can be modelled classically using a di↵usion equation which incorpo-

rates a longitudinal relaxation sink [423]. The polarization in domain A Iz(r, t) at position r and time t is

given by
@Iz(r, t)
@t

= Dr2Iz(r, t) �
Iz(r, t) � Iz,0

T1(r)
, (13.26)

where D is the spin-di↵usion coe�cient, and Iz,0 is the equilibrium polarization normalized to Iz,0(r) = 1.

The total polarization from the whole domain A Iz,A(t) is found by integrating Iz(r, t) over all distances r

within the domain for each time point, i.e. Iz,A(t) = V�1
R

V Iz(r, t)d3r. If the domains A are present with a

distribution of sizes and shapes, it is necessary to compute the average value of Iz,A(t) in order to obtain the
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total polarization from the whole sample.

In the study of Schlagnitweit et al. the computation of the spin-di↵usion dynamics was simplified by

assuming that the domains A were spherical [468]. The spin-di↵usion equation in Equation 13.26 was

simplified by replacing r with the distance r, whose origin is located at the centre of the sphere. The

longitudinal relaxation time constants at the surface and centre of the sphere were set to T1(rmax) = T surface
1

and T1(0) = T core
1 respectively, where rmax is the radius of the sphere, and the variation of T1(r) at intermediate

radii was modelled using the 1/(r � rmax)6 distance dependence of the PRE. We expect that there is a thin

surface layer of domain A, of a thickness �r, which cannot be observed using conventional NMR pulse

sequences and so occupies a so-called ‘blind zone’. In this study �r was assumed to be 2 Å [468]. With this

condition we can write down an expression for the longitudinal relaxation time constant at arbitrary radius

inside the domain as
1

T1(r)
=

0

B

B

B

B

@

1
T core

1
+

1
T surface

1

1

C

C

C

C

A

 

�r
r � rmax � �r

!6

. (13.27)

Finally the solution to the di↵usion equation requires two boundary conditions, which were set to

Iz(r, 0) = 0,
@Iz(rmax, t)

@t
= 0, (13.28)

which are interpreted as follows. The first boundary condition indicates that the polarization at time t = 0

is zero throughout the entire domain following saturation. The second condition indicates that the rate of

change of the polarization at the domain surface is zero, so that no polarization leaves the domain.

13.14.3 Measurement of domain sizes in ethyl cellulose/hydroxypropyl cellulose film

coatings in pharmaceutical controlled-release formulations

The R-PRE method was applied to a polymer mixture of EC/HPC in a film, which is used as a pharmaceutical

controlled-release formulation [468]. The doping procedure is illustrated in Figure 13.57 (right panel). The

paramagnetic molecule that was chosen is the organic biradical AMUPol, the structure of which is also shown

in Figure 13.57. This organic molecule contains two NO· radical functional groups, which have comparatively

long electronic relaxation times [166], and therefore are suitable for inducing large direct PREs. Two aqueous

solutions of the biradical were prepared with concentrations of 15 mM and 30 mM, which were used to
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Figure 13.58: 1H–13C solid-state CP MAS NMR spectrum of the composite EC/HPC cellulose film coatings,
where the HPC domain is impregnated with a 30 mM aqueous solution of AMUPol. The spectrum was
acquired at 11.74 T and 8 kHz MAS. The methyl resonance at 15 ppm is from the EC domain, and was used
to measure the relaxation rates in this domain. The dashed line labelled HPC marks the expected position
of the corresponding HPC resonance. Here it is not observable due to the large PRE from the paramagnetic
dopant. Reproduced with permission from [468]. Copyright (2015) American Chemical Society.

impregnate the water-soluble HPC domain (B). The method was then used to determine the sizes of the EC

domains (A).

The 1H–13C CP spectrum of a doped sample acquired at 8 kHz MAS is shown in Figure 13.58. The

spectrum exhibits a well-resolved methyl peak at 15 ppm from the EC domain, which was used to monitor the

relaxation behaviour in this domain. Also shown in the spectrum is the expected position of the corresponding

resonance in the doped HPC domain. The peak is absent due to the fast relaxation due to the direct PRE

induced throughout this domain.

The longitudinal relaxation of the methyl 13C in the EC domain was monitored by applying a saturation–

recovery sequence following the 1H–13C CP transfer. The recovery curves were measured for the undoped

sample, and samples where the HPC domain was doped with the two radical solutions of 15 mN and 30

mM, and are shown in Figure 13.59 (a). The R-PRE enhancement curves for the two concentrations were

also calculated, and are shown in Figure 13.59 (b). The spin-di↵usion equation was solved for the two radical

concentrations using a di↵usion coe�cient of 0.8 nm2 cm�1, values of T surface
1 that were measured to be 19 ms

and 13 ms for the concentrations of 15 mM and 30 mM respectively, and a value of T core
1 that was extracted

from the saturation–recovery curve of the undoped sample. This left rmax as the only variable parameter in
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Figure 13.59: The build-up and relaxation enhancement factor curves due to the longitudinal R-PRE in the
EC domain of the composite EC/HPC cellulose film coating following a saturation–recovery sequence. The
curves in (a) show the build-up of the signal S (⌧) as a function of the recovery delay ⌧ of the sequence. The
curves are measured from the integral of the EC methyl peak at 15 ppm in the spectrum in Figure 13.58. Three
recovery curves are shown that were measured without paramagnetic doping S core(t) (grey), and following
impregnation with 15 mM AMUPol (blue) and 30 mM AMUPol (black). In (b) are shown the relaxation
enhancement curves "(⌧) = S doped(⌧)/S core(⌧). The dashed lines indicate the margin of error. Adapted with
permission from [468]. Copyright (2015) American Chemical Society.
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the di↵usion equation to be fitted. Following the fitting procedure the EC domain sizes dEC was found to

be 90 ± 10 nm and 70 ± 10 nm when calculated from the data of the samples doped at concentrations of 15

mM and 30 mM respectively [468]. Furthermore, using the EC/HPC volume ratio of 70/30 in these films and

assuming spherical HPC domains allowed the determination of the HPC domain sizes dHPC of 182 ± 10 nm

and 142 ± 10 nm respectively.

In summary this technique represents a powerful method for measuring domain sizes of multi-component

materials in situ. Although a simple spherical model for the EC domains sizes was used in this study,

the method can easily be extended to more sophisticated models for the shape. Therefore this approach

is expected to be widely applicable to other multi-component systems.

13.15 Key concepts

• Paramagnetic NMR is widely applicable to systems in solution or the solid state, including small

molecules, proteins, and solid materials.

• Both the paramagnetic centre and the system in which is it located profoundly change the paramagnetic

e↵ects that are measured, including the shifts, shift anisotropies, paramagnetic relaxation enhance-

ments, and inhomogeous broadening.

• Contact shifts provide short-range structural information about the system close to a paramagnetic

centre.

• Pseudo-contact shifts and dipolar-based paramagnetic relaxation enhancements provide long-range

structural information.

• The shift anisotropy generally contains long-range information from the spin-dipolar interaction, and

short-range information from the contact interaction.

• In small molecules both non-relativistic and spin-orbit coupling e↵ects can be important contributions

to the paramagnetic shifts, resulting in both contact and pseudo-contact contributions.

• In proteins contact shifts are important for nuclei separated from the paramagnetic centre by only a few

bonds. For resonances located outside the ‘blind sphere’ the shifts are dominated by pseudo-contact
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shifts.

• In solid materials, such as battery electrodes, the contact interaction provides information about the

bonding and electron transfer between the paramagnetic centre and the observed nucleus. The shift

anisotropies are dominated by the spin-dipolar interaction, but may also have an important part due to

the contact interaction.

• The paramagnetic relaxation enhancement extends over a range of the order of 10–20 Å, but when com-

bined with spin di↵usion can be used to probe length scales of the order nm–µm in multi-component

materials.
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Chapter 14

Concluding remarks and the future of

paramagnetic NMR

To conclude this review we summarize the current state of the art in the theory and practice of paramagnetic

NMR spectroscopy, as described in the earlier chapters, and outline some of the ongoing research in these

areas. In recent years the amount of activity in development of theory and methods in the field of paramag-

netic NMR spectroscopy has increased considerably, as has the complexity of the systems under study. The

field is poised for some very exciting developments in the future, in the development of both the theory and

methods, and in extending the fields of application. Improved understanding of the spin physics of these

systems will also be important as the applications of dynamic nuclear polarization to an increasingly large

range of systems grow, exploiting both organic and inorganic radicals.

Solution NMR studies have been conducted for several years, both on small molecules and large para-

magnetic proteins. Whilst theoretical formalisms for the paramagnetic shielding tensor have also been

known for many years, it has not been until relatively recently that completely general formalisms have

been developed, such as those by Pennanen and Vaara, and van den Heuvel and Soncini (see chapters

3–6.) These models have, in turn, opened the door to calculations of paramagnetic shielding tensors due

to first-row d-block metal-ions from first principles using quantum chemistry and DFT, which incorporate

SO coupling e↵ects on the hyperfine, g-, and ZFS tensors. In addition the PREs due to these metal ions can
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be interpreted under di↵erent experimental conditions and motional dynamics. These models have increased

in sophistication from incorporating only a phenomenological treatment of electronic relaxation (chapter 8)

to explicit treatments (chapter 9).

Studies of paramagnetic proteins in solution have also conducted for many years, and have reached a high

level of sophistication in terms of both the methods used, and the interpretation and use of the paramagnetic

e↵ects to obtain structural information. In the latter case it has been demonstrated that PCSs, PREs, RDCs,

and CCRs can all be used to supplement other distance restraints in order to obtain increasingly more accurate

and precise structures (chapters 12 and 13).

In the field of solid-state NMR recent progress has been substantial. The systems being studied today

cover a diverse range of fields including battery materials, surface catalysts, inorganic phosphors, pharma-

ceutical systems, and metalloproteins (chapter 13). The ability to study systems of increasing complexity,

including compositional disorder, has been enabled by the current drive in developing new solid-state NMR

methods to achieve broadband excitation and separation of the di↵erent available NMR parameters (chapters

11 and 12). The theory of the paramagnetic shielding tensor for first-row d-block metal-ions in the solid

state has evolved in parallel to that in solution (chapter 7). Initially these methods included the e↵ects of

SO coupling and magnetic ordering in an empirical way, but more recently these properties have also been

calculated from first principles. For example, the data obtained from ab-initio calculations, which generate 0

K hyperfine (Fermi contact and spin dipolar) information, can be used to predict room-temperature properties

via a variety of methods, from the use of spin-only values to calculate magnetic susceptibilities and the direct

use of experimental data such as magnetic susceptibility curves, to direct calculations of magnetic couplings

and their use in mean field (Ising) models or Monte Carlo simulations [541], the latter proving extremely

useful in disordered systems. Although by no means routine, it is now relatively straightforward to rationalize

the spectra of paramagnetic materials, starting by using the often intuitive Goodenough-Kanamori rules to

predict the size of the Fermi contact shifts from the nature of the overlap between metal and ligand orbitals.

The shifts of the individual M-L-N sites (M = paramagnetic metal, L = ligand, N = nucleus under observation)

can then be readily calculated from first principles calculations. Here, the use of a clever “flipping” method

allows the contributions from di↵erent metals (and pathways) to be easily separated [54]. Although the

calculations are not exact, with errors coming from the choice of functionals used and the scaling factors

employed to convert 0 K data into the paramagnetic regime, they provide considerable insight into the signs
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and magnitudes of the shifts. Given the inherent assumptions, further inclusion of additional terms (such as

the pseudocontact shifts/spin-orbit couplings) are often not warranted, unless examining systems with very

small Fermi-contact shifts. This can arise in cases where the paramagnetic ions are more than two bonds

away from the NMR nucleus, in systems with competing and opposing Fermi contact shift contributions, or

where the shifts are inherently small due to very weak and largely ionic bonds.

In comparison with solution NMR the PRE in the solid state is poorly understood, and this has hindered

the use of the PRE for extracting structural and dynamic information. Similarly, BMS e↵ects in solid-state

NMR spectra have been studied, but have yet to be routinely exploited, for example to obtain information

on crystallite shape and packing (chapter 10). They have been shown to play an extremely important role

in determining the shifts of resonances in solid samples, particularly those with unusual geometries such as

the planar geometries of pouch cell batteries [154]. However it remains a challenge to model the e↵ects

of magnetic inhomogeneities on, for example, sideband intensities in MAS NMR. Nonetheless, analysis

of the intensities of the sideband manifolds provides a relatively straightforward way to extract structural

information. Sometimes the information can be extremely simple to extract, for example, the sign of the

asymmetry of the tensor being used to determine whether Li and Na ions are located within Li/Na or

transition-metal layers of (Li/Na)MO2 battery electrode materials [54, 541].

The interpretation of the shifts due to lanthanides and actinides is less advanced, with the former generally

relying on theories developed in the 1970s by Golding and Halton, and by Bleaney (chapter 6). Because the

ratio of the pseudo-contact to the Fermi-contact shift is generally larger than for transition metal ions, it is

often more straightforward to use the PCS to extract structural information. Despite some recent progress in

calculations of paramagnetic shifts of actinide complexes [91, 92, 212], actinide NMR is at a relatively early

stage of development, with the experimental NMR being hampered by practical considerations (beyond those

of the paramagnetism) associated with the radioactivity and toxicity of the metal ions.

The broad scope of the application of paramagnetic NMR to a number of systems in chemistry, materials

science, and biology has been due to the advances in all these di↵erent areas of theory and application. In

particular developments in paramagnetic solid-state NMR have opened up the field to systems in chemistry

and materials science where complex compositional disorder is a key component of the properties of many

materials. Further developments in NMR methods, calculations of paramagnetic shift tensor calculations and

PREs, and their implementation in extracting structural and dynamic information will further increase the
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ability of NMR to study more complex systems in a wider range of disciplines.
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Appendix A

The Wigner–Eckart theorem

The appendices in this review make extensive use of the evaluation of the matrix elements of spin operators in

manifolds of particular spin states. This evaluation is greatly facilitated by use of the Wigner–Eckart theorem,

which gives an expression for the matrix element of the irreducible spherical tensor operator of rank k and

order q, T̂kq, that connects the states |J0M0i and |JMi, where J and J0 are the (spin, orbital, or total) angular

momentum quantum numbers, and M and M0 are the corresponding azimuthal quantum numbers. The version

of the theorem used here employs the convention of Brink and Satchler [190], but not, for example, that of

Edmonds [226]. The expression can be given either in terms of the Clebsch–Gordan coe�cient hJM|J0kM0qi

or the Wigner 3 j symbol as:

D

JM
�

�

�T̂kq
�

�

� J0M0
E

=(�1)2k
D

J
�

�

�

�

�

�T̂k
�

�

�

�

�

� J0
E

⌦

JM|J0kM0q
↵

(A.1)

=(�1)J0+k+M
D

J
�

�

�

�

�

�T̂k
�

�

�

�

�

� J0
E p

2J + 1

0

B

B

B

B

B

B

B

B

B

@

J J0 k

�M M0 q

1

C

C

C

C

C

C

C

C

C

A

. (A.2)

The theorem e↵ectively separates the matrix elements into a part that is orientation-independent, and contains

all the physics of the situation, and a second part that contains all the information pertaining to the orientation

of the system. On the first line the Wigner–Eckart theorem is quoted in terms of the Clebsch–Gordan

coe�cient hJM|J0kM0qi. The quantity
D

J
�

�

�

�

�

�T̂k
�

�

�

�

�

� J0
E

is a reduced matrix element of the rank-k tensor T̂k,

which depends only on the rank k of the tensor, and the quantum numbers J and J0 that define the sizes of
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the angular momenta of the states. It therefore contains all the information about the system independent

of orientation. The orientation dependence of the total matrix elements
D

JM
�

�

�T̂kq
�

�

� J0M0
E

depends on the

magnetic quantum numbers M and M0, and the order of the tensor q, which information is contained entirely

in the Clebsch–Gordan coe�cient. On the second line is given the same expression in terms of the Wigner

3 j symbol, which is the quantity in parentheses. The second expression is equivalent to the first, with the

orientation dependence now being encoded in the 3 j symbol.

A.1 The projection theorem

A special case of the Wigner–Eckart theorem is the projection theorem for vector operators, which pertains

to the matrix elements of irreducible spherical tensor operators of rank one that are evaluated between states

with the same value of J. For a vector operator V̂ the projection theorem is [190]

D

JM
�

�

�V̂
�

�

� JM0
E

=
1

J(J + 1)

⌧

JM
�

�

�

�

Ĵ
⇣

Ĵ · V̂
⌘

�

�

�

�

JM0
�

(A.3)

=aJ(V)
D

JM
�

�

�Ĵ
�

�

� JM0
E

, (A.4)

where aJ(V) is a scalar coe�cient that depends on the reduced matrix element of V̂ :

aJ(V) =

D

J
�

�

�

�

�

�V̂
�

�

�

�

�

� J
E

p
J(J + 1)

. (A.5)

This theorem can be interpreted as follows using a classical vector model. We note that the classical equivalent

of the operator in Equation A.3, J (J · V ) /(J(J + 1)), is simply the projection of V along the unit vector

J/
p

J(J + 1). According to the vector model V is precessing about J , with the result that the component

of V that is perpendicular to J averages to zero, leaving only the component that is parallel to J . In the

quantum mechanical picture the vector operator V̂ evolves under the action of a Hamiltonian defined by Ĵ .

The parts of the matrix elements originating from V̂ that do not commute with Ĵ then average to zero.
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A.1.1 Magnetic moments due to ions subject to Russell–Saunders spin-orbit cou-

pling

The projection theorem for vector operators is important when considering the electronic magnetic moment

and the corresponding Zeeman interaction of electronic spins subject to SO coupling. In the case where both

S and L are non zero, the properties of the electrons are defined by the total angular momentum J , which is

given by the following expression in the Russell–Saunders coupling scheme:

J = L + S. (A.6)

The total magnetic moment µJ is the sum of the electronic orbital and spin magnetic moments µL and µS :

µJ =µL + µS (A.7)

= � µB (L + geS) . (A.8)

Clearly J and µJ are not collinear. However we can apply the projection theorem to the vector operators

corresponding to the total angular momentum and magnetic moment, Ĵ and µ̂J , which relates the matrix

elements of the two as follows:

⌦

JM |µ̂J | JM0
↵

= �µBgJ
D

JM
�

�

�Ĵ
�

�

� JM0
E

, (A.9)

where gJ is the Landé g-factor. It is for this reason that the magnetic moment operator m̂, as defined by van

den Heuvel and Soncini via the expression �B0 · m̂, is taken to be m̂ = �µBgJĴ , and the electronic Zeeman

Hamiltonian is

ĤZ = µBgJB0 · Ĵ . (A.10)
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Appendix B

Relativistic corrections to the hyperfine

coupling tensor

In this appendix we give expressions for the NR and SO contributions to the hyperfine coupling tensor that

may be used in quantum-chemical and DFT calculations. The treatment here follows that of Arbuznikov et

al., who adopt the SI convention for atomic units, and extends the presentation of the hyperfine tensor in

section 4.1 [210].

B.1 The vector potential

In atomic units, the vector potential A(A)(ri) describing the interaction between a point-like nucleus A at

position RA and an electron i at position ri is given by:

A(A)(ri) = ↵2�(A)
I

Î (A) ⇥ riA

r3
iA

, (B.1)

where Î (A) and �(A)
I are the nuclear spin operator and gyromagnetic ratio of nucleus A, and riA = ri � rA is

the position of the electron i relative to the nucleus.
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B.2 The non-relativistic hyperfine interaction

The lowest-order contributions to the hyperfine interaction Hamiltonian are the Fermi-contact and spin-

dipolar terms, which were discussed in section 2.8, and are of order O(↵2) in the fine-structure constant. The

corresponding hyperfine interaction Hamiltonians Ĥ(A)
FC and Ĥ(A)

SD describing the coupling between nucleus A

and all the electrons i have the following expressions in atomic units:

Ĥ(A)
FC =

4⇡
3
↵2ge�

(A)
I

X

i

�(riA)ŝi · Î (A), (B.2)

Ĥ(A)
SD =

1
2
↵2ge�

(A)
I

X

i

ŝi ·
3riAriA � r2

iA1

r5
iA

· Î (A). (B.3)

If we expand the total electronic wavefunction as a superposition of molecular orbitals |✏i

| i =
X

✏

⇣

c↵✏ |✏i + c�✏ |✏i
⌘

, (B.4)

where c↵✏ and c�✏ are the coe�cients giving the ↵ and � spin in each orbital, we obtain the following expressions

for the Fermi-contact coupling constant AFC and spin-dipolar coupling tensor ASD
uv :

AFC =
4⇡
3
↵2ge�

(A)
I

1
2S

X

✏,⌧

P↵��
✏⌧ h✏ |�(rA)| ⌧i , (B.5)

ASD
uv =

1
2
↵2ge�

(A)
I

1
2S

X

✏,⌧

P↵��
✏⌧

*

✏

�

�

�

�

�

�

3rA,urA,v � r2
A�uv

r5
A

�

�

�

�

�

�

⌧

+

. (B.6)

Here P↵��
✏⌧ = c✏↵c↵⌧ � c✏�c

�
⌧ is the spin density matrix.

B.3 The spin-orbit-coupling correction to the hyperfine interaction

We consider second-order perturbation corrections to the hyperfine interaction from the one- and two-electron

SO interaction with Hamiltonian ĤSO:

ĤSO =
1
4
↵2ge

2

6

6

6

6

6

6

4

X

B

ZB

X

i

ŝi · l̂iB

r3
iB
�
0

X

i, j

⇣

ŝi + 2ŝ j
⌘

· l̂i j

r3
i j

3

7

7

7

7

7

7

5

. (B.7)
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The first term represents the one-electron interaction, and comprises a sum over all nuclei B, which have

charges ZB, and electrons i. The second term represents the two-electron SO interaction, comprises a sum

over pairs of electrons i and j, and contains both the spin-same orbit and spin-other orbit parts. The two

operators l̂iB and l̂i j are the orbital angular momentum operators of electron i with respect to the positions of

the nucleus B and a second electron j respectively. They take the forms:

l̂iB = (ri �RB) ⇥
⇣

�ir̂i + A(ri)
⌘

, (B.8)

l̂i j =
⇣

ri �R j
⌘

⇥
⇣

�ir̂i + A(ri)
⌘

, (B.9)

where r̂i is the gradient operator for electron i.

The field-independent parts of the one- and two-electron orbital angular momentum operators depend on

r̂i. These terms combine with the Hamiltonian Ĥ(A)
PSO representing the paramagnetic spin–orbital interaction

(PSO) of nucleus A

Ĥ(A)
PSO = ↵

2�(A)
I

X

i

l̂iA

r3
iA
· Î (A), (B.10)

to give the following one-electron ASO-I(1)
uv and two-electron contributions ASO-I(2)

uv to the hyperfine tensor:

ASO-I(1)
uv + ASO-I(2)

uv =
1
2
↵4ge�

(A)
I

1
2S

2

6

6

6

6

6

6

4

occ(↵)
X

k

virt(↵)
X

a

D

k↵
�

�

�ĥSO
u

�

�

� a↵
E D

a↵
�

�

�l̂A,v/r3
A

�

�

� k↵
E

Ek↵ � Ea↵ � �Exc
k!a

�
occ(�)
X

k

virt(�)
X

a

D

k�
�

�

�ĥSO
u

�

�

� a�
E D

a�
�

�

�l̂A,v/r3
A

�

�

� k�
E

Ek� � Ea� � �Exc
k!a

3

7

7

7

7

7

7

5

. (B.11)

Here the sums are over the occupied orbitals k, which are denoted |k↵i and |k�i for ↵ and � electrons, and over

the virtual orbitals a, denoted |a↵i and |a�i. These orbitals have energies Ek↵, Ek�, Ea↵, and Ea� respectively.

The energy terms �Exc
k!a are the Malkin correction factors, which are used as semi-empirical scalings of

the energy denominators when performing DFT [542]. The operator ĥSO
u denotes the spatial part of the SO

coupling Hamiltonian in Equation B.7. We note that both the SO-I contributions to the hyperfine tensor are

of order O(↵4), as expected, and that both have spherical rank contributions of 0, 1, and 2.

The contributions of the magnetic field to the orbital angular momenta are given by the terms containing

the vector potential. These give one- and two-electron corrections to the hyperfine Hamiltonian, which are
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collected together in Ĥ(A)
SO :

Ĥ(A)
SO =

1
4
↵2ge

2

6

6

6

6

6

6

4

X

B

ZB

X

i

ŝi ·
(riA · riB)1 � riAriB

r3
iAr3

iB
· Î (A) �

0
X

i, j

⇣

ŝi + 2ŝ j
⌘

· (riA · ri j)1 � riAri j

r3
iAr3

i j
· Î (A)

3

7

7

7

7

7

7

5

(B.12)

In the second-order perturbation expansion Equation B.12 gives a one-electron contribution ASO-II(1)
uv and a

two-electron part ASO-II(2)
uv . The former is given by

ASO-II(1)
uv =

1
4
↵4ge�

(A)
I

1
2S

X

✏,⌧

P↵��
✏⌧

*

✏

�

�

�

�

�

�

�

X

B

ZB
�uv(rA · rB) � rA,urB,v

r3
Ar3

B

�

�

�

�

�

�

�

⌧

+

, (B.13)

and the latter is expected to be negligible within the validity of perturbation theory. We note that the SO-II

contribution is of order O(↵4), and has parts of spherical rank 0, 1, and 2.

The total SO coupling correction to the hyperfine coupling tensor is therefore the sum of the SO-I and

SO-II parts:

ASO = ASO-I(1) +ASO-I(2) +ASO-II(1), (B.14)

which we normally formulate in the following way to aid comparison with experiment:

ASO = AFC,21 +ASD,2 +Aas. (B.15)
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Appendix C

The Pennanen–Vaara formalism for the

paramagnetic shift

We now describe the Pennanen–Vaara theory for the paramagnetic chemical shift [39], which is an important

recent contribution to the description of the chemical shifts of systems with SO coupling and an arbitrary

electronic spin multiplicity 2S + 1, that can be readily applied to ab initio calculations. The initial part of

the derivation gives an exact expression for the chemical shielding, is valid for an arbitrary electronic spin S

under high-temperature conditions, and makes no assumptions about the relative orientations of the tensors

in the EPR Hamiltonian. Following this derivation, a number of assumptions are applied in order to make

further progress. These assumptions are (i) that the e↵ective electronic spin S is equal to the real spin of the

ion, (ii) that the SO coupling is weak in comparison to the ligand-field interaction, (iii) that the spin system

can be described by the EPR Hamiltonian in Equation 4.36, and (iv) that we need only consider contributions

from the ground state spin manifold, i.e. there are no thermally-accessible excited states. Assumption (iii)

e↵ectively means that the final expression is only exact for electronic spins up to S = 1 and is only an

approximation for larger spins, and all three assumptions limit the theory to the application to 3d metal ions.

Nevertheless the theory has been applied successfully to 3d complexes with S > 1 [543].

We start by noting that we can model the spin system as a cloud of electrons which establish a thermal

equilibrium over their states according to the Boltzmann distribution. The energies of these states are modified
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by the presence of the external perturbations of the nuclear magnetic moment and the applied magnetic field,

and so we can write the energy of state |ni En as a Taylor series in the components of Î and B0:

En = E(0,0)
n +

X

↵

E(↵,0)
n B0,↵ +

X



E(0,)
n Î +

X

↵,

E(↵,)
n B0,↵ Î +

1
2

X

↵,�

E(↵�,0)
n B0,↵B0,� + . . . . (C.1)

In Equation C.1 E(0,0)
n is the part of the energy that is independent of B0 and Î , and the coe�cients E(↵�...,�...)

n

are given by

E(↵�...,�...)
n =

0

B

B

B

B

@

@N En

@B0,↵@B0,� . . . @Î@Î�

1

C

C

C

C

A

B0=0,Î=0

, (C.2)

where N is the total number of times that En is di↵erentiated. Therefore the coe�cients are calculated

by di↵erentiating En a certain number of times with respect to the components of the magnetic field and

nuclear spin, and then setting those quantities equal to zero. The significance of the terms in the Taylor

series can be appreciated by referring to the EPR Hamiltonian. For example the contribution E(0,0)
n can be

related directly to the ZFS interaction, which is independent of both B0 and Î . The term
P

↵ E(↵,0)
n B0,↵

represents the energy contribution from the electronic Zeeman interaction as both elements are proportional

to the components of the field and are independent of the nuclear spin. In addition the terms
P

 E(0,)
n Î and

P

↵, E(↵,)
n B0,↵ Î originate from the hyperfine interaction, and the nuclear Zeeman and chemical shielding

interactions respectively.

As we have already discussed, the electron relaxation in an open-shell (i.e. paramagnetic) system occurs

on a timescale that is several orders of magnitude shorter than nuclear relaxation, and so at all relevant times

the electron cloud is at thermal equilibrium, and the system is described by a Boltzmann distribution over the

energy levels. Using this idea Moon and Patchkovskii stated that the chemical shielding can be determined

from the part of the Boltzmann average of the energy that is linear in the applied field and the nuclear spin:

~�
X

i j

B0,i�i j Î j =

P

n En exp(��Wn)
P

n exp(��Wn)
, (C.3)

where � = 1/kT . Note that we distinguish between the energies that are averaged in the distribution En, and

the energies that are used to compute the Boltzmann factors Wn. This is because the transitions that establish

the thermal equilibrium of the electron cloud occur on a shorter timescale than those from which we acquire

the NMR spectrum, and consequently we may omit all the terms from Wn that have a dependence on Î . We
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can therefore write Wn as a Taylor series in B0 only:

Wn = W (0,0)
n +

X

↵

W (↵,0)
n B0,↵ +

1
2

X

↵,�

W (↵�,0)
n B0,↵B0,� + . . . , (C.4)

i.e. W (↵...,...)
n = 0 for  , 0. Because the ZFS is the largest term in the EPR Hamiltonian, by far the largest

term in the expansion of Wn is W (0,0)
n , and so we can write the exponential Boltzmann factors as

exp(��Wn) ⇡ exp(��W (0,0)
n )

8
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>
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. (C.5)

Substituting the expansions for En and exp(��Wn) into Equation C.3 and multiplying both sides by the

denominator we obtain the following unwieldy expression:

~�
X

i j

B0,i�i j Î j

X

n

exp(��W (0,0)
n )
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. (C.6)

We obtain the expression for the chemical shielding by collecting terms of the same order in B0,i and Î j. This

gives

�i j =
1
~�

1
Q0

X

n

exp(��W (0,0)
n )

n

E(i, j)
n � �W (i,0)

n E(0, j)
n

o

(C.7)

=
1
~�

nD

Ê(i, j)
E

0
� �

D

Ŵ (i,0)Ê(0, j)
E

0

o

, (C.8)
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where Q0 is the partition function at zero field and nuclear magnetic moment,

Q0 =
X

n

exp
⇣

��W (0,0)
n

⌘

, (C.9)

Ê and Ŵ represent the Hamiltonian including and excluding terms depending on the nuclear magnetic

moment respectively, and the notation
D

Û
E

0
refers to a Boltzmann average of the expectation value of the

operator Û carried out at zero field and nuclear magnetic moment:

D

Û
E

0
=

Tr
h

exp
⇣

��Ŵ (0,0)
⌘

Û
i

Q0
. (C.10)

So far this expression is exact, but unhelpful. In order to gain more insight into the factors a↵ecting the

chemical shielding we must now make the approximations (i)–(iv) above. The discrimination between Ê and

Ŵ is no longer needed, having served its purpose, and we can associate both with the EPR Hamiltonian in

Equation 4.36. The derivatives are given by

Ê(i, j) = � ~�
⇣

�i j � �orb
i j

⌘

1̂, (C.11)

Ŵ (i,0) =µB

X

k

gikŜ k, (C.12)

Ê(0, j) =
X

l

Ŝ lAl j. (C.13)

Substituting these into the expression for �i j in Equation C.8 we obtain the Pennanen–Vaara formula for the

chemical shielding:

�i j = �
orb
i j �

µB

~�kT

X

kl

gik
D

Ŝ kŜ l
E

0
Al j, (C.14)

which can be written as

� = �orb � µB

~�kT
g ·

D

ŜŜ
E

0
·A. (C.15)

The chemical shielding is the sum of the temperature-independent orbital shielding and the temperature-

dependent paramagnetic shielding, which is given by

�S = � µB

~�kT
g ·

D

ŜŜ
E

0
·A. (C.16)
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Equation C.16 is the main result of the Pennanen–Vaara theory, in which the paramagnetic shielding

tensor is the product of three matrices, namely the g-tensor, hyperfine tensor, and the dyadic
D

ŜŜ
E

0
. The

information from the g- and hyperfine tensors is encoded directly, in an analogous way to that for the shielding

for spin-only systems we obtained in chapter 3. This is because the g-tensor originates from the electronic

Zeeman interaction, which is proportional to the applied field, and the hyperfine interaction is proportional

to the nuclear spin. The ZFS tensor does not enter the expression directly, because it has no direct e↵ect on

the way the electron cloud is modified by the presence of the magnetic field or nuclear spins, but it is present

indirectly in the Boltzmann average because it is responsible for the splittings of the energy levels at zero

field and zero nuclear magnetic moment. The dyadic tensor
D

ŜŜ
E

0
comprises both an isotropic part and a

symmetric anisotropy, but no antisymmetric part. It is worth noting that the PAF of
D

ŜŜ
E

0
coincides with the

PAF of the ZFS tensor.

One consequence of the splitting of the electronic energy levels at zero field is to introduce a strong

non-Curie temperature dependence in the shielding tensor. This is more easily appreciated by expanding the

dyadic
D

ŜŜ
E

0
as a Taylor series in � = 1/kT :

D

Ŝ iŜ j
E

0
=

1
2S + 1

Tr
2

6

6

6

6

6

4

Ŝ iŜ j

0

B

B

B

B

B

@

1 � �
X

kl

Ŝ kDklŜ l

1

C

C

C

C

C

A

3

7

7

7

7

7

5

+ O(�2) (C.17)

=
1

2S + 1

X

n

D

n
�

�

�Ŝ iŜ j
�

�

� n
E

� �

2S + 1

X

kl

Dkl

X

n

D

n
�

�

�Ŝ iŜ jŜ kŜ l
�

�

� n
E

+ O(�2). (C.18)

The first-order term is simply [183]
S (S + 1)

3
�i j, (C.19)

which is the familiar factor we encountered for spin-only systems. The corresponding first-order term in the

shielding tensor is therefore

�S = �µBS (S + 1)
3~�kT

g ·A. (C.20)

Incidentally this is an exact expression for the shielding with zero ZFS, as was originally derived by Moon

and Patchkovskii [38]. Furthermore, if we set the g-tensor equal to ge, we obtain the spin-only expression

in Equation 3.70. In the presence of the ZFS interaction the Boltzmann average at zero field and nuclear

magnetic moment is computed with the states |ni that are equal to the eigenstates of the ZFS Hamiltonian,
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which can be written as linear combinations of the eigenstates of the Zeeman Hamiltonian |MS i:

|ni =
X

MS

cMS |MS i. (C.21)

The second-order term is the dyadic is more complex, but can be shown after some tedious algebra to yield

� �

2S + 1

X

kl

Dkl

X

n

D

n
�

�

�Ŝ iŜ jŜ kŜ l
�

�

� n
E

= � �
30

Di jS (S + 1)(2S � 1)(2S + 3). (C.22)

Note that this term is equal to zero if S < 1, which is a condition for the absence of the ZFS interaction. The

total paramagnetic shielding tensor up to second order in � is therefore

�S ⇡ �µBS (S + 1)
3~�kT

g ·A + µBS (S + 1)(2S � 1)(2S + 3)
30~�(kT )2 g ·D ·A, (C.23)

which is identical to the expression originally derived by Bleaney [61]. The deviation from the Curie

behaviour can be clearly seen in the second term, which varies as 1/T 2 and is of opposite sign to the first-order

term.

Finally we note that, although we could not in general apply the high-field approximation to the EPR

Hamiltonian because the ZFS may be the dominant interaction, we can apply it more safely for typical 3d

transition-metal complexes as the interaction due to the shielding tensor �S is dominated by the nuclear

Zeeman interaction.

C.0.1 The terms in the paramagnetic shift tensor

We can break down the expression for the paramagnetic shielding tensor in Equation C.16 into a sum of

individual cross terms by substituting in the expressions for the g-tensor in Equations 4.37, 4.38, and 4.39,

and the hyperfine tensor in Equations 4.40, 4.41, and 4.42. The resulting terms are listed in Table C.1, up to

fourth order in the fine-structure constant O(↵4). Truncating at O(↵4) means that we retain only the terms that

contain at most one SO coupling term in the product g ·A. For example term 1 geAFC is the product of two

NR parts of the g- and hyperfine tensors ge and AFC which are O(↵0) and O(↵2) respectively, and so is O(↵2)

overall, whereas term 3 geAFC,2 is the product of the NR part of g with an SO part of A, and so is O(↵4)

overall. Terms containing the product of two SO terms, such as �g · ASD,2 are neglected. Also included
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Term Type Order Without ZFS With ZFS
Expression Spherical tensor rank Expression Spherical tensor rank

0 orb
O(↵2)

�orb 0, 1, 2 �orb 0, 1, 2
1 con geAFC 0 geAFC

D

ŜŜ
E

0
0, 2

2 dip geASD 2 ge
D

ŜŜ
E

0
·ASD 0, 1, 2

3 con

O(↵4)

geAFC,2 0 geAFC,2
D

ŜŜ
E

0
0, 2

4 dip geASD,2 2 ge
D

ŜŜ
E

0
·ASD,2 0, 1, 2

5 as geAas 1 ge
D

ŜŜ
E

0
·Aas 1, 2

6 con �gisoAFC 0 �gisoAFC
D

ŜŜ
E

0
0, 2

7 dip �gisoASD 2 �giso
D

ŜŜ
E

0
·ASD 0, 1, 2

8 con AFC�g 1, 2 AFC�g ·
D

ŜŜ
E

0
0, 1, 2

9 dip �g ·ASD 0, 1, 2 �g ·
D

ŜŜ
E

0
·ASD 0, 1, 2

Table C.1: List of the terms arising in the Pennanen–Vaara expression for the paramagnetic shielding. The
terms are numbered 1–9, with their assigned terms (‘orb’ (orbital), ‘con’ (contact), ‘dip’ (dipolar), and ‘as’
(antisymmetric)) and the irreducible spherical tensor ranks with and without the ZFS. Adapted from Pennanen
and Vaara [39].

in Table C.1 is an assignment of the nine paramagnetic terms according to the form of hyperfine interaction

from which they originate, i.e. a contact (con), dipolar (dip), or antisymmetric (as) term. This distinction

is extremely important in the interpretation of paramagnetic shifts in terms of the structural and electronic

properties of the system, the contact terms providing information about through-bond transfer of unpaired

electron density into the nuclear s-orbitals, and the dipolar terms providing information about the positions

of metal ions with respect to the nucleus.
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Appendix D

Derivation of the paramagnetic shielding

tensor for arbitrary spin multiplicity to

second order

This appendix details the calculation of the paramagnetic chemical shielding tensor up to second order in

1/(kT ) in terms of the tensor parameters in the EPR Hamiltonian generalised for arbitrary spin multiplicity,

starting from both the Pennanen–Vaara and van den Heuvel–Soncini formulae. The Pennanen–Vaara expres-

sion in terms of the electron magnetic moment m̂ and hyperfine field F̂ operators can be expanded to second

order to give:

�S
i j =

�

~�I

D

m̂iF̂ j
E

0
(D.1)

=
1
~�I

2

6

6

6

6

6

6

4

�
TrS

⇣

m̂iF̂ j
⌘

2S + 1
� �2

TrS
⇣

m̂iF̂ jĤ0
⌘

2S + 1

3

7

7

7

7

7

7

5

+ O(�3). (D.2)

We denote the trace of a product operator over the entire direct product spin space as TrS , and the trace

of a one-spin operator over the manifold of states pertaining to that spin simply as Tr. Substituting in the
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expressions for m̂, F̂ , and Ĥ0 gives the following expression

�S
i j = �

µB

~�I

2

6

6

6

6

6

6

4

�

2S + 1

X

kk0qq0
(�1)q+q0gkq,iAk0q0, jTrS

⇣

Ŝ k�qŜ k0�q0
⌘

� �2

2S + 1

X

kk0k00qq0q00
(�1)q+q0+q00gkq,iAk0q0, jDk00q00TrS

⇣

Ŝ k�qŜ k0�q0 Ŝ k00�q00
⌘

3

7

7

7

7

7

7

5

+ O(�3), (D.3)

where the first-order shielding contains terms that are proportional to the trace of the product of two irre-

ducible spherical tensor spin operators, and the second-order shielding contains terms proportional to the

trace of the product of three such operators.

The van den Heuvel–Soncini expression, when expanded to second-order in 1/(kT ), is equal to

�S
i j =

1
~�I

*

Z �

0
dw exp(wĤ0)m̂i exp(�wĤ0)F̂ j

+

0
(D.4)

=
1
~�I

2

6

6

6

6

6

6

4

�
TrS

⇣

m̂iF̂ j
⌘

2S + 1
� �2

TrS
⇣

m̂iF̂ jĤ0
⌘

2S + 1
+
�2

2

TrS
⇣h

m̂i, F̂ j
i

Ĥ0
⌘

2S + 1

3

7

7

7

7

7

7

5

+ O(�3), (D.5)

which is equal to the Pennanen–Vaara expression with the addition of a second-order term that depends on

the trace TrS
⇣h

m̂i, F̂ j
i

Ĥ0
⌘

. Substituting in the EPR tensor parameters results in the following expression:

�S
i j = �

µB

~�I

2

6

6

6

6

6

6

4

�

2S + 1

X

kk0qq0
(�1)q+q0gkq,iAk0q0, jTrS

⇣

Ŝ k�qŜ k0�q0
⌘

� �2

2S + 1

X

kk0k00qq0q00
(�1)q+q0+q00gkq,iAk0q0, jDk00q00TrS

⇣

Ŝ k�qŜ k0�q0 Ŝ k00�q00
⌘

+
�2

2(2S + 1)

X

kk0k00qq0q00
(�1)q+q0+q00gkq,iAk0q0, jDk00q00TrS

⇣h

Ŝ k�q, Ŝ k0�q0
i

Ŝ k00�q00
⌘

3

7

7

7

7

7

7

5

+ O(�3). (D.6)

Both expressions are the same to first order in 1/(kT ), and can be computed by calculating the trace of

Ŝ k�qŜ k0�q0 . This can be done easily by using the Wigner–Eckart theorem for the matrix elements of irreducible
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spherical tensor operators [190]. The trace is therefore

TrS
⇣

Ŝ k�qŜ k0�q0
⌘

=
X

MM0

D

S M
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�Ŝ k�q
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(D.8)

where the arrays in parentheses are Wigner 3 j symbols. We have written the product of the phase factors from

the two matrix elements as (�1)S+k+M(�1)S+k0+M0 = (�1)2S+k+k0+M+M0 . We could equally well have written

it as (�1)S+k+M(�1)�S�k0�M0 = (�1)k�k0+M�M0 , and then simplified by noting that, from the symmetry of the

first Wigner 3 j symbol, the only non-zero terms in the sum satisfy M � M0 = �q. The final phase factor is

therefore (�1)k�k0�q. The expression can now be simplified by using the orthogonality properties of the 3 j

symbols, and we obtain:

TrS
⇣

Ŝ k�qŜ k0�q0
⌘
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(D.9)

=(�1)q
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!

D

S
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�
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�Ŝ k
�
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�

� S
E2
�kk0�q�q0 . (D.10)

The operators Ŝ k�q therefore form an orthogonal basis set. The resulting expression can now be used to give

the first-order paramagnetic chemical shielding, which is the same for both the Pennanen–Vaara and van den

Heuvel–Soncini formalisms, and is given in Equation 6.27.

The second-order shielding tensor in both formalisms contains a trace of the product of three irreducible
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spherical tensor spin operators. This trace can also be computed using the Wigner–Eckart theorem:
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. (D.11)

To go to the last line, we have used the fact that the sum of the product of three 3 j symbols is equal to the

product of a Wigner 6 j symbol (the array in braces) and a 3 j symbol. The computation of this trace completes

the expansion of the Pennanen–Vaara expression to 1/(kT )2.

All that remains is to evaluate the final term in the van den Heuvel–Soncini formula, which depends on

the following trace:

TrS
⇣h

Ŝ k�q, Ŝ k0�q0
i

Ŝ k00�q00
⌘

= TrS
⇣

Ŝ k�qŜ k0�q0 Ŝ k00�q00
⌘

� TrS
⇣

Ŝ k0�q0 Ŝ k�qŜ k00�q00
⌘

. (D.12)

We have already computed the first term on the right-hand side of Equation D.12, and the second term is

easily deduced by swapping the indices kq and k0q0. This is done simply by swapping the first and second

columns in each of the 3 j and 6 j symbols in Equation D.11; the former acquires a phase factor of (�1)k+k0+k00

under such an operation, whilst the latter is invariant. We therefore obtain

TrS
⇣

Ŝ k0�q0 Ŝ k�qŜ k00�q00
⌘

= (�1)k+k0+k00TrS
⇣

Ŝ k�qŜ k0�q0 Ŝ k00�q00
⌘

. (D.13)

We have seen that, in order to satisfy the constraints of time reversal of the Hamiltonian, the spin operators

in both the Zeeman and hyperfine terms must be of odd rank, i.e. k and k0 must be odd, and the ZFS spin

operators must be of even rank, i.e. k00 must be even. Therefore k + k0 + k00 is an even number, and the trace
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in Equation D.12 must be zero:

TrS
⇣h

Ŝ k�q, Ŝ k0�q0
i

Ŝ k00�q00
⌘

= 0. (D.14)

The Pennanen–Vaara and van den Heuvel–Soncini formalisms therefore give the same result to 1/(kT )2. The

full second-order term is given in Equation 6.28.
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Appendix E

Derivation of the paramagnetic shielding

tensor for a system containing multiple,

coupled paramagnetic centres of

arbitrary spin multiplicity to second

order

In this appendix we give the detailed calculation of the paramagnetic shielding tensor of a nucleus due to its

hyperfine coupling with a cluster of interacting transition-metal ions, to second order in 1/(kT )2. The final

result leads directly to Equation 7.53 in chapter 7.

As shown in appendix D the general van den Heuvel–Soncini formula of the paramagnetic shielding

tensor to O(�2) is

�S
i j =

1
~�I
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6
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6
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TrS
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!
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⌘

!
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m̂i, F̂ j
i
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7

7

7

7

7

7

5

+ O(�3), (E.1)
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where m̂ and F̂ are the total electronic magnetic moment and hyperfine field operators respectively, and Ĥ0 is

the Hamiltonian in the absence of the external magnetic field and nuclear magnetic moments, and the cluster

has a total of ! electronic spin states. The cluster comprises a set of transition-metal ions A with electronic

spins S (A), and so the electronic magnetic moment and hyperfine field operators are each a sum of terms, one

for each metal ion:

m̂i = � µB

X

A

X

kq

(�1)qg(A)
kq,iŜ

(A)
k�q, (E.2)

F̂i =
X

A

X

kq

(�1)qA(A)
kq,iŜ

(A)
k�q, (E.3)

where g(A)
kq,i and A(A)

kq,i are the g-tensor and hyperfine tensor components, and Ŝ (A)
kq is the irreducible spherical

tensor spin operator of rank k and order q for ion A. We recall that the irreducible spherical ranks of the tensors

in Equations E.2 and E.3 must be odd. The expression for Ĥ0 contains a part due to the ZFS interactions of

each ion, and a part due to the exchange coupling interactions for all pairs of ions:

Ĥ0 =
X

A

X

kq

(�1)qD(A)
kq Ŝ (A)

k�q +
X

A>B

X

kq

(�1)qJ(AB)
kq (k1k2)T̂ (AB)

k�q (k1k2). (E.4)

The irreducible spherical tensor components of rank k and order q of the ZFS interaction of ion A are D(A)
kq ,

and the exchange coupling between ions A and B is represented by the spatial tensor J(AB)
kq (k1k2), and the spin

tensor T̂ (AB)
k�q (k1k2) which is formed by coupling together the two one-spin tensor operators Ŝ (A)

k1q1
and Ŝ (B)

k2q2
:

T̂ (AB)
k�q (k1k2) =

X

q1,q2

Ŝ (A)
k1q1

Ŝ (B)
k2q2
hk1k2q1q2|k � qi (E.5)

=(�1)k1�k2�q
p

2k + 1
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@
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C

A

. (E.6)

We note that the ZFS tensor contains only components of even rank, which for transition-metal ions can

take at most only the values k = 2 and 4, with the maximum value being 2S (A). The conventional exchange

coupling tensor that is formed by coupling together two rank-one spin operators can take overall ranks k =

0, 1, and 2, which represent the isotropic exchange, antisymmetric DM, and symmetric dipolar-coupling

interactions respectively. If the two spins are coupled together in the opposite order, so that (AB) is replaced
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by (BA), and (k1, k2) by (k2, k1) in Equation E.6, the resulting tensor T̂ (BA)
k�q (k2k1) is given by

T̂ (BA)
k�q (k2k1) = (�1)k1+k2+kT̂ (AB)

k�q (k1k2), (E.7)

i.e. it acquires a phase factor (�1)k1+k2+k due to the symmetry properties of the 3 j symbol. Therefore in order

to maintain the same Hamiltonian, the exchange tensor parameters must satisfy

J(BA)
kq (k2k1) = (�1)k1+k2+k J(AB)

kq (k1k2). (E.8)

This implies that swapping the order of the coupled spins results in a sign change for the antisymmetric DM

interaction, but not for the symmetric isotropic exchange, nor the dipolar coupling interactions.

The spin operators used in the Hamiltonian are ‘product operators’ that are defined in a direct product

space. Hence for example the notations Ŝ (A)
kq and Ŝ (A)

kq Ŝ (B)
k0q0 are shorthand for the following direct products:

Ŝ (A)
kq ⌘Ŝ (A)

kq ⌦ Ŝ (B)
00 ⌦ Ŝ (�)

00 ⌦ . . . , (E.9)

Ŝ (A)
kq Ŝ (B)

k0q0 ⌘Ŝ (A)
kq ⌦ Ŝ (B)

k0q0 ⌦ Ŝ (�)
00 ⌦ . . . , (E.10)

where Ŝ (A)
00 is the irreducible spherical tensor spin operator that is equal to the identity. The number of spin

states ! in Equation E.1 is therefore given by the product of the numbers of states of each spin:

! =
Y

A

(2S (A) + 1). (E.11)

Using the aforementioned notation for the traces over the electronic spin states, i.e. that the trace of a product

operator over the entire direct product spin space is denoted as TrS , and the trace of a one-spin operator over

the manifold of states pertaining to that spin simply as Tr, we can write the traces TrS of the product operators

Ŝ (A)
kq and Ŝ (A)

kq Ŝ (B)
k0q0 as the products of the one-spin traces Tr:

TrS
⇣

Ŝ (A)
kq

⌘

=Tr
⇣

Ŝ (A)
kq

⌘

Tr
⇣

Ŝ (B)
00

⌘

Tr
⇣

Ŝ (�)
00

⌘

. . . , (E.12)

TrS
⇣

Ŝ (A)
kq Ŝ (B)

k0q0
⌘

=Tr
⇣

Ŝ (A)
kq

⌘

Tr
⇣

Ŝ (B)
k0q0

⌘

Tr
⇣

Ŝ (�)
00

⌘

. . . . (E.13)

753



Each one-spin trace Tr
⇣

Ŝ k�q
⌘

can be evaluated using the Wigner–Eckart theorem [190]:

Tr
⇣

Ŝ k�q
⌘

=
X

M

D

S M
�

�

�Ŝ k�q
�

�

� S M
E

(E.14)
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. (E.15)

Using the orthogonality relations for the Wigner 3 j symbols [190] we can simplify the sum to give the simple

identity

Tr
⇣

Ŝ k�q
⌘

=
D

S
�

�

�

�

�

�Ŝ 0
�

�

�

�

�

� S
E

(2S + 1)�k0�q0 (E.16)

=(2S + 1)�k0�q0. (E.17)

The significance of this identity is that the trace of any one-spin irreducible spherical tensor operator Ŝ k�q is

zero unless the rank k is zero.

The paramagnetic chemical shielding tensor due to a system of coupled transition-metal ions with arbi-

trary electronic spins is given by combining Equations E.1–E.6 to give

�S
i j = �

µB
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kq,iA
(B)
k0q0, jTrS

⇣
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.

This expression contains five terms. The first is of order O(�) and contains only the g- and hyperfine tensor

components. The remaining terms are all of order O(�2), with the second and fourth terms originating from

the ZFS interactions, and the third and fifth terms originating from the exchange-coupling interactions. We

now evaluate all five terms, using the Wigner–Eckart theorem to simplify the traces.
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For the first term we have two situations that must be considered separately: either A = B or A , B. If we

set A = B the trace is

TrS
⇣

Ŝ (A)
k�qŜ (A)

k0�q0
⌘

=Tr
⇣

Ŝ (A)
k�qŜ (A)

k0�q0
⌘

Y

B,A

Tr
⇣

Ŝ (B)
00

⌘

(E.18)
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On substituting this into the expression for the shielding tensor we obtain the first-order shift due to a cluster

of non-interacting metal ions that is similar to the expression we derived in appendix D. If we instead set

A , B the trace becomes

TrS
⇣

Ŝ (A)
k�qŜ (B)

k0�q0
⌘

=Tr
⇣

Ŝ (A)
k�q
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Y
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Ŝ (�)
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⌘

(E.21)

=!�k0�k00�q0�q00 (E.22)

=0. (E.23)

This term is equal to zero as the one-spin irreducible spherical tensor operators do not have zero ranks.

The trace of the second term only has one non-zero contribution, which is with A = B = �. The trace is

therefore equal to

TrS
⇣

Ŝ (A)
k�qŜ (A)

k0�q0 Ŝ
(A)
k00�q00

⌘
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⇣
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(E.24)
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, (E.25)

which is again reminiscent of the second-order expression we derived in appendix D.

We have not hitherto encountered the third term. Setting A , B, � = A, and � = B: we obtain the
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following result for the trace:
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Ŝ (B)
k0�q0 Ŝ

(B)
k2�q2

⌘

Y

�,A,B

Tr
⇣
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Alternatively we can also set A , B, � = B, and � = A to obtain a similar result:
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These are the only two non-zero contributions to the third term. In both we notice that (k, k0, k00) must satisfy

the triangle condition. We see that Equation E.27 is the same as Equation E.26 with an extra phase factor

of (�1)k+k0+k00 due to the acyclic permutation of the first and second columns of the Wigner 3 j symbol. The

ranks k and k0 are odd, so that the electronic Zeeman and hyperfine interaction Hamiltonians satisfy the

time-reversal requirements, and so the sign of Equation E.27 is only changed for the terms of the exchange

interaction Hamiltonian that have odd rank k00, i.e. for the antisymmetric DM term, but not the isotropic

exchange nor the dipolar coupling interactions. Combining the two contributions gives the overall expression
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for the third term:

� �2
X

kk0k00qq0q00

X

k1,k2

p
2k00 + 1

0

B

B

B

B

B

B

B

B

B

@

k k0 k00

q q0 q00

1

C

C

C

C

C

C

C

C

C

A

2

6

6

6

6

6

6

6

6

4

X

A>B

(�1)k�k0g(A)
kq,iA

(B)
k0q0, j J

(AB)
k00q00 (k1k2)

D

S (A)
�

�

�

�

�

�Ŝ (A)
k

�

�

�

�

�

� S (A)
E2

2k + 1

D

S (B)
�

�

�

�

�
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�Ŝ (B)
k0

�

�

�

�

�

� S (B)
E2

2k0 + 1

3

7

7

7

7

7

7

7

7

5

(E.28)
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To go to the last line we have used the symmetry property of the exchange coupling tensor parameters in

Equation E.8.

To evaluate the fourth term we must calculate the following trace:

TrS
⇣h
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k�q, Ŝ

(B)
k0�q0

i

Ŝ (�)
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⌘

, (E.30)

where, as for term two, the only relevant contributions are those with A = B = �. We have already computed

the first term on the right-hand side, and the second term is easily deduced by swapping the indices kq and

k0q0. This is done simply by swapping the first and second columns of the 3 j and 6 j symbols; the former

acquires a phase factor of (�1)k+k0+k00 under such an operation, whilst the latter is invariant. We therefore

obtain

TrS
⇣

Ŝ (A)
k0�q0 Ŝ

(A)
k�qŜ (A)

k00�q00
⌘

= (�1)k+k0+k00TrS
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Ŝ (A)
k�qŜ (A)

k0�q0 Ŝ
(A)
k00�q00

⌘

. (E.31)

We have seen that, in order to satisfy the constraints of time reversal of the Hamiltonian, the spin operators

in both the Zeeman and hyperfine terms must be of odd rank, i.e. k and k0 must be odd, and the ZFS spin

operators must be of even rank, i.e. k00 must be even. Therefore k + k0 + k00 is an even number, and the trace

must be zero:

TrS
⇣h

Ŝ (A)
k�q, Ŝ

(B)
k0�q0

i

Ŝ (�)
k00�q00

⌘

= 0. (E.32)

There is therefore no contribution from the fourth term, and the second-order shift due to the ZFS interaction

is contained wholly in the second term.
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The fifth term contains the trace

TrS
⇣h

Ŝ (A)
k�q, Ŝ

(B)
k0�q0

i

T̂ (��)
k00�q00 (k1k2)

⌘

. (E.33)

As we have seen for the third term, the only contributions that appear are with A , B, and so must also have

� = A and � = B, or � = B and � = A. The commutator
h

Ŝ (A)
k�q, Ŝ

(B)
k0�q0

i

is therefore of two operators that act

on di↵erent spins, and so is always zero. Hence the fifth term is trivially zero, and the e↵ects of the exchange

coupling are contained wholly in the third term.
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Appendix F

Simplification of the relaxation

superoperator and spectral densities in

the stochastic Liouville formalism

In this appendix we provide the full derivation of two particular features of the stochastic Liouville formalism

that were stated in section 9.3.1, namely the inclusion of the equilibrium nuclear-spin density operator in the

expression for the relaxation superoperator, and an important symmetry property of the spectral density. The

discussion closely follows that provided by Goldman [253].
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F.1 The relaxation superopertor

Here we show that the expression for the Stochastic Liouville equation in section 9.3.1
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Î†1�m, ⇢̂
T(t)

ii

TrL
n

P̂0L̂T
1m(t � ⌧)†L̂T

1m0 (t)
o

�
h
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can be simplified to the following
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o

exp (i!�m⌧) d⌧, (F.2)

which includes the expression ⇢̂T(t) � ⇢̂0 in the double commutator. Hence we justify the phenomenological

inclusion of the equilibrium nuclear spin density operator in the semi-classical Redfield theory. In order to

prove this correspondence, we need to show that the following expression in the second term of Equation F.1

can be simplified to give

h
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Firstly we examine the factor that depends only on the lattice. We write the trace explicitly in terms of

the sum over the lattice states |Li, which are eigenstates of the lattice Hamiltonian ĤL with energies that are

given by

EL =
D

L
�

�

�ĤL
�

�

� L
E

. (F.4)

The matrix representation of the equilibrium lattice density operator is diagonal in this basis, and has the
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following matrix elements:
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The trace over the lattice states is therefore equal to
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To proceed further we note that Equation F.1 contains an integral over the time variable ⌧, which we now

calculate. The dependence on ⌧ is found in two factors, namely the complex exponential exp (i!�m⌧), and the

lattice operator L̂T
1m(t�⌧)†. The ⌧-dependence of the matrix element of the latter can be elucidated as follows:

D

L
�

�

�L̂T
1m(t � ⌧)†

�

�

� L0
E

=
⌧

L
�

�

�

�
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�iĤL⌧/~
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�
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(F.9)

=
D

L
�

�

�L̂T
1m(t)†

�

�

� L0
E

exp [i (⌦L0 �⌦L) ⌧] , (F.10)

where⌦L = EL/~ is the angular frequency associated with the lattice energy EL. The integral over ⌧ is simply

Z 1

0
exp [i(!�m +⌦L0 �⌦L)] d⌧ = ⇡� (!�m +⌦L0 �⌦L) , (F.11)

where �(!) is the Dirac delta function [189]. This integral is equal to zero unless !�m = ⌦L �⌦L0 , and so we

can immediately make the following replacement in Equation F.8:

exp (�L (EL � EL0 ))! exp (�L~!�m) . (F.12)
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This Boltzmann factor is now independent of L and L0, and so the trace in Equation F.8 now simplifies to

TrL
nh
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(F.13)

=TrL
n

P̂0L̂T
1m(t � ⌧)†L̂T

1m0 (t)
o

⇥

1 � exp (�L~!�m)
⇤

. (F.14)

We can now partially simplify Equation F.3 by making the following replacement:

h

Î1�m0 , Î†1�m ⇢̂
T(t)

i

TrL
nh

P̂0, L̂T
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i
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o

exp (i!�m⌧)

!
h
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i

TrL
n

P̂0L̂T
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1m0 (t)
o

⇥

1 � exp (�L~!�m)
⇤

exp (i!�m⌧) . (F.15)

We see that the trace over the lattice operators has been written in the same format as in the right-hand side

of Equation F.3.

In the second stage of the derivation we consider the nuclear-spin part of Equation F.3. We have already

seen that the transformation of the spin operator Î†1�m into the interaction representation is described by the

following expression:

ÎT
1�m(t � ⌧)† = Î†1�m exp (�i!�m(t � ⌧)) . (F.16)

The corresponding transformation of the matrix elements of Î†1�m in the eigenbasis |ii of ĤI is

D
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(F.17)

=
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i
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�
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�

�

� j
E

exp
h

�i(! j � !i)(t � ⌧)
i

, (F.18)

where !i is the angular frequency associated with the energy ~!i of state |ii. On comparing Equations F.16

and F.18 we can write !�m as

!�m = ! j � !i. (F.19)

We now introduce the formal expression for the equilibrium nuclear-spin density operator:

⇢̂0 =
exp

⇣

��LĤ
⌘

TrI
h

exp
⇣

��LĤ
⌘i , (F.20)
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where TrI is the trace taken over all the nuclear spin states. The Boltzmann factor in Equation F.15 can now

be written as

1 � exp (�L~!�m) =1 � exp
⇣

�L~(! j � !i)
⌘

(F.21)

=1 � hi |⇢̂0| ii
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(F.22)

=
h j |⇢̂0| ji � hi |⇢̂0| ii

h j |⇢̂0| ji
. (F.23)

The product of the matrix element of Î†1�m ⇢̂
T(t) and the Boltzmann factor is therefore
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Hence we make the following replacement in the nuclear-spin part of Equation F.15:
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We are almost there. The final step is to apply the high-temperature limit to the nuclear-spin energy levels,

and note that the nuclear-spin density operator at all times is equal to the sum of the identity operator and a

small deviation with a leading term of order �L. The result is that ⇢̂�1
0 ⇢̂T(t) approximates the identity operator

1̂I , and we obtain
h

Î1�m0 , Î†1�m ⇢̂
T(t)

i

⇥

1 � exp (�L~!�m)
⇤!

h

Î1�m0 ,
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. (F.26)

Substituting this into Equation F.15 we obtain Equation F.3, and therefore

d⇢̂T(t)
dt

= � 1
~2

X

m,m0
(�1)m+m0 exp [i (!�m0 � !�m) t]
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o

exp (i!�m⌧) d⌧, (F.27)

as required.
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F.2 Symmetry properties of the spectral density

Here we derive a useful ‘symmetry-related’ identity concerning the spectral density Kmm0 (!), that is relevant

to the application of the stochastic Liouville formalism for relaxation. We begin by writing the expression

for the time-correlation function Gmm0 (⌧) in Equation 9.43 as a sum over the lattice states |Li:

Gmm0 (⌧) =TrL
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L̂†1m exp
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Using this in the expression for the real part of the spectral density in Equation 9.44 we obtain, for ! = �!�m:
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We now write an expression for the time-correlation function G�m0�m(⌧):
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The lattice operators satisfy

L̂†1m = (�1)mL̂1�m, (F.36)
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and so the expression for G�m0�m(⌧) becomes
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This gives the following expression for the real part of the spectral density K�m0�m(+!�m):
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The Dirac delta function on the last line indicates that !�m = ⌦L � ⌦L0 , and therefore the energy di↵erence

in the Boltzmann factor can be replaced by EL � EL0 = ~!�m. The final expression for Re [K�m0�m(+!�m)] is

therefore

Re [K�m0�m(+!�m)] =(�1)m+m0 exp
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On comparing Equation F.43 with Equation F.32 we obtain the identity

Re [K�m0�m(+!�m)] = (�1)m+m0 exp
⇥

�L~!�m
⇤

Re [Kmm0 (�!�m)] , (F.44)
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i.e. the two spectral densities di↵er only by a sign and multiplicative Boltzmann factor. In the high-temperature

limit, where |�L~!�m| ⌧ 1, we can ignore the Boltzmann factor and the relationship between the two spectral

densities simplifies to

Re [K�m0�m(+!�m)] ⇡ (�1)m+m0Re [Kmm0 (�!�m)] . (F.45)

In the secular approximation the relevant terms in the relaxation superoperator have m0 = m. The identity in

Equation F.45 is then

Re [K�m�m(+!�m)] ⇡ Re [Kmm(�!�m)] . (F.46)

Noting that !�m = �!m, we can write Equation F.46 in the following equivalent way:

Re [K�m�m(�!m)] ⇡ Re [Kmm(�!�m)] . (F.47)
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[160] A. B. Barnes, G. De Paëpe, P. C. A. van der Wel, K.-N. Hu, C.-G. Joo, V. S. Bajaj, M. L. Mak-

Jurkauskas, J. R. Sirigiri, J. Herzfeld, R. J. Temkin, and R. G. Gri�n. High-field dynamic nuclear

polarization for solid and solution biological NMR. Appl. Magn. Reson., 34:237–263, 2008.

[161] T. Maly, G. T. Debelouchina, V. S. Bajaj, K.-N. Hu, C.-G Joo, M. L. Mak-Jurkauskas, J. R. Sirigiri,

P. C. A. van der Wel, J. Herzfeld, R. J. Temkin, and R. G. Gri�n. Dynamic nuclear polarization at

high magnetic fields. J. Chem. Phys., 128:052211, 2008.

782



[162] G. T. Debelouchina, M. J. Bayro, P. C. A. van der Wel, M. A. Caporini, A. B. Barnes, M. Rosay, W. E.

Maas, and R. G. Gri�n. Dynamic nuclear polarization-enhanced solid-state NMR spectroscopy of

GNNQQNY nanocrystals and amyloid fibrils. Phys. Chem. Chem. Phys., 12:5911–5919, 2010.

[163] G. J. Gerfen, L. R. Becerra, D. A. Hall, R. G. Gri�n, R. J. Temkin, and D. J. Singel. High frequency

(140 GHz) dynamic nuclear polarization: Polarization transfer to a solute in frozen aqueous solution.

J. Chem. Phys., 102:9494–9497, 1995.

[164] D. A. Hall, D. C. Maus, G. J. Gerfen, S. J. Inati, L. R. Becerra, F. W. Dahlquist, and R. G. Gri�n.

Polarization-enhanced NMR spectroscopy of biomolecules in frozen solution. Science, 276:930–932,

1997.

[165] C. Song, K.-N. Hu, C.-G. Joo, T. M. Swager, and R. G. Gri�n. TOTAPOL: A biradical polarizing agent

for dynamic nuclear polarization experiments in aqueous media. J. Am. Chem. Soc., 128:11385–11390,

2006.

[166] C. Sauvée, M. Rosay, G. Casano, F. Aussenac, R. T. Weber, O. Ouari, and P. Tordo. Highly e�cient,

water-soluble polarizing agents for dynamic nuclear polarization at high frequency. Angew. Chem. Int.

Ed., 52:10858–10861, 2013.

[167] C. Sauvée, G. Casano, S. Abel, A. Rockenbauer, D. Akhmetzyanov, H. Karoui, D. Siri, F. Aussenac,

W. Maas, R. T. Weber, T. Prisner, M. Rosay, P. Tordo, and O. Ouari. Tailoring of polarizing agents

in the bTurea series for cross.e↵ect dynamic nuclear polarization in aqueous media. Chem. Eur. J.,

22:5598–5606, 2016.

[168] A. Zagdoun, G. Casano, O. Ouari, G. Lapadula, A. J. Rossini, M. Lelli, M. Ba↵ert, D. Gajan, L. Veyre,

W. E. Maas, M. Rosay, R. T. Weber, C. Thieuleux, C. Copéret, A. Lesage, P. Tordo, and L. Emsley.
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Glossary

LS Russell–Saunders.

ABMS anisotropic bulk magnetic susceptibility.

aMAT adiabatic magic-angle turning.

An actinide.

AO atomic orbital.

AP anti-phase.

BMS bulk magnetic susceptibility.

CA alpha carbon (protein).

CASSCF complete active space self-consistent-field method.

CB beta carbon (protein).

CCR cross-correlated relaxation.

CEST chemical exchange dependent saturation transfer.

CO carbonyl carbon (protein).

COASTER correlation of anisotropies separated through echo refocusing.

COSY correlation spectroscopy.
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CP cross polarization.

CPMG Carr–Purcell–Meiboom–Gill.

CSA chemical shift anisotropy.

CT central transition.

DFT density functional theory.

DHSQC dipolar heteronuclear single-quantum correlation.

DINEPT dipolar insensitive nucleus enhanced by polarization transfer.

DIPAP double in-phase anti-phase.

DIPSI decoupling in the presence of scalar interactions.

DM Dzyaloshinskii–Moriya.

DNA deoxyribonucleic acid.

DNP dynamic nuclear polarization.

DQF-COSY double-quantum-filtered correlation spectroscopy.

EC ethyl cellulose.

EDTA ethylenediamine tetraacetic acid.

EFG electric-field gradient.

EPR electron paramagnetic resonance.

ESR electron spin resonance.

EXSY exchange spectroscopy.

FC Fermi contact.

FID free-induction decay.
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FWHM full-width at half-maximum.

GGA generalized gradient approximation.

HCA alpha proton (protein).

HN amide proton (protein).

HETCOR heteronuclear correlation.

HF hyperfine.

HMQC heteronuclear multiple-quantum correlation.

HOMO highest-occupied molecular orbital.

HPC hydroxypropyl cellulose.

HS high-spin.

HSQC heteronuclear single-quantum correlation.

IBMS isotropic bulk magnetic susceptibility.

IP in-phase.

IPAP in-phase anti-phase.

IS inner-sphere.

LCAO linear combination of atomic orbitals.

LF ligand field.

Ln lanthanide.

LR linear-response.

LS low-spin.
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LUMO lowest-unoccupied molecular orbital.

MAS magic-angle spinning.

MAT magic-angle turning.

MATPASS magic-angle turning phase-adjusted spinning sidebands.

MATPASS nuclear magnetic resonance dispersion.

MMP metalloproteinase.

MO molecular orbital.

MODEFT modified driven equilibrium Fourier transform.

MRI magnetic resonance imaging.

NH amide nitrogen (protein).

NMR nuclear magnetic resonance.

NOE nuclear Overhauser e↵ect.

NOESY nuclear Overhauser e↵ect spectroscopy.

NQR nuclear quadrupole resonance.

NR non-relativistic.

OM oncomodulin.

OS outer-sphere.

PAF principal axis frame.

PARACEST paramagnetic chemical exchange dependent saturation transfer.

PASS phase-adjusted spinning sidebands.
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PBA Prussian Blue analogue.

PCS pseudo-contact shift.

PDSD proton-driven spin di↵usion.

PRE paramagnetic relaxation enhancement.

PSD proton spin di↵usion.

PSO paramagnetic spin orbital.

R-PRE relayed paramagnetic relaxation enhancement.

RAPT rotor-assisted population transfer.

RDC residual dipolar coupling.

RF radio-frequency.

RFDR radio-frequency driven recoupling.

RKKY Ruderman–Kittel–Kasuya–Yosida.

ROE rotating-frame Overhauser enhancement.

ROESY rotating-frame Overhauser e↵ect spectroscopy.

S3AP single-sideband-selective adiabatic pulse.

S3E selective-spin-state excitation.

SA shift anisotropy.

SC sidechain (protein).

SD spin-dipolar.

SHAP short high-power adiabatic pulse.

SHAP-CPMG short high-power adiabatic pulse Carr–Purcell–Meiboom–Gill.
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SO spin orbit.

SOD superoxide dismutase.

SS spin-spin.

ST satellite transition.

TEDOR transferred-echo double resonance.

TM transition metal.

TOCSY total correlation spectroscopy.

TROSY transverse relaxation-optimized spectroscopy.

VASP Vienna ab initio Simulation Package.

VOCS variable o↵set cumulative spectroscopy.

WEFT water eliminated Fourier transform.

WURST wideband, uniform rate, smooth truncation.

Z Zeeman.

ZFS zero-field splitting.

ZQ zero-quantum.
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