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Abstract

Scene recognition remains one of the most challenging prob-
lems in image understanding. With the help of fully con-
nected layers (FCL) and rectified linear units (ReLu), deep
networks can extract the moderately sparse and discrimi-
native feature representation required for scene recognition.
However, few methods consider exploiting a sparsity model
for learning the feature representation in order to provide en-
hanced discriminative capability. In this paper, we replace
the conventional FCL and ReLu with a new dictionary learn-
ing layer, that is composed of a finite number of recurrent
units to simultaneously enhance the sparse representation and
discriminative abilities of features via the determination of
optimal dictionaries. In addition, with the help of the struc-
ture of the dictionary, we propose a new label discrimina-
tive regressor to boost the discrimination ability. We also pro-
pose new constraints to prevent overfitting by incorporating
the advantage of the Mahalanobis and Euclidean distances
to balance the recognition accuracy and generalization per-
formance. Our proposed approach is evaluated using various
scene datasets and shows superior performance to many state-
of-the-art approaches.

Introduction
Scene recognition remains one of the most challenging prob-
lems in image understanding due to illumination changes,
high intra-class variance, and background occlusion. To
tackle these issues, convolutional neural networks (CNNs)
(Krizhevsky, Sutskever, and Hinton 2012) (Simonyan and
Zisserman 2014) trained on the large scale Places dataset
(Places-CNNs) (Zhou et al. 2014) have yielded improved
performance for the scene recognition task. The power of
CNNs is achieved by learning a strong feature representa-
tion in an end-to-end manner for the classification task, in-
stead of hand-crafting features with heuristic parameter tun-
ing. The CNN can be considered as a universal feature ex-
tractor, which learns a new representation of the data that
permits computationally easier and more effective classifier
design. Many deep CNN architectures have been proposed,
but fully connected layers (FCL) followed by rectified linear
units (ReLu) are now prevalently used to combine the local
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features extracted from the early convolution and pooling
layer. (Sun, Wang, and Tang 2015) observed that the non-
linear property inherent in the ReLu unit leads to sparsity in
the neural activations, consequently improving the perfor-
mance of deep learning methods. Normally, for each train-
ing image, around half of the neurons in the hidden layer are
activated. They argued that moderate sparse on neuron ac-
tivation can not only make each neuron has maximum dis-
crimination ability, but also make images of different class
maximally distinguishable. However, there is no effective
mechanism to automatically adjust the sparsity level of the
intermediate hidden units based on the training set.

It would be beneficial to take advantage of the sparse
model to adjust the sparsity level and enforce different cate-
gories to have different subsets of neurons activated, conse-
quently maximizing discriminative power. As an extension
of the standard reconstructive dictionary (Aharon, Elad, and
Bruckstein 2006), discriminative dictionary learning (DL)
methods (Jiang, Lin, and Davis 2013)(Yang et al. 2014)
aim to find the optimal dictionary that simultaneously im-
proves the sparse representation and maximizes its discrim-
inative capability. However, the current DL methods can-
not achieve state of the art performance in large-scale image
classification, especially in scene recognition, in part since
most DL models have only been evaluated with traditional
handcrafted features, e.g., BOF (Yang et al. 2009) and SIFT
(Lowe 2004).

One way to utilize DL to improve scene recognition per-
formance produced by CNN features is to apply DL as
a post-processing step trained separately from the training
of the CNN, an approach that is adopted in (Xie et al.
2017)(Liu et al. 2014). Arguably, this does not fully harness
the strength of DL since it is not integrated with the deep net-
work. It is also worth noting that although the work in (Wang
et al. 2016) addresses object detection, it does combine the
DL and conventional CNN layers into the end-to-end train-
ing framework by simply replacing the softmax classifier by
a DL classifier. However, the DL classifier has not been used
to replace any fully connected layers before the classifier. In
addition, without an explicit parameter for sparsity control
of the sparse coding step in the DL classifier, it is difficult to
know whether the sparsity of the total network is best opti-
mized and further, to say that the sparseness will be a good
regularization for training the low-level layers in the entire
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Figure 1: Comparison between the conventional CNN archi-
tecture and our CNN-DL architecture. The upper image is
the conventional CNN architecture; the lower image is the
CNN-DL architecture. We replace the FCL and ReLu units
by the DLL, in order to achieve enhanced sparse and dis-
criminative feature representation. The CNN-DL network
has two sibling output layers. The first outputs a discrete
probability distribution over different categories, computed
by a softmax classifier, while the second sibling layer out-
puts the corresponding discriminant sparse representation
that depends upon the dictionary structure.

network. Considering the optimization loss function, it is
well known that the cross entropy is more robust to outliers
than is Mean-Squared Error (MSE) estimation. However,
due to the design of their DL classifier, they have to use the
MSE of the reconstruction error, rather than the more robust
cross-entropy loss in the conventional classification task. In
addition, (Wang et al. 2015) also combined CNN and sparse
coding for image super-resolution recovery. Although they
cascaded the Learned Iterative Shrinkage-Threshold Algo-
rithm (LISTA) (Gregor and LeCun 2010) network to con-
trol the sparsity via an explicit shrinkage function, their loss
function is still the MSE loss of the reconstruction error,
without any effort to improve feature discriminative capa-
bility. To the best of our knowledge, there is no end-to-
end learning framework to combine CNN and DL in scene
recognition, that can automatically adjust the sparsity level
and discriminative capability of the feature representation.

In this paper, our formulation combines the strength of
both conventional CNNs and DL procedures in a unified
framework, namely CNN-DL. The overall framework for
CNN-DL is illustrated in the lower diagram in Fig.1, where
arrows indicate the forward propagation direction. Our con-
tributions are summarized as following. Firstly, inspired by
the Approximate Message Passing (AMP) (Donoho, Maleki,
and Montanari 2009) algorithm and the LISTA network, we
design a non-linear dictionary learning layer (DLL) com-
posed of a finite number of recurrent units to integrate the
sparse coding and dictionary learning into the deep network

architecture. Such a layer can solve the sparse coding with
a better convergence rate than LISTA, while also contribut-
ing the gradient flow to update the dictionary in each re-
current iteration. In addition, we decoupled the shrinkage
function threshold into two factors, so that the threshold is
optimally learned to the unknown sparse prior of the neural
activation maps. Secondly, we build a new network archi-
tecture named as CNN-DL, which replaces the conventional
FCLs and ReLu units with a DLL, that exhibits an enhanced
sparse and discriminative feature representation. In addition,
we take advantage of the structure of the dictionary and de-
sign a new label discriminative regressor to further improve
the discriminative capability. We argue that such a layer can
be used to replace any FC layer and can be cascaded as in
the conventional deep learning framework. Thirdly, we pro-
pose new constraints to prevent overfitting, i.e., by taking
advantage of both the Mahalanobis and Euclidean distances
measures, thereby achieving a balance between recognition
accuracy for the training set and the generalization perfor-
mance. Fourthly, we suggest an optimization algorithm for
the end-to-end training to jointly learn the parameters in the
CNN and DL, that is also compatible with the conventional
back propagation scheme. Fifthly, we analyze various fac-
tors in CNN-DL that affect the scene recognition perfor-
mance, including different loss functions and DLL settings.
Finally, the CNN-DL model is extensively evaluated using
various scene datasets, and it shows superior performance to
many state-of-the-art scene recognition algorithms.

Integration of DL and CNN
Network Architecture
Similar to most scene recognition methods based on deep
learning networks, our network architecture is designed to
learn the transformation from the original image Ii to its cor-
responding label vector hi in an end-to-end manner, where
i indicates the index of the training samples. The overall
network structure is illustrated in the lower image in Fig.1,
where arrows indicate the forward propagation direction.
The details of each layer are discussed as follows.

To extract the local features of the input image Ii, it
first goes through the ConvNet, which contains a stack of
conventional convolution and pooling layers. To measure
the improvements brought by our proposed DLL and the
novel loss function in a fair setting, the configurations of all
our ConvNet layers are designed based on the same princi-
ples and parameter settings used in (Krizhevsky, Sutskever,
and Hinton 2012) and (Simonyan and Zisserman 2014). We
denote the features obtained from the ConvNet as yi =
f(Ii) ∈ RM , where f represents the transformation in the
convolution and pooling layers.

Further to obtain the combination of local features, in-
stead of forwarding the features yi into FCLs (followed by
ReLu), we design the non-linear DLLs so as to obtain a
sparse feature representation. Each DLL is parameterized
with a dictionary D ∈ RM×N , composed of a finite num-
ber of recurrent units to mimic the sparse coding procedure.
Specifically, the dictionary will be ideally learned if the fol-
lowing equation is satisfied for any given extracted feature



representation yi:

αi = argmin
αi

‖yi −Dαi‖2F + λ ‖αi‖1 . (1)

where αi is the corresponding sparse feature representation.
In the proposed network, we replace the conventional

FCL by the DLL, which is a sub-network aimed at enforc-
ing the sparsity prior on the representation. Conventionally,
as in (Krizhevsky, Sutskever, and Hinton 2012), a generic
ReLu is used for nonlinear mapping. Since the DLL is de-
signed based on our domain knowledge from sparse coding,
we are able to adjust the sparsity level of the neuron acti-
vation based on the training set, consequently, obtaining a
better interpretation of the layer response. The implementa-
tion of this layer should be such that it is capable of pass-
ing the error differentials from its outputs to inputs during
back-propagation to update the dictionary. The detailed de-
scription of the DLL and its relevant optimization rules are
discussed in the non-linear dictionary learning layer section.

The design of DLL is not only aimed at a good represent-
ing of the given features, its structural flexibility also has
the potential to enhance the discriminative capability of the
network. This can be achieved by exploiting the dictionary
structure and the label information of the input images as
part of the final loss function. Inspired by the label consistent
K-SVD method (Jiang, Lin, and Davis 2013), we integrate a
label discriminative regressor L2 =

∑
i λ1 ‖qi −Bαi‖2F +

λ2

∥∥BTB − I
∥∥2

F
into the final loss objective to measure the

discriminative capability of the sparse codes, which forces
the training samples from the same class to have similar
sparse codes, while forcing samples from different classes
to have different sparse codes. The matrix B ∈ RN×N is
the optimal linear mapping matrix to transform the original
sparse code αi to the most discriminate sparse feature do-
main. The qi represents the ideal discriminative sparse co-
efficient corresponding to a training sample yi. The nonzero
values in qi only occur at the places where the input training
sample yi and the dictionary atom dn share the same label.
Thus we define the discriminant sparse code qi as

qi = [q1
i , q

2
i , ..., q

N
i ] = [0...0, 1...1, 0...0]T ∈ RN . (2)

To prevent over-fitting during training, we also add a con-
straint term on matrix B to balance the Euclidean and Ma-
halanobis distances as ‖BTB − I‖2F . The details of the la-
bel discriminative regressor and its implementation is intro-
duced in the next section.

Besides utilizing the loss function L2 to maintain the dis-
criminative sparse code, αi can also be considered directly
as a discriminant feature of original image Ii for classifica-
tion. Here, a conventional softmax classifier is used to com-
pute the predicted label, and the cross-entropy loss function
L1 is used to compare between the predicted label h∗i and
ground truth label hi. Finally, the overall loss function of
our network can be expressed as

min
Θ
L1 + λ1

∑
i

‖qi −Bαi‖2F + λ2

∥∥BTB − I
∥∥2

F
,

(3)
where Θ represents the parameters within the network, and
λ1 and λ2 balance the contribution of different terms. We

will see in the experiments that the design of the proposed
DLL and the novel objective function both contribute to bet-
ter scene recognition results and smaller model size than a
conventional CNN.

Loss Function Design with Integration of the Label
Discriminative Regressor
As part of the final loss function in (3), the objective function
to improve discrimination can be expressed as

min
Θ

λ1

∑
i

‖qi −Bαi‖2F + λ2

∥∥BTB − I
∥∥2

F
. (4)

It is worth noting that in the (4), we adopted a new con-
straint regularized by λ2 to prevent overfitting. It is designed
to incorporate the strength of the Mahalanobis and Eu-
clidean distances, and to achieve balance between the recog-
nition accuracy and the generalization ability. To understand
this constraint, we argue that the term ‖qi −Bαi‖2F can be
regarded as measuring the Mahalanobis distance 1 between
the optimal and calculated sparse codesα∗i andαi under the
transformation matrixB, as:

‖qi −Bαi‖2F = ‖Bα∗i −Bαi‖
2
F

= (α∗i −αi)TBTB(α∗i −αi) .
(5)

Although the Mahalanobis distance is well known for its
discriminative capability, it is prone to be overfitting. Com-
pared with the Mahalanobis distance, the Euclidean distance
has a worse ability to discriminate but a better ability to gen-
eralize, because it does not take into consideration data cor-
relation across dimensions (Manly 1994). Here, we impose
a constraint to ensure that the matrix BTB has large val-
ues on the diagonal and small values elsewhere, so that we
can obtain a compromise between the Mahalanobis distance
and the Euclidean distance. The constraint is formulated as
the Frobenius norm of the difference betweenBTB and the
identity matrix I . More specifically, when λ2 is small, the
Mahalanobis distance should be dominant to measure the
distance between α∗i and αi. In contrast, with the choice of
a larger value of λ2, the matrix BTB is forced to be close
to the identity matrix so that the Euclidean distance is more
dominant. In this situation, the Euclidean distance may gen-
eralize better to unseen test sets. To sum up, we incorpo-
rate the advantage of Mahalanobis and Euclidean distances
to maintain the discriminative capability while reducing the
overfitting problem.

Nonlinear Dictionary Learning Layer
In this section, we introduce details of the fast yet accurate
non-linear DLL which is inspired by the Approximate Mes-
sage Passing (AMP) algorithm (Donoho, Maleki, and Mon-
tanari 2009) and the on-line dictionary learning method in
(Mairal et al. 2009). As shown in Fig.2(a), given the input
data from previous layers y, the DLL is able to compute the
final output sparse codes α(K) efficiently using K stacked

1The Mahalanobis distance is formulated as d(α1,α2) =√
(α1 −α2)TM(α1 −α2)



Figure 2: The design of a non-linear dictionary learning
layer. Each blue box in the Fig.2(a) represents a recur-
rent unit, which corresponds to one iteration in the AMP
sparse coding procedure. Fig.2(b) represents the operations
between adjacent recurrent units, which is shown in the
zoomed-in version of the red box in Fig.2(a).

recurrent units (blue boxes), each of which exhibits a sim-
ilar function to that of an iteration in the AMP algorithm.
As shown in Fig.2(b), we represent such adjacent recurrent
units in a data flow graph, where the blue box represents the
recurrent unit, a node represents a variable and the directed
edge represents the flow between two variables. The oper-
ations between the adjacent kth and (k + 1)th units in the
data flow graph can be represented as:

z(k+1) = α(k) + β(k)DTv(k) (6)

t(k+1) =
γ(k)

√
M

∥∥∥v(k)
∥∥∥

2
(7)

α(k+1) = max(
∣∣∣z(k+1)

∣∣∣− t(k+1), 0)
z(k+1)∣∣z(k+1)

∣∣ (8)

v(k+1) = y − β(k)Dα(k+1) +
β(k)

M

∥∥∥α(k+1)
∥∥∥

0
v(k) (9)

where γ and β represent the learnable scaling factors and
t represents the threshold vectors, M represents the dimen-
sion of the input feature y, the first layer inputs areα(0) = 0
and v(0) = y. Note that sparse coding steps can be achieved
in a relatively small number of iterations to fit existing data
sets. We used K = 2 recurrent units within each DLL
throughout the paper unless otherwise specified. Since the
dictionary is shared among recurrent units within one DLL,
the parameters in each DLL can then be represented as
Θ = {D, {γ(k), β(k)}k=K

k=1 }.
There are three major differences between our DLL and

the LISTA algorithm: firstly inspired by the AMP, the con-
ventional residual v(k+1) is corrected by use of the On-
sager correction (Donoho, Maleki, and Montanari 2009)

term: β
M

∥∥α(k+1)
∥∥

0
v(k) in our DLL layer. This correc-

tion has been proved to enable the input of the shrinkage
function, z(k+1) to be treated as an approximately Addi-
tive white Gaussian noise (AWGN) corrupted optimal sparse
code. Therefore, many shrinkage functions can be applied
easily. Secondly, the threshold selection t(k+1) in our shrink-
age function design is decoupled into the scaled factor γ(k)

and the realization v(k). This enables the threshold of the
shrinkage function to be optimized when the prior of sparse
codes is not easily modeled. We argue that this will be useful
for a deep learning framework, as estimating the prior of the
neural activation will be a difficult task. More specifically,
learning from training samples, γ(k) is adaptive to the un-
known and complex prior of the neural activation. Thirdly,
except for the dictionary matrix, we do not have to learn
an additional transformation matrix (matrixB in the LISTA
framework (Gregor and LeCun 2010)), but decouple it into
dictionary D and the scaling parameter β. This lowers the
model complexity and ensures that the input to the shrinkage
function is still essentially AWGN corrupted.

As the overall objective function in (3) does not depend
on D explicitly, it is difficult to compute the gradient with
respect to D in each recurrent unit. Therefore, we consider
the dictionary D as a shared parameter implicitly in each
recurrent unit and propose to compute the gradient of the
loss function L with respect toD using the chain rule:

∂L
∂D

=

K∑
k=1

∂L
∂α(k)

∂α(k)

∂z(k)

∂z(k)

∂D
, (10)

where

∂L
∂α(k)

=

{∏K
k+1

∂L
∂α(k)

∂α(k)

∂z(k)
∂z(k)

∂α(k−1) if k < K
∂L
∂α(k) if k = K

(11)
It is also worth noting three points: first, ∂L

∂α(K) can be calcu-
lated based on the overall objective function (3); Second, the
qth element of ∂α

(k)

∂z(k) is set to 0 if the qth element α(k)
q = 0,

otherwise, it is set to 1. Thirdly, ∂z(k)

∂α(k−1) can be calculated
based on equation Eq (6) and (9) and we use the L1 norm as
an approximation of L0 norm in Eq (9) to enable standard
back propagation in our implementation.

Once ∂L
∂D is calculated, the dictionaryD in the DLL layer

can be updated by stochastic gradient descent. To make this
new layer compatible with the other layers in the current
CNN framework, we need to consider how the loss function
can be back-propagated through this DLL layer to the previ-
ous layers. We need to calculate ∂L

∂y , and once it is obtained,
we can perform standard back propagation (Krizhevsky,
Sutskever, and Hinton 2012) to update the CNN parameters
in the previous layers. In fact, y is similar to the case of dic-
tionaryD, and can also be obtained by use of the chain rule.

From the perspective of the overall network architecture,
different DLLs (cascaded in series) are parametrized by sep-
arate dictionaries and all the parameters within the overall
network can be trained by standard back-propagation. It will
be shown in the experiments that with the integration of the
newly proposed DLL, the overall CNN-DL structure is able



to generate better scene recognition performance than can
the conventional CNN structure.

Experiments
In this section, we evaluate our approach using various scene
recognition datasets and compare with other state-of-the-art
approaches. We first introduce the dataset and the parame-
ter settings, and second give an analysis of the factors that
effect in the CNN-DL method. Then, we report the recog-
nition performance of the proposed method and compare it
with other scene recognition algorithms in the following sec-
tion. The evaluation is performed for various network archi-
tectures and scene datasets.

Datasets and Experimental Settings
Since all the comparison methods only present their results
on 15 Scene (Lazebnik, Schmid, and Ponce 2006), MIT
Indoor-67 (Quattoni and Torralba 2009), or Sun 397 (Xiao et
al. 2010), we employ these three widely used scene recog-
nition datasets in our experiments. We use the average ac-
curacy to evaluate the recognition performance. The param-
eters in the objective function (3) are determined by 5-fold
cross-validation for different datasets as listed in Table. 1.
We follow the same training-test partition used in (Liu et
al. 2014) (Xie et al. 2017). 15 Scene includes 100 images
per class for training and the rest for testing. MIT Indoor 67
includes 80 images of each category for training and 20 im-
ages for testing. SUN 397 includes multiple train/test splits,
with 50 images per class in the testing set. We present results
for the average accuracy over splits.

To completely understand and evaluate effects of differ-
ent factors in the CNN-DL, a detailed factor analysis re-
garding parameter selection and layer settings are performed
in the next section. For comparisons between other meth-
ods, the CNN network architectures we adopt are AlexNet
(Krizhevsky, Sutskever, and Hinton 2012) and VGG net (Si-
monyan and Zisserman 2014). The model is first trained on
the large auxiliary dataset with image level supervision, in-
cluding ImageNet data (Krizhevsky, Sutskever, and Hinton
2012) or Place205 data (Zhou et al. 2014). To adapt the pre-
trained CNN to the new scene dataset, we perform domain-
specific fine-tuning on the three scene datasets respectively.
However, in practice, it is often not possible to fine tune all
the parameters in the network because of the limited data,
leading to over-fitting. So in the following experiments, we
only replace last two FCLs by an equivalent number of the
proposed non-linear DLLs. It worth noting that the number
of dictionary atoms per class should be one in the final DLL.
Detailed information about the dictionary size of the previ-
ous to last DLL layer are shown in Table.1. To balance the
trade-off between speed and accuracy, we used K = 2 re-
current units within each DLL throughout the paper unless
otherwise specified.

Factor Analysis
In this section, we investigate how the performance of CNN-
DL is affected by different factors using the MIT Indoor 67
dataset. All the analysis in this section is based on results

Table 1: Dataset and Experimental Details
Dataset Dictionary Size λ1 λ2

15 Scene 600 atoms (40 atoms/class) 0.3 0.001
MIT Indoor 67 2680 atoms (40 atoms/class) 0.5 0.005

SUN 397 3970 atoms (10 atoms/class) 0.3 0.02
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Figure 3: Effect of dictionary size on the recognition accu-
racy.

achieved by CNN-DL on AlexNet (pre-trained on ImageNet
data). We will discuss two main factors, including the con-
figuration of the DLL and the use of different loss functions.

Factor 1: Proposed Dictionary Learning Layer
In this section, we verify the effectiveness of DLL com-

ponents in different configuration settings, including dictio-
nary size (factor 1.1), the number of recurrent units (factor
1.2) and the use of cascaded DLLs. In some of the tests, we
also compare the performance of DLL with its conventional
alternative FCL+ ReLu. Note that in order to remove the im-
provement brought by the novel objective function design,
we use the simple cross entropy loss L1 directly to enable a
fair comparison.

Factor 1.1: Different Dictionary Size in DLL
It is worth noting that an important factor within the DLL

is the dictionary size, as it controls the model capacity. As
shown in (Jiang, Lin, and Davis 2013)(Yang et al. 2014), the
larger the size of the dictionary, the better is the performance
of the traditional DL model. However, as input of the DLL
is the feature learned by the deep network, it is still unclear
what dictionary size fits best to these high level features. In
general, the ideal DL method should achieve an acceptable
level of performance using a relatively small dictionary size.

In this section, we use the MIT Indoor 67 dataset as an
example for the evaluation and analysis. Specifically, we
only replace the conventional FCL7 by our DLL followed by
FCL8 as the classifier. For each class, we randomly choose
80 images for training and the rest for testing, similar to
the experimental setting in (Liu et al. 2014). The parame-
ters of the dictionary are initialized using a truncated normal
distribution, with the number of dictionary atoms per class
varying from 5 to 70. Fig.3 shows that the performance of
the CNN-DL method improves when the dictionary size in-
creases and reaches a maximum at around 40 atoms per cat-
egory. This may relate to the diversity of training data under
the particular category, while too many dictionary atoms per
class may introduce information redundancy or noise into
the feature representation.
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Table 2: Effect of number of Recurrent Units in DLLs
Loss function Layer Setting No.Units Recognition Rate

L1 FCL7+FCL8 - 61.80
L1 FCL7+DLL8 1 63.21
L1 FCL7+DLL8 2 64.63
L1 FCL7+DLL8 4 64.32
L1 FCL7+DLL8 8 63.08

Factor 1.2: Number of recurrent unit in DLL
In this section, we evaluate the effect of the number of

recurrent units in the DLL. Specifically, we only replace the
last FCL with a DLL in the experiments. As shown in Figure
4, we plot the L1 sparseness measure (LSM) (Li et al. 2017)
of the conventional FCL output and the DLL output based
on using 1,2,4 and 8 recurrent units. These LSM losses are
based on inputting the same test datasets and calculating the
L1 norm of their final outputs. It can be clearly shown that
output of the FCL is less sparse than others and with the
increasing number of recurrent units, the DLL outputs are
more sparse. Further, for the different sparseness levels, we
can evaluate the corresponding recognition rates as shown in
Table. 2. The recognition rate increases and achieves the best
rate of 64.63% when the number of recurrent units is two. As
more units are utilized, the recognition rate falls to 63.08%,
but is still better than using the FCL only. This experiment
shows that only appropriate levels of sparseness can lead to
good recognition rates.

Factor 1.3: Usage of Cascaded DLLs
Here, we analyze the effect of cascaded DLLs in the

deep CNN framework by using different layerwise configu-
rations, as shown in Table.3. For a fair comparison, we used
2 recurrent units, fixed the dictionary size to 2680. It is worth
noting that, as the LISTA network also involves sparse cod-
ing, we compare our DLL with LISTA in this section. As
shown in Table.3, replacing FCL7 and FCL8 by two LISTA
layers improves performance from 61.79% to 63.90% and
replacing a single FCL with our proposed DLL increases
performance to around 64.46% and 64.63%, that is already
0.5% improvement to the LISTA layers. Finally, the recog-
nition rate rises to 65.2% when we replace both FCL lay-
ers with DLLs, which is around a 3.5% improvement com-
pared to FCLs only. This experiment shows the superiority
of our approach compared with LISTA and FCL layers, and
also shows that using two DLLs outperforms the use of one

Table 3: Analysis for Factor1.3: cascaded DLLs
Loss function Layer Setting Recognition Rate

L1 FC7+FC8 61.80
L1 DLL7+FC8 64.46
L1 FC7+DLL8 64.63
L1 DLL7+DLL8 65.19
L1 LISTA7+LISTA8 63.90

Table 4: Recognition Rates (%) for different factors setting
Loss function Layer setting Recognition Rate

L1 FC7+FC8 61.80
L1 DLL7 +DLL8 65.19

L1 + L2 (-) DLL7 +DLL8 66.11
L1 + L2 DLL7 +DLL8 66.60

DLL. The reason that our DLL outperforms LISTA may be
owing to the decoupling of the learned threshold into two
factors, that is able to adapt the threshold in the shrinkage
function of the DLL under the unknown sparse prior of the
activation outputs. In addition, due to the fact that LISTA
needs to learn an extra matrix in the sparse coding proce-
dure while our DLL does not, our model can be trained more
efficiently with fewer parameters. To sum up, the new pro-
posed DLL contributes in yielding better scene recognition
performance.

Factor 2: Effect of different terms in the Objective
Function

We will now investigate how the performance of CNN-DL
is affected by the design of the objective function. We eval-
uate the loss function with and without the label discrim-
inative regressor of the sparse code and the corresponding
constraint. A comparison of the recognition performances
are shown in the Table.42. We can see that with the help of
the label discriminative regressor, the performance is con-
sistently better than using only the simple softmax function.
It verifies that the adoption of the novel discrimination term
takes advantage of the structure of the dictionary in the DLL,
consequently enhancing the discriminative capability of the
overall network. In addition, the loss function with the con-
straints always shows superior performance to those without
it. This shows that the constraint we developed for prevent-
ing over-fitting in training is effective.

Results and Comparisons
In this section, we compare our CNN-DL method with
other existing scene classification approaches. The classi-
fication performance metric is the percentage of correctly
classified test data. The benchmark algorithms for compar-
ison are Hybrid-CNN (Zhou et al. 2014), Multiscale or-
derless pooling CNN (MOP-CNN)(Gong et al. 2014), Se-
mantic Fisher vector CNN (SFV) (Dixit et al. 2015), hy-
brid CNN and dictionary-based model (CNN-DBL) (Xie et
al. 2017), Unified representative and discriminative learn-

2L1+L2 (-) represents using L1+L2 as the objective function
without the term to prevent overfitting



Table 5: Recognition Rates (%) for different architectures and multi-scale variations

Architecture Pretrain Set No. scales 15 Scenes MIT Indoor 67 SUN 397
Alex VGG Alex VGG Alex VGG

Baseline IN 1 86.50 89.89 61.80 71.11 46.33 54.09
CNN-DL IN 1 88.33 92.90 66.60 78.33 51.67 60.23
Baseline PL 1 89.96 91.20 72.88 79.45 57.07 65.10
CNN-DL PL 1 91.30 93.30 76.10 82.86 60.82 67.90

Hybrid-CNN IN+PL 1 53.86 – 70.80 – 53.86 –
DAG-CNN IN 1 – 91.90 – 77.50 – 56.20
DSP-CNN IN 1 – 91.78 – 78.28 – 59.78

Dual IN 2 92.16 93.84 71.87 79.04 56.62 61.07
Dual CNN-DL IN 2 92.31 94.54 76.56 83.37 59.03 65.20

Dual PL 2 93.80 95.18 76.87 83.43 62.60 67.59
Dual CNN-DL PL 2 94.20 96.03 80.30 86.43 66.10 70.13

MOP-CNN IN 3 – – 68.88 – 51.98 –
CNN-DBL IN 3 – – 74.09 82.24 57.31 64.53

MFAFV-NET IN/PL 3 – – 75.01 82.66 57.15 64.59
URDL IN 4 91.15 – 71.90 – – –
SFV IN 4 – – 72.86 – 54.40 –

SFV+PLACES IN/PL 4+1 – – 79.00 – 61.72 –

ing model (URDL) (Liu et al. 2014), Directed acyclic graph
CNN (DAG-CNNs)(Yang and Ramanan 2015), Deep spatial
pyramid CNN (DSP-CNN)(Gao et al. 2015) and Mixture of
factor analyzers Fisher vector network (MFAFV-NET)(Li,
Dixit, and Vasconcelos 2017). Detailed information about
each model is shown in Table.5, including the pre-train aux-
iliary dataset and the number of scales.

More specifically, we first train the CNN based net-
work on the auxiliary data, including ImageNet data (IN)
or Place205 data (PL), then fine tune the network as de-
scribed previously for different scene datasets. By replacing
the FCLs with the proposed DLLs, we can evaluate the per-
formance achieved by the CNN-DL method. It can be seen
that the network pre-trained by PL always performs better
than the counterpart pre-trained by IN, which corresponds
with the findings in (Zhou et al. 2014). In addition, the VGG
network architecture always demonstrates superior perfor-
mance to the Alex network architecture owing to the ex-
ploitation of deeper models. When evaluating various meth-
ods on a single global scale, our CNN-DL method consis-
tently outperforms the other CNN based scene recognition
methods, which justifies the effectiveness of integrating the
DLL into the network architecture. This may be because the
DLL considers sparsity control of the neuron activation and
the discrimination capability simultaneously. Furthermore,
usage of the new constraint in (4) is able to prevent over-
fitting, balancing between the recognition accuracy of the
training set and the generalization performance.

It worth noting that among the comparison methods, the
CNN-DBL and URDL methods are based on dictionary
learning models, however, these approaches apply the dic-
tionary learning model as a post-processing step discon-
nected from the training of CNN, and so do not fully harness
the strength of DL since it is not integrated with the deep net-
work. As these methods show improved performance when
evaluated on multiple scales (Xie et al. 2017) (Liu et al.
2014), we also consider the multiple scale case for our CNN-

DL method. In this paper, we evaluate pairwise combina-
tions of CNNs used at two different scales, represented as
Dual CNN-DL. As in (Herranz, Jiang, and Li 2016), the dual
architecture consists of two CNNs processing images at two
scales. We regard this as the baseline for the two scales eval-
uation. Instead of concatenating the two resulting final FCL
activations into a feature and training the SVM as in (Her-
ranz, Jiang, and Li 2016), we concatenate the sparse feature
representation into a feature and train the SVM in this new
discriminant latent space. The results in Table.5 show a con-
siderable improvement in the performance of Dual CNN-
DL (Pre-trained on IN), achieving an accuracy of 76.56% on
MIT Indoor 67 and 59.03% on SUN 397 for only two scales.
Compared with the other dictionary learning based models,
our method obtains significantly better performance on MIT
Indoor 67 and SUN 397, while using only two scales com-
pared with 3 or 4 scales in CNN-DBL and URDL. In this
work, we only combine two scales in a dual architecture for
CNN-DL, though it is also possible to consider the combi-
nation of more scales at the cost of a more complex archi-
tecture.

Conclusion
In this paper, we replace the conventional FCL and ReLu
by our proposed nonlinear DLL. The proposed approach
is capable of controlling the sparsity of the neuron activa-
tion in the forward pass, while passing the error differen-
tials from its outputs to inputs during back-propagation to
update the dictionary. Our CNN-DL architecture takes ad-
vantage of the potential structure of the dictionary, in order
to harness the discriminant capability of the features via a
new label discriminative regressor. In addition, we propose
new constraints to prevent overfitting, by incorporating the
advantage of the Mahalanobis and Euclidean distances and
balancing the recognition accuracy and generalization per-
formance. We suggest an algorithm to train the whole net-
work end-to-end by performing conventional back propaga-



tion and avoiding offline post-processing. The superior per-
formance of the proposed method in comparison to the state-
of-the-art is demonstrated using various scene datasets.
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