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ABSTRACT. Linear increments (LI) are used to analyse repeated outcome data with missing
values. Previously, two LI methods have been proposed, one allowing non-monotone missingness
but not independent measurement error and one allowing independent measurement error but only
monotone missingness. In both, it was suggested that the expected increment could depend on
current outcome. We show that LI can allow non-monotone missingness and either independent
measurement error of unknown variance or dependence of expected increment on current outcome
but not both. A popular alternative to LI is a multivariate normal model ignoring the missingness
pattern. This gives consistent estimation when data are normally distributed and missing at random
(MAR). We clarify the relation between MAR and the assumptions of LI and show that for continu-
ous outcomes multivariate normal estimators are also consistent under (non-MAR and non-normal)
assumptions not much stronger than those of LI. Moreover, when missingness is non-monotone,
they are typically more efficient.

Key words: ignorability, imputation, missing not at random, mortal cohort inference, non-
ignorable missing data, partly conditional inference

1. Introduction

Many medical studies involve repeated measurement of an outcome over time on a set
of patients. Such longitudinal studies include clinical trials and observational cohort stud-
ies. Missing outcome data are a common feature of these studies, typically arising because
patients miss scheduled visits or drop out of the study. Statistical methods for analysing such
incomplete datasets include inverse probability weighting (Seaman & White, 2013), multiple
imputation (Little & Rubin, 2002), random-effects models (Verbeke & Molenberghs, 2000),
shared random-effects models (Henderson et al., 2000), doubly robust estimation (Seaman &
Copas, 2009) and the focus of this article: linear increments (LI).

Linear increments were introduced by Diggle et al. (2007) (henceforth ‘DF&H’), who
brought ideas from survival analysis into the analysis of longitudinal data. This has conse-
quent advantages such as the ability to use martingale central limit theorems. LI was later
developed by Aalen & Gunnes (2010) (henceforth ‘A&G’). Pullenayegum & Feldman (2013)
extended the LI approach to allow for irregular observation times. Gunnes et al. (2009a) &
Gunnes et al. (2009b) and Kingsley et al. (2012) describe applications of LI to randomized
trials and observational studies.

DF&H assumed that the change in the underlying outcome (the ‘increment’) of a patient
between two consecutive measurement times t � 1 and t is the sum of a predictable compo-
nent and a martingale increment, and that these underlying outcomes are then measured with
mutually independent errors that are independent of all the underlying outcomes and whose
variances are unknown (‘independent measurement error’). A linear model is specified for the
dependence of the predictable component on covariates, and the parameters of this model are
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estimated using a series of linear regressions. The expected outcome at each time t is then esti-
mated by summing the predictable components up to time t and averaging over the individuals,
a method known as estimating the compensator. DF&H’s basic model assumes that the incre-
ment between times t�1 and t is independent of the underlying outcome at time t�1. However,
they suggested that this assumption could be weakened by including the measured outcome
(or function thereof) at time t � 1 as a covariate in the model for the predictable component of
the increment. DF&H’s method was limited to monotone missing data, that is, data where if a
patient’s outcome is missing at time t then it is also missing at all later times.

A&G allowed for multivariate outcomes and non-monotone missing data and explicitly
modelled the increment between times t�1 and t as a function of the outcome at time t�1. They
also treated the special situation where some missing outcomes result from patients dying, and,
as an alternative to estimating the compensator, introduced an imputation method (which we
call ‘LI-LS imputation’), which is particularly suitable when some patients die. Unlike DF&H’s
model, A&G’s model does not explicitly allow for independent measurement error.

Many of the commonly used methods for handling missing data in longitudinal studies
assume data are missing at random (MAR), that is, the probability an outcome is observed
depends only on observed data (see Seaman et al. (2013) for a formal definition). Among these
methods is the multivariate normal (MVN) model fitted using maximum likelihood (Schafer,
1997). The LI approach was originally conceived as a computationally simple way to han-
dle data that are missing not at random (MNAR), that is, where the probability an outcome
is observed can depend on the unobserved data in a particular way. It involves the ‘discrete-
time independent censoring (DTIC)’ assumption that the expected increment between times
t � 1 and t given the underlying outcomes up to time t � 1 and the missingness pattern in the
increments up to time t does not depend on that missingness pattern. LI–LS imputation addi-
tionally requires another, stronger DTIC assumption and an ‘independent return’ assumption,
that is, an assumption about the probability that a patient with missing outcome at time t will
be observed again at a later time point. The relation between DTIC and MAR has not been
investigated in depth.

In this article, we have several aims. In Section 2, we show how DF&H’s LI model can be
used with non-monotone missing data. We demonstrate that, contrary to DF&H’s suggestion,
this model cannot simultaneously allow for independent measurement error and dependence
of the expected increment on the previous outcome. DF&H allowed for independent measure-
ment error; A&G allowed for dependence on the previous outcome. In Section 3, we clarify
the relation between the DTIC, MAR and independent return assumptions. In Section 4, we
prove that under specific (MNAR) assumptions, which for a continuous outcome are not much
stronger than those required by LI–LS imputation, fitting the MVN model ignoring the miss-
ingness mechanism gives consistent estimation. Section 5 describes how the LI model can allow
for dependence of the expected increment on outcomes prior to the previous one. In Section 6,
we demonstrate using simulation studies that the MVN approach can be more efficient than
estimating the compensator and LI–LS imputation when data are non-monotone missing. In
Section 7, we identify that using imputation to treat the situation where some patients die
requires an assumption not mentioned by A&G. Finally, Section 8 describes an application of
the various methods to data from the British household panel survey (BHPS).

2. The linear increments method

2.1. The LI model

Let Yit denotes a vector of lengthm representing an underlying outcome for individual i at time
t (i D 1; : : : ; N ; t D 1; : : : ; T ). The corresponding measured outcome is Yit C eit , where eit
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is a measurement error. When the outcome is observed for individual i at time t , it is Yit C eit
that is observed; Yit itself is never observed (except when eit D 0). LetXi be a vector of p fully-
observed baseline covariates for individual i . The change (or ‘increment’),�Y it D Yit�Yi;t�1,
in the underlying outcome between times t � 1 and t is assumed to be related to the underlying
outcome at time t � 1 and the covariates by

�Y it D ˛t C .ˇt � I/
>Y i;t�1 C �

>
t Xi C �it .t D 2; : : : ; T / (1)

where ˇt and �t are, respectively, m � m and p � m matrices of parameters, I is the identity
matrix, and �it is a random vector of length m satisfying E.�it j Fi;t�1/ D 0, with Fit D
¹Xi ;Yi1; : : : ;Yit º denoting the history of individual i ’s covariates and underlying outcomes up
to time t . We assume �it and eit have finite variance. An important special case of Equation (1)
is where ˇt D I : then the expectation of �Yit does not depend on Yi;t�1. Equation (1) can be
written equivalently as

Yit D ˛t C ˇ
>
t Yi;t�1 C �

>
t Xi C �it .t D 2; : : : ; T /: (2)

Like DF&H, we assume that the measurement error process ¹eit W t D 1; : : : ; T º is independent
of all other processes (i.e. ei1; : : : ; eiT are independent of Xi ;Yi1; �i2; : : : ; �iT ), that eit is
independent of eis for all t ¤ s, and that E.eit / D 0. The underlying outcome processes,
measurement error processes and missingness processes (described in Section 2.2) of different
individuals are assumed independent (given Xi ;Yi1).

Some elements of ˇt and/or �t may be constrained. For example, if baseline outcome
Yi1 C ei1 is included in Xi , then ˇ2 can be constrained to equal I for identifiability. In much
of this article, we shall consider two special cases of Equation (2). The first, which we call the
case of ‘no independent measurement error’ (or just ‘no measurement error’) is where eit D 0
8i; t . Strictly speaking, we mean by ‘no measurement error’ that there are no mutually inde-
pendent measurement errors that are independent of Xi , Yi1, �i2, : : :, �iT and whose variance
is unknown (see Section 9 for case of known variance). The second case is where ˇt D I 8t .

2.2. Missing data

Let R0;it D 1 if Yit C eit is observed and R0;it D 0 if Yit C eit is missing. Let Rit D 1

if R0;it D R0;it�1 D 1 and Rit D 0 otherwise. Hence, Rit indicates whether the measured
increment .Yit C eit / � .Yi;t�1 C ei;t�1/ is observed, and Rit D 1 implies R0;it D 1. Let
R0;it D .R0;i1; : : : ; R0;it /

> and Rit D .Ri1; : : : ; Rit /
> denote missingness histories up to

and including time t . We assume R0;i1 D 1 8i . The assumption that the measurement error
process is independent of all other processes means that R0;i1; : : : ; R0;iT are independent of
ei1; : : : ; eiT . We say that the ‘data are monotone missing’ if P.R0;itC1 D 1 j R0;it D 0/ D 0

for all i (i.e. we mean that the data-generating mechanism always generates monotone missing
data). Let G it denote the vector consisting of Xi and those elements of Yi1; : : : ;Yit whose
corresponding elements of R0;it equal one. So, G it consists of the baseline covariates and the
underlying outcomes at the times at which the measured (with error) outcome is observed. For
example, if R0;i4 D .1; 1; 0; 1/>, then G i4 D .Y

>
i1 ;Y

>
i2;Y

>
i4;X

>
i /
>. Henceforth, we omit the

i index, unless doing so causes ambiguity.
DF&H define DTIC as E.�Yt j Ft�1; e1; : : : ; et�1;Rt / D E.�Yt j Ft�1; ; e1; : : : ; et�1/

for all t . Because it is assumed that the measurement error process is independent of all other
processes, this definition reduces to

E.�Yt j Ft�1;Rt / D E.�Yt j Ft�1/ 8t: (3)
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Note that Equation (3) can be equivalently written asE.Yt j Ft�1;Rt / D E.Yt j Ft�1/8t . We
discuss the relation between DTIC and MAR in Section 3. A&G give two versions of DTIC:
Equation (3) and

E.Yt j Ft�1;R0;t / D E.Yt j Ft�1/ 8t: (4)

For convenience, we call (3) and (4) ‘weak DTIC’ and ‘strong DTIC’, respectively. A&G point
out that strong DTIC implies weak DTIC, and that when data are monotone missing, weak
DTIC implies strong DTIC (i.e. they are equivalent).

2.3. Parameter estimation

Consider the model

E.Yt C et / D ˛
ls
t C .ˇ

ls
t /
>.Yt�1 C et�1/C .�

ls
t /
>X : (5)

In general, ˛ls
t , ˇls

t and � ls
t differ from the parameters of interest ˛t , ˇt and �t in Equation (2).

The former relates measured outcomes, the latter underlying outcomes. Let Ǫ ls
t , Ǒ

ls
t and O� ls

t

denote the least-squares estimators of ˛ls
t , ˇls

t and � ls
t obtained by fitting model (5) to the

set of patients with Rt D 1. DF&H offered a proof (Section 4.2) that Ǫ ls
t , Ǒ

ls
t and O� ls

t are
unbiased consistent estimators of ˛t , ˇt and �t in Equation (2) when weak DTIC holds,
data are monotone missing and m D 1. However, this proof implicitly assumes that either (i)
ˇt D 1 and Ǒlst is fixed at 1 before calculating the least-squares estimator of .˛ls

t ; �
ls
t /, or (ii)

E ¹.Yt�1 C et�1/et�1º D 0. Because (ii) is not true unless Var.et�1/ D 0, this proof is not
valid unless either (i) the expectation of the increment �Yit does not depend on Yt�1 (i.e.
ˇt D 1) and Ǒlst is fixed at the true value of ˇt or (ii) there is no measurement error. This lack

of validity is demonstrated by Example 1 later. A&G also proved that Ǫ ls
t , Ǒ

ls
t and O� ls

t are unbi-
ased estimators of ˛t , ˇt and �t when weak DTIC holds and there is no measurement error.
Their proof allows m > 1 and data to be non-monotone missing.

The following theorem and corollary show that if weak DTIC holds and Ǒ
ls
t is fixed at the true

value of ˇt , then . Ǫ ls
t ; O�

ls
t / is an unbiased consistent estimator of .˛t ;�t / even if missingness is

non-monotone and/or there is measurement error. As explained later, this theorem is of most
practical interest when the true value of ˇt is I . The theorem is followed by an example which
illustrates that the least-squares estimators may be neither unbiased nor consistent estimators

of the parameters of interest when there is measurement error unless Ǒ
ls
t is fixed at the true

value of ˇt .

Theorem 1. If the increments model of Equation (2) and the weak DTIC assumption of

Equation (3) hold and Ǒ
ls
t is fixed at the true value of ˇt , then E¹. Ǫ ls

t ; O�
ls
t /º D .˛t ;�t / and

. Ǫ ls
t ; O�

ls
t /! .˛t ;�t / as N !1.

Proofs of theorems are given in Appendix S1.

Example 1. m D 1, T D 2, Y1 � Normal.0; 1/, e1 � Normal.0; 1/, e2 D 0 and Y2 D Y1.
Note that this is a special case of Equation (2) in which ˛2 D �2 D 0, ˇ2 D 1, and there is
no covariate X . It can be shown that ˛ls

2
D 0 and ˇls

2
D 0:5. Thus, even if there are no missing

data, Ǫ ls
2

and Ǒls
2

are not unbiased or consistent estimators of ˛2 and ˇ2. Moreover, when there
is missing data, they may not even be unbiased or consistent estimators of ˛ls

2
and ˇls

2
. For

example, suppose that R02 D 1 if and only if Y1 � 0. It can be shown that if Y2 C e2 D Y2 is
regressed on Y1 C e1 using only those individuals with R02 D 1, then Ǫ ls

2
and Ǒls

2
converge to
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0.585 and 0.267, respectively, as N !1. Hence, Ǒls
2

is a consistent estimator neither of ˇ2 D 1
nor of ˇls

2
D 0:5. Note that if Ǒls

2
is fixed at ˇ2 D 1, then Theorem 1 implies that Ǫ ls

2
converges

to ˛2 D 0.

In conclusion, the least-squares estimators are unbiased for the parameters of the LI model if

weak DTIC holds and either (i) Ǒ
ls
t is fixed at the true value of ˇt , or (ii) there is no measurement

error. Otherwise, they may not be. Henceforth, the only value at which we consider fixing Ǒ
ls
t is

I . This is the case of most practical interest: one could fix Ǒ
ls
t D I if one believed that expected

increment E.�Yt j Ft�1/ did not depend on Yt�1 (i.e. ˇt D I). Otherwise, one could treat ˇt
as unknown and estimate it. It seems unlikely one would wish to fix ˇt at a value other than I .

2.4. Estimating the compensator

From Equation (2), E.Yt j X ;Y1/ D ˛t C ˇ>t E.Yt�1 j X ;Y1/C �
>
t X , and so

E.Yt j X ;Y1/ D ˛t C �
>
t X C

8<
:
t�1X
jD2

0
@

tY
kDjC1

ˇ>k

1
A .˛j C �>j X/

9=
;C

tY
jD2

ˇ>j Y1 (6)

where
Qb
jDa ˇ

>
j means ˇ>b ˇ

>
b�1 : : :ˇ

>
a . Thus,E.Yit j Xi ;Yi1/ can be estimated for each indi-

vidual i in the dataset by replacing ˛t , ˇt and �t in Equation (6) with Ǫ ls
t , Ǒ

ls
t and O� ls

t . Denote
this estimate as Y cpr

it
. This is the estimating the compensator method. The overall mean E.Yt /

can then be estimated as N�1
PN
iD1 Y

cpr
it

. If . Ǫ ls
t ;
Ǒ ls
t ; O�

ls
t / is an unbiased consistent estimator

of .˛t ;ˇt ;�t /, then this estimate of E.Yt / will also be unbiased and consistent.
Returning to Example 1, if Ǫ ls

2
D 0:585 and Ǒls

2
D 0:267 are used in Equation (6), then E.Y2/

is calculated to equal Ǫ ls
2
D 0:585, whereas its true value is zero.

2.5. LI–LS imputation

A&G propose an alternative to estimating the compensator when there is no measurement
error. We call this method ‘LI-LS imputation’, because it is based on the LI model of

Equation (2) and the least-squares (LS) estimators Ǫ ls
t ;
Ǒ ls
t ; O�

ls
t of ˛t , ˇt and �t . (Later, we shall

introduce other LI imputation methods that differ from LI-LS imputation only in that they use
alternative estimators of ˛t , ˇt and �t .) LI–LS imputation uses an actual outcome when it is
observed and imputes a missing outcome as the most recently observed outcome updated by
the expected increments. That is, letting Y est

t denotes the value of Yt in the imputed dataset, we

have Y est
t D Yt if R0t D 1 and Y est

t D Ǫ
ls
t C .

Ǒ ls
t /
>Y est

t�1 C . O�
ls
t /
>X if R0t D 0.

A&G show that if Equation (2) holds, there is no measurement error, strong DTIC holds and

E¹R0;t .Y
est
t�1 � Yt�1/ j X ;Y1º D 0 (7)

then E.Y est
t j Y1;X/ D E.Yt j Y1;X/. It follows that N�1

PN
iD1 Y

est
it is an unbiased estimator

of E.Yt / and that if a linear regression model for Y with any or all of X and t as covariates is
fitted to the imputed dataset ¹Y est

it W i D 1; : : : ; N I t D 1; : : : ; T º using least squares, then the
parameter estimators of this model are consistent.

The following theorem shows that LI–LS imputation can also be used when there is

measurement error, provided that ˇt D I and Ǒ
ls
t is fixed at I .

Theorem 2. Suppose that the increments model of Equation (2), the strong DTIC assumption

of Equation (4) and Equation (7) hold, that ˇt D I , and that Ǒ
ls
t is fixed at I . Then, E.Y est

t j

Y1;X/ D E.Yt j Y1;X/.
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Corollary. If the conditions of Theorem 2 are satisfied, then (i) N�1
PN
iD1 Y

est
it is an unbiased

estimator of E.Yt / and (ii) if a linear regression model for Y with any or all of X and t as
covariates is fitted to the imputed dataset using least squares, the parameter estimators are
asymptotically unbiased.

Returning to Example 1, it can be shown that N�1
PN
iD1 Y

est
i2 tends to 0.585 as N ! 1,

and so is an inconsistent estimator of E.Y2/ D 0.
A&G say that Equation (7) will hold if

P.R0;tD1 jR0;k�1;R0;kD1;R0;kC1DR0;kC2D : : :DR0;t�1D0;X ;Yk ;YkC1; : : : ;Yt /
DP.R0;tD1 jR0;k�1; R0;kD1;R0;kC1 D R0;kC2D : : : D R0;t�1 D 0;X ;Yk/

(8)

for all k � t � 2, and imply that it is unlikely to hold otherwise. Equation (8) can be interpreted
as meaning that the conditional probability of return at time t given dropout immediately after
time k, no return between times k and t , the baseline covariates X , the most recently observed
outcome Yk and subsequent outcomes does not depend on these subsequent outcomes (or,
more informally, as ‘return after a dropout is independent of outcomes occurring since that
dropout’). We shall call Equation (8) the ‘independent return’ assumption.

2.6. Estimating the compensator versus LI–LS imputation

A&G do not discuss the relative advantages and disadvantages of the two methods in detail but
do say that LI–LS imputation can be used to give mortal-cohort inference (as well as immortal-
cohort inference), whereas estimating the compensator gives immortal-cohort inference only.
We postpone consideration of mortal-cohort inference until Section 7. The advantage of esti-
mating the compensator is that it relies on fewer assumptions than LI–LS imputation. Notably,
it does not make assumptions about the probability of return after dropout. The disadvan-
tages are that it may be less efficient and less robust to violation of those assumptions than
LI–LS imputation. LI–LS imputation may be more efficient because, unlike estimating the
compensator, it uses Yt C et values with R0;t D 1 but R0;t�1 D 0 (so that Rt D 0). It
may be more robust to violation of the weak DTIC assumption because it relies on DTIC
only to impute missing values. For example, if Y3 C e3 is fully observed and Y2 C e2 is miss-
ing whenever Y2 < 0, then the estimate of E.Y3/ from LI–LS imputation will be unbiased,
whereas that from estimating the compensator will be biased. Note that when data are mono-
tone missing, the two estimators N�1

PN
iD1 Y

cpr
it

and N�1
PN
iD1 Y

est
it of E.Yt / are equal

(Aalen & Gunnes, 2010).

3. Relation between missingness assumptions

In this section, we consider the relation between DTIC and MAR and then the implications
for the dropout and return processes of assuming DTIC.

Weak and strong DTIC are assumptions only about expectations. MAR, on the other hand,
is an assumption about whole distributions. A slightly stronger assumption than strong DTIC,
which is about whole distributions, is

f .Yt j Ft�1;R0;t / D f .Yt j Ft�1/ 8t: (9)

We call Equation (9) ‘dDTIC’ (‘DTIC in distribution’). In practice, it seems likely that in most
cases when strong DTIC holds, dDTIC will also hold. dDTIC can be written equivalently as

P.R0;t D 1 j R0;t�1;FT / D P.R0;t D 1 j R0;t�1;Ft�1/ 8t: (10)
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(see Appendix S2). Thus, the hazards of dropout and return are not allowed to depend on
future underlying outcomes.

Missing at random means that the probability the outcome is missing at time t can depend on
covariates X and observed outcomes, including future observed outcomes, but not on missing
outcomes (i.e. those at times t where R0t D 0). When there is measurement error, missingness
depends on the outcomes observed with measurement error, not on the underlying outcomes.
Conversely, the dDTIC assumption, combined with the assumed independence of the measure-
ment error and missingness processes, allows the probability of missingness to depend on all
past underlying outcomes (including those at times t where R0t D 0) but not on future under-
lying outcomes or the outcomes measured with error. When data are monotone missing and
there is no measurement error, dDTIC is equivalent to MAR (and also to ‘sequential MAR’ —
Hogan et al. (2004); Diggle et al. (2007)).

A simple example illustrates that estimating the compensator can give inconsistent estima-
tion when there is measurement error and dropout depends on it. Suppose that m D 1 and
T D 2, that Y1 D Y2 D 0, that e1 and e2 are independently distributed Normal.0; 1/, that
there are no baseline covariates X , that R02 D 1 if and only if Y1C e1 > 0, and that Ǒls

2
is con-

strained to equal 1. Whereas ˛2 D 0, the least-squares estimator Ǫ ls
2

has negative expectation.
Note that these data are MAR.

The following example illustrates that dDTIC and independent return can hold without
MAR holding. In this example, the probability that an individual drops out at time t D 4

depends on the outcome at t D 2, which may be missing.

Example 2. m D 1 and T D 4, ˛t D 0 and ˇt D 1 for all t , there is no covariate X or
measurement error, P.R02 D 1 j Y1; Y2; Y3; Y4/ D 0:5, R03 D 1 always, and R04 D 1 if and
only if Y2 > 0.

If, in addition to Equation (10), it is assumed that

P.R0;t D 1 j R0;k�1; R0;k D 1;R0;kC1 D : : : D R0;t�1 D 0;Ft�1/
D P.R0;t D 1 j R0;k�1; R0;k D 1;R0;kC1 D : : : D R0;t�1 D 0;Fk/ 8k

(11)

then the hazard of return after dropout cannot depend on any of the underlying outcomes after
the most recent dropout. The following theorem shows that Equation (11) is sufficient but not
necessary for independent return to hold.

Theorem 3. Let Bk and C k be subvectors of .X>;Y>1 ; : : : ;Y
>
k /
> such that both contain

.X>;Y>k /
> and C k is a subvector of Bk . If the increments model of Equation (2) and the

dDTIC assumption of Equation (9) hold, then

P.R0;t D 1 j R0;k�1; R0;k D 1;R0;kC1 D : : : D R0;t�1 D 0;Bk ;YkC1; : : : ;YT /
D P.R0;t D 1 j R0;k�1; R0;k D 1;R0;kC1 D : : : D R0;t�1 D 0;Bk/;

implies

P.R0;t D 1 j R0;k�1; R0;k D 1;R0;kC1 D : : : D R0;t�1 D 0;C k ;YkC1; : : : ;YT /
D P.R0;t D 1 j R0;k�1; R0;k D 1;R0;kC1 D : : : D R0;t�1 D 0;C k/:

The converse is not true in general.
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Theorem 3 also implies that the following assumption, which will be important in
Section 4.1, is stronger than independent return but weaker than Equation (11):

P.R0;t D 1 j R0;k�1; R0;k D 1;R0;kC1 D R0;kC2 D : : : D R0;t�1
D 0;Gk ;YkC1;YkC2; : : : ;Yt /

D P.R0;t D 1 j R0;k�1; R0;kD 1;R0;kC1 D R0;kC2 D : : : D R0;t�1 D 0;Gk/
(12)

for all k � t�2. We call Equation (12) the ‘strong independent return’ assumption. In the proof
of Theorem 3, we give an example where independent return holds but strong independent
return does not. However, in most real-world situations, we believe it is unlikely that indepen-
dent return would hold without strong independent return also holding. Note that the word
‘strong’ in ‘strong independent return’ is meant in a different sense from that in ‘strong DTIC’.

4. Use of MVN model assuming ignorability

A popular method for handling missing repeated outcome data is to assume that outcomes
and covariates are normally distributed and calculate the maximum likelihood estimates of
the mean and variance of this normal distribution ignoring the missingness mechanism and
imposing no structure on the mean and variance (Schafer, 1997). We call this the ‘unstruc-
tured MVN’ method. These maximum likelihood estimates may be of interest in themselves,
or they can be used to impute missing values. This approach yields consistent estimates when
data are MAR and the MVN model is correctly specified (Seaman et al., 2013). (Indeed, under
these conditions, the missingness mechanism is ‘ignorable’ in the following sense. The unstruc-
tured MVN method yields the same maximum likelihood estimates and imputed values as
would be obtained if the MVN model were fitted jointly with any missingness model—that is,
model for the missingness pattern given the outcomes and covariates—that assumes MAR and
has parameters distinct from those of the MVN model (Seaman et al., 2013)). As we have
noted, the assumptions used in estimating the compensator (weak DTIC) and LI–LS imputa-
tion (strong DTIC and Equation (7)) do not imply the data are MAR or normally distributed.
Nevertheless, we now show (Section 4.1) that when there is no measurement error and slightly
stronger assumptions than those of LI–LS imputation are satisfied, the unstructured MVN
method yields consistent estimates even when MAR does not hold and the data are not normally
distributed. We then show (Section 4.2) that a more efficient estimator can be obtained by con-
straining the variance matrix of the MVN distribution. We call this the ‘autoregressive MVN’
method. Finally, we show (Section 4.3) that if a further constraint is applied to the variance
matrix, the resulting method provides consistent estimates even when there is measurement
error, provided that ˇt D I for all t . We call this the ‘random-walk MVN’ method. These MVN
methods are typically more efficient than estimating the compensator and LI–LS imputation.

4.1. Unstructured MVN and no measurement error

We assume throughout Sections 4.1 and 4.2 that there is no measurement error, that is, et D 0.
Let � D E¹.Y>1 ; : : : ;Y

>
T ;X

>/>º and † D Var¹.Y>1 ; : : : ;Y
>
T ;X

>/>º. Let �t denotes the
subvector of � corresponding to Yt (t D 1; : : : ; T C 1), where Y TC1 means X . Similarly, let
†s;t denotes the submatrix of† corresponding to .Y s ;Yt / (1 � s; t � T C1). So, for example,
�3 D E.Y3/, �TC1 D E.X/, †3;TC1 D Cov.Y3;X/ and †TC1;TC1 D Var.X/.

Let O� and O† denote the maximum likelihood estimates obtained by fitting the model
.Y>1 ; : : : ;Y

>
T ;X

>/> � Normal.�;†/ with unstructured � and † to the observed data and
ignoring the missingness mechanism. That is, O� and O† are the maximum likelihood estimates
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from the model GiT � Normal.�R0;iT ; †R0;iT ;R0;iT / .i D 1; : : : ; N /, where �R0;iT and
†R0;iT ;R0;iT denote the subvector of� and submatrix of† corresponding toG iT . This model
can be fitted using an EM algorithm (e.g. using the norm package in R) (Schafer, 1997).

Theorem 4. If the increments model of Equation (2), the dDTIC assumption of Equation (9) and
the strong independent return assumption of Equation (12) hold and Var.�t j Ft�1/ D Var.�t /
for all t , then . O�; O†/ is a consistent estimator of .�;†/.

Theorem 4 may be surprising, because there is no assumption the data are MAR (e.g. Exam-
ple 2 satisfies the conditions of Theorem 4, but the data are not MAR) nor that they are
normally distributed. Note that Theorem 4 is not saying the missingness process is ‘ignor-
able’. In Example 2, missingness is not ignorable, because information about a missing value
of Y2 is gained by knowing whether Y4 is observed. The intuition behind Theorem 4 is that
although dDTIC and strong independent return allow dropout and return to depend on earlier
unobserved outcomes, this dependence does not matter, because the autoregressive structure
of the data means that the later outcomes are conditionally independent of these earlier out-
comes given outcomes that are observed. Consider Example 2. Although whether or not Y4
is observed depends on Y2, which may be missing, Y4 is independent of Y2 given Y3, which is
observed. This results in observed outcomes being in an important sense representative of all
the outcomes, as formalized in the following theorem.

Theorem 5. If the increments model of Equation (2), the dDTIC assumption of Equation (9)
and the strong independent return assumption of Equation (12) hold, then for k < t ,

a)f .Yt j R0;t�2; R0;t�1 D R0;t D 1;G t�1/ D f .Yt j X ;Yt�1/
b)f .Yt j R0;k�1; R0;k D 1;R0;kC1 D : : : D R0;t�1 D 0;R0;t D 1;Gk/

(13)

D f .Yt j X ;Yk/ (14)

If Equation (8) holds instead of Equation (12), then Equations (13) and (14) still hold but with
G t�1 and Gk replaced by, respectively, .X ;Yt�1/ and .X ;Yk/.

Equation (13) says that the conditional distribution of the outcome at time t given the previ-
ous observed outcomes in individuals who are observed at times t and t � 1 is the same as the
distribution in the whole sample. Equation (14) says that the same is true of individuals return-
ing after dropout. Because the joint distribution of the observed part of .Y>1 ; : : : ;Y

>
T ;X

>/>

can be factorized as the product of these conditional distributions, the parameters .�;†/ of
the joint distribution can be consistently estimated (see proof of Theorem 4 for more details).

Having obtained estimates O� and O†, the corresponding estimates of ˛t , ˇt and �t can be
calculated as follows, and these used for LI imputation in place of the least-squares estimates

Ǫ ls
t , Ǒ

ls
t , and O� ls

t . We call this method ‘LI-uMVN imputation’. Let

Ǒ
t D

�
O†t�1;t�1 � O†t�1;TC1 O†

�1

TC1;TC1
O†TC1;t�1

��1
�
O†t�1;t � O†t�1;TC1 O†

�1

TC1;TC1
O†TC1;t

� (15)

O�t D
O†
�1

TC1;TC1
O†TC1;t � O†

�1

TC1;TC1
O†TC1;t�1 Ǒ t (16)

Ǫ t D O�t �
Ǒ
t O�t�1 � O� O�TC1 (17)
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where O�t denotes the t th element of O� and O†s;t denotes the .s; t/th element of O† .s; t D

1; : : : ; T C 1, with the .T C 1/th element corresponding to X ).

Theorem 6. If O� and O† are consistent estimators of � and †, then Ǫ t ; Ǒ t and O�t are consistent
estimators of ˛t ;ˇt and �t .

LI–uMVN imputation might be expected to be more efficient than estimating the compen-
sator and LI–LS imputation, because the latter methods estimate ˛t , ˇt and �t using only
those observed outcomes Yt with R0;t�1 D 1, whereas the MVN method uses all observed
outcomes.

If the motivation for using LI imputation is to enable a linear regression model for Y with
any or all of X and t as covariates to be fitted to the imputed dataset, then an even more
efficient alternative is available. It can be seen that the maximum likelihood estimates of the
parameters in this linear regression are functions of O� and O†. A computationally convenient
way to calculate these functions is to impute each missing Yt value as its conditional expectation
given G iT (given by Equation (18) with � and † replaced by O� and O†) and then fit the linear
regression to the imputed data. We call this method ‘uMVN imputation’. More details and
justification are given in Appendix S6. Unlike in LI imputation, where a missing value of Yt is
imputed using only the individual’s observed past (G t�1), in uMVN imputation, missing values
are imputed using his or her observed past and future (GT ), and hence uMVN imputation may
be more efficient when the data are non-monotone missing. The conditional expectation of
Yt given GiT is

�t C†t;R0;iT†
�1
R0;iT ;R0;iT

�
GiT � �R0;iT

�
(18)

where †t;R0;iT is the submatrix of † composed of the m rows corresponding to Yt and the
columns corresponding to G iT .

So far, we have assumed there are baseline covariates in the model and that Y1 is not treated
as one of these covariates. If there are no baseline covariates, then �t ,X ,†TC1;t ,†t;TC1 and
†TC1;TC1 should be omitted from all expressions in this article. If, on the other hand, Y1 is
included in X , then ˇ2 should be set equal to zero to ensure parameter identifiability.

Theorem 4 (and hence LI-uMVN imputation and uMVN imputation) requires the assump-
tion that the variance of �t does not depend on the history Ft�1. This is not required by the
estimating the compensator and LI–LS imputation methods. When Yt is a continuous variable,
one might be content to make this assumption. However, the LI approach can also be used for
categorical outcomes. For example, A&G consider a Markov chain with q states. They define
Yt to be a vector of q � 1 indicator variables for the state occupied at time t and show that Ǫ ls

t ,
Ǒ ls
t and O� ls

t are closely related to the Aalen–Johansen estimator of the transition matrix. In this
case, each element of Yt � Yt�1 equals 0, 1 or �1, and the variance of �t depends on Yt�1. So,
Var.�t j Ft�1/ D Var.�t / is not true. Even for a continuous outcome Yt , it may not be true if
Yt is bounded above or below.

4.2. Autoregressive MVN and no measurement error

Although the unstructured MVN method may be expected often to be more efficient
than estimating the compensator or LI–LS imputation, this is not guaranteed, because
unlike those methods it does not exploit the autoregressive assumption in Equation (2). As
shown in Appendix S3, Equation (2) implies the following constraint on †: for 1 � s

< t � T ,
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†s;t D †s;TC1†
�1
TC1;TC1†TC1;t

C ˇ>t ˇ
>
t�1 : : :ˇ

>
sC1

�
†s;s �†s;TC1†

�1
TC1;TC1†TC1;s

� (19)

The model defined by
�
Y>1 ; : : : ;Y

>
T ;X

>
�>
� Normal.�;†/ with the constraint of

Equation (19) can be fitted by maximum likelihood to the observed data ignoring the
missingness mechanism (an EM algorithm is described in Appendix S5). We call this the
‘autoregressive MVN’ method, and we call imputation using formula (18) with these estimates
of � and † ‘aMVN imputation’. The corresponding estimates of ˇt , �t and ˛t are given
by Equations (15)–(17), and we call LI imputation using these estimates ‘LS -aMVN impu-
tation’. These autoregressive MVN methods might be expected to be more efficient than the
corresponding unstructured MVN methods.

Theorem 4 holds also for the autoregressive MVN method (proof in Appendix S1). Fur-
thermore, the strong independent return assumption in that theorem can be replaced by
the weaker independent return assumption. The following theorem shows a relation between
autoregressive MVN and the methods of A&G.

Theorem 7. When data are monotone missing, the estimates of ˛t , ˇt and �t obtained by

using autoregressive MVN followed by Equations (15)–(17) are equal to Ǫ ls
t , Ǒ

ls
t and O� ls

t .
Furthermore, LI–LS imputation, LI–aMVN imputation and aMVN imputation yield identical
imputed values.

4.3. Random-walk MVN and measurement error

Suppose now that there is measurement error et . Equation (2) implies that the underlying
outcome Yt is conditionally independent of Ys for s < t � 1 given Yt�1 and X , but it does not
imply that the outcomes Yt C et measured with error also have this autoregressive structure.
Nevertheless, we show in Appendix S4 that when ˇt D I for all t , fitting the MVN model
imposing the constraint of Equation (19) with ˇt D I (‘random-walk MVN’ or ‘rMVN’) to
the observed outcomes measured with error and ignoring the missingness mechanism gives
consistent estimation of the parameters of Equation (2). The resulting LI–rMVN imputation
and rMVN imputation methods can be more efficient than LI–LS imputation when data are
non-monotone missing.

5. Extension to higher-order autoregression

Equation (2) implies that Yt is conditionally independent of Y1; : : : ;Yt�2 given Yt�1. So, if it is
assumed that there is no measurement error (et D 0), then the measured outcomes are assumed
to follow a first-order autoregressive process. This can be quite a restrictive assumption. When
measurement error is allowed, Equation (2) implies that the measured outcome Yt C et can,
in general, depend on all previous measured outcomes, thus allowing more flexibility. Unfor-
tunately, as shown in Section 2.3, LI methods that allow for measurement error require the
restrictive assumption that ˇt D I .

One way to allow an outcome measured at time t to depend on more than just the outcome
measured at time t � 1, while still allowing ˇt ¤ I , is to define Yt to include the outcome
(or outcomes) measured at both times t and t � 1 and set et D 0. This possibility was not
explicitly mentioned by A&G but was mentioned in earlier work by the same authors (Gunnes
et al., 2009a). There they considered only monotone missing data. We now describe how this
approach could be used with monotone or non-monotone missing data.
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To avoid confusion, denote the outcome (or outcomes) of interest measured at time t as Z t ,
define Yt in Equation (2) as Yt D .Z>t ;Z

>
t�1/

> for t > 1 and Y1 D Z1, and let et D 0 for all
t . Equation (2) now allows for second-order autoregression in Z t .

Note that, by definition, R0;t D 1 if and only if all elements of Yt are observed. (This
was illustrated by A&G, who described an analysis where Yt included three quality-of-life
outcomes all measured at time t ; here R0;t D 1 only when all three were observed.) When
Yt D .Z>t ;Z

>
t�1/

>, R0;t D 1 requires that both Z t and Z t�1 be observed. Because the two
methods described by A&G only use values of Yit for which R0i;t D 1, this means that if Z it
is observed but Z i;t�1 and Z i;tC1 are both missing, then Z it is treated as missing and indi-
vidual i is regarded as not having returned at time t . This is also true of the uMVN and aMVN
methods. Furthermore, Rt D 1 if and only if Z t , Z t�1 and Z t�2 are all observed. This means
that if Z it and Z i;tC1 are observed but neither Z i;t�1 nor Z i;tC2 are, then A&G’s methods
do not useZ it orZ i;tC1 in the estimation of the parameters of Equation (2) (unlike the MVN
methods).

Application of A&G’s methods is now straightforward, except that it is not immediately
obvious how LI–LS imputation should deal with an observed value of Z it when Z i;t�1 is
missing and Z i;tC1 is observed. In this case, R0i;t D 0 and R0i;tC1 D 1. Because R0i;t D 0,
LI–LS imputation involves imputing Yit (and hence Z it ). However, because R0i;tC1 D 1,
Y i;tC1 (and hence Z it ) is observed. Thus, we have both an observed and an imputed value
of Z it . Fortunately, Theorem 5 implies that the conditional distributions of the observed and
imputed values of Z it given the most recently observed value of Yik (k < t ) are the same.
Therefore, it is valid to use either the observed or imputed value. We recommend using the
former, for reasons of efficiency and robustness to possible misspecification of Equation (2).

Application of uMVN imputation is also straightforward. First, as with A&G’s methods, any
observed values of Z it for which Z i;t�1 and Z i;tC1 are both missing are deleted. One could

then fit the MVN model to
�
Y>1 ; : : : ;Y

>
T ;X

>
�>

. However, because the second element of

Y tC1 and first element of Yt are equal by definition (both equalZt ), there is no need to include
both. Instead, one can just fit the model .Z>1 ; : : : ;Z

>
T ;X

>/> � Normal.�Z ;†Z/. Missing
values of Z t would then be imputed as their conditional expectations given the observed data,
as in Equation (18). LI–uMVN imputation would instead involve calculating Ǒt , O�t and Ǫt
from the maximum likelihood estimates of �Z and †Z , as in Equations (15)–(17), and then
using these to impute in the same way as in LI–LS imputation. LI–aMVN imputation and
aMVN imputation could be adapted to allow for second-order autoregression by imposing a
constraint analogous to Equation (19) on †.

Extension to third- (or higher-) order autoregression is possible, by defining Yt D

.Z t ;Z t�1;Z t�2/. However, the more elements Yt contains, the greater is the risk that one will
be missing, causing more observed Zt values to be treated as missing.

6. Simulation studies

The following simple simulation studies are intended to demonstrate unbiasedness of the meth-
ods investigated in this paper when their assumptions are satisfied and biasedness when they
are not, and to investigate their relative efficiencies. As indicated in Sections 2.6 and 4, esti-
mating the compensator, LI–LS imputation, LI–aMVN imputation and aMVN imputation
yield identical estimates when data are monotone missing. So, our simulation study scenarios
were chosen to have high rates of dropout and return, in order to investigate how large the
differences in efficiency can be when missingness is far from monotone. In most realistic situa-
tions, missingness would be non-monotone but with lower rates of return, and so, the efficiency
gains available there would be less than those demonstrated here. In the studies described in
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Sections 6.1 and 6.2, there is no measurement error. Appendix S8 includes a further study
(Study 3) with measurement error and ˇt D I . Its results demonstrate that methods that
estimate ˇt , rather than constraining it to equal its true value, are biased when there is mea-
surement error, and also that, when data are non-monotone missing, LI–rMVN imputation
and rMVN imputation can be more efficient than LI–LS imputation with ˇt constrained as
ˇt D I .

6.1. Study 1: first-order autoregression

Data were generated from the following model. Let X� Uniform.0; 1/, Y1�Normal.0:5X; 1/,
Yt D 0:4 C ˇtYt�1 C 0:5X C �t .t D 2; : : : 6/, �t � Normal.1; 1/ with probability 0.5 and
�t � Normal.�1; 1/ otherwise, R1 D 1, logit¹P.R0;t D 1 j R0;t�1 D 1;R0;t�2;FT /º D
!t C X C .Yt�1 C Yt�2/=2, and logit¹P.R0;t D 1 j R0;t�1 D 0;R0;t�2;FT /º D �t C X C

.YLt C YLt�1/=2, where ˇt D 1:2 for all t , Lt D argmaxj ¹j < t and R0;j D 1º (t � 2)
denotes the most recent time at which the outcome was observed prior to time t , L1 D 1 and
Y0 D 0. The values of !t and �t were chosen to make P.R0;t D 0 j R0;t�1 D 1/ D 0:5 and
P.R0;t D 1 j R0;t�1 D 0/ D 0:5. This is a scenario in which dDTIC and strong independent
return hold, and the data are MNAR. The (arguably unrealistic) bimodal distribution of �t was
chosen to illustrate that normality of .Y1; : : : ; Y6; X/ is not required by the MVN methods.

For each of 1000 simulated datasets, we estimated �t D E.Yt / by estimating the compen-
sator and by LI–LS, LI–uMVN, LI–aMVN, uMVN and aMVN imputation. Estimates were
also calculated from the complete data (i.e. before imposing missingness) and from the complete
cases (i.e. the mean of the outcomes with R0t D 1).

Table 1 shows the means and empirical SEs of the estimators. As expected, all but the
complete-cases estimator are approximately unbiased. LI imputation using the least-squares
estimates of ˛t , ˇt and �t (LI–LS imputation) is considerably more efficient than estimating

Table 1. Means and empirical SEs of estimated �t in Simulation Study 1

Method �1 �2 �3 �4 �5 �6

True values 0.250 0.950 1.790 2.798 4.008 5.459
Means

Complete data 0.249 0.945 1.784 2.790 3.998 5.447
Complete cases 0.249 1.482 2.471 4.164 6.009 8.325
Estim. compens. 0.249 0.944 1.784 2.798 4.017 5.469
LI–LS impute 0.249 0.944 1.786 2.796 4.007 5.455
LI–uMVN impute 0.249 0.946 1.786 2.790 3.997 5.454
LI–aMVN impute 0.249 0.946 1.787 2.788 3.999 5.450
uMVN impute 0.249 0.947 1.784 2.791 3.998 5.455
aMVN impute 0.249 0.947 1.786 2.789 4.000 5.450

Empirical SEs
Complete data 0.045 0.084 0.120 0.160 0.204 0.255
Complete cases 0.045 0.115 0.172 0.224 0.278 0.319
Estim. compens. 0.045 0.113 0.227 0.343 0.477 0.615
LI–LS impute 0.045 0.113 0.179 0.238 0.296 0.354
LI–uMVN impute 0.045 0.102 0.140 0.186 0.234 0.292
LI–aMVN impute 0.045 0.100 0.139 0.186 0.233 0.291
uMVN impute 0.045 0.099 0.137 0.182 0.231 0.292
aMVN impute 0.045 0.097 0.136 0.182 0.230 0.291

LI, linear increment; LS, least-square; MVN, multivariate normal; aMVN,
autoregressive MVN.
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the compensator, and further efficiency is gained by replacing the least-squares estimates by
the corresponding parameter estimates from the unstructured or autoregressive MVN method
(LI–uMVN or LI–aMVN imputation). Once ˛t , ˇt and �t have been estimated, the LI impu-
tation methods impute each individual’s missing values using only his or her observed past.
The uMVN and aMVN imputation methods, on the other hand, implicitly impute using the
observed past and future. However, Table 1 shows that the efficiency gain from doing this
is very small. It also shows that the difference in efficiency between the unstructured and
autoregressive MVN methods is negligible.

We also fitted the linear regression model E.Yt j X/ D  0C 1X C 2t C 3Xt to datasets
imputed by the five imputation methods. The results were in agreement with the results of
Table 1. Again, all but the complete-case estimator (i.e. the least-squares estimator using out-
comes with R0t D 1) are approximately unbiased; LI imputation using estimates of ˛t , ˇt and
�t from an MVN method is more efficient than LI imputation using the least-squares estimates;
and using the observed future to impute missing outcomes or constraining the variance matrix
to be autoregressive provides little benefit (Table S1).

In Appendix S8, we present the results when the return mechanism P.R0;tD1 j R0;t�1 D 1,
R0;t�2;FT / is modified so that the independent return assumption is violated. We demon-
strate there that, as expected, estimating the compensator yields unbiased estimates of E.Yt /
andE.Yt j X/, but the other methods (which assume independent return) are biased. Although
the estimates from LI–LS imputation are biased, they are less biased than those from the MVN
methods. This is because the least-squares estimators of ˛t , ˇt and �t are unbiased, whereas
the corresponding MVN-based estimators are biased.

6.2. Study 2: second-order autoregression

Data were generated from the following model. LetX� Uniform.0; 1/,Z1� Normal.0:5X; 1/,
Z2 D 0:4 C 1:5Z1 C 0:5X C �2, and Zt D 0:4 C 1:5Zt�1 � 0:5Zt�2 C 0:5X C

�t .3 � t � 7/, where �t � Normal.1; 1/ with probability 0.5 and �t � Normal.�1; 1/
otherwise. Let RZ

0;t
D 1 if Zt is observed, and RZ

0;t
D 0 if Zt is missing. Z1 is

always observed.
Dropout is allowed at time 2 and when at least two consecutive outcomes have been

observed. For times 4 and later, the probability of dropout depends on the rate of change
in the outcome since time 2. Specifically, logit¹P.RZ

0;2
D 1 j FT /º D !2 C Z1 C X ,

logit¹P.RZ
0;3
D 1 j RZ

0;2
D 1;FT /º D !t C W3 C X and logit¹P.RZ

0;t
D 1 j RZ

0;t�1
D

RZ
0;t�2

D 1;RZ
0;t�3

;FT /º D !t C Wt C X (4 � t � 7), where W3 D Z2 � Z1 and
Wt D .Zt�1 � Z2/=.t � 3/ (4 � t � 7). Return is possible at times 3, 4, 5 and 6. Specif-
ically, logit¹P.RZ

0;t
D 1 j RZ

0;t�1
D 0;RZ

0;t�2
;FT /º D �t C X C W

LZt
(3 � t � 6),

where LZt D argmaxj ¹j < t and RZ
0;j

D 1º denotes the most recent time at which
the outcome Zt was observed prior to time t . The value of !t (�t ) was chosen to make
the overall probability of dropout (return) at time t among individuals at risk of dropout
(return) at time t equal to 0.5. Note that dropout and return can depend on Z2, which
may be missing, and that dDTIC and the independent return assumption hold for the
process Yt D .Zt ; Zt�1/>.

The results of applying the various methods with Yt defined as Yt D .Zt ; Zt�1/> are shown
in Tables 2 and S2. The autoregressive MVN methods have not been applied, as these were
shown in Simulation Study 1 to be hardly more efficient than the unstructured MVN methods.
As expected, all but the complete-case estimator are approximately unbiased, estimating the
compensator is least efficient, followed by LI–LS imputation, and uMVN imputation is only
slightly more efficient than LI–uMVN imputation.

© 2016 The Authors Scandinavian Journal of Statistics published by John Wiley & Sons Ltd on behalf of
The Board of the Foundation of the Scandinavian Journal of Statistics



1010 S. R. Seaman et al. Scand J Statist 43

Table 2. Means and empirical SEs of estimated �t in Simulation Study 2

Method �1 �2 �3 �4 �5 �6 �7
True values 0.250 1.025 2.062 3.231 4.466 5.733 7.016

Means
Complete data 0.247 1.022 2.059 3.230 4.465 5.733 7.014
Complete cases 0.247 1.702 3.066 3.911 5.589 7.256 12.222
Estim. compens. 0.247 1.022 2.065 3.237 4.466 5.735 7.015
LI–LS impute 0.247 1.022 2.065 3.233 4.462 5.731 7.010
LI–uMVN impute 0.247 1.022 2.061 3.229 4.463 5.729 7.014
uMVN impute 0.247 1.023 2.061 3.227 4.463 5.729 7.014

Empirical SEs
Complete data 0.046 0.095 0.148 0.188 0.226 0.262 0.293
Complete cases 0.046 0.125 0.197 0.239 0.286 0.326 0.557
Estim. compens. 0.046 0.126 0.258 0.480 0.672 0.809 0.925
LI–LS impute 0.046 0.126 0.206 0.275 0.304 0.330 0.428
LI–uMVN impute 0.046 0.113 0.164 0.205 0.245 0.282 0.386
uMVN impute 0.046 0.110 0.159 0.200 0.241 0.282 0.387

LI, linear increment; LS, least-square; MVN, multivariate normal.

7. Missingness due to death

A&G briefly discuss inference in the situation where a cause of missingness is death. They
distinguish between ‘immortal-cohort’ and ‘mortal-cohort’ inference (also known, respectively,
as ‘unconditional’ and ‘partly conditional’ inference). In this section, we elaborate on their brief
discussion, in particular, establishing that an additional, unmentioned assumption is required
for mortal-cohort inference. Like A&G, we restrict ourselves to the case of no measurement
error, although similar considerations would apply if there were measurement error. We begin
by modifying earlier assumptions about the outcome, dropout and return processes so that
they make sense when data can be missing due to death. Then, we explain what is meant by
immortal-cohort and mortal-cohort inference. This is followed by an example which illustrates
that the conditions stated by A&G as being sufficient for valid LI imputation are insufficient
when interest is in mortal-cohort inference. Finally, we prove that these conditions can be made
sufficient by adding an additional assumption about the death process.

Let Di denote the time of individual’s i last visit before death (Di D T if he or she does not
die). Like A&G, we assume Di is known for all individuals. For individuals with D < t , the
variable Yt describes an outcome that, in general, does not exist. In this setting, the meanings of
the assumptions expressed by Equations (2), (3), (4), (8), (9) and (12) are unclear. It is therefore
difficult to assess whether they are plausible for any particular given dataset. We now show
that they can be replaced by Equations (20)–(25), which are statements about only predeath
outcomes, that is, outcomes that do exist.

Assume that

Yit D ˛t C ˇ
>
t Yi;t�1 C �

>
t Xi C �it .t D 2; : : : ;Di / (20)

with E.�it j Fi;t�1;Di � t / D 0. This is a restriction of Equation (2) to predeath times,
that is, to t � D. Similarly, Equations (3), (4), (8), (9) and (12) are adapted to make them
conditional on t � D. Specifically, Equations (3), (4) and (9) are adapted to yield what we
call the ‘mortal-cohort weak DTIC’, ‘mortal-cohort strong DTIC’ and ‘mortal-cohort dDTIC’
assumptions, respectively:

E.�Yt j Ft�1;Rt ;D � t / D E.�Yt j Ft�1;D � t / 8t; (21)
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E.Yt j Ft�1;R0;t ;D � t / D E.Yt j Ft�1;D � t / 8t; and (22)

f .Yt j Ft�1;R0;t ;D � t / D f .Yt j Ft�1;D � t / 8t; (23)

while Equations (8) and (12) are adapted to yield the ‘mortal-cohort independent return’ and
‘mortal-cohort strong independent return’ assumptions, respectively:

P.R0;tD1 jR0;k�1; R0;kD1;R0;kC1D : : : D R0;t�1 D 0;X ;Yk ;YkC1; : : :Yt ;D � t /
D P.R0;t D 1 j R0;k�1; R0;k D 1;R0;kC1 D : : : D R0;t�1 D 0;X ;Yk ;D � t /

(24)

and

P.R0;t D 1 j R0;k�1; R0;k D 1;R0;kC1 D : : : D R0;t�1
D 0;Gk ;YkC1;YkC2; : : :Yt ;D � t /

D P .R0;t D 1 j R0;k�1; R0;k D 1;R0;kC1 D : : : D R0;t�1 D 0;Gk ;D � t / :
(25)

The stochastic process defined by Equation (20) terminates with YD . In immortal-cohort
inference, no distinction is made between data missing due to death and data missing for other
reasons, and both are imputed in the same way. Consequently, immortal-cohort inference is
about E.Yt j Y1;X/ in the following ‘supplemented’ outcome process. Define the ‘supple-
mented process’ as that defined by Equation (20) up to timeD but with additional hypothetical
postdeath outcomes YDC1; : : : ;YT for individuals with D < T that are assumed to obey

f .�Yt j Ft�1;R0;t ;D < t/ D f .�Yt j Ft�1;D < t/

D f .�Yt j Ft�1;D � t / 8t � D

It thus follows from, respectively, Equations (21), (22) and (23) that E¹�Yt j Ft�1;Rt ; I.D �
t /º D E.�Yt j Ft�1/, that E¹Yt j Ft�1;R0t ; I.D � t /º D E.Yt j Ft�1/, and that

f ¹Yt j Ft�1;R0;t ; I.D � t /º D f .Yt j Ft�1/: (26)

Equations (2), (3), (4) and (9) therefore hold for the supplemented process. Hence, the least-

squares estimators Ǫ ls
t , Ǒ

ls
t and O� ls

t of ˛t , ˇt and �t are unbiased and consistent for the
parameters of Equation (2), and therefore also of Equation (20).

The proof in Section 3.3 of A&G establishes that LI–LS imputation respects E.Y est
t � Yt j

X ;Y1/ D 0 for the supplemented process, provided that Equations (2) and (7) and strong DTIC
hold, and hence one can validly use the imputed data to estimate E.Yt j Y1;X/, the expected
outcome in the supplemented process.

In mortal-cohort inference, on the other hand, the estimand is E.Yt j Y1;X ;D � t /, the
expected outcome at time t in individuals who are still alive at time t . A&G discuss immortal-
versus mortal-cohort inference. They (and Gunnes et al. (2009a)) defend immortal-cohort
inference, arguing that it may provide ‘a more fair comparison of treatments’ when one treat-
ment improves survival in a way that means that patients with poor outcomes survive longer.
However, Dufouil et al. (2004), Kurland & Heagerty (2005) and Kurland et al. (2009) generally
favour mortal-cohort inference, saying that for most purposes immortal-cohort inference would
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be ‘inappropriate’, or that it is ‘generally inappropriate’ and ‘probably not of great scientific
interest’ unless the death and outcome processes are independent.

A&G estimate E.Yt j Y1;X ;D � t / by using LI–LS imputation to impute only predeath
missing outcomes, that is, calculating Y est

it for individual i only if Di � t , and then fitting a
linear regression model to the resulting imputed dataset ¹Y est

it W i D 1; : : : ; N I t � Di º (rather
than ¹Y est

it W i D 1; : : : ; N I t D 1; : : : ; T º, as in Section 2.5). In order for this to be valid, it is
necessary thatE.Y est

t �Yt j X ;Y1;D � t / D 0. However, the fact thatE.Y est
t �Yt j X ;Y1/ D 0

for the supplemented process does not necessarily imply that E.Y est
t � Yt j X ;Y1;D � t / D 0.

A simple example illustrates this. Suppose T D 3, m D 1 and there are no baseline covariates
X . Let P.Y1 D 0/ D 1 and P.Y2 D Y3 D 0/ D P.Y2 D Y3 D 1/ D 0:5. Suppose that the
only dropout occurs between times 1 and 2, and its probability does not depend on Y2, and
that there is no return. Let P.D D 3 j R0;2 D 1/ D P.D D 3 j Y2 D 0/ D 1, so no one can
die unless they drop out and have Y2 D 1. Let P.D D 2 j R0;2 D 0; Y2 D 1/ D P.D D 3 j

R0;2 D 0; Y2 D 1/ D 0:5, so half of those who drop out and have Y2 D 1 die between times 2
and 3. When LI imputation or MVN imputation is applied to this population, the dropouts
will all have their Y3 imputed as 0.5. However, among the dropouts who are still alive at time 3,
the mean value of Y3 is actually 0.33.

Theorem 9 and its corollary, later, show that E.Y est
t �Yt j X ;Y1;D � t / D 0 can be ensured

by making two additional assumptions. We call these ‘independent death’:

P.D D t j R0;k�1; R0;k D 1;R0;kC1 D : : : D R0;t D 0;X ;Yk ; : : : ;Yt ;D � t /
D P.D D t j R0;k�1; R0;k D 1;R0;kC1 D : : : D R0;t D 0;X ;Yk ;D � t /

(27)

and ‘strong independent death’:

P.DD t jR0;k�1; R0;k D 1;R0;kC1D : : : DR0;tD 0;Gk ;YkC1;YkC2; : : : ;Yt ;D � t /
D P.D D t j R0;k�1; R0;k D 1;R0;kC1 D : : : D R0;t D 0;Gk ;D � t /

(28)

Equation (27) means that the probability of dying between visits t and t C 1 for people who
did not attend visit t does not depend on outcomes since their last observed outcome. This is
analogous to the independent return assumption (Equation (8)), except that independent return
is about the probability of returning after dropout, rather than dying after dropout. Just as
independent death is analogous to independent return, strong independent death is analogous
to strong independent return. The independent death assumption will often not be entirely
plausible; it is more likely to hold approximately when long gaps between dropout and death
are uncommon.

Theorem 8 shows the relation between the mortal-cohort independent return assumptions
and independent death assumptions, and between mortal-cohort assumptions and independent
return assumptions in the supplemented process.

Theorem 8. Suppose that the increments model of Equation (20) and the mortal-cohort dDTIC
assumption of Equation (23) hold. Then, (a) mortal-cohort strong independent return and strong
independent death together imply mortal-cohort independent return and independent death; (b)
mortal-cohort independent return and independent death together imply independent return in the
supplemented process; and (c) mortal-cohort strong independent return and strong independent
death together imply strong independent return in the supplemented process.
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Theorem 9 establishes that, under the conditions of Theorem 8, the conditional distribution
of a missing outcome given earlier observed outcomes is the same whether or not the missing
outcome is after death.

Theorem 9. If the increments model of Equation (20), and the mortal-cohort dDTIC, mortal-
cohort independent return and independent death assumptions (Equations (23), (24) and (28))
hold, then for k < t ,

f .Yt j R0;k�1; R0;k D 1;R0;kC1 D : : : D R0;t D 0;X ;Yk ;D � t / D f .Yt j X ;Yk/;

Corollary. Under the conditions of Theorem 9, if LI imputation is carried out using the true
values of ˛t , ˇt and �t , then E.Y est

t � Yt j X ;Y1;D � t / D 0.

In practice, the true values of ˛t , ˇt and �t are unknown and must be estimated. Earlier in
this section, we described when the least-squares estimators are unbiased and consistent. Now,
we consider the uMVN and aMVN estimators.

Corollary (of Theorems 4 and 8). If the increments model of Equation (20) and the mortal-
cohort dDTIC, mortal-cohort strong independent return and strong independent death
assumptions (Equations (23), (25) and (28)) hold and Var.�t j Ft�1;D� t /DVar.�t j D� t /,
then fitting the unstructured or autoregressive MVN model to the observed data ignor-
ing the missingness mechanism yields consistent estimates of the mean and variance .�;†/
of the supplemented process, and hence of ˛t , ˇt and �t . Furthermore, when fitting the
autoregressive model, the mortal-cohort strong independent return and strong independent
death assumptions can be replaced by the mortal-cohort independent return and independent
death assumptions.

In Appendix S7, we discuss the validity of uMVN and aMVN imputation for mortal-cohort
inference. They are valid when �t is normally distributed; otherwise, they are expected to have
small bias. However, in view of the results in Section 6, where MVN imputation was only
slightly more efficient than LI-MVN imputation, the latter may be the better option.

8. Analysis of data from the BHPS

The BHPS began in 1991. The panel consisted of some 5500 households and 10,300 individu-
als drawn from many areas of Great Britain. Complex sampling weights were used to adjust for
unequal selection probabilities and for non-response. These weights were ignored in our anal-
ysis, which is intended to be illustrative rather than definitive. We examined the dependence
of earnings (elicited for each year) on current age, adjusting for calendar time. We used waves
1–8 (1991–1998) (the period before booster samples was introduced) and restricted the sample
to men aged 21–50 in 1991 who were observed to earn something during at least one of those
8 years. There were 3286 such men. Age was categorized as 21–25, 26–30, 31–40, 41–50 and 51–
60. Mean earnings in each calendar year were estimated by estimating the compensator, LI–LS
imputation and the MVN methods. Also, a linear regression model was fitted to the imputed
dataset, regressing earnings in each year on current age group and calendar year. The baseline
covariate X used in Equation (2) for all LI methods was age group in 1991. In order to handle
missing values of earnings in 1991, we defined Yi2; : : : ; Yi9 to be individual i ’s incomes in 1991–
1998, respectively, defined Yi1 D c for all i , where c is an arbitrary constant, and constrained
ˇ2 in Equation (2) to equal zero (so the choice of c does not matter). SEs were estimated by
bootstrapping.
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Of the 3286 men, the percentage who had observed outcome at each wave varied from 55%
(in 1983) to 64% (in 1987). 829 (15%) were observed at all eight waves, 658 (20%) had missing
outcome at wave 1 but were observed at a later wave and did not drop out again, and 517
(16%) were observed at wave 1 but later dropped out and did not return. Of the remaining
1282 (39%) men, 976, 284 and 24 dropped out once, twice and thrice, respectively; and 1010,
258 and 14 returned once, twice and thrice, respectively. Of the 15,502 observed outcomes, 818
(5%) were immediately preceded and followed by missing outcomes; these are not used by the
least-squares estimators of the LI model and are completely ignored by LI methods that allow
for autoregression of order two.

Table 3 shows the observed mean earnings in each year and the means estimated using seven
LI methods. Estimates from LI–aMVN and LI–rMVN imputation (not shown) were very sim-
ilar to those from LI–uMVN; estimates from aMVN and rMVN imputation (not shown) were
very similar to those from uMVN imputation. All LI methods estimated the mean earnings in
1991 as lower than the observed mean. This is because the proportion of men reporting their
earnings in 1991 increased with age group, and the mean earnings among those reporting also
increased with age group, which suggests that the observed mean in 1991 is an overestimate of
the mean in 1991 in the whole sample. Among the LI methods, the highest estimates came from
estimating the compensator and the lowest from uMVN imputation. The difference ranged
from 393 to 816 pounds. That these two methods differ most is not surprising, because the first
makes no use of outcomes recorded immediately after return from dropout, whereas the second
makes maximal use of these. Allowing for second-order autoregression slightly increased esti-
mates from LI–LS and LI–uMVN imputation but left those from estimating the compensator
unchanged or slightly decreased.

Table 3. Estimated mean earnings (and SEs) in calendar years 1991–1998 (1000’s of pounds).

Year
Method 1991 1992 1993 1994 1995 1996 1997 1998

Estimated means
Observed data 14.35 14.55 15.28 15.60 16.85 17.25 17.96 18.63
Compensator 13.87 14.45 15.10 15.84 16.72 17.46 18.57 19.24
LI–LS 13.87 14.33 14.91 15.49 16.45 17.12 17.92 18.51
LI–uMVN 13.73 14.18 14.75 15.31 16.26 16.93 17.76 18.40
uMVN 13.48 13.96 14.49 15.14 15.99 16.69 17.75 18.46
Compensator(2) 13.87 14.45 15.12 15.89 16.72 17.41 18.41 19.11
LI–LS(2) 13.87 14.44 15.03 15.65 16.58 17.25 18.08 18.80
LI–uMVN(2) 13.77 14.33 14.88 15.49 16.44 17.14 18.02 18.74

Standard errors
Observed data 0.240 0.228 0.250 0.263 0.321 0.283 0.321 0.352
Compensator 0.233 0.234 0.260 0.281 0.293 0.298 0.349 0.403
LI–LS 0.233 0.213 0.228 0.239 0.265 0.258 0.282 0.333
LI–uMVN 0.220 0.202 0.216 0.230 0.265 0.253 0.285 0.328
uMVN 0.209 0.192 0.208 0.228 0.248 0.252 0.280 0.331
Compensator(2) 0.233 0.234 0.266 0.291 0.301 0.315 0.336 0.420
LI–LS(2) 0.233 0.220 0.240 0.254 0.276 0.273 0.287 0.362
LI–uMVN(2) 0.224 0.209 0.226 0.241 0.276 0.267 0.297 0.360

Methods are means of observed data, estimating the compensator, LI–LS imputation, LI–
uMVN imputation and uMVN imputation.
All LI methods use a LI model with autoregression of order one, unless they are marked ‘(2)’,
in which case they use a LI model with second-order autoregression.
LS, least-square; LI, linear increments; MVN, multivariate normal.
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Table 4. Estimated coefficients (and standard errors) of linear regression of
earnings (1000’s of pounds) on current age group and year.

Current age Year
Method Intercept 26–30 31–40 41–50 51–60 –1991

Estimates
Observed data 8.322 4.018 7.386 7.948 5.472 0.475
LI–LS 8.517 3.879 7.109 7.774 5.792 0.457
LI–uMVN 8.557 3.614 6.855 7.519 5.496 0.468
uMVN 8.404 3.386 6.641 7.396 5.330 0.512
LI–LS(2) 8.504 3.783 7.236 7.907 6.127 0.473
LI–uMVN(2) 8.573 3.596 6.960 7.615 5.722 0.494

Standard errors
Observed data 0.322 0.377 0.459 0.525 0.799 0.049
LI–LS 0.298 0.335 0.436 0.520 0.713 0.046
LI–uMVN 0.284 0.315 0.422 0.496 0.691 0.045
uMVN 0.298 0.323 0.433 0.486 0.686 0.042
LI–LS(2) 0.300 0.338 0.447 0.541 0.764 0.047
LI.uMVN(2) 0.289 0.319 0.435 0.516 0.729 0.047

Methods are observed data, LI–LS imputation, LI–uMVN imputation and
uMVN imputation. LI methods use a LI model with autoregression of order
one, unless they are marked ‘(2)’, in which case they use a LI model with
second-order autoregression.
LI, linear increment; LS, least-square; MVN, multivariate normal.

Estimated standard errors from LI–aMVN imputation and LI–rMVN imputation were very
close to those from LI–uMVN imputation. Those from aMVN imputation were very close
to those from uMVN imputation; those from rMVN were up to 10% greater. The largest
standard errors came from estimating the compensator; these were even larger than those for
the observed means. Standard errors from LI–LS imputation were smaller than those for the
observed means. Those from LI–uMVN imputation tended to be slightly smaller than those
from LI–LS imputation, and those from uMVN imputation slightly smaller still. This suggests
that when there is substantial dropout and return, methods (like LI–uMVN and uMVN) that
use all the data efficiently can give appreciably more precise estimates. Allowing for second-
order autoregression generally increased the standard errors, because this involves ignoring
some of the observed outcomes.

Table 4 shows estimated coefficients when the linear regression of earnings on current age
group and calendar year was fitted to observed data and to data imputed by the various LI
methods. Mean earnings increased with current age, being 3000–4000, 6500–7500 and 7000–
8000 pounds higher at ages 26–30, 31–40 and 41–50, respectively, than at 21–25. However, they
were 1500–2500 pounds lower at ages 51–60 than at 41–50, possibly because of early retirement.
The LI imputation methods all estimated that the differences between ages 26–50 and ages
21–25 were somewhat lower that the observed data suggest. Standard errors for LI methods
were lower than those for the observed-data analysis. Those for LI–uMVN and uMVN impu-
tation were lower than those for LI–LS imputation. Allowing for second-order autoregression
increased standard errors, probably because some observed outcomes are then ignored.

9. Discussion

Missing at random and the distributional form of DTIC (dDTIC) are equivalent assumptions
when missingness is monotone and there is no independent measurement error. Otherwise, they
differ. MAR allows dropout and return to depend on observed outcomes, including future out-
comes but not on the underlying (error-free) outcomes. DTIC allows dropout and return to
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depend on all past underlying outcomes but not on future outcomes or on the measurement
error. Nevertheless, we have shown that some methods that ostensibly assume MAR can also
be valid when data are MNAR but dDTIC holds and the underlying outcomes have an autore-
gressive structure. For example, in the absence of measurement error, fitting an unstructured
MVN model and ignoring the missingness mechanism gives consistent estimation and can be
more efficient than LI imputation using least squares (even when data are not normally dis-
tributed). In addition, it remains valid under the alternative assumption of MAR, even if the
autoregressive structure does not apply. On the other hand, LI using least squares allows the
variance of �t to depend on the history Fi;t�1, which may make this method more appealing
than the MVN method when the outcome is categorical. Moreover, it is less prone to bias than
the MVN method when the independent return assumption is violated. Estimating the com-
pensator is the least efficient method but makes the fewest assumptions: it only requires weak
DTIC and not independent return.

The MVN method can be made more efficient by constraining the variance matrix to have an
autoregressive form. However, this was found in simulation studies to offer little benefit. Fur-
ther investigation is required to determine whether it offers greater benefit with small sample
sizes or when there are many time points.

As we have shown, when there is measurement error, none of the methods discussed in this
paper allow the increment�Yt to depend on underlying outcome Yt�1 (i.e. for ˇt ¤ I), unless
the magnitude of this dependence (i.e. the value of ˇt ) is known, which is unlikely in practice.
Just as measurement error can be handled when ˇt is known, it may be possible when ˇt is
unknown but the measurement error variance, Var.et /, is known (Fuller, 1987).

Like A&G, we have focused on a first-order autoregressive model. This is quite a restrictive
assumption and may be too restrictive for some applications. So, we have shown in detail how
the various methods can allow for autoregression of order s > 1 by including in the vector
Yt not only the underlying outcome at time t but also those at times t � 1; : : : ; t � s C 1. A
drawback of this approach is that because R0;t D 0 when Yit is not fully observed, some
observed measurements may be ignored unless missingness is monotone. Alternative, more
efficient extensions may be possible.

Software for applying some of the methods covered in this paper are described in
Appendix S9. Like DF&H and A&G, we recommend using bootstrap to calculate standard
errors.. However, it may be possible to derive expressions for sandwich variance estimators
(Zeng & Lin, 2007; Farewell, 2010).

Note that we have treated the missingness processes of individuals as independent, whereas
A&G’s formulation is slightly more general, allowing for dropout and return of one individual
to depend on the histories of other individuals.

A&G briefly discuss how LI could be used for causal inference about treatment effects in a
non-randomized longitudinal study with time-dependent confounders, viewing the counterfac-
tual untreated outcomes of treated individuals as missing data.

Apart from estimating the compensator, all methods discussed in this article require an
assumption about the probability of return after dropout (the independent return assumption).
Much of the published work on non-monotone missing data in longitudinal studies assumes
either MAR or that the probability of attending a visit at time t is independent of attendance
at other times given the outcomes or given a random effect shared with the model for the out-
comes, and so does not focus explicitly on return. Liao et al. (2012) give a recent review of some
of this work. Articles in which an explicit model for the probability of return is used include
Preisser et al. (2000), Lin et al. (2004) and Liao et al. (2012).

It would be interesting to understand better the connection between the random-walk MVN
method and the g-inverse working singularity GEE method proposed by Farewell (2010). When
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ˇt D I and there are no covariates X , Equation (19) reduces to †s;t D †s;s for all s < t .
A special case of this is †s;t D †s;s D s, which is the working covariance matrix used by
Farewell (2010). Because this is the covariance matrix of a random walk where all increments
have unit variance, it may be that the random-walk MVN method is more efficient than the
g-inverse method when the variances of the increments differ at different times.

Finally, we note that we have not discussed the plausibility of the MAR and DTIC assump-
tions. This must be considered within the context of any given dataset. For example, medical
data may be MAR when follow-up of a patient is determined by the doctor on the basis of a
measured health outcome, whereas DTIC may be more plausible when follow-up is determined
by the patient on the basis of his or her underlying health state. When data are monotone
missing, MAR has a straightforward interpretation: dropout is independent of the present and
future given the past. Interpretation when data are non-monotone missing is more problem-
atic, however (Robins & Gill, 1997). One advantage of the DTIC assumption may be that it is
easily interpreted in both the monotone and non-monotone case.
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