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Drift in Neural Population Activity Causes Working Memory
to Deteriorate Over Time

X Sebastian Schneegans and X Paul M. Bays
University of Cambridge, Department of Psychology, Cambridge CB2 3EB, United Kingdom

Short-term memories are thought to be maintained in the form of sustained spiking activity in neural populations. Decreases in recall
precision observed with increasing number of memorized items can be accounted for by a limit on total spiking activity, resulting in fewer
spikes contributing to the representation of each individual item. Longer retention intervals likewise reduce recall precision, but it is
unknown what changes in population activity produce this effect. One possibility is that spiking activity becomes attenuated over time,
such that the same mechanism accounts for both effects of set size and retention duration. Alternatively, reduced performance may be
caused by drift in the encoded value over time, without a decrease in overall spiking activity. Human participants of either sex performed
a variable-delay cued recall task with a saccadic response, providing a precise measure of recall latency. Based on a spike integration
model of decision making, if the effects of set size and retention duration are both caused by decreased spiking activity, we would predict
a fixed relationship between recall precision and response latency across conditions. In contrast, the drift hypothesis predicts no system-
atic changes in latency with increasing delays. Our results show both an increase in latency with set size, and a decrease in response
precision with longer delays within each set size, but no systematic increase in latency for increasing delay durations. These results were
quantitatively reproduced by a model based on a limited neural resource in which working memories drift rather than decay with time.
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Introduction
Much recent research has been directed at explaining the effects
of set size (number of memoranda) on recall errors in visual
working memory (Bays and Husain, 2008; Zhang and Luck, 2008;
Bays et al., 2009; Ma et al., 2014; van den Berg et al., 2014).
Population coding models have been shown to accurately repro-
duce the changing patterns of error observed at different set sizes

in reproduction tasks (Bays, 2014; Schneegans and Bays, 2017a),
and unlike other approaches they offer a concrete neural mecha-
nism to account for set size effects. They propose that total pop-
ulation activity is fixed (normalized), such that fewer spikes
contribute to the encoding of each item as set size increases. This
leads to greater variability in the recovered value when a single
memorized feature is decoded from the population activity.

Less attention has been devoted to the effects of time on work-
ing memory fidelity. Increasing the retention interval has been
observed to adversely affect recall performance (Phillips and Bad-
deley, 1971; Zhang and Luck, 2009; Barrouillet et al., 2012; McK-
eown and Mercer, 2012; Pertzov et al., 2013, 2017) (but see
Magnussen and Greenlee, 1999). However, the exact nature of
this effect and the underlying neural mechanisms are poorly
understood.

In the present work, we considered which changes in neural
population activity could account for delay effects, and tested
predictions derived from the population coding model in exper-
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Significance Statement

Rapid deterioration over seconds is a defining feature of short-term memory, but what mechanism drives this degradation of internal
representations? Here, we extend a successful population coding model of working memory by introducing possible mechanisms of
delay effects. We show that a decay in neural signal over time predicts that the time required for memory retrieval will increase with delay,
whereas a random drift in the stored value predicts no effect of delay on retrieval time. Testing these predictions in a multi-item memory
task with an eye movement response, we identified drift as a key mechanism of memory decline. These results provide evidence for a
dynamic spiking basis for working memory, in contrast to recent proposals of activity-silent storage.
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iments. We contrasted two possible causes
of decreasing recall performance with
increasing delay duration. In a decay
account, spiking activity is assumed to de-
crease continuously over the retention in-
terval (Fig. 1A), analogous to the idea of
memory traces decaying over time (Badde-
ley, 1986; Barrouillet and Camos, 2001; Bar-
rouillet et al., 2007). Effects of delay in the
neural population would then be directly
comparable to the effects of set size, in-
creasing recall variability by reducing the
number of spikes contributing to the de-
coding of memorized features.

An alternative mechanism of delay ef-
fects is based on drift in the stored feature
values (Kinchla and Smyzer, 1967; Nilsson
and Nelson, 1981). In particular, attractor
models of working memory (Camperi and
Wang, 1998; Compte, 2006) describe how
recurrent synaptic connections can create
regions of sustained activity in neural popu-
lations. Due to noise in neural activity, these
active regions will drift over time (Compte
et al., 2000; Burak and Fiete, 2012; Wimmer
et al., 2014), leading to gradual stochastic
changes in the represented feature value
(Fig. 1B). Importantly, total population ac-
tivity does not change in this process.

To distinguish between these two ac-
counts, we considered their effects on
response latency, in addition to recall precision. Previous behav-
ioral experiments have shown that response latency increases with
set size (Pearson et al., 2014; Schneegans and Bays, 2016), consistent
with a process of evidence accumulation to a fixed threshold for
response generation (Reddi and Carpenter, 2000; Usher and Mc-
Clelland, 2001; Gold and Shadlen, 2007). In the decay model, we
expect that longer delay durations will likewise lead to increased
response latencies, because both set size and delay attenuate the
spiking activity for each memorized item. Specifically, if we vary
both set size and delay duration in a working memory task, we
expect to find a fixed relationship between response latency and
precision (Fig. 1A). In contrast, the drift model predicts that delay
duration should affect recall precision (because greater random
drift occurs over longer delays), but not response latencies (be-
cause total spiking activity does not change; Fig. 1B).

To test these conflicting predictions, we used a spatial working-
memory task with saccadic responses, using eye tracking to obtain
precise measures of response latency and precision. We extended
the neural resource model of Bays (2014) with an accumulation
mechanism that generates response latencies, and implemented
the two accounts of delay effects within this model. We found
that the experimental results were accurately reproduced by a
drift model of delay effects, but were inconsistent with the decay
account.

Materials and Methods
Behavioral task. Ten naive participants (3 males, 7 females; aged 22–37
years, mean 26.8 years) took part in Experiment 1 after giving informed
consent in accordance with the Declaration of Helsinki. All participants
had normal color vision and normal or corrected-to-normal visual acu-
ity. Stimuli were presented on a 27 inch LCD monitor with a refresh rate
of 120 Hz. Participants were seated in front of the monitor with their

head stabilized by a forehead and chin rest, maintaining a viewing dis-
tance of 60 cm. Eye movements were monitored online at 1000 Hz using
an infrared video-based eye tracker (Eyelink 1000 Desktop System, SR
Research).

The memory condition of the task is illustrated in Figure 2. Each trial
began with the presentation of a central black fixation cross (diameter
0.75° of visual angle). Once stable fixation was achieved (within a radius
of 2° around the fixation cross for at least 0.5 s), a memory sample array
was presented for a duration of 2 s. The array consisted of one, two, or
four saliently colored disks (diameter 1°; color chosen from: red, green,
blue, yellow). These were located on an invisible circle with a radius of 6°
around fixation, with a minimum angular distance of 30° between disk
centers. The presentation of the sample array was immediately followed
by a pattern mask display, visible for 0.1 s. This was followed by a delay
period (with only the fixation cross visible), whose duration was chosen
such that the total memory delay including the mask display was either
0.5, 1, 2, or 4 s.

The fixation cross was then replaced by a centrally presented response
cue, in the form of a colored disk that matched one of the disks from the
memory sample array (the target). At the same time, a dark gray circle
with a radius of 6° around the center appeared, matching the eccentricity
of the memory sample stimuli. When this cue appeared, participants had
to make a saccadic eye movement to the memorized location of the cued
disk from the sample array. Participants were instructed to make this eye
movement as precisely as they could, and try to land approximately on
the gray circle that served as a guide for saccade amplitude. Once a stable
peripheral fixation was achieved following the response saccade (online
criterion: fixation held for at least 0.25 s), participants received feedback
in the form of a black cross appearing at the saccade endpoint. If central
fixation was lost before presentation of the response cue, the trial was
aborted and repeated later within the block.

In a control condition, each trial proceeded in the same fashion, except
that the memory sample array remained visible throughout the trial.
Each participant performed six blocks of 48 trials (288 trials in total) in
the memory condition, and two blocks (96 trials in total) in the control
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Figure 1. Delay effect models and behavioral predictions. A, A feature value encoded in a population code can be visualized as
a “hill” of activity centered on the stored value: the decay model assumes that this neural activity decreases over time (top). The
expected effects of set size (indicated by color) and delay duration (indicated by different shades, with darker meaning longer
duration) on response errors and latencies are shown (bottom). The decay model predicts that longer delays should produce an
increase in both response error and latency, and that there should be a fixed relationship between these measures when both set
size and delay duration are varied. B, The drift model assumes that the activity distribution in the neural population undergoes
random drift without change in total activity (top). It predicts that delay duration affects response errors, but not response latencies
(bottom).
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condition. Set size and delay duration were varied pseudorandomly and
balanced within each block, and memory and control blocks were ran-
domly interleaved.

Ten different naive participants took part in Experiment 2 (3 males, 7
females; aged 18 –52 years, mean 27.8 years). This experiment was run on
a 21 inch CRT monitor with a refresh rate of 130 Hz, with all other
apparatus and setup unchanged. The procedure was the same as in the
memory condition of Experiment 1, except for the following modifica-
tion: the central fixation cross disappeared 0.25 s before the presentation
of the response cue (leaving the screen blank during this period). This
was intended to give the participants an indication that the response cue
was about to appear, to reduce any surprise that might be caused by the
early appearance of the response cue at the shortest delays. Each partici-
pant completed five blocks of 60 trials in this experiment, with set size
and delay duration pseudorandomly varied and balanced within each
block.

Analysis of eye-movement data. We smoothed the raw eye-tracking
data from each trial with a Butterworth filter, and segmented the data
points into a sequence of saccades (minimum peak velocity 50°/s, mini-
mum amplitude 1°) and fixations (minimum duration 0.1 s). We deter-
mined the response direction as the angular location of the first stable
fixation (minimum duration 0.2 s) after an initial response saccade and
potentially subsequent correction saccades following the presentation of
the response cue. The response latency was determined as the onset time
of the initial response saccade relative to onset of the response cue.

Trials were excluded from analysis if they violated any of the following
conditions: the initial response saccade had to occur no earlier than 0.15 s
and no later than 2 s after response cue onset, and the amplitude of this
saccade had to be no less than 50% and no more than 150% of the sample
array eccentricity. If there were correction saccades before a stable fixa-
tion was reached, they could not change the direction of the response by
�15°. Finally, there could be no blinks before stable fixation was achieved
again. We excluded 744 of a total of 3840 trials in Experiment 1 (19.4%)
and 645 of 3000 trials (21.5%) in Experiment 2 for failing to meet these
conditions.

To focus our analysis on trials in which saccades were directed
toward the target item, we fit the three-component mixture model of
Bays et al. (2009), which distinguishes between responses directed
toward the target, responses directed toward one of the nontarget
items, and random responses. Using the method of Schneegans and
Bays (2016), we classified as target trials those with a probability
exceeding 75% of arising from the target component of the model.
Code is available at http://paulbays.com/code/CO16/. Only these tri-
als were included in the analysis of response measures.

Experimental design and statistical analysis. Experiment 1 used a 3 (set
sizes: 1, 2, or 4 items) � 4 (delay durations: 0.5, 1, 2, or 4 s) � 2 (task:
memory or control) condition within-subjects design, whereas Experi-
ment 2 omitted the different task conditions (resulting in a 3 � 4 within-
subjects design). For each subject and each condition, we determined as
dependent variables the root mean square deviation (RMSD) of response
direction from the target and the median response latency (both based on
target responses only). We chose the RMSD instead of e.g., circular SD as
a precision measure to improve the robustness of the results (given that
only 24 or 25 trials were obtained for each condition in each experiment,
and some of these were excluded as lapses or due to their saccade char-

acteristics). We note that all statistical results are unchanged when circu-
lar SD or mean absolute error are used as precision measure instead.

We analyzed the effects of set size and delay duration on response
precision, response latency, and proportion of target responses using a
two-way repeated-measures ANOVA. The behavioral measures of the
control condition in Experiment 1 were used as a baseline for any effects
of set size and delay unrelated to memory. We subtracted these from the
response measures in the memory condition, and applied the same
ANOVA to the resulting difference.

Neural model. We aim to provide a unified neural model to explain
both response latencies and response distributions in the behavioral task.
We use as basis the neural population model proposed by Bays (2014,
2016). In this model, the memorized locations of each of N items is
represented in a population of M spiking neurons with von Mises tuning
curves, with total activity normalized across all neurons. The firing rate
ri,j of neuron i coding angular location �j of item j is as follows:

ri, j�� j� �
�

MN

exp���cos��j � �i���

2�I0���
. (1)

Here, � is a gain factor, �i is the preferred value and � the concentration
parameter of the neuron’s tuning curve, and In(�) is the modified Bessel
function of the first kind. The number of spikes ni,j produced by the
neuron in a decoding interval T is drawn from a Poisson distribution
with mean ri,jT. The report value for the cued item j is then decoded from
the population spiking activity nj by maximum likelihood estimation:

�̂ j � argmax
��j

p�nj ���j�. (2)

We extend this model to address saccadic response latencies and associ-
ated distributions of saccadic response directions. We assume that for the
generation of a saccadic eye movement, spikes from the neural popula-
tion are integrated to a fixed threshold. The response latency is based on
the integration time, and the response direction is based on the spikes
produced up to that threshold.

The integration time to a spike threshold m is t if m � 1 spikes occurred
in the interval [0, t) and one last spike occurs at time t. The probability
that m � 1 spikes occurred within [0, t) can be described by a Poisson

distribution, based on the constant spike rate
�

N
in the neural population

for a single item. The probability for the final spike to occur at any time
t is constant with amplitude given by that same spike rate. The distribu-
tion of integration times pm(t) can then be described as the product of
these two components:

pm�t� �
�

N

1

�m � 1�! ��t

N�m�1

exp � �
�t

N�. (3)

We assume that the total response latency is composed of the integration
time described by the distribution pm(t) plus a random component to
reflect factors in saccade initiation that are not directly related to memory
retrieval, such as processing of the color cue and execution of the motor
plan. We follow Schwarz (2001) in modeling this random component as
an exponential distribution g(t):

sample array
(2 s)

mask
(0.1 s)

delay
(variable)

cue &
response

Figure 2. Behavioral task in Experiment 1 (memory condition). Participants fixated a central cross. A circular array of colored disks was presented, followed by a pattern mask. After a variable delay
a cue was presented at fixation matching in color one of the items in the sample array, and participants were required to make a saccade to the remembered location of the matching item.
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g�t� � � 	 exp� �	�t � o�� if t 
 o
0 otherwise, (4)

with rate parameter 	 and additional constant offset o. The combination
of an exponential distribution with a component reflecting the evidence
accumulation process has previously been shown to provide close fits to
reaction time data in visual search (Palmer et al., 2011). We obtain the
final distribution of response latencies, pr(t), by convolving the exponen-
tial distribution g(t) with the distribution of integration times, pm(t):

pr�t� � � pm � g��t�. (5)

Examples of the resulting distribution fit to experimental data can be
seen in Figure 5B.

We assume that saccade direction is based on spikes accumulated until
the threshold is reached. However, spikes that are generated early in the
integration process are likely to have less influence on the selected move-
ment direction (because their contribution has to be maintained over a
longer time until the actual movement is initiated). We model this in a
simplified form by assuming that spikes decay with a fixed rate over the
integration period (but that this decay does not affect the simpler oper-
ation of integration to threshold).

For a single spike occurring at time t, the probability that it will have
decayed by the end of the integration period, tm, is described by the
cumulative distribution function of the exponential distribution,

pd�t, tm� � 1�exp �� tm � t

� �, (6)

where � is the survival rate. For a given integration time tm, the spike
occurrence times for m � 1 spikes are uniformly distributed in the inter-
val [0, tm) (while the last spike must occur at tm). For each of these spikes,
we can obtain the probability that it decays by averaging the above ex-
pression for pd over the possible spike times t in the interval [0, tm). The
complement of the resulting expression yields the probability ps that each
spike survives:

ps�tm� � 1 �
1

tm
�

0

tm

1 � exp �� t

�� dt

� 1 �
1

tm
�t � � exp�� t

���
0

tm

� �
�

tm
�exp �� tm

� � � 1�. (7)

The number k of surviving spikes for a given integration time tm then
follows a binomial distribution based on the survival probability ps and
the number of spikes m � 1. Because the last spike occurring at the end of
the integration interval always survives, the resulting number of spikes is
one higher than the one obtained from the binomial distribution:

p�k � tm� � �m � 1
k � 1 � ps�tm�k�1 �1 � ps�tm��m�k. (8)

By integrating over the possible integration times t, weighted with the
corresponding probability pm(t) from Equation 3, we obtain the distri-
bution of number of spikes k that contribute to saccade direction as
follows:

p�k� � �
0

�

p�k � t� pm�t�dt. (9)

For each possible number of spikes k available for decoding, we can
determine a distribution of response errors expected in the neural pop-
ulation model. An analytical formulation for these distributions has been
derived by Bays (2016), and we only report the key equations here. Given
a neural population that encodes a feature value �j as described in Equa-
tion 1, the distribution of response errors 	�̂j for maximum likelihood
decoding from k spikes is given by the following:

p�	�̂ j � r� �
exp ��r cos	�̂j�

2�I0��r�
, (10)

with

p�r � k� �
I0��r�

�I0����k rk�r�, (11)

where rk(r) is the probability density function for the resultant length r
of a uniform random walk of k steps (estimated by Monte Carlo methods
as by Bays, 2016). We can obtain a distribution of response errors for a
given concentration parameter � and number of spikes k by integrating
over possible values of r. We then obtain the final distribution of response
errors as a mixture of these distributions, weighted with the probability
p(k) from Equation 9:

p�	�̂ j� � 	
k
1

m

p�k� p�	�̂ j � k�. (12)

Examples this distribution fit to experimental data can be seen in
Figure 5A.

Delay effects. The neural model as described so far addresses effects of
set size (through normalization of neural spiking activity across all mem-
orized items), but it does not incorporate any effects of delay duration.
We considered two possible mechanisms for delay effects, namely decay
of population activity and drift of activity over time.

In the decay model, we assume that the gain � of neural spiking activity
is not fixed (as in the original model), but decreases as a function of delay
duration td. We considered a linear decay with slope � and lower bound
at zero,

��td� � max�0, �0 � �td�, (13)

and an exponential decay with rate �

��td� � �0 exp �� �td�. (14)

Distributions of response latencies and response directions are then de-
termined in the model with the gain parameter adjusted for the delay
duration in each condition.

In the drift model, we assume that the center of mass in population
activity changes randomly, following a Brownian motion over the dura-
tion of the delay interval, without changing the width or shape of the
activity distribution in the population. This Brownian motion of the
activity center leads to variability in the currently encoded angular loca-
tion �̃j, which can be described by a von Mises distribution with concen-
tration parameter �:

f��̃ j � �� �
1

2�I0���
exp �� �cos��̃j � �j���. (15)

We considered two model variants again. In the first, the concentration �
is scaled inversely with the delay duration:

��td� �
�0

td
. (16)

This reflects the effects of Brownian motion under the assumption of a
constant drift rate. In the second variant, we assume that drift rate scales
with set size, as has been proposed by Koyluoglu et al. (2017):

��td, N� �
�0

tdN
. (17)

In both variants, the resulting distribution of response errors is obtained
by convolving the response distribution p�	�̂j� obtained in Equation 12
with the von Mises distribution f��̃j ���. Importantly, in the drift model,
delay duration has no effect on response latencies, since the total number
of spikes in the neural population does not change. We note that in all
model variants, we only take into account drift or decay during the delay
period of the task, and not during the comparatively brief spike accumu-
lation process.
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Model fitting. The basic model (without delay effects) has six free pa-
rameters, namely gain �, spike threshold m, tuning curve width �, spike
survival rate �, as well as rate parameter 	 and offset o for the exponential
distribution in the response latency. The two latter parameters only affect
response latency measures, whereas � and � only affect the distribution of
spatial responses. Each variant of the decay/drift mechanism adds one
more parameter (�, �, or �0, respectively).

We obtained a separate maximum likelihood fit for each individual
participant and each model variant. Free model parameters for each
participant were shared across all trial conditions, with effects of set size
and delay duration captured by inserting the appropriate values for N
and td in the equations above. We first performed a grid search over the
parameter space and computed the likelihood of obtaining each partici-
pant’s actual responses from the model for a large number of parameter
combinations. The ranges of parameter values considered here are given
in Table 1.

To make the grid search feasible for the large number of parameters,
we made use of the fact that response latencies and response directions
are each affected only by a subset of all parameters, so the likelihoods can
be computed independently and then combined. We then refined the fits
by running an optimization algorithm (Nelder–Mead method, function
fminsearch in MATLAB), using the optimal parameters from the grid
search as starting point.

Results
Experiment 1
In the memory condition of Experiment 1, participants viewed a
sample array of colored disks, with set size varying between one
and four items. After a variable delay, participants were cued with
a color and performed a saccadic eye movement to the memo-
rized location of the matching disk. The angular location of the
first stable fixation after the response saccade and the response
latency were determined as primary response measures for each
trial.

We fit participants’ response distributions with a three-component
mixture model (Bays et al., 2009), yielding an estimate of 97.4%
of responses directed to the target item, 2.2% swap errors (di-
rected to one of the nontarget items), and 0.4% random re-
sponses (averaged over all set sizes and delay durations). We then
used these mixture model fits to classify individual trials into
those with responses to the target and those with lapse (nontarget
or random) responses. Because stimuli in the sample array were
well separated and saccadic responses were relatively precise, al-
most all trials could be classified unambiguously (for �99% of all
trials, the estimated probability of being a target trial was either
�0.95 or �0.05).

The classification result showed that for set sizes one and two,
almost all responses were directed to the target (99.8 and 99.3%,
respectively), whereas the proportion was slightly lower at set

size 4 (93.1%). This effect of set size was significant (two-way
repeated-measures ANOVA, set size: F(2,18) 
 5.6, p 
 0.013),
whereas the effects of delay and the interaction between them did
not reach significance (delay: F(3,27) 
 2.5, p 
 0.083; interaction:
F(6,54) 
 2.1, p 
 0.065). It is possible that the distributions of
response errors and response latencies differ between target and
lapse trials, so for further analysis, we include only target trials to
allow a fair comparison of these metrics between conditions.

Figure 3, A and B, shows the results for response error (mea-
sured as RMSD) and median response latency of target trials for
all set sizes and delays. Response error can be seen to increase with
both set size and delay duration. Both of these effects were statis-
tically significant, with no significant interaction (set size: F(2,18) 

23.4, p � 0.001; delay: F(3,27) 
 9.6, p � 0.001; interaction: F(6,54) 

0.34, p 
 0.91). Median response latency visibly increases with set
size, but critically, increasing the delay duration did not cause
longer response latencies. Statistical analysis confirms a signifi-
cant effect of set size (F(2,18) 
 46.5, p � 0.001), but not of delay
duration (F(3,27) 
 2.2, p 
 0.11), and no significant interaction
(F(6,54) 
 1.7, p 
 0.15).

One surprising aspect in the response latency results is that
median response latency is actually higher (i.e., responses are slower)
for the shortest delay duration compared with longer delays, at
least at set sizes 1 and 2. This effect is not predicted by either
model of delay effects considered here, and is unlikely to arise
from the working memory recall process. We hypothesize that it
is instead an effect of surprise or lack of preparedness if the cue is
presented very quickly after the offset of the memory array (Ni-
emi and Näätänen, 1981), given that delay conditions were mixed
within blocks and not predictable for the participant. It is possible
that this effect masks an actual increase of the time required to
retrieve the target location from memory for longer delays. To
rule this out, we compared the results from the memory condi-
tion with the results from a control condition in which the sample
array remained visible throughout the trial.

We analyzed the results of the control condition in the same
way as the memory condition, including only target trials (99.0%
of all trials). We found a similar effect of higher response latencies
at the shortest delay, confirming the assumption that this is not a
memory effect. We subtracted the median response latencies in
the control condition from those in the memory condition, sep-
arately for each combination of set size and delay duration. We
reasoned that this would eliminate all effects of preparedness on
the result, because these should be the same in memory and
control conditions. We still found a significant effect of set size,
and not of delay duration or interaction of both factors, on me-

Table 1. Parameter values used in grid search and final fit values

Parameter (unit) Grid range Grid steps (spacing) Linear decay Exp decay Const drift Var drift

� (s �1) (2 3, 2 9) 25 (log) 95.2 � 15.2 98.7 � 15.9 99.5 � 19.1 94.2 � 18.0
m (2 2, 2 7) 11 (log) 7.1 � 0.74 7.0 � 0.73 7.3 � 0.95 7.0 � 0.96
� (2 3, 2 7) 9 (log) 22.0 � 2.5 22.2 � 2.5 26.0 � 3.5 31.9 � 5.10
� (s) (2 �6, 2) 8 (log) 0.18 � 0.093 0.18 � 0.10 0.14 � 0.044 0.44 � 0.17
	 (s �1) (1, 15) 15 (lin) 9.2 � 0.70 9.3 � 0.71 9.2 � 0.70 9.3 � 0.72
o (s) (0.1, 0.3) 11 (lin) 0.21 � 0.008 0.21 � 0.008 0.21 � 0.008 0.21 � 0.008
� (s �2) (2 �2, 2 4); 0 13 (log)  1 0.16 � 0.13 — — —
� (s �1) (0, ln(2)) 9 (log) — 0.017 � 0.013 — —
�0 (s �1) (2 7, 2 14); � 15 (log)  1 3415 � 1082 4637 � 1484

The parameters are gain of spiking activity �, spike threshold m, neural tuning curve width �, spike survival rate �, rate parameter 	, and offset o for the exponential component of the latency distribution, decay rate � (linear decay model)
or � �exponential (Exp) decay model�, and drift rate �0 (drift models). For each parameter we report the range over which it was varied in the grid search (with an additional discrete value reflecting no delay effects for � and �0 ), the number
of steps in the grid search and their spacing within the given range (logarithmic or linear), and the maximum likelihood estimates (mean over participants � SE) for each of the four model variants. Threshold values m are always rounded
to the nearest integer. The fit values for �0 exclude one outlier in the constant (Const) drift variant (with �0 
 8.3 � 10 7 s �1), and one outlier in the variable (Var) drift variant (with �0 
 2.4 � 10 6 s �1), reflecting individual model
fits with virtually no drift.
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dian response latency differences (set size: F(2,18) 
 11.2, p �
0.001; delay: F(3,27) 
 1.2, p 
 0.35; interaction: F(6,54) 
 0.90, p 

0.50). Response errors in the control condition did not show
systematic variation with either set size or delay, and subtracting
these from the results of the memory condition did not alter the
significant effects of set size and delay found here (set size: F(2,18) 

30.2, p � 0.001; delay: F(3,27) 
 10.7, p � 0.001; interaction: F(6,54) 

0.58, p 
 0.75).

The combination of an increasing SD with no systematic
change in response latency for longer delay durations is consis-
tent with the drift model, but not the activity decay model, of
delay effects. This is further illustrated in Figure 3C, where we
plot response latency against response RMSD for each set size and
delay duration. The plot matches the qualitative prediction of the
drift model (Fig. 1B). In particular, it shows that response latency
can vary greatly for different conditions that have almost the
same response error. This directly contradicts the prediction of
the activity decay model that there should be a fixed relationship
between these two variables across all conditions.

Experiment 2
In Experiment 2, we sought to address the issue of different levels
of preparedness at different delay durations through a modifica-
tion of the experimental design. The fixation point disappeared
briefly before the presentation of the cue, giving participants an
indication that they would be required to make a response. We
applied the same analyses as for the memory condition in Exper-
iment 1. The mixture model yielded an estimate of 97.6% target
responses, 1.8% swap errors, and 0.6% random guesses (averaged
over all conditions). In the classification of individual trials, the
proportion of target trials was 99.8% at set size 1, 99.5% at set size
2, and 95.5% at set size 4 (98.3% over all valid trials). The effect of

set size on proportion of target trials was significant (F(2,18) 
 4.7,
p 
 0.022), whereas there was no significant effect of delay
(F(3,27) 
 1.6, p 
 0.21) and no significant interaction (F(6,54) 
 1.3,
p 
 0.28).

Analyzing only the target trials, we found the same overall
pattern of response errors as in Experiment 1, shown in Figure
3D. There were significant effects of set size (F(2,18) 
 12.3, p �
0.001) and delay (F(3,27) 
 13.0, p � 0.001), and no interaction
(F(6,54) 
 0.24, p 
 0.96). The modification of the task procedure
did not eliminate the higher response latencies for the shortest
delay duration of 0.5 s, which were still apparent at all set sizes
(Fig. 3E). There was a significant effect of set size on median
response latencies (F(2,18) 
 24.2, p � 0.001), while the effect of
delay failed to reach significance (F(3,27) 
 2.8, p 
 0.060), with
no significant interaction (F(6,54) 
 0.63, p 
 0.70). The tendency
for an effect of delay duration is driven only by the higher re-
sponse latency at the shortest delay, and disappears if we exclude
this condition from the analysis (F(2,18) 
 0.18, p 
 0.84). Plot-
ting response latencies against response errors (Fig. 3F) produces
the same general pattern as in Experiment 1, matching the pre-
diction of the drift model of delay effects and inconsistent with
the activity decay model.

Model fits
We used a neural model to fit response error and response latency
data, and to compare possible mechanisms underlying delay ef-
fects in working memory. We used the same model to fit data
from both Experiment 1 (memory condition only) and Experi-
ment 2, given that the small modification in experimental proce-
dure did not qualitatively change behavioral measures.

The neural resource model assumes that memorized stimulus
locations are encoded in populations of spiking neurons, and

re
sp

on
se

 la
te

nc
y 

(s
)

0.3

0.4

0.5

0.6

0.7
RM

SD
 (r

ad
)

0.1

0.15

0.2

re
sp

on
se

 la
te

nc
y 

(s
)

0.3

0.4

0.5

0.6

0.7

RMSD (rad)
0.1 0.2

delay duration (s)delay duration (s)
1 2 3 4 1 2 3 4 0.15

0.25

0.25

set size
1
2
4

re
sp

on
se

 la
te

nc
y 

(s
)

0.3

0.4

0.5

0.6

0.7

RM
SD

 (r
ad

)

0.1

0.15

0.2

re
sp

on
se

 la
te

nc
y 

(s
)

0.3

0.4

0.5

0.6

0.7

RMSD (rad)
0.1 0.2

delay duration (s)delay duration (s)
1 2 3 4 1 2 3 4 0.15

0.25

0.25

A B C

D E F
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responses are generated by maximum likelihood decoding from
the spiking activity (Bays, 2014, 2016; Schneegans and Bays, 2017a). We
assume that for the generation of a saccadic eye movement, total
spiking activity in the population is integrated to a fixed thresh-
old. Response latencies are based on the integration time, and the
response direction is based on the generated spikes up to that
threshold. Poisson noise in neural spiking activity leads to devi-
ations between response value and encoded value and to variabil-
ity in response times. Critically, total spiking activity in the model
is normalized across all memorized items, a mechanism that has
successfully accounted for set size effects in visual working mem-
ory in previous work (Bays, 2014).

Within this basic model, we implemented two different hy-
potheses for the mechanism underlying effects of delay duration
in working memory. In the decay model, spiking activity in the
neural populations continuously decreases over time, following
either a linear or an exponential decay. In the drift model, total
activity levels remain fixed, but the active regions within the pop-
ulations undergo random drift over time, following a Brownian
motion. We considered either a fixed rate of drift across all con-
ditions, or a drift rate that is scaled with the number of items
(more drift at higher set sizes). We obtained a maximum likeli-
hood fit for each model variant for the combined response
latency and response direction results for each individual partic-
ipant (pooled over Experiments 1 and 2), and compared the
models based on the summed log likelihood of the experimental
data under the fitted model (given that all variants had the same
number of free parameters).

For the decay model, the variant with linear decay attained a
total log likelihood of 5238, whereas the variant with exponential
decay attained a value of 5244 (	log(L) 
 6.6 in favor of the expo-
nential decay variant). The parameters of the best fits for both mod-
els are reported in Table 1. Figure 4A (colored symbols) shows the
median response latencies plotted against the response errors of the
model fits for the variant with exponential decay, together with
the corresponding experimental results for comparison (gray sym-
bols; pooled over participants from both experiments). The model
captures the effects of set size reasonably well, but entirely fails to
reproduce the delay effects observed in the experimental data.

The set size effects are accounted for in the neural model
through the normalization of total spiking activity. At higher set

sizes, fewer spikes are generated in the population representation
for each individual item, leading to longer integration times. We
further assumed in the model that spikes occurring earlier in the
integration period contribute less reliably to the response, so that
fewer spikes are effectively available for the decoding of the mem-
orized object location at higher set sizes.

Previous implementations of the neural population model
assumed a fixed time window for decoding (Bays, 2014), which
creates the same qualitative effect of an inverse relationship be-
tween set size and number of spikes, but cannot produce varia-
tions in response latencies. We introduced the integration to a
fixed spike threshold to fit latency data, but in the original for-
mulation (without discounting of earlier spikes), this would have
undesired effects: the model would produce the same decoding
precision independent of the spike rate for each item (because the
total number of spikes for decoding would always equal the
threshold), and the model would be capable of producing arbi-
trarily high precision by using a higher threshold. The latter as-
pect in particular is unrealistic given that the decoding process in
the neural system is itself affected by random noise. The dis-
counting of earlier spikes in decoding the memorized feature was
introduced as a simple mechanism to reflect this noise. We note
that this implementation with a fixed threshold is not necessarily
appropriate to model typical cued recall tasks, in which subjects
adjust a probe stimulus without time constraints to make their
response.

The decay model assumes that the effect of delay duration is
caused by the same basic mechanism that generates the set size
effect, namely a decrease in spiking activity for each item. The
data points generated by the model for different combinations of
set size and delay duration must therefore lie on a single line,
because they vary only in a single parameter. The experimental
data does not match this pattern, and the fit must therefore re-
main poor. Indeed, for the majority of participants, the best fit
showed almost no decay of activity at all (decrease of �1% of
maximum gain over the maximum delay in 16 of 20 participants
for the linear decay variant, and for 18 of 20 participants for expo-
nential decay).

For the drift model, the variant with a set-size-dependent drift
showed overall higher log likelihood values than the variant with
fixed drift rate (5295 vs 5275, difference 	log(L) 
 20.1). The
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parameters of the best model fits are given in Table 1. Impor-
tantly, these fits show robustly higher likelihood values than ei-
ther of the decay models (	log(L) 
 51.2 for the better fitting
variant of each model, with higher fit likelihood for 17 of 20
participants).

The fits for the model with set-size-dependent drift are shown
in Figure 4B, and can be seen to capture the key characteristics of
the behavioral results. The drift of neural activity does not affect
overall spike rate in the neural population, such that response
latency in this model does not vary with delay duration. This
matches the behavioral results, where we did not find a significant
effect of delay on response latency in either experiment. The ef-
fect of set size on response latency is a result of the normalization
of total activity across memory items, as described for the decay
model. The set-size-dependent drift based on Brownian motion
qualitatively captures the effects of delay on response errors. It
should be noted that this drift mechanism also contributes to the
effects of set size on response errors, making the mechanism of
discounting early spikes in the basic model partly redundant.

Figure 5 shows the distributions of response errors and laten-
cies in the experimental data, and fits from the model with
set-size-dependent drift. Distributions of angular response devi-

ations from the target are shown in Figure 5A separately for each
set size and delay duration. Distributions can be seen to become
broader with both set size and delay duration, and these effects
are quantitatively captured by the model fit.

Response latency distributions are shown in Figure 5B for
different set sizes, collapsed across delay conditions (because re-
sponse latencies did not differ significantly with delay in the ex-
perimental data, and delay duration does not affect response
latency distributions in the drift model). The model qualitatively
captures the shape of the latency distributions and the effects of
set size, although some deviations between fits and experimental
results are noticeable. In particular, the model fit for set size 2 appears
broader than the experimentally observed latency distribution.

This discrepancy is likely due to a certain unpredicted prop-
erty of the experimental results: whereas median response latency
is significantly higher at set size 2 than set size 1 (paired t test for
data pooled over delay conditions and both experiments; t(19) 

9.7, p � 0.001), the SD of response latencies within participants
did not differ significantly between these conditions (t(19) 
 1.0,
p 
 0.32), and was numerically slightly lower at set size 2. This
pattern also holds when comparing each delay condition sepa-
rately (median latency significantly greater for set size 2 than set
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size 1, all p � 0.001, latency SD not significantly different; all p �
0.13).

It is not possible to account for this pattern with integrator or
drift-diffusion models of decision making, where an increase in
median latency is necessarily accompanied by an increase in la-
tency variability under otherwise equal conditions. This aspect of
the data can therefore not be captured by the model, in which the
latency distributions for different set sizes are determined by
shared parameters. We conjecture that the experimental obser-
vation may be due to the task being conceptually somewhat dif-
ferent at set size 1, in that participants do not have to use the color
cue to select an item from working memory in this condition.

Discussion
We have considered two possible ways in which delay duration
could affect neural population activity in working memory tasks,
and derived specific behavioral predictions from them. If a decay
of activity occurs over delay, this should produce both an increase
in response error and response latency for memory recall, with a
fixed relationship between these two measures when both set size
and delay duration are varied in a cued recall task. Conversely, if
delay produces drift in population codes without decrease in ac-
tivity levels, response latencies should remain unchanged, whereas
response errors increase with longer delays. Behavioral results from a
spatial working memory task with saccadic response qualitatively
matched the predictions of the drift model. Quantitative fits with
a neural model implementing both forms of delay effects con-
firmed that the drift model can account significantly better for
the behavioral data, and that it can successfully reproduce the
response error and latency distributions observed in the task.

We focused our analysis on those trials in which responses
were directed to the cued target item, using a recently developed
statistical method to exclude lapses, i.e., swap errors and random
responses (Schneegans and Bays, 2016). The target trials are most
informative to distinguish between the two models of delay ef-
fects, and the exclusion of lapse trials avoids confounding effects
arising from different latency and precision distributions in tar-
get and lapse responses. One previous study suggested that delay
duration affects recall performance specifically through “sudden
death” of memory representations for individual items, without
affecting recall precision for other items (Zhang and Luck, 2009).
Here, we found clear evidence for a decrease in recall precision for
remembered items, consistent with findings of Pertzov et al.
(2017) and at least partially supported by the results of Shin et al.
(2017). Like Pertzov et al. (2017), we also observed that a large
proportion of lapse responses could be explained by swap errors,
a possibility not considered by Zhang and Luck (2009). This calls
into question the interpretation that they are evidence for “sud-
den death” of individual memory representations.

We note that the population model used here is not designed
to produce swap errors, because it does not capture the bindings
of colors to locations that is required to select the target location
given a color cue. A previous extension of the model with con-
junctive coding has demonstrated that the neural population
coding can account for swap errors as well (Schneegans and Bays,
2017a). Applying this to the current task would mean extending
the spike integration mechanism also, to allow the selection of
different response options (Brown and Heathcote, 2008). This is
beyond the scope of the current work.

A key finding of the present study was that response latencies
for responses to the target do not increase with delay duration. In
contrast, changes in set size produced a robust effect on response
latencies in both experiments, demonstrating that the used method

is sensitive enough to detect systematic changes in latency. In
particular, we observed that different combinations of set size
and delay duration that produced very similar response errors
nonetheless showed strong differences in response latencies
(which depended on set size only). This directly contradicts the
decay model’s prediction of a fixed relationship between re-
sponse errors and latencies. The finding is consistent, however,
with the drift model, which assumes that the precise value en-
coded in the population activity changes over time, whereas the
amplitude and shape of the population activity remain the same
(and therefore response latencies are unaffected).

Some earlier working memory studies had reported an increase
of response latencies with delay duration (Phillips and Baddeley,
1971; Paivio and Bleasdale, 1974). However, these studies used
change detection paradigms, and therefore could not distinguish
between the times for memory retrieval and decision making. Like-
wise, several studies failed to detect any decrease of working memory
performance with longer delay durations, but these used either dis-
crete or highly discriminable stimuli with categorical responses
(Morris, 1987; Kahana and Sekuler, 2002; Lilienthal et al., 2014),
and therefore were insensitive to small changes in memorized
features. In contrast, the current experimental paradigm with
free saccadic responses allows both a direct estimation of memory
retrieval time and a detection of graded changes in memory
content.

In the present work, we did not aim to capture the neural pro-
cesses that may generate drift or decay over the delay duration, but
rather provide a parametric description of the considered delay ef-
fects. This enables us to test the plausibility of different changes in
population activity independent of the specific underlying mecha-
nism. The drift mechanism supported by our results is, however,
traditionally associated with attractor models of working mem-
ory (Wang, 2001; Chaudhuri and Fiete, 2016). In these models,
activity that is induced in a neural population by external stimu-
lation is sustained through excitatory recurrent connections, bal-
anced by longer-range inhibition. Random drift of self-sustained
activity bumps over time is a general feature of this class of mod-
els, which has been described in various implementations using
either rate coding (Camperi and Wang, 1998; Schneegans et al.,
2014) or spiking neurons (Compte et al., 2000; Wei et al., 2012).

The drift in these models shows the same general features as
assumed in our parametric implementation: it is caused by small
variations in activity due to random noise that are propagated
over time (because the future activity state depends only on the
current one), leading to a form of random walk of the activity
bump’s position; and it does not change the shape or amplitude
of the activity bump, because these are determined only by the
balance of excitation and inhibition (Amari, 1977; Compte et al.,
2000). Importantly, evidence for drift of neural activity over time
consistent with these models has also been found in an electrophys-
iological study in macaque monkeys, using a spatial working-
memory task similar to the one-item condition in the present work
(Wimmer et al., 2014).

The best fitting model for the present experimental results
assumed that drift rate scales with set size (although we note that
we did not find a significant interaction between set size and delay
duration in the analysis of response errors in the behavioral data).
In attractor models, the interaction between drift and number of
encoded items depends strongly on implementation details. The
model of Koyluoglu et al. (2017) showed drift rates increasing
with set sizes in two different implementations (either assuming
that neural resources are divided evenly across items or using a
recoding of memoranda before the retention stage), and pro-
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duced close fits for the behavioral data from Pertzov et al. (2017).
In the model of Schneegans and Bays (2017b), using spatially
unspecific inhibition between items, no change in the amount of
random drift was observed between set sizes 1 and 2. Almeida et
al. (2015) used a spiking neuron model with broad, but localized
inhibition, and they likewise observed no change in random drift
with set size. However, their model predicted that interactions
between memorized items would generate directed drift in the
form of attraction or repulsion (dependent on feature similarity;
Johnson et al., 2009), and consequently an overall increase in
response variability with set size. The authors confirmed these
predictions in behavioral experiments.

As an alternative to sustained activity models, it has been pro-
posed that stimuli in working memory tasks may be encoded in
an activity-silent state, e.g., through rapid synaptic plasticity (Lewis-
Peacock et al., 2012; Barak and Tsodyks, 2014; Stokes, 2015; Rose
et al., 2016), and be reactivated by unspecific input at recall. In
such a memory state without sustained activity, there can be no
drift of encoded positions over time as described in attractor
models. The decrease in recall performance observed in the cur-
rent study would have to be accounted for by fading of the
learned synaptic connections, which we expect to produce effects
largely identical to the decay account described here. Such mod-
els can therefore not explain the decrease in recall precision with-
out change in response latencies observed here.

Another account of delay effects in working memory is offered
by interference models (Lewandowsky et al., 2009; Oberauer et
al., 2012). Souza and Oberauer (2015) argued that longer delays
affect performance only by decreasing temporal distinctiveness
between the current sample array and the array memorized for
the preceding trial. In so far as such an account assumes that low
temporal distinctiveness leads to intrusion of preceding items in
response generation, it can be refuted by the current approach:
such intrusions should either (1) be observed as erroneous reports of
previous items, which would have been excluded as lapses in the
present study, so cannot contribute to the changes we observed in
memory precision; or (2) result in changes equivalent to an increase
in set size: a prediction that was explicitly refuted in the present
results. It is possible, however, that interference from previous
trials has detrimental effects without specific intrusions of earlier
items (Dillon and Thomas, 1975). Testing this possibility will
require more specialized experimental designs and is beyond the
scope of the current study.
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