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Bayesian modeling of the covariance
structure for irregular longitudinal data
using the partial autocorrelation function
Li Sua and Michael J. Danielsb*†

In long-term follow-up studies, irregular longitudinal data are observed when individuals are assessed repeatedly
over time but at uncommon and irregularly spaced time points. Modeling the covariance structure for this type
of data is challenging, as it requires specification of a covariance function that is positive definite. Moreover,
in certain settings, careful modeling of the covariance structure for irregular longitudinal data can be crucial
in order to ensure no bias arises in the mean structure. Two common settings where this occurs are studies
with ‘outcome-dependent follow-up’ and studies with ‘ignorable missing data’. ‘Outcome-dependent follow-up’
occurs when individuals with a history of poor health outcomes had more follow-up measurements, and the
intervals between the repeated measurements were shorter. When the follow-up time process only depends on
previous outcomes, likelihood-based methods can still provide consistent estimates of the regression parameters,
given that both the mean and covariance structures of the irregular longitudinal data are correctly specified and
no model for the follow-up time process is required. For ‘ignorable missing data’, the missing data mechanism
does not need to be specified, but valid likelihood-based inference requires correct specification of the covariance
structure. In both cases, flexible modeling approaches for the covariance structure are essential. In this paper,
we develop a flexible approach to modeling the covariance structure for irregular continuous longitudinal data
using the partial autocorrelation function and the variance function. In particular, we propose semiparametric
non-stationary partial autocorrelation function models, which do not suffer from complex positive definiteness
restrictions like the autocorrelation function. We describe a Bayesian approach, discuss computational issues,
and apply the proposed methods to CD4 count data from a pediatric AIDS clinical trial. © 2015 The Authors.
Statistics in Medicine Published by John Wiley & Sons Ltd.
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1. Introduction

In long-term follow-up studies, irregular longitudinal data are observed when individuals are assessed
repeatedly over time but at uncommon and irregularly spaced time points. Modeling the covariance struc-
ture for irregular longitudinal data requires the specification of a covariance function. This specification
can be challenging due to the need to keep the covariance function positive definite. Moreover, careful
modeling of the covariance structure for the irregular longitudinal data can be crucial for valid inferences
on the mean structure in certain settings (e.g., outcome-dependent follow-up and ignorable missing data).
In such settings, flexible models for the covariance structure are certainly desirable. In this paper, we
describe a flexible approach to modeling the covariance structure for irregular continuous longitudinal
data. We will start by providing more details on settings where correctly modeling the covariance struc-
ture is essential. We then review the relevant literature on covariance modeling and provide details on
our motivating example.
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1.1. Settings where incorrect covariance modeling results in bias in the mean structure

Irregularly measured longitudinal data can be a result of ‘outcome-dependent follow-up’, where indi-
viduals with a history of poor health outcomes are being assessed with greater frequency and regularity.
Lipsitz et al. [1], Fitzmaurice et al. [2], and Ryu et al. [3] discussed assumptions that the follow-up time
process can be ignored when making likelihood-based inferences about the longitudinal outcome pro-
cess. Basically, when the follow-up time process only depends on previous outcomes, likelihood-based
methods can still provide consistent estimates for the regression parameters in the mean structure of the
longitudinal outcome process, and no modeling of the follow-up time process is needed. However, this
requires the correct specification of the whole joint distribution of the longitudinal measures for each indi-
vidual, which of course includes the covariance structure. A similar problem is that of ‘ignorable missing
data’. As with the ‘outcome-dependent follow-up’ case, the missing data mechanism does not need to
be explicitly specified, but proper inference about the mean structure requires correct specification of the
covariance structure [4, 5].

1.2. Modeling the covariance function

Parametric stationary models for the correlation function have been explored in [6]. Qian [7] proposed
flexible stationary models that allows the correlation function to decay with lag. Pan and MacKenzie [8]
proposed flexible models for irregularly spaced observations using the modified Cholesky decomposition
[9] of a covariance matrix, but again, the focus is on ‘stationary-type’ models, where the covariance
structure depends on the time lag but not on time. More recently, Zhang and Leng [10] proposed similar
(‘stationary-type’) models based on a moving average Cholesky factorization.

Parametric non-stationary models for the covariance function have been proposed in [11] and [12].
Diggle and Verbyla [13] proposed nonparametric approaches for the covariance function using kernel
weighted local linear regression, but there is no guarantee that their estimator results in a positive definite
covariance function. Fan et al. [14] proposed semiparametric models, allowing for nonparametric estima-
tion of the variance function, but parametric estimation of the correlation function. Yao et al. [15] used a
functional principal components analysis approach to modeling the non-stationary covariance structure,
but their main purpose was to characterize the time trend and variation of the irregular longitudinal data
in a functional data setting. Here, instead, we focus on regression settings, where covariate effects are
of interest.

In this paper, we develop a flexible approach to modeling the covariance structure of the irregular
continuous longitudinal data by focusing on the partial autocorrelation function (PACF). The advantage
of modeling using a PACF is that the only restriction to maintain positive definiteness is to ensure its
values are in the interval (−1, 1). Therefore, in our approach, the positive definiteness obstacle is removed.

The PACF has been well explored for the stationary setting in the time series literature (e.g., [16])
and is often used to determine the order of a stationary autoregressive model in the time series models
[17] but appears to have not been used for longitudinal data. Parameterizing a correlation matrix using
partial autocorrelations has been explored in [18] and [19] and for a spherical parameterization in [20] but
only for cases of common, equally spaced follow-up times across units. Zimmerman and Nunez-Anton
[21] proposed structured (parametric) antedependence models for the correlation matrix based on partial
autocorrelations.

To handle irregularly spaced longitudinal data and accommodate non-stationarity in the correlation
function, we develop a new class of semiparametric models for the PACF. To our knowledge, such
models have not yet been developed. Together with a model for the variance function, our approach offers
flexibility in modeling the covariance structure in challenging situations, such as the ‘outcome-dependent
follow-up’ and ‘ignorable missing data’ problems described earlier.

1.3. Motivating example

This work was motivated by a randomized double-blinded equivalency trial of high-dose (180 mg per
square meter body surface area, six times daily) versus low-dose (90 mg) zidovudine (ZDV) for HIV-
infected children (Protocol 128 of the AIDS Clinical Trial Group) [22]. The study enrolled 426 children
who were randomized to receive one of the two doses and scheduled for measurement of CD4 count
before enrollment and every 12 weeks up to 5 years. The analysis objective is to compare the treatment-
specific longitudinal trajectories of CD4 counts.
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Figure 1. Observed (square root) CD4 count data over time by the dose groups, with local regression fits to the
pooled sample (dark lines) and profiles from 4 selected participants in each group highlighted.

Figure 2. Kaplan-Meier curves for observed dropout times by the dose groups in the AIDS example.

However, the actual measurement times were irregular and varied considerably across children.
Figure 1 presents the observed CD4 count data over time by the dose groups with local regression fits
to the pooled sample and four individual profiles highlighted. Note that a square root transformation is
used to reduce the right skewness in these data. The total number of measurements was 4999, while the
number of measurements per child varied from 1 to 21. The observed maximum follow-up time was
219 weeks, and there were 214 unique measurement times following enrollment. In addition, only about
half of the children completed 3 years of follow-up (Figure 2). Previous analyses [5, 23] suggest that the
dropout was possibly informative in the sense that children with a more rapid decline in CD4 count were
more likely to drop out. Figure 3 presents the estimated individual ordinary least-squares intercepts and
slopes of the square root of CD4 counts against the observed dropout times, and it appears that lower
intercepts in both dose groups and lower slopes in the low-dose group are associated with early dropout.
In Section 4, we will demonstrate how to accommodate the irregular measurement times in modeling the
covariance structure of these CD4 data while dealing with informative dropout at the same time.

The remainder of this paper is organized as follows. In Section 2, we formally define partial autocor-
relations and the PACF, then describe a flexible class of semiparametric non-stationary models for the
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Figure 3. Individual OLS intercepts and slopes of square root CD4 count as functions of the dropout time by the
dose groups, with local regression fits highlighted.

covariance function. Section 3 discusses the computational issues and ‘tricks’ that can be used to per-
form Bayesian (or likelihood) inference efficiently. In Section 4, we apply the proposed methods to the
pediatric CD4 count data. We offer conclusions and extensions in Section 5.

2. Definitions and models

Suppose that N independent individuals are to be followed up intermittently at discrete time t =
1, 2,… ,T . Here, t could be months, weeks, days or hours (in the AIDS example in Section 4, it is
‘months’). The constant T is determined by the potential maximum follow-up time where a longi-
tudinal measurement can be taken in the study; and the value of T can be large depending on the
chosen time unit. We assume a discrete time Gaussian process for the longitudinal outcome from the
ith individual (i = 1,… ,N), {Yi(t) ∶ t ∈ 1,… ,T}, with a mean function 𝜇i(t) and a covariance func-
tion, Cov{Yi(t),Yi(t′)} = 𝜎i(t)𝜎i(t′)𝜌i(t, t′) (t, t′ ∈ 1,… ,T), where 𝜎2

i (t) is the variance function and
𝜌i(t, t′) = Cor{Yi(t),Yi(t′)} is the autocorrelation function.

We assume that the mean function 𝜇i(t) can be described by a linear model

𝜇i(t) = 𝐗i(t)𝜷, (1)

where𝐗i(t) is a p-dimensional covariate process that can include both time-invariant and exogenous time-
varying covariates, and 𝜷 is the p × 1 vector of corresponding regression coefficients. Note that random
effects can be added (we will do this in the data analysis in Section 4) or more flexible structures can be
specified for the mean function, for example, using semiparametric regression approaches [24]. In this
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paper, however, we focus on developing flexible models for the covariance function Cov{Yi(t),Yi(t′)} and
assume that the mean function can be appropriately modeled by the linear model in (1), possibly with
random effects.

At time points ti1,… , tini
, the continuous longitudinal outcome measurements 𝐘i = (Yi1,… ,Yini

)T for
the ith individual are taken. Thus, the covariance matrix of 𝐘i, Σi is ni-dimensional. This matrix can be
decomposed as 𝚺i = 𝐒i𝐑i𝐒i, where 𝐒i = diag{𝜎(ti1),… , 𝜎(tni

)} is the diagonal matrix of standard devia-
tions, and 𝐑i = {𝜌(tik, til)}kl (k, l ∈ 1,… , ni) is the correlation matrix. Note that ti1,… , tini

can vary across
individuals and be unequally spaced, and in this set-up, irregular longitudinal data are accommodated.

The elements of the correlation matrix, 𝐑i, the marginal correlations, can be expressed in terms of the
PACF. In this paper, we model the autocorrelation function 𝜌i(t, t′) = Cor{Yi(t),Yi(t′)} by parameterizing
the PACF. For the remainder of this section, we drop the subscript i and introduce the PACF as well as
our semiparametric PACF models.

2.1. The partial autocorrelation function

The PACF, π(t, t + j) is defined as

π(t, t + j) = Cor(Y(t),Y(t + j)|Y(k), k ∈ {t + 1,… , t + j − 1}),

the correlation between Y(t) and Y(t+ j) conditional on the intervening values, {Y(t+1),… ,Y(t+ j−1)},
where j is the time lag. These correlations can also be represented as the correlation of the residuals for
Y(t) and Y(t + j) from regressing each on the intervening values.

In other words, this is the remaining correlation between Y(t) and Y(t + j) that cannot be explained by
all the intervening variables. Therefore, in settings with decaying (serial) correlation, we expect partial
autocorrelations to be zero after a certain lag (i.e., with quite a few intervening variables, there is little
remaining correlation between Y(t) and Y(t + j)), unlike marginal correlations.

In addition, the domain of the set of partial autocorrelations induced by the PACF is a [T(T −
1)∕2]−dimensional hypercube, so each can vary independently in (−1, 1). This is a major advantage
over the autocorrelation function, which is highly restricted. For further intuition on this, we recommend
reading about partial correlation vines in the linear algebra literature (references can be found in [18]).

In principle, it is easy to move between the PACF, π(t, t+j), and the autocorrelation function, 𝜌(t, t+j) =
Cor{Y(t),Y(t + j)}. In particular, a partial autocorrelation, π(t, t + j), is a function of the correlation
matrix corresponding to components (Y(t),… ,Y(t + j)). The following is the expression for computing
the marginal correlations from the partial autocorrelations,

𝜌(t, t + j) = π(t, t + j)Dt,t+j + 𝐫1(t + 1, t + j − 1)T𝐑(t + 1, t + j − 1)−1𝐫3(t + 1, t + j − 1),

where 𝐑(t + 1, t + j − 1) is the correlation matrix of the vector {Y(t + 1),… ,Y(t + j − 1)}, 𝐫1(t + 1, t +
j − 1)T = (𝜌(t, t + 1),… , 𝜌(t, t + j − 1)), and 𝐫3(t + 1, t + j − 1)T = (𝜌(t + j, t + 1),… , 𝜌(t + j, t + j − 1)).
Dt,t+j =

{
1 − 𝐫1(t + 1, t + j − 1)T𝐑(t + 1, t + j − 1)−1𝐫1(t + 1, t + j − 1)

}1∕2 {1− 𝐫3(t+1, t+ j−1)T𝐑(t+
1, t + j − 1)−1𝐫3(t + 1, t + j − 1)}1∕2 is the product of the partial standard deviations [18].

Because T can be large in the irregular longitudinal data setting, moving between π(t, t+j) and 𝜌(t, t+j)
can be challenging computationally. For example, inverting 𝐑(t + 1, t + j − 1) can be time-consuming if
j is large. We discuss solutions to these important computational issues in Section 3.

2.2. PACF models

2.2.1. Stationary PACF models. We can construct unrestricted PACF models, using Fisher’s z-transform,
z(x) = 1+x

1−x
as a link function. To start, we consider a stationary model,

z{π(t, t + j)} = g(j)I(j ⩽ a), (2)

where g is a monotonically non-increasing function of j (time lag), and the indicator function denotes
when the lag j PACF is zero. The function g(j) can be formulated as 𝐖(j)𝜸, where 𝐖(j) is a design matrix
that is a function of the time lag, j; and 𝜸 is a vector of regression coefficients, which does not depend on
t. This is a stationary PACF model, as π(t, t + j) only depends on the time lag j, not t.

When j > a, π(t, t + j) = 0, as we expect that π(t, t + j) will decrease to zero after a certain number
of lags, a, which is generally expected to not be very large in the serial correlation setting. As a result,
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this model structure bands the partial autocorrelation matrix, defined as a T × T matrix with the ones
on the main diagonal, and kl and lkth elements set to π(k, l) (k, l ∈ 1,… ,T), where a is the number
of bands.

This set-up is important for computations, as it avoids the need to invert large dimensional matrices
(when T is large) and only requires inversion of at most (a + 1)−dimensional matrices when moving
between π(t, t + j) and 𝜌(t, t + j) (see Section 3 and Wang and Daniels [25] for further details). Any
correlation matrix of the components of {Y1,… ,YT} will be positive definite under this model.

2.2.2. Semiparametric non-stationary PACF models. We also consider a related non-stationary model,

z{π(t, t + j)} = gt(j)I(j ⩽ a), (3)

where now the function g is indexed by time t and allows a different rate of decay in partial autocorre-
lations at different times (thus, non-stationary). The function gt(j) can be formulated as 𝐖(j)𝜸(t), where
𝐖(j) is a design matrix that is a function of the time lag, j; and 𝜸(t) is a vector of smooth functions of
time, t.

In the AIDS example presented in Section 4, we specify a non-stationary PACF model as follows:

z{π(t, t + j)} = {gt0 + gt1 × (j − 1)}I{j ⩽ a}
= {𝐁(t)𝜸0 + 𝐁(t)𝜸1 × (j − 1)}I{j ⩽ a},

(4)

where ∀t gt1 ⩽ 0 and gt0, gt1 are smooth functions of t that are modelled nonparametrically using
penalized splines with a low-rank thin-plate basis 𝐁(t), that is, gt0 = 𝐁(t)𝜸0, gt1 = 𝐁(t)𝜸1 (see details
in Section 4). Note that other bases for penalized splines, such as truncated polynomial basis or cubic
B-spline basis, can be used. We follow [26] to use the low-rank thin-plate basis because of its better
Markov Chain Monte Carlo (MCMC) mixing compared with truncated polynomial basis. In this model,
we assume that the partial autocorrelations within band a are decaying linearly as a function of j by
restricting gt1 ⩽ 0 ∀t. Other more flexible structures in the linear model framework can be specified, for
example, by adding a quadratic term of j. However, because the partial autocorrelation matrix under our
model is banded at a, two-dimensional surface estimation for gt(j) in (3) is not very practical.

We will choose the number of bands a using the Deviance Information Criterion (DIC) [27] in the
AIDS example, but it is also possible to put a prior on a and obtain its posterior distribution (and integrate
over its uncertainty).

2.3. Model for the variance function

In some models (e.g., multivariate probit models), the covariance structure is characterized by a correla-
tion matrix (for identifiability) that would be completely specified with the PACF. In our setting with a
covariance function, we also need a model for the marginal variance at each time, 𝜎2(t). This could be
modeled as a smooth function of time t by again using penalized splines on the log scale,

log{𝜎2(t)} = 𝐁(t)𝜶. (5)

In the AIDS example, we use a parametric model for the marginal variance, as the variance over time
reveals a simple linear pattern on the log scale (see details in Section 4).

3. Overview of posterior computations

For the ith individual, we observe the response vector, 𝐘i = (Yi1,… ,Yini
)T, at time points ti1,… , tini

. It
follows that

𝐘i ∼ N(𝝁i,𝚺i), (6)

where 𝝁i is the mean vector that is determined by the model for 𝜇i(t) as in (1).

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2015, 34 2004–2018
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We decompose the marginal covariance matrix 𝚺i such that 𝚺i = 𝐒i𝐑i𝐒i, where 𝐑i is the marginal
correlation matrix, and 𝐒i is a diagonal matrix with marginal standard deviations along the diagonal. 𝐑i is
determined by the model for π(t, t+ j) as in (2) or (3), and 𝐒i is determined by the model for 𝜎2(t) as in (5).

The corresponding log-likelihood from the ith individual is

li = −ni log(2π)∕2 − log(|𝚺i|)∕2 − (𝐘i − 𝝁i)T𝚺−1
i (𝐘i − 𝝁i)∕2. (7)

Posterior sampling via Gibbs sampling is relatively straightforward. The details of the MCMC algorithm
for the AIDS example can be found in the Supplementary Materials.

However, the key to the proposed approach involves efficient ways to compute and invert the covariance
matrix for each subject, 𝚺i. We now review some results for correlation matrices based on banded partial
autocorrelation matrices that make the computation of 𝚺−1

i efficient.
Because 𝐑i can be written directly as a function of the marginal correlation function, 𝜌(⋅, ⋅), we need

an efficient algorithm to move between π(⋅, ⋅) and 𝜌(⋅, ⋅), as T can be quite large. The recursive algorithm
proceeds as follows:

(1) π(t, t + 1) → 𝜌(t, t + 1)
(2) 𝜌(t, t + 1), π(t, t + 2) → 𝜌(t, t + 2)
(3) 𝜌(t, t + 1), 𝜌(t, t + 2), π(t, t + 3) → 𝜌(t, t + 3)

⋮
( j) 𝜌(t, t + 1),… , 𝜌(t, t + j − 1), π(t, t + j) → 𝜌(t, t + j),

where ‘→’ corresponds to the parameters to the left of the arrow being needed to compute the parameters
to the right of the arrow based on the formula given in Section 2.1. Moving between π(t, t+j) and 𝜌(t, t+j)
also involves inverting a (j−1)-dimensional correlation matrix for the sub-vector (Y(t+1),… ,Y(t+j−1))
(j = 1,… ,T − 1) as was seen in Section 2.1. However, the classes of models proposed in Section 2.2
reduces the computational burden by limiting the dimension of matrices that need to be inverted.

Wang and Daniels [25] provide a result for inversion of a-band PACF matrices.
Result 1 [25]: Inverting the correlation matrix constructed from an a-band partial autocorrelation

matrix only requires the inversion of (a + 1)-dimensional matrices, and its precision matrix is also an
a-band matrix.

This result illustrates that these matrix inversions only require inversion of at most (a+1)-dimensional
matrices (even for j > a), which is essential when T is large. The expression for inverting these matrices
and the proof of this result can be found in the Supplementary Materials to [25].

4. Application to the AIDS pediatric trial data

In this section, we use the proposed methods to analyze the AIDS pediatric trial data introduced in
Section 1. Recall that the analysis objective is to compare the treatment-specific longitudinal trajectories
of CD4 counts. To deal with the informative dropout problem, we use conditional linear models (CLMs)
from [28] in the mean structure because dropout occurred in continuous time (Figure 2), and pattern
mixture models [29] for discrete dropout times are not suitable here. Similar to pattern mixture models,
the joint distribution of the outcome and dropout time in CLMs is factorized as the marginal distribution
of the dropout time times the conditional distribution of the outcome given the dropout time. To obtain
marginal covariate effects in the mean structure, we do not model the dropout time distribution but use
the Rubin’s Bayesian bootstrap [30, 31] for averaging over the dropout time distribution.

For the covariance structure, we fit several models to compare their fits to these CD4 data, while the
same CLM is assumed for the mean structure. The first is a linear mixed effects model (LMM) with
random intercepts and random slopes, which is a simple but often reasonable approach. The marginal
correlation structure induced by this model is non-stationary but follows a specific parametric form
depending on the covariance matrix of the random effects (see page 133 in [32]). Given the large num-
ber of unique measurement times and the resulting lack of replications at many times and lags in these
CD4 count data, directly estimating an unstructured marginal covariance matrix is not feasible. In addi-
tion, we would rather not make strong parametric assumptions about the covariance structure. Thus, we
apply our proposed semiparametric PACF model to these CD4 data. In preliminary analyses, we found
that the partial autocorrelations were effectively non-zero even at a relatively large number of time lags,
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which suggests that there was a non-diminishing correlation over time in these data. In addition, we com-
pared model fits for the models with and without random intercepts (to allow for long-term correlation)
using DIC (with the random intercepts integrated out) and found that the model with random intercepts
provided a better fit to the observed data. We therefore include a random intercept to account for the
non-diminishing correlation and use our PACF models to model the serial correlation. We fit both semi-
parametric and parametric PACF models with different numbers of bands and compare their fits to the
observed data using DIC.

Because the maximum of the observed measurement times was 219 weeks, in order to simplify the
computations to a more manageable level, we round the actual measurement times to the nearest 4 weeks
in the following analyses. Therefore, the maximum follow-up time (i.e., T) based on the measurement
times is 56. In Section 5, we provide more discussions of the computations when the dimension increases.

4.1. Conditional linear model for the mean structure

Let 𝐘i(t) represent the square root of CD4 count at time t for the ith child. In our proposed PACF model,
we assume that 𝐘i(t) is a discrete-time Gaussian process with a mean function 𝜇

(1)
i (t),

𝜇
(1)
i (t) = 𝛽0(di) + 𝛽1(di) ⋅ (t − 1)∕13 + 𝛽2(di) ⋅ dosei + 𝛽3(di) ⋅ dosei ⋅ (t − 1)∕13 + bi0, (8)

where bi0 ∼ N
(
0, 𝜎2

b

)
is a random intercept, dosei is an indicator variable for the low-dose group, and di

is the observed dropout time in weeks (rescaled by taking (di − d̄)∕range(di), where d̄ is the sample mean
of the observed dropout times). The unit for time t is 4 weeks, and t = 1,… , 56, where t = 1 corresponds
to enrollment. We scale the time t by 13 such that 𝛽1(di) represents the change rate of CD4 counts over
a year, given di in the high-dose group.

Following the approach in Wu and Bailey [28], we assume that regression coefficients 𝛽0(di), 𝛽1(di),
𝛽2(di), and 𝛽3(di) in (8) are functions of the observed dropout time di. Because Figure 3 shows the local
regression fits to the individual ordinary least-squares intercepts and slopes that are not far apart from
linear patterns, we assume that 𝛽0(di) = 𝜃00 + 𝜃01di, 𝛽1(di) = 𝜃10 + 𝜃11di, 𝛽2(di) = 𝜃20 + 𝜃21di, and
𝛽3(di) = 𝜃30 + 𝜃31di.

In the LMM, we have the same conditional linear model for the mean as in (8) but add a random slope
as follows

𝜇
(2)
i (t) = 𝜇

(1)
i (t) + bi1 ⋅ (t − 1)∕13, (9)

where [
bi0
bi1

]
∼ N

(
𝟎,𝐆 =

[
𝜎2

0 𝜎01
𝜎01 𝜎2

1

])

are random effects for the intercept and time slope for the ith child.

4.2. Models for the covariance structure

For the LMM, we assume that the (residual) covariance function is Cov{Yi(t),Yi(t′)} = 𝜎2
𝜖
I(t = t′).

In the semiparametric PACF model, we assume that

z{πi(t, t + j)} = {gt0 + gt1 × (j − 1)}I(j ⩽ a)
= {𝐁(t∕50)𝜸0 + 𝐁(t∕50)𝜸1 × (j − 1)}I(j ⩽ a),

where ∀t gt1 ⩽ 0, gt0 and gt1 are smooth functions that are modelled nonparametrically using penalized
splines with a low-rank thin-plate basis {B(t)} = {1, t, |t − 𝜈1|3,… , |t − 𝜈10|3}, and 𝜈1 < … < 𝜈10 are 10
equally spaced fixed knots that are set at t = 5, 10,… , 50. For example, the low-rank thin-plate spline
representation of gt0 is

gt0 = 𝛾0
0 + 𝛾0

1 ⋅ t∕50 +
10∑

k=1

𝛾0
k+2 ⋅ |t∕50 − 𝜈k∕50|3, (10)

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2015, 34 2004–2018
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Figure 4. Logarithm of the sample residual variance (from a simple linear model fit to the square root CD4 data)
for each time point t = 1,… , 56 in the AIDS example. The size of the circles is proportional to the number of

observations at that time.

where 𝜸0 =
(
𝛾0

0 ,… , 𝛾0
12

)T
is a vector of regression coefficients. Similarly, we have gt1 = 𝐁(t∕50)𝜸1

and 𝜸1 =
(
𝛾1

0 ,… , 𝛾1
12

)T
. Note that, to facilitate the numerical computations, we scale t by 50 when

constructing the penalized spline basis.
For comparison, we also fit a stationary PACF model of the following form:

z{πi(t, t + j)} = g(j)I(j ⩽ a)
= {𝛾0 + 𝛾1 × (j − 1)}I(j ⩽ a).

For the variance function 𝜎2
i (t), we use a parametric model,

log
{
𝜎2

i (t)
}
= 𝛼0 + 𝛼1t∕50, (11)

because the logarithm of the residual variances (from a simple linear model fit to these data), over time
reveals a linear pattern (Figure 4).

4.3. Summarizing marginal covariate effects

Following [31], we leave the dropout-time distribution completely unspecified and use the Rubin’s
Bayesian bootstrap [30] to obtain the posterior for P(D = di) (see details in [31]), where D is the dropout
time. Basically, at each iteration of the MCMC, we simulate P(D = di) from Dirichlet(1,… , 1) for
both dose groups. The marginal covariate effects can be approximated by

∑N
i=1 P(D = di)𝜷(di), where

𝜷(di) = (𝛽0(di), 𝛽1(di), 𝛽2(di), 𝛽3(di))T. Details can be found in the Supplementary Materials.

4.4. Prior specification and MCMC algorithm

For the mean structure, we specify independent Normal priors N(0, 103) for 𝜃00, 𝜃01, 𝜃10, 𝜃11, 𝜃20, 𝜃21,
𝜃30, 𝜃31.

In the LMM, we use the modified Cholesky decomposition in [33] for modeling the random effect
covariance structure, that is, we assume that bi1 = 𝜆bi0 + ei in (9), where ei ∼ N(0, 𝜎2

e ). The
reparameterization through 𝜆, 𝜎0, and 𝜎e will guarantee that the covariance matrix of the random effects
is positive definite. We assign Uniform(0, 20) prior to the standard deviations 𝜎0 and 𝜎e, and N(0, 103)
prior to 𝜆. Note that 𝜎2

1 = 𝜆2𝜎2
0 + 𝜎2

e , and we can obtain 𝜎01 = 𝜆𝜎2
0 . Further, for the (residual) error

variance, we assign the prior 𝜎2
𝜖
∼ inverse-Gamma(0.01, 0.01).
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For both non-stationary and stationary PACF models, we specify independent Normal priors N(0, 103)
for the parameters in the variance function 𝛼0 and 𝛼1 and assign a Uniform(0, 20) prior to the random
intercept standard deviation 𝜎b.

In addition, for the stationary PACF model, we assign the following priors for 𝛾0 and 𝛾1: 𝛾0 ∼ N(0, 103),
𝛾1 ∼ N(0, 103).

Let 𝝃0 =
(
𝛾0

0 , 𝛾
0
1

)T
, 𝝍0 =

(
𝛾0

3 ,… , 𝛾0
12

)T
, T1 = (1, t∕50), T2 = (|t∕50− 𝜈1∕50|3,… , |t∕50− 𝜈10∕50|3),

and 𝛀 be a 10 × 10 penalty matrix whose (l, k)th entry is |𝜈l∕50 − 𝜈k∕50|3. Using the reparameterization
�̃�0 = 𝛀1∕2𝝍0 and T̃2 = T2𝛀−1∕2, (10) can be rewritten as gt0 = T1𝝃0 + T̃2𝝍0. Note that this reparam-
eterization is useful because we can then assign an independent Normal prior to 𝝍0 [26]. Similarly, we

can define 𝝃1 =
(
𝛾1

0 , 𝛾
1
1

)T
, 𝝍1 =

(
𝛾1

3 ,… , 𝛾1
12

)T
, then �̃�1 = 𝛀1∕2𝝍1 and we have gt1 = T1𝝃1 + T̃2𝝍1.

We assign to 𝝃0, 𝝃1 independent Normal priors with a mean zero and a large variance and to �̃�0 and

�̃�1 the prior N
(
𝟎, 𝜎2

𝛾0
⋅ I10×10

)
and N

(
𝟎, 𝜎2

𝛾1
⋅ I10×10

)
, respectively. Estimating the smoothing parameters

𝜎2
𝛾0

and 𝜎2
𝛾1

is similar to estimating variance components in Bayesian hierarchical models [34], and the
curve estimation by penalized splines can be sensitive to the choice of prior for 𝜎2

𝛾0
and 𝜎2

𝛾1
. Crainiceanu

et al. [35] discussed this issue and found that inverse-Gamma priors can be used in practice when certain
conditions are met, such that the posterior inference of 𝜎2

𝛾0
and 𝜎2

𝛾1
is insensitive to the hyper-parameters

in the prior for 𝜎2
𝛾0

and 𝜎2
𝛾1

. In our application, we use Uniform(0, 20) priors for 𝜎𝛾0
and 𝜎𝛾1

.
Because the MCMC algorithm used in the AIDS example involves numerous matrix operations, we

decided to use MATLAB (MathWorks, Natick, MA, USA) (instead of R) due to its greater efficiency in
matrix operations. The MATLAB code can be run in an open-source alternative QtOctave under Linux.
The MATLAB code for fitting the non-stationary PACF models in the AIDS example is available at
http://www.mrc-bsu.cam.ac.uk/software/miscellaneous-software/.

Two separate chains were run for each model. Convergence (checked using trace plots) was reached
at about 2000 iterations; and pooled samples of 20,000 after convergence were used for inference.

4.5. Results

4.5.1. Model selection and assessment. In Table I, we compare fitted models using DIC based on
marginal likelihood with the random effects integrated out. The parameterization used for non-stationary
PACF models is 𝜃00, 𝜃01, 𝜃10, 𝜃11, 𝜃20, 𝜃21, 𝜃30, 𝜃31 𝝃0, 𝝃1, 𝝍0, 𝝍1, 𝛼0, 𝛼1, 1∕𝜎2

b . For parametric stationary
PACF model, we replace 𝝃0, 𝝃1, 𝝍0, 𝝍1 with 𝛾0 and 𝛾1. For the LMM, the parameterization is 𝜃01, 𝜃10,
𝜃11, 𝜃20, 𝜃21, 𝜃30, 𝜃31, 𝐆−1, 𝜎2

𝜖
.

Table I. DIC values from the fitted models in the AIDS example. D̄ is
the posterior mean of the deviance (−2 log L), D̂ is the deviance by sub-
stituting in the posterior means of parameters, pD = D̄−D̂ is the effective
number of parameters and DIC = D̄ + pD.

D̄ D̂ pD DIC

Linear mixed model 30345 30333 12 30357
Stationary PACF model Band (a)

1 30437 30425 12 30449
2 30187 30175 13 30200
3 29997 29984 13 30010
4 29951 29938 13 29964
5 29955 29942 13 29968
6 29986 29973 13 29999

Non-stationary PACF model Band (a)
1 30405 30387 18 30424
2 30148 30127 21 30169
3 29968 29948 20 29988
4 29911 29890 21 29933
5 29903 29880 22 29925
6 29922 29899 23 29945

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2015, 34 2004–2018
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All PACF models except those with one band had smaller DIC values than the LMM fit. The non-
stationary PACF model with five bands gives the smallest DIC; therefore, we will present the results
based on this model. Note that for each number of bands considered, the non-stationary PACF model
results in a smaller DIC than the corresponding stationary PACF model.

To assess the fit of the best model chosen via DIC, we use posterior predictive checks based on repli-
cated observed data as recommended in Daniels et al. [36] and a 𝜒2 discrepancy described in Gelman
et al. [37]. Specifically, the steps are the following:

(1) Sample a replicated dropout time, Drep, from the empirical distribution of the observed dropout
times.

(2) Sample from the empirical distribution of the gap times between irregular measurement times and
construct the replicated measurement times up to Drep.

(3) Sample a set of responses 𝐘rep
i at those measurement times given Drep and the current posterior

sample of the parameters.
(4) Repeat Steps 1–3 for all N = 421 subjects.

Figure 5. Estimated gt0 and gt1 functions (posterior median and pointwise 95% credible band) from the fitted
non-stationary 5-band PACF model for the AIDS example.

Figure 6. Image plot and surface plot of the estimated 56 × 56 marginal correlation matrix (based on posterior
medians of the parameters) from the fitted non-stationary 5-band PACF model for the AIDS example.
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(5) Compute the 𝜒2 discrepancy for the replicated data,

421∑
i=1

(
𝐘rep

i − 𝝁i

)T 𝚺−1 (𝐘rep
i − 𝝁i

)
∕nrep,

where nrep is the total number of replicated responses, 𝜇i is the mean given in (8) with the random
effects integrated out, and 𝚺 is the marginal covariance structure after integrating out the random
effects.

(6) Compute the 𝜒2 discrepancy for the observed data.
(7) Repeat Steps 1–6 for each posterior sample and compute the posterior predictive probability that

the replicated 𝜒2 statistic is larger than the observed 𝜒2 statistic.

The posterior probability that the replicated 𝜒2 statistic is larger than the observed 𝜒2 statistic is 0.50,
which provides no evidence for the lack of fit of the non-stationary PACF model with five bands to the
observed data.

4.5.2. Covariance structure. Figure 5 shows the estimated functions gt0 and gt1 that determine the non-
stationarity of the correlation structure in the fitted five-band non-stationary PACF model. A stationary
structure would correspond to both these functions being constant over time. The deviations from
stationarity are apparent when t ∈ [0, 30]. Figure 6 displays image and surface plots of the correlation
structure induced by our PACF model and demonstrates the lack of stationarity as well. In particular, we
can see the larger short lag correlations and slower decay at the earlier times versus the later times.

The large estimate for random intercept variance 𝜎2
b (Table II) indicates large heterogeneity in terms

of the overall CD4 count level across children. For the variance function, there is a significant decrease

Table II. Posterior medians and 95% credible intervals for the parame-
ters of the fitted LMM and non-stationary 5-band PACF model as well
as the marginal covariate effects inferred from these models.

Linear mixed model 5-band PACF model

Median 2.5% 97.5% Median 2.5% 97.5%

𝜃00 30.50 28.96 32.02 30.38 28.69 32.07
𝜃01 12.87 6.48 19.42 13.12 6.33 19.81
𝜃10 −4.97 −5.48 −4.45 −4.82 −5.33 −4.31
𝜃11 8.18 5.55 10.80 7.41 5.05 9.82
𝜃20 −1.75 −3.86 0.48 −1.56 −3.88 0.79
𝜃21 1.26 −8.24 10.63 2.24 −7.17 11.79
𝜃30 1.02 0.28 1.76 1.03 0.30 1.76
𝜃31 −1.11 −4.86 2.59 −2.21 −5.70 1.18

𝜎𝜖 3.94 3.86 4.02
𝜎0 11.56 10.80 12.42
𝜎01 −22.62 −27.86 −18.22
𝜎1 3.16 2.89 3.46
𝛼0 4.65 4.48 4.81
𝛼1 −1.76 −2.10 −1.38
𝜎b 8.01 7.12 8.91

Marginal covariate effects

Linear mixed model 5-band PACF model

Median 2.5% 97.5% Median 2.5% 97.5%

Intercept 30.28 28.67 31.85 30.15 28.42 31.90
Time −5.11 −5.71 −4.52 −4.95 −5.55 −4.38
Dose −1.39 −3.62 0.94 −1.19 −3.62 1.23
Interaction 1.23 0.40 2.06 1.21 0.41 2.01

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2015, 34 2004–2018
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over time (on the log scale) by noticing that the 95% credible interval for the slope, (−2.10,−1.38), does
not contain zero (also see Figure 4).

4.5.3. Mean structure. Although the same CLM is applied to both the LMM and the non-stationary
five-band PACF model, the parameter estimates in the mean structure differ in these fits (Table II). For
example, the parameter 𝜃11 quantifies the degree of association of CD4 change rate from baseline to the
maximum follow-up with the dropout time in the high-dose group. The large positive estimates from both
model fits suggest that later dropouts were associated with a slower decline rate of CD4 count over time.
However, in the LMM, this estimated association (8.18 vs. 7.41) is stronger than in the non-stationary five-
band PACF model. As a result, the LMM imposes a larger adjustment for selection bias due to dropout
in the marginal time slope estimate of the high-dose group (-5.11 vs. -4.95) than the non-stationary
PACF model.

On the other hand, 𝜃31 quantifies the degree of association of the interaction between time and dose
effects with the dropout time. Both model fits show no evidence of this association although the point
estimates are quite different (-1.11 vs. -2.21). Therefore, we expect that in both model fits, the adjustments
for selection bias in marginal time slopes will be similar for both dose groups. Consequently, the marginal
interactions between time and dose effects are similar in both model fits (1.23 vs 1.21).

Based on the non-stationary five-band PACF model fit (the best fitting model by DIC), there is a sig-
nificant difference in the slopes between the two treatments (doses) with the 95% credible interval for
the difference of (0.41, 2.01), indicating that the rate of decline in CD4 counts is less severe under the
low-dose arm.

Overall, our analyses of these CD4 data demonstrate that models for the covariance structure can
influence the inference for the mean structure under complex scenarios with informative dropout and
irregular measurement times.

5. Discussion

We have proposed a flexible class of semiparametric, non-stationary models for the covariance structure
in a Gaussian process for irregular continuous longitudinal data. The analysis of the CD4 count data
showed that modeling covariance structures can impact the inference of the mean structure in complex
situations with informative dropout and irregular measurement times. Our models will be useful when
careful modeling of the covariance structure is required to ensure valid inference of the mean structure.

In the AIDS data, to make the MCMC algorithm quicker, we aggregated the weekly data to months
to change the dimension of T from 220 to 56. Note that the issue is not matrix inversions as for an a-
band PACF, only (a+1)-dimensional matrices need to be inverted. However, as the dimension increases,
there are more matrices that need to be inverted to move from the PACF to the autocorrelation function.
For example, in our computations, converting a three-band 56 × 56 partial autocorrelation matrix to a
marginal correlation matrix took 0.25 s in MATLAB 7.1 (2.59GHz CPU, 32GB RAM on PC). However,
to convert a three-band 220 × 220 matrix, it took 40 s. This is less of an issue with more powerful
High Performance Computing Clusters, as much of this conversion can be parallelized. Therefore, actual
recorded measurement times can be used when applying the proposed PACF models in High Performance
Computing Clusters environments.

As with other approaches for dealing with informative dropout, sensitivity analysis is required to assess
the unverifiable assumption used in our CLM for the mean structure. In particular, the CLM assumes
that the slope before dropout is the same as the slope after dropout; the latter is not identifiable from the
observed data. Strategies such as in [31] can be adopted for sensitivity analysis.

The proposed PACF models can be extended to categorical and count data by specifying them for a
Gaussian process in the mean function (e.g., [38]). For example,

h
[
E{𝐘i(t) ∣ 𝐗i(t), S(t)}

]
= 𝐗i(t)𝜷 + S(t),

where h is a link function, {S(t)} is a zero-mean Gaussian process with a covariance function
Cov(S(t), S(t + j)) = 𝜎(t)𝜎(t + j)𝜌(t, t + j), and the proposed PACF models can be applied to model
𝜌(⋅, ⋅). Covariates can be incorporated into the proposed PACF models; we are currently working on
this extension.
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