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Standard methods for fixed effects meta-analysis assume that standard errors for
study-specific estimates are known, not estimated. While the impact of this sim-
plifying assumption has been shown in a few special cases, its general impact is
not well understood, nor are general-purpose tools available for inference under
more realistic assumptions. In this paper, we aim to elucidate the impact of using
estimated standard errors in fixed effects meta-analysis, showing why it does
not go away in large samples and quantifying how badly miscalibrated standard
inference will be if it is ignored. We also show the important role of a particu-
lar measure of heterogeneity in this miscalibration. These developments lead to
confidence intervals for fixed effects meta-analysis with improved performance
for both location and scale parameters.
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1 INTRODUCTION

Meta-analysis, “the use of statistical methods to summarize the results of independent studies,”1,2 is a pivotal component
of systematic reviews2 that have been extensively used to synthesize the increasing amount of evidence produced in health
care research.3 In broad terms, the primary aim of most meta-analyses is to make some form of inference on the size of
effects across several similar studies. A typical goal is to summarize all the studies and make inference on the magnitude
and direction of some form of average effect. Measures of spread, ie, how the study effects vary across different studies,
are also often considered.

A recent review paper4 notes that the well-known inverse-variance fixed effects estimate, which can be easily motivated
as an estimate of a “common effect,” can also be interpreted as a particular average of study-specific effects, without any
requirement that study effects be homogeneous. However, using this alternative interpretation is only straightforward
when the standard errors are known with negligible error, a simplifying assumption that is rarely entirely plausible in
practice. The impact of this assumption has been studied in some special case (ie, when assuming homogeneity),5,6 but a
general understanding of how fixed effects meta-analysis is affected is missing from the literature. In the present work,
we therefore provide several tools to do statistical inference for fixed effects meta-analysis when this assumption cannot
be made.

The paper is structured as follows: in Section 2, we review the different statistical models that can be used for
meta-analysis, their parameters of interest, and popular estimation methods. In Section 3, we show how the precision
weighted average effect arises naturally when considering optimal summary measures and also propose a measure of het-
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erogeneity around this parameter. In Section 4, we present intuitive and formal arguments for why the impact of standard
error estimation does not go away with larger sample sizes and how this impact depends on the underlying heterogeneity.
We present simulation results comparing several confidence intervals for the precision weighted average that allow for
estimation of standard errors, and for a related measure of heterogeneity. Finally, in Section 5, we give an applied example
to illustrate and compare the different approaches to meta-analysis and conclude with a discussion in Section 6.

2 REVIEW OF APPROACHES TO META-ANALYSIS

In this section, we describe 3 different approaches to meta-analysis, in which different assumptions are made about the
underlying true effect size parameters in the studies. Table 1 provides a summary of these approaches, and we subse-
quently present further details on the precision weighted average (Section 2.1), testing and quantifying heterogeneity
(Section 2.2), and random effects analysis (Section 2.3).

The first approach is the fixed effect (singular) meta-analysis, also called the common effect meta-analysis.4 This approach
is based on the assumption of a single, common effect underlying all studies.6 Under this simplifying assumption that all
study effects are identical, the average effect is equivalent to the common effect size estimated in each study. Although
commonly used, this method has often been judged inadequate in practice, as effects from different studies are expected
to differ given the variability in study design, population, interventions, etc.7-9

A second approach is the fixed effects (plural) meta-analysis, based on the assumption that the effects underlying the
studies at hand are unknown, but fixed, and not necessarily identical.10,11 Using the fixed effects approach, it is common
to estimate the inverse-variance weighted average of the studies' effect sizes,4 but estimation of other weighted averages
is also possible.11,12 As recently discussed by Rice et al,4 the inverse-variance weighted average estimates a reasonable and
interpretable parameter, even when the effect sizes are assumed to be different, but it may be a somewhat incomplete
summary of the effect sizes if they are too heterogeneous.13

The third approach is the random effects meta-analysis, where the effect-size parameters are considered to be a random
sample from a population, ie, they follow a probability distribution.14 By using random effects as a sampling model, this
analysis allows the estimation of the average effect size in the population of effect sizes one might ever have observed.14

(Details are given in Section 2.3.) This method not only takes into account the heterogeneity between studies but also pro-
vides a natural way of quantifying it,15 making it a more attractive choice over the common and fixed effects approaches.7,8

On the other hand, as pointed out by Higgins et al,15 this approach is based on a construct of an hypothetical population of
studies or study effects, so the interpretation of the analysis is potentially unclear and confusing. The relevance of random
effects analyses that focus on the mean of a population of study effects has been questioned.16 An alternative derivation
for the random effects approach motivates the distribution of effect sizes not as a sampling distribution, but arising from
a priori exchangeability in a Bayesian analysis—or an approximately Bayesian analysis, as noted in Higgins et al.15

In each of the 3 approaches described, appeals to some form of frequentist optimality can be made. In the common
effect approach, when the study-specific standard errors are known precisely, the optimality is straightforward; without

TABLE 1 Statistical assumptions from 3 different approaches to meta-analysis of k studies, their target
parameters for location summary and estimators

Common 𝛽i ∼ N(𝛽i, 𝜎
2
i ), with 𝜎2

i known, for i = 1, 2, … , k
assumption
Approach-specific Common Effect Fixed Effects Random Effects
assumption 𝜷 i = 𝛽0∀i, 𝛽0 ∈ ℝk 𝜷 = (𝛽i, … , 𝛽k)T ∈ ℝk 𝛽1, … , 𝛽k iid f(𝜇, 𝜏2)

Inference target 𝛽0 𝛽F =
∑k

i=1
1
𝜎2

i
𝛽i∑k

i=1
1
𝜎2

i

𝜇

Estimator 𝛽0 =
∑k

i=1
1
𝜎2

i
𝛽i∑k

i=1
1
𝜎2

i

𝛽F =
∑k

i=1
1
𝜎2

i
𝛽i∑k

i=1
1
𝜎2

i

𝜇̂ =
∑k

i=1
1

𝜎2
i +𝜏

2 𝛽i∑k
i=1

1
𝜎2

i +𝜏
2

Standard error ŜE(𝛽0) =
√

1∑k
i=1

1
𝜎2

i

ŜE(𝛽F) =
√

1∑k
i=1

1
𝜎2

i

ŜE(𝜇̂) =
√

1∑k
i=1

1
𝜎2

i +𝜏
2

Heterogeneity Not present, Hypothesis test based on 𝜏2 = max
{

0, Q−(k−1)∑
𝜎−2

i −
∑

𝜎−4
i ∕

∑
𝜎−2

i

}
by assumption Q =

∑k
i=1

1
𝜎2 (𝛽i − 𝛽F)2

Consistency Not evaluated I2 = Q−(k−1)
Q

I2 = Q−(k−1)
Q
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any distributional assumptions, the inverse-variance weighted estimator provides the best linear unbiased estimator of the
common effect, or the unique minimum variance unbiased estimator under the further assumption of normality of effects
estimates.6 When the study-specific standard errors must be estimated, a normal approximation based on the asymptotic
distribution of the estimator is commonly used17, chapter 6; in the common situation where all the studies are large, the
standard errors are known with great accuracy, and any nonasymptotic inefficiency is extremely minor.

For the fixed effects approach, it has been shown by Lin and Zeng18 that the analysis provides, in many situations, a
statistically efficient estimate of the parameter that would be estimated, were it possible to pool the data across studies and
to perform a single regression analysis that adjusts for study. However, this pooling is inherently somewhat hypothetical;
were it possible to do it, there would often be little motivation for use of meta-analysis, and so it may not always be obvious
that this parameter is of direct interest.

The random effects approach has perhaps the least direct connection to optimality, while likelihood-based and fully
Bayesian methods in general have guarantees of good large-sample properties, under correct model assumptions,19,20 in
finite samples or when the model is misspecified there are no such guarantees. Indeed, the finite-sample sensitivity of
Bayesian random effects meta-analysis to choice of priors is well documented21-24 and is a cause for concern in practice.25,
chapter 5

2.1 The precision weighted average
Let 𝛽1, 𝛽2, … 𝛽k be the true effect sizes from k different studies and let 𝛽i be the estimate of the true effect 𝛽 i, with corre-
sponding standard error 𝜎i, which we assume known for now. The precision weighted average or inverse-variance weighted
average of the true effect sizes is

𝛽F =

∑k
i=1

1
𝜎2

i
𝛽i∑k

i=1
1
𝜎2

i

. (1)

This parameter is a quantity of interest in either common effect or fixed effects meta-analysis; under the common effect
model, 𝛽F reduces to the common effect 𝛽0 seen in Table 1; under the fixed effects model, 𝛽F is a weighted average of the
effect-sizes 𝛽 i, where the weight is proportional to the precision with which each effect size can be estimated, giving more
weight to those that can be estimated more precisely

If the study-specific standard errors 𝜎i are assumed to be known, a natural estimator of 𝛽F is given by

𝛽F =

∑k
i=1

1
𝜎2

i
𝛽i∑k

i=1
1
𝜎2

i

, withSE(𝛽F) =
√√√√ 1∑k

i=1
1
𝜎2

i

. (2)

Optimality of 𝛽F under a common effect approach has already been mentioned. In fixed effects meta-analysis with
known standard errors 𝜎i, 𝛽F directly inherits any efficiency properties from the 𝛽i's, as would any linear combination
of the effect-size estimates. This means that 𝛽F is an unbiased, efficient, and/or normally distributed estimator of 𝛽F, if
within each study, the estimator 𝛽i can be assumed to be an unbiased, efficient, and/or normally distributed estimator of
𝛽 i.

Confidence intervals for 𝛽F are usually derived from a normal approximation, appealing to the large sample properties
of the study estimators. Transformations of the outcome measure have also been recommended, such as normalizations,
log transformations, bias corrections,17 and/or variance stabilizing transformations.26,27 The small sample properties of
the normal approximation and sensitivity to the assumption of known variances have been studied through simulation
studies,17,28,29 and some corrections and tests based on more robust test statistics have been proposed.5,29

2.2 Testing homogeneity and quantifying heterogeneity
In both fixed effects and common effect work, it is common to test homogeneity of the study effects, that is, to test the
null hypothesis H0 ∶ 𝛽1 = 𝛽2 = … = 𝛽k, against the general alternative of heterogeneity, where some 𝛽 i are not equal.
In common-effect meta-analysis, this test assesses a key modeling assumption, while in the fixed effects analysis, the test
simply gives a statistical measure of how much heterogeneity is present.
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When assessing homogeneity, a commonly used test statistic is

Q =
k∑

i=1

1
𝜎2

i

(𝛽i − 𝛽F)2.

Under normality of the effect estimates (𝛽i ∼ N(𝛽i, 𝜎
2
i )), Q is distributed noncentral chi-squared with k − 1 degrees of

freedom and noncentrality parameter

𝜆 =
k∑

i=1

1
𝜎2

i

(𝛽i − 𝛽F)2,

with 𝛽F as in (1). Q is independent of the 𝛽F statistic,4 which may simplify its interpretation.
Under the null hypothesis that all the effects are identical, the Q statistic is distributed central chi-squared with k − 1

degrees of freedom, thus providing a reference distribution to perform a test of homogeneity of effects. However, it also
has been found that this test of homogeneity has low power when there are few studies30 and is not adequate to summarize
the extent of the heterogeneity present.31

Other statistics have been proposed to not only test but also evaluate the impact of the observed heterogeneity, and
thus provide a better measure of the consistency between trials.31 Although these measures have been motivated and
derived from a random effects framework, they still have valid interpretation under a fixed effects framework.4 The
most-frequently used of these quantities is I2, which can be calculated as

I2 = Q − (k − 1)
Q

,

and is interpreted as “the percentage of total variation across studies that is due to heterogeneity rather than chance.”32

2.3 Inference in random effects meta-analysis
Random effects meta-analysis is based on the assumption that the true study effects 𝛽1, 𝛽2, ...𝛽k are an independent and
identically distributed sample from some distribution. The inference is then focused on the parameters of this distribution,
typically its mean (𝜇) and variance (𝜏2).

With no further assumptions on the distribution of the random effects, an inverse-variance weighted average estimate
of 𝜇 can be obtained,14,15 along with an estimate of its standard error:

𝜇̂ =

∑k
i=1

1
𝜎2

i +𝜏2 𝛽i∑k
i=1

1
𝜎2

i +𝜏2

, withŜE(𝜇̂) =
√√√√ 1∑k

i=1
1

𝜎2
i +𝜏2

. (3)

The weights here involve both the within-study variance 𝜎2
i and the heterogeneity (or between studies) variance 𝜏2, for

which a moment-based estimator is

𝜏2 = max

{
0, Q − (k − 1)∑

𝜎−2
i −

∑
𝜎−4

i ∕
∑

𝜎−2
i

}
.

As given here, 𝜇̂ and 𝜏 are known as the DerSimonian-Laird estimator for random effects meta-analysis.14 Other similar
moment-based estimator have been proposed.33,34

Under the further assumption that the study effects follow a normal distribution, maximum likelihood35,36 and restricted
maximum likelihood37,38 methods can be used to obtain estimates of 𝜏2 and 𝜇. Although these methods are iterative and do
not provide closed form estimates, it should be noticed that both the maximum likelihood and REML estimators of 𝜇 take
the same form as in (3). A simpler, noniterative method for estimating 𝜏2 has recently been proposed39 and is also based
on the assumption of a normal distribution of the study effects. The performance of the different estimation methods has
been evaluated and compared, in terms of bias and efficiency,34 as well as coverage probability.40
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3 UNDERSTANDING HOW ESTIMATION OF STANDARD ERRORS AFFECTS
FIXED EFFECTS META-ANALYSIS

In Equation 1 of Section 2.1, we saw how the underlying parameter estimated by fixed effects meta-analysis is typically
defined, in terms of standard errors. When the standard errors are not known but only estimated, this leaves the target of
this analysis without a full definition. In Section 3.1, we provide a more concrete motivation, showing how the parameter
estimated is optimal for inference, in a certain sense. The impact of estimated standard errors on this inference is explored
in Section 3.2, and we see how this motivates the study of a particular scale parameter, describing heterogeneity, in Section
3.3.

3.1 A location parameter for optimal estimation
Ideally, the parameters to which inference is targeted should be determined entirely by scientific criteria, ie, by research
goals. But in practice these goals may not be known precisely enough to determine a single parameter for inference. In
this situation, it makes sense to use statistical criteria to choose from among parameters that meet general research goals.
In meta-analysis, where the general goal is to summarize study effects 𝛽 i by some form of average, we choose to pick the
the affine combination (ie, the weighted average) of the 𝛽 i that can be most precisely estimated. This can also be stated as
selecting the parameter for which the data provides the most information.

The main result here follows from a more general lemma, proved in Appendix A:

Lemma 1. Let {vT𝜷 ∶ v ∈ Rk, vT1k = 1} be the set of all possible affine combinations of the vector of effect-size
parameters 𝜷 = (𝛽1, 𝛽2, … , 𝛽k)T and let 𝜷̂ be the vector of estimates (𝛽1, 𝛽2, … , 𝛽k)T with covariance matrix 𝚺. Then
the affine combination of the parameter vector (wT𝜷) for which the corresponding estimator (wT 𝜷̂) has the minimum
variance is given by

w = argmin
v∶vT 1k=1

[
vTΣv

]
= Σ−11k

1T
kΣ

−11k

with Var(wT 𝜷̂) = (1T
kΣ

−11k)−1.

In fixed effects meta-analysis, where the studies are independent, the covariance matrix of 𝜷̂ reduces to a diagonal
matrix: 𝚺 =diag{𝜎2

i }. From Lemma 1 and assuming that 𝜎2
i is known exactly from each study, then the best affine

combination of the effect-size parameters is(
1T

k diag{𝜎−2
i }

1T
k diag{𝜎−2

i }1k

)
𝜷 =

∑k
i=1

1
𝜎2

i
𝛽i∑k

i=1
1
𝜎2

i

= 𝛽F , (4)

the precision weighted average of the effect-size parameters.
In the situation where the 𝜎2

i are assumed known, the corresponding estimate 𝛽F can be easily constructed, and used
as described in Section 2.1.

But the same optimality of 𝛽F holds even when the 𝜎i are not known. To show this formally, we express 𝜎2
i as

𝜎2
i = (ni𝜙i)−1 = N−1(𝜂i𝜙i)−1,

where ni and 𝜙i are the sample size and the Fisher information from each subject on 𝛽 i, respectively, in the ith study, N
is the total sample size across all studies, and 𝜂i = ni∕N is the proportion of the total sample drawn from study i. Then
formally, under the asymptotic regime where 𝜂i are fixed when we consider larger N (ie, the same assumptions as in the
earlier work of Lin and Zeng,18 and indeed most asymptotic work), then the limiting value of the covariance matrix is
𝚺 = N−1diag{(𝜂i𝜙i)−1}, and canceling terms in N, we find

𝛽F =
∑k

i=1 ni𝜙i𝛽i∑k
i=1 ni𝜙i

=
∑k

i=1 𝜂i𝜙i𝛽i∑k
i=1 𝜂i𝜙i

.

This shows that, without further assumptions, in large samples, 𝛽F is the weighted average of the 𝛽 i parameters that
can be most precisely estimated. When the true standard errors 𝜎i are not known but instead estimated by si, 𝛽F can be
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consistently estimated by a “plug-in” version of 𝛽F from Equation 2. We denote this estimate as

̂̂𝛽F =

∑k
i

1
s2

i
𝛽i∑k

i
1
s2

i

.

3.2 Impact of estimated standard errors on ̂̂𝛽F with estimated standard errors
When using the precision weighted average from Equation 2, it is common to assume that the sample size in each study
is large enough for the variance of the effect estimate (𝜎2

i ) to be approximated with negligible error by its estimate (s2
i ),41

basing tests statistics and confidence intervals on the following plug-in estimator:

̂̂𝛽F =

∑k
i

1
s2

i
𝛽i∑k

i
1
s2

i

, with ŜE( ̂̂𝛽F) =
√√√√ 1∑k

i=1
1
s2

i

. (5)

The properties of Equation 5 in small sample size settings have been studied via simulation, with inflated type I error
rates observed for the test of the null hypothesis H0 ∶ 𝛽F = 0, due to underestimation of the standard error of ̂̂𝛽F .17,28,29

FIGURE 1 Comparison of the distributions of 𝛽F and ̂̂𝛽F in a simple meta-analyses of 2 homogeneous studies with effect sizes 𝛽1 = 𝛽2 = 0
(left column) and 2 heterogeneous studies with effect sizes 𝛽1 = 1.5 and 𝛽2 = −1.5 (right column). We consider medium size studies with
N=100 (top row) and very large studies with N=10 000 (bottom row). The y-axis and the vertical violin plots show the distributions of the
estimates 𝛽F with no uncertainty in the study weights (in red) and ̂̂𝛽F with estimated study weights (in gray). The x-axis and the horizontal
violin plot show the distribution of the estimated weight given to study 1 in ̂̂𝛽F . Notice that this same x-coordinate is used for both the gray
and red diamonds, to illustrate their variability and their overlap (in the homogeneous case), but the weight for study 1 in 𝛽F is always exactly
0.5, as indicated by the red line in the horizontal violin plot
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Corrected and alternative test statistics have been proposed,5,6,29 but all of them are based on the assumption of a common
effect.

However, in our experience, many investigators expect that the effect of plugging-in si for 𝜎i should, in large samples, be
negligible for inference on 𝛽F, regardless of the underlying 𝛽 i—and so the simulation results can be ignored when studies
have large sample sizes. This intuition appears to be based on experience with other small-sample corrections that change
standard error estimates by factors of n∕(n − 1) or n∕(n − p), which can be ignored with large n. However, this intuition
does not apply to ̂̂𝛽F ; not only does the effect of plugging-in si remain at any sample size, its impact depends importantly
on the heterogeneity between the various 𝛽 i.

To better understand how the potential heterogeneity affects the estimation of Var[ ̂̂𝛽F], we decompose the variance of
̂̂𝛽F as

Var[ ̂̂𝛽F] = E[Var( ̂̂𝛽F|s2
1, … , s2

k)] + Var[E( ̂̂𝛽F|s2
1, … , s2

k)]

= E
⎡⎢⎢⎣
( k∑

i

𝜎2
i

s4
i

)/( k∑
i

1
s2

i

)2⎤⎥⎥⎦ + Var

[( k∑
i

1
s2

i

𝛽i

)/( k∑
i

1
s2

i

)]
,

(6)

where the second line follows from assumptions that each 𝛽i is unbiased, is independent of its corresponding standard
error estimate si, and has variance 𝜎2

i .
Under exact homogeneity, the second term in Equation 6 simplifies to zero, but is otherwise strictly positive. Moreover,

this second term does not become small compared with the first term at larger sample sizes. Before showing this phe-
nomenon formally, we first illustrate it in Figure 1. It shows a simple fixed effects meta-analysis of just 2 studies, of equal
sample size, precision, but potentially with unequal 𝛽 i. Comparing behavior of the fixed effects estimate with known
standard errors (𝛽F , in red) and estimated standard errors ( ̂̂𝛽F , in gray), we see that for heterogeneous data, regardless of
sample size, the estimated standard errors give a more variable estimate. This is because ̂̂𝛽F is “tilted” closer to 𝛽1 or 𝛽2
when—by chance alone—study 1 or 2 receives greater weight. This pattern persists at larger sample sizes, so while the
absolute amount of extra noise induced is reduced, the relative variabilities remain essentially unchanged. For the homo-
geneous settings, the 2 𝛽 i are equal, so no “tilting” occurs, but for the heterogenous settings, the precisions differ by a
factor of more than 5.

To build further intuition about the extra variability induced by using estimated standard errors, we now provide an
analytic version of the results illustrated in Figure 1. To do this, we write the variance of each 𝛽i as Var(𝛽i) = 𝜎2

i = (ni𝜙i)−1,
and the estimator s2

i of 𝜎2
i as s2

i = (ni𝜙̂i)−1, so that

̂̂𝛽F =

∑k
i

1
s2

i
𝛽i∑k

i
1
s2

i

=
∑k

i ni𝜙̂i𝛽i∑k
i ni𝜙̂i

. (7)

Additionally, we make the large-sample approximation that each 𝜙̂i is asymptotic normal, with asymptotic variance
given by some function of the distributional moments of the population(s) in study i, that we write as fi(𝜽i).*. Using the
usual assumptions of normality of 𝛽i and independence of 𝛽i, si, then by the delta method, we obtain

√
N

(
̂̂𝛽F − 𝛽F

)
→dN

⎛⎜⎜⎜⎝0, 1(∑k
i 𝜂i𝜙i

) [
1 +

∑k
i 𝜂i(𝛽i − 𝛽F)2𝑓i(𝜽i)∑k

i 𝜂i𝜙i

]⎞⎟⎟⎟⎠ . (8)

Details are provided in Appendix B. Comparing Equation 8 to the standard error in Equation 5, we see that the asymp-
totic variance of ̂̂𝛽F is the product of the asymptotic variance when the variances are known multiplied by an inflation
factor, given in square brackets. This inflation factor, which accounts for the uncertainty in the estimation of the stan-
dard errors, depends on the squared deviations of 𝛽 i from 𝛽F, and thus, it will reduce to 1 under homogeneity but will
increase as the dispersion of the effect sizes increases. We also notice that the squared deviations are multiplied by fi(𝜽i),

*The specific form of fi(𝜽i) will depend on the type of estimator used, the study's randomization ratio as well as the variances and kurtoses of the
treatment and control subpopulations. For this reason, we have decided to use this generic expression but have also provided detailed case-specific
derivations in Appendix E
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FIGURE 2 Inflated asymptotic type I error rate for the test of hypothesis H0 ∶ 𝛽F = 0 in the presence of heterogeneity, when using a naive
estimator of the variance from Equation 5 for a simple case of difference in means of continuous normal outcome with constant variance and
balanced study designs (see details in Appendix E1)

FIGURE 3 Coverage probabilities of 95% confidence intervals for 𝛽F = 0 from 10 000 simulations, using the fixed effects approach large
sample size approximation (LSSA) estimator for the variance and bootstrap percentiles, compared to the “naive” estimator from a common
effect approach and the DerSimonian-Laird estimator from a random effects approach

the asymptotic variance of the information 𝜙i, implying that the inflation factor increases when the studies are less infor-
mative about 𝜙. Figure 2 illustrates, for a simple case, the nontrivial impact of inflation on type I error rates when testing
a point null hypothesis for 𝛽F, even in large samples. The overstatements of statistical significance depend on the het-
erogeneity present, but also the nominal level 𝛼. (Full details are given in Appendices B and E1). This theoretic result
underpinning Figure 2 has been confirmed empirically in a simulation study (Figure 3), described in Section 4.3.

3.3 A parameter to quantify heterogeneity
While quantifying heterogeneity in meta-analyses has an obvious scientific appeal—describing how effects differ across
study populations—the results of Section 3.2 do also suggest a statistical role for consideration of heterogeneity. Bridging
these 2 goals, we now propose a parameter to quantify the heterogeneity of a group of effect-size parameters.
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As a natural extension of the location-summary 𝛽F, we define

𝜁2 =

∑k
i=1

1
𝜎2

i
(𝛽i − 𝛽F)2∑k

i=1
1
𝜎2

i

=

∑k
i=1

1
𝜎2

i
𝛽2

i∑k
i=1

1
𝜎2

i

− 𝛽2
F =

∑k
i=1 𝜂i𝜙i𝛽

2
i∑k

i=1 𝜂i𝜙i
− 𝛽2

F , (9)

where 𝛽F is as in Equation 4. For fixed sample size proportions 𝜂1, … , 𝜂i, we can see that 𝜁2 is also a population parameter,
just like 𝛽F. We can interpret 𝜁2 as a weighted average of the squared deviations of each study effect size from the weighted
average effect 𝛽F, where the weights are proportional to the precision (or the proportion of information) associated with
each study effect. Consequently, deviations from more precisely estimable study effects are upweighted. This parameter
𝜁2 is a weighted average squared deviation and quantifies the heterogeneity of the effect sizes.

As shown in Appendix C, 𝜁2 can also be defined without regard to 𝛽F, as a summary of pairwise comparisons of the 𝛽 i,
by writing it in the form

𝜁2 = 1
2

∑k
i=1

∑k
𝑗=1

1
𝜎2

i

1
𝜎2
𝑗

(𝛽i − 𝛽𝑗)2(∑k
i=1

1
𝜎2

i

)2 =

∑
1≤i<𝑗≤k

1
𝜎2

i

1
𝜎2
𝑗

(𝛽i − 𝛽𝑗)2

(∑k
i=1

1
𝜎2

i

)2 .

Specifically, 𝜁2 is the weighted average of the pairwise differences of the effect sizes, weighting each pair by the product of
their corresponding precisions. Unlike the between-studies variance 𝜏2 used in random effects approaches, 𝜁2 is defined
on just the studies at hand, not a hypothetical population of potential studies, and some scheme for sampling from this
population.

Although the definition of 𝜁2 is free of distributional assumptions, it can further justified if we assume normality of the
effect-size estimators (see, eg, Rice et al4). Under this assumption, the Q statistic is distributed noncentral 𝜒2 with k − 1
degrees of freedom and noncentrality parameter 𝜆 given by

𝜆 =
k∑

i=1

1
𝜎2

i

(𝛽i − 𝛽F)2 =

( k∑
i=1

1
𝜎2

i

)⎛⎜⎜⎝
∑k

i=1
1
𝜎2

i
(𝛽i − 𝛽F)2∑k

i=1
1
𝜎2

i

⎞⎟⎟⎠ =
( k∑

i=1
ni𝜙i

)
𝜁2 = Φ𝜁2, (10)

where we have used Φ =
∑

ni𝜙i = N
∑

𝜂i𝜙i to denote the total amount of information. This expression means that
𝜆, and thus the power of the test of homogeneity based on Q, depends on 2 components: one is the total amount of
information, which in turn depends on the total sample size, and the other is the heterogeneity between effect sizes, as
given by 𝜁2, which is independent of the total sample size. In other words, 𝜁2 provides a measure of the distance from the
null hypothesis of homogeneity.

4 INFERENCE FOR 𝛽F AND 𝜁2

4.1 Inference for 𝛽F and 𝜁2 with known standard errors
Inference for 𝛽F with known standard errors was described in Equation 2; confidence intervals for 𝛽F are usually built
from a normal approximation, appealing to the large sample properties of 𝛽i. For a full description, see, eg, Hartung and
Knapp.6

For the estimation of the heterogeneity parameter 𝜁2, with known standard errors and efficient 𝛽i, we write 𝜎2
i = (ni𝜙i)−1

for i = 1, … , k and also defineΦ =
∑k

i=1 ni𝜙i as the “total information.” Then with no further distributional assumptions,
a simple moment-based point estimate of 𝜁2 is given by

𝜁2 =
∑k

i=1 𝜎
−2
i (𝛽i − 𝛽F)2 − (k − 1)∑k

i=1 𝜎
−2
i

= Q − (k − 1)
Φ

, (11)

with details given in Appendix D. To give a strictly positive estimator of 𝜁2, we can report

𝜁2
0 = max

(
0, Q − (k − 1)

Φ

)
.

To obtain approximate confidence intervals for 𝜁2, we assume normality of the effect-size estimators and exploit the
relationship between 𝜁2 and the noncentrality parameter 𝜆 as given in Equation 10. We proposed using methods for con-
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structing exact confidence intervals for the noncentrality parameter of a chi-square distribution that have been proposed
and evaluated previously.42,43 Basically, these methods consist on inverting a probability interval of the non-central 𝜒2 dis-
tribution. For example, for given for given Φ and Q, a (1 − 𝛼) × 100% confidence interval for 𝜁2 is given by all the values
for which

𝜒2
k−1,𝛼∕2(Φ𝜁2) ≤ Q ≤ 𝜒2

k−1,1−𝛼∕2(Φ𝜁2).

Solutions can be obtained numerically, and code for this and other types of confidence intervals (for the noncentrality
parameter) is available.43

4.2 Inference on for 𝛽F and 𝜁2 with estimated standard errors
4.2.1 Large sample size approximation
Based on Equation 8, a large sample size approximation (LSSA) of the variance of ̂̂𝛽F is given by

Var[ ̂̂𝛽F] ≈
1

N
(∑k

i 𝜂i𝜙i

) [
1 +

∑k
i 𝜂i(𝛽i − 𝛽F)2𝑓i(𝜽i)∑k

i 𝜂i𝜙i

]
. (12)

Further details on the specific form of fi(𝜽i) in (12) for some common effect-size estimators are provided in Appendix
E. In situations where the function fi is known or can be estimated, tests of hypothesis and confidence intervals can be
based on a normal approximation using a plug-in estimator of (12) with the estimates of 𝛽 i, 𝜙i and 𝜽i for 1 ≤ i ≤ k and
𝛽F. The (1 − 𝛼) × 100% LSSA interval then takes the form

̂̂𝛽F±z1−𝛼∕2
1√∑k

i=1 ni𝜙̂i

⎡⎢⎢⎢⎣1 +

∑k
i ni

(
𝛽i − ̂̂𝛽F

)2
𝑓i(𝜽̂i)∑k

i ni𝜙̂i

⎤⎥⎥⎥⎦
1∕2

.

4.2.2 Quasi-F approach
We next propose an interval based on inverting a test of the null hypothesis of homogeneity, similarly to Hartung and
Knapp.5 It is based on a “quasi-F” test statistic, a statistic that approximates a F-distributed random variable.44

To construct it, we use normality of the 𝛽i to provide

(𝛽F − 𝛽F0)2

Var[𝛽F]
∼ 𝜒2

1 ,

Q ∼ 𝜒2
k−1(𝜆), with𝜆 =

k∑
i=1

ni𝜙i(𝛽i − 𝛽F)2 = Φ𝜁2,

for null value 𝛽F0. Approximating the noncentral 𝜒2 distribution by matching its moments to a central 𝜒2,45,46 we can
approximate the distribution of Q as a 𝛼-scaled central 𝜒2 distribution with 𝜈 degrees of freedom (𝛼𝜒2

𝜈 ), where

𝛼 = 1 + 𝜆

(k − 1) + 𝜆
= 1 + Φ𝜁2

(k − 1) + Φ𝜁2

𝜈 = (k − 1) + 𝜆2

(k − 1) + 2𝜆
= (k − 1) + (Φ𝜁2)2

(k − 1) + 2Φ𝜁2 .

Under the assumptions above, Q and 𝛽F are independent,4,5 so

(𝛽F − 𝛽0)2∕Var[𝛽F]
Q∕𝛼𝜈

has an approximate F1
𝜈 distribution, and its signed square root has an approximate Student t distribution with 𝜈 degrees

of freedom.
To use these results with unknown 𝜎i, a “quasi-F” statistic can be constructing by plugging-in estimators of all those

quantities. Thus, letting ̂̂𝛽 be as in Equation 5, V̂ar[ ̂̂𝛽F] the LSSA given in Equation 12, along with plug-in estimates of Q,
𝜁2, and 𝜑, used in turn to estimate 𝛼 and 𝜈. Taking square roots, the test statistic
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t =

√√√√ 𝛼̂𝜈̂( ̂̂𝛽F − 𝛽F0)2

V̂ar[ ̂̂𝛽F]Q̂
(13)

has an approximate Student t distribution with 𝜈̂ degrees of freedom under the null hypothesis H0 ∶ 𝛽F = 𝛽F0. (This refer-
ence distribution would differ importantly from a standard normal for small values of 𝜈̂, which would be expected when
the meta-analysis includes few studies (small k) and the total amount of information times the amount of heterogeneity is
small, ie, approaching the limit where 𝜑𝜁2 → 0.) Inverting this test, we obtain an approximate confidence interval for 𝛽F.

4.2.3 Parametric bootstrap
The alternative estimators described in Sections 4.2.1 and 4.2.2, which take into account the potential heterogeneity of
the effect-size parameters, are based on approximations that would be expected to work in large sample settings, but
would probably perform poorly in settings with very small size samples. An alternative method that could better in small
sample size settings is bootstrap re-sampling. As individual-level observations are typically not available, we consider
using parametric bootstrap sampling. (For a full review of this approach, see chapter 6 of Efron and Tibshirani47)

Estimates of the variance of ̂̂𝛽F , as well as 95% confidence intervals, and/or P values for testing of hypothesis can all be
obtained from parametric sampling, based on the estimates 𝛽1, 𝛽2, … , 𝛽k and s2

1, s2
2, … , s2

k. Assuming a normal distribu-
tion of the effect sizes estimates, a parametric bootstrap sample of size B for each of the effect-size parameters 𝛽 i can be
obtained:

𝛽∗i[b] ∼ N(𝛽i, s2
i ), for i = 1, … , k; b = 1, … ,B. (14)

However, parametric sampling for the variances of the effect estimates depends on the specific variance estimator used
in each study. For example, for the variance of the difference in means of independent groups where equal variances are
assumed, a bootstrap sample of 𝜎̂2

i can be obtained as

𝜎̂2∗
i[b] =

ς̂∗2
i[b]

ni
with ς̂2∗

i[b] ∼
ς̂i

2

ni − 2
𝜒2

ni−2, for i = 1, … , k; b = 1, … ,B, (15)

where ς̂2
i is the pooled estimate of the common variance ς2

i .48 More generally, for estimates from linear regression (where
normality and constant variance are assumed), the sampling can be done from a 𝜒2 distribution with (ni − pi) degrees of
freedom, where pi denotes the number of predictors in the regression (including the intercept). In contrast, when 𝛽 i is
estimated as the difference in means of independent groups with the variances not assumed to be equal, the parametric
sampling of ς2

i,X and ς2
i,Y should be done separately and then combined to obtain the value of 𝜎2

i . Further details on the
specific form of some of these estimators can found in Appendix E.

From the parametric bootstrap samples of effect size and variance estimators, different estimates and/or test statistics
can be obtained. We propose (and evaluate) the following:

1. A pivotal (1 − 𝛼)% confidence interval based on a normal approximation and using an estimate of the variance of ̂̂𝛽F
from a bootstrap sample (see chapter 6 of Efron and Tibshirani47):

̂̂𝛽F±z1−𝛼∕2

√√√√√ 1
B − 1

B∑
b=1

(
𝛽∗F[b] −

1
B

B∑
b=1

𝛽∗F[b]

)2

, where 𝛽∗F[b] =

∑k
i=1

1
𝜎̂2∗

i[b]
𝛽∗i[b]∑k

i=1
1

𝜎̂2∗
i[b]

2. A (1 − 𝛼)% confidence interval constructed from the percentiles of the empirical distribution of the bootstrap sample
of 𝛽∗F[b], as defined in (1), (see chapter 13 of Efron and Tibshirani47):(

𝛽∗F(𝛼∕2), 𝛽
∗
F(1−𝛼∕2)

)
.

3. A Bootstrap-t confidence interval (see chapter 12 of Efron and Tibshirani47), based on the percentiles from the
distribution of a test statistic constructed using a “naive” estimator of the variance of ̂̂𝛽F :
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⎛⎜⎜⎜⎝
̂̂𝛽F − t∗(1−𝛼∕2)

√√√√√( k∑
i=1

1
s2

i

)−1

, ̂̂𝛽F − t∗(𝛼∕2)

√√√√√( k∑
i=1

1
s2

i

)−1⎞⎟⎟⎟⎠ , where t∗[b] =
𝛽∗F[b]√(∑k
i=1

1
𝜎̂2∗

i[b]

)−1

.

4. A Bootstrap-t confidence interval, based on the percentiles from the distribution of a test statistic constructed using
the LSSA estimator of the variance of ̂̂𝛽F , as given in (12):(

̂̂𝛽F − t∗(1−𝛼∕2)

√
V̂ar[ ̂̂𝛽F],

̂̂𝛽F − t∗(𝛼∕2)

√
V̂ar[ ̂̂𝛽F]

)
, where t∗[b] =

𝛽∗F[b]√
Var∗[b][

̂̂𝛽F]
.

Similar approaches are proposed for the heterogeneity parameter 𝜁2, based on a bootstrap sample of the estimator
proposed in (14) and (15)

𝜁2∗
[b] =

∑k
i=1 𝜎̂

−2∗
i[b] (𝛽

∗
i[b] − 𝛽∗F[b])

2 − (k − 1)∑k
i=1 𝜎̂

−2∗
i[b]

, for b = 1, … ,B.

We present evaluations of the coverage of confidence intervals using 2 approaches (some other alternatives were
attempted, but did not show important improvement):

1. A pivotal (1 − 𝛼)% confidence interval based on a normal approximation and using an estimate of the variance of 𝜁2

from the bootstrap sample:

𝜁2±z1−𝛼∕2

√√√√√ 1
B − 1

B∑
b=1

(
𝜁2∗
[b] −

1
B

B∑
b=1

𝜁2∗
[b]

)2

,

where 𝜁2∗
[b] is defined as above.

2. A (1 − 𝛼)% confidence interval constructed from the percentiles of the empirical distribution of the bootstrap sample
of 𝜁2∗

[b]: (
𝜁2∗
(𝛼∕2), 𝜁

2∗
(1−𝛼∕2)

)
.

4.3 Simulation study
We conducted a simulation study to evaluate and compare the different estimation methods proposed for 𝛽F and 𝜁2. For
our simulations, we considered fixed effect sizes (𝛽1, … , 𝛽k), uniformly spaced and centered around zero (𝛽F = 0), with
the spacing in between given by fixed values of 𝜁2. We assumed continuous normal outcomes and the effect size 𝛽 i given
by the mean difference between 2 groups, assuming equal population variances and balanced designs. We took random
draws of the effect estimates (𝛽1, … , 𝛽k) from normal distributions centered around the fixed effects (𝛽1, … , 𝛽k) along
with random draws of their variances taken from scaled 𝜒2 distributions with ni−2 degrees of freedom. Various scenarios
were considered, varying the number of studies, sample sizes, and amount of heterogeneity. In addition to the various
confidence intervals proposed here for 𝛽F and 𝜁2, we also compared their performance with methods typically used in
meta-analysis, ie, the common effect and random effects approaches. To aid the comparisons, we chose a setup in which
all these approaches estimate location parameters with the same numerical value. Further details on the settings and
complete results from the simulation study can be found in the supporting information for the online article.

Representative results are shown in Figure 3. For the estimation of the location parameter 𝛽F, we observed a better per-
formance of parametric bootstrap methods over those based on asymptotic approximations, especially with small sample
sizes. Among these, the confidence interval based on the percentiles of the empirical distribution of the parametric sam-
ple would be recommended, because it is simple and performed well, providing coverage close to nominal level. However,
we also notice that the LSSA method performed reasonably well for large sample sizes (at least 60 subjects per study) and
note that it can be used if the parametric bootstrap could not be implemented.

Compared to existing methods, as expected, the random effects approach (using the DerSimonian-Laird estimator of
𝜇) provided overconservative inference, as result of wide confidence intervals that account for random sampling of effect
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FIGURE 4 Coverage probabilities of 95% confidence intervals for 𝜁2 from 10 000 simulations, using an inverted probability interval from a
noncentral 𝜒2 distribution, a normal approximation with bootstrap estimate of the standard error and a bootstrap estimate based on the
quartiles of the empirical distribution

sizes that is not present in our simulation settings. However, for the common effect estimator, which is equivalent to use
a naïve estimate of the variance of 𝛽F as given in Equation 7, the coverage probability approaches the nominal level as
the sample size increases but never reaching it in the presence of heterogeneity. The asymptotic coverage of this naive
estimator has been calculated using (12) and is shown as dotted horizontal lines in Figure 3 (see details in Appendix E1).

For the heterogeneity parameter 𝜁2, although all the proposed methods seemed to asymptotically achieve the nominal
coverage probability, none of them performed uniformly better for small sample size settings in all scenarios (Figure 4).
The normal approximation with a moment based estimate of the standard error showed both significant overcoverage and
undercoverage in different scenarios (not shown). The normal approximation using a Bootstrap estimate of the standard
error seemed to correct the undercoverage in some scenarios, but not when the number of studies was small (k = 3), while
the bootstrap confidence intervals based on the percentiles showed important undercoverage for low values of hetero-
geneity and large number of studies (k = 7, 15). This result is consistent with a previous result, in which the consistency of
bootstrap estimation is related to the asymptotic normality of the statistic,49,50 while in our case, distribution of the statis-
tic is far from normal, for small sample size and low level of heterogeneity. On the other hand, given the more consistent
performance of the inverted probability interval from a noncentral 𝜒2 distribution, we would recommend its use when
the sample sizes are large enough (at least 40 observations per study) and the studies are not strongly heterogeneous.

5 EXAMPLE

In this section, we apply the estimation methods discussed in Section 4 to an example from a systematic review of studies
that evaluate the efficacy of zinc in reducing the incidence, severity, and duration of common cold symptoms.51 In this
particular meta-analysis, the authors included studies that compare zinc acetate lozenges with placebo, with the outcome
being the duration of cold symptoms (in days) and the treatment effect measured by the mean difference. A forest plot is
shown in Figure 5.

In Table 2, we summarize the results of meta-analyses on the 6 studies comparing zinc lozenges to placebo, using 3 dif-
ferent approaches. We observe that the point estimates of 𝛽0 and 𝛽F from the common effect and fixed effects approaches,
respectively, although numerically the same (𝛽0 = 𝛽F = −2.04 days), estimate different parameters. The first estimates a
common effect underlying all 6 studies, but given the evident heterogeneity between studies, this inference does not seem
to be adequate, or even valid. On the other hand, 𝛽F estimates a weighted average of the mean differences from the 6 stud-
ies, for which a significant amount of heterogeneity is observed, as reflected by the estimate of 𝜁2. More specifically, 𝛽F
estimates the mean difference in duration of common cold averaged in a meta-population composed of the populations
from which the samples of these 6 studies were drawn, in proportions given by 𝜎−2

i ∕
∑k

i 𝜎
−2
i . Similarly, 𝜁2 can be thought
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FIGURE 5 Meta-analysis on the efficacy of zinc acetate lozenges in reducing the duration of cold symptoms51

TABLE 2 Fixed and random effects approaches to the meta-analyses on the effect of zinc
acetate lozenges, estimated as the mean difference in the duration of symptoms of the
common cold (in days),51 with point estimates and 95% confidence intervals obtained from
different methods of estimation

Common effect 𝛽0 (95% CI)
−2.04 (−2.45, −1.64)

Fixed effects 𝛽F (95% CI) 𝜁2 (95% CI)
Assuming known 𝜎i

Naive estimator −2.04 (−2.45, −1.64)
Noncentral 𝜒2 inverted test 2.09 (1.09, 3.50)

Unknown 𝜎i
Large sample size approximation (LSSA) −2.04 (−2.51, −1.57)
Quasi-F–based Student t −2.04 (−2.53, −1.55)
Parametric bootstrap (B = 2000) −2.04 (−2.54, −1.59) 2.09 (1.15, 3.68)

Random effects 𝜇̂ (95% CI) 𝜏2 (95% CI)
DerSimonian-Laird −1.21 (−2.69, 0.28) 2.81 (1.19, 46.0)
Maximum likelihood −1.21 (−2.69, 0.28) 2.79 (0, 6.53)
Restricted maximum likelihood −1.13 (−2.83, 0.57) 3.78 (0, 9.25)
Sidik-Jonkman −1.02 (−3.06, 1.01) 5.66 (2.20, 34.04)

as estimating how far apart the mean differences in 2 of these populations are, averaged over the same meta-population.
We also observe that the results from different estimation methods, although not exactly the same, do not seem to dif-
fer importantly, with a difference in length of 0.13 days between the 95% confidence intervals using the LSSA and the
parametric bootstrap.

On the other hand, random effects meta-analysis estimates the mean and variance of a population from which the
effects in the 6 studies are thought to have been drawn (𝜇 and 𝜏2). The inference now is not made for the population of
subjects (on whom we wish to estimate an average effect of a treatment) but for a population of potential treatment effects.
As shown in Table 2, different methods for estimating the between-studies variance give notably different results, with
larger estimates of 𝜏2 yielding estimates of 𝜇 that are closer to the unweighted simple average of the study effects (−0.56).
Moreover, the precision with which these parameters are estimated is much smaller than the precision with which 𝛽F and
𝜁2 are estimated, even after taking into account the uncertainty in the estimation of the variances. This gain in precision,
it should be noted, is not a result of a particular choice of estimation technique, it is instead the result of targeting our
inference to a parameter that is easier to estimate, ie, one for which the the data provide most information.

To further illustrate the properties of the estimators of 𝛽F and 𝜁2 in a fixed effects meta-analysis, we have modified
the example into 3 different versions, as shown in Figure 6. First, we increased the precisions of the estimates in the
meta-analysis, by artificially growing the sample sizes by a factor of 10 (panel B). This results in a greater precision for
the estimates of 𝛽 and 𝜁2. However, this same increase in information does not translate into an increased precision for
estimating 𝜇 or 𝜏2 in a random-effects model (for which more studies, rather than larger sample sizes, would be needed).
In another version of the meta-analysis, we have kept the same precision but shrunk (shifted) the estimates towards 𝛽F , so
that the squared deviations have been reduced by factor of 10 (panel C). Reflecting this relative homogeneity, the estimate
of 𝜁2 is much lower and close to zero. We also notice that estimate of 𝛽 remains practically unchanged, ie, is mostly
independent of 𝜁2 (except for the variance inflation effect described in Section 3.2, which is not substantial in this case).
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FIGURE 6 Location and scale parameter estimates for 4 different versions of the meta-analysis in Figure 5: A, original estimates; B, more
homogeneous estimates with squared deviation from ̂̂𝛽F reduced by a factor of 10; C, more precise estimates with sample sizes 10 times those
of the original estimates; D, more precise and more homogeneous estimates, with sample sizes 10 times larger and squared deviations from
̂̂𝛽F reduced by a factor of 10, relative to the original estimates. Rhomboids are used to represent point estimates and 95% confidence intervals

of location parameters 𝛽F (in gray) and 𝜇 (in red). The vertical dashed lines represent the square root of the estimated averaged squared

deviations from 𝛽F , as given by 𝜁 =
√

𝜁2

In contrast, the estimate of 𝜇, both in terms of its location and precision, is highly dependent on between study variance,
as estimated by 𝜏2. Lastly, we artificially reduced the between-study heterogeneity and the within-study variance by the
same factor (panel D). As a result of this, the value of the Q statistic is exactly the same as in the original version of the
meta-analysis (Q = 53.8, 5 degrees of freedom, P value < .0001), and so is the value for I2. This makes sense, as in both
meta-analyses, heterogeneity accounts for the same proportion of the total variation. However, in absolute terms, the
estimates in the modified version are much closer to each other than in the original meta-analysis, and this is picked up
by estimates of 𝜁2 and 𝜏2, as they are both quantify “absolute” heterogeneity. Their confidence intervals in both cases
exclude zero, rejecting the null hypothesis of homogeneous effects. However, as pointed out before, we can estimate 𝜁2

with higher precision, even with few studies.

6 DISCUSSION

In this paper, we have addressed several aspects of the fixed effects meta-analysis with within-study estimates of the
standard errors. To formally motivate its precision weighting, we described the optimality of the corresponding parameter
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𝛽F, and by studying the behavior of the precision-weighted estimate in detail, we showed the important role of a particular
measure of heterogeneity, 𝜁2.

Frequentist methods for the estimation of both the location parameter 𝛽F and the heterogeneity parameter 𝜁2 were
proposed, including corrected estimators that take into account the uncertainty in the estimation of the within study
variances. Estimation methods based on asymptotic approximations, as well as methods based on parametric bootstrap,
were implemented and have been evaluated in a simulation study.

In the results of our simulation study, we observed a better performance of parametric bootstrap methods over those
based on asymptotic approximations for the estimation of the location parameter 𝛽F, specially in small sample size set-
tings. Among these, the confidence interval based on the percentiles of the empirical distribution of the parametric sample
would be recommended, because of its simplicity and good performance. However, we also notice that the LSSA method
performed reasonably well for large sample sizes (n ≥ 60, per study) and could be used if the parametric bootstrap can
not be implemented.

For the heterogeneity parameter 𝜁2, although no method performed uniformly better, the construction of 95% confi-
dence intervals by inverting the probability interval from a noncentral 𝜒2 distribution seems to provide close to nominal
coverage when the sample size is large enough (around 40 observations per study).

The main limitation in our simulation study is that the proposed methods were implemented with knowledge of how
the study estimates (including standard errors) were generated. The independence of the point estimate and standard
errors—plausible in most uses of linear regression—may not be as realistic if the study-specific analyses use logistic regres-
sion, or other forms of analysis under strong mean-variance relationships. The normality of the 𝛽i may also be considered
a limitation, but unless the outcome variable is very heavy-tailed and/or sensitive to a few observations, standard central
limit theorem arguments suggest that this will only be an issue in extremely small samples.

We also illustrated the results of different estimation methods, as well as different approaches, with a previously pub-
lished meta-analysis. This example, along with the results of our simulation study, supports the idea of approaching
meta-analysis under a fixed effects framework, as a valid alternative to the typically used common effect and random
effect approaches. Our approach, based on the estimation of both a location and a heterogeneity parameter, is more flex-
ible than the restrictive common effect approach while allowing inference on the population of interest. Our approach
also makes it unnecessary to choose between statistical models based on their adequacy rather than the target inference.

Finally, although we believe that estimation of both 𝛽F and 𝜁2 is useful for describing and combining in a meaning-
ful way the effects of studies included in a meta-analysis, we propose their estimation only as part of a full battery of
qualitative and quantitative tools that should be used to review, summarize, and synthesize a group of studies. No single
parameter or estimator can always appropriately summarize all there is to say in a systematic review of medical studies,
and practitioners should be encouraged and helped to understand the measures they choose to provide.
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APPENDIX A: PROOF OF LEMMA 1

Proof. Let vT = (v1, v2, … , vk) be a vector of arbitrary weights with
∑k

i=1 vi = 1, and let vT 𝜷̂ =
∑

vi𝛽i be the estimator
of vT𝜷 =

∑
vi𝛽i, with Cov(𝜷̂) = Σ, then

Var(vT𝜷̂) = vTΣv.

To minimize this expression, we use Lagrange multipliers:

d
dv

[
vTΣv + 𝜆(1 − vT1)

]
= 2Σv − 𝜆1

d
d𝜆

[
vTΣv + 𝜆(1 − vT1)

]
= 1 − vT1

⇒ v = 𝜆

2
Σ−11; 𝜆 = 2

1TΣ−11

so then

w = argmin
v∶vT 1=1

[
vTΣv

]
= Σ−11k

1T
kΣ

−11k

with

Var(wT 𝜷̂) =
1T

kΣ
−1ΣΣ−11k

(1T
kΣ

−11k)2
= 1

1T
kΣ

−11k
.

APPENDIX B: DERIVATION OF THE ASYMPTOTIC VARIANCE OF ̂̂𝛽F (SECTION 3.2)

First, we write s2
i = (ni𝜙i)−1 as the estimator of 𝜎2

i = (ni𝜙i)−1, the variance of 𝛽i in the ith study. We start by assuming that
𝛽i and 𝜙̂i are independent and have an asymptotic normal distribution:√

ni

((
𝛽i
𝜙̂i

)
−

(
𝛽i
𝜙i

))
d
−→N

((
0
0

)
,

(
𝜙−1

i 0
0 𝑓i(𝜽i)

))
, (B1)

where fi(𝜽i) is some function of the distributional moments of the population(s) in study i. For a meta-analysis of studies
with different sample sizes, we define 𝜂i = ni∕N, with N =

∑k
i ni. Then, dividing (B1) by

√
𝜂i, we get

√
N

((
𝛽i
𝜙̂i

)
−

(
𝛽i
𝜙i

))
d
−→N

((
0
0

)
,

( 1
𝜂i𝜙i

0

0 𝑓i(𝜽i)
𝜂i

))
.

Assuming that the study estimates are all independent, we can write

https://doi.org/10.1002/14651858.CD001364.pub4
https://doi.org/10.1002/14651858.CD001364.pub4
https://doi.org/10.1002/sim.7625
https://doi.org/10.1002/sim.7625
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√
N

⎛⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎝

𝛽1
⋮
𝛽k
𝜙̂2

1
⋮
𝜙̂2

k

⎞⎟⎟⎟⎟⎟⎟⎠
−

⎛⎜⎜⎜⎜⎜⎝

𝛽1
⋮
𝛽k
𝜙2

1
⋮
𝜙2

k

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠
d
−→N2k

((
0k
0k

)
,

(
Diagk{1∕𝜂i𝜙i} 0kk

0kk Diagk{𝑓i(𝜽i)∕𝜂i}

))
. (B2)

Recalling the definition of 𝛽F:

𝛽F = g(𝛽1, ...𝛽k, 𝜙1, … , 𝜙k) =
∑k

i 𝜂i𝜙i𝛽i∑k
i 𝜂i𝜙i

,

we obtain the following derivatives:

d
d𝛽i

𝛽F = 𝜂i𝜙i∑k
i=1 𝜂i𝜙i

d
d𝜙i

𝛽F =

(∑k
i=1 𝜂i𝜙i

)
𝜂i𝛽i −

(∑k
i=1 𝜂i𝜙i𝛽i

)
𝜂i(∑k

i=1 𝜂i𝜙i

)2 = 𝜂i(𝛽i − 𝛽F)∑k
i=1 𝜂i𝜙i

.

Then, as long as fi(𝜽i) < ∞ for i = 1, … , k, we can apply the delta method to B2, obtaining

√
N

[(∑k
i 𝜂i𝜙̂i𝛽i∑k

i 𝜂i𝜙̂i

)
−

(∑k
i 𝜂i𝜙i𝛽i∑k

i 𝜂i𝜙i

)]
d
−→N

⎛⎜⎜⎜⎝0, 1∑k
i 𝜂i𝜙i

+
∑k

i 𝜂i(𝛽i − 𝛽F)2𝑓i(𝜽i)(∑k
i 𝜂i𝜙i

)2

⎞⎟⎟⎟⎠ ,
equivalently

√
N

(
̂̂𝛽F − 𝛽F

) d
−→N

⎛⎜⎜⎜⎝0, 1(∑k
i 𝜂i𝜙i

) [
1 +

∑k
i 𝜂i(𝛽i − 𝛽F)2𝑓i(𝜽i)∑k

i 𝜂i𝜙i

]⎞⎟⎟⎟⎠ . (B3)

Here, we notice that for some special cases when fi(𝜽i)∕𝜙i = c, a constant, for i = 1, … , k, this expression can be
factorized out and the inflation factor can be then expressed as (1 + c𝜁2), a function of the heterogeneity parameter 𝜁2

defined in Section 3.3. The specific form of fi(𝜽i) for some common effect estimators of continuous outcomes are provided
in Appendix E.

APPENDIX C: ALTERNATIVE EXPRESSION FOR 𝜁2 (SECTION 3.3)

To simplify calculations, we write wi = 𝜎−2
i ∕

∑k
i=1 𝜎

−2
i . Using this notation, we notice that

∑k
i=1 wi = 1 and

∑k
i=1 wi𝛽i = 𝛽F .

The parameter 𝜁2 can then be written as

𝜁2 =
k∑

i=1
wi(𝛽i − 𝛽F)2 =

k∑
i=1

wi𝛽
2
i − 2

k∑
i=1

wi𝛽i𝛽F + 𝛽2
F

=
k∑

i=1
wi𝛽

2
i −

k∑
i=1

wi𝛽i𝛽F

=
k∑

i=1
wi

( k∑
𝑗=1

w𝑗

)
𝛽2

i −
k∑

i=1
wi𝛽i

( k∑
𝑗=1

w𝑗𝛽𝑗

)

= 1
2

k∑
i=1

k∑
𝑗=1

wiw𝑗𝛽
2
i + 1

2

k∑
i=1

k∑
𝑗=1

wiw𝑗𝛽
2
𝑗 −

k∑
i=1

k∑
𝑗=1

wiw𝑗𝛽i𝛽𝑗

= 1
2

k∑
i=1

k∑
𝑗=1

wiw𝑗(𝛽i − 𝛽𝑗)2.
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APPENDIX D: MOMENT BASED ESTIMATOR OF 𝜁2 (SECTION 4.1)

Assuming known variances 𝜎2
1 , … , 𝜎2

k , with 𝜎2
i = (ni𝜙i)−1 for i = 1, … , k, we start by calculating the expected value of a

plug-in estimate of 𝜁2:

E

[∑k
i=1 ni𝜙i(𝛽i − 𝛽F)2∑k

i=1 ni𝜙i

]
= E

[ k∑
i=1

ni𝜙i

Φ
𝛽2

i − 𝛽2
F

]

=
k∑

i=1

ni𝜙i

Φ
(
Var[𝛽i] + (E[𝛽i])2) − (

Var[𝛽F] + (E[𝛽F])2)
=

( k∑
i=1

ni𝜙i

Φ
𝛽2

i − 𝛽2
F

)
+

(
1
Φ

k∑
i=1

ni𝜙i𝜎
2
i − 1

Φ

)

=
k∑

i=1

ni𝜙i

Φ
(𝛽i − 𝛽F)2 + k − 1

Φ

= 𝜁2 + k − 1
Φ

.

Thus, an unbiased estimator of 𝜁2 is then given by

𝜁2 =
∑k

i=1 𝜎
−2
i (𝛽i − 𝛽F)2 − (k − 1)∑k

i=1 𝜎
−2
i

= Q − (k − 1)
Φ

.

APPENDIX E: ASYMPTOTIC VARIANCE OF 𝜙 FOR SOME COMMON EFFECT ESTIMATORS

In this section, we derive the asymptotic variance of the information parameter 𝜙 for some common estimators of treat-
ment effect for continuous outcomes. This asymptotic variance, denoted f(𝜽i), can then be plugged in estimators for the
variance of ̂̂𝛽F described in Section 4.2 of the main paper.

E.1 Asymptotic variance of 𝜙 for the mean difference of independent groups
Following Borenstein,48 we first look at meta-analyses of studies that compare the means of 2 independent groups, when
an assumption of equal variances is made. Here, the effect size in the ith study, 𝛽 i = Δi = 𝜇i,X − 𝜇i,Y, is estimated by
𝛽i = X̄i − Ȳi, with Var(𝛽i) = 𝜎2

i = (1∕ni,X + 1∕ni,Y )ς2
i , where ς2

i is the population variance, assumed to be the same for the 2
groups in study i, and ni,X and ni,Y are the respective sample sizes (with ni = ni,X + ni,Y). Here, we can write 𝜎2

i = (ni𝜙i)−1

and s2
i = (ni𝜙̂i)−1, with

𝜙i = g(ς2
i ) =

[(
1

ni,X∕ni
+ 1

ni,Y∕ni

)
ς2

i

]−1

(E1)

and 𝜙̂ = g(ς̂2
i ), where ς̂2

i is the pooled estimator of the variance, given by

ς̂2
i =

∑ni,X
𝑗=1 (Xi𝑗 − X̄i)2 +

∑ni,Y
𝑗=1 (Yi𝑗 − Ȳi)2

ni − 2
=

(ni,X − 1)ς̂2
i,X + (ni,Y − 1)ς̂2

i,Y

ni,X + ni,Y − 2
,

and ς̂2
i,X and ς̂2

i,Y are the sample variances of the 2 groups in study i. To obtain an asymptotic distribution for 𝜙̂i, we start
from a standard result for the sample variance:√

ni(ς̂2
i − ς2

i )→dN(0, (𝜅i − 1)ς4
i ),

where 𝜅 i denotes to the kurtosis in the population distribution (which we will also assume to be the same in the 2 groups
for now). So then, keeping the sample size proportions (ni,X∕ni and ni,Y∕ni) fixed, the derivative of (E1) is
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d
dς2

i

g(ς2
i ) = −

(
1

ni,X∕ni
+ 1

ni,Y∕ni

)−1

(ς2
i )

−2.

The, applying the delta method, we conclude that

√
ni(𝜙̂i − 𝜙i)→dN

⎛⎜⎜⎜⎝0, 𝜅i − 1(
1

ni,X∕ni
+ 1

ni,Y∕ni

)2
ς4

i

⎞⎟⎟⎟⎠ . (E2)

We notice that for studies with balanced design (ni,X = ni,Y), the information 𝜙i = 1∕4ς2
i and the asymptotic variance

in the last expression reduces to (𝜅i − 1)∕42ς4
i . If all studies in a meta-analysis are balanced and the population variance

and kurtosis can be assumed constant across all studies, then the inflation factor in (E2) is given by (1 + 𝜅−1
4ς2 𝜁

2). This is
the expression used to estimate the inflation in type I error rate, produced when the estimation of standard errors is not
taken into account, illustrated in Figure 2 of the main paper.

Now, when the assumption of equal variances is not made, the variance of 𝛽i = X̄ − Ȳ is given by Var(𝛽i) = 𝜎2
i =

ς2
i,X∕niX +ς2

i,Y∕ni,Y , where ς2
i,X and ς2

i,Y are the population variances of the 2 groups in the ith study.48 Similar to the case of
equal variances, here, we can also write 𝜎2

i = (ni𝜙i)−1 and s2
i = (ni𝜙̂i)−1, now with

𝜙i = g(ς2
i,X , ς

2
i,X ) =

(
ς2

i,X

ni,X∕ni
+

ς2
i,Y

ni,Y∕ni

)−1

,

and 𝜙̂i = g(ς̂2
i,X , ς̂

2
i,X ). The asymptotic distribution for ς̂2

i,X :√
ni,X (ς̂2

i,X − ς2
i,X )→dN(0, (𝜅i,X − 1)ς4

i,X ),

can be expressed as √
ni(ς̂2

i,X − ς2
i,X )→dN

(
0,

(𝜅i,X − 1)ς4
i,X

ni,X∕ni

)
,

and similarly for
√

ni(ς̂2
i,Y − ς2

i,Y ). Keeping the sample size proportions within each study (ni,X∕ni and ni,Y∕ni) fixed, we
can write

√
ni

[(
ς̂2

i,X
ς̂2

i,Y

)
−

(
ς2

i,X
ς2

i,Y

)]
→dN2

⎡⎢⎢⎣02,
⎛⎜⎜⎝

(𝜅i,X−1)ς4
i,X

ni,X∕ni
0

0
(𝜅i,Y−1)ς4

i,Y

ni,Y∕ni

⎞⎟⎟⎠
⎤⎥⎥⎦ .

Taking derivatives, we find that

∇g(ς2
i,X , ς

2
i,X ) = −

(
ς2

i,X

ni,X∕ni
+

ς2
i,Y

ni,Y∕ni

)−2(
1

ni,X∕ni
,

1
ni,Y∕ni

)T

,

and applying the delta method, we obtain

√
ni(𝜙̂i − 𝜙i)→dN

⎡⎢⎢⎢⎢⎣
0,

(𝜅i,X−1)ς4
i,X

(ni,X∕ni)3
+

(𝜅i,Y−1)ς4
i,Y

(ni,Y∕ni)3(
ς2

i,X

ni,X∕ni
+

ς2
i,Y

ni,Y∕ni

)4

⎤⎥⎥⎥⎥⎦
.

E.2 LSSA for the mean difference between 2 matched samples
When the effect size in each study is the mean difference between 2 matched samples, we have that 𝛽i = X̄i − Ȳi, with
Var(𝛽i) = 𝜎2

i = (ς2
i,X +ς2

i,Y −2𝜌ςi,Xςi,Y )∕mi, where 𝜌 denotes the population correlation between any 2 matched observations
Xij and Yij in study i and mi = ni∕2 is the number of the paired observations.48 Assuming a bivariate normal distribution
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for the observations (Xij,Yij), the following asymptotic distribution can be obtained for the sample variances (ς̂2
i,X , ς̂

2
i,X ) and

sample covariance (ς̂i,XY = 1
mi

∑mi
𝑗=1(Xi𝑗 − X̄i)(Yi𝑗 − Ȳi)):

√
mi

⎡⎢⎢⎣
⎛⎜⎜⎝
ς̂2

i,X
ς̂2

i,Y
ς̂i,XY

⎞⎟⎟⎠ −
⎛⎜⎜⎝
ς2

i,X
ς2

i,Y
ςi,XY

⎞⎟⎟⎠
⎤⎥⎥⎦→dN3

⎡⎢⎢⎢⎣03,

⎛⎜⎜⎜⎝
2ς4

i,X 2𝜌2ς2
i,Xς

2
i,Y 2𝜌ς3

i,Xςi,Y

2𝜌2ς2
i,Xς

2
i,Y 2ς4

i,Y 2𝜌ςi,Xς3
i,Y

2𝜌ς3
i,Xςi,Y 2𝜌ςi,Xς3

i,Y (1 + 𝜌2)ς2
i,Xς

2
i,Y

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ .

Let 𝜎2
i = (ni𝜙i)−1 = 2(ς2

i,X + ς2
i,Y − 2ςi,XY )∕ni and

𝜙i = g(ς2
i,X , ς

2
i,Y , ς

2
i,XY ) = [2(ς2

i,X + ς2
i,Y − 2ς2

i,XY )]
−1,

with 𝜙̂ = g(ς̂2
i,X , ς̂

2
i,Y , ς̂

2
i,XY ). Taking derivatives,

∇g(ς2
i,X , ς

2
i,Y , ς

2
i,XY ) = −1

2
(ς2

i,X + ς2
i,Y − 2ς2

i,XY )
−2(1, 1,−2)T

so we have, by the delta Method,

√
mi(𝜙̂i − 𝜙)→dN

(
0,

2[ς4
i,X − 8𝜌ς3

i,Xςi,Y + 2(1 + 2𝜌2)ς2
i,Xς

2
i,Y − 8𝜌ςi,Xς3

i,Y + ς4
i,Y ]

4(ς2
i,X + ς2

i,Y − 2𝜌ςi,Xςi,Y )4

)
.
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