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Abstract

Despite great advances in hearing-aid technology, users still experience problems with noise in windy environments. The
potential benefits of using a deep recurrent neural network (RNN) for reducing wind noise were assessed. The RNN was
trained using recordings of the output of the two microphones of a behind-the-ear hearing aid in response to male and female
speech at various azimuths in the presence of noise produced by wind from various azimuths with a velocity of 3 m/s, using
the “clean” speech as a reference. A paired-comparison procedure was used to compare all possible combinations of three
conditions for subjective intelligibility and for sound quality or comfort. The conditions were unprocessed noisy speech, noisy
speech processed using the RNN, and noisy speech that was high-pass filtered (which also reduced wind noise). Eighteen
native English-speaking participants were tested, nine with normal hearing and nine with mild-to-moderate hearing impair-
ment. Frequency-dependent linear amplification was provided for the latter. Processing using the RNN was significantly
preferred over no processing by both subject groups for both subjective intelligibility and sound quality, although the
magnitude of the preferences was small. High-pass filtering (HPF) was not significantly preferred over no processing.
Although RNN was significantly preferred over HPF only for sound quality for the hearing-impaired participants, for the
results as a whole, there was a preference for RNN over HPF. Overall, the results suggest that reduction of wind noise using
an RNN is possible and might have beneficial effects when used in hearing aids.
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Introduction

Airflow around a hearing aid can lead to turbulence at
the microphone ports. The resulting random fluctuations
in air pressure are often referred to as wind noise
(Chung, Mongeau, & McKibben, 2009; Zakis, 2011).
This noise can be disturbing in some conditions, such
as when outdoors on a windy day, riding a bicycle, or
running. Wind noise can have strong deleterious effects
on the perception of speech and other sounds because its
level can be as high as 85dB SPL for a wind speed of
3m/s and 100dB SPL for a wind speed of 6 m/s (Zakis,
2011). Wind noise levels reach a maximum of about 110
to 115dB SPL for a wind speed of 12m/s, due to micro-
phone saturation (Zakis, 2011). A survey by Kochkin
(2010) indicated a 42% dissatisfaction rate among hear-
ing aid users with the performance of their hearing aids
in windy environments.

Wind noise varies with wind angle, microphone loca-
tion, and across and within styles of hearing aids (Chung
et al., 2009; Zakis, 2011). For moderate wind velocities,
the energy in wind noise is mainly concentrated at fre-
quencies below about 300 Hz, the spectrum level decreas-
ing at a rate of about 26 dB/oct for frequencies above
that (Korhonen, Kuk, Seper, Morkebjerg, & Roikjer,
2017; Raspet, Webster, & Dillion, 2006; Wutte, 1992).
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As the wind velocity increases, the spectrum of the wind
noise spreads toward higher frequencies (Chung et al.,
2009; Korhonen et al., 2017; Zakis, 2011). It remains one
of the main challenges for hearing aid manufacturers to
improve the perception of speech with hearing aids in
windy environments.

Amelioration of the effects of wind noise in hearing
aids is based on two approaches: acoustic design modi-
fications and signal processing (Korhonen et al., 2017).
The first approach involves mechanical changes to the
design of hearing aids, such as placing the microphone in
the small indentation between the crura and the antihelix
to decrease turbulence, adding a cover on top of the
microphone to diffuse the wind flow, and putting a
piece of foam on top of the microphone to reduce the
wind velocity (Kates, 2008).

The second approach uses digital signal processing
techniques to determine whether wind noise is present
and to reduce wind noise when it is detected. Detection
of wind noise is usually based on the fact that it is
largely uncorrelated at the two (or more) microphones
of a hearing aid, despite the microphones being located
close to one another (Kates, 2008), whereas input
signals such as speech or music produce more highly
correlated outputs from the microphones. Hence, wind
noise can be detected as a decorrelation of the
two microphone signals (Kates, 2008; Zakis & Tan,
2014). The reduction of wind noise is often based on
a simple attenuation of the signal at low frequencies.
For hearing aids with only one microphone, signal-
processing approaches include dictionary-based sparse
coding (Schmidt, Larsen, & Hsiao, 2007) and noise
reduction with adaptive post filtering (Nemer &
Leblanc, 2009).

In the past few years, Machine Learning (ML) has
been widely used to achieve substantial improvements
in computational tasks in the visual, auditory, speech,
and language domains. A major advance came from
the use of artificial neural networks with more than
two layers (Hinton, Osindero, & Teh, 2006). These can
generally be categorized into three main architectures:
feed-forward deep neural networks (DNN), recurrent
neural networks (RNN), and convolutional neural net-
works (CNN). In comparison to simple DNNs, CNNs
have been used as a more powerful class of model for
recognizing visual content in tasks like image recogni-
tion, segmentation, detection, and retrieval (Karpathy
et al.,, 2014). However, RNNs have achieved superior
results for the detection and recognition of temporal pat-
terns in speech, language, and time series data by making
use of the interdependence of data samples across time
(Graves, Mohamed, & Hinton, 2013; Lipton, Berkowitz,
& Elkan, 2015). One of the most successful RNN archi-
tectures is the long short-term memory (LSTM) model

proposed by Hochreiter and Schmidhuber (1997). It was
designed to model the long-range dependencies of tem-
poral sequences in a more accurate way than with con-
ventional RNNs (Sak, Senior, & Beaufays, 2014).

Several ML-based approaches using DNNs to segre-
gate speech from masking noise have been shown to
improve speech perception in noise for normal-hearing
and hearing-impaired listeners and users of cochlear
implants (Chen, Wang, Yoho, Wang, & Healy, 2016;
Goehring et al., 2017; Healy, Yoho, Chen, Wang, &
Wang, 2015; Healy, Yoho, Wang, & Wang, 2013;
Monaghan et al.,, 2017; Tchorz & Kollmeier, 2003).
Recently, the use of RNNs for segregation of speech
from noise had led to improvements in estimation accur-
acy and generalization performance compared with
DNN-based methods (Chen & Wang, 2017; Huang,
Kim, Hasegawa-Johnson, & Smaragdis, 2015; Kolbak,
Yu, Tan, & Jensen, 2017; Weninger et al., 2015). ML-
based approaches have been successfully applied to
acoustic conditions with nonstationary noise maskers
at low signal-to-noise ratios, and thus promise to be
good candidates for the reduction of wind noise,
although to our knowledge, they have not yet been eval-
uated with this application in mind. So far, RNN-based
methods have been shown to improve performance over
DNN-based methods when using computational meas-
ures of quality and intelligibility, but the benefits for
speech perception in noise by human listeners remain
unclear.

This article reports a study of wind noise reduction
using an ML algorithm based on a deep (multilayer)
LSTM model. For brevity, this is referred to hereafter
simply as the RNN. The RNN was first trained to pre-
dict the ideal ratio mask (IRM, described in detail later),
using recordings of speech corrupted by wind noise. The
clean (noise-free) speech was used to estimate the target
IRM. Then, the trained model was used to process the
noisy speech, so as to attenuate time-frequency segments
with low speech-to-noise ratio (SNR) while retaining seg-
ments with high SNR. The effects of the algorithm on
judged speech intelligibility and sound quality were
assessed for speech signals affected by wind noise, rec-
orded using the microphones of behind-the-ear (BTE)
hearing aids. Simple high-pass filtering was used for a
comparison condition.

Method
Ethical Approval

The study was approved by the Psychology Research
Ethics Committee of the University of Cambridge and
was conducted in accordance with the Declaration of
Helsinki.
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Participants

Eighteen native English-speaking participants took part
in the experiment. Audiometric thresholds were mea-
sured for audiometric frequencies from 0.25 to 8§ kHz,
using a Grason-Stadler GSI-61 audiometer. Nine of the
participants had normal hearing (5 female, average age
31 years), with audiometric thresholds lower than 20 dB
HL for all measured frequencies, and nine had hearing
loss. Only the better-hearing ear of each participant was
tested (based on the average threshold across 0.5 to
4kHz). The sex, age, and audiometric thresholds for
the test ear of the hearing-impaired participants are
shown in Table 1. Seven of the hearing-impaired partici-
pants were users of hearing aids. The experiment lasted
about 2 hours for each participant, and participants were
paid for taking part as well as receiving reimbursement
for travel expenses.

Recording Procedure

The wind and speech azimuths were defined based on the
KEMAR dummy head (Burkhard & Sachs, 1975) as
shown in Figure 1; 0° was in front of the head, 90° was
to the right side of the head on the side where the hearing
aid was placed, 270° was to the left side of the head, and
180° was at the back of the head. The wind noise was
produced by turbulence around the microphone ports of
the hearing aid, using a low-noise wind source, as
described by Zakis (2011). Adobe Audition 1.5 computer
software (Adobe, San Jose, CA) was used to collect 32-
bit recordings at a sampling rate of 44.1kHz for both
front and rear microphones of the BTE hearing aid and
saved as sterco WAV files. Recordings were 20-seconds
long, the first 10seconds consisting of wind noise plus
simultaneously presented male speech (continuous read-
ing of a story, taken from track 3 of CD 2 described by

Table I. Age, Sex, and Audiometric Thresholds (in dB HL) of the
Test Ears of the Hearing-Impaired Participants.

Frequency, kHz

Age
Sex (years) 0.125 0.5 | 2 3 4 6 8
Male 73 10 20 25 40 50 55 50 70
Male 6l 15 20 30 35 55 50 40 25
Female 46 5 20 30 45 45 50 30 30
Male 71 15 20 20 10 30 45 50 60
Female 45 5 [0 10 25 40 30 25 10
Male 62 15 30 20 40 55 50 55 55
Male 77 10 5 5 25 45 70 65 65
Female 66 15 20 I5 30 35 40 40 55
Female 53 5 10 5 30 25 45 40 25

Keidser et al., 2002) and the second 10 seconds consisting
of wind noise plus simultaneously presented female
speech (CUNY sentence lists). The wind speed was 0
(producing no wind noise), 3, 6, and 12m/s. However,
the speech-to-wind-noise ratio was very low for the two
highest wind speeds, so the present work is based on
recordings obtained using the 0- and 3-m/s wind
speeds. The wind noise for the 3-m/s wind speed was
clearly audible and intrusive. Its overall level was typic-
ally about 80 dB SPL but was as high as 85dB SPL for
some azimuths. Wind azimuths ranged from 0 to 315° in
45° steps. The speech was presented at 70 dB SPL from a
loudspeaker that was 1 m from the KEMAR and at an
azimuth that was 45° clockwise from that of the wind.
The hearing aid shells were “BTE1” (very large, with
earhook) and “BTE2” (medium size, with earhook), as
described by Zakis (2011).

Initially, the recorded signals were down-sampled to
22.05kHz. The two microphones output signals were
considered as:

x1(1) = s(t) + vi(2) (1
xo(1) = s(1 — ta) + v2(2) (2)

where s is the clean speech, x; and v; (i=1, 2) are the
noise-corrupted speech and the wind noise for the ith
microphone, respectively, and tq is the time delay
between the microphones.

Figure |. Diagram of KEMAR dummy head with a hearing aid on
the right ear and different azimuth angles used for presenting wind
and speech signals.
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ML Algorithm

As described in the Introduction section, the LSTM
model variant of the RNN proposed by Hochreiter
and Schmidhuber (1997) was used in the present work.
The LSTM model maps sequential input vectors to
sequential vectors of outputs using iterative equations
(Graves et al., 2013). In this study, an RNN was con-
structed that consisted of an input layer, two LSTM
layers with 96 units followed by a fully connected layer
with 64 units, and an output layer (as shown in Figure 2).
The number of units in the input and output layers of the
RNN was defined by the input feature and output mask
dimensions, respectively. The RNN processed a four-
time-step input and each step corresponded to features
extracted from each single frame of speech; Steps 1, 2, 3,
and 4 corresponded to successive frames j-3, j-2, j-1, and
J, respectively. The RNN took acoustic features as its
inputs and predicted the IRM (Delfarah & Wang,
2017; Healy, Delfarah, Vasko, Carter, & Wang, 2017),
based on the ideal Wiener filter in the time-frequency
(T-F) domain. The IRM for the jth frame and mth chan-
nel was defined as follows (Delfarah & Wang, 2017):

D, -
IRM(j, m) = \/ e fn)(jr I’/’?(/ - 3)

where index i refers to the microphone number. Si(j, m)
and V(j, m) represent the magnitudes of s,(¢) and v,(¢) in
the mth channel of frame j, respectively. Note that the
clean speech recordings were used to obtain s(7). The
microphone signals were segmented into frames with a

Estimated IRM for frame j

Fully Connected Layer
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Features
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Figure 2. Overview of the LSTM network used in this study.

duration of Sms (110 samples) and an overlap of 50%
(55 samples) between successive frames. We used a
32-channel gammatone filter bank (Patterson,
Allerhand, & Giguere, 1995) with channels equally
spaced on the ERBy-number scale (Glasberg & Moore,
1990) and with center frequencies ranging from 50 to
11025Hz to calculate the IRM in the time-frequency
domain. Thus, the RNN output dimension was 64
(32 channels x 2 microphones).

Two groups of features were extracted from each of
the gammatone-filtered outputs of the two microphone
signals and used for training the network: gammatone
features and correlation features. The gammatone fea-
tures were the overall energy in each time-frequency
unit. They provided perceptually relevant information
about the short-term spectrum of the stimuli and
changes in short-term spectrum over time. The gamma-
tone features were normalized to have zero mean and
unit variance. The correlation features were designed to
exploit the fact that wind noise is largely uncorrelated
at the outputs of the two microphones in a hearing aid,
while the target speech is more highly correlated. The
correlation features were calculated by applying the
normalized cross-correlation operation to the gamma-
tone filterbank outputs for the two microphone signals.
The normalized cross-correlation for correlation lag /is
given by:

”g”ggf-(l ’.f)

C(Lf) = o f=1,...,32 4)
\ rgl/’gl/’(o)rgZ/ng (0)
N
Vgl_/ng(l,f) = Z gifk=Dg k), f=1,...,32
k=—N-+1
(5)
N
Foyg, (LS) = Z gilk—Dg(k);
k=—N+1 (6)
f=1,...,32, i=1,2

where g, and g», are samples obtained from filtering
each frame of speech using the fth gammatone filter for
microphones 1 and 2, respectively, rqizor is the cross-
correlation between g1, and gos Fgimir is the autocorrel-
ation of g;; i is the microphone number, / is the correl-
ation lag, and N is the number of samples in each frame.
In this study, the correlation features were calculated
with the lag set to 0, since the time delay between the
two microphones was very small. There were 32 correla-
tion features per frame. Accordingly, the total number of
features for each time step of the RNN was 96, consist-
ing of 32 gammatone features for each microphone and
32 correlation features.
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To ensure that the RNN was tested only using previ-
ously unseen data, the data for the test conditions were
excluded from the training data. This is called the “hold-
out cross-validation method.” The test conditions were
chosen so that the speech came from the front or the
side, as is usually the case in everyday life. The azimuths
used for testing were as follows: wind at 0° with speech at
45° (0°, 45°), wind at 45°with speech at 90° (45°, 90°),
and wind at 315° with speech at 360° (315°, 360°); note
that in the last condition, the speech came from in front,
as 360° is equivalent to 0°. In all cases, the test data were
recordings from BTEI. The total potential set of training
data consisted of 320 seconds of male and female speech
corrupted by 3m/s wind noise, as received by the two
BTE microphones for all eight pairs of wind and speech
azimuths from (0°, 45°) to (315°, 360°) and for both
BTE1 and BTE2 (16 20-second sets of two microphone
recordings). The training data actually used were based
on 13 of the 16 sets (excluding recordings from BTEL1 for
the three pairs of test azimuths), giving 260 seconds of
training data.

The freely available ML frameworks TFlearn and
Tensorflow, written in the Python programming lan-
guage, were used to construct, train, and test the RNN
(Abadi et al., 2016; Tang, 2016). We used “RMSprop”
(Riedmiller & Braun, 1993), an improved version of the
resilient backpropagation algorithm for batch training,
as the optimizer function in the training algorithm. The
learning rate was initialized to 0.001 and decreased by a
factor of 0.999 in each epoch (an epoch is a training run
based on using all of the training data once). The batch
size was 100 and the training algorithm was run for 100
epochs. The mean square error was utilized as the loss
function for the optimizer. The accuracy of the RNN
was assessed using a measure similar to the detectability
index d (Green & Swets, 1974); see the Results section
and Table 2 for details. The accuracy did not improve
systematically after about 90 epochs, so training was
deemed to be complete after 100 epochs. Once the
RNN had been trained, the estimate of the IRM for
each frame was used to process the speech signal cor-
rupted by wind noise for that frame in the T-F domain
so as to obtain an approximation to the clean speech
signal. The processed frames were combined with the

Table 2. Hit and False Alarm Rates (%) and d’ Values for the
Estimated IRM.

Wind/speech Hit False alarm

angle rate (%) rate (%) d
0°, 45° 78.9 1.9 2.87
45°, 90° 91.9 33 323
315°, 360° 80.6 2.0 291

noisy phase information and the overlap-add operation
was used to reconstruct the acoustic output signals. The
noise-reduction processing with the ML algorithm was
applied separately to the signals from each microphone,
and then the two processed signals were summed to
obtain a single output.

High-Pass Filtering Comparison Condition

Since wind noise is dominated by low-frequency com-
ponents for moderate wind speeds, one way to reduce
wind noise is to attenuate the low-frequency compo-
nents of the microphone outputs. Indeed, this resembles
the method of wind-noise reduction that is used in
many hearing aids. In this study, we used a time-
invariant high-pass filter as a simple simulation of this
type of signal processing. For the wind speed used in
our study, 3m/s, the spectrum of the wind noise fell
mainly below 500Hz (Zakis, 2011). Hence, a steep
finite impulse response high-pass filter with 513 taps
and a cutoff frequency of 500 Hz was applied to the
sum of the microphone signals. The filter was
designed and implemented using the fir2 function in
MATLAB and its relative response was 0dB above
500Hz and reached the —50-dB point at 410 Hz.
This filter was steeper than the filters that are typically
used in hearing aids, so it would have reduced the low-
frequency noise more effectively than would be the case
for most hearing aids. The high-pass filtering effectively
removed frequency components in the speech below
500 Hz, which provide about 15% of the information
in normal conversation speech (American National
Standards Institute, 1997), but these components
would, in any case, have been largely masked by the
wind noise.

Test Signals and Conditions

The participants were seated in a soundproof room and
wore Sennheiser HD580 headphones connected to the
sound card of a computer (with 24 bit resolution and a
sampling rate of 22050Hz). The root-mean-square
input level (before frequency-dependent amplification
for the hearing-impaired participants) of the speech
(excluding the wind noise) was 60dB SPL. Three con-
ditions were used: noisy speech with no processing
(NS), speech processed using the RNN, and high-pass
filtered speech (HPF). The stimuli for the hearing-
impaired participants were processed using linear
frequency-dependent amplification according to the
“Cambridge formula” (Moore & Glasberg, 1998) to
ensure that the speech was audible over a wide fre-
quency range. This was done using a 513-tap finite
impulse response filter implemented using the fir2 func-
tion in MATLAB.
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Procedure

The three conditions were compared in terms of subject-
ive intelligibility and sound quality, using a paired-
comparison procedure. There were three types of
paired comparisons: NS versus RNN, RNN versus
HPF, and NS versus HPF. The procedure was the
same as described by Moore and Sek (2013). The two
sounds to be compared were presented in succession with
a 200-ms silent interval between them. The possible
orders were used equally often and the order was rando-
mized across trials.

The main experiment consisted of two parts. In the
first part, participants were asked to indicate their pref-
erence in terms of subjective intelligibility. For this part,
the instructions to the participant, which appeared on
the computer screen, were as follows: “On each trial
you will hear the same sentence twice in succession.
Please decide whether the first or second sentence is
more intelligible and by how much, by using the mouse
to position the slider on the screen.”

In the second part, participants indicated their prefer-
ences in terms of subjective sound quality and comfort.
The instructions for this part were as follows: “On each
trial you will hear the same sentence twice in succession.
Please decide whether the first or second sentence is more
comfortable and by how much, by using the mouse to
position the slider on the screen.”

On each trial, each pair of sounds was presented only
once. Participants responded using a mouse to select the
position of a slider on the screen along a continuum
labeled “1 much better,” “1 moderately better,”
“1 slightly better,” “equal,” 2 slightly better,” “2 mod-
erately better,” and “2 much better.” Choices were not
restricted to the labeled points; any point along the slider
could be chosen. Within a given block of trials, each of
the three pairs of conditions was presented twice in both
orders for each of six sentences (three for the female
talker and three for the male talker), so there were 72
trials in a block. There were six blocks per participant
(three blocks for paired comparisons related to subject-
ive intelligibility and three blocks for paired comparisons
related to sound quality).

Preference scores for each participant and each pair of
conditions were computed in the following way. The
extreme positions of the slider were arbitrarily assigned
values of —3 and + 3. Regardless of the order of presen-
tation in a given trial (Condition X first or Condition Y
first), if X was preferred, the slider position was coded as
a negative number and if Y was preferred, the slider
position was coded as a positive number. For example,
if the order on a given trial was Y first and X second, and
the participant set the slider position midway between
<2 slightly better”” and ““2 moderately better,” the score
for that trial was assigned a value of —1.5. The overall
score for a given comparison and a given azimuth was

obtained by averaging the scores for the two orders for
that comparison and azimuth for each participant.
Scores were then averaged across participants, but sep-
arately for the normal-hearing and hearing-impaired
participants. Therefore, preference scores were con-
strained to fall in the range —3 to + 3.

Results
Simulation Results for RNN Processing

To evaluate the accuracy of the RNN in estimating the
IRM from the noisy speech signal, the estimated SNR
for each time-frequency segment of the estimated IRM
was compared with that for the IRM estimated using the
clean speech signal. A classification threshold of 0dB
SNR was used to convert the IRM estimated by the
RNN into a binary mask for the calculation of hit and
false alarm rates (Goehring et al., 2017; Kim, Lu, Hu, &
Loizou, 2009). The hit rate was defined as the percentage
of correctly classified speech-dominated T-F units in the
estimated IRM and the false alarm rate was defined as
the percentage of noise-dominated T-F units incorrectly
classified as speech-dominated T-F units in the estimated
IRM. The detectability index ¢ (Green & Swets, 1974)
was calculated from the hit and false-alarm rates (see
Table 2). The d values were high (close to 3) for all
three test directions used, indicating high classification
accuracy.

Preferences Scores for Intelligibility

To assess whether the preference scores were significantly
different from zero (indicating a significant preference
for one processing method relative to another), the
scores for each participant were first averaged across azi-
muths. This was considered to be reasonable since the
spectrum and level of the wind noise differed for each
azimuth. Then, Wilcoxon nonparametric tests were used
to assess whether the mean of the nine resulting scores
for each pair of conditions was significantly different
from zero (using two-tailed tests). The W statistic was
used, since the number of scores was small.

Figure 3 shows mean preference scores and standard
deviations for judged intelligibility for the normal-
hearing participants for each azimuth and each pairwise
comparison. For the comparison RNN versus HPF
(Panel a), the mean preference scores were very slightly
positive for all azimuths, favoring the RNN. However,
the outcome of the Wilcoxon test was not significant
(W=15). For the comparison RNN versus NS
(Panel b), the mean preference scores were all positive,
favoring the RNN. The outcome of the Wilcoxon test
was significant (W =2, p<.05). For the comparison
HPF versus NS (Panel c¢), the mean preference scores
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Figure 3. Preference scores for intelligibility for each azimuth and each pairwise comparison for the normal-hearing impaired partici-
pants. Each panel shows results for a different comparison, as indicated in the key: RNN = recurrent neural network; HPF = high-pass
filtering; NS = noisy speech with no processing. Azimuths (wind, speech) 1-3 were: (0°, 45°), (45°, 90°), and (315°, 360°), respectively.

Error bars show = | standard deviation across participants.

were positive for two azimuths and close to zero for the
other. The outcome of the Wilcoxon test was not signifi-
cant (W =12). In summary, RNN was significantly pre-
ferred over NS, but HPF was not significantly preferred
over NS. There was no significant difference between
preferences for RNN and HPF.

Figure 4 shows mean preference scores and standard
deviations for intelligibility for the hearing-impaired
participants. The pattern of the results was broadly
similar to that for the normal-hearing participants.
For the comparison RNN versus HPF (Panel a), the
mean preference scores were positive for all azimuths,
favoring the RNN, but the outcome of the Wilcoxon
test was not significant (W =6). For the comparison
RNN versus NS (Panel b), the mean preference scores
were all positive, favoring the RNN. The outcome of
the Wilcoxon test was significant (W =0, p <.05). For
the comparison HPF versus NS (Panel c¢), two out of
three preference scores were positive, favoring the HPF,

but the score for azimuth 2 was very close to zero. The
outcome of the Wilcoxon test was not significant
(W =6). In summary, RNN was significantly preferred
over NS, but HPF was not significantly preferred over
NS. There was no significant difference between prefer-
ences for RNN and HPF.

Preferences Scores for Quality

Figure 5 shows mean preference scores and standard
deviations for sound quality or comfort for the
normal-hearing participants. For the comparison RNN
versus HPF (Panel a), the mean preference scores were
positive for all azimuths, favoring the RNN. However,
the outcome of the Wilcoxon test was not significant
(W=11). For the comparison RNN versus NS
(Panel b), the mean preference scores were all positive,
favoring the RNN. The outcome of the Wilcoxon test
was significant (W =0, p<.05). For the comparison
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Figure 4. As Figure 3, but for the hearing-impaired participants.
HPF versus NS (Panel c), two out of three preference Di .
Iscussion

scores were positive, favoring the HPF, but the score for
azimuth 2 was very close to zero. The outcome of the
Wilcoxon test was not significant (W =38). In summary,
RNN was preferred over NS, but HPF was not signifi-
cantly preferred over NS. There was no significant dif-
ference between preferences for RNN and HPF.

Figure 6 shows mean preference scores and standard
deviations for sound quality or comfort for the hearing-
impaired participants. For the comparison RNN versus
HPF (Panel a), the mean preference scores were positive
for all azimuths, favoring the RNN. The outcome of the
Wilcoxon test was significant (W =3, p <.05). For the
comparison RNN versus NS (Panel b), the mean prefer-
ence scores were all positive, favoring the RNN. The
outcome of the Wilcoxon test was significant (W' =0,
p <.05). For the comparison HPF versus NS (Panel c),
two out of three preference scores were positive, favoring
the HPF, but the score for azimuth 2 was very slightly
negative. The outcome of the Wilcoxon test was not sig-
nificant (W =6). In summary, RNN was preferred over
NS and HPF, but HPF was not significantly preferred
over NS.

The results showed small but significant preferences for
RNN over NS for both subjective intelligibility and
sound quality and for both groups. HPF was not signifi-
cantly preferred over NS. Although there was only one
significance difference between preferences for RNN and
HPF in the individual Wilcoxon tests, the mean prefer-
ence judgments for RNN versus HPF were positive for
all azimuths for both groups for both subjective intelli-
gibility and quality (12 cases), which is significant based
on a binomial test (p =.0002). Thus, for the results as a
whole, there was a preference for RNN over HPF.

The preferences were generally small. This probably
reflects the fact that both signal processing methods
reflect a trade-off between different factors. The RNN
processing resulted in a reduction of wind noise, but at
the expense of some audible artifacts; participants
reported hearing some “‘gurgling” effects and they also
reported that the noise was almost inaudible during brief
pauses in the speech, while the noise was more audible
when speech was present, so the noise appeared to fluc-
tuate markedly. This probably happened partly because
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Figure 5. As Figure 3, but for sound quality or comfort.

the RNN algorithm could accurately determine the SNR
in T-F regions with very low SNR (i.e., T-F regions
where the speech was essentially absent), but was less
accurate when the SNR was intermediate. Also some
of the artifacts probably arose from the use of the ori-
ginal noisy phase in reconstructing the signal, which
would make the speech sound noisy even if the SNR
were estimated perfectly. Differences in preference
across participants may reflect differences in the way
that they weight the benefits of RNN noise reduction
against the deleterious effects of the artifacts. The
artifacts could potentially be reduced by setting a limit
to the attenuation applied by the RNN or by limiting
the speed of the gain changes, as is done in the noise-
reduction systems of some commercial hearing aids
(Launer, Zakis, & Moore, 2016). This requires further
research.

The HPF processing did not result in the type of arti-
facts that occurred for the RNN, but it had the effect of
removing the lower frequency components in the speech,
making the speech sound “thin” or lacking in bass.
Moore and Tan (2003) reported that the “naturalness”
of speech was markedly reduced by high-pass filtering at

313 Hz, and the high-pass cutoff frequency of 500 Hz
used here would have had an even greater effect.
Hence, the beneficial effects of noise reduction produced
by the HPF were probably partly offset by the deleteri-
ous effects of removal of the low-frequency components
of the speech. The less extreme forms of HPF that are
used in commercial hearing aids could make speech
sound less thin but at the cost of smaller beneficial
effects.

It should be noted that the RNN used here operated
“automatically.” Once trained, it was applied without
any further adjustment of parameters. In principle, the
RNN could be trained using recordings of wind noise
obtained with a greater variety of wind speeds and azi-
muths and also with more different talkers than the two
used here. Once trained, the RNN should automatically
adjust its processing to deal with the changes in level and
spectral content produced by differences in wind speed
and azimuth, for example, produced by head move-
ments. Furthermore, it should be possible to train the
RNN so that it automatically does nothing when no
wind noise is present. However, further work is needed
to evaluate how well RNNs can be trained to generalize
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Figure 6. As Figure 5, but for the hearing-impaired participants.

their performance to different wind speeds and talkers,
including talkers not used for training.

While the high-pass filtering used here was found to
be marginally effective, the HPF cutoff frequency was
chosen to be appropriate for the wind speed of 3m/s
actually used in the experiment. To apply HPF process-
ing in a real hearing aid, it would be necessary to have an
additional algorithm for detecting the frequencies at
which wind noise was present and a method of selecting
the appropriate high-pass cutoff frequency.

The RNN processing was based on a relatively short
frame duration of 5ms, with a frame overlap of 50%.
Ignoring limitations in signal-processing speed, the
inherent delay produced by the RNN noise reduction
would be about 7.5ms, which is within the range that
is acceptable for hearing aids (Stone & Moore, 1999,
2005). If the RNN processing were implemented in a
hearing aid, it could be performed in parallel with the
other processing performed in the hearing aid, and could
even make use of the frequency analysis that is typically
performed in hearing aids for other purposes, such as
dynamic range compression, noise reduction, and direc-
tional processing (Launer et al., 2016). Hence, the RNN

processing would not necessarily increase the time delay
produced by the hearing aid.

Overall, the results suggest that processing using an
RNN can be effective in reducing the effects of wind
noise, and this has potential applications in hearing
aids. Further research is needed to assess: (a) whether
the benefits of RNN processing still occur when greater
ranges of wind speeds and more talkers are used; (b) if
better subjective intelligibility and quality are obtained
when the amount and speed of wind noise reduction are
limited to reduce artifacts; (c) if RNN processing is still
beneficial when the RNN complexity is reduced to allow
for the limited computational power of hearing aids.

Summary and Conclusions

Two methods for reducing wind noise were evaluated.
One method was a simple simulation of the processing
that is often used in hearing aids and was based on HPF.
The other method was based on the training of a RNN
and the use of the trained network to reduce wind noise.
The RNN was trained using recordings of the output of
the two microphones of a BTE hearing aid in response to
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male and female speech at various azimuths in the pres-
ence of noise produced by wind from various azimuths
with a velocity of 3 m/s, using the clean speech as a ref-
erence. A control condition using noisy unprocessed
speech was also used (NS). A paired-comparison proced-
ure was used to compare all possible combinations of the
three conditions for subjective intelligibility and for
sound quality or comfort. Eighteen native English-
speaking participants were tested, nine with normal hear-
ing and nine with mild-to-moderate hearing impairment.
Frequency-dependent linear amplification was provided
for the latter. Processing using the RNN was signifi-
cantly preferred over no processing by both subject
groups for both subjective intelligibility and sound qual-
ity, although the magnitude of the preferences was small.
High-pass filtering was not significantly preferred over
no processing. Although RNN was significantly pre-
ferred over HPF only for sound quality for the hear-
ing-impaired participants, for the results as a whole,
there was a preference for RNN over HPF. Overall,
the results suggest that reduction of wind noise using
an RNN is possible and might have beneficial effects
when used in hearing aids.
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