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Abstract: The increasing demand for portable and low-power electronics for applications in self-

powered devices and sensors has spurred interest in the development of efficient piezoelectric materials, 

by which mechanical energy from ambient vibrations can be transformed into electrical energy for 

autonomous devices and/or be used in strain-sensitive applications. Semiconducting piezoelectric 

materials are ideal candidates in the emerging field of piezotronics and piezo-phototronics, where the 

development of a piezo-potential in response to stress/strain can be used to tune the band structure of 

the semiconductor, and hence its electronic and/or optical properties. Furthermore, research into 

nanowires of these materials has intensified due to the enhancement of piezoelectric properties at the 

nanoscale.  In this regard, nanowires of ZnO and the III-nitrides have been extensively studied, but the 

piezoelectric properties of non-nitride III-V semiconductor nanowires remain less-explored. Indeed, 

direct measurements of the piezoelectric properties of single III-V nanowires are tellingly rare due to 

the difficulties associated with measurements of piezoelectric properties of nanoscale objects using 

conventional scanning probe microscopy techniques. This review addresses the challenges related to 

the study of piezoelectricity in III-V nanowires and the opportunities that lie therein in terms of device 

applications.    

1. Introduction: 

1.1. Background 

We begin by exploring the origin of piezoelectricity in non-nitride III-V nanowires (referred to 

simply as III-V nanowires from here onwards). The piezoelectric effect arises as a result of an applied 

stress causing a relative displacement of ions or polar components within a piezoelectric material, 

resulting in a change in net polarisation. Piezoelectricity thus refers to the linear interaction between the 

mechanical and the electrical states of certain materials where the stress and strain are interrelated with 

the resulting electric displacement induced in the material. Among the 32 crystal classes, 11 are 

centrosymmetric and non-polar such that an applied stress results in symmetrical ionic displacement 

and no net dipole moment.  Of the 21 non-centrosymmetric classes, 20 are piezoelectric with the 

exception being the 432 cubic system. Piezoelectricity manifests as both the direct piezoelectric effect, 

where a polarisation is created in response to an applied stress, and the converse piezoelectric effect, 

where an applied electric field creates a strain within the material. The effect can be described 

mathematically with a set of complimentary equations given below: 
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D = TE + dT                                 (1) 

S = dtE + sET                                 (2) 

 

Here, T and S represent stress and strain respectively, which are second rank tensors related to an applied 

force and the normal to the area over which it acts. D and E represent the electric displacement and 

electric field which are vectors. T is the dielectric permittivity of the material at constant stress, d is the 

piezoelectric tensor and sE is the elastic compliance at constant electric field. These three terms are 

represented by second, third and fourth rank tensors respectively, where dt is the transpose of d. Voigt 

notation is commonly used to simplify the tensors since static equilibrium requires Tij = Tji, Sij = Sji and 

sijkl = sijlk = sjikl = sjilk, and further simplifications may arise when the , d and s tensors have symmetries 

for certain directions. Bulk III-V semiconductor materials with the non-centrosymmetric zinc blende 

(ZB) crystal structure possess off-diagonal “shear” piezoelectric components, while III-V nanowires of 

the same material, that more likely exhibit the wurtzite (WZ) crystal structure, exhibit distinct axial 

piezoelectric components (1). III-V semiconductors therefore present an interesting material system in 

which to investigate and possibly manipulate piezoelectricity, based on a combination of 

dimensionality, geometry, and crystal structure.  

The past decade has seen a fast-growing scientific interest in piezoelectric applications based 

on nanomaterials, particularly following the pioneering work from Z.L Wang’s group regarding ZnO 

nanowires (NWs) and nanoribbons (2-4), and their applications in mechanical energy harvesting. 

Piezoelectricity in II-VI materials such as ZnO and III-Ns is well documented (5, 6), and accordingly, 

significant research efforts have been directed towards understanding and utilizing piezoelectricity in 

NWs of these materials (2, 4, 7-10). GaN NWs (8) and ZnO nanobelts (2) have been examined via 

piezo-response force microscopy (PFM), and were found to have an increased piezoelectric response 

as compared to the bulk, possibly due to reduced mechanical constraints. Single NWs, as well as NW 

ensembles have been used to realize mechanical energy harvesting devices, as well as piezo-controlled 

diodes and transistors (3, 4, 10-12). Notably, the term “piezotronic” was coined to describe the unique 

effects arising when semiconductor junctions (Schottky or p-n) are subject to strain (11-15). 

 Figure 1a shows the annual number of publications revolving around the topic of 

“Nanogenerator” and “Piezoelectric Nanogenerator” which concerns the ability to harvest ambient 

mechanical energy and transform it to useful electrical energy. Indeed, about 50% of publications 

revolving around this topic, deal with piezoelectric properties at the nanoscale. The interest in nanoscale 

materials is older than that, with NWs (having diameters of several nanometres to a few hundred 

nanometres) having been widely studied (16-18). III-V semiconductor nanowires are at the focus of 



about 15% of related publications, as seen in 

 

 

Figure 1b showing publications revolving around the topic of “Nanowires” and (a few non-nitride) 

“III-V Nanowires”. 

 In addition to energy harvesting, traditional applications of piezoelectric materials, such as 

sensing applications, have been widely studied in ZnO and GaN based nanomaterials (4, 11, 13). 

Considering the electrical and optical properties of semiconductors, the terms “piezotronics” and 

“piezophototronics” has been coined to respectively describe the electromechanical and opto-

electromechanical interactions taking place in piezoelectric semiconductor junction based devices. This 

is an emerging research field with many potential sensing and energy-based applications, that is 

currently based on a handful of candidate materials systems. Further development of the field would 

require investigation and development of a wide range of piezoelectric semiconductors, including III-V 

materials which exhibit a wider range of bandgaps and mechanical properties that may be appropriate 

for specific applications. A schematic of the metal-piezoelectric semiconductor piezotronic effect is 

shown in Figure 2. Briefly, when a depleted piezoelectric semiconducting region experiences stress, a 

negative or positive piezo-potential (dependent upon the crystal orientation and the sign of the resulting 

strain) will result in additional interface charge. This charge is not neutralized, considering that the 

material is depleted of charge carriers, and therefore serves to modify the Schottky barrier height. 

Taking into account the optoelectronic properties of Schottky junctions, the piezophototronic effect 

relates to such junctions when light is shone upon them. To elucidate piezoelectric semiconductor 

related research, 

 

 



Figure 1c shows the annual number of publications revolving around “piezotronic” and “GaN/ZnO 

piezotronic”. Indeed, GaN and ZnO related publications comprise the majority of papers, while non-

nitride III-V nanomaterials have hardly been studied in the context of piezotronics. In fact, a Web of 

Science topical search of “InP/GaAs/InAs/GaP piezotronic” yields only 5 results – none of which 

actually deal with III-V materials. 

 The relative lack of interest in III-V NW piezoelectricity is intriguing considering the closeness 

in applications as well as in underlying physics of III-Vs and III-Ns (19, 20). One possible reason for 

this might be the smaller piezoelectric coefficients associated with non-nitride III-V materials (19, 20). 

However, these are not orders of magnitude apart (~ 5 pm/V for III-Ns, ~ 1 pm/V for III-Vs), and 

moreover, with the reported increase in effective piezoelectric coefficients in NWs as compared to bulk 

(8), research into III-V NW piezoelectric properties and applications may be of considerable interest. 

Another reason why piezoelectric properties of III-V NWs have been rarely studied may be due to the 

predisposition of the III-V community towards pure electronic and optical applications, as well as the 

inherited knowledge from the vast world of III-V bulk and epitaxial thin films. Here, the dominant 

crystal growth orientation is {100} (e.g., see Ref. (21)), and the dominant crystal structure for III-V 

materials is zinc-blende (ZB), where spontaneous electrical polarization is negligible, and 

piezoelectricity is limited to three shear coefficients (19). Therefore, although known, recognized, and 

used to some extent for micro-electromechanical systems (MEMS) (22, 23), polarization and 

piezoelectricity do not play a significant role in traditional III-V technology. This stands in striking 

contrast to GaN technology where the dominant crystal structure is wurtzite, a considerable degree of 

spontaneous electrical polarization exists, and the dominant growth orientation is actually the polar 

{0001} (equivalent to {111} in ZB structure). For example, GaN high-electron mobility transistor 

(HEMT) technology is physically based on the spontaneous and piezoelectric polarization mismatch 

related to III-N heterostructures (20). Hence, there has been understandably more awareness and interest 

in nanoscale semiconductor piezoelectricity from the III-N scientific community, than from the III-V 

community. However, as we will explain in the first few sections of this review, III-V NWs have a lot 

in common with the III-N point-of-view when it comes to piezoelectricity, and in light of the growing 

interest in semiconductor piezo-electronics and the vast interest in III-V NWs, there exists tremendous 

scope to explore and exploit the piezoelectric properties of III-V NWs.  

 This review is structured as follows: in the remainder of Section 1 we briefly review 

piezoelectricity and related applications in bulk III-V materials, as well as the key distinctions between 

III-V bulk and NWs in terms of crystalline structure. In Section 2 we review the current status of NW 

mechanical properties, with emphasis on studies dedicated to WZ III-V NWs. In Section 3 we will 

review the body of work related to piezoelectric and electromechanical effects in III-V NWs, 

considering three aspects: piezoelectricity related to internal stresses, piezoelectricity related to external 

mechanical forces, and finally direct observations of fundamental piezoelectricity in III-V NWs. In 



Section 4 we conclude and point out the challenges lying ahead in this research direction.  The review 

considers both theoretical and experimental results, and therefore when relevant, comparisons made 

between experiments and theory will be discussed. However, while some of the experimental set-ups 

and results will be examined and compared, a thorough discussion of theoretical methods for calculating 

mechanical/piezoelectric properties and related intricacies are outside the scope of this review.   

1.2. Piezoelectricity in bulk III-V materials 

 Although not playing a significant role in the design and analysis of electronic devices, 

piezoelectricity arising from the non-centrosymmetric ZB structure in III-V semiconductors has been 

long known (24, 25). III-V materials exhibit shear piezoelectricity (relative to the basic cubic cell 

vectors), with an identical value for all three orientations (see Eq. 1). This property has been utilized to 

demonstrate electromechanical applications (22, 23, 26, 27). Furthermore, the effect of internal 

piezoelectric fields on the performance of {111} oriented electronic devices has been considered (28, 

29).  

 Notably, some early studies which are closely related to current piezoelectric-NW studies have 

gone relatively unnoticed. Two interesting studies are those by Kasuka et al. which represent an early 

demonstration of the piezotronic effect (albeit, prior to coining the term) on both p-type and n-type 

{111} oriented GaP Schottky diodes (30, 31). In these two papers, Kasuka and co-workers have shown 

that the effect {111}-oriented strain has on the Schottky barrier height is sensitive both to carrier polarity 

(electrons/holes), as well as crystal face (Ga/P) contacting the metal. Furthermore, as would be 

expected, in case of compression the trends were mirrored. An electro-mechanical analytical analysis 

(considering stress, electrical displacement, and Poisson’s equation) provided an inversely linear 

relation between the barrier height and the strain. Bearing in mind that for diodes the current is 

exponentially dependent on barrier height, this has implications for the strain-sensitivity of piezotronic 

effect. It is worth revisiting Figure 2 to qualitatively understand these effects. Figure 2a and 2b show 

an n-type Schottky contact subjected to compressive and tensile stresses, correspondingly. These 

stresses result in opposite polarization charges at the interface, hence the opposite effect on the barrier 

and current. The semiconductor polarity will also have a similar effect: while for n-type band bending 

upwards (compression in this example) results in increase of the barrier, for p-type (of the same polarity) 

the same mechanical input will decreases the barrier.  

 In a recent work, seeking to develop magnetoelectric composites, Gerngross et al. have 

examined the piezoelectric properties of porous InP substrates (ZB),  obtained by chemical etching (32). 

Interestingly, they found that the piezoelectric strain coefficient (measured optically) was up to 30 times 

larger than the literature value, depending on the details of the etching process. They attributed the 

effect to reduced free-carrier screening of the piezo-generated-voltage, arising from increased surface-

related depletion of the porous structure. We further suggest that in addition to depletion, the porous 



material is softer, giving rise to further enhancement to the measured coefficient, similar to reports for 

enhanced mechano-electric coupling in porous PVDF (polyvinylidene fluoride) (33).  

 If so, we have seen in the above that piezoelectricity in III-Vs has in fact been considered in the 

past, and examined both experimentally and theoretically in different ways for various applications. 

Nevertheless, this trend has not been widely followed; the main reason probably being the tendency to 

prefer the {110} and {100} planar growth directions over the polar {111} direction, due to practical 

difficulties associated with the growth of thin films. In sharp contrast, {111} planes and orientations are 

the default working environment for III-V NWs, as discussed below, and this should motivate re-

visiting this aspect of III-Vs and its relevance to piezoelectricity when considering NWs.  

 

1.3.  The effect of growth orientation and crystal structure on III-V NW Piezoelectricity 

 III-V NWs may by realized by either bottom-up or top-down approaches. Although top-down 

NWs may represent the next generation of electronic devices (34, 35), bottom-up NWs introduce 

interesting physical phenomena due to the realization using crystal growth methods (16, 36, 37). 

Bottom-up III-V NWs are usually grown using a nano-sized metal catalyst lying on the growth 

substrate, which can be either silicon, or a bulk III-V substrate (36, 38). Nanowires can also be grown 

using catalyst-free methods, where a nano-sized pore within a growth-selective mask facilitates the 

growth of a NW (39). A few intermediate methods exist, combining characteristics of both; these 

include self-catalysed grown NWs, where inside the pore a non-foreign mantellic particle catalyses the 

growth (usually group-III metal) (40), and catalyst assisted selective-area NW growth, where the metal 

catalyst is deposited within a pore in a selective area mask (41, 42).  

 Although many unique properties arise from the various growth regimes (43-46), there are 

common traits to all: due to energy considerations, cubic III-V NWs are most likely grown axially in 

the {111} (ZB) orientation (36). Consequently, the majority of III-V NW related work is based on {111} 

substrates (either III-V or silicon), whereby NWs are vertically grown on these surfaces. Furthermore, 

there is an increased probability for NW growth in the WZ crystalline structure (36, 44, 47-49), in the 

{0001} orientation, also vertically aligned on {111} growth substrates. As will be seen below, both 

these properties indicate that studying piezoelectric properties of III-V NWs might be beneficial. Figure 

3a shows an example of sharp crystal phase heterostructures in various III-V NWs (44). Next, an abrupt 

heterostructure is shown both experimentally (Figure 3b, single GaAs NW TEM), and schematically 

(Figure 3c).  

 As mentioned earlier, ZB III-V materials exhibit only shear piezoelectricity, rendering the 

piezoelectric strain tensor (using Voigt notation ) (19) 

 



  𝑑𝑍𝐵,<001> =  (
0 0 0
0 0 0
0 0 0

    

𝑑14 0 0
0 𝑑14 0
0 0 𝑑14

)                                       (3) 

 

where 𝑑14 is a shear piezoelectric coefficient. The piezoelectric effect and tensor notations have been 

widely discussed in the literature, for example see Ref. (50).  

 In NWs, where the dominant axial orientation is {111}, it is beneficial to rotate the tensor such 

that the piezoelectric axes correspond with sample geometry (1, 51, 52). Additionally, to chemically 

conform with WZ (53), we choose the 3-axis to be <111>, corresponding to <0001> in WZ, the 1-axis 

to be <11-2> and 2-axis to be <-110> (corresponding to <10-10> and <-12-10> in WZ, respectively). 

The resulting matrix is (1)   

  𝑑𝑍𝐵,<111> =  (
𝑑11 −𝑑11 0
0 0 0

𝑑31 𝑑31 𝑑33

    
0 𝑑15 0

𝑑15 0 𝑑26

0 0 0

)                           (4) 

The values of the coefficients are then −d15 = d33 = √
1

3
d14̃ , d31 =

1

2
d15,  d11 = −√

1

6
d14̃ and d26 =

√
2

3
d14̃, where d14̃ is the shear value from the original tensor (Eq. 3).   

 In other cases, NWs crystallize in WZ structure with {0001} axial orientation, and the 

piezoelectric matrix is 

  𝑑𝑊𝑍,<0001> =  (
0 0 0
0 0 0

𝑑31 𝑑31 𝑑33

    
0 𝑑15 0

𝑑15 0 0
0 0 0

)                                 (5) 

As evidenced above, in their most common forms, III-V NWs are expected to exhibit distinct 

piezoelectricity compared to bulk, due to geometry, crystal orientation and crystal structure.  

 We list in Table I characteristic piezoelectric strain coefficients for a few III-V materials, GaN 

and ZnO. Note that while the ZB values are experimentally verified, the WZ values for III-Vs are 

theoretical, obtained using ab-initio calculations (AI) (54), or by applying a quasi-cubic (QC) model, 

yielding e14,ZB = √
1

3
e33,WZ (25), and  e31 = −

1

2
e33 (55). The relations between piezoelectric charge 

coefficients (eij) and piezoelectric strain coefficients (dij) follow (24) e14 = d14c44 for ZB, and  

   
𝑒31 =   𝑑31(𝑐11 + 𝑐12) + 𝑑33𝑐13

𝑒33 =   2𝑑31𝑐13 + 𝑑33𝑐33
                     (6) 

where cij are stiffness coefficients (56). eij coefficients are in (C/m2); dij coefficients are in (pm/V). 

 If so, we can see that the theoretical predictions for the piezoelectric coefficients in WZ 

structure vary greatly. Since all of these NWs are routinely grown, it should be possible to 

experimentally measure these quantities, validating existing theories and shedding light on possible 

applications. Notice that  eij and dij coefficients do not necessarily follow similar trends, this is due to 

their co-relation incorporating the stiffness of the material. 



2. Mechanical properties of WZ III-Vs 

 The interest in III-V NWs ushered the emergence of WZ III-V materials. The immediate 

implication was that the most basic physical properties became an interesting research topic both 

theoretically and experimentally. Surprisingly, the mechanical properties of WZ III-V NWs received 

little attention, compared to the vast interest in their optical properties (17, 18, 57), or the general interest 

in NW mechanical properties (58, 59). Nevertheless, in recent years, researchers have begun directly 

looking into this topic, either by applying nanomechanical methods using atomic force microscopy 

(AFM) (60, 61), in-situ transmission electron microscopy (TEM) setups (62-64), or optical methods 

(65). 

 Figure 4 shows the results of mechanical characterization of WZ GaAs and InP NWs, obtained 

by the various methods mentioned above. Figure 4a shows the Young’s modulus obtained by Chen et 

al. by buckling tests (see inset) conducted on pure WZ and mixed phase GaAs NWs as reported in Ref. 

(64); similar measurements have been conducted for ZB NWs as well (62). In both cases, a significant 

increase in the elastic modulus with decreasing diameter is found, and these findings were explained by 

the elastic core-shell model, where the GaAs native oxide exhibits a high elastic modulus, shifting the 

composite effective value upwards with size reduction. An additional result of this study was that the 

presence of stacking faults was associated with an additional increase in Young’s modulus (red and 

black curves in Figure 4a). In other studies, using optical measurements of WZ (and ZB) GaAs (Figure 

4c) (65), as well is in AFM-based nanoindentation measurements of WZ InP NWs (Figure 4b)  (60), 

the values obtained for WZ NWs were very close to theoretical predictions (56, 66); this was the case 

even for NWs thinner than those shown in the TEM-based studies. By further contrast, in the AFM-

based study, stacking faults were associated with a considerable reduction of extracted modulus value, 

and not an increase.  

 Note that while both the AFM-based and optical studies took into account the inherent 

anisotropy of the elastic properties of III-V materials, the TEM-based studies did not, and thus have 

possibly induced misinterpretation of the results during modelling. Furthermore, the role of the native 

oxide in increasing the effective modulus with diameter reduction, requires further validation, e.g., by 

studies of NW with an enhanced oxide layer, or with no oxide layer (58). Indeed, in different studies, 

researchers have correlated stacking faults and surface oxide with a reduced Young’s modulus (as 

compared to theoretical values) of WZ and mixed phase InAs NWs (67, 68).  

 While there is a definite need for further study of the basic mechanical properties of III-V NWs, 

and in particular the role of stacking faults, it seems that for NWs thicker than a few nanometres, the 

current theories provide an adequate basis for the assessment of the compliance/stiffness tensor and the 

subsequent elastic modulus, which represents a fundamental requirement for the analysis of 

piezoelectricity (56).  

 



3. Electromechanical effects in III-V NWs  

 Various researchers have considered the piezoelectric properties of III-V materials in forming 

NWs and NW heterostructures. The chronological advance of these studies shows earlier focus on 

effects resulting from internal strains in nano-heterostructures, moving on to examination of the effect 

of external mechanical manipulation on optical or electrical properties, and finally studies focusing on 

the core piezoelectric effect in III-V NWs. 

 

3.1. Electromechanical effects related to internal strain  

 Several studies have calculated the effects of strain resulting from III-V NW heterostructures 

on its properties, with consideration of the piezoelectric effect in particular (51, 52, 54, 69, 70), with 

earlier studies having considered similar effects in planar quantum dots (71, 72).  Niquet and Mojica 

have performed band diagram calculations for InAs segments in InP NWs (and vice versa) (69).  

Interestingly, such earlier works considered ZB NWs, while more recent studies have started 

considering WZ as well. Faria Junior and Sipahi have calculated the band structures of WZ/ZB InP NW 

heterostructure, with consideration of spontaneous and piezoelectric polarization (70). Additional 

studies considering core-shell, embedded, or periodic heterostructures where crystal orientation and 

structure affect piezoelectric potential have been published as well (51, 52, 54).  

 In addition to theoretical studies, several authors have used these strain-induced effects in order 

to explain experimental results (73-77). Zervos and Feiner have used the lattice-mismatch-induced 

strain in an axial InAs/InP NW-based resonant tunnelling diode, to model experimentally observed 

shifts in the tunnelling resonance in the two opposite current orientations. They have modelled the 

electric field resulting in the strained regions, giving rise to directionality in the structure (74) (see 

Figure 5a). Anufriev et al. have examined the photoluminescence of a WZ InAs quantum rod embedded 

within a WZ InP NW, and found results coinciding with the quantum confined Stark effect. Although 

neglecting spontaneous polarization in the materials, they have considered internal-strain related 

piezoelectric fields to model the results (75) (see Error! Reference source not found.b).  

 

3.2. Electromechanical effects related to external strain 

 Next, we turn to examine the influence of externally applied mechanical stress/strain on the 

electronic/optoelectronic properties of III-V NWs (78-84). Existing studies have been concerned with 

the application of axial pressure on the optical properties of WZ (83) and ZB (84) GaAs NWs, and of 

hydrostatic pressure on the optical properties of WZ InP NWs (78). In general, these studies were 

focused on the effect of pressure on the NW band-gap, i.e. piezoresistivity. They all report considerable 

changes in the nature of light-matter interactions with applied pressure, brought about by different 

evolution of energy sub-bands with pressure. However, direct consideration of piezoelectric effects, in 

a similar manner done for heterostructure-related internal stresses, has not been addressed.  



 Other studies have dealt with pressure dependent electronic transport. Li et al. have studied the 

effect of tensile and compressive axial strain (0-3%) on the conduction of two terminal InAs NW-based 

devices, with ZB/WZ/mixed phase structures as well as with various axial growth orientation (79). They 

have calculated the electromechanical gauge factor (relative change in conductance per unit strain) for 

each NW examined.  Interestingly, the only non-negligible result arises when <0001> WZ NWs are 

measured, while ZB NWs in <011>, <103> and <-2-11> orientations and non-polar <11-20> WZ NWs 

result in no observable electromechanical response. The highest electromechanical gauge factor was 

found for the pure <0001> WZ NWs, while it was found that stacking faults reduce the 

electromechanical responsivity. The gauge factor was found to have contributions from piezoresistivity 

(symmetrical with respect to applied voltage) and the piezotronic effect (asymmetrical even when 

identical electrodes were used – Figure 6a). We note that the negligible electromechanical response in 

non-polar WZ NWs and ZB NWs remains intriguing considering piezoresistivity is still expected. 

 Indeed, in a further study by Zheng et al., pure phase NWs (<0001> WZ and <110> ZB) were 

subjected to compressive strains, and the electromechanical transport effects were examined (80). In 

their experiments the NWs exhibited ohmic behaviour, and so the piezotronic effect was excluded from 

the explanation, leaving behind piezoresistivity. In a complementary fashion to the previous study, it 

was found that compressive strain reduced the current in the WZ NW. Interestingly, for the ZB NWs 

the current was found to have increased, shedding light on the previously absent piezoresistivity in ZB 

NWs. Let us consider the differences between this study and the previous one, and between the ZB and 

WZ NW shown (Figure 6b). Firstly, the gauge factors considered by Li et al. are significantly larger, 

and therefore the smaller differences considered by Zheng et al. allow better resolution, indicating that 

indeed piezoresistivity exists for ZB as well as WZ NWs. Secondly, taking a closer look at the 

deformations of the WZ and ZB NWs, it seems that the WZ NW undergoes buckling, while the ZB NW 

undergoes bending. If that is the case, the stress release associated with the buckling may result in the 

return of the current to its original level. For the ZB NW, the bending may induce compression and 

tension on different parts of the NW, resulting in current enhancement (on one of the sides). Zheng et 

al. include a detailed crystal orientation related examination of the piezoresistivity in the NWs. 

Additional studies were performed on InAs (82) and InAsP (81) NWs. In both cases the piezoresistivity 

was examined and used to explain the electromechanical gauge factor. Specifically, for InAs NWs the 

pressure dependence of surface state energy was considered (82). An interesting pattern emerges when 

considering the previous two sections: when external mechanical stresses are applied, the majority of 

studies focus on piezoresistivity. This might be due to the fact that most transport studies focus on InAs, 

usually yielding ohmic contacts thereby rendering the piezotronic effect negligible. Furthermore, most 

of these studies focused on “simple” (junction-less, non-heterostructure) NWs, where polarization 

effects are again negligible. This is unlike the studies which considered junctions and explored internal 

strain-related piezoelectric effects. However, considering piezotronics using III-V NWs for future 

applications might still be beneficial. In re-examining the results by Li et al., which remain the single 



study to date dealing with III-V NW piezotronics, the largest gauge factor was associated with the 

piezotronic effect, while the piezoresistivity-related contribution was smaller (as seen in other studies). 

We offer an intuitive explanation for this: while fundamentally piezoelectricity and piezoresistivity are 

linear (disregarding higher order phenomena for now), the current across a semiconductor barrier is 

exponentially dependent upon its height. Therefore, it might be that piezotronic devices are inherently 

more sensitive compared to piezoresistive devices, indicating that further research in this direction is 

worthwhile. 

3.3. Direct examination of piezoelectricity in III-V NWs 

 In the previous sections we have examined the application of internal piezoelectric field effects 

to explain asymmetries in the electrical conductance and photoluminescence of III-V NW 

heterostructures, and we have surveyed the current literature on external electromechanical effects in 

III-V NWs, mostly dedicated to piezoresistivity. In this section we focus on an aspect which is as 

fundamental as much as it is unavoidable for future consideration of piezoelectric-based III-V 

applications: the basic piezoelectric properties of III-V NWs. In this case, the body of work is even 

smaller than for the previous topics, consisting of four papers that we are aware of. Three of these deal 

with the piezoelectric properties of GaAs NW ensembles (85-87), and the other one, and the first study 

to-date to directly examine the piezoelectricity in single III-V (InP and GaAs) NWs, is our own recent 

publication (1). 

 In the first study by Soshnikov et al., a mixed phase (mostly WZ) GaAs NW ensemble was 

embedded in poly(methyl methacrylate) (PMMA) and contacted from top and bottom to fabricate a 

vertically aligned NW based capacitor structure (85), similar to typical piezoelectric nanogenerator 

(PENG) structures. The sample was subjected to acoustic excitation, and the generated voltage 

recorded. An effective d33 value of about 22 pmV-1 was extracted following setup calibration. These 

experimental results were further analysed, drawing attention to the order of magnitude increase in the 

extracted coefficient compared to the theoretically expected value for WZ GaAs d33 of about 2.3 pmV-1 

(86, 87). Following finite element simulations, the dominant effect in the observed increase of the 

effective piezoelectric coefficient was attributed to “pressure force enhancement”, a geometrical factor 

brought by the ratio between the top electrode surface area and the NW diameter. A similar factor 

related to the “fill-factor” of the NWs on the substrate is examined, where the effect of the PMMA 

material in between the NWs is demonstrated. The simulations successfully recreate the experimental 

trend of an optimum NW density for increasing the electromechanical coupling (Figure 7), and in 

manifesting the importance of geometry in determining the effective piezoelectric behaviour of a given 

configuration.  

 Recently we have examined single III-V NWs using a non-destructive piezoresponse force 

microscopy (PFM) apparatus (1) developed in our group (88). Briefly, PFM is a scanning probe 

technique, where an atomic force microscopy tip in contact mode applies an electrical field to a 



piezoelectric samples, thus inducing convers-piezoelectric deformations, which are picked up by the 

same tip (89). By superimposing an electrical signal on a mechanically oscillated tip probing the sample, 

we have realized a non-destructive PFM method (1). Specifically, mixed phase (predominantly ZB) 

GaAs NWs were measured in a horizontal configuration, while WZ InP NW stems were examined in a 

vertical configuration. Figure 8a shows a GaAs NW scanned across its length, and the related COMSOL 

computed deflection levels in three directions (out-of-plane, axial in-plane, transverse in-plane). It was 

found that the experimental vertical PFM signal obtained from the NW could be explained as a 

superposition of the simulated vertical deflection and the transverse in-plane deflection, coupled to the 

vertical sensor through cantilever buckling. Furthermore, the simulated axial in-plane deflection bore a 

resemblance to the measured lateral signal (in the axial direction). Figure 8b shows the results obtained 

for vertically oriented InP NWs, showing a clear distinction from the surroundings (SiNx dielectric). 

Following calibration, a value of 1 pmV-1 was extracted from this measurement, which is reasonable 

considering the known properties of InP. Interestingly, this value is 5 times larger than the minimal 

theoretical values obtained for InP, and 5 times smaller than the maximal value (see Table I). 

Nonetheless, further characterization is required to validate this result, and to decouple material intrinsic 

effect from geometrical effects in the NWs.  

 Both studies demonstrate how the system geometry has a significant influence on piezoelectric 

performance, either by device characteristics or measurement apparatus specifics (e.g., non-uniform 

field in a tip/NW/substrate configuration). These effects render the interpretation of experimental results 

challenging, conveying the importance of simulations as well as highlighting the necessity of further 

study in this topic for better understanding of fundamental and device-related piezoelectric 

performance. 

 Furthermore, both these studies indicate the piezoelectric coefficients at the 10-100 nm scale 

are similar to those theoretically predicted. This stands in some contrast to the results obtained for GaN 

NWs, where the axial piezoelectric strain coefficient (d33) was found to be 3-6 times higher than 

reported for bulk (8, 90). Minary-Jolandan et al. further reported a similar increase in the two other 

piezoelectric coefficients (8). Although we are unaware of a study directly comparing NWs and bulk 

material, Tiwary et al. went on to perform such finite element simulations (90). Their results indicate 

that the inherent softening of the NW compared to thin films (reduced mechanical constraints) might 

be behind the increased electromechanical response. In addition, first-principle studies predict the 

increase of effective piezoelectric coefficients at the extreme (1-10 nm) nanoscale (91, 92), however 

the application of these results to NWs an order of magnitude thicker would not be easily justified. In 

any case, the current picture arising form available data is that although further study of this topic is 

required, NW-based geometry might promote electromechanical applications due to enhanced 

responsivity. 

 



4. Summary and outlook 

 To conclude, we have surveyed the research done in recent years with regards to 

electromechanical and piezoelectric effects in non-nitride III-V NWs which, due to their distinct 

crystalline nature as compared to the bulk, present tremendous scope for both fundamental 

investigations as well as applications. Several trends arise which could further direct the study in this 

topic: firstly, regarding the mechanical properties of WZ III-Vs, it seems that the theoretical predictions 

hold for the elastic modulus in NWs with diameters greater than 10 nm; secondly, the unique geometry 

and crystalline properties of III-V NWs (relaxed mechanical constraints, growth in {111} orientation 

or WZ phase) imply that enhanced electromechanical properties may arise and thus should encourage 

further work in this area. Nevertheless, several aspects are crucial for further understanding of III-V 

NW piezoelectricity: (i) the role of stacking faults on the mechanical properties, and on piezoelectricity 

(as charge traps etc.); (ii) the role of non-linear piezoelectricity in III-V NWs (54), (iii) the complexities 

related to piezoelectric III-V semiconductors, particularly due to being more conductive compared to 

III-Ns, and giving rise to issues such as surface states and surface oxides. In all cases, development of 

robust and reliable nanocharacterization tools capable of measuring spatially resolved 

electromechanical properties of nanoscale materials is crucial to drive the field forward. 

 Considering the above, and the vast interest in electronic and optoelectronic applications of 

III-V NWs, further examination of the piezoelectric effect is an interesting research topic from both a 

fundamental and practical point of view, and could have potential useful applications opening up 

additional avenues for device improvement, particularly in the emerging areas of piezotronics and 

photo-piezotronics. The study of piezoelectricity in non-nitride III-V materials is particularly attractive 

considering the vast knowledge base related to these materials in terms of processing, and in particular 

in the possible combinations with optical properties in wavelengths spanning the visible spectrum. 
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Figure 1. Web of Science topical publication data:  a) “Nanogenerator” vs. 

“Piezoelectric+Nanogenerator”; b) “Nanowire” vs. “InP+Nanowire OR InAs+Nanowire OR 

GaAs+Nanowire OR GaP+Nanowire”; c) “Piezotronic” vs. “Piezotronic+GaN OR 

Piezotronic+ZnO”. 

 

 

 

 
 

Figure 2. Schematic describing the piezotronic effect: a) and b) show a piezoelectric semiconductor in 

contact with a metal, such that compression (a) and tension (b) of the semiconductor give rise 

to uncompensated surface charge at the Schottky interface – modulating the barrier height. 

Reprinted with permission from Elsevier(15). 

 

 



 
 

Figure 3. Crystal phase control in III-V NWs: a) switching from WZ to ZB by increasing growth 

precursor flow for GaAs, InAs, InP, GaP. Reprinted with permission from ACS (44)  b) HR-

TEM showing the phase purity around the GaAs crystal phase interface. Reprinted with 

permission from ACS (44); c) schematic corresponding to the interface in (c).   

 

 

 

 



 
 

Figure 4. Experimentally obtained elastic moduli values for WZ GaAs and InP NWs. a) TEM and 

finite-element analogue for compression of GaAs NWs (left) and axial Young’s modulus 

results for NWs w/wo stacking faults (right). Reprinted with permission from ACS (64); b) 

schematic of inclined InP NW bending (inset) and axial Young’s modulus results for NW 

w/wo stacking faults. Reprinted with permission from ACS (60); c) schematic of the optical 

pump-probe setup (left) and extracted vs. theoretical stiffness coefficients for WZ GaAs 

NWs. Reprinted with permission from ACS (65).  

 



 
 

 

Figure 5. Internal piezoelectric effects: a) schematic structure (top) and calculated contuction band of 

the InP/InAs double barrier resonant tunneling diode structure, with self-consistent solution 

containing the piezoelectirc fields in the structure. Reprinted with premission from AIP(74); 

b) TEM showing an InAs quantum rod embedded within an InP NW (left) and Stark effect 

characteristic low excitation blue shift measured in these structures (right). Reprinted with 

premission from AIP (75). 

 



 
 

Figure 6. Externally applied electromechanical effects: a) WZ InAs NW piezotronics. Electron 

microscopy based stretching scheme (top left), I-V curves for various strain levels (top right), 

schematic band diagram (bottom left) and electromechanical gauge factor for two strain levels 

(bottom right). Reprinted with permission from Wiley (79); b) ZB/WZ InAs NW 

piezoresistive effect. Left and right show compression experiments on ZB and WZ NWs 

correspondingly. The graphs below show the consequent strain related current levels. 

Reprinted with permission from ACS (80). 

 



 
 

Figure 7. The piezoelectric properties of GaAs NW ensembles: a) experimentally measured 

electromechanical coupling as a function of NW density; b) finite element simulation of the 

pressure force enhancement effect; c) simulation of the intra-NW medium, recreating the NW 

density effect. Reprinted with permission from Wiley (86). 

 

 

 
 

Figure 8. The piezoelectric properties single III-V NWs probed by PFM: a) Horizontally measured ZB 

GaAs NW (scheme - top left, and AFM capture – top middle), where the results from finite 

element simulations (left) successfully recreated the experimentally obtained lateral and 

vertical PFM signals (bottom middle and right); b) vertically aligned WZ InP NWs (AFM 

capture – top, PFM scanned NWs – inset) and the resulting PFM from the substrate and the 

NW (bottom), used to extract a d33 value. Reprinted with permission from IOP (1). 

  



Table I. The piezoelectric coefficients of III-V materials for ZB <111> orientation, and for WZ. 

 ZB WZ 

𝑒14̃ 𝑑14̃ 𝑑33,<111> e33,QC d33,QC d31,QC e33,AI 𝑑33,AI 𝑑31,AI 

InP 0.04 0.87 0.5 0.0231 0.22 -0.11 0.59 5.42 -2.4 

GaP 0.10 1.43 0.82 0.0577 0.37 -0.19 0.48 3.18 -1.66 

GaAs 0.16 2.6 1.54 0.0924 0.73 -0.36 0.32 2.55 -1.317 

InAs 0.05 1.25 0.72 0.0289 0.33 -0.16 0.51 5.76 -2.91 

 𝑑33 𝑑31 

GaN 2.8-3.7 (93) -(1.4-1.9) (93) 

ZnO 10-12 (2) -(3.27-5.2) (94)  

   
 


