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Computational Logic is the use of computers to
establish facts in a logical formalism. Originating in
19th-century attempts to understand the nature of
mathematical reasoning, the subject now comprises
a wide variety of formalisms, techniques and
technologies. One strand of work follows the “LCF
approach” pioneered by Robin Milner FRS, where
proofs can be constructed interactively or with the
help of users’ code (which does not compromise
correctness). A refinement of LCF, called Isabelle,
retains these advantages while providing flexibility
in the choice of logical formalism and much stronger
automation. The main application of these techniques
has been to prove the correctness of hardware and
software systems, but increasingly researchers have
been applying them to mathematics itself.
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1. Introduction
Computers control everything from heart pacemakers to aircraft, putting everyone at risk when
they fail. Computer-related failures regularly cause disruption, damage and occasionally death.
A recent example is the WannaCry ransomware attack, which hit computers around the world,
notably in the National Health Service [78]. This attack was made possible by a specific defect,
MS17-010, affecting several versions of the Windows operating system. In 1994, a floating-point
division error in the Pentium processor forced Intel to recall millions of chips at a cost of $475
million [57]. Many such failures are caused by carelessness and could be prevented by the
introduction of more disciplined development methods. The ultimate discipline is to use formal
logic and mathematics to prove the correctness of designs. This is called formal verification.

Formal verification typically relates a formal specification to a model implementation. That is, we
start with a complete description of all services to be delivered by the system (the specification)
and prove that it is satisfied by the model implementation, where both have been expressed in
some logical formalism. A proof that all services will be delivered includes a proof that no crashes
or other failures will prevent this. However, any formalised implementation must leave out some
details of the actual implementation: for example, finite-precision arithmetic may be assumed to
be exact, encryption to be unbreakable or hardware components to be infinitely fast. (Readers
may remember schoolbook physics problems involving frictionless surfaces, or when friction is
included, it is assumed to be linear.) If the model of the implementation is too unrealistic, proofs
about it will overlook certain failure modes. No model can include all real-world details, but it
is crucial to include the aspects of the implementation that we are most concerned about. For
example, in computer security, many systems can be broken without defeating the encryption
itself [51]. Then it makes sense to assume encryption to be unbreakable if that simplifies the
proofs. Validating the model is complementary to the formal proofs and could involve a variety
of methods, ranging from professional judgement to systematic testing. (It is a misconception to
think that formal proof eliminates the need for testing.)

Formal verification requires the support of specialised computer software. Computational Logic
is concerned with formal logic as implemented on computers, where it is frequently applied to
solve problems related to computation. However, formal verification is increasingly being applied
to systems that interact with the real world and deal with phenomena modelled by differential
equations, or that have to achieve goals expressed in terms of probability. Therefore, it has become
necessary to formalise mathematical knowledge.

2. A Brief History of Formal Logic
A logical formalism is a precisely defined symbolic language that includes logical primitives such
as “and” (∧), “or” (∨), “not” (¬), “implies” (→), “for all” (∀) and “there exists” (∃). It may include
the ability to define new symbols as abbreviations for other expressions. It will include rules for
making simple logical deductions: for example, from φ ∧ ψ, the conclusions φ and ψ can both be
derived; from φ we can derive φ ∨ ψ. From such basic primitives, vast swathes of mathematics
can be derived.

Formal logic emerged from philosophy in the 19th century. Gottlob Frege’s Begriffschrift
(concept language) was the first recognisably modern treatment of logic. His work introduced
the project of reducing the whole of mathematics to logic [10,21]. But Frege’s work ended with
the discovery of Russell’s paradox:

LetR be the set of all sets that are not members of themselves. Then isR a member of itself?

If R is a member of itself (written R ∈R) then it cannot be a member of R, and therefore R 6∈R;
on the other hand, if R 6∈R then R ∈R. We get a contradiction either way. Note that as long
as we confine ourselves to English, Russell’s paradox may resemble amusing puzzles such as
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“This statement is false”, but once we use a formal language with strict rules, we are in trouble.
For R 6∈R and R ∈R are both true, from which all other statements can be proved using basic
logic. There are many other paradoxes [77, p. 60], e.g. Burali-Forti, which involves constructing
the greatest ordinal number Ω, but then Ω + 1<Ω. As Gödel remarks,

By analysing the paradoxes to which Cantor’s set theory had led, [Russell] freed them
from all mathematical technicalities, thus bringing to light the amazing fact that our
logical intuitions (i.e. intuitions concerning such notions as truth, concept, being, class) are
self-contradictory. [21, p. 452]

From that moment, the development of formal logic was determined by the approach taken to
solving the paradoxes. Set comprehension — the idea that every property φ created a set, {x | φ(x)}
— somehow had to be constrained to deny the existence of {x | x 6∈ x}, the Russell set. One
approach was to restrict comprehension to some already existing set, say A, yielding the smaller
set {x∈A | φ(x)}: the elements of A satisfying the property φ. The universe of sets is not itself a
set, and it is built up from the empty set using a few primitives such as union and powerset. This
approach leads to modern axiomatic set theory [11,48].

Another solution to the paradoxes involves the notion of types. Whitehead and Russell’s
original conception of type [77, p. 37] was rather unclear [21], but by 1940, Church [14] had
developed types to a form that survives today. Rather than postulating one universal collection of
everything that exists, mathematical objects are classified into distinct types, representing smaller
collections. Every construction has a fixed type. When forming a set, all the elements must have
the same type, say τ , and the set itself will have a different type, which we may write as τ set.
Thus the fatal proposition R ∈R cannot even be written, because if R has type τ then it cannot
have type τ set at the same time.

Types seem to be unpopular with mathematicians, and it is usual to assert that mathematics
is founded on set theory. Whitehead and Russell [77], provided no notation or symbols for types,
making them invisible, while Church [14] had one single type ι of individuals encompassing
all objects that were neither sets nor functions. However, Church’s ideas entered into computer
science, particularly through his collaboration with Alan Turing, and by the early 1960s, the
logical notion of type was starting to get conflated with programming language features
(previously called “modes”) that distinguish between integer and floating-point arithmetic, for
example. The ubiquity and utility of types in computer programming may be one reason why
computer scientists tend to prefer elaborately typed formalisms.

Yet another solution to the paradoxes was the philosophy of constructive mathematics or
intuitionism [40] . Briefly, this is the view that mathematical objects exist only in our imaginations,
in contrast to the Platonist or realist view that mathematical objects have their own reality [22,
p. 323]. Intuitionism demanded a new treatment of logic, in which the disjunction ψ ∨ φ could be
true only if we knew which of the two statements,ψ or φ, was true. Many of the basic tautologies of
Boolean logic must then be rejected, starting with ψ ∨ ¬ψ (as we have no general way of knowing
which alternative holds) and with ¬¬φ a weaker statement than φ. At the level of quantifiers,
∃xφ(x) could be true only if we knew some specific value a for which φ(a) held. For that reason,
∃xφ(x) was a stronger claim than ¬[∀x¬φ(x)], although in classical logic the two formulas are
equivalent.

Intuitionism has not caught on with mainstream mathematicians. However, there are strong
links between intuitionistic logic and computation: the knowledge mentioned in the previous
paragraph had to be computable. Recent decades have seen the introduction of formalisms [15,
53] that identify intuitionistic formulas with elaborate types: every logical symbol has an
equivalent at the type level, and to prove a proposition amounts to exhibiting an element of
the corresponding type. These formalisms are highly expressive and typically, all expressions
denote computable functions. And there is a direct identification between logical propositions
and types [54]. For example, proving the formula (∀x∈A)(∃y ∈B)φ(x, y) yields a computable
function f such that if x∈A (that is, x belongs to type A) then f(x) returns some y ∈B paired
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with some sort of “evidence” affirming that the property φ(x, y) holds.1 Then we would have
shown that f had the type (

∏
x∈A)(

∑
y ∈B)φ(x, y), which we can identify with the formula

above. Here,
∏

and
∑

are the type-level counterparts of the quantifiers ∀ and ∃. The elements
of (

∏
x∈A)B(x) are functions f that map any given a∈A to some f(a)∈B(a), generalising

the function type A→B by allowing the result type to depend on the value of the argument;
similarly, the elements of (

∑
x∈A)B(x) are pairs 〈a, b〉 where a∈A and b∈B(a), generalising

the Cartesian product A×B. This “propositions as types” paradigm is the focus of much current
research; see Wadler [74] for a detailed historical introduction.

Formal verification today can therefore be done within a wide variety of logical formalisms,
which include

(i) those based on axiomatic set theory, and with no concept of type;
(ii) the simple type theory of Church, where a few primitive types can be combined using

operators such as × (Cartesian product), + (disjoint sum),→ (function space) and the set
type constructor mentioned above;

(iii) dependent type theories where types can take parameters, as in B(x), and with variable
binding as in (

∏
x∈A)B(x), thereby allowing the type of n× n matrices, for example.

The typed approaches have received the most attention in computational logic, and below we
shall focus on simple type theory. The third approach is also the focus of much research.

There are many other formalisms (for example, modal and relevance logics) and computational
logic techniques [43] not covered below. In particular, model checking techniques [44] are widely
used. They can automatically verify system properties expressed in temporal logics (for reasoning
about time). However, they rely on state enumeration rather than proof construction, so are out
of scope here.

3. Mechanised Logic: the LCF Tradition
If we want to prove theorems in a formal logic, computer power is necessary. Whitehead and
Russell’s development of basic logic, classes and relations only reaches (a precursor to!) 1+1=2
after hundreds of pages [77, p. 360]. Mathias [55] has pointed out that the representation of
the number 1 as defined by Bourbaki expands to 4,523,659,424,929 symbols. Better choices can
mitigate such issues, but the fact remains that formal proofs are extremely long and detailed.

Ideally, we would like the computer to prove our theorems automatically. If that is impossible,
then we would like to give only strategic advice, and let the machine work out the details. As
a general rule, greater automation requires the choice of a less expressive formalism. Boolean
logic (where we only have and, or, not) is decidable, so in principle, all questions can be settled
automatically. The problem is known as SAT (for Boolean SATisfiability) and although a general
solution is thought to be exponential in the number of Boolean variables, highly efficient heuristic
approaches exist. In a dramatic demonstration of this technology, Heule and Kullmann [39] solved
the Boolean Pythagorean Triples problem, an open problem in Ramsey Theory, generating a
200TB proof.

Our logic becomes more expressive if we introduce the quantifiers “for all” and “there exists”.
If we forbid quantification over functions and sets, this is called first-order logic. This theory is
complete: all theorems can be proved, given unlimited resources. But there is no general way to
determine how much effort might be required or whether the claim is false. Automatic theorem
proving in first-order logic is a significant field in its own right; one of its main achievements,
though 20 years ago, is the solution of the Robbins Conjecture [56]. Incidentally, two early titans
of computational logic — Hilary Putnam [16] and J. Alan Robinson [68] — were trained as
philosophers, and Putnam is chiefly remembered for his essays.

Unfortunately, fully automatic theorem proving cannot meet the needs of verification.
Arithmetic, functions and sets are necessary for specifying even simple systems. No automatic
1Thus, a form of the axiom of choice is actually provable in this system [54, p. 516].
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procedure can decide arbitrary statements involving integer arithmetic: this is Hilbert’s famous
Entscheidungsproblem, which was settled by Turing [71]. Another reason is that specifications may
extend to hundreds of pages, and fully automatic theorem proving does not scale well. Interactive
methods are the only feasible way to prove theorems based on huge specifications.2 And the name
most associated with interactive theorem proving is Robin Milner (FRS 1988).

Milner was interested in an obscure formalism called Logic for Computable Functions (LCF),
and built a simple proof checker while at Stanford University. It had two major drawbacks: proofs
often required long sequences of repetitive, obvious steps, and the proofs themselves took up too
much memory. Upon taking a position at the University of Edinburgh, he created an ambitious
new system called Edinburgh LCF [28], incorporating several innovations. One was to provide
the user with a specialised programming language, called ML (for metalanguage) so that users
could extend the system with their own code. That would enable them to deal with any issue
of repetitive steps by coding their own automation. Another was to eliminate the storage of
proofs through a software technique known as abstract data types. By reserving the privilege of
creating theorems to a small kernel of code, the need to store proofs was eliminated. User-supplied
automation, however faulty, could never cause Edinburgh LCF to proclaim an invalid theorem.
Edinburgh LCF also introduced an entire framework of techniques and terminology:

• theory files containing specifications and definitions of the concepts of interest: theories
can build on other theories, allowing hierarchical developments of any size.
• backward proof : one begins with a statement of the desired result and successively reduces

it (using proof tactics) to simpler statements until all have been proved.
• tacticals for combining proof tactics in simple ways, for example, repetition or executing

a series of tactics
• built in automation, for example to perform routine simplification
• along with the ability to extend this automation by writing additional ML code.

Today, almost all of the main interactive theorem provers incorporate these techniques, and in
many cases, actual code from Edinburgh LCF. ML turned out to be useful for programming in
general, and has had a huge impact on the design of modern programming languages such as
Haskell, OCaml and Scala. The meanings of LCF and ML go well beyond their literal meanings
as acronyms.3

Another significant figure in interactive theorem proving was Michael JC Gordon (FRS 1994).
He created the HOL system [27], which survives to this day in several variants, including HOL4
and HOL Light [34]. All of these are descendants of Edinburgh LCF, which he also helped to
create [28]. Even more significant is Gordon’s development of techniques for verifying computer
hardware; when he started working on this topic in the early 1980s, essentially all verification
research was focused on software. Gordon developed techniques that scaled from a single-
transistor device to an entire computer. His key insight was that the right formalism for this task
was simple type theory, also known as higher-order logic, hence HOL.

The choice of higher-order logic was radical at the time. First-order logic was dominant,
thanks perhaps to its strong theoretical properties such as completeness. Gordon noted that such
properties were irrelevant to verification, and recognised that the additional expressiveness of
higher-order logic was necessary [25]. His choice represented a return to the stronger logics
of the early twentieth century. With his students, Gordon extended his techniques to cover a
variety of digital systems, including floating-point hardware, probabilistic algorithms, and many
other applications. Typical of these is Harrison’s verification of a floating-point algorithm for the
computation of the exponential function [35]. The proof required a complete formalisation of the
IEEE floating-point standard, in all its complexity, as well as the error analysis for the algorithm
itself.

2Interactive theorem provers are also called proof assistants.
3ML can also refer to machine learning.
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While on the topic of radical choices, we must not overlook research into constructive type
theories. Inspired originally by the work of Martin-Löf [54] and by Coquand and Huet [15],
researchers built a series of interactive theorem provers, all following the Edinburgh LCF
paradigm. For reasons of space, I will only mention Coq [6], which has become perhaps the most
popular interactive theorem prover in the world. Typical of all these approaches is that through
dependent types, the type system carries out much of the reasoning burden that would otherwise
be done by explicit proof steps. Among the landmark achievements carried out using Coq are the
formal verification of a C compiler [50] and the formalisation of the odd order theorem [24]. A
full treatment of this line of work would require a separate article.

4. A New Theorem-Proving Architecture: Isabelle
During the 1980s, many different logical formalisms were competing for researchers’ attention.
In addition to LCF, type theories were evolving rapidly, along with a wide variety of formalisms
for proving software correct. One drawback of the LCF approach was its requirement that every
primitive inference rule had to be implemented as program code, and then a second time as a
proof tactic. An error in the latter code could prevent the user from obtaining the theorem they
thought they had proved, while an error in the former code could allow the system to assert false
statements as true.

To understand this drawback in more detail, consider one of the simplest logical inference
rules: if φ and ψ are theorems, then so is their conjunction, φ ∧ ψ. It is often written as

φ ψ

φ ∧ ψ.

However, note that mathematical proofs frequently involve temporary assumptions, such as
when we consider the two cases of whether some integer n is even or odd. Each of the two cases
is proved with the help of the corresponding assumption about n. So people generally adopt a so-
called natural deduction calculus, where all reasoning takes place within a context: a set of formulas
θ1, . . . , θn temporarily assumed to be true.4 In order to minimise the need for subscripting, we
typically use the large Greek letters Γ and∆ to stand for contexts. If we chose to make this explicit,
our inference rule could be written (forming what is known as a sequent calculus)

Γ =⇒ φ ∆=⇒ψ

Γ,∆=⇒ φ ∧ ψ.

Note that the two contexts are combined when we form the conclusion, since it depends on
everything assumed by the premises. And this is the simplest possible example. A number of rules
modify contexts by “discharging” assumptions. The treatment of quantified variables introduces
further technicalities.

To implement this rule using the LCF architecture (which is also adopted by the HOL family
and Coq), we begin by designing data structures that can represent the full syntax of our
formalism. Then we collect all the inference rules that need to be implemented; taken together,
they will define the abstract data type thm, the type of theorems. Each rule will take the form of a
function coded in ML. The function for the rule above will take as its arguments the two premises,
namely Γ =⇒ φ and∆=⇒ψ. This rule is simple, but in other cases, the code must make syntactic
checks on the premises to ensure that they have the correct form, and if not, signal an error. Finally,
the function returns Γ,∆=⇒ φ ∧ ψ as a value of type thm, thus certifying it to be a theorem. This
particular function is called CONJ in LCF and its descendants.

Defining type thm as outlined above implements a logic in ML, but a usable system must also
support backward proof: the ability to prove a statement of the form φ ∧ ψ by proving the two
parts separately. So we need to write another function, called a tactic, which essentially executes
the inference rule in reverse. Given the goal of the form Γ =⇒ φ ∧ ψ, it returns the two separate

4Mathematical proofs also introduce temporary quantities, as when we allow x to denote a root of some polynomial.
Therefore contexts may include a string of bound variables, but the details [60] are too complicated to present here.
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subgoals Γ =⇒ φ and Γ =⇒ψ (and note that here we have one single context, Γ , since we are
working backwards).

These subgoals are not theorems but merely statements to work on next. In order to yield
a theorem at the end, the tactic also needs to return a piece of code involving CONJ. This
theorem-yielding function is called the validation, and the design allows most of the code to lie
outside the abstract data type thm, on which the soundness of the whole system depends. If
the tactic or its validation is somehow wrong, the system’s soundness will not be compromised.
However, the user is likely to be disappointed, making the effort to prove the theorem but never
getting the theorem itself. (Instead of an error will be signalled, or possibly some other theorem
delivered.) Gordon’s retrospective on these techniques is informative [26], as is an early exposition
of mine [59].

So we see that to implement any formal calculus using the LCF architecture, every inference
rule must be implemented in code twice. There could be dozens of rules, some of them
complicated, and any error would be damaging. Modifying an LCF-style system to implement
a new formalism required months of work.

The solution to these problems is to use the LCF idea in a different way. Instead of focusing on
the theorems of the given formalism, we should focus on contextual implications of the form Γ =⇒
φ. In particular, such implications can be joined end-to-end, creating proof trees. This approach
has a number of advantages:

• Contexts are managed in the same way for every formalism being supported. Meanwhile,
formalisms that manage the context explicitly can still be handled.
• The incremental buildup of a proof tree can express both forward and backward proof.
• Subgoals can even contain shared “placeholder” variables, as may arise when proving

something like ∃x (φ(x) ∧ ψ(x)). That is to say, we can try to prove something of the form
φ(−) and if we manage to prove φ(f(1)), then the other subgoal will become ψ(f(1)).

But the main advantage is simply that inference rules can now be written as assertions. For
example, the conjunction rule above becomes

φ, ψ=⇒ φ ∧ ψ.

The rule to eliminate a disjunction (proof by case analysis) becomes

φ ∨ ψ, (φ=⇒ θ), (ψ=⇒ θ) =⇒ θ.

The rule to introduce an existential quantifier becomes

φ(a) =⇒∃xφ(x).

This architecture allows primitive inferences of a formalism to be entered more or less as they
might appear in a textbook.

Isabelle is the world’s first generic theorem prover: designed to support logical inference in
general as opposed to any single formalism. Isabelle takes some ideas from higher-order logic
to represent formal syntax and logical inference rules [61]. Notational features such as variable
binding (the i in

∑
i∈I ti) and principles such as mathematical induction could be expressed

straightforwardly, and conformance to traditional presentations could be proved [60]. Such meta-
logical systems are known as logical frameworks [33], the first of which was the AUTOMATH
language created by N. G. de Bruijn [17].

Another fundamental Isabelle principle is to provide the basic components of automatic proof
search at the lowest level. The resolution techniques of first-order logic had already shown
promise. It seemed right to adopt some of those techniques to provide automation for other
formalisms. The joining together of implications, which is Isabelle’s core inference mechanism,
is itself a form of resolution. Over the years, increasingly sophisticated forms of automatic proof
search were added to Isabelle [62].
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Have these ideas stood the test of time? Certainly Isabelle is the only widely-used interactive
theorem prover to be based on a logical framework. Meanwhile, efforts to exploit the power of
resolution theorem proving finally resulted in strong integration of the two technologies: the
sledgehammer tool [66] applies a battery of resolution theorem provers to a problem. It often
finds a proof with the help of obscure facts from Isabelle’s extensive libraries. Some of the most
impressive work done using Isabelle—from the verification of security protocols [63] to a verified
operating system kernel [46] to formalised mathematical theorems [2,65]—was only possible
thanks to Isabelle’s automation.

On the other hand, the idea of generic theorem proving is less successful. It’s true that
Isabelle has been used to support a great many formalisms [61], including a version of Martin-
Löf’s intuitionistic type theory, first-order logic, set theory and some modal logics. Isabelle/ZF
develops a substantial amount of Zermelo-Fraenkel set theory [64]. One can argue that, even in
the case of a single formalism, the use of a logical framework makes for a more flexible notion of
proof construction than that found in traditional LCF-like systems. However, Isabelle’s facility to
support multiple formalisms is hardly used. Its most popular instantiation by far is Isabelle/HOL,
which at bottom is yet another implementation of Church’s higher-order logic [14]. Constructive
type theories tend to be demanding syntactically; that research community has always preferred
to build its own tools.

Isabelle’s core ideas were in place by 1989 [60]. Since then, Isabelle development has
increasingly moved to the Technical University of Munich, under the leadership of Prof. Tobias
Nipkow. Of the innumerable contributions made there, the most important one is the Isar
structured proof language [76], which although completely formal includes many mathematical
idioms and often allows legible, natural-looking proofs. (Hitherto, Isabelle followed LCF in
expecting users to generate proofs directly through the ML programming language.) Extensions
to Isabelle’s core ideas to support higher-order logic are also due to Nipkow and his colleagues, in
particular, the notion of type classes [75]. The years have seen a long series of refinements made
and case studies undertaken. One notable example is counterexample detection [7], whereby
Isabelle can frequently inform the user that the statement under consideration is not a theorem.

5. Formalising Mathematics
The idea of performing mathematics by machine goes back at least as far as Leibniz, who invented
a calculating machine. The first mathematician to properly realise this dream was de Bruijn
[17], whose AUTOMATH project started in the 1960s and culminated in the formalisation of a
monograph on the construction of the reals [45]. De Bruijn’s approach was based on dependent
type theories of his own devising. At around the same time, Andrzej Trybulec had the idea of
formalising mathematics using a form of typed set theory; a substantial amount of mathematics
was translated into his Mizar formalism, with a particularly elegant treatment of algebraic
structures [70].

However, the main impetus for formalised mathematics has arisen from the requirements of
verification, which has been a priority area for research funding. Harrison’s early work [35] to
verify a floating-point algorithm for the exponential function naturally led to the formalisation of
increasing amounts of analysis. In order to verify probabilistic algorithms (which are controlled
by virtual coin tosses), Hurd [42] formalised some probability theory, including measure
theory and Lebesgue integration. Recent work in this direction includes Hölzl’s comprehensive
formalisation [41] of Markov chains, an abstract model of probabilistic systems that has numerous
applications. Such work has generally been done using versions of HOL and Isabelle/HOL, but
floating-point algorithms have also been verified using Coq [8].

Over time, competition arose between the proponents of different verification systems on
the basis of how many well-known theorems had been formalised in each. Harrison took the
lead here, formalising numerous results in his HOL Light system [34]. These included much of
complex analysis [36] as well as a proof of the prime number theorem [37] and many other results.
Later, Harrison played a major role in the effort to formally verify Hales’s 1998 proof [29] of the
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Kepler Conjecture, a 400-year-old problem concerning the optimal packing of spheres. Referees
had objected to this proof because of its reliance on extensive computer calculations. In response,
Hales launched the Flyspeck project [31] to formally verify his proof. Flyspeck was ultimately
successful, confirming and simplifying Hales’s argument [32]. Some of the formal proofs were
done using Isabelle [58].

This was not the first time a mathematical result was formalised in order to confirm a contested
proof. In 2005, Gonthier [23] formalised the Four Colour Theorem within Coq. The 1976 proof by
Appel and Haken was notorious for its the use of a bespoke computer program to check nearly
2000 cases. Gonthier used a similar strategy, with a crucial difference: the cases were checked by
algorithms that had been verified using Coq.

Other work of this sort concerned proofs that, while enjoying the full confidence of
mathematicians, had other issues. My own formalisation of Gödel’s second incompleteness
theorem [65] falls into this category: most published proofs are sorely lacking in detail. Fleuriot’s
formalisation [19] of some material from Newton’s Principia is remarkable for embracing
Newton’s use of infinitesimals: Fleuriot formally justifies the original proofs through non-standard
analysis, which gives a rigorous foundation to infinitesimal reasoning. Above all, we have
Gonthier’s monumental project to verify the odd order theorem [24]; the issue here is simply
size, as the theorem was originally proved in a 255-page journal article.

Generally speaking, the point of formalised mathematics is to clear up doubts, resolve
ambiguities and identify errors. Mathematicians regularly make mistakes, as examined by
Lakatos [49] in his history of Euler’s polyhedron formula; he points out that even definitions
can be wrong. Famous modern mathematicians can also be fallible:

When the Germans were planning to publish Hilbert’s collected papers and to present him
with a set on the occasion of one of his later birthdays, they realised that they could not
publish the papers in their original versions because they were full of errors, some of them
quite serious. Thereupon they hired a young unemployed mathematician, Olga Taussky-
Todd, to go over Hilbert’s papers and correct all mistakes. Olga laboured for three years. [69,
p. 201].

Increasingly, the impetus for formalising mathematics comes from mathematicians themselves.
Fields medallist Vladimir Voevodsky wrote of his horror at finding errors in his own work:

And who would ensure that I did not forget something and did not make a mistake, if even
the mistakes in much more simple arguments take years to uncover? [73]

Voevodsky’s homotopy type theory [72] is a new approach to the formalisation of mathematics. It
gives Martin-Löf’s intuitionistic type theory a new interpretation involving topological spaces,
where types denote homotopy types.5 Moreover, this interpretation suggests the new univalence
axiom, which says that isomorphic constructions can be identified [3]. These ideas have generated
widespread excitement, and experiments are under way using the Coq proof assistant.

In the opposite direction, axiomatic set theory has also been used to formalise mathematics.
Sets and types both denote collections, with one great difference: typically a variable can have
only one type but can belong to any number of sets. So set theory may offer the greatest
flexibility in formalising mathematics. Work of my own concerns proving a number of properties
to be equivalent to the axiom of choice [67] as well as formalising Gödel’s proof of the relative
consistency of the axiom of choice [64]. This work can be criticised as being only about set
theory itself. However, recent work by Zhan shows that set theory can also be used to formalise
traditional mathematical results from group theory, point-set topology and real analysis [79].

5A homotopy between two continuous functions f and g is a continuous “deformation” of f into g. With this concept one can
define an equivalence relation on topological spaces, and the resulting equivalence classes are called homotopy types.
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6. Obstacles to Formalising Mathematics
The obstacles to the formalisation of mathematics are perhaps not what people imagine. Gödel’s
theorem is not especially relevant to mathematics in practice. Even the Entscheidungsproblem is
not that relevant: when we do have decision procedures, they can be too expensive to actually
run. Anyway, our ambition is to assist mathematicians, not to replace them by computers. The
obstacles we face take a variety of forms.

Foundational. A mathematician’s imagination is unconstrained, but every formal calculus is a
rigid framework and ultimately a prison. For example, axiomatic set theory begins by creating
a world big enough for 19th-century mathematics, then escalates it through powerful principles
to create an inconceivably large universe of mathematical objects. It contains such oddities as
the limit of {ℵ0,ℵℵ0 ,ℵℵℵ0

, . . .}, a cardinal λ satisfying the equation λ= ℵλ. (The ℵ-sequence
enumerates the infinite cardinalities, starting with ℵ0: the cardinality of the integers.) Boolos [13]
frankly states that he can’t believe that such an object exists. And yet, category theory [52] begins
by creating the category of sets and functions, assuming at a stroke the existence of a mathematical
object incorporating the entire universe of sets, and building upon it. So one moment our universe
seems far too large, and a moment later, it has become too small.

Conceptual. Intuition plays a huge role in mathematics. A mathematician easily sees that a
certain function — perhaps defined by a complicated integral — is continuous. Many convergence
properties are obvious. But in some cases, the formal proofs are enormous [37]. There are a variety
of responses to this situation. One is to provide additional automation to deal with specific tasks,
such as proving asymptotic properties [18]. Another is to accept that some apparently obvious
facts, such as the Jordan curve theorem,6 really are extremely difficult to prove rigorously [30].
Another is to accept that many apparently obvious statements are actually false [49]. But for all
that, the use of any logical formalism requires immense patience.

Notational. The language of mathematics has evolved over centuries. It can be inconsistent
and ambiguous — compare sin2 x with y2x — but it is familiar and reasonably effective.
Any formalism implemented on a computer will be code, and look like it. For example, the
fundamental theorem of algebra states that if n is a positive integer and a0, a1, . . . , an are complex
numbers with an 6= 0, then anzn + · · ·+ a1z + a0 = 0 for some complex z. The HOL Light version
relaxes the precondition to a0 = 0 or otherwise that the ak are not all zero for k= 1, . . . , n:

!a n. a(0) = Cx(&0) \/ ~(!k. k IN 1..n ==> a(k) = Cx(&0))

==> ?z. vsum(0..n) (\i. a(i) * z pow i) = Cx(&0)

The elegance of the mathematical notation is completely lost. Isabelle does a bit better, allowing
the Greek alphabet and many mathematical symbols, but all such languages are still code.

One further complication deserves a mention. Many expressions of mathematics can be
undefined, e.g. some limits, derivatives, integrals or simply x/y when y= 0. A formal calculus
can deal with this problem in a number of different ways [2, §5.1]. So we may find that x/y= x/y

(when x/0 denotes some arbitrary value) or that x/y= x/y if and only if y 6= 0 (when we regard
primitive assertions about undefined values as necessarily false) or we may find that the very act
of writing x/y is forbidden unless we can prove y 6= 0. This last approach can be inconvenient [9,
§4], indeed each approach has its good and bad points. The idea that x/y is always something
horrifies some mathematicians (especially if we go further, as in Isabelle, and actually stipulate
that x/0 = 0). Elaborate treatments of definedness yield greater expressive power: paid for, as
usual, by more complicated notations and harder proofs.

7. The Way Forward
In the course of this paper we have narrowed our focus several times, deliberately seeking
out research as opposed to applications. This is necessary because computational logic tools,
6which states that every simple closed curve partitions the plane into an interior and an exterior region
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interpreted broadly, are now widely used in the development of hardware, software and in the
provision of online services. We are in danger, perhaps, of overlooking the main motivation for
computational logic: proving the correctness of computer systems. So let’s take a moment to
consider a basic problem in computer science: compiler correctness.

A compiler is a piece of software that translates program code (written in a programming
language such as C or Java) into some sort of binary form that can be executed on computer
hardware. Compilers are complex, not least because they use a wide variety of sophisticated
techniques to generate binary code that will run as fast as possible. If the compiler is somehow
faulty then it could introduce errors into the code that is actually executed. People have sought to
prove compilers correct using computational logic techniques [50]. But even if we finally obtain
a correct compiler, how do we translate it into executable binary code? A further complication
is that the semantics of a language like C has little in common with the way C is used in real
software, which relies on innumerable undefined behaviours.

Kumar et al. [47] have solved this chicken-and-egg problem. They have designed their own
programming language, CakeML, with a clean semantics. They express a simple compiling
algorithm as a mathematical function in HOL4 (a descendant of Gordon’s original HOL system).
They translate the same algorithm to CakeML and compile it to binary (for the popular x86
architecture) using HOL4 itself, giving high assurance of correctness. This yields a trustworthy
version of the compiler in binary form. Their approach is an instance of the well-known technique
of bootstrapping, where a compiler is built for a simple but adequate language and then used
as a tool to further its own development until the full language is supported. In this case, the
bootstrapping process includes verification, and is possible because HOL4 can cope with the
full binary code of the CakeML compiler. This is one representative of a large body of research
concerned with treating mathematical functions defined within a theorem prover as executable
code.

Readers who want to pursue these topics further will find surveys available on formally
verified mathematics [1] and on the history of interactive theorem proving [20,38]. Isabelle can
be downloaded via the URL https://isabelle.in.tum.de.
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