

Unicompartmental Knee Arthroplasty: The Past, Current Controversies and Future Perspectives

Journal:	Journal of Knee Surgery
Manuscript ID	JKS-17-Jul-0152-OA.R1
Manuscript Type:	Original Article
Specialty Area:	unicompartmental knee arthroplasty, osteoarthritis, implant design, history, outcomes
Abstract:	Unicompartmental knee arthroplasty (UKA) is a bone conserving and ligament-sparing procedure that reliably restores normal knee kinematics and function for arthritis limited either to the medial or the lateral compartment of the knee. Although there is enough evidence to demonstrate that the UKA offers good medium to long-term success given the correct patient selection, prosthesis design and implantation technique, there are several reports to suggest inferior survival rates in comparison with the total knee arthroplasty (TKA). Furthermore, it is a specialized procedure which works well in the hands of the experienced operator and therefore different authors' tend to draw different conclusions based on the same evidence, and as a result, there is great variability in the usage of the UKA. The aim of this current concepts review is to present to the readers the history of the UKA especially with reference to implant design, discuss current controversies and outline the future perspectives of this novel procedure.

SCHOLARONE[™] Manuscripts

Georg Thieme Publishers KG

- 1 Title
- 2 Unicompartmental Knee Arthroplasty: The Past, Current Controversies and Future
- 3 Perspectives
- 4
- $\mathbf{5}$

6 Abstract

 $\overline{7}$

8	Unicompartmental knee arthroplasty (UKA) is a bone conserving and
9	ligament-sparing procedure that reliably restores normal knee kinematics and
10	function for arthritis limited either to the medial or the lateral compartment of the
11	knee. Although there is enough evidence to demonstrate that the UKA offers good
12	medium to long-term success given the correct patient selection, prosthesis design
13	and implantation technique, there are several reports to suggest inferior survival
14	rates in comparison with the total knee arthroplasty (TKA). Furthermore, it is a
15	specialized procedure which works well in the hands of the experienced operator
16	and therefore different authors' tend to draw different conclusions based on the
17	same evidence, and as a result, there is great variability in the usage of the UKA. The
18	aim of this current concepts review is to present to the readers the history of the
19	UKA especially with reference to implant design, discuss current controversies and
20	outline the future perspectives of this novel procedure.
9 1	

- 21
- 22
- 23

- 24Keywords
- Unicompartmental knee arthroplasty (UKA), Osteoarthritis (OA), Implant design, 25
- History, Outcomes, Future 26

27 Introduction

28

29	Isolated medial compartment osteoarthritis (OA) has been reported to be present
30	in 85% of the knees presenting with clinical OA ¹ . This discovery revolutionized knee
31	arthroplasty surgery through the development of the Unicompartmental knee
32	arthroplasty (UKA) ² . Initial enthusiasm has given way to more limited use following
33	concerns over long-term survival ^{2,3} . The Australian registry's annual report in 2016
34	indicated that over 46,000 UKAs have been implanted since 1999, with a ten and
35	fifteen-year cumulative revision rate of 14.6% and 21.0%, respectively ³ . This compares
36	unfavorably with the 5.5% and 6.5% rates for TKA. Also, the UK national joint registry
37	(NJR) in 2016 described that over 784,000 TKAs and 75,000 UKAs have been
38	implanted since 2003, with a twelve-year cumulative revision rate of 3.87% and 15.0%,
39	respectively ⁴ . These may explain the reason that the number of UKAs performed in
40	2012 was 49% less than those implanted in 2003 in Australia. Contrary to this, many
41	groups have independently reported excellent results with 91% survival rate at 20
42	years using the Oxford UKA ⁵ . High volume centers seem to produce better results
43	following UKA. Robertson supported this claim by showing that surgeons
44	performing at least 24 UKAs per year achieved a survival of 93% at 9 years ⁶ .

- 45
- 46 Before we identify possible future directions, it is important to revisit the past, to
- understand the concepts behind the implant's design and the lessons learned along 47
- the way. The aim of this article is to review the evolution, current controversies, and 48
- future directions of UKA. 49

50 The History of the UKA

51

52	In 1954, Macintosh performed the first Unicompartmental inter-positional
53	replacement whilst operating on an arthritic knee with a severe valgus deformity ⁷ .
54	He noticed that the deformity could be passively corrected by tightening the medial
55	ligament to its natural tension. The prosthesis was held in position by the intrinsic
56	soft tissue constraints of the knee. Later, the acrylic prosthesis was abandoned due
57	to dissatisfaction with the results in hip arthroplasty despite Macintosh's good
58	results in 72% of the 122 patients (defined as improved gait with at least 60° of
59	flexion) ⁷ .
60	
61	In the 1960s, McKeever's tibial plateau prosthesis was designed by measuring 40
62	different sized tibiae and effectively placed on the tibial plateau. There is a constant
63	direction of stress applied to the tibial plateau but the stress applied to the distal
64	femur is varied. As a result, either one or both plateaus can be replaced ⁸ . Springer
65	studied 26 McKeever prostheses with an average patient age of 44 years. Half were

67 noted that the revisions were easy⁹. This concept of interposition replacement has a

68	modern-day equivalent in the Uni-spacer Knee System (Zimmer Inc., Warsaw,
69	Indiana), which is a highly polished cobalt-chrome interposition replacement.
70	However, Bailie in 2008 reported 44% implant revision rate within two years after
71	the operation with an unpredictable relief of pain ¹⁰ . In 1968, Gunston developed the
72	polycentric knee prosthesis, which involved replacement of both the medial and
73	lateral compartments of the knee ¹¹ . By doing this, he was able to resurface the
74	condyles while preserving the cruciate ligaments in an attempt to duplicate knee
75	kinematics more accurately.
76	
77	The first modular UKAs were developed in the late 1960's and early 70's. These
77 78	The first modular UKAs were developed in the late 1960's and early 70's. These included the St Georg Sled, the Marmor knee, the Liverpool knee, the Manchester
77 78 79	The first modular UKAs were developed in the late 1960's and early 70's. These included the St Georg Sled, the Marmor knee, the Liverpool knee, the Manchester knee and Insall's Unicondylar knee. The first of these was the St Georg Sled,
77 78 79 80	The first modular UKAs were developed in the late 1960's and early 70's. These included the St Georg Sled, the Marmor knee, the Liverpool knee, the Manchester knee and Insall's Unicondylar knee. The first of these was the St Georg Sled, designed by Buchholz and first used in 1969 ¹² . It comprised of a biconvex metal sled
77 78 79 80 81	The first modular UKAs were developed in the late 1960's and early 70's. These included the St Georg Sled, the Marmor knee, the Liverpool knee, the Manchester knee and Insall's Unicondylar knee. The first of these was the St Georg Sled, designed by Buchholz and first used in 1969 ¹² . It comprised of a biconvex metal sled and a flat ultra-high-density polyethylene tibial component. Studies of these
 77 78 79 80 81 82 	The first modular UKAs were developed in the late 1960's and early 70's. These included the St Georg Sled, the Marmor knee, the Liverpool knee, the Manchester knee and Insall's Unicondylar knee. The first of these was the St Georg Sled, designed by Buchholz and first used in 1969 ¹² . It comprised of a biconvex metal sled and a flat ultra-high-density polyethylene tibial component. Studies of these prostheses showed promising results with Engelbrecht reporting that of the 226
 77 78 79 80 81 82 83 	The first modular UKAs were developed in the late 1960's and early 70's. These included the St Georg Sled, the Marmor knee, the Liverpool knee, the Manchester knee and Insall's Unicondylar knee. The first of these was the St Georg Sled, designed by Buchholz and first used in 1969 ¹² . It comprised of a biconvex metal sled and a flat ultra-high-density polyethylene tibial component. Studies of these prostheses showed promising results with Engelbrecht reporting that of the 226 prostheses implanted, 85% of patients were pain-free ¹³ . MacKinnon later found 79%
 77 78 79 80 81 82 83 84 	The first modular UKAs were developed in the late 1960's and early 70's. These included the St Georg Sled, the Marmor knee, the Liverpool knee, the Manchester knee and Insall's Unicondylar knee. The first of these was the St Georg Sled, designed by Buchholz and first used in 1969 ¹² . It comprised of a biconvex metal sled and a flat ultra-high-density polyethylene tibial component. Studies of these prostheses showed promising results with Engelbrecht reporting that of the 226 prostheses implanted, 85% of patients were pain-free ¹³ . MacKinnon later found 79% of patients had good or excellent function ¹² . Also, Ackroyd found good or excellent

86	kinematic TKA ¹⁴ . The Manchester knee was first used in 1971, designed by Shaw &
87	Chatterjee as a polycentric TKA for use in rheumatoid arthritis ¹⁵ . As an implant, it
88	consisted of two unicondylar prostheses and had the advantage of being able to be
89	used either as a total or unicompartmental arthroplasty. The Marmor modular knee
90	was first used in 1972. There was no groove in the polyethylene component, thus
91	allowing for rotation and preventing stress ¹⁶ . The results of this prosthesis were
92	much debated, with Insall and Walter ¹⁷ reporting poor results (42% fair or poor), as
93	did Laskin 18 whilst other authors reported good results 16 . In 1972, Cavendish &
94	White developed the Liverpool knee arthroplasty ¹⁹ . The Liverpool knee was also a
95	polycentric TKA with the flexibility of being used for UKA. A specific stereotactic jig
96	system was developed especially for the Mark II Liverpool knee prosthesis
97	introduced in 1974 ¹⁹ . Walker ²⁰ found promising results for the Liverpool knee: 96.9%
98	of patients had reduced pain with 71.1% of those being pain-free or only causing
99	minimal pain, and 77.3% of patient satisfaction. Walker, Ranawat & Insall's
100	Unicondylar knee ²¹ was first used in 1976 and was designed to be an anatomical
101	replacement allowing 120° of flexion. It consisted of a Vitallium femoral component,
102	which mimicked the shape of the femoral condyles. The tibial component was made
103	of high-density polyethylene shaped to the coronal curve of the femoral

component²². Insall compared this prosthesis against the Duocondylar, Geometric, 104 and Guepar prostheses and found their Unicondylar prosthesis gave good results²³. 105106 The Oxford UKA heralded the biggest advance in modern day UKA. Goodfellow and 107O'Connor²⁴ noted the components should be shaped appropriately to allow 108 distracting, sliding and rolling forces. Moreover, the prosthesis should apply only 109 110 compressive forces to the tibial bone and the surviving soft tissue should be maximally retained and restored to natural tension. The first issue they faced in the 111 design of the prosthesis was maximizing the contact area between the two 112113 components of the prosthesis. The most effective design for this would ideally be a ball and socket joint. However, if two of these were used either side of the joint 114then only one axis of motion would be possible or the mechanics of the ligaments 115would not allow this. On the other hand, if the prosthesis were made with two 116117articular surfaces then the pressure would not be so widely distributed, resulting in greater wear of the surfaces. However, the joint would be more kinematically 118 119 functional, and compressive stress would be transmitted through the joint. The use 120of a closely fitting unconstrained washer trapped by its shape between the rounded 121femoral component and the flat tibial component enables the maximum contact

122	surface area whilst enabling a full range of movement ²⁴ . The Oxford UKA consisted
123	of a femoral component with spherical articular surfaces and a flat tibial component.
124	In between two components, an unconstrained high-density polyethylene
125	"meniscal" bearing was inserted that conformed to the metal components and was
126	retained only by its shape and soft tissue tension ²⁵ . This was first used in 1982 with
127	adjustments made in 1987. The anterior lip of the meniscal bearing was also lowered
128	to prevent it catching on the femur in extension ²⁶ . The phase 3 Oxford UKA was
129	introduced in 1998. It included a larger range of sizes and the instrumentation was
130	designed so that the procedure could be performed using a minimally invasive
131	approach ²⁷ . The current annual report from the NJR in the UK showed that greater
132	than 66% of the UKAs were Oxford ⁴ . However, the Zimmer Uni and the Sigma HP
133	appear to be gaining in popularity as well ⁴ . A timeline of the key events is shown in
134	Table 1.
135	

137 Current Perspective

138

139	Data from the UK's NJR ⁴ , shows that 75,719 UKAs have been performed between
140	2003 and 2015. Of these, fixed bearing type was used in 31.3% and mobile bearing
141	type was used in 67.6% of the cases. Average patient age was 64 years (range: 18 –
142	97 years). 5-year survival rate was 93.56% and 10-year survival rate was 88.06%,
143	which were lower than those of TKA (5-year survival rate: 97.86% (cemented) /
144	97.11% (uncemented), 10-year survival rate: 96.63% (cemented) / 95.81%
145	(uncemented)). Also, results based on the Finnish arthroplasty register between
146	1980 & 2003 found no cost benefit of UKA over TKA due to its poorer long-term
147	survival ²⁸ . However, with the development of new prostheses using newer
148	materials with improved wear properties and with closer attention to the accurate
149	alignment of the prosthesis, the survival of UKAs will hopefully be maximised ²⁹ .
150	There are a number of current controversies regarding the use of UKAs as follows;
151	
152	
153	
154	

155 Is anterior cruciate ligament (ACL) deficiency a contraindication to UKA?

156

157	Isolated ACL injury increases the risk of developing OA tenfold ³⁰ . A successful UKA
158	requires both the cruciates to be preserved, although an intact ACL was only
159	introduced as criteria in 1985 ³¹ . UKAs performed in ACL-deficient knees have been
160	noted to lead to disappointing results. Goodfellow found a 21.4% revision rate for
161	the Oxford UKA within two years in the ACL-deficient knee ³² . Engh noted increased
162	failure rates when both mobile-bearing and fixed-bearing UKAs were implanted in
163	an ACL-deficient knee ³³ . Tinius evaluated the midterm outcome of twenty-seven
164	knees that underwent simultaneous ACL reconstruction and UKA and reported
165	good functional results with no revision surgery at a mean follow-up of fifty-three
166	months ³⁴ . The Oxford Group compared outcomes following a combined ACL
167	reconstruction (ACLR) and Oxford UKA with Oxford UKAs performed with an intact
168	ACL ³⁵ . The ACLR + UKA group were significantly better than the patients with an
169	intact ACL. This could be partly explained by work by Trompeter who showed that
170	patients with macroscopically normal ACLs in arthritic knees actually showed
171	significant signs of histological degeneration ³⁶ . Citak demonstrated that with
172	respect to the Lachman and the pivot shift tests, single-bundle ACL reconstruction

restored kinematics in the UKA knee to magnitudes similar to those in the
ACL-intact knee³⁷. An in-vivo kinematic study by Pandit demonstrated that normal
knee kinematics is achieved in the ACL deficient arthritic knee, following ACL
reconstruction and UKA³⁸.

177

Are UKAs performed best in old, thin and sedentary patients with no evidence of patellofemoral arthritis?

180

Kozinn and Scott suggested that patients who weighed more than 82kg, were 181 182younger than 60, extremely active, performed heavy labor, had chondrocalcinosis, or had any exposed bone in the patellofemoral joint, had increased rates of failure 183 following UKA³⁹. The Oxford Group challenged these contraindications and 184reviewed 1,000 Oxford UKAs at a mean follow-up of 5.6 years⁴⁰. As a result, the 185clinical and functional outcome and survival of patients with each of the potential 186187contraindications were similar to or better than those without each contraindication. Berend and Lombardi compared the failure rate of mobile-bearing, 188 189medial UKA in patients with and without radiographic evidence of patellofemoral degenerative changes using 638 knees. At 70 months, Kaplan-Meier analysis 190

191	predicted 97.9% survival in knees with patellofemoral disease and 93.8% survival in
192	those without it ⁴¹ . Kang assessed functional outcome in UKAs with and without the
193	patellofemoral disease. At a mean of 3.4 years, the 195 knees showed no statistically
194	significant difference between them ⁴² . These results support that patellofemoral
195	involvement is not an absolute contra-indication to medial UKA. Heyse investigated
196	the outcomes of UKA and patellofemoral arthroplasty in nine patients with
197	bicompartmental OA ⁴³ . After an average follow-up of 11.8 years, no surgical
198	revisions were required and the Knee Society scores and WOMAC scores increased
199	significantly. On the contrary, Morrison compared functional outcomes of
200	bicompartmental knee arthroplasty (BKA) and TKA in patients with medial and
201	patellofemoral OA, and the BKA group had less pain and significantly better
202	function for the first 3 months after surgery, while it did not continue beyond 3
203	months ⁴⁴ .

Cemented vs. Uncemented Prosthesis 205

206

The majority of UKAs performed are cemented and is certainly the preferred 207method currently. However, Epinette reported good 5 to 13-year survival rates 208

209	following a hydroxyapatite-coated uncemented UKA ⁴⁵ . Lindstrand compared the
210	medium term results of UKAs using cement with those without using cement. There
211	were no differences in revision rates or other complications. However, authors
212	reported that the cemented UKAs had a higher frequency of complete pain relief ⁴⁶ .
213	Campi conducted a systematic review of uncemented UKas (1,199 knees) and
214	reported that clinical outcome, failures, reoperation rate, and survival were similar
215	to those reported for cemented implants with a lower incidence of radiolucent
216	lines ⁴⁷ .

Fixed vs. Mobile Bearing 218

217	
218	Fixed vs. Mobile Bearing
219	
220	The design rationale behind the mobile bearing was to improve knee kinematics,
221	lower contact stresses and reduce polyethylene wear. Li performed an RCT of 56
222	knees in 48 patients wherein these knees were randomized to a fixed bearing
223	(Miller/Galante) or a mobile bearing (Oxford) UKA. At two years, the mobile bearing
224	UKAs had better knee kinematics, less radiolucency but equal Knee Society,
225	WOMAC, and SF-36 scores ⁴⁸ . Manson performed a retrieval analysis to investigate
226	different wear modes in UKAs. Fixed bearing designs demonstrated increased

227	articular surface wear, delamination and surface deformation. However, mobile
228	bearing designs also underwent backside wear. When this was combined with
229	articular wear, this actually resulted in higher overall damage score than the fixed
230	bearing designs ⁴⁹ . A knee simulator study performed by Kretzer described that
231	there was no difference in kinematics and that the mobile-bearing designs showed
232	increased in-vitro wear ⁵⁰ . Despite this, a survivorship rate of 93% at 15 years for
233	mobile bearings and 90% at 10 years for fixed bearings has been reported 51 .
234	Fixed-bearing unicompartmental designs are not fully conforming, and this results
235	in higher contact stresses at the articulating surfaces and a higher wear penetration
236	rate ⁵² . On the other hand, there is no risk of bearing dislocation and an easier
237	surgical technique is claimed ⁵³ . Indeed, Paratte performed a retrospective review of
238	187 UKAs with a minimum 15-year follow-up and noted that more early
239	complications were noted in the mobile-bearing group and no difference in
240	survivorship ⁵⁴ . Furthermore, very small differences were found between the two
241	designs on gait analysis ⁵⁵ . With respect to patients' perceptions of UKAs,
242	Bhatarcharya noted that 83.5% of patients with fixed bearing UKAs were satisfied
243	compared with 93.9% of those with mobile-bearing UKAs ⁵⁶ .

Georg Thieme Publishers KG

245 Lateral vs. medial UKA

246

247	Lateral UKA is performed ten times less frequently than its medial counterpart ⁵⁷ .
248	This can explain the less abundant literature of lateral UKAs when compared with
249	the medial UKA. Marmor presented the first study to focus on lateral UKA in 1984;
250	almost a decade after the first series regarding the medial UKA was published ⁵⁸ .
251	Radiostereometric studies indicate that internal tibial rotation in flexion leads to an
252	increased posterior lateral condylar translation ⁵⁹ . Thus the kinematics of the lateral
253	compartment differs significantly to the medial side. As a result, a lateral UKA is
254	often considered to be technically more demanding than medial UKA ⁶⁰ . Historically,
255	many comparative studies have shown significantly worse results for the lateral
256	UKA, when compared with the medial UKAs. In 1981, Scott reported on 88 medial
257	and 12 lateral UKAs ⁶¹ . The lateral procedure showed more failures (17%) than the
258	medial UKA (1.1%). Gunther demonstrated 82% survival at 5-year follow-up with a
259	lateral UKA ⁶² . 10% of their revisions were due to dislocation of the bearing, which
260	contrasted significantly with the medial side (1%). This issue with the bearing
261	dislocation led to the development of a domed lateral UKA. A recent series of 265
262	domed mobile bearing lateral UKAs demonstrated 92% survival at 8 years follow-up,

with a dislocation rate of as little as 1.5%⁶³. Therefore, a lateral UKA is still a worthy option in the patient with isolated lateral compartmental arthritis, but the careful patient selection and accurate surgical implantation are paramount.

266

267 Is revision of failed UKA easy?

268

One of the major advantages of a UKA is the relative bone conserving nature of the 269procedure. However, numerous national joint registries have documented 270increased revision rates for UKAs when compared with TKAs. The Oxford Group 271published the results of the first 1,000 minimally invasive phase 3 Oxford UKAs⁶⁴. At 272a mean follow-up of 5.5 years, there was a 2.9% rate of implant related revisions. The 273most common reason for revision was a progression of arthritis in the lateral 274275compartment, followed by dislocation of the bearing. If only implant-related re-operations were considered failures, the ten-year survival rate was 96%. However, 276Wynn-Jones noted that of the 80 Oxford UKAs revised to a TKA, the median tibial 277component thickness was 15mm. Thus, tibial bone defects were common at the 278time of UKA revision, often requiring revision components and a thicker 279polyethylene insert⁶⁵. Chou commented on their UKA revisions and felt that 280

Georg Thieme Publishers KG

281	'Two-thirds of the revisions were technically difficult and required additional
282	constructs ⁶⁶ and the clinical outcome after UKA revision was inferior to that of a
283	primary TKA ⁶⁶ . Pearse examined the New Zealand registry comparing revised UKAs
284	to primary TKAs ⁶⁷ . The re-revision rate for UKAs converted to a TKA was four times
285	higher than the revision rate for primary TKAs and their clinical scores were
286	significantly worse. The re-revision rate for UKAs revised to a further UKA was 13
287	times higher than the revision rate of a primary TKA ⁶⁷ . Australian registry data has
288	shown that there is an almost 30% cumulative re-revision rate at three years for
289	UKAs revised to another UKA and that the re-revision rates for UKAs revised to a
290	TKAs and primary TKAs were similar ⁶⁸ . Järvenpää found that UKAs revised to a TKA
291	showed significantly poorer clinical outcomes than primary TKAs in an 8-17 year
292	follow-up study ⁶⁹ . Despite the cost of a TKA revision being more than a UKA revision,
293	a theoretical cost-benefit analysis showed that the money saved by lower implant
294	prices and shorter hospital stay with UKA as compared with a TKA did not cover the
295	costs of the extra revisions ²⁸ . Most registry data also shows increased revision rate
296	for UKAs when compared with TKAs. Despite the fact that UKAs outperformed
297	TKAs with respect to functional scores on the New Zealand registry, the revision
298	rate was three times as high 70 . However, if analyzing knees with a very poor

outcome (OKS < 20 points), only about 12% of TKAs were revised compared with
about 63% of UKAs with similar scores. This emphasizes the different thresholds for
revision surgery with the two procedures.

302

303 Future Perspectives

304

It is difficult to imagine which concepts will enable a UKA to survive for up to 30 305years. Improvements in polyethylene properties and kinematics of new UKA designs 306 may help to improve longevity and functional outcome. A modern technological 307 advance in computer-assisted design and imaging has led to the phenomenon of 308 patient-specific knee implants. Van Den Heever demonstrated that a 309 patient-specific UKA had lower contact stresses and more uniform stress 310 distribution at the tibiofemoral joint than a conventional implant⁷¹. Steklov showed 311that patient-specific implants allowed for matching of the coronal femoral 312curvature, subsequently decreasing contact stress and point loading across the 313joint⁷². Koeck looked at the radiographic results of 32 patient-specific fixed bearing 314UKAs⁷³. They noted restoration of limb axis, avoidance of implant malposition and 315enhancement of tibial coverage. A study by Konyves looked into long-term 316

317	outcomes following a computer-assisted navigated UKA and found better implant
318	positioning compared with a conventional UKA, while there was no difference in
319	survivorship at nine years ⁷⁴ . On the contrary, Weber found that navigation did not
320	lead to better positioning of the implant ⁷⁵ . Roche detailed the use of a
321	robotic-arm-assisted UKA with CT guidance to enhance alignment of UKA. The robot
322	is said to be "semiactive"; that is, the surgeon still retains control, but is assisted by
323	robotic guidance ⁷⁶ . Pearle reported that in the first ten patients treated with the
324	MAKO system (MAKO Surgical Corp., FL, USA), all patients were within 1.6° of the
325	mechanical axis ⁷⁷ . Furthermore, Plate showed that soft tissue balancing was
326	accurate up to 0.53 mm compared with the operative plan and 83 % of the cases
327	were within 1 mm throughout ROM in 52 patients undergoing UKA using the MAKO
328	system ⁷⁸ . Also, Cobb ⁷⁹ and Lonner ⁸⁰ have shown that robotic-assisted surgery has
329	increased accuracy in mechanical axis compared with manual UKA using Acrobot
330	(Acrobot Co. Ltd, UK) and the MAKO system.

333 Conclusions

335	Over the last 50	years, the UKA	A has developed	d from a p	prosthesis that	has limited
-----	------------------	----------------	-----------------	------------	-----------------	-------------

- use into an effective bone preserving the surgical option for unicompartmental OA.
- 337 Despite being initially disregarded, the UKA is in the middle of a renaissance and
- there are a plethora of exciting future directions to pursue, with the ultimate goal
- 339 of improved longevity and optimal function but the careful patient selection and
- 340 precision in surgical technique remain the key to a successful outcome.
- 341
- 342
- 343

344 **References**

- 346 **1.** Ahlback S. Osteoarthrosis of the knee. A radiographic investigation. Acta
- 347 *radiologica: diagnosis.* 1968:Suppl 277:277-272.
- 348 **2.** Shetty A, Tindall A, Ting P, Heatley F. The Evolution of total knee arthroscopy.
- 349 Part II:the hinged knee replacement and the semi constrained knee
- 350 replacement. *Current Orthopaedics*. 2003;17:403-407.
- 351 **3.** Australin Joint Registry Annual Report 2016.
- 352 **4.** NJR Online Annual Report 2016. 2016.
- 353 **5.** Price AJ, Svard U. A second decade lifetable survival analysis of the Oxford
- 354 unicompartmental knee arthroplasty. Clinical orthopaedics and related
- 355 research. Jan 2011;469(1):174-179.
- 356 6. Robertsson O, Knutson K, Lewold S, Lidgren L. The routine of surgical
- 357 management reduces failure after unicompartmental knee arthroplasty. The
- Journal of bone and joint surgery. British volume. Jan 2001;83(1):45-49.
- 359 **7.** MacIntosh DL, Hunter GA. The use of the hemiarthroplasty prosthesis for
- advanced osteoarthritis and rheumatoid arthritis of the knee. The Journal of
- 361 bone and joint surgery. British volume. May 1972;54(2):244-255.

362	8.	McKeever DC. The classic: Tibial plateau prosthesis.1960. Clinical
363		orthopaedics and related research. Nov 2005;440:4-8; discussion 3.
364	9.	Springer BD, Scott RD, Sah AP, Carrington R. McKeever hemiarthroplasty of
365		the knee in patients less than sixty years old. The Journal of bone and joint
366		surgery. American volume. Feb 2006;88(2):366-371.
367	10.	Bailie AG, Lewis PL, Brumby SA, Roy S, Paterson RS, Campbell DG. The
368		Unispacer knee implant: early clinical results. The Journal of bone and joint
369		surgery. British volume. Apr 2008;90(4):446-450.
370	11.	Gunston FH. Polycentric knee arthroplasty. Prosthetic simulation of normal
371		knee movement. The Journal of bone and joint surgery. British volume. May
372		1971;53(2):272-277.
373	12.	Mackinnon J, Young S, Baily RA. The St Georg sledge for unicompartmental
374		replacement of the knee. A prospective study of 115 cases. The Journal of
375		bone and joint surgery. British volume. Mar 1988;70(2):217-223.
376	13.	Engelbrecht E, Siegel A, Rottger J, Buchholz HW. Statistics of total knee
377		replacement: partial and total knee replacement, design St. Georg: a review
378		of a 4-year observation. Clinical orthopaedics and related research. Oct
379		1976(120):54-64.

380	14.	Ackroyd CE, Whitehouse SL, Newman JH, Joslin CC. A comparative study of
381		the medial St Georg sled and kinematic total knee arthroplasties. Ten-year
382		survivorship. The Journal of bone and joint surgery. British volume. Jul
383		2002;84(5):667-672.
384	15.	Shaw NE, Chatterjee RK. Manchester knee arthroplasty. The Journal of bone
385		and joint surgery. British volume. Aug 1978;60-B(3):310-314.
386	16.	Marmor L. The modular knee. Clinical orthopaedics and related research.
387		Jul-Aug 1973(94):242-248.
388	17.	Insall J, Walker P. Unicondylar knee replacement. Clinical orthopaedics and
389		related research. Oct 1976(120):83-85.
390	18.	Laskin RS. Unicompartmental tibiofemoral resurfacing arthroplasty. The
390 391	18.	Laskin RS. Unicompartmental tibiofemoral resurfacing arthroplasty. The Journal of bone and joint surgery. American volume. Mar 1978;60(2):182-185.
390 391 392	18. 19.	Laskin RS. Unicompartmental tibiofemoral resurfacing arthroplasty. The Journal of bone and joint surgery. American volume. Mar 1978;60(2):182-185. Cavendish ME, Wright JT. The Liverpool Mark II knee prosthesis. A
390 391 392 393	18. 19.	Laskin RS. Unicompartmental tibiofemoral resurfacing arthroplasty. The Journal of bone and joint surgery. American volume. Mar 1978;60(2):182-185. Cavendish ME, Wright JT. The Liverpool Mark II knee prosthesis. A preliminary report. The Journal of bone and joint surgery. British volume. Aug
 390 391 392 393 394 	18. 19.	Laskin RS. Unicompartmental tibiofemoral resurfacing arthroplasty. The Journal of bone and joint surgery. American volume. Mar 1978;60(2):182-185. Cavendish ME, Wright JT. The Liverpool Mark II knee prosthesis. A preliminary report. The Journal of bone and joint surgery. British volume. Aug 1978;60-B(3):315-318.
 390 391 392 393 394 395 	18. 19. 20.	Laskin RS. Unicompartmental tibiofemoral resurfacing arthroplasty. The Journal of bone and joint surgery. American volume. Mar 1978;60(2):182-185. Cavendish ME, Wright JT. The Liverpool Mark II knee prosthesis. A preliminary report. The Journal of bone and joint surgery. British volume. Aug 1978;60-B(3):315-318. Walker SJ, Sharma P, Parr N, Cavendish ME. The long-term results of the
 390 391 392 393 394 395 396 	18. 19. 20.	Laskin RS. Unicompartmental tibiofemoral resurfacing arthroplasty. <i>The</i> <i>Journal of bone and joint surgery. American volume.</i> Mar 1978;60(2):182-185. Cavendish ME, Wright JT. The Liverpool Mark II knee prosthesis. A preliminary report. <i>The Journal of bone and joint surgery. British volume.</i> Aug 1978;60-B(3):315-318. Walker SJ, Sharma P, Parr N, Cavendish ME. The long-term results of the Liverpool Mark II knee prosthesis. <i>The Journal of bone and joint surgery.</i>

Shetty A, Tindall A, Ting P, Heatley F. The Evolution of total knee arthroscopy.

398

21.

399		Part III:surface replacement. Current Orthopaedics. 2003;17:478-481.
400	22.	Insall J, Aglietti P. A five to seven-year follow-up of unicondylar arthroplasty.
401		The Journal of bone and joint surgery. American volume. Dec
402		1980;62(8):1329-1337.
403	23.	Insall JN, Ranawat CS, Aglietti P, Shine J. A comparison of four models of
404		total knee-replacement prostheses. The Journal of bone and joint surgery.
405		American volume. Sep 1976;58(6):754-765.
406	24.	Goodfellow J, O'Connor J. The mechanics of the knee and prosthesis design.
407		The Journal of bone and joint surgery. British volume. Aug
408		1978;60-B(3):358-369.
409	25.	Murray DW, Goodfellow JW, O'Connor JJ. The Oxford medial
410		unicompartmental arthroplasty: a ten-year survival study. The Journal of bone
411		and joint surgery. British volume. Nov 1998;80(6):983-989.
412	26.	Weale AE, Murray DW, Crawford R, et al. Does arthritis progress in the
413		retained compartments after 'Oxford' medial unicompartmental
414		arthroplasty? A clinical and radiological study with a minimum ten-year

415		follow-up. The Journal of bone and joint surgery. British volume. Sep
416		1999;81(5):783-789.
417	27.	Price AJ, Webb J, Topf H, Dodd CA, Goodfellow JW, Murray DW. Rapid
418		recovery after oxford unicompartmental arthroplasty through a short
419		incision. The Journal of arthroplasty. Dec 2001;16(8):970-976.
420	28.	Koskinen E, Eskelinen A, Paavolainen P, Pulkkinen P, Remes V. Comparison of
421		survival and cost-effectiveness between unicondylar arthroplasty and total
422		knee arthroplasty in patients with primary osteoarthritis: a follow-up study
423		of 50,493 knee replacements from the Finnish Arthroplasty Register. Acta
424		orthopaedica. Aug 2008;79(4):499-507.
425	29.	Ridgeway SR, McAuley JP, Ammeen DJ, Engh GA. The effect of alignment of
426		the knee on the outcome of unicompartmental knee replacement. The
427		Journal of bone and joint surgery. British volume. Apr 2002;84(3):351-355.
428	30.	Gillquist J, Messner K. Anterior cruciate ligament reconstruction and the
429		long-term incidence of gonarthrosis. Sports medicine (Auckland, N.Z.). Mar
430		1999;27(3):143-156.

431	31.	Goodfellow JW, Kershaw CJ, Benson MK, O'Connor JJ. The Oxford Knee for
432		unicompartmental osteoarthritis. The first 103 cases. The Journal of bone and
433		joint surgery. British volume. Nov 1988;70(5):692-701.
434	32.	Goodfellow J, O'Connor J. The anterior cruciate ligament in knee
435		arthroplasty. A risk-factor with unconstrained meniscal prostheses. Clinical
436		orthopaedics and related research. Mar 1992(276):245-252.
437	33.	Engh GA, Ammeen D. Is an intact anterior cruciate ligament needed in order
438		to have a well-functioning unicondylar knee replacement? Clinical
439		orthopaedics and related research. Nov 2004(428):170-173.
440	34.	Tinius M, Hepp P, Becker R. Combined unicompartmental knee arthroplasty
441		and anterior cruciate ligament reconstruction. Knee surgery, sports
442		traumatology, arthroscopy : official journal of the ESSKA. Jan 2012;20(1):81-87.
443	35.	Pandit H, Beard DJ, Jenkins C, et al. Combined anterior cruciate
444		reconstruction and Oxford unicompartmental knee arthroplasty. The Journal
445		of bone and joint surgery. British volume. Jul 2006;88(7):887-892.
446	36.	Trompeter AJ, Gill K, Appleton MA, Palmer SH. Predicting anterior cruciate
447		ligament integrity in patients with osteoarthritis. Knee surgery, sports

448		traumatology, arthroscopy : official journal of the ESSKA. Jun
449		2009;17(6):595-599.
450	37.	Citak M, Bosscher MR, Citak M, Musahl V, Pearle AD, Suero EM. Anterior
451		cruciate ligament reconstruction after unicompartmental knee arthroplasty.
452		Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA.
453		Oct 2011;19(10):1683-1688.
454	38.	Pandit H, Van Duren BH, Gallagher JA, et al. Combined anterior cruciate
455		reconstruction and Oxford unicompartmental knee arthroplasty: in vivo
456		kinematics. The Knee. Mar 2008;15(2):101-106.
457	39.	Kozinn SC, Scott R. Unicondylar knee arthroplasty. The Journal of bone and
458		joint surgery. American volume. Jan 1989;71(1):145-150.
459	40.	Pandit H, Jenkins C, Gill HS, et al. Unnecessary contraindications for
460		mobile-bearing unicompartmental knee replacement. The Journal of bone
461		and joint surgery. British volume. May 2011;93(5):622-628.
462	41.	Berend KR, Lombardi AV, Jr., Morris MJ, Hurst JM, Kavolus JJ. Does
463		preoperative patellofemoral joint state affect medial unicompartmental
464		arthroplasty survival? Orthopedics. Sep 2011;34(9):e494-496.

465	42.	Kang SN, Smith TO, Sprenger De Rover WB, Walton NP. Pre-operative
466		patellofemoral degenerative changes do not affect the outcome after
467		medial Oxford unicompartmental knee replacement: a report from an
468		independent centre. The Journal of bone and joint surgery. British volume. Apr
469		2011;93(4):476-478.
470	43.	Heyse TJ, Khefacha A, Cartier P. UKA in combination with PFR at average
471		12-year follow-up. Archives of orthopaedic and trauma surgery. Oct
472		2010;130(10):1227-1230.
473	44.	Morrison TA, Nyce JD, Macaulay WB, Geller JA. Early adverse results with
474		bicompartmental knee arthroplasty: a prospective cohort comparison to
475		total knee arthroplasty. The Journal of arthroplasty. Sep 2011;26(6
476		Suppl):35-39.
477	45.	Epinette JA, Manley MT. Is hydroxyapatite a reliable fixation option in
478		unicompartmental knee arthroplasty? A 5- to 13-year experience with the
479		hydroxyapatite-coated unix prosthesis. The journal of knee surgery. Oct
480		2008;21(4):299-306.

481	46.	Lindstrand A, Stenstrom A, Egund N. The PCA unicompartmental knee. A
482		1-4-year comparison of fixation with or without cement. Acta orthopaedica
483		Scandinavica. Dec 1988;59(6):695-700.
484	47.	Campi S, Pandit HG, Dodd CA, Murray DW. Cementless fixation in medial
485		unicompartmental knee arthroplasty: a systematic review. Knee surgery,
486		sports traumatology, arthroscopy : official journal of the ESSKA. Jul 19 2016.
487	48.	Li MG, Yao F, Joss B, Ioppolo J, Nivbrant B, Wood D. Mobile vs. fixed bearing
488		unicondylar knee arthroplasty: A randomized study on short term clinical
489		outcomes and knee kinematics. The Knee. Oct 2006;13(5):365-370.
490	49.	Manson TT, Kelly NH, Lipman JD, Wright TM, Westrich GH. Unicondylar knee
491		retrieval analysis. The Journal of arthroplasty. Sep 2010;25(6 Suppl):108-111.
492	50.	Kretzer JP, Jakubowitz E, Reinders J, et al. Wear analysis of unicondylar
493		mobile bearing and fixed bearing knee systems: a knee simulator study. Acta
494		biomaterialia. Feb 2011;7(2):710-715.
495	51.	Saccomanni B. Unicompartmental knee arthroplasty: a review of literature.
496		Clinical rheumatology. Apr 2010;29(4):339-346.

497	52.	Collier MB, Engh CA, Jr., McAuley JP, Engh GA. Factors associated with the
498		loss of thickness of polyethylene tibial bearings after knee arthroplasty. The
499		Journal of bone and joint surgery. American volume. Jun 2007;89(6):1306-1314.
500	53.	Emerson RH, Jr., Hansborough T, Reitman RD, Rosenfeldt W, Higgins LL.
501		Comparison of a mobile with a fixed-bearing unicompartmental knee implant.
502		Clinical orthopaedics and related research. Nov 2002(404):62-70.
503	54.	Parratte S, Pauly V, Aubaniac JM, Argenson JN. No long-term difference
504		between fixed and mobile medial unicompartmental arthroplasty. Clinical
505		orthopaedics and related research. Jan 2012;470(1):61-68.
506	55.	Catani F, Benedetti MG, Bianchi L, Marchionni V, Giannini S, Leardini A.
507		Muscle activity around the knee and gait performance in unicompartmental
508		knee arthroplasty patients: a comparative study on fixed- and
509		mobile-bearing designs. Knee surgery, sports traumatology, arthroscopy :
510		official journal of the ESSKA. Jun 2012;20(6):1042-1048.
511	56.	Bhattacharya R, Scott CE, Morris HE, Wade F, Nutton RW. Survivorship and
512		patient satisfaction of a fixed bearing unicompartmental knee arthroplasty
513		incorporating an all-polyethylene tibial component. The Knee. Aug
514		2012;19(4):348-351.

515	57.	Heyse TJ,	Tibesku CO.	Lateral unicom	partmental kn	ee arthroplasty	: a review.
-----	-----	-----------	-------------	----------------	---------------	-----------------	-------------

- 516 Archives of orthopaedic and trauma surgery. Dec 2010;130(12):1539-1548.
- 517 **58.** Marmor L. Lateral compartment arthroplasty of the knee. Clinical
- 518 orthopaedics and related research. Jun 1984(186):115-121.
- 519 **59.** Hill PF, Vedi V, Williams A, Iwaki H, Pinskerova V, Freeman MA. Tibiofemoral
- 520 movement 2: the loaded and unloaded living knee studied by MRI. The
- 521 Journal of bone and joint surgery. British volume. Nov 2000;82(8):1196-1198.
- 522 60. Scott RD. Lateral unicompartmental replacement: a road less traveled.
- 523 Orthopedics. Sep 2005;28(9):983-984.
- 524 61. Scott RD, Santore RF. Unicondylar unicompartmental replacement for
- 525 osteoarthritis of the knee. The Journal of bone and joint surgery. American
- 526 volume. Apr 1981;63(4):536-544.
- **62.** Gunther T, Murray D, Miller R. Lateral unicompartmental knee arthroplasty
- 528 with Oxford meniscal knee. The Knee. 1996;3:33-39.
- 529 63. Weston-Simons JS, Pandit H, Kendrick BJ, et al. The mid-term outcomes of
- 530 the Oxford Domed Lateral unicompartmental knee replacement. The bone &
- 531 joint journal. Jan 2014;96-B(1):59-64.

532	64.	Pandit H, Jenkins C, Gill HS, Barker K, Dodd CA, Murray DW. Minimally
533		invasive Oxford phase 3 unicompartmental knee replacement: results of
534		1000 cases. The Journal of bone and joint surgery. British volume. Feb
535		2011;93(2):198-204.
536	65.	Wynn Jones H, Chan W, Harrison T, Smith TO, Masonda P, Walton NP.
537		Revision of medial Oxford unicompartmental knee replacement to a total
538		knee replacement: similar to a primary? <i>The Knee.</i> Aug 2012;19(4):339-343.
539	66.	Chou DT, Swamy GN, Lewis JR, Badhe NP. Revision of failed
540		unicompartmental knee replacement to total knee replacement. The Knee.
541		Aug 2012;19(4):356-359.
542	67.	Pearse AJ, Hooper GJ, Rothwell A, Frampton C. Survival and functional
543		outcome after revision of a unicompartmental to a total knee replacement:
544		the New Zealand National Joint Registry. The Journal of bone and joint
545		surgery. British volume. Apr 2010;92(4):508-512.
546	68.	Hang JR, Stanford TE, Graves SE, Davidson DC, de Steiger RN, Miller LN.
547		Outcome of revision of unicompartmental knee replacement. Acta
548		orthopaedica. Feb 2010;81(1):95-98.

Georg Thieme Publishers KG

549	69.	Jarvenpaa J, Kettunen J, Miettinen H, Kroger H. The clinical outcome of					
550		revision knee replacement after unicompartmental knee arthroplasty versus					
551		primary total knee arthroplasty: 8-17 years follow-up study of 49 patients.					
552		International orthopaedics. Jun 2010;34(5):649-653.					
553	70.	Goodfellow JW, O'Connor JJ, Murray DW. A critique of revision rate as an					
554		outcome measure: re-interpretation of knee joint registry data. The Journal					
555		of bone and joint surgery. British volume. Dec 2010;92(12):1628-1631.					
556	71.	Van Den Heever DJ, Scheffer C, Erasmus PJ, Dillon EM. Contact stresses in a					
557		patient-specific unicompartmental knee replacement. Conference					
558		proceedings : Annual International Conference of the IEEE Engineering in					
559		Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society.					
560		Conference. 2010;2010:5113-5116.					
561	72.	Steklov N, Slamin J, Srivastav S, D'Lima D. Unicompartmental knee					
562		resurfacing: enlarged tibio-femoral contact area and reduced contact stress					
563		using novel patient-derived geometries. The open biomedical engineering					
564		journal. 2010;4:85-92.					

565	73 .	Koeck FX, Beckmann J, Luring C, Rath B, Grifka J, Basad E. Evaluation of
566		implant position and knee alignment after patient-specific
567		unicompartmental knee arthroplasty. <i>The Knee</i> . Oct 2011;18(5):294-299.
568	74.	Konyves A, Willis-Owen CA, Spriggins AJ. The long-term benefit of
569		computer-assisted surgical navigation in unicompartmental knee
570		arthroplasty. Journal of orthopaedic surgery and research. 2010;5:94.
571	75.	Weber P, Utzschneider S, Sadoghi P, et al. Navigation in minimally invasive
572		unicompartmental knee arthroplasty has no advantage in comparison to a
573		conventional minimally invasive implantation. Archives of orthopaedic and
574		trauma surgery. Feb 2012;132(2):281-288.
575	76.	Roche M, O'Loughlin PF, Kendoff D, Musahl V, Pearle AD. Robotic
576		arm-assisted unicompartmental knee arthroplasty: preoperative planning
577		and surgical technique. American journal of orthopedics (Belle Mead, N.J.). Feb
578		2009;38(2 Suppl):10-15.
579	77.	Pearle AD, O'Loughlin PF, Kendoff DO. Robot-assisted unicompartmental

knee arthroplasty. The Journal of arthroplasty. Feb 2010;25(2):230-237. 580

581	78.	Plate JF, Mofidi A, Mannava S, et al. Achieving accurate ligament balancing
582		using robotic-assisted unicompartmental knee arthroplasty. Advances in
583		orthopedics. 2013;2013:837167.
584	79.	Cobb J, Henckel J, Gomes P, et al. Hands-on robotic unicompartmental knee
585		replacement: a prospective, randomised controlled study of the acrobot
586		system. The Journal of bone and joint surgery. British volume. Feb
587		2006;88(2):188-197.
588	80.	Lonner JH, John TK, Conditt MA. Robotic arm-assisted UKA improves tibial
589		component alignment: a pilot study. Clinical orthopaedics and related
590		research. Jan 2010;468(1):141-146.
591		
592		
593		

1 **Table 1**

- $\mathbf{2}$
- 3 A timeline of the key events in the development of unicompartmental knee

4 arthroplasty

 $\mathbf{5}$

Material used	Year	Inventor	Name
Acrylic	1954	MacIntosh	
	1960s	McKeever	
Vitallium	1964	MacIntosh	
Vitallium	1968	Gunston	Polycentric Knee
		0	Prosthesis
	1969		St Georg Sled
Stainless Steel	1971	Shaw and Chatterjee	Manchester
High-density			
polyethylene			

	1972 Cavendish and White		Liverpool
Polyethylene	1972	Marmor	Marmor Modular
	1974	Cavendish and White	Mark II Liverpool
Vitallium	1976	Insall, Walker and	Insall's
0		Ranawat	
Cobalt-chrome	1982	Goodfellow and	Oxford
		O'Connor	