
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Leveraging hierarchical memories for micro-core architectures

Citation for published version:
Brown, N & Jamieson, M 2018, 'Leveraging hierarchical memories for micro-core architectures' 5th
International Conference on Exascale Applications and Software, Edinburgh, United Kingdom, 17/04/18 -
19/04/18, .

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 14. Jun. 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/158355148?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/leveraging-hierarchical-memories-for-microcore-architectures(1930de8b-bed0-48ba-99b8-91711383b42a).html


EASC 2018

Leveraging hierarchical memories for micro-core architectures

Nick Brown,1 Maurice Jamieson1

1EPCC, The University of Edinburgh, Scotland, n.brown@epcc.ed.ac.uk, maurice.jamieson@ed.ac.uk

1. Background

Micro-core architectures combine many simple, low power and low on-chip memory cores onto
a single processor package. The low power nature of these architectures means that there is
potential for their use in future HPC and embedded systems, and their low cost makes them
ideal for education and prototyping. However there is a high barrier to entry in programming
due to the considerable complexity and immaturity of supporting tools.

ePython is a Python virtual machine we have developed for the 16-core Epiphany III micro-
core architecture which fits in the 32Kb per core memory. In combination we developed an
abstraction that supports offloading functions in existing Python codes, running on a host
CPU, seamlessly to the micro-cores. In [1] we introduced this abstraction and motivated it
with a machine learning code for detecting lung cancer in 3D CT scans where kernels for model
training and inference ran in parallel on the micro-cores. However the small amount of core
memory severely limited the physical size of the images, which had to be interpolated to fit.

2. Hierarchical memories

Figure 1. Typical Epiphany memory
hierarchy

In addition to the small on-core memory, there is typically
much larger, slower external memory as illustrated for the
Epiphany by figure 1. In order to take full advantage of
these architectures one must leverage these hierarchies of
memory, but a key question is how best to achieve this
whilst maintaining good performance.

In this work we have addressed this challenge by splitting
the memory abstraction into three choices:

A mirroring of memory where copies of external memory also exist on the micro-cores.
A manually copying of data to and from the different memory levels is required.

Memory can be exposed from a specific level in the hierarchy to the micro-cores without an
explicit copy being allocated. Reads and writes directly access this external memory, these
accesses being blocking or non-blocking (using the DMA engines.) Abstractions around
the non-blocking approach enables the programmer to leverage patterns such as double
buffering and data streaming to overlap compute and memory access for performance.

By default memory belongs to the hierarchical level where it is first declared. It is possible
to override this via memory kinds [2]. In our approach these are Python objects that
follow a standard interface and sit outside of the core ePython implementation. They
define the behaviour of memory access at the level of hierarchy they represent.

Based upon this work we are now able to run the machine learning code of [1] with the full
sized images. The programmer is able to experiment with choices around memory placement
and access patterns without having to worry about the low level complexities of data movement.

References

[1] Brown, N. Offloading Python kernels to micro-core architectures, Poster Supercomputing 2017, Denver US

[2] Cantalupo, C. et al. Memkind: An Extensible Heap Memory Manager for Heterogeneous Memory Platforms
and Mixed Memory Policies. No. SAND2015-1862C. SNL-NM, Albuquerque, NM (United States), 2015.


