Edinburgh Research Explorer

Wisdom of the crowd from unsupervised dimension reduction

Citation for published version:
Wang, L & Michoel, T 2017 '"Wisdom of the crowd from unsupervised dimension reduction' ArXiv.

Link:
Link to publication record in Edinburgh Research Explorer

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN (75} ACCESS

Download date: 14. Jun. 2018


https://www.research.ed.ac.uk/portal/en/publications/wisdom-of-the-crowd-from-unsupervised-dimension-reduction(63fadac9-ae6a-4306-948f-1152df6be309).html

arXiv:1711.11034v1 [stat.ML] 28 Nov 2017

Wisdom of the crowd from unsupervised dimension re-
duction
Lingfei Wang| and Tom Michoel

Division of Genetics and Genomics, The Roslin Institute, The University of Edinburgh,
Easter Bush, Midlothian EH25 9RG, UK

Abstract

Wisdom of the crowd, the collective intelligence derived from responses of multiple human or ma-
chine individuals to the same questions, can be more accurate than each individual, and improve
social decision-making and prediction accuracy ([I}, 2, B, [4, [5]). This can also integrate multiple pro-
grams or datasets, each as an individual, for the same predictive questions. Crowd wisdom estimates
each individual’s independent error level arising from their limited knowledge, and finds the crowd
consensus that minimizes the overall error. However, previous studies have merely built isolated,
problem-specific models with limited generalizability, and mainly for binary (yes/no) responses. Here
we show with simulation and real-world data that the crowd wisdom problem is analogous to one-
dimensional unsupervised dimension reduction in machine learning. This provides a natural class of
crowd wisdom solutions, such as principal component analysis and Isomap, which can handle binary
and also continuous responses, like confidence levels, and consequently can be more accurate than
existing solutions. They can even outperform supervised-learning-based collective intelligence that is
calibrated on historical performance of individuals, e.g. penalized linear regression and random forest.
This study unifies crowd wisdom and unsupervised dimension reduction, and thereupon introduces a
broad range of highly-performing and widely-applicable crowd wisdom methods. As the costs for data
acquisition and processing rapidly decrease, this study will promote and guide crowd wisdom applica-
tions in the social and natural sciences, including data fusion ([6]), meta-analysis ([5]), crowd-sourcing

([3,7]), and committee decision making ([2} §]).

Results

Although wisdom of the crowd and its philosophy have been discovered and rediscovered in a wide
range of sociological and statistical contexts, most studies rely on the fundamental assumption that
each individual is an independent estimator of the ground-truth, possessing their knowledge as the

signal and bias as the error (Figure [1]A). As long as the group or ensemble of individuals remain
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Figure 1: Illustrations of wisdom of the crowd. (A) Probablistic graph of the conventional
crowd wisdom. Each individual is assumed to contain independent errors on top of the true class. (B)
Probablistic graph of the new crowd wisdom. The intermediate continuous variable of class probability
is introduced as what individuals estimate with independent errors. (C) Illustrative application of
PCA crowd wisdom on two individuals independently estimating the class probability. (D, E) PCA
recovered classification (D) and individual accuracy (E, in terms of AUROC as radius) in PC1 direction
the on DREAM?2 dataset.

unbiased as a whole, aggregating individual estimators for the same predictive variables would still
strengthen the signal and cancel out their errors. This can be regarded as a more complex version of
averaging multiple measurements of the same variable.

However, previous crowd wisdom classification studies have focused predominantly on binary re-
sponses and problem-specific models ([9, [7, 4, [10]). The confusion matrices of individuals and the
binary true classes are fit in turn to maximize the model’s likelihood with expectation-maximization.
Where available, continuous individual predictions such as confidence levels are thresholded and mostly
lost, potentially limiting the classification accuracy and generalizability, whilst the proper choice of
threshold can also be difficult.

To resolve this issue and to link crowd wisdom with machine learning, we consider continuous rather
than binary variables for individual responses. Due to a lack of complete information to perfectly
determine the true class, we introduce an unknown intermediate layer representing the probability
of the true class (class probability, Figure ) In the simplest scenario, individual responses are
then independent continuous estimations of the class probability. More generally, individuals can

also characterize and estimate classification confidence with any other continuous scores, which are



assumed to be equivalent in ranking with the class probability. Binary responses can also be treated
as numerical Os and 1s.

The continuous crowd wisdom classification problem can then be solved by unsupervised dimen-
sion reduction. Unsupervised dimension reduction infers the latent lower dimensions by which the
input data are assumed to be parameterized. In crowd wisdom (Figure ), each individual inde-
pendently estimates, and is effectively parameterized by, the class probability alone. Therefore, the
class probability may be recovered as the first and only dimension (Figure , subjecting to a mono-
tonic transformation). This makes dimension reduction the natural crowd wisdom for classification
problems with continuous information. Which dimension reduction method is the best then depends
on various aspects of the problem, such as nonlinearity. As a brief demonstration with the DREAM2
BCL6 Transcription Factor Prediction challenge dataset, containing the confidence scores of 200 genes
as potential targets of BCL6 (i.e. questions) submitted by 8 teams (i.e. individuals) (JI1 12, 13]), the
first principal component (PC1) direction of the gene-by-individual matrix gave an accurate represen-
tation of the class probability ranking (Figure [1[D) and the performance of each individual (Figure
1[E).

To first evaluate dimension reduction methods on binary responses, we envisioned an algorithm-
assisted diagnostic committee of 24 dermatologists whose skin cancer classifications are known for 111
dermoscopy images ([I4]). As a comparison, we applied principal component analysis (PCA), factor
analysis (FA), multi-dimensional scaling (MDS), locally linear embedding (LLE), Hessian LLE, local
tangent space alignment (LTSA), Isomap, and spectral embedding to estimate the class probability
ranking from the individual classifications (Methods). PCA and FA were superior to most dermatol-
ogists and were among the top crowd wisdoms. Nearest neighbor based methods were not significantly
more accurate than PCA, but instead converged towards PCA at large numbers of neighbors, sug-
gesting no significant nonlinearity (Figure ) PCA and FA offered continuous confidence levels
which reduced to state-of-the-art binary crowd wisdom solutions from SML ([4]) and CUBAM ([15])
at certain thresholds (Figure 2AB, Figure [S1AB). Interestingly, more than 15 crowd wisdoms had
better classification performance than a deep neural network trained on 130k clinical images (Figure
BE, Table [14]). This demonstrates the cutting-edge efficacy from dimension reduction on
the binary crowd wisdom task.

To test whether continuous confidence information can improve accuracy, we applied the same di-
mension reduction methods on the DREAM?2 dataset, as well as on their perfectly binarized yes/no re-
sponses (Methods). PCA on continuous confidence levels was more accurate than SML and CUBAM
on binarized responses (Figure D, Figure . Performance differences between crowd wisdoms

were in agreement with the skin cancer classification data, except that mean and median — often the
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Figure 2: Dimension reduction methods outperformed most or all individuals and existing
crowd wisdoms by accounting for confidence information. (A, B, C, D) ROC (A, C) and
Precision-Recall (B, D) curves and plots of individual responses, a deep neural network, existing
crowd wisdoms, and selected dimension reduction methods for skin cancer classification (A, B) and
the DREAM2 challenge (C, D). The best parameter (in E or F) was selected according to AUROC
(A, C) or AUPR (B, D). PCA is selected for non-parametric dimension reduction. SML and CUBAM
only accept and output binary responses (Methods). (E, F) AUROC and AUPR from individual
responses, dimension reduction, existing crowd wisdom methods, and a deep neural network for skin
cancer classification (E) and the DREAM2 challenge (F). The top-right 15 predictions are magnified
in the inset. Numbers indicate the number of nearest neighbors.



default crowd wisdom method for continuous data ([3]) — could not account for worse-than-random
individuals (Figure DF, Figure D, Figure . Many dimension reduction methods, includ-
ing PCA and Isomap, outperformed every team. Dimension reduction provided reliable and superior
crowd wisdom from confidence information without knowing the true class distribution.

Knowledge of the ground-truth for a subset of questions may help calibrating response aggregations
for the remaining questions. For instance, in daily life we trust people and favor programs that were
more accurate historically. To compare calibrated response aggregations against ground-truth-ignorant
crowd wisdoms, we cross-validated crowd wisdoms and 8 popular supervised classifiers [including
linear, logistic, lasso, and elasticnet regression, linear discriminant analysis (LDA), support vector
machine (SVM), kNN, and random forest] that were trained on randomly selected question subsets
(Methods). Surprisingly, crowd wisdom had equal or better performance than supervised classifiers
for both the DREAM2 and the skin cancer datasets in terms of AUROC and AUPR (Figure
Figure Figure . Supervised classifiers could only reach crowd wisdom’s performance with
50% of training data or more (Figure Figure . Considering that the true answers in practical
research questions are largely unknown, unsupervised crowd wisdom outperformed supervised learning
by integrating the test dataset to better estimate individual accuracies.

We further interrogated crowd wisdoms in controlled simulations. With 2000 replicated simulations
for each parameter set, we found SML to highly correlate with and converge to thresholded PCA as
the number of individuals increases (Figure B, Methods). SML was consequently less sensitive
than PCA due to the loss of information, even in perfect binarizations of confidence levels (Figure
ElC, Student’s t-tests P < 1070 Figure Methods). CUBAM was also less sensitive after
binarization than PCA. In single simulations (Methods), PCA, FA, Isomap, and LLE converged
to perfect class probability predictions as the number of individuals increased (Figure , Figure
Figure -I), but LLE based methods were unreliable on noisy datasets (Figure K,
[16]). Single simulations also reaffirmed our existing conclusions. PCA, FA, and Isomap continued to
lead the performances (Figure Figure and crowd wisdom remained superior to supervised
classifiers (Figure , Figure . Mean and median were again hindered by worse-than-random
individuals (Figure , Figure . Overall, PCA and Isomap are more reliable and accurate
than other dimension reduction methods and previous wisdom of the crowd methods.

By embedding wisdom of the crowd in unsupervised dimension reduction, we have found that
PCA and Isomap are efficient, accurate, consistent, and generic algorithms. Unsupervised dimension
reductions obtain superior performances over calibrated crowd wisdoms from supervised classifiers.
This study does not consider datasets with missing values ([7]), strongly correlated errors between

individuals ([I7, 18]), or post-crowd-wisdom thresholding. Future research on these problems within
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Figure 3: Crowd wisdom outperformed supervised learning in cross-validation. Empirical
distributions and medians of AUROC (left) and AUPR (right) of top crowd wisdom and supervised
learning methods in 200 cross-validations with 25% random partition of training data are shown for the
DREAM?2 (A) and skin cancer (B) datasets. Method names include the numbers of nearest neighbors
in brackets, and are italicized for supervised classifiers. Numbers next to the frames represent rankings
of the methods in terms of median AUROC or AUPR among all 66(A)/64(B) methods. Colors reflect
methods’ relative rankings in performance. Only the top 5 crowd wisdoms and top 3 supervised

classifiers in either AUROC and AUPR are shown.
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the dimension reduction framework may further widen the applications of crowd wisdom.

Methods

DREAMZ2 BCL6 Transcription Factor Prediction challenge dataset

The DREAM2 BCL6 Transcription Factor Prediction Challenge is an open crowd challenge to infer
BCL6 gene’s transcriptional targets ([I1),12,13]). Participating teams inferred BCL6 targets from gene
expression microarray and optional external data, and submited confidence scores for 200 potential
target genes. Submissions were evaluated against the gold standard derived from ChIP-on-chip and
perturbation experiments, containing 53 BCL6 targets. We had access to submissions from 11 teams,

in which 8 were full (without missing predictions) and were used for crowd wisdom.

Skin cancer classification dataset

Deep neural networks outperformed an average dermatologist in the classification of skin cancer from
dermoscopy images ([14]). Based on dermoscopy images alone, dermatologists were asked whether
to biopsy/treat the lesion or to reassure the patient. We obtained 24 dermatologists’ responses to
111 biopsy-proven dermoscopy images in which 71 were malignant. We also obtained the predicted

confidence scores for these images from the deep neural network in [I4].

Simulated datasets

A simulated dataset of n binary (yes/no) questions contains their true classes, the (posterior) class
probabilities given all the relevant data for each question as P;(Yes | data), and the responses from
k individuals to all n questions as matrix R = {r;;}, fori =1,...,n, j =1,..., k. Given the desired
occurrence frequency of class yes as P(Yes), the dataset needs to contain nP(Yes) questions in class
yes and n(1 — P(Yes)) in class no. We simulated the true classes, class probabilities, and individual

responses (Figure [1B) according to the following steps:

1. Simulate class probabilities P(Yes | data) ~ B(3,3), where B is the Beta distribution and
characterizes the question difficulty given all the data. For each question, set the true class to
yes with probability P(Yes | data) and no otherwise. Only the first nP(Yes) questions in yes
class and the first n(1 — P(Yes)) questions in no class were retained, merged, and shuffled to
form the full list of questions ¢ = 1,...,n. Their class probability P;(Yes | data) and true classes

were recorded.

2. Simulate individual responses R. Individual j’s response to question i is 7j; ~ N(a;P;(Yes |

data),1), where aj ~ N(a,o2).



3. Normalization was applied (cf below).

The simulation takes 6 parameters: k, n, P(Yes), 8, &, and o4. See Table for parameter values.

Perfect binarization

To transform confidence level responses to binary (yes/no) responses, we chose the ideal scenario for
existing binary crowd wisdom methods, by assuming that each individual knows the true total number
of yes responses. Consequently, each individual will select that same number of their most confident

predictions as yes, and the rest as no. Ties at the yes/no boundary are selected at random.

Normalization

We normalized raw answers from multiple individuals to multiple questions before applying crowd
wisdom or supervised learning (in cross validation). For continuous datasets, we first converted raw
answers into rankings, separately for each individual and with ties averaged. Then, for all datasets,
we shifted the raw or rank-converted values to zero mean and scaled them to unit variance, separately

for each individual.

Dimension reduction as wisdom of the crowd

From the python package scikit-learn, we applied the following dimension reduction methods for
crowd wisdom: TruncatedSVD (as PCA) and FactorAnalysis in sklearn.decomposition, and Local-
lyLinearEmbedding (with methods standard, hessian, and ltsa), Isomap, and SpectralEmbedding in
sklearn.manifold. Nearest-neighbor based methods took 5, 7, 10, 15, 25, 40, 60, and 90 neighbors. We

also included mean and median as simple statistics for crowd wisdom.

Evaluation metrics

We used the Receiver Operating Characteristic (ROC) and Precision-Recall curves, as well as their
areas under the curves (AUROC and AUPR) as evaluation metrics. To tackle the sign indeterminacy
from dimension reduction, we always computed these metrics twice, on the original output and on its
negative, and selected the one with a larger area under the curve for comparison. For fair comparison,
the same procedure was applied on supervised learning methods. In practice, sign indeterminancy can
be solved by assuming more than half of the individuals have better-than-random responses, and then

aligning crowd wisdom with the majority of the crowd.



Supervised classifiers

From the python package scikit-learn, we applied the following supervised classifiers: LinearRegression,
ElasticNetCV, LassoCV, and LogisticRegression in sklearn.linear_model, LinearDiscriminantAnalysis
in sklearn.discriminant_analysis, RandomForestClassifier in sklearn.ensemble, and KNeighborsClassi-

fier in sklearn.neighbors with 5, 7, 10, 15, 25, 40, 60, and 90 neighbors.

Method comparison in cross validation

To compare crowd wisdom and supervised classifiers, we randomly split each dataset into a training
set (containing 10, 20, 25, 40, 60, 80, or 90 percent of all samples) and a test set (for the rest), using
sklearn.model_selection. StratifiedShuffleSplit and requiring the number of questions to be larger than
that of individuals in the training set. Supervised classifiers were trained on individual predictions
against ground-truths in the training set, and then predicted for the test set. For crowd wisdom, we
performed crowd wisdom on the full data (not using ground-truth) and then extracted predictions
for the test set. Evaluation metrics were computed for every random split. The random split was

repeated 200 times per split ratio per dataset.

Method comparison on binarized data

With a given parameter set for simulation, we performed 2000 replicated simulations with different
random seeds. For each replicate, the ROC curve for PCA and the FPR and TPR for SML and
CUBAM were computed. The ROC quantiles were computed as the quantiles of TPR at every FPR
level among the 2000 ROCs from replicates. The densities of SML and CUBAM points on ROC were
computed with scipy.stats.gaussian_kde. The TPR difference between PCA and SML or CUBAM was
computed at SML’s or CUBAM’s FPR in each replicate.

Proportion of differences between binary crowd wisdoms and PCA

Simulations 21, 22, 23, 19, 1, 20, 25 and 24, 3, 1, 4, 5, 6, 7 were used respectively for the comparisons
of differences as the numbers of questions and individuals vary. Each simulation consists of 2000
replications with different random seeds. Within each replication, the binary crowd wisdom (SML or
CUBAM) and PCA were first applied on the binary(/binarized) simulated data. Should the AUROC
between PC1 of PCA and the binary crowd wisdom be < 0.5, the signs of PC1 are inverted. PC1
is then thresholded so the largest N entries are positive, in which N is the number of positives
from the binary crowd wisdom. The proportion of differences is the number of questions on which the

thresholded PC1 and the binary crowd wisdom have different predictions, divided by the total number

10



of questions. The mean and standard deviation were then computed across the 2000 replicates, after

excluding the (rare) critical failures or single-valued outputs of the binary crowd wisdom.
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Table S1: The AUROC and AUPR of the best individual, neural network, and different
crowd wisdom methods. Numbers in method names represent the number of nearest neighbors.

See tabe.xlsx.

Table S2: Simulation parameters.

See sim.xlsx.
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Figure S1: ROC (A, C) and Precision-Recall (B, D) curves for all dimension reductions,
existing crowd wisdoms (C, D only), neural network (A, B only) and individual predic-
tions of skin cancer classification (A, B) and DREAM?2 challenge (C, D). For color legend,
see Figure 2]
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Figure S2: AUPR-AUROC (A), ROC (B) and Precision-Recall (C) for dimension reduc-
tions, existing crowd wisdoms, and individual predictions of binarized DREAM2 chal-
lenge dataset. For each parametric dimension reduction, the best parameter (in A) was selected
according to AUROC (B) or AUPR (C). PCA was selected for non-parametric dimension reduction.
For color legend, see Figure
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Figure S3: Scatter plot of Pearson correlation and normalized mutual information between
all submissions pairs of the DREAM2 challenge. Negative Pearson correlations indicate oppo-
site responses from different submissions.

See external file: supad.pdf

Figure S4: Crowd wisdom outperformed supervised learning in cross-validation. Empirical
distributions and medians of AUROC (left) and AUPR (right) of all crowd wisdom and supervised
learning methods in 200 cross-validations with 10%, 20%, 25%, 40%, 60%, 80%, or 90% (A to G)
random partitions of training data are shown for the DREAM?2 dataset. Method names include the
numbers of nearest neighbors in brackets, and are italicized for supervised classifiers. Numbers next
to the frames represent rankings of the methods in terms of median AUROC or AUPR. Colors reflect
methods’ relative rankings in performance.

See external file: supa7.pdf

Figure S5: Crowd wisdom outperformed supervised learning in cross-validation. Empirical
distributions and medians of AUROC (left) and AUPR (right) of all crowd wisdom and supervised
learning methods in 200 cross-validations with 25%, 40%, 60%, 80%, or 90% (A to E) random parti-
tions of training data are shown for the skin cancer classification dataset. Method names include the
numbers of nearest neighbors in brackets, and are italicized for supervised classifiers. Numbers next
to the frames represent rankings of the methods in terms of median AUROC or AUPR. Colors reflect
methods’ relative rankings in performance.
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Figure S6: Median and quantiles of ROC curve of PCA (black) and densities of SML
(cyan) and CUBAM (brown) ROCs in 2000 random repeats of simulation 1, on full (A)
and zoomed-in (B) axes. Median false positive rate (FPR) and true positive rate (TPR) are shown
as ‘+’. For color legend for SML and CUBAM, see Figure [4IC.
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Figure S7: The AUROC difference between each crowd wisdom and the class probability
at different numbers of individuals. For color legends, see Figure [4D.
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See external file: supsimauc.pdf

Figure S8: AUROC and AUPR of dimension reduction methods on different simulated
datasets. (A) to (T): simulations 2 to 20 and 26 respectively.

See external file: supsiml.pdf

Figure S9: Simulation 1 confirmed superior and consistent performances of dimension
reduction methods, especially PCA and Isomap. (A) Comparison of dimension reduction,
individual predictions, and the class probability in AUROC and AUPR (cf Figure ) for simulation
1 (Table [S2). (B) Comparison of dimension reduction and supervised learning in cross validation at
25% training data (cf Figure [3]) for simulation 1. Color reflects relative ranking. (C, D, E, F) ROC
(C, E) and Precision-Recall (D, F) curves for dimension reductions, existing crowd wisdoms, the class
probability, and individual predictions of simulation 1. In C, D, the best parameter (in Figure |4A)
was selected according to AUROC (C) or AUPR (D) for each parametric dimension reduction and
PCA was selected for non-parametric dimension reduction. All methods are shown in E, F. Existing
crowd wisdoms were performed on binarized input data.

See external file: supsimab.pdf

Figure S10: Crowd wisdom outperformed supervised learning in cross-validation in simu-
lated dataset. Empirical distributions and medians of AUROC (left) and AUPR (right) of all crowd
wisdom and supervised learning methods in 200 cross-validations with 10%, 20%, 25%, 40%, 60%,
80%, or 90% (A to G) random partitions of training data are shown for simulation 1.
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