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Molecular dynamics simulation of microwave heating of liquid monoethanolamine (MEA):

an evaluation of existing force fields

N. D. Afify1, a) and M. B. Sweatman1

School of Engineering, The University of Edinburgh, The King’s Buildings,

Sanderson Building, Mayfield Road, Edinburgh EH9 3JL, United Kingdom

(Dated: 17 April 2018)

We present a complete classical molecular dynamics (MD) study of the dielectric heat-

ing of liquid monoethanolamine (MEA) at microwave (MW) frequencies ranging from 1.0

to 10.0 GHz. The detailed dielectric properties predicted by a series of existing empir-

ical force fields of MEA were carefully compared to experimental results. We find that

all the evaluated force fields were unable to accurately predict experimental static dielec-

tric constant, frequency-dependent dielectric spectra, and MW heating profiles of liquid

MEA, although GROMOS-aa is the most accurate of those tested. With an isotropic scal-

ing of partial atomic charges, the modified GROMOS-aa and OPLS-aa force fields could

accurately reproduce the experimental static dielectric constant and frequency-dependent

dielectric spectra, but they failed to predict MW heating rates directly from MD heating

simulations. Thus, the recently presented approach (J. Chem. Theory Comput.11, 683

(2015) and J. Chem. Theory Comput.11, 2792 (2015)) to tune existing force fields is not

an ideal approach to produce force fields suitable for accurate dielectric heating studies.

Keywords: Classical molecular dynamics; Empirical force fields of monoethanolamine

(MEA); Microwave heating of monoethanolamine (MEA); Dielectric spectra of mo-

noethanolamine (MEA)
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I. INTRODUCTION

Dielectric heating of liquids using microwave (MW) radiation (0.3-300 GHz) is becoming an

increasingly important research area, where many applications are emerging. For instance, use of

MW dielectric heating in a carbon capture process to regenerate the amine solvent could poten-

tially reduce the overall cost of the process1. In order to understand the role of MW in this CO2

capture process, details of the dielectric response of the employed liquids to MW irradiation are

required. These details include an accurate determination of static dielectric constant, frequency-

dependent dielectric spectra, and heating rates of these liquids at different MW frequencies.

Classical molecular dynamics (MD) is a very powerful atomistic computational technique

which is, in principle, able to characterize detailed dielectric properties of liquids though the pre-

diction of static dielectric constants, frequency-dependent dielectric spectra, and dielectric heating

profiles. Since the employed force field is the main ingredient of any classical MD study, the ac-

curacy of the obtained dielectric properties is strongly dependent on the quality of the employed

force field.

We recently reported on classical MD simulations of the dielectric heating of liquid water using

MW radiation at different frequencies2. We concluded that the capability of an empirical force

field to correctly predict the dielectric response of liquids to MW radiation should be evaluated

on the basis of a joint comparison of the predicted and experimental static dielectric constant,

frequency-dependent dielectric spectra, and MW heating rates.

In the present computational study, we focus on the dielectric response of liquid monoethanolamine

(MEA) to MW radiation at different frequencies. MEA aqueous solutions are widely used in CO2

capture applications1. For example, a 30 % aqueous MEA solution has been utilized in CO2 cap-

ture at an industrial scale3,4. For MEA-water solutions containing 70 % water the CO2 sorption

and desorption processes take place at 40oC and 120oC respectively, which makes the CO2 capture

process energetically inefficient5. The use of pure MEA liquid in CO2 capture is not feasible be-

cause of the high viscosity of the product. However, the temperature required for CO2 desorption

in the case of pure MEA liquid loaded on the surface of nanoporous TiO2 is as low as 80 oC6,7.

FIG. 1. The molecular geometry of the monoethanolamine (MEA) molecule C2H7NO.

In Figure 1 we illustrate the molecular geometry of the MEA molecule. In this paper we care-
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fully evaluate the accuracy of most available empirical force fields of MEA, namely MEAa20078,

MEAo20078, MEAa20159, OPLS-aa10, OPLS-aam10, GROMOS-aa11,12, and GROMOS-ua11,12.

In Table I we summarize the Lennard-Jones parameters ε and σ and partial atomic charges q em-

ployed in the different force fields. The full set of bond, bond angle, and dihedral angle constraints

employed in each force field are reported in Table 1 of the Supplementary Material.

While MEAa20078, MEAo20078, MEAa20159, OPLS-aa10, and OPLS-aam10, GROMOS-

aa11,12 are all-atoms force fields, GROMOS-ua11,12 is a united-atoms force field, where each CH2

group is represented by a single site with an equivalent mass. From table I it can be seen that the

first four force fields are just modified versions of the original OPLS-aa force fields10. It should

be mentioned that in the case of the OPLS-aam force field the dihedral angle constraints reported

in table 1 of the Supplementary Material were provided to us by the authors of Ref. [10] through

personal communications.

II. COMPUTATIONAL DETAILS

Molecular dynamics simulations were carried out using the Large-scale Atomic/ Molecular

Massively Parallel Simulator (LAMMPS) code13. The computational work was carried out on

the Archer and Cirrus High Performance Computing (HPC) clusters available at the Edinburgh

Parallel Computing Centre (EPCC) located at the University of Edinburgh.

All molecular dynamics simulations used 512 MEA molecules (i.e. 5632 atoms) in a cubic

box. This sample size was decided on the basis of the size-dependence of the different dielectric

properties obtained from exploratory simulations. A time step of 1.0 fs was used for all simula-

tions, with periodic boundary conditions (PBC) applied in all directions to mimic infinite liquid

samples. Long-range Coulombic interactions were evaluated using the particle-particle/particle-

mesh (PPPM) solver13, using a precision factor of 1×10−6 and a real-space cut-off of 12.0 Å.

The short-range interaction cut-off was set also to 12.0 Å. For all simulations bonds involving

hydrogen atoms were constrained during dynamics using the Shake algorithm14 to allow for using

a time step of 1.0 fs. All simulations, except those specifically noted, were conducted at 298.0 K

and 1 atmosphere of pressure. For clarity, in the following subsections we summarize the different

MD simulations and post-processing sets.
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TABLE I. Summary of the Lennard-Jones parameters ε and σ and partial atomic charges q employed in

the MEAa20078, MEAo20078, MEAa20159, OPLS-aa10, OPLS-aam10, GROMOS-aa11,12, and GROMOS-

ua11,12 force fields. The full set of bond, bond angle, and dihedral angle constrains employed in each force

fields are reported in Tables 1, 2, and 3 of the Supplementary Material.

MEAo2007 MEAa2007 MEAa2015 OPLS-aa OPLS-aam GROMOS-aa GROMOS-ua

Partial atomic charges q [e]

N -0.9 -0.88 -0.739 -0.9 -0.982 -0.943 -0.943

H(N) 0.36 0.335 0.297 0.36 0.386 0.377 0.377

C(N) 0.06 0.2 -0.113 0.06 0.372 0.236

H(CN) 0.06 0 0.136 0.06 -0.02 0

C(O) 0.145 0.25 -0.007 0.145 0.088 0.19

H(CO) 0.06 0 0.136 0.06 0.01 0.013

O -0.683 -0.6 -0.662 -0.683 -0.738 -0.625 -0.625

H(O) 0.418 0.36 0.383 0.418 0.508 0.362 0.362

CH2(N) 0.236

CH2(O) 0.216

Lennard-Jones parameters ε [kcal/mol] and σ [Å]

N-N 0.17 0.17 0.17 0.17078 0.17078 0.07006 0.07006

3.25 3.25 3.25 3.3 3.3 3.5722 3.5722

O-O 0.2104 0.2104 0.2104 0.17078 0.17078 0.20306 0.20306

3.0664 3.0664 3.0664 3.12 3.21 2.95484 2.95484

H(N)-H(N) 0.0157 0.0157 0.0157 0 0 0.02829 0

1.069 1.069 1.069 0 1 2.37341 0

H(C)-H(C) 0.0157 0.0157 0.0157 0.15063(CO) 0.03013(CN) 0.01500(CO) 0.03000(CN) 0

2.4714 2.4714 2.4714 2.5 2.5 0 0

H(O)-H(O) 0 0 0 0 0 0 0

0 0 0 0 1 0

C-C 0.1094 0.1094 0.1094 0.06624 0.06624 0.0663

3.3996 3.3996 3.3996 3.5 3.5 3.58118

CH2-CH2 0.09812

4.07038

A. Initial equilibration simulations

The first set of MD simulations aimed to generate fully equilibrated liquid samples to feed to the

remaining sets of simulations. First, we energy-minimized the geometry of the starting atomistic
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configurations prior to the equilibration stage. Samples were then equilibrated at 298.0 K and

1.0 atmospheric pressure for 5 ns. This simulation time comprised NVT simulation for the first 1

ns, then NPT simulation for the next 3 ns, and finally NVT simulation for the last 1 ns. During

the NVT simulations the temperature was controlled by the Nosé-Hoover thermostat15 using a

temperature damping factor of 0.1 ps. During the NPT simulations the temperature and pressure

were controlled by the MTK16 (Martyna-Klein-Tuckerman) thermostat and barostat employing

temperature and pressure damping factors of 0.1 ps and 1.0 ps respectively.

B. Calculation of static dielectric constants using the Neumann’s formula

To determine static dielectric constants using the Neumann’s formula17 we carried out long

equilibrium NVT simulations. During these simulations temperature was controlled by the Nosé-

Hoover thermostat using a damping factors of 0.1 ps. For each force field a trajectory of 30 ns

was collected and the total dipole moment of the system was recorded each 1, 10, and 100 fs.

The obtained trajectories were also used to compute the frequency-dependent dielectric spectra,

as explained later.

According to Neumann’s formula17 the static dielectric constant is related to the magnitude

of fluctuations of the total dipole moment (i.e. 〈M.M〉− 〈M〉 .〈M〉) by Equation 1. In this equa-

tion kB, T , V , and ε∞ represent the Boltzmann constant, system temperature and volume, and

high-frequency dielectric constant. Our calculations confirmed that the term 〈M〉 .〈M〉 is neg-

ligible. In these calculations an experimental value of the high-frequency dielectric constant

(ε∞ = 2.090318,19) of MEA was used.

εo = ε∞ +
4π

3kBTV
(〈M.M〉−〈M〉 .〈M〉) (1)

In Figure 1 of the Supplementary Material we report the dependence of the dielectric constant

calculated using Neumann’s formula on the MD simulation length. Results are reported in the

case of the GROMOS-aa11,12 force field as an example, obtained using three different sampling

frequencies of the total dipole moment. The cumulative average of the static dielectric constant

was calculated by averaging the values in the last 5 ns and taking into account the effect of the

sampling interval. In figure 1 of the Supplementary Material the predicted value in the case of the

GROMOS-aa11,12 force field is shown by the dashed line. From this figure it can be concluded that

our simulation time was long enough to obtain a converged value of the static dielectric constant.

5

http://dx.doi.org/10.1063/1.5022585


C. Calculation of static dielectric constants using the applied-field method

Our second approach for the determination of the static dielectric constant of MEA involves

equilibration of the liquid under an externally applied static electric field20,21. According to this

method the magnitude of the total dipole moment induced by an external static electric field of

intensity E is given by Equation 2. In this equation ε, εo, and 〈V 〉 represent the predicted static

dielectric constant, vacuum permittivity, and average system volume.

〈M〉= (ε−1)εo 〈V 〉E (2)

To apply this method we carried out a set of equilibrium NVT simulations. In these simulations,

an external electric field with strengths ranging from 0.0 to 0.01 V/Å, with a step of 0.001 V/Å,

were applied in the x direction. At each field strength MEA liquids were equilibrated for 400 ps.

Temperature was controlled by the Nosé-Hoover thermostat15 using a temperature damping factor

of 0.1 ps. The total dipole moment of the simulation box was computed from the final 50 ps.

The above procedure was repeated by applying an external static dielectric field in the y and

z directions. The relation between the electric field strength and the induced average total dipole

moment was fitted linearly to obtain the static electric constant from the slope according to equa-

tion 2. Figure 2 of the Supplementary Material shows an example set of results, reported in the

case of the GROMOS-aa force field. The response appears to be in the linear regime.

D. Calculation of frequency-dependent dielectric spectra

The frequency-dependent dielectric spectra of MEA liquid predicted by each force field were

calculated using the following procedure. The total dipole moment autocorrelation function was

fitted to an exponential decay function to determine the dielectric relaxation time (τD). The fitting

process was carried out using the GROMACS g dielectric analysis tool22. Figure 3 of the Supple-

mentary Material demonstrates an example of such fitting in the case of the GROMOS-aa force

field.

The determined relaxation time τD was then used to calculate the real and imaginary parts of the

frequency-dependent dielectric spectra using the Debye relaxation model23 in the frequency range

form 0.001 to 500.0 GHz. According to this model the real and imaginary parts of the dielectric

spectrum are given by Equations 3 and 4. In these calculations we used an experimental value of
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the high-frequency dielectric constant of MEA liquid (ε∞ = 2.090318,19).

εRe(ω) = ε∞ +
εo− ε∞

1+ω2τ2
D

(3)

εIm(ω) =
(εo− ε∞)ωτD

1+ω2τ2
D

(4)

E. Determination of MW heating rates

In this series of MD simulations, we performed non-equilibrium dielectric heating studies of

MEA liquid at the following MW frequencies: 1.0, 2.45, 5.8, and 10.0 GHz. This set of sim-

ulations utilized the NVE ensemble. At each frequency an external electric field, with cosine

waveform, was applied along the x direction with field amplitude set to 0.01 V/Å. Initial testing

confirmed that this field strength is within the linear response regime for all evaluated force fields.

For each MW frequency twenty complete electric field cycles were simulated. The average system

temperature was recorded at each 0.1 ps.

To obtain the rise in temperature due to the presence of the external electric field the following

procedure was adopted. First, the temperature trajectory in the absence of an electric field was

linearly fitted. The resulting linear behaviour was then subtracted from each temperature trajectory

in the presence of an electric field. The resulting curves represent therefore the rise in system

temperature due only to the applied external electric fields. These heating curves were linearly

fitted and the predicted heating rate at each MW frequency was calculated. The above procedure

was independently repeated two times by applying the electric field along the y and z directions.

From these three independent heating simulation sets the average heating rates and their standard

errors were computed and compared to experiment.

The experimental heating rates were computed as follows. For a microwave heating process

in a closed system, assuming there are no chemical reactions or heat losses due to convection and

conduction to the surroundings, conservation of energy leads to Equation 5. In this equation ρ,
dT
dt , and cp are the simulation box mass density, heating rate, and the specific heat capacity of

the material. ω, εo, εIm(ω,T ), and |E(ω)| are the MW frequency, vacuum permittivity, imaginary

part of dielectric spectrum at the frequency ω, and the root mean square amplitude of the applied

external electric field.
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dT
dt

= ωεo|E(ω)|2
εIm(ω,T )
ρcp(T )

(5)

III. RESULTS AND DISCUSSION

In the following subsections we present and discuss our different sets of results to properly

evaluate the ability of existing empirical force fields to reproduce experimental dielectric prop-

erties of the MEA liquid at room temperature. The results of our attempt to improve the best

of these empirical force fields by simply scaling the partial atomic charges will be also reported.

Results for the static dielectric constant of MEA are presented first, followed by the frequency-

dependent dielectric spectra. Finally, we present the predicted heating rates for MEA at different

MW frequencies. Finally, an overall conclusion will be made based on all the obtained results.

A. Static dielectric constants

In Table II we compare the experimental static dielectric constant ε0, bulk density ρ, self-

diffusion coefficient D, and constant-pressure specific heat Cp of liquid MEA at 298.0 K to the

values predicted by the different empirical force fields. To accurately calculate the self-diffusion

coefficients and constant-pressure specific heats we included quantum corrections in our classi-

cal molecular dynamics simulations through the utilization of a quantum thermal bath24. Self-

diffusion coefficients were calculated using the Einsteins relation25 utilizing the mean squared

displacement (MSD) recorded from 20 ns NVT simulations. The constant-pressure specific heats

were calculated from energy fluctuations during 2 ns NPT simulations26. It should be mentioned

that the experimental static dielectric constant of liquid MEA at 298.0 K reported in table II is

actually the average of several experimental results available in literature27–34.

At this point we discuss only the static dielectric constant results, however, the remaining prop-

erties in table II will be useful when discussing the predicted heating rates results. From table

II it is clear that static dielectric constants predicted by Neumann’s formula and the applied-field

method agree well with each other. Unfortunately, table II reveals that none of the evaluated force

fields was able to accurately predict the experimental static dielectric constant of the liquid MEA

at 298.0 K. With the exception of the OPLS-aam force field all the evaluated force fields tend to

underestimate the static dielectric constant of MEA. Nevertheless, from table II it is clear that the
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TABLE II. Comparison between the experimental static dielectric constant εo
27–34, bulk density ρ33, self-

diffusion coefficient D35,36, and constant-pressure specific heat Cp
37 of liquid MEA at 298.0 K to the values

predicted by the original and modified empirical force fields. The reported experimental static dielectric

constant is the average of several experimental results27–34.

Force field label εo ρ [g/cm3] D [10−10 m2/s] CP [kJ/kg.K]

Neumann formula Applied-field method Average value

Experiment 32.8 ± 2.1 1.018 11.0 3.2

MEAo2007 16.8 ± 0.2 15.8 ± 1.1 16.3 ± 0.6 1.133 ± 0.006 7.21 ± 0.17 3.64 ± 0.03

MEAa2007 15.3 ± 0.2 14.4 ± 1.4 14.9 ± 0.7 1.110 ± 0.006 13.28 ± 0.26 3.35 ± 0.04

MEAa2015 11.0 ± 0.2 10.2 ± 1.0 10.6 ± 0.5 1.070 ± 0.006 8.28 ± 0.11 3.07 ± 0.01

OPLS-aa 18.2 ± 0.2 18.3 ± 1.2 18.2 ± 0.6 1.052 ± 0.005 5.63 ± 0.08 3.50 ± 0.04

OPLS-aam 74.1 ± 1.4 77.4 ± 1.2 75.8 ± 0.9 0.986 ± 0.006 5.40 ± 0.04 3.41 ± 0.02

GROMOS-aa 26.3 ± 0.4 28.3 ± 1.3 27.3 ± 0.7 1.095 ± 0.007 7.29 ± 0.06 3.18 ± 0.02

GROMOS-ua 20.3 ± 0.3 20.6 ± 1.4 20.5 ± 0.7 0.969 ± 0.006 7.91 ± 0.10 2.51 ± 0.02

GROMOS-aa and OPLS-aa force fields with scaled partial atomic charges

GROMOS-aa-q1.025 27.5 ± 0.4 26.6 ± 1.1 27.1 ± 0.6 1.110 ± 0.007 6.02 ± 0.03 3.10 ± 0.01

GROMOS-aa-q1.04 28.2 ± 0.4 29.3 ± 0.9 28.8 ± 0.5 1.121 ± 0.007 4.78 ± 0.08 3.05 ± 0.01

GROMOS-aa-q1.05 28.5 ± 0.7 32.2 ± 0.9 30.4 ± 0.6 1.126 ± 0.006 4.56 ± 0.07 3.21 ± 0.03

OPLS-aa-q1.05 23.2 ± 0.4 20.4 ± 0.8 21.8 ± 0.4 1.069 ± 0.004 3.85 ± 0.03 3.58 ± 0.04

OPLS-aa-q1.098 32.8 ± 0.5 31.5 ± 0.6 32.1 ± 0.4 1.081 ± 0.004 2.58 ± 0.04 3.51 ± 0.02

static dielectric constant predicted by the GROMOS-aa (i.e. 27.3±0.7) is the closest to the average

experimental value (i.e. 32.8±2.1).

As mentioned above we modified the parameters of the GROMOS-aa and OPLS-aa force fields

to improve their ability to reproduce the experimental static dielectric constant of MEA. Our ap-

proach was to proportionately scale the partial atomic charges in these force fields with all the re-

maining force field parameters left unchanged. This method was first presented by Salas et al.38 to

improve force fields for pyridine, dichloromethane, methanol, and 1-ethyl-3-methylimidazolium

tetrafluoroborate (EMIM-BF4) at different temperatures and pressures. Luz et al. followed the

same approach to obtain an accurate force field for formamide39.

Our partial atomic charges scaling factors were as follows: 1.025, 1.04, and 1.05 for the

GROMOS-aa force field; 1.05 and 1.098 for the OPLS-aa force field. Molecular dynamics simu-

lations using these modified force fields were carried out exactly in the same way as the original

force fields. The resulting static dielectric constant, bulk density, self-diffusion coefficient, and
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constant-pressure specific heat predicted by these five modified force fields are reported at the

bottom of table II.

From this table, it can be seen that the static dielectric constants predicted by the GROMOS-

aa-q1.05 (i.e. 30.4±0.6) and the OPLS-aa-q1.098 (i.e. 32.1±0.4) force fields agree well with the

experiment (i.e. 32.8±2.1). At this point it is not possible to claim the superior quality of these new

force fields since the predicted dielectric spectra and MW heating rates need to be evaluated first.

As reported in table II this charge scaling approach produced bulk densities and self-diffusion

coefficients that agree less well with experimental results when compared to the original force

fields. Furthermore, we will show later that such charge scaling is not an ideal approach for a

detailed study of the MW heating of liquids.

B. Frequency-dependent dielectric spectra

(a)(b)

FIG. 2. Real (Figure 2(a)) and imaginary (Figure 2(b)) parts of the frequency-dependent dielectric spectra of

liquid MEA at 298.0 K as predicted by the original (solid lines) and modified (dashed lines) empirical force

fields compared to their experimental counterpart at 278.0 K33 (blue squares) and 308.0 K (red dots)40. The

horizontal black dashed line indicates to the average experimental static dielectric constant of liquid MEA

at 298.0 K. The light grey band in this figure indicates the uncertainty on the average value of experimental

static dielectric constant.

Now we move on to the ability of the original and tuned empirical force fields to correctly

predict the frequency-dependent dielectric spectra of liquid MEA at 298.0 K, particularly in the

MW region. In Figure 2 the real (Figure 2(a)) and imaginary (Figure 2(b)) parts of the frequency-

dependent dielectric spectra of liquid MEA at 298.0 K as predicted by the original (solid lines) and

charge-modified (dashed lines) empirical force fields are compared to their experimental counter-

parts. Unfortunately, we could not find experimental dielectric spectra collected at 298.0 K. In-

stead we report in figure 2 the experimental dielectric spectra collected at 278.0 K33 (blue squares)

and 308.0 K (red dots)40. The horizontal black dashed line in figure 2(a) indicates the average

experimental static dielectric constant of liquid MEA at 298.0 K. The light grey band in this fig-

ure indicates the uncertainty on the average value of experimental static dielectric constant as we
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considered all the published experimental results27–34.

Inspection of figure 2 reveals that none of the original force fields (solid lines) are able to rea-

sonably reproduce the real and imaginary parts of the experimental frequency-dependent dielectric

spectra of liquid MEA at 298.0 K, which are expected to be located between experimental spectra

collected at 278.0 K and 308.0 K. With the exception of the OPLS-aam force field, all the original

force fields tend to underestimate the magnitude of the real part and overestimate the frequency

location of the main loss peak in the imaginary part of the dielectric spectra. Although, OPLS-aam

was the only original force field able to correctly predict the location of the main loss peak in the

imaginary part (≈ 1.0 GHz), it tends to overestimate the magnitude of the real part due to the large

static dielectric constant predicted by this force field (see table reftab2).

The dielectric spectra predicted by the charge-modified GROMOS-aa and OPLS-aa force fields

are reported by the dashed lines in figure 2. From this figure, it can be seen that the real and

imaginary parts predicted by the GROMOSaaq1.05 force field (red dashed lines) agree very well

with the experimental dielectric spectra collected at 308 K. Additionally, the ability of the OPLS-aa

force fields in predicting the experimental dielectric spectra has significantly improved by scaling

the atomic partial charges by 9.8 %. However, the dielectric spectra predicted by the OPLS-aa-

q1.098 force field (magenta dashed lines) agree better with experimental spectra collected at 278

K. This means that the charge scaling factor for the OPLS-aa force field needed to be smaller than

1.098 to fit better experimental data at room temperature (between the spectra collected at 278 K

and 308 K).

C. MW heating rates

As reported and discussed above none of the available empirical force fields for MEA were

able to predict either the experimental static dielectric constant nor the experimental frequency-

dependent dielectric spectra of liquid MEA at 298.0 K. By scaling the partial atomic charges of

some of these force fields we were able to obtain new force fields that are able to predict very well

both experimental static dielectric constant and frequency-dependent dielectric spectra of liquid

MEA at room temperature. In the following we evaluate the quality of the different force fields

for predicting the expected heating rates at different MW frequencies. It will be interesting to see

if our modified force fields are also able to correctly describe the heating of liquid MEA by MW

radiation at different frequencies.
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As explained in section II E our heating simulations are based on simulating liquid MEA with

and without the presence of an electric field. As expected from well-equilibrated atomistic con-

figurations, our NVE simulations in the absence of any electric field produced steady temperature

profiles which fluctuate around 298.0 K, yet without any significant temperature drift. Then we

subtracted these temperature profiles from the ones collected in the presence of electric field at

different MW frequencies. Thus, the resulting differential profiles represent the net heating effect

due to MW radiation.

In Figure 3 we report the predicted net heating profiles (solid lines) caused by applying external

time-dependent electric fields at MW frequencies ranging from 0.0 to 10.0 GHz. In this figure,

we report the results obtained using the GROMOS-aa force field as an example. The time dura-

tion of each heating profile corresponds to ten full electric field cycles. To clearly visualize the

dependence of heating profiles on MW frequency we included in figure 3 the linear fit of each net

heating profile (dashed lines). These results demonstrate that our MD simulations were able to

detect the heating profile dependence on the applied MW frequency.

FIG. 3. The predicted classical MD net heating profiles of liquid MEA caused by applying an external

time-dependent electric field at MW frequencies ranging from 1.0 to 10.0 GHz. Results are reported for

the case of the GROMOS-aa force field. The time length of each simulation corresponds to ten full electric

field cycles. The dashed lines represent the linear fit of each net heating profile.

Now we evaluate the ability of the different empirical force fields to correctly predict how fast

liquid MEA is heated under MW radiation at different frequencies. An accurate force field should

be able to accurately capture the correct magnitudes of the heating rates, as well as their depen-

dence on the employed MW frequency. Figure 4 reports a comparison between the experimental

(symbols) and classical MD derived MW heating rates of liquid MEA using the original (solid

lines in figure 4(a)) and modified (dotted lines in figure 4(b) and solid lines in figure 4(c)) force

fields. The error bars reported in figures 4(a) and 4(b) were estimated by repeating the linear fitting

of temperature profiles using several simulation time intervals. In this figure two sets of experi-

mental curves are reported. The curve with blue squares correspond to the experimental dielectric

spectra collected at 278 K33 while the curve with red dots correspond to the experimental dielectric

spectra collected at 308 K40. We did not find any experimental dielectric spectra collected at 298

K in the literature.
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(a)(b)(c)

FIG. 4. MW frequency dependence of the experimental (symbols) and predicted heating rates of liquid

MEA: (a) calculated from the temperature profiles predicted by the original force fields, (b) calculated

from the temperature profiles predicted by the modified force fields, and (c) calculated using equation

5 employing the dielectric spectra, bulk densities, and constant-pressure specific heats predicted by the

modified force fields. The two experimental heating rate curves are based on experimental dielectric spectra

collected at 278 K (blue squares)33 and 308 K (red dots)40. The employed electric field amplitude is 0.01

V/Åfor all MW frequencies.

The experimental heating rates reported in figure 4 were calculated using equation 5 employing

the experimental values of bulk density, constant-pressure specific heat, and the imaginary part of

dielectric spectra at each frequency. The predicted MW heating rates reported in figures 4(a) and

4(b) were calculated solely from the temperature profiles resulting from our MD heating simula-

tions, thus no other parameters were used. Finally, the predicted heating rates reported in figure

4(c) were calculated using equation 5 employing the predicted imaginary part of dielectric spectra

(figure 2(b)), bulk density and constant-pressure specific heats (table II).

We first discuss the ability of the original force fields to accurately predict heating rates at

different MW frequencies. From figure 4(a), it is clear that none of these force fields was able

to predict the experimentally expected heating rates. With the exception of the OPLS-aam force

field, even the dependence of the predicted heating rate on the applied MW frequency is incorrectly

predicted by these original force fields. However, this is expected from figure 2(b) where all the

imaginary parts of the predicted dielectric spectra are shifted towards higher frequencies, and

thus the heating rates for MW frequencies ranging from 1.0 GHz to 10.0 GHz according to these

dielectric spectra should be increasing.

Now we evaluate the heating rates predicted by the modified force fields. From the dotted lines

shown in figure 4(b), it is clear that the agreement between experimental and calculated heating

rates was slightly improved by scaling the partial atomic charges of the GROMOS-aa force field. In

fact, the curve predicted by the GROMOS-aa-q1.05 force field follows the frequency-dependence

of the experimental heating rates expected at 308 K. However, this improvement did not occur

in the case of the modified OPLS-aa force fields. In fact, the curves predicted by the OPLS-

aa-q1.05 and OPLS-aa-q1.098 force fields do not even follow the frequency-dependence of the
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experimental heating rates expected at 308 K. This might be explained by the small self-diffusion

coefficients and the large constant-pressure specific heats predicted by the OPLS-aa-q1.05 and

OPLS-aa-q1.098 force fields (see table II). Nevertheless, it is surprising to obtain such overall

poor agreement between experimental and predicted heating rates, which does not reflect the good

level of agreement between the experimental and calculated dielectric spectra in the case of the

modified force fields (see figure 2(b)).

To evaluate the possibility of presence of any inaccuracies in our heating simulations we com-

puted the MW heating rates predicted by the modified force fields using equation 5. In this equa-

tion we used the dielectric spectra , densities, and constant-pressure specific heats predicted by

the modified force fields (see table II). The resulting predicted heating rates are compared to the

experimental ones in Figure 4(c). From this figure it is clear that the agreement between the ex-

perimental and calculated heating rates is much better when we resorted to equation 5 instead of

resorting to the temperature profiles predicted by molecular dynamics heating simulations. In fact,

both the magnitudes of heating rates and their dependence on the MW frequencies are reproduced

better in this figure specially at 1.0 GHz.

Inspection of figure 4(c) reveals that the curve predicted by the OPLS-aa-q1.05 force field

agrees better with the experimental curve expected at 308 K while the curve predicted by the

GROMOS-aa-q1.05 force field agrees better with experimental curve expected at 278 K. Obvi-

ously, better agreements with the experimental heating rates expected at 298 K can be obtained by

further tuning of the charges scaling factors for the GROMOS-aa and OPLS-aa force fields. The

overall agreement between experimental and predicted curves are now coherent with the agree-

ment between experimental and predicted dielectric spectra curves. From our point of view the

poor agreement between experimental and calculated heating rates predicted by our heating sim-

ulations is due to a combination of the following two reasons. First, scaling of the partial atomic

charges leads to extremely small diffusion coefficients which makes the equilibration of the system

under an oscillating electric field very difficult process. Second, our non-equilibrium heating sim-

ulations do not include any quantum correction to classical temperatures. Applying such quantum

corrections to non-equilibrium classical MD simulations is not yet implemented in the LAMMPS

code.

Our results suggest that the use of the charge scaling approach suggested in Refs. 38 and 39

can be useful to tune empirical force fields to correctly predict the static dielectric constants and

also frequency-dependent dielectric spectra, but it is unable to provide force fields that are able
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to accurately predict heating profiles and rates based on MD heating simulations. As mentioned

above, this is partially caused by the small diffusion coefficients and the large bulk densities in-

duced by increasing the partial atomic charges. Obviously, the best approach would be to refine

the existing force fields such that all relevant properties are reasonably predicted. We have carried

out several series of additional calculations in an attempt to reach a set of Lennard-Jones parame-

ters (ε and σ) and partial atomic charges (q) such that the experimental static dielectric constant,

dielectric spectra, bulk density, and specific heat are reasonably predicted. Unfortunately, this

simple isotropic scaling of ε, σ, and q was not successful. It seems that the available force fields

need to be reparametrized, however, with more focus on the dielectric properties. In future, we

may report on the development of new empirical force fields for MEA aqueous solutions, based

on simultaneous fitting against both ab-initio forces and experimental static dielectric constants.

IV. CONCLUSIONS

In summary, we used a comprehensive classical molecular dynamics framework to evaluate the

ability of most of the existing empirical force fields for MEA to accurately describe the dielectric

response of liquid MEA at room temperature to microwave irradiation at different microwave

frequencies. None of the tested force fields was found successful in predicting dielectric properties

of liquid MEA.

We tuned some of these force fields by simply scaling their partial atomic charges so that dielec-

tric properties are correctly predicted. Although some of the modified force fields were successful

in correctly predicting both the static dielectric constant and frequency-dependent dielectric spec-

tra of liquid MEA at room temperature, they failed in predicting experimental MW heating rates

based on molecular dynamics heating simulations. This failure is explained by inaccurate predic-

tion of self-diffusion coefficients, constant-pressure specific heats, and bulk densities, and also by

the absence of any quantum correction to our non-equilibrium classical molecular dynamics heat-

ing simulations. Thus, it is concluded that whatever approach is followed to improve existing force

fields, all the properties relevant to dielectric heating should be carefully considered when opti-

mizing the parameters of these force fields, and that quantum corrections to temperatures should

be also included in these heating simulations.
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V. SUPPLEMENTARY MATERIAL

See supplementary material for the following extra tables and figures: (1) Summary of

bond, bond angle, and dihedral angle constrains employed in the MEAa20078, MEAo20078,

MEAa20159, OPLS-aa10, OPLS-aam10, GROMOS-aa11,12, and GROMOS-ua11,12 force fields,

(2) Effect of equilibrium MD simulation length and dipole moment sampling interval on the pre-

dicted static dielectric constant of MEA in the case of the GROMOS-aa force field, (3) An example

of the linear fit of the relation between the total dipole moment and applied external electric field

strength in the case of the GROMOS-aa force field, and (3) An example of the exponential fit of

the total dipole moment autocorrelation function of MEA in the case of the GROMOS-aa force

field.
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