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GLOBAL WELL-POSEDNESS OF THE DERIVATIVE NONLINEAR

SCHRÖDINGER EQUATION WITH PERIODIC BOUNDARY

CONDITION IN H
1
2
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Abstract. We establish the global well-posedness of the derivative nonlinear Schrödinger

equation with periodic boundary condition in the Sobolev space H
1
2 , provided that the

mass of initial data is less than 4π. This result matches the one by Miao, Wu, and Xu
and its recent mass threshold improvement by Guo and Wu in the non-periodic setting.

Below H
1
2 , we show that the uniform continuity of the solution map on bounded subsets

of Hs does not hold, for any gauge equivalent equation.
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1. Introduction

We consider the initial value problem for the derivative nonlinear Schrödinger equation
(DNLS) 1 with periodic boundary condition{

i∂tu+ ∂2
xu = i∂x(|u|2u) , (t, x) ∈ R× T

u(0, x) = u0(x) , u0 ∈ Hs(T)
, (1.1)

where T := R/2πZ ' [0, 2π). This equation was derived in the plasma physics literature in
the 1970s [37, 32, 33] and it is a particular case of a perturbed complex Ginzburg-Landau
equation [46]. Kaup and Newell [19] showed that (1.1) is completely integrable, in the sense
that it is the compatibility condition for a certain pair of linear differential equations. In
particular, it possesses an infinite family of conservation laws, as well as a two-parameter
family of solitons. In this work, we only employ the conservation of the following integrals
of motion, referred to as the mass, momentum, and energy (of a solution u), respectively:

M [u] :=

ˆ
|u|2dx, (1.2)

P [u] :=

ˆ
Im (u∂xu) +

1

2
|u|4dx, (1.3)

E[u] :=

ˆ
|∂xu|2 +

3

2
|u|2 Im(u∂xu) +

1

2
|u|6 dx. (1.4)

We note that these quantities are at the levels L2, H
1
2 , and H1, respectively; the Hamil-

tonian for (1.1) is P [u]. Given a sufficiently regular solution u, one can check by direct
computation the conservation of the above functionals (see for example [17, Appendix B]).
In addition, one can similarly verify that the mean

´
u(t, x) dx is also conserved.

The scaling symmetry of this equation in the Euclidean setting is given by the invari-
ance of solutions under the following transformation:

u(t, x) 7→ 1

λ
1
2

u

(
t

λ2
,
x

λ

)
=: uλ(t, x). (1.5)

In particular, ‖uλ(t)‖L2
x

= ‖u(t/λ2)‖L2
x
, and thus sc = 0 is the scaling critical Sobolev

index (reasonable well-posedness theory is to be expected for s > sc, and possibly for
s = sc). In the periodic setting, the above transformation changes the underlying domain
T to Tλ := R/2πλZ (hence, the scaling transformation above is no longer a symmetry of
the equation on T). Nevertheless, we employ (1.5) in this article and for the most part, we
work on the dilated torus Tλ, with λ ≥ 1.

The aim of this paper is to study the long-time dynamics of low-regularity solutions
of (1.1). The main result of this work reads as follows:

Theorem 1.1. The derivative nonlinear Schrödinger equation with periodic boundary con-

dition (1.1) is globally well-posed in H
1
2 for initial data u0 with M [u0] < 4π.

1. A parameter in front of the nonlinearity is irrelevant in this study since on the Fourier side the
nonlinearity is unsigned; the equation does not have a definite focusing or defocusing character.
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Before delving into the prerequisites and proof of this theorem, let us promptly re-
view the well-posedness results in the Euclidean setting. For a certain class of Schwartz
initial data, by using the inverse scattering method, Lee [25, 26] obtained the local and
global 2 solvability, respectively. Tsutsumi and Fukuda [44] established the local existence
and uniqueness of Hs-solutions, with s > 3

2 , by the method of parabolic regularization.

Furthermore, in [45], they obtained the global existence of solutions for u0 ∈ H2 with
sufficiently small H1-norm.

In the energy space, Hayashi [14] proved the global existence for sufficiently small
initial data. In his work, of particular importance is the gauge transformation defined by

Gβ : L2 → L2 , Gβf(x) := e−iβJ (f)(x)f(x), (1.6)

with J (f)(x) :=
´ x
−∞ |f(y)|2 dy, x ∈ R. Through the transformation v = G 1

2
(u), DNLS

reduces to
i∂tv + ∂2

xv = i|v|2∂xv (1.7)

and the theory of [45] for smooth initial data with sufficiently small H1-norm can be applied.
This result was improved in the papers by Hayashi and Ozawa [15, 16] by reducing DNLS to
a system of two semi-linear Schrödinger equations (with no derivatives in the nonlinearities),
where it was obtained 3 the global existence of H1-solutions under the assumption

M [u0] < 2π. (1.8)

This mass threshold follows from noticing that under the transformation v = G 3
4
(u), the

energy functional becomes 4

E[u] = E[G− 3
4
(v)] = ‖∂xv‖2L2(R) −

1

16
‖v‖6L6(R), (1.9)

while the norms of interest remain essentially unchanged, i.e.

‖∂xv‖L2(R) ∼M [u] ‖∂xu‖L2(R), (1.10)

‖v‖Lp(R) = ‖u‖Lp(R). (1.11)

Via the sharp Gagliardo-Nirenberg inequality due to Weinstein [47], i.e.

‖v‖6L6(R) ≤
4

π2
‖∂xv‖2L2(R)‖v‖

4
L2(R), (1.12)

one obtains that the energy E[u] controls the Ḣ1-norm of a solution u of DNLS, provided
that (1.8) holds. Finally, we mention that in [14, 15], uniqueness of H1(R)-solutions was

also obtained, but conditional to the auxiliary spaces L12
t (R;H1,3

x (R)), L4
t (R;W 1,∞

x (R)),
respectively. The unconditional well-posedness in H1(R) was settled by Win [48].

In low-regularity spaces, Takaoka [38] used the Fourier restriction norm spaces intro-
duced by Bourgain [3] and proved

‖v2∂xv‖Xs,b−1(R×R) . ‖v‖3Xs,b(R×R), (1.13)

for 1
2 ≤ s < 1 and 1

2 < b ≤ 5
8 , in a fashion similar to the estimate for the KdV equation

[20]. We remind the reader that the Fourier restriction norms ‖ · ‖Xs,b(R×R) are adapted to

2. We refer to the recent article of Pelinovsky and Shimabukuro [36, p. 5] for a possible issue regarding
the result of [26].

3. Hayashi and Ozawa [15, 16] also showed that the solution map u0 7→ u(t) preserves Sobolev regularity
and spatial decay, for any t ∈ R.

4. If u solves DNLS, then v = G 3
4
(u) solves i∂tv + ∂2

xv = i
2
|v|2∂xv − i

2
v2∂xv − 3

16
|v|4v.
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the linear part of the equation at hand (defined by (2.5) on T, their definition on R being
analogous). On the other hand, Takaoka in [38] noted that for estimates of the form

‖|v|2∂xv‖Xs,b−1(R×R) . ‖v‖3Xs,b(R×R), (1.14)

“the Fourier restriction norm method seems inapplicable.” However, the transformation 5

v = G1(u) removes the nonlinearity |u|2∂xu from (1.1), i.e. v solves

i∂tv + ∂2
xv = −iv2∂xv −

1

2
|v|4v. (1.15)

Therefore, 6 Takaoka established the local well-posedness of (1.1) down to H
1
2 (R). Since

the mappings u0 7→ G1(u0) = v0 and v(t) 7→ G−1
1 (v(t)) = u(t), viewed as applications from

H
1
2 (R) to itself, are locally Lipschitz continuous (uniformly in t), so is the dependence of

u on the initial data u0. Takaoka also showed that the above estimate (1.13) does not hold
if s < 1

2 , for any b ∈ R. Moreover, for 0 ≤ s < 1
2 , the solution map u0 ∈ Hs(R) 7→ u(t) ∈

Hs(R) fails to be C3, for any t 6= 0. Another mild ill-posedness result for DNLS in Hs(R)
(0 ≤ s < 1

2) was given by Biagioni and Linares in [2]. They used the solitary waves of
DNLS [19, 46] and showed that the local uniform continuity of the same solution map does
not hold. Hence, the fixed point argument for the gauge equivalent equation (1.15) is no
longer the tool to construct Hs(R)-solutions for DNLS in the range 0 ≤ s < 1

2 .
Let us now elaborate on the assumption (1.8). The energy functional in (1.9) is also

shared by the focusing quintic NLS (with some appropriate constant in front of the nonlin-
earity), for which the condition (1.8) is sharp, in the sense that finite-time blowup solutions
with M [u] ≥ 2π exist (see [47] and references therein). Thus, the question of whether the
same is true for DNLS appears naturally (see also [15]). However, in a recent series of
articles, Wu [50, 51], and Guo and Wu [13] obtained global existence for DNLS above the
mass threshold 2π. They showed how to incorporate the momentum P [u] in controlling

the Ḣ1-norm of u. The key observation is the following: the change in energy incurred by
modulating u resembles the first term of the momentum (see (1.3)), and then the second
term of P [u] is handled by another sharp Gagliardo-Nirenberg inequality due to Agueh [1],

that interpolates L6(R) between Ḣ1(R) and L4(R) (rather than L2(R)), i.e.

‖u‖L6(R) ≤ CGN‖∂xu‖
1
9

L2(R)
‖u‖

8
9

L4(R)
, (1.16)

where CGN = 3
1
6 (2π)−

1
9 . The upshot is the control of the Ḣ1-norm of a solution u, under

M [u0] < 4π. (1.17)

It is known that the mass thresholds 2π and 4π correspond to the masses of ground state
solutions to some elliptic equations and extremising functions in the Gagliardo-Nirenberg
inequalities (1.12) and (1.16), respectively. In a recent article studying the orbital stability
of solitary waves of DNLS with mass 4π, Kwon and Wu [22] 7 proposed a criterion for
blowup solutions with this critical mass.

5. This reduction of DNLS to (1.15) was also employed by Lee [26], to which he attached a certain
spectral problem.

6. The estimate for the quintic term of (1.15) is easier to prove than for the cubic-derivative term.
7. In [22] it is also shown the orbital stability of traveling waves in the “zero mass case”. Also, after

the completion of this article, several papers studying the traveling waves for DNLS were published. See
[23, 29, 30] (and references therein for previous works on this subject). In [29] there is an improvement, as
compared to [51], of the subset of energy-space solutions that exist globally in time.
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We now turn to the periodic setting. The adaptation of the gauge transformation is
due to Herr [17] where he proved the local well-posedness of (1.1) in Hs(T) for s ≥ 1

2 , by
using the same transformation (1.6), but with J (f) defined as the mean-zero antiderivative
of |f |2 − 1

2πM [f ]. Compared to the real line case, the gauge transformation is no longer
enough to satisfactorily reduce DNLS to a manageable equation, and thus it needs to be
augmented with a translation operator (see (2.41)). After these transformations, one works
instead with a periodic gauge equivalent derivative nonlinear Schrödinger equation, that
still resembles (1.15), of the form

i∂tv + ∂2
xv = −iv2∂xv +Q(v), (1.18)

where Q(v) gathers (pure-power) quintic and lower order terms (a precise formulation of
the above equation is given by (2.43)). For the key estimate in [17], i.e.

‖v2∂xv‖
Xs,− 1

2 (R×T)
. ‖v‖3

Xs, 12 (R×T)
(1.19)

for s ≥ 1
2 , the local smoothing and maximal function estimates for the linear Schrödinger

propagator are no longer available – one has to rely merely on the L4-Strichartz estimate

of Bourgain [3] and on Sobolev inequalities. Since the embedding of Xs, 1
2 (R × T) into

C(R;Hs(T)) fails, one works instead with a slightly stronger norm (see (2.6)-(2.7) below).
Regarding possible improvements to the estimate (1.19), a remarkable property of

(1.18) was uncovered by Grünrock and Herr [12] while working in the scale of Fourier-
Lebesgue spaces FLs,r(T) (defined by (2.2) below). By appropriately modifying the classical

Xs,b norms, they established a local well-posedness result in FL
1
2
,r(T), in the range 2 ≤

r < 4. (We note that for s = 1
2 , these spaces scale like H

1
r (T)). It turns out that the

nonlinearity of (1.18) can be rearranged into T̃ (v) + Q̃(v), with

T̃ (v) := −i
(
v∂xv − 2i Im

 
T
v∂xv dx

)
v, (1.20)

owing to the periodic gauge transformation. This writing reveals frequency cancelations
(see also (2.47)) that are essential for dealing with the cubic-derivative nonlinearity, and
hence for the local well-posedness in FLs,r(T). However, (1.20) does not help when trying
to prove (1.19) for some s < 1

2 , as the failure of this estimate is of another nature than the
lack of such frequency cancelations.

We also point out that, specific to the periodic case, the Lipschitz continuity of the
solution map of DNLS on bounded subsets of Hs(T) is further restricted to subsets with
prescribed L2-norm due to the use of a translation operator when reversing the transforma-
tions leading to (1.18) back to (1.1) (see Lemma 2.13). In fact, the local uniform continuity
of the solution map of the periodic DNLS fails without fixing the mass on bounded subsets
of Hs(T), at any regularity level (see [18, Theorem 3.1.1.(ii)]). Although counterexamples
to the trilinear estimate (1.19) for s < 1

2 were given in [12], to the best of the author’s
knowledge, a direct argument towards the (mild) ill-posedness of (1.1) in Hs(T) can not
be found in the literature. Note that for the gauge equivalent equation (1.18), one does
not face the local uniform continuity bottleneck due to the translation operator and it was
for this equation that the contraction mapping argument was applied in [17]. Hence, we
provide here the following mild ill-posedness result. The mild sense refers to the fact that
the result shows that the contraction mapping argument cannot be applied for the gauge
equivalent equation (1.18). In fact, the same is true for any equation obtained from (1.1)
through a gauge transformation of the form (1.6) (see Appendix A).
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Proposition 1.2. Suppose v0 ∈ Hs(T) 7→ v =: ST (v0) ∈ C([−T, T ];Hs(T)) is the solution
map for (1.18), for some 0 ≤ s < 1

2 , T > 0. Then, ST is not uniformly continuous on
bounded subsets of Hs(T).

Turning our attention to global-in-time solutions of DNLS, we recall the reader that
the global existence theory below H1(R), under the smallness of mass condition (1.8),
was developed by Colliander, Keel, Staffilani, Takaoka, and Tao [7, 8]. First, in [7], they
introduced the so called “I-method” which aims to control the growth of E1[u] := E [Iu],
where I (defined in (2.50)) is a smoothing operator on large frequencies and it is the identity
operator for functions supported on small frequencies (here, E stands for the energy of (1.15)
rather than of DNLS). Relying on the L6-Strichartz estimate and on a bilinear L4-Strichartz
inequality (in addition to the usual Sobolev embeddings), they obtain the global existence
in Hs(R), for s > 2

3 . We also mention here that the precursor to this method, the high-low
method of Bourgain, was also implemented to DNLS on the real line by Takaoka in [39],
where global solutions for s > 32

33 were constructed. A stronger result was established in [8]

for the second generation modified energy E2[u], which is obtained from E1[u] via a small
correction term, thus lowering the regularity to s > 1

2 . What is critical to the latter result
is an improved trilinear estimate (1.13) in the presence of the I-operator that can reach
b = 3

4−ε, as well as delicate cancelations owing to the nonlinear structure −iv2∂xv− 1
2 |v|

4v
of (1.15). Miao, Wu, and Xu [31] closed the gap between the local well-posedness range and
the output of the I-method by iterating the scheme further via a third generation modified
energy E3[u] by adding another correction term to E2[u]. This time, the correction term
has a singular set more complicated than that of the correction term in [8], and thus it
requires an intricate resonant decomposition. Finally, we mention here that recently, Guo

and Wu [13] improved the mass threshold to (1.17) for global H
1
2 (R)-solutions.

Regarding the global existence question for the periodic problem (1.1), Herr [17] an-
swered in affirmative for H1(T)-solutions, under the assumption that the mass is smaller
than 2

3 . This followed routinely from iterating the local well-posedness result together with
a coercivity property of E[ · ] (obtained by using a non-optimal Gagliardo-Nirenberg in-
equality and without appealing to another gauge choice). In the present work, we also
show that the mass threshold under which the energy functional associated to (1.1) has the
coercivity property is the same as in the real line case (see Lemma 3.2 below). However, the
smallness of mass condition for global H1(T)-solutions was already improved to (1.17) by
the author and Oh in [34]. Below the energy space, in Hs(T), for s > 1

2 , and unquantified
small mass initial data, the global existence of solutions to (1.1) was studied by Win in [49]
by using a second generation modified energy for the I-method.

The main tools we use in obtaining Theorem 1.1 are the following: (i) the gauge
transformation (and its Lipschitz continuity property) and the multi-linear estimates due to
Herr [17], (ii) a third generation modified energy in the I-method scheme of Colliander, Keel,
Staffilani, Takaoka, and Tao [7, 8], (iii) a resonant decomposition of one of the correction
terms as implemented in the real line case by Miao, Wu, and Xu [31], (iv) a revised bilinear
L4-Strichartz estimate of De Silva, Pavlović, Staffilani, and Tzirakis [10], and (v) the sharp
Gagliardo-Nirenberg inequalities (1.12), (1.16) adapted to the periodic setting.

Before outlining the contents of this article, we end the introduction with the following
remarks.

Remark 1.3. Our method is an analytical argument, in particular we do not employ the
integrable structure of (1.1) in an explicit manner. Therefore, the technique can be applied



GWP OF DNLS ON THE TORUS 7

(cf. [8, 17, 38, 41]) to equations of the form

i∂tu+ ∂2
xu = iα|u|2∂xu+ iβu2∂xu+ γ|u|4u, (1.21)

where α, β, γ ∈ R. The first term is eliminated by the gauge transformation v = Gα/2(u).

Remark 1.4. Whether DNLS exhibits finite-time blowup solutions for initial data with
large mass remains an important open question. A numerical study by Liu, Simpson and
Sulem [28] indicates that there is finite time singularity for the L2-supercritical nonlinearity
i|u|2σ∂xu, σ > 1. We also refer to [5] for a further numerical investigation of the structure
of the singular profile near blowup times. Here, we also point out that negative energy
solutions to DNLS on a bounded interval or on the half-line, with Dirichlet boundary
conditions, blow up in finite time (see [42], [50]).

Remark 1.5. The equation (1.1) has a rich structure being completely integrable, and the
inverse scattering transform (IST) on the torus might reveal some fundamental differences
compared to the real line case. In recent articles, Liu, Perry, and Sulem [27], analyze
more closely the IST method on R initiated by Lee [25] and prove global existence in a
“spectrally determined” open subset of H2,2(R) := H2(R) ∩ L2,m(R) neighboring 0. Also
via IST, Pelinovsky and Shimabukuro [36] construct unique global solutions for DNLS in
H2(R) ∩ {f ∈ L2,1(R), f ′ ∈ L2,1(R)} with Lipschitz continuous dependence on the initial

data. Here, L2,m(R) denotes the weighted Lebesgue space L2(R; (1 + |x|2)
m
2 dx).

Remark 1.6. In view of the local well-posedness result in the scale of Fourier-Lebesgue
spaces by Grünrock and Herr [12], it would be interesting to investigate via the I-method

the global dynamics of the DNLS flow in FL
1
2
,r(T), for the appropriate range in r, to

complement the almost sure global well-posedness result of Nahmod, Oh, Rey-Bellet, and
Staffilani [35]. This is also to be studied in the Euclidean case, where the local well-
posedness was established by Grünrock in [11]. In the same direction of thought, we
mention that recently, Takaoka [41] proved the existence of local Hs(T)-solutions with
small (unquantified) mass in the range 12

25 < s < 1
2 by establishing a priori estimates for

the gauge equivalent equation (1.18); also, his work [40] on the energy exchange behavior
for a variant of (1.18) might provide further insight on the DNLS dynamics above the mass
threshold 4π.

As a summary, we outline the content of the present article. In Section 2, we intro-
duce function spaces and review linear estimates (including a revised bilinear L4-Strichartz
estimate) that are used throughout the paper. After recalling the gauge transformation aug-
mented with a translation operator, Theorem 1.1 is reduced to Proposition 2.14 concerning
the global solutions of the periodic gauge equivalent equation (1.18). Also in Section 2, we
provide the adaptation to the periodic setting of the Gagliardo-Nirenberg inequalities, and
we introduce some further notation and constitutive elements for the I-method as close
to previous implementations [7, 8, 10, 31] as possible. Then, we build up the I-method
apparatus, beginning in Section 3. We first show that the coercivity property of the energy
functional carries over to the periodic setting under the same mass condition (1.8) as in the

Euclidean setting, and then we incorporate the momentum functional to obtain Ḣ1-norm
control for solutions corresponding to the improved mass threshold (1.17). In Section 4,
we provide a modified local well-posedness result based on existing local multi-linear esti-
mates and an interpolation lemma for the I-operator. In this instantiation of the I-method
scheme, we construct a third generation modified energy functional in Section 5 after re-
visiting the first and second generation energies, as well as discussing the frequency regions
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that previously did not allow reaching the regularity s = 1
2 . In the same section, we also

revisit the crafting of the resonant set from the real line setting and we provide pointwise
bounds on multipliers which are used in the following two sections. Hence, in Section 6 we
analyze the growth of the third generation modified energy and conclude with its almost
conservation property, whereas in Section 7 we show that it stays close to the first genera-
tion modified energy. The almost conservation of the modified momentum follows similarly
to the Euclidean case and is also established in Section 7. In Section 8, we modify the usual
I-method argument to include the almost conserved momentum and we finish the proof
of Proposition 2.14. Finally, the Appendix provides the proof of a technical lemma that
immediately implies Proposition 1.2.

Acknowledgements. The author would like to thank his advisor, Tadahiro Oh, for sug-
gesting this problem and for providing several fruitful ideas. He is also thankful to Yuzhao
Wang, Soonsik Kwon, and Professor Yoshio Tsutsumi for their availability in discussing
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University of Edinburgh and the Heriot-Watt University Centre for Doctoral Training, the
Maxwell Institute Graduate School in Analysis and its Applications.

2. Notations and basic estimates

A quantity of the form α± is a shorthand for α ± ε with α ∈ R and ε > 0 arbitrarily
small (if two or more such quantities appear in the same relation, the dependence between
ε’s is straightforward and can be ignored). By A . B (A � B) we mean the existence of
a large positive constant C such that A ≤ CB (CA ≤ B); we write A ∼ B if and only if
A . B and B . A. Also, we write A = B +O(C) if and only if |A−B| . C. Throughout
this work, η denotes a smooth time cut-off function with η ≡ 1 on [−1, 1] and η ≡ 0 outside
(−2, 2).

For reasons that are made clear in Section 8, we need to use the scaling transformation
(1.5). Thus, we work on the parametrized torus Tλ := R/2πλZ ' [0, 2πλ), and Fourier
modes in Zλ := 1

λZ. The convention we use for the (spatial) Fourier transform of a 2πλ-
periodic function is

f̂(k) =

ˆ 2πλ

0
e−ikxf(x)dx , k ∈ Zλ

which is inverted by

qg(x) =
1

2πλ

∑
k∈Zλ

eikxg(k) , x ∈ [0, 2πλ].

The convolution products on Tλ and Zλ are given by

f ∗ g(x) =

ˆ 2πλ

0
f(x− y)g(y) dy,

a ? b(k) =
1

2πλ

∑
h∈Zλ

a(k − h)b(h),
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respectively. We have f̂g(k) = f̂ ? ĝ(k), and by endowing Zλ with the scaled counting
measure (dk)λ := 1

2πλd#, the inner products on L2(Tλ) and L2(Zλ) are

〈f, g〉L2(Tλ) =

ˆ 2πλ

0
f(x)g(x) dx,

〈a, b〉L2(Zλ) =
1

2πλ

∑
k∈Zλ

a(k)b(k) =

ˆ
Zλ
a(k)b(k)(dk)λ,

respectively. Then, the Parseval and Plancherel identities are written as

〈f,qa〉L2(Tλ) = 〈f̂ , a〉L2(Zλ),

‖f‖L2(Tλ) = ‖f̂‖L2(Zλ).

The Sobolev space Hs(Tλ), respectively the Fourier Lebesgue space FLs,r(Tλ) are the
completion of the 2πλ-periodic C∞ functions with respect to the norms

‖f‖Hs(Tλ) := ‖〈k〉sf̂(k)‖L2(Zλ), (2.1)

‖f‖FLs,r(Tλ) := ‖〈k〉sf̂(k)‖Lr(Zλ), (2.2)

where 〈k〉 := (1 + |k|2)
1
2 , k ∈ Zλ, for any s ≥ 0, r ≥ 1. We also use the homogeneous

Sobolev norm:
‖f‖Ḣs(Tλ) := ‖|k|sf̂(k)‖L2(Zλ).

Remark 2.1. Notice that for any k 6= 0, uniformly in λ ≥ 1, we have

|k| ≤ 〈k〉 . λ|k|, (2.3)

and thus, in the periodic setting, 〈k〉 ∼ 1 for all |k| . λ.

By Sλ we denote the class of functions uλ : R×Tλ → C which are Schwartz in t, 2πλ-
periodic and C∞ in x. With a slight abuse of notation, the time-space Fourier transform
and its inverse are

û(τ, k) =

ˆ
R

ˆ
Tλ
e−i(τt+kx)u(t, x) dx dt , τ ∈ R, k ∈ Zλ,

qv(t, x) =

ˆ
Zλ

ˆ
R
ei(τt+kx)v(τ, k) dτ (dk)λ , t ∈ R, x ∈ Tλ.

Nonlinear interactions take on the Fourier side the form

ûv(τ, k) = û ? v̂(τ, k) =
1

2πλ

∑
k1∈Zλ

ˆ
R
û(τ1, k1)v̂(τ − τ1, k − k1) dτ1

=

ˆ
k1+k2=k

ˆ
τ1+τ2=τ

û(τ1, k1)v̂(τ2, k2) dτ1 (dk1)λ.

The unitary group on L2(Tλ) determined by the linear Schrödinger equation on Tλ is
given by

(Uλ(t)f)(x) =
1

2πλ

∑
k∈Zλ

eikx+itk2 f̂(k). (2.4)

For s, b ∈ R (spatial and temporal regularity indices), we define the Xs,b(R× Tλ) space as
the completion of Sλ under the norm

‖u‖Xs,b(R×Tλ) := ‖〈k〉s〈τ + k2〉bû(t, k)‖L2
τL

2
k(R×Zλ). (2.5)
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It is well known that the (continuous) embedding Xs,b(R × Tλ) ⊂ CtH
s
x(R × Tλ) holds if

and only if b > 1
2 . Since the trilinear estimate needed for the local well-posedness theory

(see Lemma 4.2 below) holds only at b = 1
2 , we introduce the spaces Y s,b and Zs (with a

slightly stronger norm than the Xs, 1
2 -norm) via the norms

‖u‖Y s,b(R×Tλ) := ‖〈k〉s〈τ + k2〉bû(t, k)‖L2
kL

1
τ (Zλ×R), (2.6)

‖u‖Zs(R×Tλ) := ‖u‖
Xs, 12 (R×Tλ)

+ ‖u‖Y s,0(R×Tλ), (2.7)

and the companion space Z̃s by using

‖u‖
Z̃s(R×Tλ)

:= ‖u‖
Xs,− 1

2 (R×Tλ)
+ ‖u‖Y s,−1(R×Tλ). (2.8)

We have Y s,0(R× Tλ) ⊂ CtHs
x(R× Tλ) and therefore Zs = Xs, 1

2 ∩ Y s,0 ⊂ CtHs
x.

For a given time interval J , the time localized Fourier restriction norms are defined
via

‖u‖Xs,b(J×Tλ) := inf{‖v‖Xs,b(R×Tλ) : v|J = u}, (2.9)

and similarly for Y s,b(J × Tλ), Zs(J × Tλ), and Z̃s(J × Tλ).
By the Riemann-Lebesgue lemma and Hölder inequality, we have

‖u‖L∞t,x(R×Tλ) .
∥∥ ‖û‖L1

τ (R)

∥∥
L1
k(Zλ)

≤

 1

2πλ

∑
k∈Zλ

〈k〉−1−

 1
2
 1

2πλ

∑
k∈Zλ

〈k〉1+‖û(τ, k)‖2L1
τ (R)

 1
2

.
∥∥∥〈k〉 12+‖û‖L1

τ (R)

∥∥∥
L2
k(Zλ)

and thus

‖u‖L∞t,x(R×Tλ) . ‖u‖Y 1
2+,0(R×Tλ)

. (2.10)

Similarly, by Minkowski’s integral inequality, Riemann-Lebesgue lemma and Plancherel’s
identity, one obtains

‖u‖L∞t Hs
x(R×Tλ) . ‖u‖Y s,0(R×Tλ), (2.11)

for any s ∈ R.
Additionally, we have the following linear estimates.

Lemma 2.2. [17, Lemma 3.6] Let s ∈ R. There exists c > 0 such that

‖η(t)Uλ(t)f‖Zs(R×Tλ) ≤ c‖f‖Hs(Tλ) (2.12)∥∥∥∥η(t)

ˆ t

0
Uλ(t− τ)F (τ, ·)dτ

∥∥∥∥
Zs(R×Tλ)

≤ c‖F‖
Z̃s(R×Tλ)

(2.13)

for all f ∈ Hs and all F ∈ Sλ.

Lemma 2.3. Let 2 ≤ p, q <∞, b ≥ 1
2 −

1
p , s ≥ 1

2 −
1
q , λ ≥ 1. For u ∈ Sλ, we have
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(1) Sobolev estimates:

‖u‖LptHs
x(R×Tλ) . ‖u‖Xs,b(R×Tλ), (2.14)

‖u‖L∞t Hs
x(R×Tλ) . ‖u‖Xs, 12+(R×Tλ)

, (2.15)

‖u‖LptLqx(R×Tλ) . ‖u‖Xs,b(R×Tλ), (2.16)

‖u‖L∞t L∞x (R×Tλ) . ‖u‖X 1
2+, 12+(R×Tλ)

; (2.17)

(2) Strichartz estimates:

‖u‖L4
t,x(R×Tλ) . ‖u‖X0, 38 (R×Tλ)

, (2.18)

‖u‖L6
t,x(R×Tλ) . λ

0+‖u‖
X0+, 12+(R×Tλ)

(2.19)

with implicit constants independent of λ ≥ 1.

One can prove the first part by using the interaction representation

‖u‖Xs,b(R×Tλ) = ‖Uλ(−t)u(t, x)‖Hs
xH

b
t (Tλ×R), (2.20)

the classical Sobolev inequalities, Minkowski’s integral inequality and the fact that the
operators Uλ(t) are unitary on Hs

x(Tλ). The second part can be justified by going over the
Stichartz estimates due to Bourgain [3] and revisiting the counting arguments, but now
accounting for Fourier modes in Zλ rather than Z (e.g. there are O(λM) elements k in
Zλ satisfying |k| . M , there is a normalizing factor in the measure placed on Zλ, etc.). It
turns out that the L4-Strichartz estimate has an implicit constant independent of λ, while
the L6-Strichartz estimate has a logarithmic loss in λ (in addition to the loss in derivative).

By interpolating the Strichartz estimate (2.19) with the Sobolev inequality (2.16) (for
p = q = 6), we also have

‖u‖L6
t,x(R×Tλ) . λ

0+‖u‖
X0+, 12−(R×Tλ)

. (2.21)

We note that the estimates (2.14)-(2.21) also hold for Fourier restriction norms on a time
interval J rather than on the entire real line.

We record the following scaling properties of the space-time norms introduced above
when using (1.5) and a parameter λ ≥ 1:

‖uλ‖LptLqx(R×Tλ) = λ
2
p

+ 1
q
− 1

2 ‖u‖LptLqx(R×T),

‖uλ‖Lpt Ḣs
x(R×Tλ) = λ

−s+ 2
p ‖u‖Lpt Ḣs

x(R×T),

and

λ
−s+ 2

p ‖u‖LptHs
x(R×T) . ‖uλ‖LptHs

x(R×Tλ) . λ
2
p ‖u‖LptHs

x(R×T).

For s, b ≥ 0, we have

λ−1‖uλ‖Xs,b(R×Tλ) . ‖u‖Xs,b(R×T) . λ
−1+s+2b‖uλ‖Xs,b(R×Tλ),

while for s ≥ 0, b < 0, we record

λ−1+2b‖uλ‖Xs,b(R×Tλ) . ‖u‖Xs,b(R×T) . λ
−1+s‖uλ‖Xs,b(R×Tλ).

We also use the following lemma when dealing with sharp time-cutoff functions:
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Lemma 2.4. Let s ∈ R and suppose φ ∈ H
1
2
−

t (R). Then:

‖φu‖
Xs, 12−(R×Tλ)

. ‖φ‖
H

1
2−
t (R)

‖u‖
Xs, 12 (R×Tλ)

.

Proof. By (2.20),

‖φu‖Xs,b′ (R×Tλ) = ‖φ(t)Uλ(−t)u(t, x)‖
Hs
xH

b′
t (Tλ×R)

and let Jt := 〈∂t〉. Then, via the fractional Leibniz rule, we have

‖φ(t)Uλ(−t)u(t)‖
Hb′
t
. ‖Jb′t φ‖Lpt ‖Uλ(−t)u(t)‖Lqt + ‖φ‖Lqt

∥∥∥Jb′t (Uλ(−t)u(t)
)∥∥∥
Lpt
, (2.22)

where 1
p + 1

q = 1
2 . We take b′ := 1

2− < b < 1
2 and p > 2 so that we have the continuous

Sobolev embedding Hb−b′
t (R) ⊂ Lpt (R). Consequently, we also have the Sobolev embedding

Hb
t (R) ⊂ Lqt (R). Then, the conclusion follows from (2.22) and triangle inequality for the

Hs
x(R)-norm. �

2.1. A bilinear L4-Strichartz estimate. The following result is a key ingredient in the
analysis of the almost conservation estimates as it is a refinement of the L4-Strichartz
estimate that provides a decaying factor in λ. Such an estimate is similar to the bilinear
L4-estimate in the non-periodic setting [7, Lemma 7.1], and we point out that for λ→∞,
we recover the same decay rate. For Schrödinger evolutions on the one-dimensional torus,
this estimate (but without pointing out the alternative (ii)) was first proved in [10].

Lemma 2.5. Let λ ≥ 1, N1, N2 ∈ 2Z and suppose φ1, φ2 are smooth functions on Tλ with

supp(φ̂j) ⊂ {k ∈ Zλ : |k| ∼ Nj}, j = 1, 2. Assume that either

(i) N1 � N2, or

(ii) N1 ∼ N2 and k1k2 < 0 for all k1 ∈ supp(φ̂1), k2 ∈ supp(φ̂2).

Then ∥∥(η(t)Uλ(t)φ1

)(
η(t)Uλ(t)φ2

)∥∥
L2
t,x(R×Tλ)

. C(λ,N1)‖φ1‖L2
x(Tλ)‖φ2‖L2

x(Tλ) (2.23)

where

C(λ,N1) =

{
1 , if N1 . 1

( 1
λ + 1

N1
)
1
2 , if N1 � 1

. (2.24)

Moreover, suppose u1, u2 ∈ Sλ are Fourier supported in {|k1| ∼ N1} and {|k2| ∼ N2}, re-
spectively, for all times t. Then, under the same assumption on the two frequency supports,
we have

‖u1u2‖L2
t,x(R×Tλ) .ε C(λ,N1)1−2ε‖u1‖

X0, 12−ε(R×Tλ)
‖u2‖

X0, 12−ε(R×Tλ)
, (2.25)

for any ε > 0 sufficiently small.

Remark 2.6. In [49, Proposition 2.1], there seems to be a mistake in the case N1 ∼ N2:
the two Fourier supports should be localized on opposite sides of the origin on the real line
in order for (2.23) to be true. The estimate with this additional assumption was used in
proving Cases (2) and (3) of [49, Lemma 7.5]. Although with simlar ideas as in the proof
of [10, Proposition 3.7], we decided to present the proof so that this observation becomes
clear.
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Proof. By Plancherel’s identity, the left hand side of (2.23) becomes∥∥∥∥ˆ
τ1+τ2=τ

ˆ
k1+k2=k

η̂(τ1 + k2
1)η̂(τ2 + k2

2)φ̂1(k1)φ̂2(k2)(dk1)λdτ1

∥∥∥∥
L2
τL

2
k

.

We denote ψ := η̂ ∗ η̂, and without loss of generality, we can assume that ψ is R-valued and
non-negative. 8 Thenˆ

R
η̂(τ1 + k2

1)η̂(τ − τ1 + k2
2)dτ1 = ψ(τ + k2

1 + k2
2) ≥ 0

and by Hölder’s inequality, we have∥∥∥∥ˆ
k1+k2=k

ψ(τ + k2
1 + k2

2)φ̂1(k1)φ̂2(k2)(dk1)λ

∥∥∥∥
L2
τL

2
k

≤

∥∥∥∥∥
(ˆ

k1+k2=k
ψ(τ + k2

1 + k2
2(dk1)λ

) 1
2

×
(ˆ

k1+k2=k
ψ(τ + k2

1 + k2
2)|φ̂1(k1)|2|φ̂2(k2)2(dk1)λ

) 1
2

∥∥∥∥∥
L2
τL

2
k

≤M
(ˆ

Zλ

ˆ
Zλ

ˆ
R
ψ(τ + k2

1 + k2
2)|φ̂1(k1)|2|φ̂2(k2)|2 dτ (dk1)λ (dk)λ

) 1
2

≤M‖ψ‖
1
2

L1(R)
‖φ1‖L2(Tλ)‖φ2‖L2(Tλ),

where we applied Fubini’s theorem and we denoted

M :=

(
sup
k,τ

ˆ
k1+k2=k

ψ(τ + k2
1 + k2

2)(dk1)λ

) 1
2

.

Thus, in order to obtain (2.23), it remains to show that M . C(λ,N1).
Since ψ is a Schwartz function, it is rapidly decaying, and so we can split R into

disjoint intervals Ij (j ∈ Z) 9 such that for all j we have |Ij | ∼ 1 and ‖ψ|Ij‖L∞ . 2−|j|.
Given k ∈ Zλ, τ ∈ R, and j ∈ Z, we consider the set

Sk,τ,j = {k1 ∈ Zλ : k1 ∈ supp(φ̂1) , k − k1 ∈ supp(φ̂2) , τ + k2
1 + (k − k1)2 ∈ Ij}

and we estimate

M .

sup
k,τ

∑
j∈Z

(
1

λ
#Sk,τ,j

)
2−|j|

 1
2

,

where #Sk,τ,j denotes the cardinality of Sk,τ,j .
If N1 . 1, then clearly

#Sk,τ,j ≤ #

{
k1 ∈

1

λ
Z : |k1| . 1

}
. λ

and thus M . 1.

8. In general, we can write ψ = ψ+ − ψ− + iψ+ − iψ− with the four components satisfying the non-
negativity assumption, from where we can carry on analogous arguments for each of these terms.

9. If ψ were compactly supported, it would be enough to consider only one such interval, namely a
finite-length interval which includes the support of ψ.
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Now let us assume N1 � 1. To estimate the cardinality of a nonempty set Sk,τ,j , we
denote

fk,τ (k1) := τ + k2
1 + (k − k1)2.

Notice that
|f ′k,τ (k1)| = 2|k1 − (k − k1)| ∼ N1, (2.26)

and that this property holds not only when N1 � N2 but also when k1 and k − k1 have
opposite signs, and this is ensured by assumption (ii). From (2.26) and the mean value
theorem, we get that

#Sk,τ,j . 1 +
λ

N1
,

uniformly in j (if λ . N1 there might be only one element in Sk,τ,j).

For the last part, by the transference principle for Xs,b spaces (see for example [43,
Lemma 2.9]), the estimate (2.23) implies

‖u1u2‖L2
t,x(R×Tλ) . C(λ,N1)‖u1‖

X0, 12+(R×Tλ)
‖u2‖

X0, 12+(R×Tλ)
. (2.27)

On the other hand, by Hölder inequality and the L4-Strichartz estimate, we have

‖u1u2‖L2
t,x(R×Tλ) . ‖u1‖

X0, 38 (R×Tλ)
‖u2‖

X0, 38 (R×Tλ)
. (2.28)

By interpolating (2.27) and (2.28), we obtain (2.25) for ε > 0 sufficiently small. �

Remark 2.7. We point out that the implicit constant in (2.25) depends on ε. Hence, we
cannot disregard the logarithmic loss in the constant C(λ,N1). This loss is essentially the
reason for which we need to introduce the second correction term in (5.25) in the third
iteration of the I-method (see also Remark 5.12).

Remark 2.8. Notice that, under assumption (i) of the above lemma, the estimate (2.25)
holds if we replace one of the functions on the left hand side with its conjugate (or equiva-

lently, one of the X0, 1
2 -norms in the right hand side with the X

0, 1
2 -norm as defined in [17]).

This is no longer true under assumption (ii).

We use the above bilinear estimate essentially in the regime 1 ≤ λ . N1, and thus, in

our estimates, C(λ,N1) ∼ λ−
1
2 .

2.2. Gagliardo-Nirenberg inequalities in the periodic setting. We recall that on
the real line, we have the sharp Gagliardo-Nirenberg inequalities

‖f‖L6(R) ≤
(

2
π

) 1
3 ‖∂xf‖

1
3

L2(R)
‖f‖

2
3

L2(R)
, (2.29)

‖f‖L6(R) ≤ CGN‖∂xf‖
1
9

L2(R)
‖f‖

8
9

L4(R)
, (2.30)

where CGN := 3
1
6 (2π)−

1
9 . For (2.29) we refer to [47], whereas for (2.30), see [1].

Remark 2.9. Extremising functions in (2.29) are given by solutions of

−f ′′ + f − 3

16
f5 = 0.

Up to translations, there is a unique positive, decaying solution, called the ground state
and denoted by Q, for which we have the Pohozaev identities M [Q] = 2π and E[Q] = 0.
We also know that for any u0 ∈ H1(R) with M [u0] < M [Q], we have E[u0] > 0. Such a Q
is also a stationary solution of (1.18) on R with β = 3

4 . Moreover, there exists u0 ∈ H1(R)
with 2π < M [u0] < 2π + ε such that E[u0] < 0.
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On the other hand, solutions of

−f ′′ + f3 − 3

16
f5 = 0

achieve the optimal constant CGN in (2.30). The ground state solution W has M [W ] = 4π.

On T, inequalities of the above form cannot hold, simply for the fact that constant
functions provide counterexamples. However, the situation is similar to the Poincaré in-
equality, and in fact, using elementary arguments, 10 it was shown in [17, Appendix C] the
following inequality:

‖(|f |2 − µ[f ])f‖L2(Tλ) ≤ ‖∂xf‖L2(Tλ)‖f‖2L2(Tλ), (2.31)

for any 2πλ-periodic function f . Although (2.31) can be used to study the coercivity of E
(see Lemma 3.2 below), we use here the following result (see e.g. Lebowitz, Rose and Speer
[24, Lemma 4.1]) since it yields the same mass threshold M [u0] < 2π as in the Euclidean
setting.

Lemma 2.10. For any ε > 0, there exists a constant Kε > 0 (independent of λ) such that

‖f‖6L6(Tλ) ≤
(

4

π2
+ ε

)
‖∂xf‖2L2(Tλ)‖f‖

4
L2(Tλ) +Kε‖f‖6L2(Tλ), (2.32)

for all f ∈ H1(Tλ).

With similar arguments, one can adapt (2.30) to Tλ as well.

Lemma 2.11. Let δ > 0. We have

‖f‖L6(Tλ) ≤ CGN
(

1 +
δ

5πλ

) 2
9
(
‖∂xf‖2L2(Tλ) +

1

πλδ
‖f‖2L2(Tλ)

) 1
18

‖f‖
8
9

L4(Tλ)
(2.33)

for all f ∈ H1(Tλ).

The proof is a slight modification of [34, Lemma 2.2] which used the L4-norm rather
than the L2-norm of f in the first factor on the right hand side above.

2.3. The gauge transformation on Tλ. Following Herr [17, 18], we consider

Gβ : L2
x(Tλ)→ L2

x(Tλ) , Gβ(f)(x) := e−iβJ (f)(x)f(x) , (2.34)

where J (f) is the mean-zero antiderivative of |f |2 − µ(f), i.e.

J (f)(x) :=
1

2πλ

ˆ 2πλ

0

ˆ x

θ
|f(y)|2 − µ[f ] dy dθ (2.35)

and

µ[f ] :=
1

2πλ
‖f‖2L2(Tλ). (2.36)

Note that |Gβf | = |f | and therefore µ[Gβf ] = µ[f ]; moreover Gβ is inverted by G−β.
Setting w(t, x) = Gβ(u(t))(x), the derivative nonlinear Schrödinger equation (1.1) be-

comes

i∂tw + ∂2
xw − 2iβµ[w] ∂xw = 2i(1− β)|w|2∂xw + i(1− 2β)w2∂xw + βµ[w]|w|2w

+ (
β

2
− β2)|w|4w − ψ[w]w,

(2.37)

10. Strictly speaking, (2.31) was proved on T, but it is also true on Tλ as the inequality is scale invariant.
The same result can be obtained by using the pointwise Poincaré inequality followed by an application of
the Hölder inequality.
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where

ψ[w] :=
β

2πλ

ˆ
Tλ

(
2 Im(wwx) + (

3

2
− 2β)|w|4

)
dx+ β2µ[w]2. (2.38)

Correspondingly, the momentum and energy functionals are

P [G−β(w)] =

ˆ
Tλ

(
Im(wwx) + (

1

2
− β)|w|4

)
dx+ βµ[w]M [w] =: Pβ[w], (2.39)

E[G−β(w)] =

ˆ
Tλ

(
|wx|2 + (

3

2
− 2β)|w|2 Im(wwx) + (β2 − 3

2
β +

1

2
)|w|6

)
dx

+
β

2
µ[w]‖w‖4L4

x
+ 2βµ[w]Pβ[w]− β2µ[w]2M [w] =: Eβ[w]. (2.40)

We point out that in the periodic setting, the terms coupled with µ[w] and ψ[w] are new
terms when comparing (2.37) to the Euclidean setting.

We can eliminate the auxiliary linear term on the left hand side of (2.37) by the
translation transformation

w(t, x) 7→ v(t, x+ 2βµ[w]t). (2.41)

Correspondingly, we introduce the gauge transformation of spacetime functions

Gβ : C0
t L

2
x(J × Tλ)→ C0

t L
2
x(J × Tλ) , Gβ(u)(t, x) := Gβ(u(t))(x− 2βµ[u(t)]t). (2.42)

For the local well-posedness theory, it is necessary to use the gauge parameter β = 1
so that the “bad” nonlinear term |w|2∂xw in (2.37) is elliminated. Hence, in the sequel, we
consider the equation on Tλ corresponding to this gauge choice, namely

i∂tv + ∂2
xv = −iv2∂xv −

1

2
|v|4v + µ[v]|v|2v − ψ[v]v, (2.43)

where we recall that µ[v] = 1
2πλ‖v‖

2
L2(Tλ) and

ψ[v] :=
1

2πλ

ˆ
Tλ

(
2 Im(vvx)− 1

2
|v|4
)
dx+ µ[v]2. (2.44)

Remark 2.12. The nonlinearity of (2.43) can be written in the form N = T̃ + Q̃ by
grouping terms as follows:

T̃ (v) :=− i
(
vvx − 2i

 
Tλ

Im(vvx) dx

)
v, (2.45)

Q̃(v) :=− 1

2

(
|v|4 −

 
Tλ
|v|4dx

)
+

 
Tλ
|v|2dx

(
|v|2 −

 
Tλ
|v|2dx

)
v. (2.46)

An important observation here is that, on the Fourier side, by using the inclusion-exclusion
principle we can write

̂̃T (v)(k) =
1

(2πλ)2

∑
k=k123
k 6=k1,k3

k2v̂(k1)v̂(k2)v̂(k3)− 1

(2πλ)2
kv̂(k)v̂(−k)v̂(k). (2.47)

It was made clear in [12] that the above frequency cancelations are essential in establish-
ing the estimate that deals with the derivative-cubic nonlinearity in the scale of Fourier-
Lebesgue spaces FLs,r(T). However, in Sobolev spaces Hs(T), for s ≥ 1

2 , one can handle

the cubic-derivative term u2∂xu without the frequency cancelations (see Lemma 4.2 be-
low due to Herr [17]). In (2.46), the coefficients of the subtracted terms do not allow
symmetrization, hence we do not have useful frequency cancelations.
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The following lemma provides the continuity properties of the gauge transformation
that allow to transfer well-posedness results between various versions of (1.18), including
(1.1) itself. We note that in order to have the Lipschitz continuity of Gβ (rather than of
Gβ) one needs to fix the L2-norm of the functions at all times t.

Lemma 2.13. [17, Lemma 2.3] Let s, r, µ0 ≥ 0, T > 0. There exists c = c(r, s, λ) > 0 such
that:

(1) If f, g ∈ Br := {f ∈ Hs(Tλ) : ‖f‖Hs(Tλ) ≤ r}, then

‖Gβ(f)− Gβ(g)‖Hs(Tλ) ≤ c‖f − g‖Hs(Tλ). (2.48)

(2) If u, v ∈ Br,µ0, where

Br,µ0 := {u ∈ C([−T, T ];Hs(Tλ)) : ‖u‖L∞t Hs
x
≤ r, µ[u(t)] = µ0 for all t ∈ [−T, T ]},

then

‖Gβ(u)(t)− Gβ(v)(t)‖Hs(Tλ) ≤ c‖u(t)− v(t)‖Hs(Tλ) (2.49)

for all t ∈ [−T, T ].

We recall that the local well-posedness theory for (2.43) via a fixed point argument in
the space Z1 was developed in [17, 18] (see the estimates in Lemma 4.2 below). Therefore,
in order to get Theorem 1.1, we aim to prove that the Hs-solutions of (2.43) exist globally
in time in the following sense:

Proposition 2.14. Let 1
2 ≤ s < 1 and v0 ∈ Hs(T) with M [v0] < 4π. Then for any ε > 0,

there exists c = c(‖v0‖Hs(T),M [v0], ε) <∞ such that for all T > 0, the solution v of (2.43)
with v(0) = v0 satisfies

sup
0≤t≤T

‖v(t)‖Hs
x(T) ≤ c(1 + T )2−2s+ε.

Since the equation (2.43) has the time reversibility symmetry v(t, x) 7→ v(−t,−x) and
the L2

x-norm is conserved along the evolution, the above result implies that the Hs
x-norm

of any solution v of (2.43) does not blow up in finite time.

2.4. The I-operator. For 0 ≤ s < 1 and N � 1 a fixed dyadic number, we define the
Fourier multiplication operator 11

I : Hs(Tλ)→ H1(Tλ) , Îf(k) = m(k)f̂(k) , k ∈ Zλ (2.50)

where m : R → (0, 1] is an even, smooth, non-increasing function on [0,∞), chosen such
that

m(ξ) =

1 , if |ξ| ≤ N(
N
|ξ|

)1−s
, if |ξ| ≥ 2N

and a smooth interpolant for N ≤ |ξ| ≤ 2N . Furthermore, for any s ≥ 1
2 , the Fourier

multiplier m( · ) can be chosen such that it satisfies the monotonicity property

ξ 7→ m(ξ)ξ
1
2 is non-decreasing on [0,∞). (2.51)

11. The operator I depends on the regularity index s and the parameters N and λ, but we choose to
omit them as indices of I whenever possible. However, in Lemma 4.4 it becomes necessary to point them
out explicitly.
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One easily checks that, for any 0 ≤ θ < 1, we have

m(k)〈k〉1−θ &

{
N1−θ , if |k| � N

1 , if |k| . N
(2.52)

in the regularity range θ ≤ s < 1, with implicit constants independent of λ.
We note that I behaves like the identity operator on frequencies smaller than N and

integrates of order 1− s on frequencies much bigger than N . Indeed,∑
k.N

〈k〉2s|û(k)|2 .
∑
k.N

〈k〉2m(k)2|û(k)|2 . N2(1−s)
∑
k.N

(
〈k〉
N

)2−2s

〈k〉2sm(k)2|û(k)|2

and ∑
k�N
〈k〉2 1

〈k〉2−2s
|û(k)|2 .

∑
k�N
〈k〉2m(k)2|û(k)|2 .

∑
k�N
〈k〉2

(
N

〈k〉

)2−2s

|û(k)|2 .

Therefore, we have

‖u‖Hs(Tλ) . ‖Iu‖H1(Tλ) . N
1−s‖u‖Hs(Tλ), (2.53)

as well as

‖u‖Ḣs(Tλ) . ‖Iu‖Ḣ1(Tλ) . N
1−s‖u‖Ḣs(Tλ). (2.54)

2.5. Multilinear forms. As in [7, 8, 10, 31], we use the shorthand notations k12...n :=
k1 + k2 + . . .+ kn, k1−2 := k1 − k2, etc., as well as mj := m(kj),mjh := m(kjh), etc. Also,
we set

Γn(Tλ) := {k = (k1, . . . , kn) ∈ (Zλ)n : k12...n = 0},
Γn(R) := {(τ1, . . . , τn) ∈ Rn : τ1 + . . .+ τn = 0}

and we endow them with the measure induced from the scaled counting measure 1
(2πλ)n−1d#

and, respectively, from the Lebesgue measure dτ1 . . . dτn−1, by pushing forward under the
map (x1, . . . , xn−1) 7→ (x1, . . . , xn−1,−x1 − . . .− xn−1).

For n even integer, we define the n-linear form of f1, . . . , fn : Tλ → C associated to
the multiplier Mn : Rn → C by

Λn(Mn; f1, . . . , fn) :=

ˆ
Γn(Tλ)

Mn(k1, k2, ..., kn)

n∏
j=1

f̂j(kj)

and the shorthand Λn(Mn; f) := Λn(Mn; f, f , . . . , f, f). For example, we haveˆ
Tλ
|v2
x|dx = −Λ2(k1k2; v),

Im

ˆ
Tλ
|v|2vv̄xdx = −1

4
Λ4(k13−24; v).

Remark 2.15. We note that

Λ(Mn; f) =

ˆ
Γn(Tλ)

Mn(k1, k2, . . . , kn)f̂(−k1)f̂(−k2) · · · f̂(−kn−1)f̂(−kn)

and thus, if the multiplier Mn is such that

Mn(−k2,−k1, . . . ,−kn,−kn−1) = σMn(k1, k2, . . . , kn−1, kn),

then we have that Λn(Mn; f) is R-valued (iR-valued), provided that σ = +1 (σ = −1).
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On the Fourier side, the equation (2.43) is written as

∂tv̂(k) = −ik2v̂(k)− i
ˆ
k123=k

k2v̂(k1)v̂(k2)v̂(k3)− iµ[v]

ˆ
k123=k

v̂(k1)v̂(k2)v̂(k3)

+
i

2

ˆ
k12345=k

v̂(k1)v̂(k2)v̂(k3)v̂(k4)v̂(k5) + iψ[v]v̂(k).

Also,

∂tv̂(k) = +ik2v̂(k)− i
ˆ
k123=k

k2v̂(k1)v̂(k2)v̂(k3)− iµ[v]

ˆ
k123=k

v̂(k1)v̂(k2)v̂(k3)

− i

2

ˆ
k12345=k

v̂(k1)v̂(k2)v̂(k3)v̂(k4)v̂(k5) − iψ[v]v̂(k).

If n, ` are even integers and 1 ≤ j ≤ n, the elongation at index j with ` positions of
the multiplier Mn is defined by

X`j(Mn)(k1, k2, . . . , kn+`) := Mn(k1, . . . , kj−1, kj + kj+1 + . . .+ kj+`, kj+`+1, . . . , kn+`).

Then, for a solution v of (2.43), we have the differentiation rule

∂tΛn(Mn; v(t)) =iΛn

Mn

n∑
j=1

(−1)jk2
j ; v(t)


− iΛn+2

 n∑
j=1

X2
j (Mn)kj+1; v(t)

− iµ[v]Λn+2

 n∑
j=1

X2
j (Mn); v(t)


+
i

2
Λn+4

 n∑
j=1

(−1)j−1X4
j (Mn); v(t)

 .

(2.55)

In comparison with the similar rule in the Euclidean setting (see [8, Proposition 3.5]), we
note that the additional term (i.e. the one coupled with µ[v]) is due to the particularity
of the gauge transformation (2.34)-(2.35). Since ψ is R-valued, the terms corresponding to
the ψ[v]v term in (2.43) cancel each other.

We introduce the following notation for the factor corresponding to the term ∂2
xv in

the equation (2.43):

αn(k) := −i(k2
1 − k2

2 + . . .+ k2
n−1 − k2

n). (2.56)

Note that α2 = 0 on Γ2(Tλ). A key property for the analysis of the second and third
generation modified energies is the factorization of α4 on Γ4(Tλ):

α4(k) = −i ((k1 − k2)k12 + (k3 − k4)k34) = −2ik12k14. (2.57)

Furthermore, we introduce the modulations:

ωj := τj + k2
j , for j odd,

ωj := τj − k2
j , for j even,

for all (τ1, . . . , τn) ∈ Γn(R), and we note that

ω1 + ω2 + ω3 + ω4 = τ1234 + k2
1 − k2

2 + k2
3 − k2

4

= 2k12k14
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which implies
max

1≤j≤4
|ωj | & |k12k14|. (2.58)

3. Coercivity properties

We begin this section by revisiting the energy functional corresponding to the gauge
equivalent DNLS equation (2.43) on Tλ, namely

E1[v] :=

ˆ
Tλ

(
|∂xv|2 −

1

2
|v|2 Im(v∂xv)

)
dx+

1

2
µ[v]‖v‖4L4(Tλ)+2µ[v]P1[v]−µ[v]2M [v]. (3.1)

Compared to the real line case, due to the particularity of the gauge transformation in the
periodic setting, the terms coupled with the coefficient µ[v] are new. The last two terms
are integrals of motion, so we could discard them. However, the term 1

2µ[v]‖v‖4L4 is not
conserved by the flow of (2.43).

Remark 3.1. If v is a smooth solution of (2.43), ‖v‖L4 is not necessarily conserved. Indeed,
we have (see (4.8)-(4.9))

∂t‖v‖4L4 = 4 Re

ˆ
Tλ
|v|2v(i∂2

xv − iN (v)) dx

= −4 Im

ˆ
Tλ
|v|2v∂2

xv − |v|2v
(
N1(v) +N2(v) + µ[v]N3(v)− ψ[v]v

)
dx

= 4 Im

ˆ
Tλ
∂x(vv2)∂xv dx− 4 Imψ[v]‖v‖4L4(Tλ) + h.o.t.

= 4 Im

ˆ
Tλ
v2(∂xv)2 dx+ h.o.t.,

where we used the fact that ψ[v] is R-valued; see (2.44). In general, the higher order terms
(h.o.t.) cannot cancel the fourth order term 4 Im

´
Tλ v

2v2
x dx.

Nevertheless, by Sobolev embedding and interpolation of Hs-norms, we have

‖v‖L4 . ‖v‖
H

1
4
≤ ‖v‖

3
4

L2‖v‖
1
4

H1

and therefore, for any ε > 0,

1

2
µ(v)‖v‖4L4 . ‖v‖5L2‖v‖H1 . ε‖∂xv‖2L2 + ε‖v‖2L2 +

1

ε
‖v‖10

L2 . (3.2)

Therefore, we consider the essential part of the energy functional in (3.1), namely

E [v] :=

ˆ
Tλ

(
|∂xv|2 −

1

2
|v|2 Im(vvx)

)
dx. (3.3)

This is the same expression as the energy corresponding to (1.15) on the real line (see [7]).

In view of (3.2) and the conservation of mass, when controlling the Ḣ1-norm of a solution
v to (2.43), the above E [v] is just as good as the conservation law E1[v].

Applying the same strategy to the mixed term |v|2 Im(vvx) and by using the Gagliardo-
Nirenberg inequality (2.32), we get

E [v] + 1 &δ,M [v]

(
4π2(1− ε− δ)δ −M [v]2

)
‖∂xv‖2L2

for any ε, δ > 0, where the constant 1 in the left hand side above hides a polynomial in M [v].
Since supε,δ>0(1− ε− δ)δ = 1

4 , this would yield the mass threshold condition M [v] < π.
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However, as was noticed by Hayashi and Ozawa [14, 15] in the Euclidean case, the
choice β = 3

4 for the gauge transformation yields a neat expression for the corresponding
energy functional and a better mass threshold condition, namely M [v] < 2π. In view of
Remark 2.9, this mass threshold is sharp; it cannot be improved by any other gauge choice.
Using the adaptation of a Gagliardo-Nirenberg inequality (Lemma 2.10 above), we show
that this threshold also carries over to the periodic setting.

Lemma 3.2. Let λ ≥ 1. For any f ∈ H1(Tλ) with M [f ] = ‖f‖2L2(Tλ) < 2π, we have:

‖∂xf‖2L2(Tλ) . E [f ] + 1. (3.4)

The implicit constant depends only on M [f ]and blows up as M [f ]↗ 2π.

Proof. Consider g = Gβ(f). Then |g| = |f | and

∂xf = eiβJ (g)
(
∂xg + iβ(|g|2 − µ[g])g

)
.

Using (2.31), it follows that

‖∂xf‖2L2 = ‖∂xg‖2L2 + β2‖(|g|2 − µ[g])g‖2L2 − 2β

ˆ
(|g|2 − µ[g]) Im(g∂xg) dx

≤
(

1 + β2‖g‖4L2 + 2|β|‖g‖2L2

)
‖∂xg‖2L2 .

(3.5)

Straightforward computations give us

E [f ] = ‖∂xg‖2L2 + β2

ˆ ∣∣(|g|2 − µ[g])g
∣∣2 dx− 2β

ˆ
(|g|2 − µ[g]) Im(g∂xg)dx

− 1

2

ˆ
|g|2 Im(g∂xg)dx+

β

2

ˆ
(|g|2 − µ[g])|g|4dx

By taking β = −1
4 , we obtain

E [f ] = ‖∂xg‖2L2 −
1

16
‖g‖6L6 +

1

16

(
µ[g]2 − 2µ[g]

)
‖g‖2L2 −

1

2
µ[g]

ˆ
Im(g∂xg)dx+

1

8
µ[g]‖g‖4L4

≥ ‖∂xg‖2L2 −
1

16
‖g‖6L6 −

1

8
µ[g]‖g‖2L2 −

1

2
µ[g]

ˆ
Im(g∂xg)dx

and note that for any ε > 0 and any λ ≥ 1,∣∣∣∣12µ[g]

ˆ
Im(g∂xg)dx

∣∣∣∣ ≤ ‖g‖3L2‖∂xg‖L2 ≤ ε‖∂xg‖2L2 + Cε‖g‖6L2 ,

for some Cε ∼ ε−1. We choose ε > 0 such that ‖f‖4L2( 1
4π2 + ε

16) < 1 − ε, and by (2.32) 12

we then get

E [f ] ≥ (1− ε)‖∂xg‖2L2 −
1

16
(

4

π2
+ ε)‖∂xg‖2L2‖g‖4L2 −

1

16
Kε‖g‖6L2

− 1

8
µ[g]‖g‖2L2 − Cε‖g‖6L2

and thus

E [f ] +M [f ]3 &

(
(1− ε)− (

1

4π2
+

ε

16
)‖f‖4L2

)
‖∂xg‖2L2 . (3.6)

By combining (3.5) and (3.6), we deduce (3.4) and the proof is complete. �

12. By using (2.31) at this point, the coercivity of E [ · ] + 1 would be obtained under M [u0] < 2
√

2.
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Inspired by a recent paper of Guo and Wu [13], we can improve the mass threshold

below which we can control the Ḣ1-norm of f by using both the energy E [f ] and the
momentum

P[f ] :=

ˆ
Tλ

Im(f∂xf)dx− 1

2
‖f‖4L4(Tλ) (3.7)

associated to (2.43), where we dropped the conserved term from (2.39). The key observation
is to notice that by modulating f , the change in kinetic energy incurred resembles the main
part of the momentum P[f ] (see (3.10) below).

Lemma 3.3. Let λ ≥ 1. For any f ∈ H1(Tλ) with M [f ] = ‖f‖2L2(Tλ) < 4π, we have:

‖∂xf‖2L2(Tλ) . |E [f ]|+ P[f ]2 + 1. (3.8)

The implicit constant depends only on M [f ] and blows up as M [f ]↗ 4π.

Proof. As in the proof of Lemma 3.2 above, let us consider g = G− 1
4
(f) for which, according

to (3.5), we have

‖∂xf‖L2(Tλ) ∼ ‖∂xg‖L2(Tλ).

The main part is showing that

‖∂xg‖2L2(Tλ) . |E 3
4
[g]|+ P 3

4
[g]2 + 1. (3.9)

Indeed, this suffices to get (3.8) as we have

|P 3
4
[g]| =|P1[f ]| ≤ |P[f ]|+ µ[f ]M [f ],

|E 3
4
[g]| =|E1[f ]| . |E [f ]|+ 1

2
µ[f ]‖f‖4L4 + µ[f ]|P[f ]|+ µ[f ]2M [f ],

and we can use (3.2).
From (2.39)-(2.40), we recall that

P 3
4
[g] =

ˆ
Tλ

Im(g∂xg)dx− 1

4
‖g‖4L4 +

3

4
µ[g]M [g],

E 3
4
[g] = ‖∂xg‖2L2 −

1

16
‖g‖6L6 +

3

8
µ[g]‖g‖4L4 +

3

2
µ[g]P 3

4
[g]− 9

16
µ[g]2M [g].

In order to get (3.9), we consider the modulated function gα(x) := eiαxg(x) with α ∈ Zλ
and α > 0 to be chosen later. We have

‖∂xgα‖2L2 = ‖∂xg‖2L2 + α2‖g‖2L2 − 2α

ˆ
Tλ

Im(g∂xg)dx (3.10)

and therefore

E 3
4
[gα]− E 3

4
[g] = α2M [g]− 2α

ˆ
Tλ

Im(g∂xg)dx+
3

8
µ[g]

(
P 3

4
[gα]− P 3

4
[g]
)
. (3.11)

Since

Im(gα∂xgα) = Im(g∂xg)− α|g|2,
we also have

P 3
4
[gα]− P 3

4
[g] = −αM [g]. (3.12)

Therefore

1

2α
E 3

4
[gα]− 1

2α
E 3

4
[g] =

α

2
M [g]−

ˆ
Tλ

Im(g∂xg)dx− 3

4
µ[g]M [g]
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and thus we find that

1

2α
E 3

4
[gα]− 1

2α
E 3

4
[g]− α

2
M [g] +

1

4
‖g‖4L4 = −P 3

4
[g]. (3.13)

We now use the Gagliardo-Nirenberg inequality (2.33) to give a lower bound to the
first term in (3.13); we drop the positive term 3

8µ[gα]‖gα‖4L4 . Also, we use (3.12), and taking
into account that the Lebesgue norms of gα and g coincide, we have

E 3
4
[gα] ≥‖g‖6L6

(
C−18
GN

(
1 +

δ

5πλ

)−4 ‖g‖12
L6

‖g‖16
L4

− 1

16

)
− 1

πλδ
M [g]

+
3

2
µ[g]

(
P 3

4
[g]− αM [g]

)
− 9

16
µ[g]2M [g]

By (3.13), we then get

|P 3
4
[g]|+ 3

4
µ[g]M [g] ≥1

4
‖g‖4L4 −

α

2
M [g]− 1

2α
ϕ(
‖g‖6L6

‖g‖8
L4

)‖g‖8L4

− 1

2α

(
|E 3

4
[g]|+ 3

2
µ[g]|P 3

4
[g]|+ 9

16
µ[g]2M [g] +

1

πλδ
M [g]

)
,

where

ϕ(x) :=

(
1

16
− C−18

GN

(
1 +

δ

5πλ

)−4

x2

)
x

and for which we have

max
x>0

ϕ(x) ≥ max
x>0

(
1

16
− C−18

GN x2

)
x =

1

64π
.

We now balance the terms α
2M [g] and 1

128πα‖g‖
8
L4 by choosing

α∗ :=
‖g‖4L4

8
√
π‖g‖L2

.

However, in order to correctly define gα as a periodic function on Tλ, we take

α :=
1

λ

(
[λα∗] + 1

)
(3.14)

(here, by [x] we denote the integer part of x). Then

−α
2
M [g]− 1

128πα
‖g‖8L4 ≥ −

α∗
2
M [g]− 1

128πα∗
‖g‖8L4 −

1

2λ
M [g]

= −α∗M [g]− 1

2λ
M [g]

and taking into account that λ ≥ 1, we deduce

|P 3
4
[g]|+M [g]2 +M [g] ≥1

4
‖g‖4L4 − α∗M [g]

− 1

2α∗

(
|E 3

4
[g]|+M [g]|P 3

4
[g]|+M [g]3 + δ−1M [g]

)
.

(3.15)
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We consider the following positive reals

a :=
1

4

(
1− 1

2
√
π
‖g‖L2

)
,

b := 4
√
π‖g‖L2

(
|E 3

4
[g]|+M [g]|P 3

4
[g]|+M [g]3 + δ−1M [g]

)
,

c := |P 3
4
[g]|+M [g]2 +M [g].

Thus, the inequality (3.15) provides the following

c ≥ a‖g‖4L4 −
b

‖g‖4
L4

.

It follows that

‖g‖4L4 ≤
c+
√
c2 + 4ab

2a
. c+ b

1
2

and so we obtain

‖g‖8L4 . c2 + b . |E 3
4
[g]|+ P 3

4
[g]2 + 1. (3.16)

Therefore, by using again (2.33),

‖∂xg‖2L2 +
2

δ
µ[g] = E 3

4
[g] +

1

16
‖g‖6L6 −

3

8
µ[g]‖g‖4L4 −

3

2
µ[g]P 3

4
[g] +

9

16
µ[g]2M [g] +

2

δ
µ[g]

. |E 3
4
[g]|+ |P 3

4
[g]|+ 1 +

(
‖∂xg‖2L2 +

2

δ
µ[g]

) 1
3

‖g‖
16
3

L4

where the implicit constant can be taken to depend only on M [g]. Then either

‖∂xg‖2L2 +
2

δ
µ[g] . |E 3

4
[g]|+ |P 3

4
[g]|+ 1

or (
‖∂xg‖2L2 +

2

δ
µ[g]

) 2
3

. ‖g‖
16
3

L4

and we use (3.16). In both cases, (3.9) holds and the proof is completed. �

4. Local well-posedness for the I-system

Given v (sufficiently smooth) solution of (2.43), since Iv does not solve the gauge
equivalent equation (2.43), P1[Iv] and E1[Iv] are not conservation laws. Instead, v satisfies
the following I-system{

i∂t(Iv) + ∂2
x(Iv) = −iI(v2∂xv)− 1

2I(|v|4v) + µ[v]I(|v|2v)− ψ[v](Iv) , x ∈ T
(Iv)|t=0 = Iv0.

(4.1)

We modify the local well-posedness proof for (2.43) to obtain the following result for (4.1).

Proposition 4.1. Let B > 0. There exist δ ∼ B−θ (for some θ > 0) and D > 0 (both
independent of N and λ) such that if v0 ∈ Hs(Tλ) is such that ‖Iv0‖H1(Tλ) ≤ B, then

‖Iv‖Z1([0,δ]×Tλ) ≤ D. (4.2)

In order to prove this result, we use the estimates of the local well-posedness theory for
(2.43) due to Herr [17] and an interpolation lemma of Colliander, Keel, Staffilani, Takaoka,
and Tao [9, Lemma 12.1] for translation invariant multi-linear operators.
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Lemma 4.2. [17, Section 4] Let δ ∈ (0, 1) and λ ≥ 1. There exist c, ε > 0 such that

‖u1(∂xu2)u3‖
Z̃

1
2 (R×Tλ)

≤ cδε
3∏
j=1

‖uj‖
X

1
2 ,

1
2 (R×Tλ)

, (4.3)

‖u1u2u3u4u5)‖
Z̃

1
2 (R×Tλ)

≤ cδε
5∏
j=1

‖uj‖
X

1
2 ,

1
2 (R×Tλ)

, (4.4)

‖u1u2u3‖
Z̃

1
2 (R×Tλ)

≤ cδε
3∏
j=1

‖uj‖
X

1
2 ,

1
2 (R×Tλ)

, (4.5)

for all uj ∈ Sλ with supp(uj) ∈ {(t, x) ∈ R× Tλ : |t| ≤ δ}, 1 ≤ j ≤ 5.

Remark 4.3. One can check that the pointwise weights bounds provided by [17,
Lemma 4.1, Lemma 4.3] hold uniformly in λ ≥ 1 (although, in view of Remark 2.1, fur-
ther sub-cases have to be addressed). Then, the multi-linear estimates above use only the
L4-Strichartz and Sobolev inequalities of Lemma 2.3 above, which are all scaling invariant.

In order to state the interpolation lemma, let IsN denote the I-operator introduced in
(2.50). Also, following [9], we let Sx to denote the shift operator Sxu(y, t) = u(y − x, t).
A Banach space X of functions u : J × Tλ → C (where J ⊂ R is some time interval)
is translation invariant if ‖Sxu‖X = ‖u‖X for all u ∈ X and all x. We use the spaces

X = X1, 1
2 (J × Tλ) and Z = Z̃1(J × Tλ) which clearly satisfy this requirement. An

n-linear operator T : X × . . . × X → Z is translation invariant if SxT (u1, . . . , un) =
T (Sxu1, . . . , Sxun) for all uj ∈ X.

Lemma 4.4. Let s0 > 0, n ≥ 1 and let T : X × . . . × X → Z be a translation invariant
n-linear operator. Suppose

‖Is1T (u1, . . . un)‖Z ≤ C
n∏
j=1

‖Is1uj‖X (4.6)

for all s0 ≤ s ≤ 1 and all uj ∈ X, for some C > 0. Then, we also have

‖IsNT (u1, . . . un)‖Z ≤ DC
n∏
j=1

‖IsNuj‖X (4.7)

for all s0 ≤ s ≤ 1 and all uj ∈ X, for some D > 0 independent of N and λ.

To convince the reader that the proof of [9, Lemma 12.1] yields the constant D inde-
pendent of the parameter λ (as well as N), we provide the following remark that uses the
“periodization” procedure also encountered in the Poisson summation formula.

Remark 4.5. We know that the Littlewood-Paley projection operators P.Nf := φN ∗f are

uniformly bounded in N , where φN := Nφ(N ·) and φ̂ is a symmetric function on Zλ equal
to one on {|k| ≤ 1} and vanishes outside {|k| < 2}. However, the bound ‖φ‖L1(Tλ) depends
on λ. We modify slightly this usual definition in order to ensure uniform boundedness in

the scaling parameter λ as well. Thus, let ψ be a Schwarz function on R such that ψ̂ is a
symmetric bump function compactly supported in {ξ ∈ R : |ξ| ≤ 2} and identically one for
|ξ| ≤ 1. Define ψN := Nψ(N ·) and for any x ∈ Tλ we set

ϕN (x) :=
∑
k∈Z

ψN (x+ 2πλk).
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Note that ϕ̂N (k) = ψ̂N (k) for any k ∈ Zλ, and thus the operator P.Nf = ϕN ∗f acts as the

identity operator when supp(f̂) ⊂ {k ∈ Zλ : |k| . N} (this is compatible with the region
where the operators IsN also behave like the identity operator). Also,

‖ϕN‖L1(Tλ) = ‖ψN‖L1(R) = ‖ψ‖L1(R)

and therefore
‖P.N‖X→X , ‖P.N‖Z→Z . 1,

uniformly in N and λ. Finally, by arguing as in [9] that Is1I
2−s
N and N s−1IsNI

2−s
1 are

bounded (uniformly in N and λ), by splitting uj = P.Nuj + P�Nuj for each j, and by
estimating each contribution separately, we obtain (4.7).

We apply the above interpolation lemma to the trilinear and quintilinear terms corre-
sponding to the right hand side of (2.43), namely

N (v) = −iv2∂xv − 1
2 |v|

4v + µ[v]|v|2v − ψ[v]v (4.8)

=: N1(v) +N2(v) + µ[v]N3(v)− ψ[v]v. (4.9)

Note that the estimates of Lemma 4.2 give (4.6) for s0 = 1
2 . Since I1

N = Id for any N , we
obtain the estimate (4.6) for s = 1 via the Leibniz rule and Lemma 4.2. For example,

‖u1(∂xu2)u3‖Z̃1 . ‖〈∂x〉
1
2u1(∂xu2)u3‖

Z̃
1
2

+ ‖u1(∂x〈∂x〉
1
2u2)u3‖

Z̃
1
2

+ ‖u1(∂xu2)(〈∂x〉
1
2u3)‖

Z̃
1
2

. δε
3∏
j=1

‖〈∂x〉
1
2uj‖

X
1
2 ,

1
2
∼ δε

3∏
j=1

‖uj‖
X1, 12

.

One argues analogously for the other multi-linear estimates of Lemma 4.2. Hence, by
applying Lemma 4.4, we obtain

‖I
(
u1(∂xu2)u3

)
‖
Z̃1 . δε

∏3
j=1 ‖Iuj‖X1, 12

, (4.10)

‖I
(
u1u2u3u4u5

)
‖
Z̃1 . δε

∏5
j=1 ‖Iuj‖X1, 12

, (4.11)

‖I
(
u1u2u3

)
‖
Z̃1 . δε

∏3
j=1 ‖Iuj‖X1, 12

. (4.12)

We also need the following Lipschitz continuity properties for the coupling coefficients µ[v]
and ψ[v]. We easily have

|µ[f ]− µ[g]| ≤ 1

2πλ

(
‖f‖L2(Tλ) + ‖g‖L2(Tλ)

)
‖f − g‖L2(Tλ), (4.13)

while Hölder’s inequality, Parseval’s identity, and the L6-Sobolev inequality give

|ψ[f ]− ψ[g]| . 1

2πλ

(
‖f‖3

H
1
2

+ ‖f‖L2 + ‖g‖3
H

1
2

+ ‖g‖L2

)
‖f − g‖

H
1
2 (Tλ)

. (4.14)

The reader can also consult [17, Lemma 2.5].
We can now proceed with the proof of Proposition 4.1 by using the fixed point argument

in a closed ball of the space W = {v : ηδ(t)Iv(t, x) ∈ Z1(R× Tλ)} with norm

‖v‖W := ‖ηδIv‖Z1(R×Tλ),

with δ ∈ (0, 1) and D > 0 to be chosen later, and ηδ(t) := η( tδ ). Grouping terms as in
(2.45)-(2.46), and using the Duhamel formulation, solutions of (4.1) are those v that satisfy

Iv(t) = Uλ(t)Iv0 − i
ˆ t

0
Uλ(t− t′)IN (v(t′))dt′ (4.15)
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in the C([0, T ];H1(Tλ)) topology, for some T > 0. Consider the mapping v 7→ Γ(v) given
by

Γ(v) := η(t)Uλ(t)v0 − iη(t)

ˆ t

0
Uλ(t− t′)N (ηδ(t

′)v(t′))dt′.

By (2.12)-(2.13) and (4.10)-(4.12), we have

‖Γ(v)‖W ≤ ‖η(t)Uλ(t)Iv0‖Z1 +

∥∥∥∥η(t)

ˆ t

0
Uλ(t− τ)IN (ηδ(t

′)v(t′))dt′
∥∥∥∥
Z1

≤ c1

(
‖Iv0‖H1(Tλ) + ‖IN (ηδv)‖

Z̃1

)
≤ c1B + c2δ

ε
(
‖ηδIv‖3

X1, 12
+ ‖ηδIv‖5

X1, 12
+ ‖ηδIv‖Z̃1

)
.

(4.16)

Also,

‖Γ(v1)− Γ(v2)‖W =

∥∥∥∥η(t)

ˆ t

0
Uλ(t− τ)

(
IN (ηδ(t

′)v1(t′))− IN (ηδ(t
′)v2(t′))

)
dt′
∥∥∥∥
Z1

. ‖I (N1(ηδv1)−N1(ηδv2)) ‖
Z̃1 + ‖I (N2(ηδv1)−N2(ηδv2)) ‖

Z̃1

+ ‖I (N3(ηδv1)−N3(ηδv2)) ‖
Z̃1 + ‖I (ηδv1 − ηδv2) ‖

Z̃1 .

We write

N1(u1)−N1(u2) = u1(∂xu1)(u1 − u2) + u1∂x(u1 − u2)u2 + (u1 − u2)(∂xu2)u2

and by using (4.10), we obtain

‖I (N1(ηδv1)−N1(ηδv2)) ‖
Z̃1 . δ

ε(‖ηδIv1‖2Z1 + ‖ηδIv2‖2Z1)‖ηδI(v1 − v2)‖Z1 .

By using (4.11) and (4.12), we similarly have

‖I (N2(ηδv1)−N2(ηδv2)) ‖
Z̃1 . δ

ε(‖ηδIv1‖4Z1 + ‖ηδIv2‖4Z1)‖ηδI(v1 − v2)‖Z1 ,

‖I (N3(ηδv1)−N3(ηδv2)) ‖
Z̃1 . δ

ε(‖ηδIv1‖2Z1 + ‖ηδIv2‖2Z1)‖ηδI(v1 − v2)‖Z1 .

It follows that

‖Γ(v1)− Γ(v2)‖W . δε
(
‖v1‖2W + ‖v2‖2W + ‖v1‖4W + ‖v2‖4W

)
‖v1 − v2‖W . (4.17)

By taking D = 2c1B + 1 and δ such that δεD5 ∼ 1, from (4.16) and (4.17), we get

‖Γ(v)‖W ≤ D and ‖Γ(v1)− Γ(v2)‖W ≤
1

2
‖v1 − v2‖W ,

for all v, v1, v2 ∈ {w ∈ W : ‖w‖W ≤ D}. Hence, by Banach’s fixed point theorem, there
exists a unique v with ‖v‖W ≤ D such that v = Γ(v) in W . Thus,

‖Iv‖Z1([0,δ]×Tλ) ≤ ‖ηδIv‖Z1(R×Tλ) ≤ D
and it follows that (4.15) holds on [0, δ]. The proof of Proposition 4.1 is completed.

5. Modified energy functionals via the I-operator and correction terms

In view of the discussion in Section 3, we consider the essential part of the energy
functional associated to (2.43), namely

E [v] :=

ˆ
Tλ

(
|∂xv|2 −

1

2
|v|2 Im(vvx)

)
dx. (5.1)

The first modified energy is defined to be the R-valued functional

E1[v] := E [Iv] = −Λ2(k1k2m1m2; v) +
1

4
Λ4(k13m1m2m3m4; v) (5.2)
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and for v sufficiently smooth solution of (2.43), one can compute its time increment from
the fundamental theorem of calculus

E1[v(t0 + δ)]− E1[v(t0)] =

ˆ t0+δ

t0

d

dt
E1[v(t)] dt. (5.3)

Using (2.55), we have

d

dt
E1[v(t)] =Λ4(M1

4 ; v) + Λ6(M1
6 ; v) + Λ8(M1

8 ; v)− iµ[v]
(

Λ4(K1
4 ; v) + Λ6(K1

6 ; v)
)
, (5.4)

with the multipliers M1
4 ,M

1
6 ,M

1
8 given by [7, Proposition 4.1], e.g.

M1
4 (k) := − i

2
m1m2m3m4k12k13k14 −

i

2
(m2

1k
2
1k3 +m2

2k
2
2k4 +m2

3k
2
3k1 +m2

4k
2
4k2). (5.5)

Here, it is not particularly important to have the precise expression of the multipliers M1
6 ,

M1
8 . The multipliers K1

4 , K1
6 are new to the periodic setting (due to a different expression

of the gauge transformation) and are given by

K1
4 (k) :=

1

2

4∑
j=1

(−1)jm2
jk

2
j , (5.6)

K1
6 (k) :=

2

3

∑
{a,c,e}={1,3,5}
{b,d,f}={2,4,6}

mambmcmdef −mdmemfmabc . (5.7)

Note that by Remark 2.15, Λ4(K1
4 ; v) and Λ6(K1

6 , v) are purely imaginary, and that
Λ4(M1

4 ; v), Λ6(M1
6 ; v) and Λ8(M1

8 ; v) are R-valued.
The rule of thumb when one tries to prove estimates on the various terms of (5.3)

is that “different pieces of Λn appearing in the right hand side of ∂tE1(v) are easier for
n larger” [8, p. 72]. This motivates the following procedure when one tries to refine the
I-method.

A second instantiation of the I-method modifies further the expression of the energy
functional by taking

E2[v] := E1[v] + Λ4(σ4; v) (5.8)

where the “correction” multiplier σ4 is chosen so that in the expression of d
dtE

2(v), no fourth
order term Λ4( · ; v) appears. For the sake of keeping the equations compact, we choose to
drop the reference to v from Λn(Mn; v), and the frequency arguments k = (k1, . . . , kn) when
the formulae get too long.

By the differentiation rule (2.55), we have

d

dt
Λ4(σ4) =Λ4(σ4α4)− iΛ6

 4∑
j=1

X2
j (σ4)kj+1

+
i

2
Λ8

 4∑
j=1

(−1)j−1X4
j (σ4)


− iµ[v]Λ6

 4∑
j=1

X2
j (σ4)

 .

(5.9)

Note that if α4(k) = 0, then either k12 = 0 or k14 = 0, and both imply that M̃4(k) = 0.
We define the first correction σ4 = σ4(k) for k ∈ Γ4(Tλ) by setting

σ4 := −M
1
4

α4
= −1

4

(
m1m2m3m4k13 +

m2
1k

2
1k3 +m2

2k
2
2k4 +m2

3k
2
3k1 +m2

4k
2
4k2

k12k14

)
(5.10)
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when α4 6= 0, and σ4 = 0 when α4 = 0. Thus, in the second iteration of the I-method there
are no resonances for the correction term as we have |M1

4 (k)| . |α4(k)| for all k ∈ Γ4(Tλ).
Therefore, by (5.2), (5.8) and (5.10), the second generation modified energy is given

by

E2[v] = −Λ2(k1k2m1m2) +
1

2
Λ4(M4), (5.11)

where we set

M4 := −m
2
1k

2
1k3 +m2

2k
2
2k4 +m2

3k
2
3k1 +m2

4k
2
4k2

2k12k14
(5.12)

when the denominator does not vanish. Note that since k12k14 = 0 in Γ4(Tλ) implies
m2

1k
2
1k3 +m2

2k
2
2k4 +m2

3k
2
3k1 +m2

4k
2
4k2 = 0, we can set in this cases M4 := 0.

Hence from (5.4) and (5.9), we get

d

dt
E2[v(t)] =Λ6(M2

6 ) + Λ8(M2
8 )− iµ[v]

(
Λ4(K1

4 ) + Λ6(K1
6 ) + Λ6(K2

6 )
)
, (5.13)

where M2
6 and M2

8 are the multipliers given by

M2
6 :=

i

6

6∑
j=1

(−1)jm2
jk

2
j (5.14)

− i

72

∑
{a,c,e}={1,3,5}
{b,d,f}={2,4,6}

(
M4(kabc, kd, ke, kf )kb +M4(ka, kbcd, ke, kf )kc

+M4(ka, kb, kcde, kf )kd +M4(ka, kb, kc, kdef )ke

)
,

M2
8 := C8

∑
{a,c,e,g}={1,3,5,7}
{b,d,f,h}={2,4,6,8}

(
M4(kabcde, kf , kg, kh)−M4(ka, kbcdef , kg, kh) (5.15)

+M4(ka, kb, kcdefg, kh)−M4(ka, kb, kc, kdefgh)
)

(as in [8, Proposition 3.7] or [31, p. 2173]). Also,

K2
6 :=

4∑
j=1

X2
j (σ4). (5.16)

We note that when proving the estimates on M6 (see Lemma 5.4), cancelations between
the large terms coming from the first term in (5.14) and the large terms coming from the
sum of M4’s are exploited, and thus the coefficients of the two pieces of M6 are critical,
whereas the constant C8 = − i

2(5!)2
is irrelevant in our analysis.

Remark 5.1 (Small Frequencies Remark). Notice that if |kj | � N for all j, we have
m(kj) = 1 and thus

M4(k) = −k1k3k13 + k2k4(−k13)

2k12k14
=
k13

2
, for all k ∈ Γ4(Tλ). (5.17)

One can similarly check that if |kj | � N for all j, all the multipliers Mg
n, Kg

n (n = 4, 6, 8,
g = 1, 2) vanish.

On Γn(Tλ), the largest two frequencies must have comparable sizes and thus, without
loss of generality, we may assume that

k ∈ Υn(Tλ) := {(k1, . . . , kn) ∈ Znλ : |k∗1| ∼ |k∗2| & N}, (5.18)
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where N is the frequency size threshold of the I-operator as defined in Subsection 2.4, and
(k∗1, . . . , k

∗
n) denotes a rearrangement of (k1, . . . , kn) such that

|k∗1| ≥ |k∗2| ≥ . . . ≥ |k∗n|.
We’ll also adopt the notation Nj = |k∗j |.

Due to Remark 5.1, when proving the necessary estimates, it is enough to consider
k ∈ Υn(Tλ), i.e. only the region N1 ∼ N2 & N .

Remark 5.2 (Symmetry Remark). We point out that the multipliers Mg
n’s that

appear throughout this article, and consequently the associated multilinear forms
Λn(Mg

n; v1, v2, . . . , vn) are invariant under permutations of the even or of the odd kj (or
vj) indices. Also, the same is true (up to sign) if one swaps the set of all odd kj ’s (or vj ’s)
with the set of all even kj ’s (respectively vj ’s).

Hence, in addition to (5.18), without loss of generality we may assume that

|k1| ≥ |k3| ≥ . . . ≥ |kn−1| , |k2| ≥ |k4| ≥ . . . ≥ |kn|
and

|k1| ≥ |k2|.
If all these are in place, we have k∗1 = k1, but either k∗2 = k2 or k∗2 = k3.

5.1. Pointwise bounds on the multipliers. We provide here the multiplier estimates
that are relevant in our analysis, namely for the almost conservation estimates of the
modified energy functional in Section 6 and in the estimates of the correction terms in
Section 7. We recall that we work under the symmetry assumptions on the multipliers Mg

n,
Kg
n mentioned in Remark 5.2. Also, since we rely on (2.51), the assumption s ≥ 1

2 is needed
for all of the results below.

Although the multiplier M4 is not involved directly in (5.13), the refined bounds (ii)
and (iii) below are crucial for M2

6 and M2
8 .

Lemma 5.3. [8, Lemma 4.1, 4.2] For M4 defined by (5.12) and k ∈ Γ4(Tλ), we have:

(i) |M4(k)| . m(N1)2N1;

(ii) if |k1| ∼ |k3| & N � N3, then |M4(k)| . m(N1)2N3;

(iii) if |k1| ∼ |k2| & N � N3, then M4(k) =
m(k1)2k22

2k1
+O(N3).

By using the estimate (i) above, one can immediately obtain a crude bound for the
symbol M2

6 (see (i) below). We recall that in [8], the refined estimate (ii) below, as well as
using Bourgain’s trick to provide additional denominators, make possible the global well-
posedness result of (1.1) on the real line for s > 1

2 , but not at the end-point s = 1
2 . It is

worth mentioning that for (ii), in the case N3 � N and the largest two frequencies have
same parity, it was exploited the cancellation “between the large terms coming from β6 and
the large terms of the sum of the M4.” Hence the almost conservation estimate of E2 owes
to the specific nonlinear structure −iv2∂xv− 1

2 |v|
4v of the gauged DNLS equation (2.43) in

the Euclidean case.

Lemma 5.4. [8, Lemma 6.2] For M2
6 defined by (5.14) and k ∈ Γ6(Tλ), we have:

(i) |M2
6 (k)| . m(N1)2N2

1 ;

(ii) if N3 � N , then |M2
6 (k)| . N1N3.

Lemma 5.5. For σ4 defined by (5.10) and k ∈ Γ4(Tλ), we have:

|σ4(k)| . m(N1)2N1.
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Proof. For σ4, one easily notes that σ1
4 := −1

4m1m2m3m4k13 is bounded by m(N1)2N1 and

for σ2
4 := σ4 − σ1

4, we have Lemma 5.3 which gives |σ2
4| ∼ |M4| . m(N1)2N1. �

Another immediate consequence of Lemma 5.3 is the following:

Lemma 5.6. For M2
8 defined by (5.15) and k ∈ Γ8, we have:

(i) |M2
8 (k)| . m(N1)2N1;

(ii) if N3 � N , then |M2
8 (k)| . N3.

Lemma 5.7. For K1
4 defined by (5.6) and k ∈ Γ4(Tλ), we have

(i) |K1
4 (k)| . m(N1)2N2

1 ;

(ii) if |k1| ∼ |k2| & N � N3, then |K1
4 (k)| . m(N1)2N1N3.

Proof. The first statement is immediate as ξ 7→ m(ξ)2ξ2 is increasing. For the second
statement, |m′(ξ)| ∼ m(ξ)|ξ|−1 when |ξ| � N , and by the mean value theorem

|m(k1)2k2
1 −m(k2)2k2

2| ∼ m2(θ)|θ||k1 − (−k2)|

for some θ between k1 and −k2; hence |θ| ∼ N1 and m(θ)2 ∼ m(N1)2. Since we also have
|k12| = |k34| . N3, we get |m(k1)2k2

1 −m(k2)2k2
2| . m(N1)2N1N3. Then, the crude bound

|m(k3)2k2
3 −m(k4)2k2

4| ≤ m(k3)2k2
3 +m(k4)2k2

4 . m(N3)2N2
3

together with m(N3)2N3 ≤ m(N1)2N1, concludes the proof. �

For the last lemma in this section, the first statement is immediate from 0 < m(·) ≤ 1,
while the second follows from Lemma 5.5.

Lemma 5.8. For K1
6 , K2

6 defined by (5.7), (5.16) respectively, and k ∈ Γ6(Tλ), we have

(i) |K1
6 (k)| . 1;

(ii) |K2
6 (k)| . m(N1)2N1.

5.2. Necessity of the third iteration of the I-method. To make the matters clear
why we need to implement a third generation I-method, we prove here the decay estimate
for

´
Λ6(M2

6 )dt. This part serves two purposes: first, to see how one applies the bilinear
estimate in order to recover the result of [49, Lemma 7.5], and second to uncover the worst
case scenarios and hence motivate the non-resonant subregions of Subsection 5.4.

Proposition 5.9. For s > 1
2 and M2

6 defined by (5.14), we have the estimate∣∣∣∣ˆ δ

0
Λ6(M2

6 ; v(t)) dt

∣∣∣∣ . N−1+λ−1+‖Iv‖6Z1([0,δ]×Tλ). (5.19)

Proof. We write v =
∑

k∈Zλ vj , with supp(v̂j) ⊂ {(τ, k) ∈ R × Zλ : |k| ∼ Nj} for each Nj

dyadic number. Thus, it is enough to estimateˆ
R

Λ6(M2
6 ; v1, v2, . . . , v6) dt (5.20)

where without loss of generality we can assume, in addition to the frequency localization,
that each v̂j is real valued and non-negative. This step, as well as why it is enough to
consider the time integral on R rather than on [0, δ] can be justified by standard arguments
as in Section 6.
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Case 1. N1 ∼ N2 & N � N3. By Lemma 5.4 (ii) we have |M2
6 | . N1N3. Notice that

for s > 1
2 and ε > 0 small enough, one obtains

m(N1)2N1 = N2−2sN2s−1
1 = N1−ε

(
N1

N

)2s−1−ε
N ε

1 & N
1−εN ε

1 . (5.21)

In this case, m(Nj) = 1 for j ≥ 3 and therefore by (2.25) and (2.10), we get

(5.20) .
ˆ
∗

ˆ
∗∗

1

m(N1)2N1
∏6
j=4〈kj〉

6∏
j=1

ĴxIvj

.
N−1+

N0+
1

ˆ
R

ˆ
Tλ

(JxIv1)(JxIv3)(JxIv2)(JxIv4)(Iv5)(Iv6)dxdt

.
N−1+

N0+
1

‖(JxIv1)(JxIv3)‖L2
t,x
‖(JxIv2)(JxIv4)‖L2

t,x
‖Iv5‖L∞t,x‖Iv6‖L∞t,x

.
N−1+λ−1+

N0+
1

4∏
j=1

‖Ivj‖
X1, 12

∏
j=5,6

‖Ivj‖
Y

1
2+,0

.
N−1+λ−1+

N0+
1

6∏
j=1

‖Ivj‖Z1 (5.22)

where
´
∗ and

´
∗∗ stand for integration on Γ6(R) and on Γ6(Tλ), respectively (see Sec-

tion 2.5). The operator Jx denotes the Bessel potential operator, i.e. Ĵxf(k) = 〈k〉f̂(k).

Remark 5.10. For s = 1
2 , we only have m(N1)2N1 & N as we cannot afford to borrow an

N ε
1 factor as in (5.21) above. Notice that since there are no other tools to obtain additional

decaying factors, to make up for the logarithmic loss in λ, as well as to ensure summability,
one would need to obtain a better estimate, for example

|M2
6 | . N1−θ

1 N1+θ
3 , (5.23)

which gives the following factor in (5.22):

N−1λ−1N
θ
3λ

0+

N θ
1

.
N−1λ−1−

N0+
3

(recall that since s ≥ 1
2 , we have 1 ≤ λ ≤ N). We note that the decaying factor N−1λ−1−

would allow us to obtain the global well-posedness result at s = 1
2 (see Section 8). Although

the bound (5.23) is not conceivable on the entire Γ6(Tλ), such an estimate can be established
on a carefully chosen subset (see Section 5.4).

Case 2. N3 & N � N4. By Lemma 5.4 (i) we have |M2
6 | . m(N1)2N2

1 , and for s ≥ 0,

m(N3)N3 & N−1+N0+
3 . We then have

(5.20) .
ˆ
∗

ˆ
∗∗

1

m(N3)N3
∏6
j=4〈kj〉

6∏
j=1

ĴxIvj

.
N−1+

N0+
3

ˆ
∗

ˆ
∗∗
ĴxIv1ĴxIv2ĴxIv3Îv4Îv5Îv6.

At this point we have to discuss the frequency separation of the first three factors.
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Subcase 2.1 If N3 ∼ N1, then since N3 � N4, two out of the three frequencies
k1, k2, k3 must have opposite signs, say k1 and k2. Thus JxIv1 and JxIv2 are separated in
frequency, and so are JxIv3 and JxIv4. We have

(5.20) .
N−1+

N0+
1

ˆ
R

ˆ
Tλ

(JxIv1)(JxIv2)(JxIv3)(JxIv4)(Iv5)(Iv6)dxdt

.
N−1+

N0+
1

‖(JxIv1)(JxIv2)‖L2
t,x
‖(JxIv3)(JxIv4)‖L2

t,x
‖Iv5‖L∞t,x‖Iv6‖L∞t,x

.
N−1+λ−1+

N0+
1

6∏
j=1

‖Ivj‖Z1 .

Subcase 2.2 If N3 � N1, then as in Case 1, we can clearly apply the bilinear estimate
(2.25) to the L2

t,x-norms of both (JxIv1)(JxIv3) and (JxIv2)(JxIv4) and obtain

(5.20) .
N−1+λ−1+

N0+
3

‖Iv1‖
X1, 12
‖Iv2‖

X1, 12

6∏
j=3

‖Ivj‖Z1 .

Notice that in this sub case the factor 1/N0+
3 does not allow direct summation over the

dyadic numbers N1 ∼ N2. However, exploiting the L2-based norm of the space X1, 1
2 of the

first two factors, one can recover the claim (see Section 6) without any setback.

Remark 5.11. Notice that although in Case 2 we have three large frequencies (N3 & N �
N4), the bound on the weight M2

6 is worse than in Case 1, and overall we obtain the same
(insufficient) decaying factor of N−1+λ−1+. Therefore we also need to correct for this case.

Case 3. N4 & N . By Lemma 5.4 (i) we have |M2
6 | . m(N1)2N2

1 , and for s ≥ 0,

m(Nj)Nj & N−1+N0+
j , j = 3, 4. It follows that

(5.20) .
ˆ
∗

ˆ
∗∗

1

m(N3)N3m(N4)N4
∏
j=5,6〈kj〉

6∏
j=1

ĴxIvj

.
N−2+

N0+
3

ˆ
∗

ˆ
∗∗
ĴxIv1ĴxIv2ĴxIv3ĴxIv4Îv5Îv6.

Although when λ ∼ N , the decaying factor obtained above is just as good as that in the

previous cases, we can gain here another decaying factor λ−
1
2

+ by separating the analysis
into subcases N3 ∼ N1 and N3 � N1, as we did in Case 2. We obtain

(5.20) .
N−2+λ−

1
2

+

N0+
3

‖Iv1‖
X1, 12
‖Iv2‖

X1, 12

6∏
j=3

‖Ivj‖Z1

and since we choose the parameters so that 1 ≤ λ ≤ N , we have in this case a better
decaying factor. �

The other sixth order term in (5.13) is µ[v]Λ4(K1
4 ; v). The coefficient µ[v] =

1
2πλ‖v‖

2
L2(Tλ) already provides a decaying factor of λ−1. In the remark below, we inves-

tigate the worst case scenario corresponding to this term.

Remark 5.12. The pointwise bound |K1
4 (k)| . m(N1)2N2

1 is optimal in the case
N3 � N and the largest two frequencies have the same parity (as we have, for exam-
ple, |K1

4 (N1, 0,−N1, 0)| = m(N1)2N2
1 ). In this case, the best estimate that can be obtained
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is ˆ
R

Λ4(K1
4 ; v1, . . . , v4) dt .

ˆ
∗

ˆ
∗∗

1

〈k3〉〈k4〉

4∏
j=1

ĴxIvj

.
1

N0+
3

ˆ
R

ˆ
Tλ

(JxIv1)(J0+
x Iv3)(JxIv2)(Iv4)dxdt

.
λ−1+

N0+
3

‖(JxIv1)(J0+
x Iv3)‖L2

t,x
‖(JxIv2)(Iv4)‖L2

t,x

.
λ−1+

N0+
3

4∏
j=1

‖Ivj‖
X1, 12−

. (5.24)

Hence, we have the estimate 13

µ[v]

∣∣∣∣ˆ δ

0
Λ4(K1

4 ; v(t))dt

∣∣∣∣ . λ−2+‖Iv‖6Z1([0,δ]×Tλ).

This decay rate is insufficient to reach the regularity index s = 1
2 . Since the bound of K1

4 is
optimal and the available tools cannot yield a better estimate, we have to provide a second
correction term that removes (at least) this case.

5.3. The third generation modified energy. We refine further the choice of modified
energy for the I-method as a refinement of E2 of the form

E3[v] := E2[v] + Λ6(σ6; v) + iµ[v]Λ4(σ̃4; v). (5.25)

In the same manner as above, we are lead to define the “correction” term σ6 by imposing
M6 + σ6α6 = 0. In contrast to the situation of α4 discussed above, the set on which α6

vanishes is not small, in particular α6 = 0 does not imply M6 = 0. The idea around this
is to define a region Ω in the hyperplane Γ6(Tλ) referred to as the non-resonant set of σ6

where α6 clearly does not vanish, but also with the property that on Ωc := Γ6(Tλ) \ Ω we
have satisfactory pointwise estimates on M2

6 . We can then take

σ6 := −M
2
6

α6
· 1Ω , (5.26)

where 1Ω denotes the characteristic function of the set Ω which is defined in Subsection 5.4.
For the second correction term in (5.25), the situation is simpler (since α4 = 0 implies

K1
4 = 0) and we can define

σ̃4 :=
K1

4

α4
(5.27)

when α4 6= 0, and σ̃4 := 0 when α4 = 0.
Using (2.55), we find that

d

dt
E3[v(t)] =Λ6(M2

6 · 1Ωc) + Λ8(M2
8 ) + Λ8(M3

8 ) + Λ10(M3
10)

− iµ[v]
(

Λ4(K1
4 ) + Λ6(K1

6 ) + Λ6(K2
6 ) + Λ6(K̃3

6 ) + Λ8(K3
8 ) + Λ8(K̃3

8 )
)

+ µ[v]2Λ6(K̃4
6 )

(5.28)

13. In the region where we have the refined estimate |K1
4 (k)| . m(N1)2N1N3, one obtains the pre-factor

N−1+λ−2+ in (5.24).
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where the additional terms (i.e. the ones corresponding to the two correction terms σ6 and
σ̃4) are given by

M3
8 := −i

6∑
j=1

X2
j (σ6)kj+1, (5.29)

K3
8 :=

6∑
j=1

X2
j (σ6), (5.30)

M3
10 :=

i

2

6∑
j=1

(−1)j+1X4
j (σ6), (5.31)

K̃3
6 := i

4∑
j=1

X2
j (σ̃4)kj+1, (5.32)

K̃4
6 :=

4∑
j=1

X2
j (σ̃4), (5.33)

K̃3
8 :=

i

2

4∑
j=1

(−1)jX4
j (σ̃4). (5.34)

5.4. A non-resonant set for α6. We now turn to describing the set Ω, as it was introduced
in [31]. With the simplifying assumptions of Remark 5.2 in place, let us analyze the
expression

iα6 = k2
1 − k2

2 + k2
3 − k2

4 + k2
5 − k2

6.

If precisely two frequencies have sizes above the threshold N , we distinguish the fol-
lowing two cases.
Case 1. If the largest two frequencies have the same parity, then clearly |α6| & N2

1 . The
corresponding non-resonant region is defined to be

Ω1 := {k ∈ Υ6(Tλ) : |k1| ∼ |k3| & N � N3}. (5.35)

This definition is just slightly different from the analogous one in [31, Section 3] and it does
not affect the estimates.
Case 2. If the largest two frequencies have opposite parity, say k1 and k2, then on Γ6(Tλ)
it must be that k1 = −k2 +O(N3) and

iα6 = k12(k1 − k2) +O(N2
3 ).

While k1 − k2 = O(N1), it is possible to have k12 = 0 and α6 = 0. Even if the latter does
not happen, a too weak lower bound on α6 renders an insufficiently good upper bound on

M3
8 (one of the multipliers that involve σ6 = −M2

6
α6

, see (5.29)). As in [31], we consider the
following subregion

Ω2 :=

{
k ∈ Υ6(Tλ) : |k1| ∼ |k2| & N � N3 and |k12| &

(
N3

N1

) 1
2

N3

}
. (5.36)

Remark 5.13. Notice that in the case |k1| ∼ |k2| & N � N3, we have |k12| = |k3456| . N3.

On the other hand, by looking to ensure α6 6= 0, the natural bound to impose is |k12| &
N2

3
N1

.

However, while the latter gives a better bound on the remaining part M2
6 1Ωc of d

dtE
3, it
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does not allow for a satisfactory bound on the correction multiplier σ6 (which appears, for
example, in M3

8 ). At the other extreme, correcting only in the region |k12| ∼ N3 does not
produce a small enough bound on M2

6 1Ωc . We would like to point out that (here, as well
as in the Euclidean setting [31]), the choice of 1

2 in the exponent is not essential, as any
lower bound of the form

|k12| &
(
N3

N1

)θ
N3

(for some 0 < θ < 1) produces the extra N−θ decay factor needed to reach s = 1
2 .

Case 3. Finally, since the decay factors in the estimate of Λ6(M2
6 )-term were also

critical in the case N3 & N � N4 (see Case 2 in the proof of Proposition 5.9), we need to
correct for it in this region as well. When three frequency sizes are much larger than the
remaining frequency sizes, α6 does not vanish as we have |α6| & N2

3 . Therefore, we define

Ω3 := {k ∈ Υ6(Tλ) : N3 � N4} (5.37)

We point out that the correction is deliberately intended for the larger region N3 � N4

(i.e. Ω3) rather than N3 & N � N4, since on Ω3 we have

|k∗1 + k∗2| = |k∗3 + k∗4 + k∗5 + k∗6| ∼ N3 &

(
N3

N1

) 1
2

N3. (5.38)

Correcting for M2
6 in these three subregions of Υ6(Tλ) is enough for our goal, hence

we consider Ω := Ω1 ∪ Ω2 ∪ Ω3 to be the non-resonant set of α6, and in what follows we
denote Ωc := Υ6(Tλ) \ Ω.

5.5. Pointwise bounds on the multipliers (continued). In this section we first recall
the pointwise estimates obtained by Miao, Wu, and Xu [31], and then we establish the
bounds needed to handle the second correction term in (5.25).

Lemma 5.14. [31, Corollary 4.1] For M2
6 defined by (5.14) and k ∈ Γ6, we have:

(i) if N3 � N , then |M2
6 (k)| . N1|k∗1 + k∗2|+N2

3 ;

(ii) if N3 � N and k ∈ Ωc, then |M2
6 (k)| . N

1
2

1 N
3
2

3 .

Lemma 5.15. [31, Lemma 4.9] For σ6 defined by (5.26) and k ∈ Γ6(Tλ), we have:

(i) |σ6(k)| . 1;

(ii) if k ∈ Ω1 ∩ {N3 � N}, then |σ6(k)| . N3
N1

.

Lemma 5.16. [31, Proposition 4.3] For M3
8 defined by (5.29) and k ∈ Γ8, we have:

(i) |M3
8 (k)| . N1;

(ii) if N3 � N , then |M3
8 (k)| . N

1
2

1 N
1
2

3 .

Also, as direct consequences of the above Lemma 5.15, we have the same bounds for
K3

8 and M3
10 (see (5.30) and (5.31) ) as for σ6. Finally, we provide the pointwise estimates

corresponding to the second correction term in (5.25).

Lemma 5.17. For σ̃4 defined by (5.27) and k ∈ Γ4(Tλ), we have:

(i) |σ̃4(k)| . m(N1)2N1;

(ii) if N3 � N , then |σ̃4(k)| . m(N1)2.
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Proof. Let β4 denote the numerator in (5.27). We have the crude estimate
|β4| . m(N1)2N2

1 , and note that either α4 = 0 (in which case σ̃4 = 0) or |α4| ≥ 2N1.
Depending on the parity of the largest two frequencies, we distinguish two cases.

If k∗1 = k1 and k∗2 = k3, then |α4| ∼ |k12||k14| ∼ N2
1 and |β4| ∼ m(N1)2N2

1 .
If k∗1 = k1 and k∗2 = k2, then |α4| ∼ N1|k34|, k1 and k2 have opposite signs and by the

mean value theorem, we have

|β4| ≤|m(k1)2k2
1 −m(−k2)2(−k2)2|+ |k34| · |k3 − k4|

≤|k12| · |(m(ξ)2ξ2)′|+ |k34| · |k3 − k4|,

where |ξ| ∼ N1 and thus ∣∣∣∣ ddξ (m(ξ)2ξ2)

∣∣∣∣ ∼ |m(ξ)2ξ| ∼ m(N1)2N1.

Since

|k3 − k4| . N3 � N . m(N1)2N1,

we get

|β4| . m(N1)2N1|k34|
and the conclusion follows. �

Consequently, by simply referring to their definitions in (5.33) and (5.34), we also have

the same bounds for K̃4
6 and K̃3

8 , respectively, as for σ̃4, In the same manner, we have the
following lemma.

Lemma 5.18. For K̃3
6 defined by (5.32) and k ∈ Γ6(Tλ), we have:

(i) |K̃3
6 (k)| . m(N1)2N2

1 ;

(ii) if N3 � N , then |K̃3
6 (k)| . m(N1)2N1.

6. Almost conservation estimates for the third generation modified energy

The scope of this section is to show that for a smooth solution v of (2.43), the possible
increase of E3[v(·)] can be made arbitrary small by appropriately choosing the parameters
N and λ, i.e. that we have an estimate of the form∣∣E3[v(δ)]− E3[v(0)]

∣∣ . N−γλ−κ (6.1)

for some γ, κ > 0. 14 On the right hand side we use (powers of) the Z1-norm of Iv who,
we recall, lives on the scaled spatial domain Tλ and whose energy on frequencies & N is
damped by the operator I.

We decompose the solution v using the Litllewood-Paley projectors in spatial frequen-
cies:

v =

∞∑
j=0

P2jv , P̂2jv(τ, k) = 1Ij (n)v̂(τ, k),

14. The powers γ, κ are responsible for the level of regularity at which the global existence via the I-
method is obtained. Subsequent iterations of the I-method aim at finding a functional that can provide
good enough decay rates in order to reach s = 1

2
. Eventually, one approximates an Hs(T)-solution v of

(2.43) by a sequence of smooth solutions (vn)n and then (6.1) is derived for v.
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where I0 := {k ∈ Zλ : |k| < 1} and Ij := {k ∈ Zλ : 2j−1 ≤ |k| < 2j} for j ≥ 1. By the
fundamental theorem of calculus, the proof of (6.1) reduces to estimating expressions of
the form ˆ δ

0
Λn(Mn; v(t)) dt

corresponding to the multipliers Mn that appear in (5.28). It is enough 15 to obtain esti-
mates for ˆ

R
1[0,δ](t)Λn(Mn; v1(t), . . . , vn(t)) dt, (6.2)

where each vj has Fourier support in the band {(τ, k) : |k| ∼ Nj}, with Nj ∼ |Ij |. If Nj � N
for all j, the multiplier Mn vanishes, hence we assume N1 ∼ N2 & N (see Remark 5.1).
Due to Remark 5.2, we can also assume that N1 ≥ N2 ≥ . . . ≥ Nn.

Regarding the sharp time-cutoff, we note that in each case, we are able to place at

least a few factors in the X1, 1
2
−-norm (rather than in the Z1-norm) and since we know that

‖1[0,δ](t)‖
H

1
2−
t

. δ0+,

by Lemma 2.4, we have

‖1[0,δ]Iv‖X1, 12−
. δ0+‖Iv‖

X1, 12
. (6.3)

Therefore, in proving the results of this section, we are concerned with estimates of the
form ˆ

R
Λn(Mn; v1(t), . . . , vn(t)) dt . N−γλ−κ

n∏
j=1

‖Ivj‖Z1(R×Tλ), (6.4)

where vj = PNjvj for all j.
Before starting to prove estimates of the form (6.4) for each term that appears in

(5.28), we make some further reductions common to all of them.

Remark 6.1. Since the norms on the right hand side of (6.4) depend on |v̂j |, for the sake
of simplified writing, we assume that all v̂j ’s are real valued and non-negative.

Remark 6.2. To ensure summability over all dyadics N1 ≥ N2 ≥ . . . ≥ Nn, we can most
of the times obtain a factor of 1/N0+

1 on the right hand side above since then

1

N0+
1

n∏
j=1

‖IPNjvj‖Z1(R×Tλ) .

 n∏
j=1

1

N0+
j

 ‖Ivj‖nZ1(R×Tλ) ,

and the summation (first over Nn, lastly over N1) is straightforward. However, having
L2
τ,k-based norms on the largest two frequency factors Iv1 and Iv2 allows one to relax the

summability factor to 1/N0+
3 in the region N1 ∼ N2. This essentially follows from an

application of Cauchy-Schwarz inequality. Indeed, suppose that we have

|L(PN1v1, PN2v2)| ≤ A‖IPN1v1‖
X1, 12
‖IPN2v2‖

X1, 12

for the bilinear functional L defined by fixing v3, . . . , vn in the left hand side of (6.4).
Let N1 = 2j1 and N2 = 2j2 . Summing over the pair of dyadic numbers (N1, N2) in the

15. Indeed, one can take the functions vj such that the time restrictions vj |[0,δ] = Pjv and ‖vj‖Z1(R×Tλ) ≤
‖Pjv‖Z1([0,δ]×Tλ) + ε for odd j’s, and similarly with Pjv for even j’s. Eventually one takes ε→ 0 to obtain

the estimate.
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region N1 ∼ N2 amounts to summing over the pair of integers (j1, j2) with |j1 − j2| ≤ 4. 16

Therefore

∑
N1∼N2

|L(PN1v1, PN2v2)| ≤ A

∑
j1∈Z
‖P2j1w1‖2L2

t,x

 1
2
 ∑
j2∈Z,|j2−j1|≤4

‖P2j2w2‖2L2
t,x

 1
2

. A‖w1‖L2
t,x
‖w2‖L2

t,x
,

where we have taken wj to be defined by ŵj(τ, k) = m(k)〈k〉〈τ + k2〉
1
2 v̂j(τ, k).

With these reduction remarks at hand, we can proceed to the proof of almost conser-
vation estimates. We denote by Jx the Bessel potential operator in the space variable, i.e.

Ĵxf(k) = 〈k〉f̂(k). For simplicity,
´
∗ and

´
∗∗ stand for integration on Γ6(R) and on Γ6(Tλ),

respectively (see Section 2.5).

Lemma 6.3. Let s ≥ 1
2 and δ > 0. For M2

6 defined by (5.14), and Ωc as in Subsection 5.4,
we have the estimate∣∣∣∣ˆ δ

0
Λ6(M2

6 1Ωc ; v(t)) dt

∣∣∣∣ . N− 3
2

+λ−1+δ0+‖Iv‖6Z1([0,δ]×Tλ). (6.5)

Proof. We distinguish several subregions of Ωc, but first note that for all k ∈ Υ6(Tλ) \ Ω3

we have N3 ∼ N4.
Case 1: N1 ∼ N2 & N � N3. Note that m(Nj) = 1 for j ≥ 3, and m(N1)2N1 & N.

By Lemma 5.14, we have |M2
61Ωc | . N

1
2

1 N
3
2

3 and by using (2.51), we get

ˆ
R

Λ6(M2
6 1Ωc ; v1, . . . , v6) dt .

ˆ
∗

ˆ
∗∗

1

m(N1)2N
3
2

1 N
1
2

3

∏
j=5,6〈kj〉

6∏
j=1

ĴxIvj

.
N−

3
2

+

N0+
1

ˆ
∗

ˆ
∗∗

1

〈k5〉〈k6〉

6∏
j=1

ĴxIvj

.
N−

3
2

+

N0+
1

ˆ
R

ˆ
Tλ

(JxIv1)(JxIv3)(JxIv2)(JxIv4)(Iv5)(Iv6)dxdt

.
N−

3
2

+

N0+
1

‖(JxIv1)(JxIv3)‖L2
t,x
‖(JxIv2)(JxIv4)‖L2

t,x

∏
j=5,6

‖Ivj‖L∞t,x .

By (2.25) and (2.10), we thus get

ˆ
R

Λ6(M2
6 1Ωc ; v1, . . . , v6) dt .

N−
3
2

+λ−1+

N0+
1

4∏
j=1

‖Ivj‖
X1, 12

∏
j=5,6

‖Ivj‖
Y

1
2+,0 .

The case N3 & N � N4 is vacuous on Ωc and thus the next case we have to consider
is the one in which precisely four of the frequencies have sizes larger than the threshold N .

Case 2: N4 & N � N5. We also have N1 ∼ N2, N3 ∼ N4 and for j = 3, 4,

m(Nj)Nj = N1−
(
Nj

N

)s−
N0+
j & N1−N0+

j . (6.6)

16. For n ≤ 10, on Γn(Tλ) we have 1
9
N2 ≤ N1 ≤ 9N2, so there is a universal upper bound on |j1 − j2|.
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By using the crude estimate |M2
6 | . m(N1)2N2

1 of Lemma 5.4, we estimate

ˆ
R

Λ6(M2
6 1Ωc ; v1, . . . , v6) dt .

ˆ
∗

ˆ
∗

1

m(N3)2N2
3 〈k5〉〈k6〉

6∏
j=1

ĴxIvj

.
N−2+

N0+
3

ˆ
∗

1

〈k5〉〈k6〉

6∏
j=1

ĴxIvj .

(6.7)

We now discuss two subcases.
Subcase 2.1. If N3 ∼ N1, since N5 � N4, two out of the four frequencies k1, k2, k3, k4

must have opposite signs, say k1 and k2. Therefore v1 and v2 are separated in frequency and
we use the bilinear estimate (2.25), and together with the L4-Strichartz estimate (2.18), we
obtainˆ

R
Λ6(M2

6 1Ωc ; v1, . . . , v6) dt .
N−2+

N0+
1

‖(JxIv1)(JxIv2)‖L2
t,x

∏
j=3,4

‖JxIvj‖L4
t,x

∏
j=5,6

‖Ivj‖L∞t,x

.
N−2+λ−

1
2

+

N0+
1

4∏
j=1

‖JxIvj‖
X0, 12

∏
j=5,6

‖Ivj‖
Y

1
2+,0 .

Subcase 2.2. If N3 � N1, then we apply the bilinear estimate (2.25) twice and getˆ
R

Λ6(M2
6 1Ωc ; v1, v2, . . . , v6) dt

.
N−2+

N0+
3

‖(JxIv1)(JxIv3)‖L2
t,x
‖(JxIv2)(JxIv4)‖L2

t,x

∏
j=5,6

‖Ivj‖L∞t,x

.
N−2+λ−1+

N0+
3

4∏
j=1

‖JxIvj‖
X0, 12

∏
j=5,6

‖Ivj‖
Y

1
2+,0 .

Case 3: N5 & N . We use (6.6) for j = 3, 4, 5, m(k6)〈k6〉
1
2 & 1, and N5 ≥ N6 to

deduceˆ
R

Λ6(M2
6 1Ωc ; v1, . . . , v6) dt .

ˆ
∗

ˆ
∗∗

1∏6
j=3m(kj)〈kj〉

6∏
j=1

ĴxIvj

.
N−3+

N0+
3

ˆ
∗

ˆ
∗∗
ĴxIv1ĴxIv2

5∏
j=3

(
λ0+

〈kj〉0+
ĴxIvj

) (
1

〈k6〉
1
2

+
ĴxIv6

)

.
N−3+λ0+

N0+
3

∏
j=1,2

‖JxIvj‖L4
t,x

5∏
j=3

‖J1−
x Ivj‖L6

t,x
‖J

1
2
−

x Iv6‖L∞t,x .

The factors λ0+ above appear due to the application of (2.3). By using the Strichartz
estimates (2.18) and (2.21), as well as the embedding (2.10), we have

ˆ
R

Λ6(M2
6 1Ωc ; v1, . . . , v6) dt .

N−3+λ0+

N0+
3

∏
j=1,2

‖JxIvj‖
X0, 38

5∏
j=3

‖J1−
x Ivj‖

X0+, 12
‖J

1
2
−

x Iv6‖
Y

1
2+,0

.
N−3+λ0+

N0+
3

5∏
j=1

‖Ivj‖
X1, 12
‖Iv6‖Y 1,0 .
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Since in Section 8 we choose λ,N such that 1 ≤ λ ≤ N (for s ≥ 1
2), in the second and

third cases we have faster decaying factors than in Case 1. �

Lemma 6.4. Let s ≥ 1
2 and δ > 0. For M3

8 defined by (5.29), we have the estimate∣∣∣∣ˆ δ

0
Λ8(M3

8 ; v(t)) dt

∣∣∣∣ . N− 3
2

+λ−1+δ0+‖Iv‖8Z1([0,δ]×Tλ). (6.8)

The same estimate holds if M3
8 is replaced by M2

8 .

Proof. By Lemma 5.16, we have |M3
8 (k)| . N1 for all k ∈ Γ8(Tλ), and if N3 � N , then

|M3
8 (k)| . N

1
2

1 N
1
2

3 .
We distinguish three cases and in all of them we use that m(N1)2N1 & N , and when

N3 & N , m(N3)N3 & N1−N0+
3 as in (6.6).

Case 1: N1 ∼ N2 & N � N3. We have

ˆ
R

Λ8(M3
8 ; v1, . . . , v8) dt .

ˆ
∗

ˆ
∗∗

1

m(N1)2N
3
2

1 N
1
2

3

∏8
j=4〈kj〉

8∏
j=1

ĴxIvj

.
N−

3
2

+

N0+
1

ˆ
∗

ˆ
∗∗

(ĴxIv1ĴxIv3)(ĴxIv2ĴxIv4)
8∏
j=5

Îvj

.
N−

3
2

+

N0+
1

‖(JxIv1)(JxIv3)‖L2
t,x
‖(JxIv2)(JxIv4)‖L2

t,x

8∏
j=5

‖Ivj‖L∞t,x

.
N−

3
2

+λ−1+

N0+
1

4∏
j=1

‖Ivj‖
X1, 12

8∏
j=5

‖Ivj‖
Y

1
2+,0 .

Case 2: N3 & N � N4. Here, we get

ˆ
R

Λ8(M3
8 ; v1, . . . , v8) dt .

ˆ
∗

ˆ
∗∗

1

m(N1)2N1m(N3)N3
∏8
j=4〈kj〉

8∏
j=1

ĴxIvj

.
N−2+

N0+
3

ˆ
∗

ˆ
∗∗

(ĴxIv1ĴxIv4)(ĴxIv2)(ĴxIv3)
8∏
j=5

Îvj

.
N−2+

N0+
3

‖(JxIv1)(JxIv4)‖L2
t,x
‖JxIv2‖L4

t,x
‖JxIv3‖L4

t,x

8∏
j=5

‖Ivj‖L∞t,x

.
N−2+λ−

1
2

+

N0+
3

4∏
j=1

‖Ivj‖
X1, 12

8∏
j=5

‖Ivj‖
Y

1
2+,0 .

Case 3: N4 & N . In this case, we additionally have that m(N4)N4 & N . For

5 ≤ j ≤ 8, since m(kj)〈kj〉
1
2 & 1, by taking into account (2.3), we have

N0+
3 m(kj)〈kj〉 & λ0−〈kj〉

1
2

+. (6.9)
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Thus, we obtain

ˆ
R

Λ8(M3
8 ; v1, . . . , v8) dt .

N−3+

N0+
3

ˆ
∗

ˆ
∗∗

4∏
j=1

ĴxIvj

8∏
j=5

λ0+

〈kj〉
1
2

+
ĴxIvj

.
N−3+λ0+

N0+
3

4∏
j=1

‖JxIvj‖L4
t,x

8∏
j=5

‖J
1
2
−

x Ivj‖L∞t,x

.
N−3+λ0+

N0+
3

4∏
j=1

‖JxIvj‖
X0, 38

8∏
j=5

‖J
1
2
−

x Ivj‖
Y

1
2+,0

.
N−3+λ0+

N0+
3

4∏
j=1

‖Ivj‖
X1, 12

8∏
j=5

‖Ivj‖Y 1,0 .

We recall that for the multiplier M2
8 we have better bounds than for M3

8 (see Lemma 5.4
and Lemma 5.14), hence it is enough to consider only the latter. �

Lemma 6.5. Let s ≥ 1
2 and δ > 0. For M3

10 defined by (5.31), we have the estimate∣∣∣∣ˆ δ

0
Λ10(M3

10; v(t)) dt

∣∣∣∣ . N−2+λ−1+δ0+‖Iv‖10
Z1([0,δ]×Tλ). (6.10)

Proof. By (5.31) and Lemma 5.15, we have |M3
10(k)| . 1 and thus we gain the factor N−2+

from m(Nj)Nj & N1−N0+
j , j = 1, 2. For additional decaying factors, it is enough to discuss

two cases.
Case 1: N2 & N � N3. We have

ˆ
R

Λ10(M3
10; v1, . . . , v10) dt .

N−2+

N0+
1

ˆ
∗

ˆ
∗∗

(ĴxIv1ĴxIv3)(ĴxIv2ĴxIv4)

10∏
j=5

Îvj

.
N−2+

N0+
1

‖(JxIv1)(JxIv3)‖L2
t,x
‖(JxIv2)(JxIv4)‖L2

t,x

10∏
j=5

‖Ivj‖L∞t,x

.
N−2+λ−1+

N0+
1

4∏
j=1

‖Ivj‖
X1, 12

10∏
j=5

‖Ivj‖
Y

1
2+,0

Case 2: N3 & N . In this case, we additionally have m(N3)N3 & N . Also, we use

m(k4)〈k4〉 & 1, and m(kj)〈kj〉
1
2 & 1 for 5 ≤ j ≤ 10. By using 1/N ε

1 ≤
∏10
j=5 1/N

ε/6
j , we get

ˆ
R

Λ10(M3
10; v1, . . . , v10) dt .

N−3+

N0+
1

4∏
j=1

‖JxIvj‖L4
t,x

10∏
j=5

‖J
1
2
−

x Ivj‖L∞t,x

.
N−3+

N0+
1

4∏
j=1

‖Ivj‖
X1, 38

10∏
j=5

‖Ivj‖Y 1,0 .

Note that in Case 2 (by discussing various subregions), we could provide at least an addi-

tional λ−
1
2

+ factor, but since N−1+ . λ−1+ and the decaying factor in Case 1 is optimal,
we limit ourselves to the above estimate. �
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For the remaining terms that appear in (5.28) (i.e. the ones due to the gauge trans-
formation in the periodic setting), we have a decaying factor λ−1 thanks to the coupling
coefficient µ[v]. Indeed, by (2.11) and by using 1 ≤ m(k)〈k〉, we have

µ[v] =
1

2πλ
‖v‖2L∞t L2

x
. λ−1‖JxIv‖2Y 0,0 ≤ λ−1‖Iv‖2Z1 .

Lemma 6.6. Let s > 0 and δ > 0. For K1
4 as defined by (5.6), we have the estimate∣∣∣∣ˆ δ

0
Λ4(K1

4 ; v(t)) dt

∣∣∣∣ . N−1+λ−1+δ0+‖Iv‖4
X1, 12 ([0,δ]×Tλ)

. (6.11)

Proof. By Lemma 5.7 we have |K1
4 (k)| . m(N1)2N2

1 for all k ∈ Γ4(Tλ), and if N3 � N
then |K1

4 (k)| . m(N1)2N1N3. We need to discuss three cases.
Case 1: N1 ∼ N2 & N � N3. Due to the refined estimate, we have

ˆ
R

Λ4(K1
4 ; v1, . . . , v4) dt .

ˆ
∗

ˆ
∗∗

1

N1〈k4〉

4∏
j=1

ĴxIvj

.
N−1+

N0+
1

ˆ
R

ˆ
Tλ

(JxIv1)(JxIv3)(JxIv2)(JxIv4)dxdt

.
N−1+

N0+
1

‖(JxIv1)(JxIv3)‖L2
t,x
‖(JxIv2)(JxIv4)‖L2

t,x

.
N−1+λ−1+

N0+
1

4∏
j=1

‖Ivj‖
X1, 12−

.

Case 2: N3 & N � N4. By using (6.6), we obtain

ˆ
R

Λ4(K1
4 ; v1, . . . , v4) dt .

ˆ
∗

ˆ
∗∗

1

m(N3)N3m(k4)〈k4〉

4∏
j=1

ĴxIvj

.
N−1+

N0+
3

ˆ
R

ˆ
Tλ

(JxIv1)(JxIv2)(JxIv3)(v4)dxdt.

Subcase 2.1. If N3 ∼ N1, then since N3 � N4, two out of the three frequencies
k1, k2, k3 must have opposite signs, say k1 and k2. Thus JxIv1 and JxIv2 are separated in
frequency, and so are JxIv3 and JxIv4. By also using m(k4)〈k4〉 & 1, we have

ˆ
R

Λ4(K1
4 ; v1, . . . , v4) dt .

N−1+

N0+
1

‖(JxIv1)(JxIv2)‖L2
t,x
‖(JxIv3)(JxIv4)‖L2

t,x

.
N−1+λ−1+

N0+
3

4∏
j=1

‖Ivj‖
X1, 12−

. (6.12)

Subcase 2.2. If N3 � N1, then as in Case 1, we can clearly apply the bilinear estimate
(2.25) to the L2

t,x-norms of both (JxIv1)(JxIv3) and (JxIv2)(JxIv4) and obtain the same
bound as in (6.12).
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Case 3: N4 & N . We have m(Nj)Nj & N−1+N0+
j for j = 3, 4 and thus

ˆ
R

Λ4(K1
4 ; v1, . . . , v4) dt .

ˆ
∗

ˆ
∗∗

1

m(N3)N3m(N4)N4

4∏
j=1

ĴxIvj

.
N−2+

N0+
3

ˆ
R

ˆ
Tλ

(JxIv1)(JxIv2)(JxIv3)(JxIv4)dxdt

.
N−2+

N0+
3

4∏
j=1

‖JxIvj‖L4
t,x

.
N−2+

N0+
3

4∏
j=1

‖Ivj‖
X1, 38

.

�

Lemma 6.7. Let s ≥ 3
8 and δ > 0. For K1

6 defined by (5.7), we have the estimate

∣∣∣∣ˆ δ

0
Λ6(K1

6 ; v(t)) dt

∣∣∣∣ . N−2+δ0+‖Iv‖6
X1, 12 ([0,δ]×Tλ)

. (6.13)

Proof. By Lemma 5.8, we have |K1
6 (k)| . 1 for all k ∈ Γ6(Tλ). By using (2.52), (2.16) and

(2.18), we estimate

ˆ
R

Λ6(K1
6 ; v1, . . . , v6) dt .

ˆ
∗

ˆ
∗∗

1

(m(N1)N1)2

∏
j=1,2

ĴxIvj

6∏
j=3

v̂j

.
N−2+

N0+
1

ˆ
R

ˆ
Tλ

∏
j=1,2

JxIvj

6∏
j=3

J
5
8
x Ivj dxdt

.
N−2+

N0+
1

∏
j=1,2

‖JxIvj‖L4
t,x

6∏
j=3

‖J
5
8
x Ivj‖L8

t,x

.
N−2+

N0+
1

6∏
j=1

‖Ivj‖
X1, 38

.

�

Lemma 6.8. Let s ≥ 1
2 and δ > 0. For K2

6 defined by (5.16), we have the estimate

∣∣∣∣ˆ δ

0
Λ6(K2

6 ; v(t)) dt

∣∣∣∣ . N−1+λ−1+δ0+‖Iv‖6Z1([0,δ]×Tλ). (6.14)

Proof. By Lemma 5.8, we have |K2
6 | . m(N1)2N1.
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Case 1: N2 & N � N3. By using 1 . m(kj)〈kj〉 for j = 3, 4, and 1
N0+

1

. m(kj)〈kj〉
1
2
−

for j = 5, 6, we estimate

ˆ
R

Λ6(K2
6 ; v1, . . . , v6)dt .

ˆ
∗

ˆ
∗∗

1

N1

∏
j=1,2

ĴxIvj

6∏
j=3

v̂j

.
N−1+

N0+
1

ˆ
R

ˆ
Tλ

4∏
j=1

JxIvj
∏
j=5,6

J
1
2
−

x Ivj dxdt

.
N−1+

N0+
1

‖(JxIv1)(JxIv3)‖L2
t,x
‖(JxIv2)(JxIv4)‖L2

t,x

∏
j=5,6

‖J
1
2
−

x Ivj‖L∞t,x

.
N−1+λ−1+

N0+
1

4∏
j=1

‖Ivj‖
X1, 38

∏
j=5,6

‖Ivj‖Y 1,0 .

Case 2: N3 & N . We make use of m(N3)N3 & N and thus we get

ˆ
R

Λ6(K2
6 ; v1, . . . , v6)dt .

N−2+

N0+
1

ˆ
R

ˆ
Tλ

3∏
j=1

JxIvj

6∏
j=4

vj dxdt

.
N−2+

N0+
1

3∏
j=1

‖JxIvj‖L4
t,x

6∏
j=4

‖vj‖L12
t,x

.
N−2+

N0+
1

3∏
j=1

‖Ivj‖
X1, 38

6∏
j=4

‖vj‖
X

5
12 ,

5
12
.

�

For the next lemma, we make the following remark. The proof follows identically in

Case 1, but we only have |K̃3
6 | . m(N1)2N2

1 in Case 2. By splitting the discussion into the
subcases N3 ∼ N1 and N3 � N1 as in Case 2 of the proof of Lemma 6.3, we can provide

at least an additional λ−
1
2

+ factor. Hence, we have:

Lemma 6.9. Let s ≥ 1
2 and δ > 0. For K̃3

6 defined by (5.16), we have the estimate∣∣∣∣ˆ δ

0
Λ6(K̃3

6 ; v(t)) dt

∣∣∣∣ . N−1+λ−
1
2

+δ0+‖Iv‖6Z1([0,δ]×Tλ). (6.15)

The estimates for
´ δ

0 Λ6(K̃4
6 )dt and

´ δ
0 Λ8(K̃3

8 )dt follow identically to that of Lemma 6.8
above, since we have the same upper bound (see Lemma 5.17 and the subsequent comment).

Lemma 6.10. Let s ≥ 5
12 and δ > 0. For K3

8 defined by (5.30), we have the estimate∣∣∣∣ˆ δ

0
Λ8(K3

8 ; v(t)) dt

∣∣∣∣ . N−2+δ0+‖Iv‖8
X1, 12 ([0,δ]×Tλ)

. (6.16)
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Proof. By Lemma 5.15, we have |K3
8 (k)| . 1 for all k ∈ Γ8(Tλ). Hence, similarly to the

proof of Lemma 6.7, we get

ˆ
R

Λ8(K3
8 ; v1, . . . , v8) dt .

N−2+

N0+
1

ˆ
R

ˆ
Tλ

∏
j=1,2

JxIvj

8∏
j=3

J
7
12
x Ivj dxdt

.
N−2+

N0+
1

∏
j=1,2

‖JxIvj‖L4
t,x

8∏
j=3

‖J
7
12
x Ivj‖L12

t,x

.
N−2+

N0+
1

8∏
j=1

‖Ivj‖
X1, 12

.

�

We put all the results of this section together in the following:

Proposition 6.11. Let s ≥ 1
2 and δ > 0. Suppose v is a solution to (2.43) on [0, δ]. For

E3 defined by (5.25), we have∣∣E3[v(δ)]− E3[v(0)]
∣∣ ≤ N− 3

2
+λ−1+δ0+P (‖Iv‖Z1([0,δ]×Tλ)), (6.17)

for some polynomial P with non-negative coefficients.

7. Control of the almost conserved energy and of the almost conserved
momentum

In this section we show that E [Iv(t)] stays close to E3[v(t)] (which is very slowly varying
in time) and that P[Iv(t)] stays close to P[v(t)] = P[v0], at any time t. For the sake of
efficiency, we adopt in the proofs below the reduction remarks from the previous section.

Lemma 7.1. For σ4 defined by (5.10), we have

|Λ4(σ4; f)| . N−1+‖If‖4H1(Tλ). (7.1)

Proof. By Lemma 5.5, we have |σ4(k)| . m(N1)2N1 for all k ∈ Γ4(Tλ). Then, by Hölder

and Sobolev inequalities, and using 1
N0+

1

. m(kj)〈kj〉
1
2
− for j = 3, 4, we have

Λ4(σ4; f1, . . . , f4) .
ˆ
∗∗

m(N1)2N1∏4
j=1m(kj)〈kj〉

4∏
j=1

ĴxIfj

.
1

N1

ˆ
Tλ

(JxIf1)(JxIf2)(J
1
2
−

x If3)(J
1
2
−

x If4)dx

.
N−1+

N0+
1

‖JxIf1‖L2
x
‖JxIf2‖L2

x
‖J

1
2
−

x If3‖L∞x ‖J
1
2
−

x If4‖L∞x

.
N−1+

N0+
1

4∏
j=1

‖Ifj‖H1
x
.

�

The estimate for Λ4(σ̃4; f) follows similarly since, by Lemma 5.17 (i), we have the same
pointwise bound, that is |σ̃4(k)| . m(N1)2N1.
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Lemma 7.2. For σ6 defined by (5.26), we have

|Λ6(σ6; f)| . N−2+‖If‖6H1(Tλ). (7.2)

Proof. By Lemma 5.15, we have |σ6(k)| . 1 for all k ∈ Γ6(Tλ). Similarly to the proof of
Lemma 7.1, we have

Λ6(σ6; f1, . . . , f4) .
N−2+

N0+
1

ˆ
Tλ

(JxIf1)(JxIf2)
6∏
j=3

(J
1
2
−

x Ifj)dx

.
N−2+

N0+
1

6∏
j=1

‖Ifj‖H1
x
.

�

Hence, we proved that all the correction terms are small, and thus we obtain:

Proposition 7.3. For E and E3 defined by (5.1) and (5.25), we have∣∣E [If ]− E3[f ]
∣∣ . N−1+

(
‖If‖4H1

x(Tλ) + ‖If‖6H1
x(Tλ)

)
, (7.3)

for all f ∈ Hs
x(Tλ).

Next, we turn to the analysis of P[I(·)] for which, as in [13], we prove:

Proposition 7.4. Let s ≥ 1
2 . For P defined by (3.7), we have

|P[If ]− P[f ]| . N−1
(
‖If‖2H1(Tλ) + ‖If‖4H1(Tλ)

)
, (7.4)

for all f ∈ Hs
x(Tλ).

Proof. We have

|P[If ]− P[f ]| ≤
∣∣∣∣Imˆ

Tλ

(
If∂x(If)− f∂xf

)
dx

∣∣∣∣+
1

2

∣∣∣∣ˆ
Tλ

(
|If |4 − |f |4

)
dx

∣∣∣∣ (7.5)

and we can estimate the two terms separately.
First, using integration by parts, we write

Im

ˆ
Tλ

(
If∂x(If)− f∂xf

)
dx = Im

ˆ
Tλ
If∂x

(
If − f

)
dx+ Im

ˆ
Tλ
∂xf (If − f) dx

= Im

ˆ
Tλ
If∂x

(
If − f

)
dx+ Im

ˆ
Tλ
f∂x

(
If − f

)
dx

= Im

ˆ
Tλ

(If + f)∂x
(
If − f

)
dx.

Notice that I − Id = Phi(I − Id), where Id is the identity operator and we take Phi := P&N .
Thus, by commuting Fourier multiplier operators, using the self-adjointness of Littlewood-
Paley operators and duality properties of Sobolev norms, we have∣∣∣∣Imˆ

Tλ
(If + f)∂x

(
If − f

)
dx

∣∣∣∣ ≤ ∣∣〈Phi(If + f), (I − Id)∂xf〉L2(Tλ)

∣∣
≤ ‖Phi(If + f)‖

H
1
2
‖Phi(I − Id)∂xf‖

H−
1
2

≤
(
‖PhiIf‖

H
1
2

+ ‖Phif‖
H

1
2

)2
.
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Since 1 . N−
1
2 〈k〉

1
2 , 1 . N−

1
2m(k)〈k〉

1
2 for all |k| & N , we have

‖PhiIf‖
H

1
2
. N−

1
2 ‖If‖H1 , (7.6)

‖Phif‖
H

1
2
. N−

1
2 ‖If‖H1 . (7.7)

Thus the first term in the right hand side of (7.5) is bounded by N−1‖If‖2H1 .
For the second term in the right hand side of (7.5), we write

|If |4 − |f |4 = |If |2If(If − f) + |If |2(If − f)f + If(If − f)|f |2 + (If − f)f |f |2

and we treat, for example, the second term (modulo complex conjugation, it has all three
possible factors involved); the others can be argued for analogously. By Hölder’s inequality,∣∣∣∣ˆ

Tλ
|If |2fPhi(I − Id)f dx

∣∣∣∣ ≤ ∣∣〈(I − Id)f, Phi(|If |2f)〉L2

∣∣
. ‖(I − Id)f‖L6‖Phi(|If |2f)‖

L
6
5
.

Then, by Sobolev embedding,

‖(I − Id)f‖L6 . ‖Phi(I − Id)f‖
H

1
3
≤ ‖PhiIf‖

H
1
2

+ ‖Phif‖
H

1
2

(7.8)

and we can use the estimates (7.6)-(7.7) to gain a factor of N−
1
2 . Another decaying factor

is obtained via a Bernstein estimate, and then by Leibniz and Hölder inequalities, we get

‖Phi(|If |2f)‖
L

6
5
. N−

1
2 ‖J

1
2
x Phi(|If |2f)‖

L
6
5

. N−
1
2

(
‖J

1
2
x If‖L2‖If‖L6‖f‖L6 + ‖J

1
2
x f‖L2‖If‖2L6

)
(7.9)

. N−
1
2 ‖If‖3H1 ,

where in the last step we used the Sobolev embedding as in (7.8) and ‖If‖
H

1
2
. ‖f‖

H
1
2
.

‖If‖H1 . Notice that if we do not drop the frequency restriction when passing to (7.9), at
least one factor (in both terms) has to be supported on frequencies & N , hence by arguing

as for (7.6), we could get another factor of N−
1
2 . Therefore, we obtain that the second term

of (7.5) is bounded by N−
3
2 ‖If‖4H1 . �

8. Proof of Proposition 2.14 via the I-method

In order to prove that blowup of the H
1
2 -norm of a solution v of (2.43) does not occur

in finite time, we adapt the I-method of [7, 8] (therein also referred to as “the almost
conserved energy method”) to also incorporate the almost conservation of P[Iv].

For initial data v0 ∈ Hs(T) := {f ∈ Hs(T) : M [f ] < 4π}, s < 1, its energy E[v0] might
not even be defined. However, the functionals E [Iv(t)] and P[Iv(t)] are well-defined and
via Lemma 3.3,

‖Iv(t)‖2H1 . |E [Iv(t)]|+ P[Iv(t)]2 + 1, (8.1)

where the smoothing operator I is defined by (2.50) in Section 2.4 and v is a (local) solution
of (2.43) with v(0) = v0. This control allows us to iterate the local well-posedness theory
for any initial data in Hs(T) and prove that the solution v exists for arbitrarily large times.

Since (2.54) allows for ‖Iv0‖Ḣ1 ∼ N1−s, which would give a time of existence δ ↓ 0 as
N ↑ ∞, we use the scaling transformation (1.5) and we note that

‖Ivλ0‖Ḣ1(Tλ) . N
1−sλ−s‖v0‖Ḣs(T). (8.2)
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We choose the scaling parameter

λ = N
1−s
s (8.3)

to ensure that δ & 1 uniformly in N and λ. We then have 1 � λ ≤ N in the regularity
range 1

2 ≤ s < 1, (in particular, λ = N for s = 1
2). We also record that ‖vλ0‖Hs(Tλ), P [Ivλ0 ],

E[Ivλ0 ] are bounded by constants depending only on ‖v0‖Hs(T).
A slightly modified iteration argument concludes the proof of Proposition 2.14. Indeed,

consider B > 0 such that

B2 ∼ ‖v0‖2Hs(T) + |E [Iv0]|+ P[Iv0]2 + 1

and suppose that at step j, we have

‖Ivλ(jδ)‖H1(Tλ) ≤ B.

Then, by Proposition 4.1,

‖Ivλ‖Z1([jδ,jδ+δ]×Tλ) ≤ D
and according to Proposition 6.11,

|E3[vλ(jδ + δ)]| ≤ |E3[vλ(jδ)]|+ δ0+N−γλ−κC1(D)

with γ = 3
2−, κ = 1−. Assuming that we run this iteration J times so that we cover the

scaled time interval [0, λ2T ], i.e. assuming that we choose J such that

J & λ2T, (8.4)

we have

|E3[vλ(Jδ)]| ≤ |E3[vλ(0)]|+ Jδ0+N−γλ−κC1(D).

Notice that |E3[v(t)]| stays bounded (e.g. |E3[v(t)]| ≤ 2|E3[vλ(0)]|) over the entire [0, λ2T ]
if we further impose that N is chosen such that

J . Nγλκ. (8.5)

At each iteration step, due to Proposition 7.3 and Proposition 7.4, we have in particular
that

|E [Ivλ((j + 1)δ)]| ≤ 2|E3[vλ(0)]|+N−1+C2(D), (8.6)

|P[Ivλ((j + 1)δ)]| ≤ |P[vλ(0)]|+N−1C3(D), (8.7)

where we used a version of (2.11) restricted to the time interval [jδ, (j + 1)δ]. We get

‖Ivλ((j + 1)δ)‖H1(Tλ) . D.

We choose N large enough so that in (8.6) and (8.7) the second terms are dominated by
the first terms. By Lemma 3.3, we then deduce

‖Ivλ((j + 1)δ)‖H1(Tλ) ≤ B

and thus we get to perform the iteration again.
Note that (8.4), (8.5) and s ≥ 1

2 yield

T . Nγ−(κ−2)+ 1
s

(κ−2) . Nγ+κ−2.

In our case, γ+κ− 2 = 1
2−; hence, given any large T , we can choose a frequency threshold

N = N(T )� 1 for the I-operator.
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Notice that for all t ∈ [0, λ2T ] ⊂ [0, Jδ], we have E [Ivλ(t)] . E [Ivλ0 ] . 1 and
P[Ivλ(t)] . P[Ivλ0 ] . 1, thus ‖Ivλ(t)‖H1(Tλ) . 1. Also, we recall that we owe to undo
the scaling:

‖v(t)‖Hs(T) . λ
s‖vλ(λ2t)‖Hs(Tλ) . λ

s‖Ivλ(t)‖H1(Tλ) . N
1−s,

for all t ∈ [0, T ], where we used (2.53) and (8.3). The above numerology allows us to take
N ∼ T 2+ and thus

sup
t∈[0,T ]

‖v(t)‖Hs(T) . T
2−2s+

for any 1
2 ≤ s < 1.

Appendix A. Mild ill-posedness below H
1
2 (T)

The scope of this section is to provide the analogue to the periodic setting of the ill-
posedness result of Biagioni and Linares [2] where it was shown that the flow map u0 7→ u of
(1.1) is not uniformly continuous from bounded subsets of Hs(R) into CtH

s
x([−T, T ]× R),

for any T > 0 and 0 ≤ s < 1
2 . However, the method (which was introduced in [21]) uses the

family of soliton solutions of (1.1) on R (see [19, 46]), for which the corresponding initial
data are not compactly supported, hence this strategy cannot be adapted to the periodic
setting.

We also recall an observation of Grünrock and Herr [12, Remark 2], that in the periodic
setting, due to the presence of a translation in space operator in the gauge transformation
Gβ (see (2.42)), at any regularity level, the uniform continuity of the solution map of (1.1)
fails without fixing the mass on bounded subsets of Hs(T) (see also [18, Theorem 3.1.1.(ii)]).
Nevertheless, for the gauge equivalent equation (2.43) one does not face the uniform con-
tinuity bottleneck due to the translation operator and it was for this equation that the
contraction mapping argument was applied in [17].

Using ideas similar to those in [4, 6], we construct smooth solutions that prove the fail-
ure of uniform continuity of the solution map of (2.43) on bounded subsets of Hs(T), for
0 ≤ s < 1

2 . Since the solutions we construct are supported on single frequencies (monochro-
matic waves), the same result holds true for the Fourier-Lebesgue spaces FLs,r(T) with
s < 1

2 , r ≥ 1.

Lemma A.1. Let 0 ≤ s < 1
2 and T > 0. For any 0 < δ � ε < 1, there exist smooth initial

data v0, ṽ0 such that

‖v0‖Hs(T), ‖ṽ0‖Hs(T) . ε, (A.1)

‖v0 − ṽ0‖Hs(T) . δ, (A.2)

and for which the corresponding solutions v, ṽ to (2.43) have the property

‖v − ṽ‖L∞t ([−T,T ];Hs
x(T)) & ε. (A.3)

Proof. Let a ∈ C and N ∈ Z, N � 1 (to be chosen later) and consider functions supported
on a single frequency of the form

vN,a(t, x) = aei(Nx+θ(N)t),

for some R-valued θ(·). We have

µ[vN,a] = |a|2 , ψ[vN,a] = −2|a|2N +
1

2
|a|4
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and thus we compute the corresponding nonlinearity of (2.43):

N (vN,a) = |a|2aNei(Nx+θ(N)t).

Then, by taking θ(N) = −N2 − |a|2N , the function

vN,a(t, x) = aei(Nx−N
2t−|a|2Nt) (A.4)

is a solution of (2.43) with

‖vN,a(t, x)‖L2
x(T) ∼ |a| , ‖vN,a(t, x)‖Ḣs

x(T) ∼ |a|N
s

and since s ≥ 0, we also have

‖vN,a(t, x)‖Hs
x(T) ∼ |a|N s.

Now let a = bN−s and ã = b̃N−s with b, b̃ ∈ C such that |b| ∼ |̃b| ∼ ε and |b− b̃| . δ. We
find

‖vN,a(0, x)− vN,ã(0, x)‖Hs
x(T) = |b− b̃|N−s‖eiNx‖Hs

x(T) . δ.

On the other hand, by setting ϕ(N, b) := |bN−s|2N to simplify the writing, we obtain

‖vN,a(t, x)− vN,ã(t, x)‖Hs
x(T) =

∣∣∣be−iϕ(N,b)t − b̃e−iϕ(N,b̃)t
∣∣∣N−s‖eiNx‖Hs

x(T)

& |b|
∣∣∣e−iϕ(N,b)t − e−iϕ(N,b̃)t

∣∣∣− |b− b̃|
& ε

∣∣∣ei(ϕ(N,b)−ϕ(N,b̃))t − 1
∣∣∣− δ.

Note that

ϕ(N, b)− ϕ(N, b̃) = N1−2s(|b|2 − |b̃|2) (A.5)

and that at t = tN , where

tN :=
π

ϕ(N, b)− ϕ(N, b̃)
, (A.6)

the two solutions have opposite phases, and thus

‖vN,a(tN , x)− vN,ã(tN , x)‖Hs
x(T) & ε− δ ∼ ε.

Indeed, since the power of N in (A.5) is positive, we can choose an integer N = N(ε, T )
(independent of δ) such that |tN | ≤ T/2, or equivalently

|ϕ(N, b)− ϕ(N, b̃)| & T−1.

�

Remark A.2. One can easily adapt the above argument to any other gauge equivalent
equation, including (1.1) itself. Indeed, it is enough to take

θβ(N) = θ(N)− (β2 − 3

2
β +

1

2
)|a|4.

Correspondingly, we take

ϕβ(N, b) = ϕ(N, b)− (β2 − 3

2
β +

1

2
)|b|4N−4s

and note that for N � 1, the difference in phase is essentially as above, i.e.

ϕβ(N, b)− ϕβ(N, b̃) ∼ ϕ(N, b)− ϕ(N, b̃).
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