- 1 Amphotericin B Deoxycholate in adults with Cryptococcal Meningitis; a Population
- 2 Pharmacokinetic Model and Meta-Analysis of Outcomes
- 3
- 4 Katharine E Stott^{a,b}, Justin Beardsley^c, Sarah Whalley^a, Freddie Mukasa Kibengo^d, Nguyen
- 5 Thi Hoang Mai^e, Ruwanthi Kolamunnage-Dona^f, William Hope^{a*}, Jeremy Day^{c,g}
- 6
- 7 ^a Antimicrobial Pharmacodynamics and Therapeutics Laboratory, Department of Molecular
- 8 and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, UK
- 9 ^b Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- 10 ^c Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
- 11 ^d MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda
- 12 ^e Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam
- 13 ^f Department of Biostatistics, Institute of Translational Medicine, University of Liverpool, UK
- 14 ^g Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine,
- 15 University of Oxford, UK
- 16 * Corresponding author: <u>hopew@liverpool.ac.uk</u>
- 17
- 18 Keywords: Cryptococcal meningitis, pharmacokinetics, pharmacodynamics, amphotericin B
- 19 deoxycholate
- 20 21

Antimicrobial Agents and

Chemotherapy

23	ABSTRACT
24	There is a limited understanding of the population pharmacokinetics (PK) and
25	pharmacodynamics (PD) of amphotericin B deoxycholate (DAmB) for cryptococcal
26	meningitis (CM). A PK study was conducted in n=42 patients receiving DAmB 1 mg/kg q24h.
27	A 2-compartment PK model was developed. Patient weight influenced clearance and
28	volume in the final structural model. Monte Carlo simulations estimated drug exposure
29	associated with various DAmB dosages. A search was conducted for trials reporting
30	outcomes of CM patients treated with DAmB monotherapy and a meta-analysis was
31	performed.
32	The PK parameter means (standard deviation) were: clearance, 0.03 (0.01) x weight
33	+ 0.95 (0.02) litres/hour; volume, 0.89 (0.90) x weight + 1.54 (1.13) litres; first-order rate
34	constant from central to peripheral compartment, 7.12 (6.50) hours ⁻¹ ; from peripheral to
35	central compartment, 12.13 (12.50) hours ⁻¹ . The meta-analysis suggested that DAmB dosage
36	explained most of the heterogeneity in cerebrospinal fluid (CSF) sterility, but not in
37	mortality outcomes. Simulations of area under concentration-time curve (AUC $_{144-168}$)
38	resulted in median (interquartile range) values 5.83 mg.h/litre (4.66-8.55), 10.16 (8.07-
39	14.55) and 14.51 (11.48-20.42), with dosages of 0.4, 0.7 and 1.0 mg/kg q24h respectively.
40	DAmB PK is described adequately by a linear model that incorporates weight on
41	clearance and volume. Inter-patient PK variability is modest and unlikely to be responsible
42	for variability in clinical outcome. There is a discord between the impact that drug exposure
43	has on CSF sterility and on mortality outcomes, which may be due to cerebral pathology not
44	reflected in CSF fungal burden, in addition to clinical variables.
45	
46	

47 INTRODUCTION

48	Cryptococcal meningitis is a leading infectious cause of morbidity and mortality
49	worldwide, with approximately 223,100 incident cases and 181,100 deaths annually (1). The
50	ten-week mortality for patients receiving the current standard-of-care is 24-31% (2-5).
51	There have been no new antifungal agents developed for use in low-to-middle income
52	countries in the last 3 decades. Given the paucity of new agents, one important strategy for
53	improving clinical outcomes is a better understanding and use of currently available
54	compounds.
55	Amphotericin B (AmB) is a polyene antifungal agent with broad spectrum activity
56	against yeasts and moulds, as well as some parasites. AmB was initially isolated from a
57	streptomycete and described in 1955 (6). AmB was the first therapeutic option for
58	treatment of lethal invasive fungal diseases such as cryptococcal meningitis (7, 8).
59	Amphotericin B deoxycholate (DAmB) is the most potent formulation of AmB on a mg-mg
60	basis (9, 10) and is a mainstay for the treatment of cryptococcal meningitis.
61	Clinical studies have progressively examined escalating dosages of 0.4mg/kg q24h
62	(11, 12), 0.7mg/kg q24h (13-15) and 1.0mg/kg q24h (5) of DAmB for cryptococcal
63	meningitis. The primary motivation of these studies was identification of the dosage that
64	induces maximal antifungal activity. A regimen of $0.7 - 1.0$ mg/kg q24h in combination with
65	flucytosine for two weeks is currently recommended for induction therapy (16). Higher
66	DAmB dosages are associated with increased rates of cerebrospinal fluid (CSF) sterilisation
67	(2) and improved mortality (4, 5, 17). However, the broad clinical utility of DAmB is
68	compromised by dose-limiting toxicities that include infusional reactions, phlebitis,
69	nephrotoxicity and anaemia (18, 19). A detailed understanding of the therapeutic index for
70	each DAmB dosage level is lacking.

AAC

3

78 <u>RESULTS</u>

79 Demographics

80	A total of 42 patients (22 from Vietnam and 20 from Uganda) were recruited over an
81	11-month period between January and November 2016. Twenty two patients (52 %) were
82	female. The overall median (range) age was 33 years (20 – 73 years), weight 48 kg (32 – 68
83	kg) and body mass index 18 kg/m 2 (12 – 25 kg/m 2), creatinine at enrolment 69 μ mol/L (37 –
84	167 μ mol/L) and estimated glomerular filtration rate using the Cockcroft Gault equation
85	76.7 mL/min/1.73m ² (35.4 – 146.7 mL/min/1.73m ²). The demographic data are shown by
86	ethnicity and overall in Table 1. There were no statistically significant differences between
87	ethnic groups in any demographic variable.
88	
89	Pharmacokinetic data
90	The final dataset included 282 of 312 total observations from the Vietnamese cohort
91	and 197 of 241 total observations from the Ugandan cohort (mean 11.4 samples per
92	patient, range 6-18). In total, 74 plasma samples were excluded because of absent
93	information on the time PK samples were drawn. Figure 1 shows the raw plasma
94	concentration-time profiles from study participants.
95	
96	Population pharmacokinetic models
97	Initial exploration of structural models revealed that a two-compartment model
98	fitted the data better than a three-compartment model. Specifically, the three-
99	compartment structural model resulted in a more negative log likelihood value (-55.5 versus
100	-42.8) and higher AIC (127.3 versus 101.9). Accordingly, subsequent model development
101	was based on a two-compartment base model.

5

102	Model 1 was a standard two-compartment model without inclusion of covariates.
103	Linear regressions of the Bayesian estimates of clearance and volume (derived from the
104	mean population PK parameter values from Model 1) with weight and estimated glomerular
105	filtration rate (eGFR) as covariates are presented in Figures 2a and 2b, respectively. A
106	relationship was apparent between patient weight and both estimated clearance (slope 1.2,
107	95% confidence interval for estimate of slope 0.51 to 1.88, p=0.002) and estimated volume
108	of the central compartment, (slope 1.08, 95% CI 0.05 to 2.11; p<0.001). Similarly, linear
109	regression described a positive relationship between eGFR and estimated clearance (slope
110	of linear regression 0.01, 95% CI for the slope 0 to 0.02, p<0.001) and volume (slope 0.67,
111	95% CI 0.36 to 0.98, p<0.001). These covariates were incorporated into the structural model
112	as follows: Model 2 incorporated weight as a covariate with a linear term for clearance;
113	Model 3 incorporated weight as a covariate with a non-linear term for clearance and Model
114	4 incorporated both weight and baseline renal function as covariates in the equations, with
115	linear clearance. Population PK parameter estimates for all 4 models are shown in Table 2.
116	There were no statistically significant differences in estimated clearance and volume from
117	the standard model (Model 1) according to ethnicity. The mean (95% CI) clearance was 2.03
118	litres/h (1.69 – 2.38) and 2.24 litres/h (1.91 – 2.56) for Vietnamese and Ugandan patients,
119	respectively; p-value 0.37. The mean (95% CI) volume was 33.55 litres (17.96 – 49.13) and
120	63.93 litres (40.98 – 86.88) for Vietnamese and Ugandan patients, respectively; p-value
121	0.09.
122	For all 4 two-compartment models the fit of the model to the data was acceptable.
123	The model diagnostics are presented in Table 3. The coefficient of determination of a linear
124	regression of observed-versus-predicted plots after the Bayesian step was 0.72, 0.74, 0.69

125 and 0.73 for Models 1, 2, 3 and 4, respectively. The intercept and slope approximated 0 and

126	1 respectively for each regression (Table 3). The mean parameter values predicted the
127	observed values better than the medians. The measures of population bias and imprecision
128	were comparable between the models, with bias -0.85, -0.34, -0.23 and -0.43 and
129	imprecision 3.13, 2.97, 2.16 and 3.29 for Models 1, 2, 3 and 4 respectively. The more
130	positive log likelihood value and lower Akaike information criterion (AIC) for Model 2
131	implied that the inclusion of weight as a covariate explained a portion of the observed
132	variance.
133	The model that incorporated an exponential term for clearance (Model 3) decreased
134	the log likelihood value and increased the AIC (Table 3). The inclusion of eGFR in Model 4
135	failed to increase the log likelihood value or reduce the AIC further. In addition, there was
136	no statistically significant difference between Model 1 and either Model 3 or Model 4; the
137	latter models were therefore rejected. Model 2 was chosen as the final model. Observed-
138	versus-predicted plots for the population and Bayesian posterior values in the final model
139	are shown in Figure 3. Figure 4 shows a visual predictive check (VPC) of the final model.

141 Meta-analysis of clinical outcome data

142 Five clinical trials that included a DAmB monotherapy arm were identified. There 143 was one trial in which 63 patients received 0.4 mg/kg q24h (11), 3 in which a combined 208 144 patients received 0.7 mg/kg q24h (13-15) and 1 in which 99 patients received 1.0 mg/kg 145 q24h (5). An additional study that reported clinical outcomes in untreated cryptococcal 146 meningitis patients was also included. The baseline variables and clinical outcomes of these 147 study arms are summarised in table 4. Due to the small number of studies, we were unable 148 to adjust for baseline variables that may have had an impact on outcome measures (age, 149 CD4 cell count, baseline level of consciousness, baseline fungal burden and baseline

AAC

150	cryptococcal antigenaemia). The forest plots of the dose-adjusted random effects model are
151	shown in Figure 5. The model suggests that dose adjustment accounts for 77% of the
152	heterogeneity in CSF sterility (p=0.007), but did not have a significant impact on the
153	heterogeneity in either 2- or 10-week mortality outcomes (33%, p= 0.139 and 39%, p=0.092
154	respectively).
155	
156	Monte Carlo simulations
157	Monte Carlo simulations (n = 5,000) were performed from the final population PK
158	model. This enabled exploration of the consequences of the population PK variability,
159	quantified in the final model, on plasma DAmB concentrations in a simulated population
160	receiving the dosage regimens for which clinical trial outcome data were available. The
161	median (interquartile range) AUC ₁₄₄₋₁₆₈ was 5.91 mg/L*h (4.96 – 9.33 mg/L*h) for patients
162	receiving DAmB 0.4 mg/kg q24h, 10.21 mg/L*h (8.51 – 15.72 mg/L*h) for 0.7 mg/kg q24h

- and 14.61 mg/L*h (12.14 22.03 mg/L*h) for 1.0mg/kg q24h. The AUC₁₄₄₋₁₆₈ distributions 163
- 164 from the simulations are shown in Figure 6.

165

166

167 DISCUSSION

168	We conducted a PK study in HIV positive adults with cryptococcal meningitis in
169	regions of high disease burden, and developed a population PK model that enabled the
170	extent of interpatient variability to be quantified. We described the PK of DAmB using a 2-
171	compartment PK model with i.v. infusion and first-order clearance of drug from the central
172	compartment. Simulated AUCs reveal relatively modest PK variability, suggesting that the
173	frequently poor clinical outcomes are not the result of significant PK variability. The
174	relationship between weight and drug clearance suggests that weight accounts for a portion
175	of the observed variance. Dosage adjustment on the basis of weight is necessary to ensure
176	lighter patients are not over-dosed and heavier patients are not under-dosed. However, the
177	lack of impact of either eGFR or ethnicity on the PK suggests that dosage adjustment for
178	these variables is not necessary to achieve comparable drug exposure across patient
179	populations.
180	The model-simulated median AUC of 10.17 mg.h/L following a regimen of 0.7 mg/kg
181	q24h is consistent with AUCs estimated using non-compartmental techniques. For example,
182	Bekersky et al calculated an AUC ₀₋₂₄ of 13.9 +/- 2 mg.h/L after 0.6 mg/kg i.v. in healthy
183	volunteers (20). However, the simulations following 1mg/kg resulted in a median AUC of
184	14.52 mg.h/L, which is considerably lower than that derived from a non-compartmental
185	analysis (NCA) conducted by Ayestarán et al for the same dose administered to neutropenic
186	patients (28.98 +/- 15.46 mg.h/L) (21). The reason for this is not immediately clear but may
187	relate to physiological differences between these two critically unwell patient cohorts (22).
188	Our meta-analysis of clinical outcomes from studies of DAmB monotherapy is limited
189	by the fact that the included studies recorded CSF sterility at diverse time points ranging
190	from 2 weeks (14) to 10 weeks (11). Nevertheless, the meta-analysis suggests that the

9

192	that achieving CSF sterility is dose-dependent up to 1mg/kg q24h. However, DAmB does not
193	have a dose-dependent relationship with mortality at either 2 or 10 weeks.
194	The potential reasons that DAmB dosage has a positive impact on CSF sterilisation,
195	but not mortality are as follows: first, AmB toxicity may contribute to mortality (18, 19).
196	Nephrotoxicity is dose-dependent and likely multifactorial. It is associated with 4.5 times
197	increase in the odds of mortality from cryptococcal meningitis at 10 weeks (18). Free drug
198	interacts with the distal tubules of the nephron causing increased monovalent ion delivery,
199	with consequent afferent arteriolar constriction (23). Direct tubular toxicity results in
200	hypokalaemia and hypomagnesaemia leading to cardiotoxicity (23, 24). Conversely, rapid
201	infusion of AmB can result in extracellular shift of potassium, causing hyperkalaemia and
202	cardiac dysrhythmias (25). Anaemia occurs in up to 75% of patients treated with DAmB as a
203	result of direct suppression of erythropoiesis (23). Severe anaemia more than doubles the
204	odds of 10-week mortality from cryptococcal meningitis (18). Secondly, mortality may be
205	driven by factors not directly resulting from either disease or treatment. For example,
206	nosocomial bacteraemia may occur in up to 15-18% of patients hospitalised for cryptococcal
207	meningitis (26). Third, fungal burden – and therefore conceivably, time to CSF sterility - is
208	just one of multiple clinical variables associated with mortality in cryptococcal meningitis.
209	Older age, altered mental status, low body weight, high peripheral white blood cell count
210	and anaemia are independently associated with mortality at either 2 or 10 weeks (4).
211	Immune reconstitution inflammatory syndrome (IRIS) remains a significant cause of
212	mortality, occurring in 3-49% of cryptococcal meningitis patients surviving to initiation of
213	antiretroviral treatment and carrying a mortality rate of up to 36% (17, 27). Raised
214	intracranial pressure is an additional factor associated with mortality and at least 1

dosage of DAmB has a significant impact on the proportion of patients with sterile CSF and

215	therapeutic lumbar puncture imparts a relative survival advantage of 69% in the first 10
216	days of treatment (28). Finally, the trial cohorts included in the meta-analysis were from
217	diverse sites in Africa, Asia, Europe and the USA. Factors such as health seeking behaviour
218	and nutritional status may have influenced mortality outcomes. Our meta-analysis did not
219	include any baseline factors besides DAmB dosage and we are therefore unable to identify
220	whether they account for the heterogeneity in mortality that is not explained by DAmB
221	dosage.
222	The discordance between the influence that drug dosage has on CSF sterilisation and
223	mortality is reflective of a growing consensus that CSF sterility is just one of many
224	determinants of mortality in cryptococcal meningitis. A systematic review of 27 clinical trials
225	determined that there was no correlation between CSF sterility at 2 weeks and all-cause
226	mortality at either 2 or 10 weeks (29). The most biologically plausible explanation for this is
227	that fungal burden in the CSF may not reflect the extensive encephalitis that is characteristic
228	of cryptococcal meningitis (which is more accurately termed meningoencephalitis).
229	Histopathological defects are more marked in patients co-infected with HIV; fungi
230	accumulate in perivascular spaces, are deposited [predominantly extracellularly] in brain
231	parenchyma, and form granulomatous cryptococcomas in brain tissue (30, 31). It is
232	conceivable that brain parenchymal damage is a dominant determinant of mortality and
233	that clearance of fungi in CSF is not mirrored by clearance in the cerebrum and other CNS
234	subcompartments. CSF sterility is an imperfect surrogate for the extent to which drug has
235	penetrated to and sterilised the central nervous system.
236	The meta-analysis suggests a strong dose-exposure-response relationship. Higher
237	dosages are likely to be required to achieve efficacious drug exposure at the site of
238	infection. DAmB has a large molecular weight (924 g/mol) and complex binding properties

239	(32). It does not readily penetrate the intact blood-brain barrier. Its concentration in
240	meninges and cryptococcomas has been technically difficult to quantify in any finer detail
241	than brain homogenates in preclinical models (33, 34). This challenge is compounded by a
242	lack of clarity regarding the DAmB concentration required for therapeutic efficacy at the site
243	of infection. Animal studies estimate that the cerebral concentration of DAmB at which the
244	suppression of growth is half-maximal is 0.02 mg/litre in mice and 0.154 mg/litre in rabbits
245	(33). AmB exposure above the level required to optimise antifungal activity appears only to
246	contribute to toxicity (33, 35). Our simulations suggest that the optimal plasma AUC value in
247	humans lies somewhere between 10-15 mg.h/L, though the information required to
248	extrapolate this to cerebral DAmB concentrations is not currently available. The application
249	of non-invasive, high-resolution technologies including Matrix-Assisted Lazer Desorption
250	and Ionisation- Mass Spectroscopy Imaging (MALDI-MSI) is now possible, and offers the
251	exciting potential to elucidate the PK/PD index associated with efficacy at the site of
252	infection by enabling quantification of drug in specific cerebral sites, as has been
253	demonstrated in murine models with gatifloxacin (36), doxycycline (37), pretomanid (38)
254	and rifampicin (39).
255	It may be the case that the maximal antifungal effect of DAmB is achieved with a
256	dose of approximately 0.7 mg/kg, or slightly higher, and that gains made above this dose in
257	terms of CSF sterility are offset by losses in terms of excessive toxicity. This may explain why

258 significant increases in the proportion of patients achieving CSF sterility are not mirrored by

259 reductions in mortality. The present analysis is not sufficient to more precisely define the

optimal dosage of DAmB. This is partly due to the lack of consensus regarding DAmB

261 exposure targets. We are unable to propose exposure targets based on our dataset, which

262 does not include site-specific PK or detailed toxicodynamic data. In addition, the

263	pharmacodynamic and clinical outcome data presented herein are derived from patient
264	cohorts that are distinct from the patients that provided samples for the PK analysis. DAmB
265	monotherapy at dosages of 0.7 mg/kg q24h and 1.0 mg/kg q24h has not been directly
266	compared in a randomised controlled trial. However, comparison of these dosages in
267	combination with 5FC has been performed. Bicanic et al demonstrated increased early
268	fungicidal activity with 1mg/kg q24h DAmB versus 0.7mg/kg q24h DAmB, both in
269	combination with 5FC 100mg/kg/day in four divided dosages, but this was not reflected in
270	reductions in mortality. A higher percentage of deaths was seen in the higher dose DAmB
271	arm at both 2 weeks (9% versus 3%) and 10 weeks (26% versus 21%) but this was not
272	statistically significant (p= 0.62 and 0.77 at 2 and 10 weeks, respectively) (2).
273	In summary, these analyses suggest that the optimal dosage of DAmB for the
274	treatment of cryptococcal meningitis lies between 0.7-1.0 mg/kg q24h. The precise drug
275	exposure target that optimises clinical outcomes without producing significant toxicity
276	remains to be defined. The extent of inter-individual PK variability in DAmB is modest and
277	unlikely to account for the consistently poor clinical outcomes of cryptococcal meningitis.
278	

279 MATERIALS AND METHODS

280 Clinical Pharmacokinetic Studies

281	Plasma samples were obtained from adults with HIV associated cryptococcal
282	meningitis. Patients were initially recruited from a multicentre randomised controlled trial
283	of adjuvant treatment with dexamethasone in HIV-associated cryptococcal meningitis
284	reported elsewhere (n=3, International Standard Registered Clinical Number 59144167)
285	(40). Following the early cessation of this trial, they were recruited from a prospective
286	descriptive study at the same sites (n=39). Patients were recruited in 2 sites: The Hospital
287	for Tropical Diseases in Ho Chi Minh City Vietnam, and Masaka General Hospital, Uganda.
288	The study protocols were approved by the relevant institutional review boards and
289	regulatory authorities at each trial site and by the Oxford University Tropical Research Ethics
290	Committee.
291	The protocol for the randomised controlled trial has been described previously (41).
292	Briefly, patients had HIV infection, a syndrome consistent with cryptococcal meningitis, and
293	laboratory evidence of cryptococcal infection. Patients who were pregnant, had renal
294	failure, had gastrointestinal bleeding, had received more than 7 days of anti-cryptococcal
295	antifungal therapy, were already taking corticosteroids, or required corticosteroid therapy
296	for co-existing conditions were excluded. The inclusion and exclusion criteria for the
297	prospective descriptive study were identical to those of the clinical trial. Patients received 1
298	mg/kg DAmB once daily by intravenous infusion over 5-6 hours, as well as 800mg
299	fluconazole per day. Two patients recruited during the clinical trial received dexamethasone
300	according to the following regimen: 0.3mg/kg/day intravenously (IV) for week 1,
301	0.2mg/kg/day IV for week 2, then orally 0.1mg/kg/day for week 3, 3mg/day week 4,
302	2mg/day week 5, 1mg/day week 6, then stop. For the first five patients enrolled, blood

303	samples were obtained immediately prior to intravenous DAmB infusion, and then at 1, 2, 4,
304	8, 12, 16, 20 and 24. The results for these patients informed a subsequent sampling strategy
305	defined using optimal design theory such that patients were sampled pre-dose, then at 1, 2,
306	4, 8, 12 and 24 hours after the initiation of infusion. PK sampling occurred on treatment
307	days 1 or 2, and 7. Whenever patients had lumbar punctures performed for other clinical
308	indications such as raised intracranial pressure, paired plasma samples were collected for
309	subsequent PK analysis. Therefore, additional sparse samples were taken up to 17 days afte
310	initial dosing. Quantitative fungal counts were determined for each lumbar puncture, as
311	described previously (15).
312	
313	Measurement of Amphotericin B Concentrations
314	Amphotericin B concentrations in plasma were measured using high-performance
315	liquid chromatography (HPLC) with a Shimadzu Prominence HPLC system (Shimadzu, Milton

316 Keynes, UK). Amphotericin B was extracted by protein precipitation. A total of 300 μ L of 317 methanol that contained piroxicam 2 mg/L (Sigma Aldrich, Dorset, UK) as internal standard 318 was added to 100 μ L of matrix. Samples were vortexed for 5 seconds and then centrifuged 319 at 13,000 x g for 3 minutes.

One hundred-fifty μL of supernatant was removed and placed in a 96-well plate, to
which 50 μL of water was added. A 50μL aliquot was injected onto a Kinetex 5μ XB-C18
liquid chromatography column (Phenomenex, Macclesfield, UK). Chromatographic
separation was achieved using a gradient with the starting conditions of 75% A:25% B (0.1%
formic acid in water as mobile phase A and 0.1% formic acid in acetonitrile as mobile phase
B). Mobile phase B was increased to 80% over five minutes and then reduced to starting
conditions for two minutes of equilibration. Amphotericin B and internal standard were

detected using UV detection at wavelengths of 406nm and 385nm; they eluted after 4.1 and
4.6 minutes, respectively.

The standard curve for amphotericin B encompassed the concentration range 0.058.0 mg/L and was constructed using blank matrix. The limit of quantitation was 0.05 mg/L.
The coefficient of variation was <9.3% over the concentration range 0.05-8 mg/L. The intra-
and inter-day variation was <7.9%.

333

334 Population Pharmacokinetic Modelling

A PK model was fitted to the data using the non-parametric adaptive grid (NPAG) algorithm of the program Pmetrics (42) version 1.5.0 for R statistical package 3.1.1. The data were weighted by the inverse of the estimated assay variance. Both two- and threecompartment models were tested, with zero-order intravenous input and first-order elimination from the central compartment. The two-compartment model took the following form:

X(2)

341 a)
$$\frac{dX(1)}{dt} = R(1) - \left[\frac{SCL}{V} + K12\right] * X(1) + K21 * X(2)$$

342 b)
$$\frac{dX(2)}{dt} = K12 * X(1) - K21 *$$

343 c)
$$Y(1) = \frac{X(1)}{V}$$

Where equations (a) and (b) describe the rate of change of the amount of drug (mg) in the central and the peripheral compartments, respectively. *X*(*1*) and *X*(*2*) are the amount of amphotericin B in milligrams (mg) in the central (c) and peripheral (p) compartments respectively. *R*(*1*) is the intravenous infusion of DAmB into the central compartment. *SCL* is the first-order clearance of drug (L/h) from the central compartment. *V* is the volume of the central compartment. *K12* and *K21* are the first-order inter-compartmental rate constants.

351 equation to connect the third compartment to the second compartment in series:

352 d)
$$\frac{dX(3)}{dt} = K23 * X(2) - K32 * X(3)$$

An initial condition was estimated to accommodate detectable drug in the first PK sample from those patients who received a dose of DAmB at an undocumented time before study enrolment. The non-zero initial conditions of *X*(*1*) and *X*(*2*) were estimated by assigning the respective parameters in the structural model (not shown in the equations above). A switch was coded whereby a parameterised estimate of the initial condition was multiplied by a binary covariate equal to 1 where the first PK sample was drawn after a dose

of DAmB, or 0 where this represented a pre-dose sample.

360 Once the standard model was fitted (Model 1), the effects of patient weight,

baseline eGFR and patient ethnicity on the PK of DAmB were investigated. Bidirectional

362 stepwise multivariate linear regression of each subject's covariates versus the Bayesian

363 posterior parameter values revealed a significant (P< 0.05) relationship between both

364 weight and eGFR with estimated PK parameters. Univariate linear regression was

365 employed, firstly to assess the relationship between patient weight and the Bayesian

366 estimates for both clearance and volume. Since a positive relationship was observed

367 between weight and both PK parameters, the population PK model was re-fitted to the data

368 (Model 2) with incorporation of the following equations to describe (e) clearance (SCL), and

369 (f) volume (V), as functions of patient weight (Wt):

370 e)
$$SCL = Int_c + (Wt * Sl_c)$$

371 f)
$$V = Int_v + (Wt * Sl_v)$$

372 Where *Int* is the intercept and *SI* the slope of the linear regression describing the

373 relationship between weight and clearance or volume, and the intercept and slope for each

375 model was replaced with:

376 a.2)
$$\frac{dX(1)}{dt} = R(1) - \left[\frac{Int_c + (Wt * Sl_c)}{Int_v + (Wt * Sl_v)} + K12\right] * X(1) + K21 * X(2).$$

In addition, a power function was explored to describe the relationship between weight and
clearance. In this model (Model 3), clearance was parameterised and scaled with weight to
the exponent 0.75. This exponent has previously been demonstrated to usefully scale for
size (43, 44). A linear relationship was maintained between volume and weight. Thus, in

381 Model 3, equation (a) was replaced with:

382 a.3)
$$\frac{dX(1)}{dt} = R(1) - \left[\frac{SCL * Wt^{0.75}}{V * Wt} + K12\right] * X(1) + K21 * X(2).$$

Univariate linear regression was similarly employed to assess the relationship between eGFR and the Bayesian estimates for clearance and volume. A weaker but nevertheless positive association was demonstrated. Consequently, a further structural model was fitted to the data (Model 4), with the following equation (g) explored to describe clearance (*SCL*):

388 g)
$$SCL = Int_c + (Wt * Sl_c) * (\frac{eGFR}{med_{eGFR}})$$

where *eGFR* is the estimated glomerular filtration rate calculated for each patient by the
 Cockcroft-Gault equation and *med_eGFR* is the population median estimated glomerular
 filtration rate. In Model 4, equation (a) was replaced with:

392 a.4)
$$\frac{dX(1)}{dt} = R(1) - \left[\frac{Int_c + (Wt * Sl_c) * \left(\frac{eGFR}{med_{eGFR}}\right)}{Int_v + (Wt * Sl_v)} + K12\right] * X(1) + K21 * X(2).$$

To explore whether there were significant differences between the model predicted
 PK parameters in Vietnamese and Ugandan patients, Bayesian estimates of volume of
 distribution and clearance from the central compartment were compared using a Mann-

396	Whitney test and a Student's t-test respectively. Since no significant relationship between
397	ethnicity and DAmB PK was apparent, this variable was not incorporated in the final model.
398	The fit of the model to the data was assessed using a linear regression of observed-
399	versus-predicted values before and after the Bayesian step. The coefficient of determination
400	of the linear regression was noted in combination with the intercept and slope of the
401	regression for each model. Model comparison was achieved through calculation of the log-
402	likelihood value, the Akaike Information criterion (AIC), the mean weighted error (a measure
403	of bias), and the bias-adjusted, mean weighted squared error (a measure of precision). To
404	verify the ability of the final model to predict observed concentrations with acceptable
405	accuracy, a visual predictive check (VPC) of the data was performed. For the VPC, the
406	covariance matrix in Pmetrics was utilised to simulate 1000 patients administered DAmB on
407	a mg per kg basis. Simulated weight was limited to the range observed in our clinical
408	cohort.
409	

410 Meta-analysis of clinical outcome data

411 The pharmacodynamic data from patients enrolled in the present clinical trial are 412 confounded by the co-administration of fluconazole (17). Therefore, a search was 413 performed for clinical trials of treatment for cryptococcal meningitis with at least one arm 414 comprised of adult patients receiving DAmB monotherapy. For consistency, included trials 415 were limited to those that recruited HIV-positive patients. Baseline clinical variables with 416 demonstrated ability to predict patient mortality were selected a-priori and extracted from 417 the studies; namely altered mental status, patient age and baseline CSF fungal burden (4, 418 29). To aid meaningful trial comparison, baseline fungal burden and baseline CSF

419 cryptococcal antigen titre were extrapolated from one another where they were not 420 explicitly reported in the study, applying a correlation presented by Jarvis et al (4). 421 We collated a variety of clinical trial outcomes based on those that were commonly 422 reported across trials of DAmB monotherapy: documented CSF sterility during trial follow-423 up, mortality at 2 weeks and, where possible, mortality at 10 weeks. Meta-analysis was 424 performed on each outcome using a dose-adjusted random effects model to account for the 425 baseline heterogeneity in the included studies. We included dose as a moderator variable in 426 the model to assess the degree to which it explained heterogeneity in clinical outcome (45). 427 The resulting mixed-effects model took the form:

428 $\theta_i = \beta_0 + \beta_1 dose_i + u_i$

429 where β_0 and β_1 are the model parameters intercept and dose respectively; $dose_i$ is the 430 dose given in the *i*th study, assuming study-specific random effects; and $u_i \sim N(0, \tau^2)$, 431 where τ^2 is the amount of residual heterogeneity among the true effects θ_i that is not 432 accounted for by dose. We calculated to what extent dose as a moderator influenced the 433 true average effect, and estimated the corresponding proportions of each outcome 434 measure.

435

436 Monte Carlo Simulation

437 Monte Carlo simulations were performed in Pmetrics (42). Model 2 was used.
438 Amphotericin B was administered on a mg/kg basis and infused over 5.5 hours. The initial
439 condition of the central and peripheral compartment was defaulted to zero. The weight-

440 based dosage of DAmB was converted to an absolute dosage by multiplying by the

simulated patient's weight. This process served to mimic the bedside drug administration in

20

AAC

Antimicrobial Agents and Chemotherapy dose that was ultimately administered was determined by the patient's weight.
Drug exposure was quantified using the DAmB AUC (9, 10, 46). The simulated AUC
for each patient was estimated 144 to 168 hours post therapy initiation. Simulations were
performed to estimate the AUC that resulted from dosages administered in clinical trials of
DAmB monotherapy for which PD measures were available – specifically, 0.4, 0.7 and
1.0mg/kg q24h (5, 11, 13-15).

the original clinical trial, in which dosing was planned on a mg/kg basis but the absolute

442

450 **Conflicts of Interest**

451 William Hope holds or has recently held research grants with F2G, AiCuris, Astellas Pharma,

- 452 Spero Therapeutics, Matinas Biosciences, Antabio, Amplyx, Allecra, Auspherix and Pfizer.
- 453 He holds awards from the National Institutes of Health, Medical Research Council, National
- 454 Institute of Health Research, and the European Commission (FP7 and IMI). WH has received
- 455 personal fees in his capacity as a consultant for F2G, Amplyx, Ausperix, Spero Therapeutics,
- 456 Medicines Company, Gilead and Basilea. WH is Medical Guideline Director for the European
- 457 Society of Clinical Microbiology and Infectious Diseases, and an Ordinary Council Member
- 458 for the British Society of Antimicrobial Chemotherapy.
- 459

460 Funding statement

- 461 Supported by the United Kingdom Department for International Development, the
- 462 Wellcome Trust, and the Medical Research Council through a grant (G1100684/1) from the
- 463 Joint Global Health Trials program, part of the European and Developing Countries Clinical
- 464 Trials Partnership, supported by the European Union.
- 465 Katharine Stott is a Wellcome Trust Clinical PhD Fellow [203919/Z/16/Z].
- 466 Jeremy Day is a Wellcome Trust Intermediate Fellow [WT097147MA].

467 <u>References</u>

468 469	1.	Rajasingham R, Smith RM, Park BJ, Jarvis JN, Govender NP, Chiller TM, Denning DW, Loyse A, Boulware DR. 2017. Global burden of disease of HIV-associated cryptococcal
470		meningitis: an updated analysis. Lancet Infect Dis.
471	2.	Bicanic T, Wood R, Meintjes G, Rebe K, Brouwer A, Loyse A, Bekker LG, Jaffar S,
472		Harrison T. 2008. High-dose amphotericin B with flucytosine for the treatment of
473		cryptococcal meningitis in HIV-infected patients: a randomized trial. Clin Infect Dis
474		47:123-30.
475	3.	Jarvis JN, Meintjes G, Rebe K, Williams GN, Bicanic T, Williams A, Schutz C, Bekker LG,
476		Wood R, Harrison TS. 2012. Adjunctive interferon-gamma immunotherapy for the
477		treatment of HIV-associated cryptococcal meningitis: a randomized controlled trial.
478		Aids 26:1105-13.
479	4.	Jarvis JN, Bicanic T, Loyse A, Namarika D, Jackson A, Nussbaum JC, Longley N,
480		Muzoora C, Phulusa J, Taseera K, Kanyembe C, Wilson D, Hosseinipour MC, Brouwer
481		AE, Limmathurotsakul D, White N, van der Horst C, Wood R, Meintjes G, Bradley J,
482		Jaffar S, Harrison T. 2014. Determinants of mortality in a combined cohort of 501
483		patients with HIV-associated Cryptococcal meningitis: implications for improving
484		outcomes. Clin Infect Dis 58:736-45.
485	5.	Day JN, Chau TT, Wolbers M, Mai PP, Dung NT, Mai NH, Phu NH, Nghia HD, Phong
486		ND, Thai CQ, Thai le H, Chuong LV, Sinh DX, Duong VA, Hoang TN, Diep PT, Campbell
487		JI, Sieu TP, Baker SG, Chau NV, Hien TT, Lalloo DG, Farrar JJ. 2013. Combination
488		antifungal therapy for cryptococcal meningitis. N Engl J Med 368:1291-302.
489	6.	Donovick R, Gold W, Pagano JF, Stout HA. 1955. Amphotericins A and B, antifungal
490		antibiotics produced by a streptomycete. I. In vitro studies. Antibiot Annu 3:579-86.
491	7.	Carton CA. 1952. Treatment of central nervous system cryptococcosis: a review and
492		report of four cases treated with actidione. Ann Intern Med 37:123-54.
493	8.	Mosberg WH, Jr., Arnold JG, Jr. 1950. Torulosis of the central nervous system; review
494		of literature and report of 5 cases. Ann Intern Med 32:1153-83.
495	9.	Andes D, Safdar N, Marchillo K, Conklin R. 2006. Pharmacokinetic-Pharmacodynamic
496		Comparison of Amphotericin B (AMB) and Two Lipid-Associated AMB Preparations,
497		Liposomal AMB and AMB Lipid Complex, in Murine Candidiasis Models.
498		Antimicrobial Agents and Chemotherapy 50:674-684.
499	10.	Lestner JM, Howard SJ, Goodwin J, Gregson L, Majithiya J, Walsh TJ, Jensen GM,
500		Hope WW. 2010. Pharmacokinetics and pharmacodynamics of amphotericin B
501		deoxycholate, liposomal amphotericin B, and amphotericin B lipid complex in an in
502		vitro model of invasive pulmonary aspergillosis. Antimicrobial Agents &
503		Chemotherapy 54:3432-41.
504	11.	Saag MS, Powderly WG, Cloud GA, Robinson P, Grieco MH, Sharkey PK, Thompson
505		SE, Sugar AM, Tuazon CU, Fisher JF, et al. 1992. Comparison of amphotericin B with
506		fluconazole in the treatment of acute AIDS-associated cryptococcal meningitis. The
507		NIAID Mycoses Study Group and the AIDS Clinical Trials Group. N Engl J Med 326:83-
508		9.
509	12.	Bennett JE, Dismukes WE, Duma RJ, Medoff G, Sande MA, Gallis H, Leonard J, Fields
510		BT, Bradshaw M, Haywood H, McGee ZA, Cate TR, Cobbs CG, Warner JF, Alling DW.
511		1979. A Comparison of Amphotericin B Alone and Combined with Flucytosine in the
512		Ireatment of Cryptoccal Meningitis. New England Journal of Medicine 301:126-131.
513	13.	Leenders AC, Reiss P, Portegies P, Clezy K, Hop WC, Hoy J, Borlefts JC, Allworth T,
514		Kauttmann KH, Jones P, Kroon FP, Verbrugh HA, de Marie S. 1997. Liposomal

515		amphotericin B (AmBisome) compared with amphotericin B both followed by oral
516		fluconazole in the treatment of AIDS-associated cryptococcal meningitis. AIDS
517	11	11:1405-71. Van der Herrt CM Saag MS Cloud CA Hamill BL Cravkill IB Sabel ID Johnson
510	14.	PC Tuzzon CII Kerkering T Moskovitz BL Powderly WG Dismukes WE Group
520		tNIOA2IDMSG2ACT 1997 Treatment of Cryptococcal Maningitis Associated with the
520		Acquired Immunodeficiency Syndrome New England Journal of Medicine 337:15-21
522	15	Brouwer AF Rajanuwong A Chierakul W Griffin GF Larsen RA White NI Harrison
523	15.	TS 2004 Combination antifungal therapies for HIV-associated cryptococcal
525 524		meningitis: a randomised trial. Lancet 363:1764-7.
525	16.	WHO. 2011. Rapid advice: Diagnosis, prevention and management of cryptococcal
526		disease in HIV-infected adults, adolescents and children.,
527	17.	Beardsley J, Wolbers M, Kibengo FM, Ggayi AB, Kamali A, Cuc NT, Binh TQ, Chau NV,
528		Farrar J, Merson L, Phuong L, Thwaites G, Van Kinh N, Thuy PT, Chierakul W, Siriboon
529		S, Thiansukhon E, Onsanit S, Supphamongkholchaikul W, Chan AK, Heyderman R,
530		Mwinjiwa E, van Oosterhout JJ, Imran D, Basri H, Mayxay M, Dance D, Phimmasone
531		P, Rattanavong S, Lalloo DG, Day JN, CryptoDex I. 2016. Adjunctive Dexamethasone
532		in HIV-Associated Cryptococcal Meningitis. New England Journal of Medicine
533		374:542-54.
534	18.	Bicanic T, Bottomley C, Loyse A, Brouwer AE, Muzoora C, Taseera K, Jackson A,
535		Phulusa J, Hosseinipour MC, Van Der Horst C. 2015. Toxicity of amphotericin B
536		deoxycholate-based induction therapy in patients with HIV-associated cryptococcal
537		meningitis. Antimicrobial agents and chemotherapy 59:7224-7231.
538	19.	Wingard JR, Kubilis P, Lee L, Yee G, White M, Walshe L, Bowden R, Anaissie E,
539		Hiemenz J, Lister J. 1999. Clinical significance of nephrotoxicity in patients treated
540	20	with amphotericin B for suspected or proven aspergillosis. Clin Infect Dis 29:1402-7.
541 542	20.	Bekersky I, Fleiding RM, Dressier DE, Lee JW, Buell DN, Waish TJ. 2002.
542 543		(AmPisome) and amphotoricin P dooxycholate in humans. Antimicroh Agents
543		Chemother 46:828-23
545	21	Avestarán A Lónez RM Montoro IB Estíbalez A Poul Julià A Lónez A Pascual B
546	21.	1996 Pharmacokinetics of conventional formulation versus fat emulsion formulation
547		of amphotericin B in a group of patients with neutropenia. Antimicrobial Agents and
548		Chemotherapy 40:609-12.
549	22.	Roberts JA, Abdul-Aziz MH, Lipman J, Mouton JW, Vinks AA, Felton TW, Hope WW,
550		Farkas A, Neely MN, Schentag JJ. 2014. Individualised antibiotic dosing for patients
551		who are critically ill: challenges and potential solutions. The Lancet Infectious
552		Diseases 14:498-509.
553	23.	Laniado-Laborin R, Cabrales-Vargas MN. 2009. Amphotericin B: side effects and
554		toxicity. Rev Iberoam Micol 26:223-7.
555	24.	Deray G. 2002. Amphotericin B nephrotoxicity. J Antimicrob Chemother 49 Suppl
556		1:37-41.
557	25.	Barcia JP. 1998. Hyperkalemia associated with rapid infusion of conventional and
558		lipid complex formulations of amphotericin B. Pharmacotherapy 18:874-6.
559	26.	Rajasingham R, Williams D, Meya DB, Meintjes G, Boulware DR, Scriven J. 2014.
560		Nosocomial drug-resistant bacteremia in 2 cohorts with cryptococcal meningitis,
561		Africa. Emerg Infect Dis 20:722-4.

562	27.	Longley N, Harrison TS, Jarvis JN. 2013. Cryptococcal immune reconstitution
563		inflammatory syndrome. Curr Opin Infect Dis 26:26-34.
564	28.	Rolfes MA, Hullsiek KH, Rhein J, Nabeta HW, Taseera K, Schutz C, Musubire A,
565		Rajasingham R, Williams DA, Thienemann F, Muzoora C, Meintjes G, Meya DB,
566		Boulware DR. 2014. The effect of therapeutic lumbar punctures on acute mortality
567		from cryptococcal meningitis. Clin Infect Dis 59:1607-14.
568	29.	Montezuma-Rusca JM, Powers JH, Follmann D, Wang J, Sullivan B, Williamson PR.
569		2016. Early Fungicidal Activity as a Candidate Surrogate Endpoint for All-Cause
570		Mortality in Cryptococcal Meningitis: A Systematic Review of the Evidence. PLOS
571		ONE 11:e0159727.
572	30.	Lee SC, Dickson DW, Casadevall A. 1996. Pathology of cryptococcal
573		meningoencephalitis: analysis of 27 patients with pathogenetic implications. Hum
574		Pathol 27:839-47.
575	31.	Klock C. Cerski M. Goldani LZ. 2009. Histopathological aspects of
576	-	neurocryptococcosis in HIV-infected patients: autopsy report of 45 patients. Int J
577		Surg Pathol 17:444-8.
578	32.	Kethireddy S. Andes D. 2007. CNS pharmacokinetics of antifungal agents. Expert
579		opinion on drug metabolism & toxicology 3:573-581.
580	33.	Livermore I. Howard SI. Sharp AD. Goodwin I. Gregson I. Felton T. Schwartz IA.
581		Walker C. Moser B. Muller W. Harrison TS. Perfect JR. Hope WW. 2014. Efficacy of an
582		abbreviated induction regimen of amphotericin B deoxycholate for cryptococcal
583		meningoencephalitis: 3 days of therapy is equivalent to 14 days. MBio 5:e00725-13.
584	34.	Groll AH. Giri N. Petraitis V. Petraitiene R. Candelario M. Bacher IS. Piscitelli SC.
585	•	Walsh TI, 2000, Comparative efficacy and distribution of lipid formulations of
586		amphotericin B in experimental Candida albicans infection of the central nervous
587		system. I Infect Dis 182:274-82.
588	35	Lestner McEntee Johnson A Livermore Whalley S Schwartz Perfect IR
589		Harrison T. Hope W. 2017. Experimental Models of Short Courses of Liposomal
590		Amphotericin B for Induction Therapy for Cryptococcal Meningitis, Antimicrob
591		Agents Chemother
592	36	Shoho A Baijnath S Bratkowska D Naiker S Somboro AM Bester LA Singh SD
593	50.	Naicker T. Kruger HG. Govender T. 2016. MALDI MSL and LC-MS/MS: Towards
594		preclinical determination of the neurotoxic potential of fluoroquinolones. Drug Test
595		Anal 8:832-8
596	37	Munyeza CE, Shoho A, Baijnath S, Bratkowska D, Naiker S, Bester I.A, Singh SD
597	57.	Maguire GE Kruger HG Naicker T Govender T 2016 Ranid and widespread
598		distribution of doxycycline in rat brain: a mass spectrometric imaging study
599		Xenobiotica 46:385-92
600	38	Shoho A Bratkowska D Baijnath S Naiker S Somhoro AM Bester I A Singh SD
601	50.	Naicker T. Kruger HG. Govender T. 2016. Tissue distribution of pretomanid in rat
602		hrain via mass spectrometry imaging. Xenobiotica 46:247-52
603	39	Shoho A Bratkowska D Baijinath S Najker S Bester LA Singh SD Maguire GF Kruger
604	55.	HG Govender T 2015 Visualization of Time-Dependent Distribution of Rifempicin in
605		Rat Brain Using MALDI MSI and Quantitative I CMS/MS_Assay Drug Dev Technol
606		13.277-84
607	40	Beardsley Wolbers M Kibengo FM Ggavi AB Kamali A Cuc NT Rinh TO Chau NV
608		Farrar Merson Phuong Thwaites G Van Kinh N Thuy PT Chierakul W Siriboon
609		S Thiansukhon E Onsanit S Sunnhamongkholchaikul W Chan AK Heyderman R
007		e, maneament by endance, eapphanengkilorenakar wy endirinky neyderindir ky

610		Mwinjiwa E, van Oosterhout JJ, Imran D, Basri H, Mayxay M, Dance D, Phimmasone
611		P, Rattanavong S, Lalloo DG, Day JN. 2016. Adjunctive Dexamethasone in HIV-
612		Associated Cryptococcal Meningitis. N Engl J Med 374:542-54.
613	41.	Day J, Imran D, Ganiem AR, Tjahjani N, Wahyuningsih R, Adawiyah R, Dance D,
614		Mayxay M, Newton P, Phetsouvanh R, Rattanavong S, Chan AK, Heyderman R, van
615		Oosterhout JJ, Chierakul W, Day N, Kamali A, Kibengo F, Ruzagira E, Gray A, Lalloo
616		DG, Beardsley J, Binh TQ, Chau TT, Chau NV, Cuc NT, Farrar J, Hien TT, Van Kinh N,
617		Merson L, Phuong L, Tho LT, Thuy PT, Thwaites G, Wertheim H, Wolbers M. 2014.
618		CryptoDex: a randomised, double-blind, placebo-controlled phase III trial of
619		adjunctive dexamethasone in HIV-infected adults with cryptococcal meningitis: study
620		protocol for a randomised control trial. Trials [Electronic Resource] 15:441.
621	42.	Neely M, van Guilder M, Yamada W, Schumitzky A, Jelliffe RW. 2012.
622		Accurate detection of outliers and subpopulations with Pmetrics, a nonparametric
623		and parametric pharmacokinetic modeling and simulation package for R.
624		Ther Drug Monit 34:467-476.
625	43.	Hope WW, Seibel NL, Schwartz CL, Arrieta A, Flynn P, Shad A, Albano E, Keirns JJ,
626		Buell DN, Gumbo T, Drusano GL, Walsh TJ. 2007. Population pharmacokinetics of
627		micafungin in pediatric patients and implications for antifungal dosing. Antimicrob
628		Agents Chemother 51:3714-9.
629	44.	Brown JH, West GB. 2000. Scaling in biology. Oxford University Press on Demand.
630	45.	Viechtbauer W. 2010. Conducting meta-analyses in R with the metafor package.
631		Journal of Statistical Software 36:1-48.
632	46.	Andes D, Stamsted T, Conklin R. 2001. Pharmacodynamics of Amphotericin B in a
633		Neutropenic-Mouse Disseminated-Candidiasis Model. Antimicrobial Agents and
634		Chemotherapy 45:922-926.
635	47.	Mwaba P, Mwansa J, Chintu C, Pobee J, Scarborough M, Portsmouth S, Zumla A.
636		2001. Clinical presentation, natural history, and cumulative death rates of 230 adults
637		with primary cryptococcal meningitis in Zambian AIDS patients treated under local
638		conditions. Postgraduate Medical Journal 77:769-73.
639		

Antimicrobial Agents and Chemotherapy

641 Table 1: Patient demographics

642

Demographic or clinical	Vietnam	Uganda	Combined	p-value for			
characteristic				difference			
				between			
				Vietnam and			
				Uganda			
Sex ^a (Male:Female)	12:10	8:12	20:22				
Age (years) ^b							
Mean	38	33	36	0.75+			
Median	33	33	33	0.75*			
Range	20 - 73	24 - 50	20 - 73				
Weight (kg) ^c							
Mean	47	49	48	0.21+			
Median	46	49	48	0.211			
Range	32 - 68	35 - 60	32 – 68				
BMI (kg/m ²) ^d							
Mean	18	18	18	0.72			
Median	18	19	18	0.75			
Range	12 - 25	15 - 22	12 - 25				
Creatinine (µmol/L) ^a							
Mean	71	81	75	0.06+			
Median	62	79	69	0.001			
Range	37 – 167	43 - 145	37 - 167				

79.3

73.5

49.8 - 146.7

84.7

76.7

35.4 - 146.7

643	^a <i>n</i> = 42
644	^b n = 28

645 ^c *n* = 39

646 d n = 33

647 ^e *n* = 26

648

649 + Mann-Whitney test of significance

650 ^Δ Unpaired t test of significance

eGFR (ml/min/1.73m²)^e

90.6

89.8

35.4 - 136.1

Mean

Range

Median

651 BMI: Body Mass Index; eGFR: estimated Glomerular Filtration Rate, by Cockcroft-Gault

652 equation

A A C

0.19†

653 Table 2: Parameter estimates for the initial and modified two-compart

654 pharmacokinetic models

Parameter and model	Mean	Median	Standard deviation
Model 1			
SCL (L/h)	2.19	2.46	0.77
Vc (L)	27.77	13.88	28.06
K12 (h ⁻¹)	3.84	2.16	6.57
K21 (h ⁻¹)	1.14	0.32	3.06
IC (mg)	10.16	2.55	9.00
Model 2			
SCL _{slope} (L/h/kg)	0.03	0.03	0.01
SCL _{intercept} (L/h)	0.67	0.57	0.01
Vc _{slope} (L/kg)	0.82	0.36	0.80
Vc _{intercept} (L)	1.76	1.99	1.29
K12 (h ⁻¹)	5.36	3.83	6.76
K21 (h ⁻¹)	9.92	0.46	12.27
IC (mg)	20.29	6.03	27.75
Model 3			
SCL (L/h/weight)	0.12	0.12	0.04
Vc (L/weight)	1.40	0.51	1.75
K12 (h ⁻¹)	1.69	0.50	4.09
K21 (h ⁻¹)	8.31	0.27	12.32
IC (mg)	30.10	7.87	40.56
Model 4			
SCL _{slope} (L/h)	0.01	0.01	0.01
SCL _{intercept} (L/h)	1.50	1.31	0.74
Vc _{slope} (L)	1.26	0.52	1.39
Vc _{intercept} (L)	1.64	0.01	2.96
K12 (h ⁻¹)	3.86	0.73	7.74
K21 (h ⁻¹)	11.24	0.40	13.44
IC (mg)	26.15	6.17	26.76

657 SCL: Clearance; Vc: Volume of distribution in central compartment; K12: first-order rate

658 constant from the central to peripheral compartment; K21, first-order rate constant from

659 peripheral to central compartment; IC: initial condition.

660 Table 3: Evaluation of the predictive performance of the initial and final model661

Model	Log likelihood	Number of cycles to convergence	AIC	Population bias	Population imprecision	Linear regression of observed- predicted values for each patie		bserved- ach patient	
						R ^{2, a}	Intercept	Slope	
Model 1	-56.3	1137	124.8	-0.85	3.13	0.72	0.08	0.97	-
Model 2	-42.8	1251	101.9	-0.34	2.97	0.74	0.01	1.01	
Model 3	-102.7	577	221.7	-0.23	2.16	0.69	0.00	1.04	
Model 4	-43.1	1704	102.7	-0.43	3.29	0.73	0.01	1.02	

662

663 Model 2 included a linear function to scale DAmB clearance to patient weight.

664 Model 3 included a non-linear function to scale DAmB clearance to patient weight.

665 Model 4 included a function to scale DAmB clearance to patient weight and eGFR.

^{*a*} Relative to the regression line fitted for the observed versus predicted values after the

667 Bayesian step.

668

670

DAmB

regimen

No

treatment

0.4 mg/kg q24h

0.7 mg/kg q24h

0.7 mg/kg

q24h

0.7 mg/kg

q24h

1.0 mg/kg q24h Location

Zambia

USA

Thailand

Australia/

The

Nether lands

USA

Vietnam

Numbe

of patients

100

63

16

13

179

99

Median

age

32

37

34

41

37

28

AAC

672 LOC: level of consciousness; no.: number; CFU: Colony Forming Units; NR: not reported; CSF: cerebrospinal fluid; CrAg: cryptococcal antigen. NEJM : New England Journal Of

Table 4: Clinical outcomes from trial data of DAmB monotherapy, by dosing regimen

Median CD4

cell count per mm³

NR

NR

9

35

18

18

Reduced LOC

at baseline, no./total no (%)

NR

16/63 (25)

1/16 (6)

2/13 (15)

18/179 (10)

31/97 (32)

Median

baseline fungal burden, log₁₀ CFU/ml

NR

NR

≈ 4.2

5.63 (5.19 -

5.97)

NR

≈ 3.9

NR

≈ 4.8

5.91 (5.49

6.48)

Baseline CSF

CrAg titre, median

NR

1:512*

1:512

1:256

1:1024

NR

≈1:4096

Documented CSF

sterility, no./total no (%)

0/100 (presumed)

25/63 (40)

NR

3/8 (37)

91/179 (51)

52/99 (53)

671 672 LOC: level 673 Medicine 674 * Reporte

* Reported in (14). Italic text indicates value extrapolated from available data.

30

Reference

Mwaba et al,

Postgrad Med J. 2001 (47)

Saag et al, NEJM 1992 (11)

Brouwer et al, Lancet 2004 (15) Leenders et al,

AIDS 1997 (13)

Van der Horst et al, NEJM 1997 (14)

Day et al, NEJM 2013 (5)

Mortality at 10 weeks, no./total no (%)

100/100 (100)

NR; 9/63 at 12 weeks (14%)

3/16 (19)

2/13 (15)

NR

44/99 (44)

Percentage

decrease haemoglobin, median (range)

NR

NR

NR

20 (45-5) at

10 weeks

Fall in Hb >2g/dL: 2/13

(15%)

NR in

consistent way

All anaemia 62/99 (63). Grade 3-4

anaemia (<8g/dL): 46/99 (46) Hypokalaemia

NR

NR

NR

4/13 (31)

<3mEg/L

NR in

consistent

way

All 54/99 (55). Gr 3-4 (<2.5mmol/L): 20/99 (20)

Mortality at 2

weeks, no./total no (%)

65/100 (65)

5/63 (8)

2/16 (13)

0/13 (0)

11/202 (5)

25/99 (25)

- 675 676 Figure 1: Amphotericin B serum concentrations in 42 patients.
- [SEE ATTACHED FILE Figure 1]
- 677
- 678 Patients received 1.0 mg/kg of amphotericin B deoxycholate (DAmB), infused over 5-6
- 679 hours.
- 680

Figure 2: Linear regression of the relationship between (a) patient weight and (b) estimated
glomerular filtration rate and Bayesian posterior estimates for clearance and volume of
distribution. Circles are Bayesian estimates from each patient. Solid line: linear regression.
(a)
(G) [SEE ATTACHED FILE Figure2a 1]
R2=0.32. Clearance = 0.05*weight – 0.2
[SEE ATTACHED FILE Figure2a 2]
R^2 =0.12. Volume = 1.08*weight – 24.8
(D)
[SEE ATTACHED FILEFIgure20_1]
$R^2 = 0.17$ Clearance = 0.01*weight + 1.03
[SEE ATTACHED FILE FIGURE2D_2]
R ² =0.36 Volume = 0.67*weight – 31.13

709 Figure 3: Scatter plots showing observed versus predicted values for the chosen population

710 pharmacokinetic model after the Bayesian step (model 2).

711

- 718 the linear regression of observed-predicted values, respectively. All observed and predicted amphotericin B
- 719 concentrations in mg/L. AmB: Amphotericin B; CI: Confidence Interval.

720 721

712 713

714

715

716 717

- Antimicrobial Agents and Chemotherapy
- AAC

- 722 Figure 4: Visual predictive check of the final model.
- 723 [SEE ATTACHED FILE Figure4.tiff]
- 724 725 The black circles indicate observed DAmB concentrations. The continuous lines represent
- 726
- the 5th, 50th and 95th percentiles of DAmB concentrations in 1000 simulated patients. In total, 83.4% of observed DAmB concentrations fall within the 5th and 95th percentiles 727
- 728 estimated by the final model, indicating adequate model fit.

729 Figure 5: Meta-analysis of clinical trials of DAmB monotherapy showing dose adjusted 730 effects on A) CSF sterility, B) Mortality at 2 weeks and C) Mortality at 10 weeks. 731 732 A) 733 [SEE ATTACHED FILE Figure5a.tiff] 734 735 Tau value for unadjusted model: 4.22. Tau value for dose-adjusted model: 0.98. Dose adjustment accounts 736 for (4.22 – 0.98)/4.22 = 77% of heterogeneity in clinical outcome. P-value for dose adjustment 0.007. 737 738 739 740 B) 741 [SEE ATTACHED FILE Figure5b.tiff] 742 743 Tau value for unadjusted model: 1.90. Tau value for dose-adjusted model: 1.28. Dose adjustment accounts 744 for (1.90 - 1.28)/1.90 = 33% of heterogeneity in clinical outcome. P-value for dose adjustment 0.14. 745 746 747 748 C) 749 [SEE ATTACHED FILE Figure5c.tiff] 750 751 Tau value for unadjusted model: 9.0. Tau value for dose-adjusted model: 4.93. Dose adjustment accounts for 752 (9.00 - 4.93)/9.00 = 45% of heterogeneity in clinical outcome. P-value for dose adjustment 0.07. 753

Antimicrobial Agents and Chemotherapy

754 Figure 6: AUC distributions based on Monte Carlo simulations

Simulated dosing regimens are 0.4, 0.7 and 1.0 mg/kg q24h. Medians, 25th and 75th percentiles displayed on each histogram (P25 and P75).

AAC

Downloaded from http://aac.asm.org/ on June 7, 2018 by guest

eGFR (ml/min/1.73m^2)

Population predicted AmB conc (mg/L)

Individual posterior predicted AmB conc (mg/L)

ო

N

0

Output

0

Time (h)

400

Study, Dose		Observed Proportion [95% Cl]
Mwaba et al(2001), 0 mg/kg	•	0.00 [0.00, 0.04]
Saag et al(1992), 0.4mg/kg	⊢ − − −1	0.40 [0.28, 0.53]
Leenders et al(1997), 0.7mg/kg	⊢	0.38 [0.09, 0.76]
Van der Horst et al(1997), 0.7mg/kg	⊢■⊣	0.51 [0.43, 0.58]
Day et al(2013), 1.0mg/kg	⊢	0.53 [0.42, 0.63]
<i>RE model, dose adjusted</i> Dose mg/kg		Estimated Proportion [95% CI]
0	▶ ────┤	0.02 [0.00, 0.21]
0.4	⊢	0.13 [0.04, 0.36]
0.7	⊢ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−	0.39 [0.19, 0.63]
1.0	—	0.73 [0.36, 0.93]

Downloaded from http://aac.asm.org/ on June 7, 2018 by guest

Study, Dose			Observed Proportion [95% CI]
Mwaba et al(2001), 0 mg/kg		⊢■⊣	0.65 [0.55, 0.74]
Saag et al(1992), 0.4mg/kg	┝┻─┤		0.08 [0.03, 0.18]
Brouwer et al(2004), 0.7mg/kg	⊢		0.12 [0.02, 0.38]
Leenders et al(1997), 0.7mg/kg	■		0.04 [0.00, 0.25]
Van der Horst et al(1997), 0.7mg/kg	H		0.05 [0.03, 0.10]
Day et al(2013), 1.0mg/kg	■		0.25 [0.17, 0.35]

<i>RE model, dose adjusted</i> Dose mg/kg		Estimated Proportion [95% CI]
0	⊢ −−−−−−−−−−	0.38 [0.08, 0.81]
0.4	⊢ −−−−−	0.20 [0.07, 0.43]
0.7	-■	0.11 [0.04, 0.27]
1.0	⊢∎ −−−−	0.06 [0.01, 0.25]
	0 02 04 06 08	1
	Proportion	

Mortality at 10 weeks

Study, Dose		Observed Proportion [95% CI]
Mwaba et al(2001), 0 mg/kg		■ 1.00 [0.96, 1.00]
Saag et al(1992), 0.4mg/kg	⊢■	0.14 [0.07, 0.25]
Brouwer et al(2004), 0.7mg/kg	Ⅰ −−−−−	0.19 [0.04, 0.46]
Leenders et al(1997), 0.7mg/kg	⊢ ∎−−−−	0.15 [0.02, 0.45]
Day et al(2013), 1.0mg/kg	⊢ ■	0.44 [0.34, 0.55]

<i>RE model, dose adjusted</i> Dose mg/kg		Estimated Proportion [95% CI]
0		
0.4	-	⊣ 0.77 [0.20, 0.98]
0.7	⊢ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−	0.32 [0.05, 0.81]
1.0	⊢	0.06 [0.00, 0.67]
	1 1 1 1 1	
	0 0.2 0.4 0.6 0.8	1
	Proportion	

50

Downloaded from http://aac.asm.org/ on June 7, 2018 by guest