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Abstract
Designing “teams of intelligent agents that success-
fully coordinate and learn about their complex en-
vironments inhabited by other agents (such as hu-
mans)” is one of the major goals of AI, and it is the
challenge that I aim to address in my research. In
this paper I give an overview of some of the foun-
dations, insights and challenges in this field of In-
teractive Learning and Decision Making.

1 Interactive Learning and Decision Making
Interactive Learning and Decision Making (ILDM) is the
term that I have started to use to describe my research. What
is it? Let us start with the first term. The Oxford dictionary
defines ‘interactive’ as: 1) (of two people or things) influenc-
ing each other, 2) Allowing a two-way flow of information
between a computer and a computer-user. As such, the key
characteristic of interaction is a two-way flow of influence.

In my research, I focus on sequential decision making,
where we seek to control an intelligent agent or team of such
agents over a number of time steps in order to optimize the
performance on a particular task. The nature of such tasks
can vary greatly, ranging from controlling traffic lights in a
large city to decision making for teams of robots in an in-
dustrial context. They have in common, however, the need to
deal with various forms of uncertainty: many applications are
complex due to uncertainty of the effect of actions (outcome
uncertainty), limited sensors (state uncertainty), and uncer-
tainty about actions of other agents (agent uncertainty).

If somebody would provide a complete and accurate model
of the environment of the intelligent agent(s) that we are try-
ing to construct, the decision making task boils down to plan-
ning: deductive inference as to what actions lead to the best
performance. However, this is rare: it is much more likely
that the agent will be handed an incomplete or inaccurate
model, in which case we end up in a reinforcement learn-
ing (RL) setting [Kaelbling et al., 1996] in which the agent
needs to adapt or even needs to learn from scratch.

Already in the single-agent case, these problems are inher-
ently interactive due to their sequential nature: clearly, the
agent affects its environment with its actuators, but the agent
is also influenced by the environment (incl. possibly other
agents) due to changes in state (not caused by the agent) and

Figure 1: ‘Objective’ (left) and ‘subjective’ (right) perspective on
multiagent systems.

knowledge (about the state and dynamics). Full appreciation
of this interactive nature of learning and sequential decision
making will enable us to better understand such problems,
and thus to come up with more usable and effective solutions.

2 Foundations
Ignoring uncertainties in decision making can lead to arbi-
trary poor behavior. As such, effective approaches to de-
cision making should deal with these uncertainties, which
starts with frameworks that can represent them. Before div-
ing into technical details, however, I wish to stress that these
formal models that follow below, really are just a straight-
forward consequence of the belief that we need to model
uncertainties in order to deal with them in a principled
manner. They are not a commitment to a particular solu-
tion method. So while it is understandable that many re-
searchers shy away from, say, ‘POMDPs’ because “they are
intractable”, I feel that this misses the point: it is not the
model (‘POMDP’), but the problem (‘decision making un-
der state uncertainty’) that causes this complexity. This cer-
tainly should affect our expectations: given the complexity
results [Papadimitriou and Tsitsiklis, 1987; Littman, 1997;
Bernstein et al., 2000], we cannot expect to find optimal solu-
tions in the most general cases. Instead we should investigate
special cases, approximate solutions and heuristics. However,
I think we should not ignore the problem and pretend these
uncertainties do not exist: even if this seems to be the direc-
tion of steepest improvement, this may limit the progress we
can make in the long term.

2.1 Frameworks: Dec-POMDPs and the Like
The decentralized partially observable Markov decision pro-
cess (Dec-POMDP) framework [Bernstein et al., 2000] is
general enough to capture many of the aforementioned un-
certainties. It takes an ‘objective’ approach (cf. Fig. 1) in that
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it formalizes the decision problem for a team of agents. This
stands in contrast to the ‘subjective’ approach, in which we
formalize the decision making of a single agent that reasons
about the other agents as part of its environment. A Dec-
POMDP is a tupleM = 〈D,S,A, T,R,O, O, h, b0〉, where:
• D = {1, . . . , n} is the set of n agents,
• S is the set of states s,
• A is the set of joint actions a = 〈a1, . . . an〉,
• T is the transition function that specifies Pr(st+1|st, at),
• R(s, a) is the immediate reward function for the team,
• O is the set of joint observations o = 〈o1, . . . , on〉,
• O the observation function: Pr(ot+1|at, st+1),
• h is the horizon of the problem (finite or infinite),
• b0 ∈ 4(S), is the initial state distribution at time t = 0.

The stochastic transition function T models outcome un-
certainty, while state uncertainty is modeled by O. At ev-
ery time step or stage, each agent selects an individual ac-
tion based on its individual observations, which means that
agents are not certain what actions their teammates will
take. There is no ‘explicit’ communication, but note that
via the actions and observations the agents can communi-
cate in pretty much the same way as human brains com-
municate to one another. In fact, it is possible to create a
subset of ‘message actions’ (and corresponding observations)
particularly for communication [Pynadath and Tambe, 2002;
Goldman and Zilberstein, 2003]. An optimal plan for such a
model, while difficult to compute, will ‘embed’ the optimal
meaning to these messages void of a priori semantics.

Alternatively, it is possible to consider explicit communi-
cation: e.g., at each stage all agents might broadcast their in-
dividual observations. Under noise-free and cost-free com-
munication this is the optimal thing to do [Pynadath and
Tambe, 2002]. The resulting model is typically referred to
as a multiagent POMDP (MPOMDP) and can be interpreted
as a centralized model [Messias et al., 2011].

Many other frameworks can be seen as special cases of
the Dec-POMDP: a regular POMDP [Kaelbling et al., 1998]
is the special case with a single agent. And if this agent
can perfectly observe the (Markov) state of the system we
deal with an MDP [Bellman, 1957; Puterman, 1994]. An
MPOMDP where the state is observable is referred to as a
multiagent MDP (MMDP) [Boutilier, 1996]. A generaliza-
tion of the Dec-POMDP in which each agent has its individ-
ual reward function is a partially observable stochastic game
(POSG) [Hansen et al., 2004]. For a detailed description of
these multiagent decision processes see [Oliehoek and Am-
ato, 2016].

2.2 Planning
If we have access to the entire modelM (or an accurate sim-
ulator), including transition and possibly observation prob-
abilities, of a (multiagent) decision process, we are dealing
with a planning (or a simulation-based planning) problem.1

1Simulation-based planning is often treated as learning, but it
offers more opportunities than the full RL setting (e.g., resetting the
simulator to a desired state). I find it useful to discriminate from
settings where there is inherent uncertainty about the model.

The goal is to compute a (joint) policy π = 〈π1, . . . , πn〉 that
maximizes a certain optimality criterion, such as the expected
(γ ∈ [0, 1]-discounted) cumulative reward, also referred to as
value: V (π) = E

[∑h−1
t=0 γ

tR(st, at) | b0, π
]
. In an MDP,

the Bellman optimality equations can represent this value of
an optimal policy recursively:

Q∗(st, at) = R(st, at) + γt
∑
st+1

Pr(st+1|st, at)V ∗(st+1),

with V ∗(st) = maxat
Q∗(st, at). Clearly, this is directly ap-

plicable to MMDPs too (and similar MPOMDPs can directly
rely on value function formulations for POMDPs).

A key difficulty that sets Dec-POMDPs apart from frame-
works as MPOMDPs and MMDPs, is that the joint policy
is decentralized: the individual policy πi of every agent i
is a mapping from individual observations histories ōi, t =
(oi,1, . . . , oi,t) to actions πi(ōi, t) = ai,t. This decentraliza-
tion has a profound effect on the complexity: Dec-POMDPs
are provably intractable (NEXP-complete) [Bernstein et al.,
2000]. This is not to say that MMDPs are easy: while they
can be solved in polynomial time, the size of their represen-
tation itself is already exponential in the number of agents.

2.3 Learning

In the event that M is not completely, or not accurately
specified we are in a (multiagent) reinforcement learning
setting where the agent(s) need to learn about the environ-
ment while interacting with it. For instance, we can think of
M = 〈D = {1}, ·,A = {A1}, ·, ·,O = {O1}, ·, h, ·〉, where
the missing entries (·) are unknown, as a canonical single-
agent partially observable reinforcement learning (PORL)
problem. Phrasing this in the context of a larger Dec-POMDP
tuple is a minimal assumption: it merely means that we be-
lieve that there could exist some latent state space S, which
would render the system Markovian. It does not commit us
to picking a learning method that also aims to reconstruct that
Markovian state. Moreover, depending on what we know in
advance about the environment, we can use different frame-
works as a starting point for our algorithm design: if we know
that the agent’s percepts O1 are Markovian, the MDP model
would be a good starting point.

Clearly, the variety in the number of agents, the type and
amount of knowledge that might be available on missing parts
from the tupleM, and (explicit) communication constraints
that we expect to see in different applications is huge, and
a full taxonomy is beyond the scope of this paper. I be-
lieve, however, that grounding such taxonomies in rich formal
frameworks will yield better understanding of how different
methods relate, and what properties of the problem they ex-
ploit.

3 Some Insights
Given these foundations, I will try and give a high-level
overview of some of the insights that I have contributed to
in the last decade.



3.1 Decentralization and Value
A single agent, indexed 1, in a POMDP can avoid re-
membering the entire action-observation history θ̄1, t =
(a1,0, o1,1, . . . , a1,t−1, o1,t). Instead it can maintain a
belief b1, a posterior probability distribution over states
b1,t(s) = Pr(s|θ̄1, t, b0), since such a belief is a sufficient
statistic to accurately predict the optimal value the agent can
expect in the future [Kaelbling et al., 1998; Bertsekas, 2007,
p.251]. In a Dec-POMDP, however, such sufficient statistics
that individual agents i could use to summarize θ̄i, t are not
identified, and may not exist. Instead agents need to act based
on observation histories ōi, t (actions can be discarded, as they
can be inferred given deterministic policies).

An extension of the belief, called multiagent belief,
bi,t(s, q6=i), is defined over states s and the policies q6=i (rep-
resented as trees) that the other agents will follow in the fu-
ture [Hansen et al., 2004]. This enables a form of dynamic
programming: one can compute sets of policy trees qi for in-
creasing horizons 1, . . . , h − 1 for each agent, pruning those
that are dominated over the entire space of multiagent beliefs.

Other approaches are more like the POMDP belief and
instead look at a statistic that summarize the past. As
stated above, no statistics of the history are known that
the agents can maintain during execution. Instead, these
plan-time sufficient statistics capture information about the
policies executed up to some stage t [Nayyar et al., 2011;
Dibangoye et al., 2013; Oliehoek, 2013]. In particular, a
(joint) policy can be seen as a sequence of (joint) decision
rules π = (δ0, . . . , δh−1), and we can define partially spec-
ified joint policies ϕt = (δ0, . . . , δt−1). Now, the optimal
value function for a Dec-POMDP can be defined as a function
V ∗(b0, ϕt) [Oliehoek et al., 2008a; Oliehoek, 2010]. While
this is a reasonably intuitive description with links to the no-
tion of sequential rationality in game theory, it does not offer
computational leverage.

However, it turns out that (for deterministic ϕt) we
can replace the dependence of V ∗ on (b0, ϕt) by a
distribution over joint observation histories and states:
σt(st, ōt),Pr(st, ōt|b0, ϕt) [Oliehoek, 2013]. This not only
highlights the importance of how information is distributed
(who observed what), it also provides computational lever-
age. It forms a basis for the lossless clustering of obser-
vation histories ōi, t [Oliehoek et al., 2013a], and, simi-
lar to POMDPs, V ∗ is a piecewise-linear and convex func-
tion of σt [Nayyar et al., 2011]. In fact, one can show
that a Dec-POMDP can be converted to a non-observable
MDP [Oliehoek and Amato, 2014b] to which POMDP meth-
ods apply and this approach has led to a significant in-
crease in scalability of approximation methods for Dec-
POMDPs [Dibangoye et al., 2013]. This extends to set-
tings with restricted classes of policies (e.g., finite state con-
trollers) [Oliehoek and Amato, 2014b; MacDermed and Is-
bell, 2013], and these results can be extended to 2-player
zero-sum POSGs [Wiggers et al., 2016].

3.2 Factorization, Abstraction & Transfer
Scalability of exact methods has inherent limitations. In this
section, I highlight some advances that provide scalability at
the expense of guarantees.

Factored Value Functions To overcome the problem of ex-
ponentially large (in the number of agents) representations,
structured representations such as factored MDPs [Boutilier
et al., 1999] or factored Dec-POMDPs [Nair et al., 2005;
Oliehoek et al., 2008b] were introduced. These represent a
state s =

〈
x1, . . . , xm

〉
using m state variables, or factors,

which enables compact representations of transitions, obser-
vations and rewards. Unfortunately, in general, value func-
tions cannot be represented compactly [Koller and Parr, 1999]
(even though exact algorithms that exploit structure are pos-
sible [Scharpff et al., 2016]). In response, approximate solu-
tions have been proposed that factorize the (Q-)value function
as the sum of individual terms Q(s, a) ≈

∑
i∈D Qi(xi, ai),

or sums of local terms Q(s, a) ≈
∑

e∈E Q
e(xe, ae), where

the components e ∈ E are defined over subsets of state fac-
tors xe and agent actions ae. The set E is a set of subsets
of agents; corresponding to the hyper-edges in an interaction
hyper-graph [Guestrin et al., 2002a; Nair et al., 2005].

Such factored (Q-)value functions were used in the context
of MMDPs [Guestrin et al., 2002a], motivated by the fact
that in many cases this factorization enables an efficient max-
imization over joint actions. This has been highly influential,
and similar approaches have been adopted in the context of
Dec-POMDPs [Nair et al., 2005; Varakantham et al., 2007;
Oliehoek et al., 2008b], MPOMDPs [Amato and Oliehoek,
2015], multiagent RL [Guestrin et al., 2002b; Kok and Vlas-
sis, 2006; Kuyer et al., 2008], and recent deep variants [Sune-
hag et al., 2018; Rashid et al., 2018].

Transfer Planning Factored value functions are a particu-
lar instantiation of linear function approximation [Guestrin et
al., 2003]. As such, most aforementioned approaches employ
regression to find components Qe that minimize prediction
error. A different approach is taken in what I call transfer
planning (TP) [Oliehoek et al., 2013b]. The basic insight is
that in order to derive good policies from Q-functions, it is
more important that the relative values of the different joint
actions are preserved, than having an (absolute) minimal pre-
diction error. In problems with sufficient ‘spatial’ structure it
may make sense to base the components Qe on local abstrac-
tions of the problem, rather than using regression.

In particular, TP specifies |E| source problems, each of
which is used to compute one component Qe. These are lo-
cal abstractions and only contain a small number of agents
and hence are (relatively) easy to solve. The resulting Qe are
then transferred to the larger target task: since the subsets of
agents may overlap, a ‘plan repair’ phase is needed to extract
non-contradictory policies for each agent (for Dec-POMDPs)
[Oliehoek et al., 2013b], or message passing is needed for
coordination (in the MMDP case) [Van der Pol and Oliehoek,
2016]. TP is agnostic to the method used to solve the source
problems; for instance deep Q-learning (DQN) [Mnih et al.,
2013] was used to compute components Qe in an application
of TP to the problem of coordinating traffic lights [Van der
Pol and Oliehoek, 2016].

Mixtures of Experts In a sense the source problems in TP
can be seen as experts that make a prediction about the lo-
cal value Qe based on the local joint action ae. However,
not in all cases local reward components will be available.



Figure 2: Influence-based abstraction (left) and search (right).

In such cases, one can still consider ‘local experts’ (which
correspond to subsets of agents) that make predictions of the
total value Q based on ae. This allows the components e
to learn in isolation, making it feasible to exploit factoriza-
tion within Monte Carlo tree search (MCTS) [Amato and
Oliehoek, 2015]. When the agents do have access to localized
rewards this can bring further benefits [Pfrommer, 2016].

A further generalization of this idea is given by [Irissap-
pane et al., 2016], who scale up solution methods for complex
POMDPs (that reason about many sellers and advisors) by
considering multiple abstractions of those problems (which
contain random subsets of sellers and advisors) and consider-
ing each of these random POMDPs as an expert. In general,
the idea of using multiple experts has made a profound im-
pact on machine learning, but the exploration of how these
techniques can affect ILDM has only just begun.

Subjective Approximation The above techniques give a
looser interpretation to factorization and become more like
abstraction. Going even further, we can completely move to
a subjective perspective: reasoning from the perspective of
a single agent and the part of the state space it cares about.
Such a subjective perspective can lead to good behavior as
long as the protagonist agent can predict the actions of the
other agents accurately enough. The interactive POMDP
[Gmytrasiewicz and Doshi, 2005] gives an elegant solution
by performing “k-level reasoning” about the other agents, but
is computationally expensive.

Alternatives try to find leverage by ex-
ploiting anonymity [Varakantham et al., 2014;
Robbel et al., 2016]. For instance, for a robot tasked
with cleaning a warehouse, only which dirty spots will be
cleaned by other agents is relevant, the identities of those
other agents is not [Claes et al., 2015]. Also, domain-specific
heuristics can be used to predict teammates. For instance,
in such robotic warehousing tasks one can use decentralized
MCTS to facilitate fine-grained reasoning about movement
and tasks appearance at various locations, while using
heuristics developed in the robotics community to predict the
teammates [Claes et al., 2017].

3.3 Influence-based Abstraction & Search
Since much progress has been made by building on ideas of
factorization and abstraction, I have worked on providing a
deeper understanding of such abstractions, by characterizing
lossless abstractions, and how they can facilitate coordination
between agents.

In particular, I have contributed to the notion of influence-
based abstraction [Oliehoek et al., 2012], which tries to boil
down interaction to its essentials: interaction is a two-way
flow of influence and the influence, say of agent 1’s policy on

agent 2 (I1→2 in Fig. 2), is an abstract compressed form of
all the information that agent 2 needs in order to compute its
best response. In other words: many π1 may have the same
influence I1→2 and thus lead to the same best-response π2.

Such ideas have been used to more efficiently search for
joint policies in special cases of Dec-POMDPs, e.g, [Becker
et al., 2003; Witwicki and Durfee, 2010]. The main idea is
that the space of joint influences can be much smaller than
the space of joint policies, therefore significant speed-ups are
possible by searching the former [Witwicki et al., 2012]. In
more complex settings, computing the influence points them-
selves is intractable. However, it is computationally afford-
able to make optimistic assumptions on what the influence
could be [Oliehoek et al., 2015]. Such an approach can be
used to compute factored upper bounds on the optimal value
functions of problems, which in turn can help interpreting the
quality of heuristic solutions with hundreds of agents. For in-
stance, such an analysis showed that the solution provided by
Dec-POMDP transfer planning for the 50-agent Aloha bench-
mark is essentially optimal.

3.4 Learning as Planning
Most RL methods are based on the theory of MDPs, most
RL problems, however, are partially observable. While in
some cases one can get away with making the Markov as-
sumption by using the last k observations, this in general
is not the case. How to deal with exploration in a princi-
pled fashion in such PORL problems is still an open ques-
tion. One appealing approach is given by the Bayes Adaptive
POMDP framework [Ross et al., 2011], which casts the learn-
ing problem, given a prior, as a planning problem. This means
that advances in POMDP planning can be built upon [Katt et
al., 2017], and that it is possible to extend to POMDP-based
multiagent settings [Oliehoek and Amato, 2014a; Amato and
Oliehoek, 2015]. There are many challenges, however, in
making such approaches more scalable.

4 Challenges
Providing scalability is a central question to all ILDM. In
the last few years encouraging results have been obtained by
deep multiagent reinforcement learning (MARL), and more
progress is to be expected. Here I list just a small selection of
important other challenges.

Truly Decentralized RL MARL is progressing at an amaz-
ing pace, but many approaches consider an offline training
phase [Foerster et al., 2018]. Other methods, such as in-
dependent DQN agents in theory could be applied on-line,
but would be completely impractical due to their sample
complexity. Moreover, it is often not clear what exactly is
the right way to phrase these learning problems. For in-
stance, policy gradient methods can readily be applied to
Dec-POMDPs [Peshkin et al., 2000], but require all of the
agents to observe the rewards or return of the entire system,
which might be difficult to realize in practice.

Learning Models in Interactive Decision Making Re-
lated to this, one of the grand challenges is to come up
with methods to learn models of the behavior of other



agents, e.g., [Oliehoek and Amato, 2014a; Panella and Gmy-
trasiewicz, 2014], and indeed humans. To make substantial
progress on this front, I suspect that we will need benchmark
tasks and shareable models for them that can play a role sim-
ilar to pre-trained imagenet networks.

Understanding Interactive Learning Finally, one of the
current hot topics in machine learning revolves all around in-
teractive learning in the form of competing networks (i.e.,
‘GANs’) [Goodfellow et al., 2014]. While the empirical
progress and results have been astounding, theoretical un-
derstanding has been lagging [Arora et al., 2017]. In par-
ticular, I have worked on the question of how such compet-
ing networks can avoid getting stuck in ‘local Nash equilib-
ria’ [Oliehoek et al., 2017]. More in general, I think that
insights from ILDM, including both multiagent planning and
learning, will have a big role to play in the development of
machine learning in the future.
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