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Abstract 1 

The use of local magnitude (ML) in seismic hazard analyses is a topic of recent debate. In 2 

regions of weak- or moderate-seismicity, small earthquakes (characterized by ML) are 3 

commonly used to determine frequency-magnitude distributions (FMD) for probabilistic 4 

seismic hazard calculations. However, empirical and theoretical studies on the relation 5 

between moment magnitude (M) and ML for small earthquakes show a systematic 6 

difference between the two below a region-dependent magnitude threshold. This 7 

difference may introduce bias in the estimation of the frequency of larger events with given 8 

M, and consequently seismic hazard. For induced seismicity related to the Groningen gas 9 

field, this magnitude threshold is determined to be M ~ 2, with equality between M and ML 10 

at higher magnitudes. A quadratic relation between M and ML is derived for 0.5 < ML < 2, in 11 

correspondence to recent theoretical studies. While the seismic hazard analysis for 12 

Groningen is internally consistent when expressed in terms of ML (with the implicit 13 

assumption of equivalence between the two scales), a more physical interpretation of the 14 

seismicity model requires transformation of the earthquake catalogue from local to moment 15 

magnitude, especially since the dataset currently used in estimating time-dependent hazard 16 

consists mainly of ML < 2.5 events. We show that measured station effects, derived from M 17 

calculations, correspond to predicted model calculations used to determine a ground-18 

motion model for the region. 19 

 20 

Key words: Induced seismicity, magnitude relations, hazard analysis 21 

  22 
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Introduction 23 

Seismic hazard assessment is usually concerned with earthquakes of magnitude 4 or 24 

greater, since smaller earthquakes generally produce ground motions that do not warrant 25 

consideration in engineering design (Bommer and Crowley, 2017). However, in the case of 26 

induced seismicity, smaller earthquakes can be important both because their effects are 27 

viewed as an imposed risk and also because they may occur in regions where buildings are 28 

designed and constructed without provision for lateral resistance against seismic shaking. In 29 

such situations, both seismicity models and ground-motion predictions are calibrated on 30 

small-magnitude earthquake data, the characterization of which—including the 31 

quantification in terms of magnitude—then becomes important. A particular challenge is to 32 

homogenize catalogues of induced earthquakes in terms of moment magnitude (Edwards 33 

and Douglas, 2014). 34 

 35 

Gas production in the Groningen field in the northernmost part of the Netherlands is 36 

inducing earthquakes that potentially pose a threat to the built environment and to local 37 

inhabitants. As part of their response to the induced seismicity, a probabilistic seismic 38 

hazard and risk model (forming part of the production license application, or Winningsplan) 39 

is being developed for the Groningen field by the operator, Nederlandse Aardolie 40 

Maatschappij BV (NAM, 2016). In addition, and independently from the field operator, the 41 

Royal Dutch Meteorological Institute (KNMI) has developed a probabilistic seismic hazard 42 

model, which is compared to the Winningsplan model (Spetzler and Dost, 2017b; Dost et al., 43 

2017). As part of the development of seismic hazard and risk models a site-specific ground 44 

motion model (GMM) has been developed for hazard assessment (Bommer et al., 2017a, 45 
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2017b). This model is based on finite-fault stochastic simulations, calibrated to 46 

accelerometer recordings from a local network in the region, and assumes that M = ML for 47 

ML > 2.5. The seismicity model, however, necessarily makes use of much smaller 48 

earthquakes and has invoked the implicit assumption of equivalence between local and 49 

moment magnitudes (Bourne et al., 2014, 2015). Earthquakes used to develop the GMM 50 

have been located using a borehole network, established in the region in 1995 and recently 51 

extended (Dost et al., 2017; Spetzler and Dost, 2017a). Due to the expansion of the network 52 

in 2014, and the additional data this has provided for recent events, moment magnitudes 53 

can now be calculated to test the validity of the assumption that local and moment 54 

magnitudes are equal in the magnitude range of interest (M > 2.5). 55 

 56 

Magnitudes of the induced earthquakes in the Groningen field are assigned by the official 57 

seismological service of the Netherlands, which is part of KNMI. These are local magnitudes, 58 

ML. Within the context of the Groningen seismic hazard and risk models, both the 59 

compaction-based seismicity model (e.g., Bourne et al., 2014) and the ground-motion 60 

models (GMM) are being developed in terms of local magnitude but with the assumption of 61 

these magnitudes being equivalent to moment magnitude, M. Although this assumption 62 

represents a justified starting point (Deichmann, 2006), it has been a clear goal since the 63 

beginning of the project to either confirm this assumed equivalence or else to replace it 64 

with a validated relationship between the two scales. 65 

 66 

In the first part of this paper we summarize how the two magnitude scales (ML and M) are 67 

defined and provide an overview of how the ML to M conversion issue has been addressed 68 

in other seismic hazard analysis projects. We then explore the specific case of Groningen, 69 
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including an evaluation of local procedures at KNMI to determine magnitudes on both 70 

scales. We next provide a discussion of studies that have addressed the relationship 71 

between these two scales, including both empirical and theoretical publications. Finally, 72 

conclusions regarding the recommended procedures to be adopted for the Groningen 73 

hazard and risk assessments are summarized.   74 

 75 

Magnitude Definitions 76 

Earthquake magnitudes provide a quantitative measure of size in terms of either a 77 

characteristic of the causative fault itself or the energy radiated from it. The two magnitudes 78 

that are the subject of this study, the local and moment magnitudes, are described in the 79 

following. 80 

 81 

The local magnitude scale is defined by the peak displacement on the Wood-Anderson 82 

seismometer at a distance of 100 km from the earthquake. It is effectively a measure of the 83 

high-pass filtered displacement field. The local magnitude scale was originally defined by 84 

Richter (1935) using recordings of earthquakes in California. He proposed that: 85 

𝑀" = log'( 𝐴 − log'(𝐴( (1) 

with 𝐴 the peak amplitude on a x2800 gain Wood-Anderson torsion seismometer in mm, 86 

and 𝐴( a correction for attenuation with distance [such that log'(𝐴((100	𝑘𝑚) = −3]. The 87 

attenuation correction 𝐴( was determined by Richter (1935) for California, using a small 88 

dataset of recorded events and was limited to an epicentral distance range of 30-600 km. 89 

Boore (1989), using a much larger dataset, showed that systematic differences of up to 0.4 90 

magnitude units can be obtained at short epicentral distances (0-30 km) if an appropriate 91 
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attenuation function for the region is not derived. The Wood-Anderson seismometer was 92 

commonly used at the time to record regional and local seismicity. However, the instrument 93 

records ground motion displacement and acts as a high-pass filter above ~ 1 Hz. Therefore, 94 

the scale saturates for events larger than magnitude 7, where the displacement field is 95 

dominated by motions with frequencies below 1 Hz.  96 

 97 

Despite the shortcoming of saturation at large magnitude, the local magnitude has been 98 

almost universally adopted as the magnitude of choice for regional earthquake 99 

observatories because it is easy and fast to calculate. Since the original scale was developed 100 

in California, where the geologic setting can be vastly different to other regions, most 101 

seismic observatories recalibrate the attenuation correction based on locally recorded 102 

seismicity. Whilst this should lead to a consistent magnitude scale, it typically does not, with 103 

regional differences becoming apparent where seismicity lies at the border regions of 104 

seismic networks (e.g., Fäh et al., 2011). For instance, it is common for systematic 105 

differences between local magnitudes assigned by different agencies: the French network 106 

LDG typically estimates French-Swiss border region events to be 0.4 units higher than the 107 

Swiss Seismological Service. This is due to the simplistic nature of the attenuation 108 

correction, often lack of consideration of site effects and different interpretations of ‘peak 109 

displacement’. 110 

 111 

The moment magnitude is a measure of the size of the seismic moment (𝑀() – representing 112 

work done – of an earthquake. The seismic moment has a physical definition that is based 113 

on the fault rupture surface area (𝑆) and average displacement (𝑑), and the shear modulus 114 

of the material (µ): 115 
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𝑀( = µ𝑆𝑑 (2) 

Using the magnitude-energy relation: 116 

log'(( E7) = 1.5M7 + 11.8 (3) 

and noting that E7 (in ergs) could be replaced by a measure of the strain work done, W (in 117 

dyn.cm), Kanamori (1977) proposed an extension to the surface-wave magnitude that did 118 

not saturate due to band-limited recordings: 119 

log'((W) = 1.5M> + 11.8 (4) 

Note here that M> is not strictly a ‘moment magnitude’ (although often defined as such), 120 

rather a magnitude based on work done. Kanamori (1977) showed that under certain 121 

assumptions W = 𝑀(/(2 × 10B)	, such that a magnitude, denoted M, could be directly 122 

related to the seismic moment. Extending this concept by also noticing the concurrence of 123 

the equation for ML in California (Thatcher and Hanks 1973), Hanks and Kanamori (1979) 124 

defined the moment magnitude, uniformly valid through 3 ≲ ML ≲ 7, 5 ≲ Ms ≲ 7½, and Mw 125 

≳ 7½ as: 126 

𝐌 =
2
3 log'( 𝑀( − 10.7 (5) 

where  𝑀( is measured in dyn.cm (10-7 N.m). 127 

Approach in Previous Projects 128 

Several seismic hazard projects over the last decade have faced the issue of magnitude 129 

scaling. The PEGASOS Project (Probabilistic Seismic Hazard Analysis for Swiss Nuclear Power 130 

Plant Sites; Abrahamson et al., 2002) was set up to assess the seismic hazard at nuclear 131 

power plant sites in Switzerland. As part of the project an update of the national earthquake 132 

catalogue was made (ECOS-02: Earthquake catalogue of Switzerland, 2002, Fäh et al., 2003), 133 
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which in the case of no direct measure of M used a simple offset of -0.2 between ML and M 134 

based on analysis of a catalogue of moment tensor based M and corresponding ML in and 135 

around Switzerland (Braunmiller et al., 2005). A subsequent project, which aimed to refine 136 

the results of the PEGASOS Project (the PEGASOS Refinement Project, or PRP; Renault et al., 137 

2010), was undertaken between 2007 and 2013. As part of the project a revised earthquake 138 

catalogue was compiled (ECOS-09, Fäh et al., 2011). For this catalogue M was again assigned 139 

based on a scaling relation with ML, but now using the curvilinear form of Goertz-Allmann et 140 

al. (2011).  141 

 142 

The Central and Eastern United States Seismic Source Characterization for Nuclear Facilities 143 

(CEUS-SSC) project developed a homogenized earthquake catalogue for the US region east 144 

of the Rocky Mountains (USNRC, 2012). The catalogue contained relatively few ML and M 145 

pairs but they did observe that the data displayed the ‘typical flattening of slope at the 146 

lower magnitudes’ (USNRC, 2012). In order to avoid this issue, the data below ML 3.5 were 147 

not used in fitting the ML versus M model. Additionally, in order to convert ML to M the 148 

authors propose a number of different approaches depending on the data source and 149 

depending on the availability of data. These converted magnitudes were then in turn 150 

converted to M through more robustly determined conversion equations. This procedure, 151 

however, added significant uncertainty, with standard errors of 0.3 to 0.4 magnitude units. 152 

 153 

The Thyspunt PSHA Project was a site-specific hazard analysis for a South African nuclear 154 

power station (Bommer et al., 2015). As part of the project a homogeneous earthquake 155 

catalogue was compiled, with magnitude in M. Since a wide range of magnitudes were 156 

available with both M and ML, a South Africa specific conversion equation was developed. 157 
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The equation was developed giving strong preference to fitting the larger events with 158 

available moment tensors, whilst avoiding sharp jumps. This led to a correction that tends to 159 

overestimate M for smaller magnitudes (3 to 4) but since the minimum magnitude 160 

considered in the PSHA was 5.0, this was not considered important.  161 

 162 

The Seismic Hazard Harmonization in Europe (SHARE) Project (Woessner et al., 2015) 163 

developed an earthquake catalogue for the European region. Due to the diversity of data 164 

sources (individual country seismic networks and observatories) different conversions were 165 

applied to ML to obtain M. The conversions are too numerous to describe in detail in this 166 

context, but can be found in Grünthal and Wahlstrom (2012) and Grünthal et al. (2013). 167 

However, the majority of conversions from ML relied on a linear scaling over a limited 168 

magnitude range. 169 

M and ML in Groningen 170 

Since the north of the Netherlands was effectively aseismic before the onset of induced 171 

seismicity in the region in 1986, a local magnitude calibration had, up to that point, not 172 

been carried out. In fact, only one short-period station (WIT) had been in operation in the 173 

region since 1972 as part of the regional KNMI network. 174 

  175 

Local Seismic Network  176 

Since 1988 a monitoring network was built-up in the north in two stages. First a small 177 

aperture array was installed around the city of Assen, consisting of short-period vertical 178 

sensors located at the surface and aimed at monitoring only one small gas field. Later 179 

seismicity spread over a larger area and a new borehole network was installed in 1995, 180 
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equipped with 3-component sensors, replacing and extending the first array (Dost and Haak, 181 

2007). In addition to the borehole monitoring network, a surface network was added 182 

consisting of accelerometers (Figure 1). Since 2014 the borehole network has been 183 

expanded over the Groningen gas field. Boreholes consist of 4 levels of sensors at a 184 

maximum depth of 200m and each borehole is also equipped with a surface accelerometer 185 

(Dost et al., 2017).  186 

 187 

Local Magnitudes in Groningen 188 

In the period 1986-1992 only 6 events occurred in the north of the Netherlands, with one of 189 

them in the Groningen area. Local magnitudes were calculated using a reference station of 190 

the KNMI network (WTS), at an epicentral distance of 100-150km. The attenuation relation 191 

developed by Ahorner (1983) was used in the calculations (Eqn. 1), where log Ao= -1.90 192 

log(R) - 0.35, with R being the hypocentral distance. The Assen array allowed the calculation 193 

of a first attenuation relation for the north of the Netherlands, although unfortunately only 194 

vertical components were available. In 1991 an experimental borehole station FSW was 195 

installed, east of the Groningen gas field, with four levels of 3 component geophones at 75m 196 

vertical spacing. Data from the geophones at 225m depth were subsequently used to 197 

determine magnitudes by extrapolation of the previously determined attenuation function.  198 

 199 

After the borehole network became operational in 1995, a more detailed calibration 200 

became possible for a larger region, including the Groningen gas field. The calibration was 201 

undertaken by KNMI, and is summarized here. Following Kanamori et al. (1993) the 202 

attenuation function for the North of the Netherlands was modeled using: 203 
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𝑞(𝑅) = 𝑐	𝑅JK𝑒JMN      (6) 

which includes effects of geometrical spreading, attenuation, reflection and refraction and 204 

scattering and is regarded as a reasonable description for the average trend over short 205 

epicentral distances (in our application: 0-80 km). Since there were existing estimates of ML, 206 

a search for values of parameters c, n and  was performed by minimizing the function:  207 

 208 

  

(7) 

 209 

where index i refers to the event and j to the recording station and A is the average 210 

maximum Wood-Anderson (WA) simulated amplitude (half peak-to-peak) of the horizontal 211 

components. There is a trade-off between n and , which was noted by several authors 212 

(e.g. Bakun and Joyner, 1984; Savage and Anderson, 1995). An iterative grid search was 213 

carried out: after an initial estimate of the attenuation function, new values for ML were 214 

calculated and a new minimization performed to refine the estimate of the attenuation 215 

function. By fixing the value for n and solving for α, a steady decrease of α with increasing n 216 

was observed, coinciding with a decrease in the minimum of the misfit function.  It is 217 

important to emphasize that amplitudes are always measured at the deepest level in the 218 

boreholes (generally  200 m, except for FSW where it is 225 m). Based on a dataset of 157 219 

records, recorded in 1995 and the first half of 1996, the minimization of Equation (7) led to:  220 

log'(𝐴(  = -1.33 log(𝑅) - 0.00139	𝑅 - 0.424    (8) 
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(Dost et al., 2004). The first term implies that geometrical spreading is faster than the usual 221 

assumed	1/𝑅 and from the second term an average Q = 280*fWA (for β=3.5 km/s) can be 222 

derived (Bakun and Joyner, 1984), with fWA being the dominant frequency of the measured 223 

WA displacements. The attenuation function applies to a larger region than only the 224 

Groningen area, since the network also covers many small gas-fields. The difference 225 

between the magnitudes calculated using the attenuation function based on the Assen array 226 

data and re-calibrated magnitude estimates is small, around 0.1-0.2 magnitude units. In 227 

addition station corrections have been calculated and are less than 0.1 magnitude units. 228 

Due to the limited dataset, sampling only part of the region, and small values of the station 229 

corrections compared to the uncertainty in ML (between 0.2-0.3), it was decided not to use 230 

them in the magnitude calculations. 231 

 232 

Equation (8) was used in determination of local magnitudes used here. Figure 2 shows the 233 

variation in magnitude calculated for each individual station with respect to the average 234 

magnitude for events recorded in the period 2010-2015.  For hypocentral distances (𝑅) less 235 

than 10-15 km, a distance dependence is observed and a correction of the attenuation 236 

relation at short distance may be considered as also found in other regions (e.g., Edwards et 237 

al., 2015; Butcher et al., 2017). However, this distance dependence is small with a mean 238 

residual of 0.12 magnitude units for R < 10 km, while the standard deviation at the shorter 239 

distance bins is high (0.15-0.23 magnitude units).      240 

    241 
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Moment magnitude 242 

Seismic moment, Mo, can be derived from the spectra of P and S waves. In this study the 243 

focus is on S waves, which typically have a higher amplitude and are therefore still relatively 244 

noise-free for weak events. The S-wave displacement spectrum 𝐴(𝑓) recorded in one 245 

station can be written as the product of a source term, Ω(𝑓), an attenuation term, 𝐷(𝑅, 𝑓) 246 

and a site effect term, 𝑆(𝑓): 247 

𝐴(𝑓) = Ω(𝑓)𝐷(𝑅, 𝑓)𝑆(𝑓)    (9) 

where 𝑅 is the hypocentral distance, 𝑓 is frequency. As a source model, the (Brune 1970, 248 

Brune 1971) model is chosen, as modified by Boatwright (1978): 249 

Ω(𝑓) = ΩS

T'UV WWX
Y
ɣ[
\
]/ɣ     (10) 

Abercrombie (1995), de Lorenzo et al. (2010) and others found that ɣ=2 and n=2 produces a 250 

better model for spectra of local earthquakes compared to the standard Brune model with 251 

ɣ=1 and n=2. A test of model fit to the data showed that this also applies to the current 252 

dataset. It should be noted, however, that the result depends on the selected events, so 253 

either model is arguably suitable. For instance, in the development of the GMM for 254 

Groningen (Bommer et al., 2017b), the Brune model was assessed to provide a marginally 255 

better better fit to larger (M > 3) events.  256 

 257 

The low-frequency spectral level Ω(	can be expressed in terms of seismic moment 𝑀(: 258 

 259 

Ω( =
^_

B`aS
]
bac

]
bdS

]
b
dc
e
b

𝑔(𝑅)𝑀(     (11) 

 260 
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where 𝛷 denotes the average radiation, which is taken as 0.64 for shear waves recorded at 261 

close distances at a 60 degrees dip-slip fault (Boore and Boatwright, 1984), ρs the density at 262 

the source (2.6 kg/m3) and ρ0 density at the surface (2.1 kg/m3), updated from Kraaijpoel 263 

and Dost (2013), 𝑣i the shear velocity at the source (2009 m/s, pers. comm. Remco Romijn) 264 

and 𝑣( shear velocity at the surface (which over the field has an average value over the 265 

uppermost 30 m of 200 m/s; Kruiver et al., 2017). The free-surface effect is introduced as a 266 

factor of 2, which is exact for near vertical incoming SH waves and, in general, a reasonable 267 

estimate for vertical incoming SV waves. The function 𝑔(𝑅) describes the geometrical 268 

spreading and is discussed in detail later. Attenuation along the path from source to receiver 269 

involves anelastic decay (e.g., Drouet et al., 2010) and high-frequency damping: 270 

𝐷(𝑟, 𝑓) = 𝑒J
klW
m	nco 	𝑒J`pq = 𝑒J`qr∗      (12) 

with 𝑡∗ = 	 N
udco

+ 𝜅( 271 

where 𝑣iw is the average shear velocity between source and receiver; 𝑄 is the damping 272 

parameter and in these calculations assumed to be frequency independent; 𝑆(𝑓) is the site 273 

effect. Combining equations (9) and (11) to (12), the S-wave spectral displacement can be 274 

written as: 275 

𝐴(𝑓) = Ω(
y(q)

T'UV WWX
Y
z
\
]/b 𝑒J`qr

∗      (13) 

A grid search was carried out to determine the best fitting parameters for fc, t* and Ω( and 276 

to calculate M0. This grid search was carried out using a minimization function: 277 

𝜎^ =
1
𝑁}

~log	(𝐴��i(𝑓�)) − log	(𝐴�w��(𝑓�))~
^

�

��'

 
(14) 
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For each event, the spectrum of each station is processed separately, since this will give 278 

insight regarding the variability of the estimated parameters. Moment magnitude is 279 

calculated using Equation (5) where: 280 

 281 

𝑀( =
B`aS

]/bac
]/bdc

e/bdS
]/b

^��(N)
Ω(     (15) 

  282 

This formulation assumes that the site effect term 𝑆(𝑓) = 1, with frequency-independent 283 

amplification included in Equation (15) by accounting for the impedance contrast between 284 

the source and site.  285 

 286 

Data and processing  287 

The Groningen accelerometer network has developed over the years from a sparse stand-288 

alone triggered system to a dense continuous recording system. The former consisted of SIG 289 

SMACH instrumentation (Dost and Haak, 2002), while the latter is equipped with 290 

Kinemetrics Episensor accelerometers and Basalt dataloggers. The triggered systems 291 

provide output in cm/s2, while the Episensor data needs a conversion from digital counts. 292 

This conversion factor is 4.7684e-7 g/C and the response is flat for acceleration within the 293 

frequency range of interest. 294 

 295 

The data processed in this paper have been recorded in accelerometer stations of the 296 

Groningen network. The number of stations that could be used varies in time and also 297 

depends on event location. Data are sampled at 5 ms time intervals and recorded in real 298 

time as continuous mini-seed volumes and transferred over the Internet using the seedlink 299 
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protocol. A time window of 512 samples (2.56s) around the S-onset was selected for 300 

processing. A Hanning window was applied prior to the Fourier transformation. Based on 301 

the signal-to-noise ratio of most records, the frequency range used to fit the measured 302 

spectra to the model is limited to a maximum range of 1-30 Hz (e.g. Figure 3). 303 

 304 

The geometric mean of the spectra of the horizontal components is used in this analysis, 305 

compatible with the development of the GMM for Groningen (Bommer et al., 2017a, 306 

2017b). In the process of spectral fitting a strong correlation between corner frequency, fc, 307 

and attenuation, t*, is observed. The estimate of the low-frequency part of the spectrum, Ω0, 308 

is much more stable and is the only parameter required for calculation of M. 309 

 310 

Geometrical spreading 311 

In Equation (11)  the geometrical spreading is often assumed to be well described by a 312 

simple 𝑔(𝑅) = 1/𝑅 relation. However, in the attenuation relation derived for the ML 313 

calculation, a higher attenuation was found 𝑔(𝑅) = 1/𝑅J'.��. For magnitude calculations 314 

this parameter is of crucial importance. For example, Drouet et al. (2005) modeled 315 

geometrical spreading by: 316 

 317 

𝑔(𝑅) = '
NS
[NS
N
]�   (16) 

 318 

where R0 is equal to a reference distance. Since for the low frequency part of the spectrum: 319 

 320 
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log	(𝐴(𝑟, 𝑓 → 0)) =log( ^_�S
B`aS

]/bac
]/bdce/bdS

]/b)+ log�𝑆(𝑓 → 0)� − λlog	( N
NS
) ,  (17) 

 321 

parameter λ can be estimated from the distance dependence of measured Ωo values. In this 322 

procedure R0 = 1000 m. For the determination of an average geometrical spreading factor 323 

for Groningen, events of different magnitudes are compared by scaling the logarithm of the 324 

low-frequency part of the spectrum with the logarithm of the averaged seismic moment for 325 

each event. Results are shown in Figure 4. Linear regression gives the best fitting line:  326 

 327 

���	(�(�,q→())
����S

= (-1.89 ± 0.08)*log( N
NS

  ) – (16.88 ± 0.07)                                                          (18) 

 328 

Figure 4 shows the results of the regression including the 95% confidence limits. An average 329 

geometrical spreading factor λ= 1.9 has been adopted from these data. A major source of 330 

error in these measurements is the effect of the radiation pattern and possible site effects. 331 

Therefore, comparison with model calculations is important. Results from finite difference, 332 

isotropic wave equation modelling are shown in Figure 5. A clear difference in geometrical 333 

spreading is observed for the hypocentral distance range 3-7 km and 10-14 km. It should be 334 

noted that this modelling is performed for elastic media. The average geometrical spreading 335 

derived from the normalized low-frequency spectra is in line with the modelling results.  336 

 337 

For all events a general λ= 1.9 is used for each station in the calculation of M. However, for 338 

the Garmerwolde event (2014-09-30), with location in the south-west part of the field, this 339 

choice for geometrical spreading results in a clear increase of magnitude with distance.  340 
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Consequently, for this event only, recordings at epicentral distances < 10 km have been 341 

used in the analysis.  342 

 343 

Comparison of M 344 

In order to explore the sensitivity of event-to-event variability in calculated M depending on 345 

the approach we also calculated M using the approach detailed in Edwards et al. (2010). 346 

Identical material properties were assumed in both methods. The primary difference is the 347 

spectral fitting method and the use of distance-dependent (segmented) geometrical 348 

spreading (for more detail: Edwards et al., 2010) and site effects are determined as part of 349 

the joint inversion. In this method, the entire S-wave train is taken as signal and an 350 

‘apparent’ geometrical decay determined. This rate of decay was found to be 1/R1.58 from 3 351 

to 7 km, and 1/R0.09 from 7 to 12 km, which has similar form to the synthetic results (Figure 352 

5), but has an overall lower slope due to the inclusion of multiple S-phases. Nevertheless, 353 

the resulting M values are very similar and follow a 1:1 trend with the previously calculated 354 

values (Figure 6). 355 

 356 

Relationship between M and ML 357 

A total of 116 events, listed in Table S1, available in the electronic supplement to this article, 358 

have been processed to calculate M and to compare these values to measured ML. In 359 

general the uncertainties in ML are larger than uncertainties in M. This may be caused by 360 

the fact that the original borehole network has a large inter-station distance, on average 20 361 

km, while covering a heterogeneous upper crustal structure. The distance between the 362 
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accelerometer stations is less and, being located at the surface, do include the highly 363 

heterogeneous uppermost 200m.  364 

 365 

For events of magnitude ML>2 both magnitudes are similar (Figure 7). For smaller events a 366 

quadratic relation was fit to the data using a least-squares optimization:  367 

M = 0.056262*ML
2 + 0.65553*ML + 0.4968    for 0.5 ≤ ML ≤ 3.6                                                         (19) 

This relation is close to the relation derived by Grünthal et al. (2009). Edwards (2015), 368 

Munafò et al. (2016) and Deichmann (2017) showed that for small events M = 2/3*ML + C. In 369 

Figure 7 this relation is close to the quadratic fit for small events (ML < 1.5) with C=0.53. 370 

 371 

These results confirm the validity of the assumed equality between M and ML for M ≥ 2.5. 372 

However, since the seismicity in the region is non-stationary, time dependent b-values are 373 

required in the hazard analysis, based mainly on ML ‹ 2.5. Therefore measured ML values 374 

should ideally be converted to M before a reliable b-value can be determined (Deichmann, 375 

2017; Spetzler and Dost, 2017b). 376 

  377 

Site effects 378 

The calculated moment magnitudes are averages over multiple stations. Site effects can be 379 

derived from an analysis of the magnitude residuals at each individual station (Edwards et 380 

al., 2013). All stations in operation have been processed and the majority showed a mean 381 

residual around zero, except for two stations: BHKS and BAPP (Figure 8).  382 

 383 



19 
 

For the Groningen region a site-specific ground motion model has been developed (Bommer 384 

et al., 2017b). For this model, amplification functions have been derived based on 1D site 385 

response analyses (Rodriguez-Marek et al., 2017). Figure  shows the frequency-dependent 386 

amplification functions calculated at the location of the stations shown in Figure . A 387 

pronounced amplification effect at ~ 2Hz for stations BHKS and BAPP, visible in the blue 388 

(empirical) or red (theoretical) lines in Figure 10, corresponds to the observed higher 389 

magnitude residual. This amplification effect has not been observed at the other stations. 390 

Since the magnitude dataset is still small, the analysis could not yet be carried out for the 391 

new borehole network. 392 

 393 

Discussion: the relation between M and ML 394 

Empirical Data 395 

Since both local and moment magnitudes are often directly determined for moderate sized 396 

earthquakes (4 < M < 6), there is the opportunity to observe, empirically, the relationship 397 

between the two—as shown for events in Groningen. Unfortunately, the magnitude range 398 

over which both magnitudes are available is often rather small due to the fact that moment 399 

tensor analyses (used to calculate M) require long-period waveforms (e.g., T > 10 s). For 400 

earthquakes below M = 4, these periods are typically dominated by noise. Some studies, as 401 

here, extend the lower limit of moment magnitude determination using spectral analysis 402 

techniques. A limitation in this case is that since short-period motions are analysed, there is 403 

a higher degree of uncertainty and the risk of biased estimates, for example due to local site 404 

amplification effects. Furthermore, methodological differences between approaches can 405 

lead to systematic bias in estimated magnitudes. Nevertheless, by using two independent 406 
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methods for the calculation of M we show that the analysis for the Groningen data is 407 

robust. 408 

 409 

There are numerous studies comparing regional ML and M. Often a shortcoming of such 410 

studies is the limited magnitude range available: regions of low seismicity, such as Northern 411 

Europe tend to focus on smaller magnitude data, using spectral analyses to obtain M from 412 

short-period data, while regions of higher seismicity tend not to compute (or provide) 413 

moment magnitudes for smaller events. Authors therefore often use a simple linear 414 

regression (straight line fit) between the two magnitudes. Figure 10 shows a collection of 415 

such regressions. Only models presented by Grünthal et al. (2009) and Edwards et al. (2015) 416 

span a wide magnitude range. Grünthal et al. (2009) use data from accross Europe, while 417 

Edwards et al. (2015) use data from Switzerland and central Europe in addition to 418 

theoretical considerations on scaling. 419 

  420 

Authors have, in the past, assumed that M = ML or that M = ML + C. As seen in Figure 10, this 421 

is a reasonable average assumption for M > 2.5. Most models predict smaller M than ML in 422 

this range (with offsets of ~ C = -0.1 to -0.4). Below ML ~ 2.5, M tends to be systematically 423 

higher than ML. However, individual regions show significant systematic differences, even 424 

for M > 2.5. 425 

 426 

Due to the limits of computing M across a wide range of magnitudes, there are few studies 427 

that span the ‘complete’ range of magnitudes and investigate the magnitude dependence of 428 

the ML versus M scaling. An early example was that of Hanks and Boore (1984). They saw 429 

the variety of different scaling relations, even in the California region, as evidence that the 430 
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results depended on the chosen magnitude range. By analysing earthquakes between ML = 431 

0 and 7 in California from a number of sources they observed a curvilinear relationship 432 

between M0 (and consequently M) and ML. Grünthal et al. (2009) produced an earthquake 433 

catalogue for central, northern, and north-western Europe. Based on this they observed a 434 

quadratic trend between M and ML. Similarly Edwards et al. (2010) used Swiss and central 435 

European (Italian, French, Austrian and German) events to develop empirical relationships 436 

between ML (assigned by the Swiss Seismological Service) and M calculated based on 437 

spectral analysis. Following Edwards et al. (2010), Goertz-Allmann et al. (2011) expanded 438 

the Swiss dataset to include events of smaller magnitude, and used moment tensor 439 

solutions for M where available. They defined a piecewise relationship (linear to ML = 2, 440 

quadratic between ML = 2 and 4 and 1:1 scaling with M above ML = 4) to avoid the problem 441 

of sparse data at low and high magnitudes. Edwards et al. (2015) revised this model to 442 

account for new data (ML < 2) and the theoretical scaling of M ∝ 2/3 ML for small (M < 2) 443 

events (Deichmann, 2017). 444 

 445 

Simulation- and Theoretical-based Studies 446 

Deichmann (2006) proved that M ∝ ML in the absence of attenuation and neglecting the 447 

effect of the Wood-Anderson response, which only affects large magnitude (low-frequency) 448 

events. He did this by showing that as the seismic moment increases two things happen to 449 

the radiated displacement pulse: its duration increases, and its peak amplitude increases. 450 

The duration of the pulse is directly linked to the size of the rupture, which can itself be 451 

related to the seismic moment and the static stress drop. After accounting for the increase 452 

in displacement pulse duration due to fault growth, it is shown that the peak-amplitude 453 
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must increase as 2/3logM0. Since M also increases with 2/3logM0, it can be inferred that M 454 

= ML + C. In practice therefore, assuming suitably calibrated scales, M = ML. This initial 455 

theoretical analysis did not explain empirical observations of a break in 1:1 scaling at low 456 

magnitude. Deichmann (2006) argued that this could be due to two issues: the effect of 457 

anelastic attenuation Q, or the instrument response. Time-domain simulations for a realistic 458 

Q model with or without convolution with a Wood-Anderson instrument showed that for 459 

increasingly small M, the difference between ML and M increases, just as in the empirical 460 

analyses. For small events the influence of Q is dominant. Deichmann (2017) and Munafò et 461 

al. (2016) expanded on this to show that there is a sound theoretical basis for the scaling of 462 

small events (approximately ML < 2) of the form: ML = 3/2*M + C.   463 

 464 

In addition to time-domain simulations, random vibration theory (RVT) can be used to 465 

simulate the response of a Wood-Anderson seismometer to input ground motion. This was 466 

the method used by Hanks and Boore (1984) to explain the curvature of the ML:M data 467 

observed in their empirical analysis. Edwards et al. (2010) showed a number of examples 468 

using this approach, with different input ground motion (defined by M, stress-drop and Q). 469 

They showed that the form of the curvature was explained by different Q values (or 470 

equivalently site κ0) at the low magnitude range, with the shape in the high-magnitude 471 

range (M > 5) defined by the stress-drop (and Wood-Anderson instrument response). 472 

 473 

The theoretical and simulation based analyses of Deichmann (2006, 2017), Edwards et al. 474 

(2010) and Munafò et al. (2016) support the conclusion of Hanks and Boore (1984) that the 475 

scaling of ML and M is due to a complex interaction of the earthquake source, wave-476 

propagation and the response of the Wood-Anderson seismometer. The fact that Groningen 477 
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events are not out of the ordinary compared to various regions with more typical seismicity, 478 

given the very particular seismo-tectonic conditions in and around the Groningen gas field, 479 

could be considered somewhat surprising. At the low magnitude range, the higher 480 

attenuation in Groningen (due to thick low velocity deposits, such as peats), implies that the 481 

equivalence between M and ML should break down at higher magnitudes than normal 482 

(Deichmann, 2017). However, if Groningen events are of lower stress-parameter than other 483 

regions (i.e., Groningen events average 5 – 7 MPa compared to typical values of 10 MPa 484 

Bommer et al., 2017b), this would counteract the attenuation effect: events of a particular 485 

magnitude are already of lower-frequency content and attenuation therefore has a reduced 486 

impact. 487 

 488 

Conclusions 489 

Numerous empirical studies have shown that 1:1 scaling between ML and M does not 490 

extend to low magnitudes. For ML > 2 - 3, the average of the studies seems to conform with 491 

M ≈ ML, albeit with significant scatter of the scaling relations between individual regions. 492 

For ML < 2, in studies spanning a broader magnitude range, it is observed that M > ML. The 493 

difference, furthermore, tends to increase for increasingly small magnitudes, with up to a 494 

unit of difference for ML = 0 events. Three studies compiling data over a broad magnitude 495 

range: in Europe, Switzerland and neighboring regions, and in California, show a distinct 496 

curve in the ML versus M scaling below ML = 2.5. 497 

 498 

This is consistent with simulation-based studies (Deichmann, 2006, 2017; Edwards et al., 499 

2010; Hanks and Boore, 1984; Munafò et al., 2016), which show that when accounting for 500 
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the effect of attenuation (Q and κ0) and the Wood-Anderson instrument response, we 501 

should expect a curvilinear scaling relation between ML and M over a wide magnitude 502 

range. This is due to a complex interaction of the earthquake source signal and the filtering 503 

effects of the propagation medium (low-pass) and instrument response (displacement high-504 

pass).  505 

 506 

Due to the strong regional dependence of ML assigned for a given earthquake (e.g., Fäh et 507 

al., 2011) coupled with the limited datasets containing both ML and M, regional correlations 508 

calibrated over limited magnitude ranges are usually applied in PSHA projects. Since it is 509 

known that the scaling should not be linear, this means that such conversions are only valid 510 

between the range of magnitudes in which they were derived. Given a suitable 511 

seismological background model (e.g., Atkinson and Boore, 2006; Edwards and Fäh, 2013; 512 

Rietbrock et al., 2013), the expected scaling can be simulated. This has been performed for 513 

the Groningen GMM (Bommer et al., 2017b) (Figure 11). This model provides further 514 

confirmation that for stress drops ~10 MPa, M ≈ ML for ML > 2.5 but indicates a somewhat 515 

stronger saturation at lower magnitudes (ML < 1.5) (perhaps due to the fact that we have 516 

limited events for the empirical analysis). However, such models are known to be non-517 

unique and, consistent with good practice in PSHA, the epistemic uncertainty of the 518 

correction should also be carefully considered. 519 

 520 

The M-ML relation for Groningen is close to the relation Grünthal et al. (2009) published for 521 

the central, northern and northwestern Europe. However, Edwards and Douglas (2014) 522 

showed a large variation in published catalogue magnitudes with respect to M for induced 523 

earthquakes worldwide, demonstrating the need for a proper definition and calibration of 524 
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magnitudes for each region of interest rather than simply assuming concurrence with a 525 

continental-scale model. In the Groningen case it has been shown that M is approximately 526 

equal to ML above ML = 2.5, confirming the assumption of equality between the magnitude 527 

scales in the hazard assessment for induced seismicity in the region. A systematic trend, 528 

best described by a quadratic relation between M and ML and similar in form to those 529 

observed in other empirical and theoretical studies, is seen for magnitudes below ML = 2.5. 530 

This trend is used to correct ML when estimating time-dependent a- and b-parameters 531 

derived from the frequency-magnitude relation for Groningen, which are mainly based on 532 

ML < 2.5 (Spetzler and Dost, 2017b). In contrast to the findings of Edwards et al. (2015) and 533 

Butcher et al. (2017), the effect of geometrical spreading at short distances for Groningen, 534 

derived from the distance dependence of the low-frequency part of the spectra, deviates 535 

significantly from 1/R. Results of a comparison of M station residuals with independent 536 

empirical and theoretical model predictions show a good correlation, and can be considered 537 

an independent check of the quality of the model predictions.  538 

 539 
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Figure Captions 808 

Figure 1. Networks in Groningen. In red (inverted triangles) Assen network (1988-1994), in 809 

red (triangles) borehole network (1995-present), orange: additions in 2010, blue: additions 810 

since 2015, green: accelerometers, grey areas: gas fields, blue lines: coast lines and lake 811 

contours. The region of interest is marked in red on the map of Europe in the inset. 812 

 813 

Figure 2. Difference between calculated station magnitude and average magnitude (dM) for 814 

events recorded in the period 2010-2015 as a function of hypocentral distance. Mean values 815 

are indicated in blue. 816 

 817 

Figure 3: Example of data processing and inversion. Top: acceleration data (east-west and 818 

north-south); Middle: Fourier spectrum (blue), model fit (red) and noise (green), logarithmic 819 

frequency axis. Bottom: as middle, now showing a linear frequency-axis. 820 

 821 

Figure 4. Distance dependence of the normalized low-frequency spectral level for Groningen 822 

events listed in Table S1, available in the electronic supplement to this article. The solid and 823 

dashed lines show the best fitting decay rate and 95 % confidence interval, respectively. 824 

 825 

Figure 5. PGV as a function of distance for the Groningen area near Zeerijp (Ewoud van 826 

Dedem, personal comm.). Binned data is shown in blue, average values in green. Fits to 827 

particular distance ranges are shown along with the 1/R line for reference. 828 

 829 
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Figure 6. Comparison of M determined using the approach detailed here, and those 830 

calculated following the approach detailed in Edwards et al. (2010). 831 

 832 

Figure 7. Moment magnitude M as a function of local magnitude ML. In green the proposed 833 

quadratic relation is shown [Equation (14)]. In red-dashed the Grünthal et al. (2009) relation 834 

and in blue the Munafò et al., (2016) relation. Error bars indicate the standard deviation of 835 

the magnitudes. 836 

 837 

Figure 8. Difference between station moment magnitude and average moment magnitude 838 

for four stations. All stations show an average (mu) around zero, only BHKS and BAPP show 839 

a positive bias. N indicates the number of events, std the standard deviation. 840 

 841 

Figure 9. Amplification at four sites as shown in Figure 9. Amplification is estimated using 842 

1D-SH transfer functions (red, Rodriguez-Marek et al., 2017) and the empirical spectral 843 

model (median: blue; standard deviation: light-blue; Edwards et al., 2013; Bommer et al., 844 

2017b). The square-root impedance amplification level (200 m/s site and 2000 m/s source, 845 

as per typical conditions) is indicated by the green line. 846 

 847 

Figure 10. Comparison of several regional studies between ML and M (Archuleta et al., 848 

1982; Bakun and Lindh, 1977; Bindi et al., 2005; Bolt and Herraiz, 1983; Drouet et al., 2008; 849 

Edwards et al., 2008; Fletcher et al., 1984; Johnson and McEvilly, 1974; Margaris and 850 

Papazachos, 1999; Roumelioti et al., 2009; Sargeant and Ottemoller, 2009; Thatcher and 851 

Hanks, 1973; Zollo et al., 2014). Grünthal et al. (2009) and Edwards et al. (2015) span the 852 

complete magnitude range – based on either data or theoretical considerations. 853 



35 
 

 854 

Figure 11. ML calculated for events of magnitude M simulated with the Groningen GMM 855 

(Bommer et al., 2017b) at the reference rock horizon. Grey: 7MPa, blue 14 MPa. Red line: 856 

M:ML equation. 857 

 858 

  859 



36 
 

Figures 860 

 861 

 862 

Figure 1. Networks in Groningen. In red (inverted triangles) Assen network (1988-1994), in 863 

red (triangles) borehole network (1995-present), orange: additions in 2010, blue: additions 864 

since 2015, green: accelerometers, grey areas: gas fields, blue lines: coast lines and lake 865 

contours. The region of interest is marked in red on the map of Europe in the inset. 866 

 867 
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 868 

Figure 2. Difference between calculated station magnitude and average magnitude (dM) for 869 

events recorded in the period 2010-2015 as a function of hypocentral distance. Mean values 870 

are indicated in blue. 871 

 872 
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 874 

 875 
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 876 

Figure 3: Example of data processing and inversion. Top: acceleration data (east-west and 877 

north-south); Middle: Fourier spectrum (blue), model fit (red) and noise (green), logarithmic 878 

frequency axis. Bottom: as middle, now showing a linear frequency-axis. 879 

 880 
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 882 

Figure 4. Distance dependence of the normalized low-frequency spectral level for Groningen 883 

events listed in Table S1, available in the electronic supplement to this article. The solid and 884 

dashed lines show the best fitting decay rate and 95 % confidence interval, respectively. 885 
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 888 

Figure 5. PGV as a function of distance for the Groningen area near Zeerijp (Ewoud van 889 

Dedem, personal comm.). Binned data is shown in blue, average values in green. Fits to 890 

particular distance ranges are shown along with the 1/R line for reference. 891 
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Figure 6. Comparison of M determined using the approach detailed here, and those 894 

calculated following the approach detailed in Edwards et al. (2010). 895 

 896 

 897 

Figure 7. Moment magnitude M as a function of local magnitude ML. In green the proposed 898 

quadratic relation is shown [Equation (14)]. In red-dashed the Grünthal et al. (2009) relation 899 

and in blue the Munafò et al., (2016) relation. Error bars indicate the standard deviation of 900 

the magnitudes. 901 
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 904 

 905 

Figure 8. Difference between station moment magnitude and average moment magnitude 906 

for four stations. All stations show an average (mu) around zero, only BHKS and BAPP show 907 

a positive bias. N indicates the number of events, std the standard deviation.  908 

  909 

 910 

Figure 9. Amplification at four sites as shown in Figure 9. Amplification is estimated using 911 

1D-SH transfer functions (red, Rodriguez-Marek et al., 2017) and the empirical spectral 912 

model (median: blue; standard deviation: light-blue; Edwards et al., 2013; Bommer et al., 913 

2017b). The square-root impedance amplification level (200 m/s site and 2000 m/s source, 914 

as per typical conditions) is indicated by the green line. 915 

 916 

 917 
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 918 

Figure 10. Comparison of several regional studies between ML and M (Archuleta et al., 1982; 919 

Bakun and Lindh, 1977; Bindi et al., 2005; Bolt and Herraiz, 1983; Drouet et al., 2008; 920 

Edwards et al., 2008; Fletcher et al., 1984; Johnson and McEvilly, 1974; Margaris and 921 

Papazachos, 1999; Roumelioti et al., 2009; Sargeant and Ottemoller, 2009; Thatcher and 922 

Hanks, 1973; Zollo et al., 2014). Grünthal et al. (2009) and Edwards et al. (2015) span the 923 

complete magnitude range – based on either data or theoretical considerations. 924 
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Figure 11. ML calculated for events of magnitude M simulated with the Groningen GMM 929 

(Bommer et al., 2017b) at the reference rock horizon. Grey: 7MPa, blue 14 MPa. Red line: 930 

M:ML equation. 931 

 932 


