

Journal of Applied and Natural Science 9 (4): 2332 - 2337 (2017)

Non parametric measures to estimate GxE interaction of dual purpose barley genotypes for grain yield under multi-location trials

Ajay Verma*, J. Singh, V. Kumar, A. S. Kharab and G. P. Singh

Statistics and Computer center, ICAR-Indian Institute of Wheat and Barley Research, Karnal- 132001(Haryana), INDIA

*Corresponding author. E-mail: verma.dwr@gmail.com

Received: April 9, 2017; Revised received: June 14, 2017; Accepted: October 25, 2017

Abstract: GxE interaction of seventeen dual purpose barley genotypes evaluated at ten major barley locations of the country by non parametric methods. Non parametric measures had been well established and expressed advantages over their counter parts i.e. parametric measures. Simple descriptive measures based on the ranks of genotypes i.e. Mean of ranks (MR) pointed towards RD2925 and BH1008 and standard deviation of ranks (SD) for KB1401 and UPB1054 whereas Coefficient of variation (CV) for JB322 and RD2925 as stable genotypes. Nonparametric measures based on original values $(S_i^1, S_i^2, S_i^3, S_i^4, S_i^5, S_i^6, S_i^7)$ indicated the stable performance of NDB1650, JB322 and UPB1054 while UPB1053, RD2715, RD2927 and RD2035 were observed of unstable nature. $CS_i^1, CS_i^2, CS_i^3, CS_i^4, CS_i^5, CS_i^6$ and CS_i^7 measures based on the ranks of corrected grain yield identified JB322, RD2552, RD2925 and NDB1650 as stable genotypes. Spearman's rank correlation established highly significant positive correlation of yield with SD (0.67), $S_i^1(0.65), S_i^2(0.59), S_i^5(0.68), S_i^7(0.67)$ whereas negative association observed for CMR (Mean of corrected ranks) (-0.62), CMed (Median of corrected ranks)(-0.60). NP_i⁽²⁾ expressed negative correlation with CV(-0.32), S_i^6 (-0.30), CMR(-0.34) and CMed(-0.48). More over NP_i⁽³⁾ maintained negative correlation with most of the measures though the magnitude was of low magnitude.

Keywords: GxE interaction, Non parametric methods, Rank correlation, Ward's clustering

INTRODUCTION

Barley has been cultivated as of dual purpose cereal as it provides nutrition to the animals via green fodder, at vegetative stage, and grains, from the regenerated plants and to human diet (Kharub et al., 2013). Farm economics favour cultivation of dual purpose crop instead of only grain type. Presence of genotype x environment (G x E) interaction complicates the selection of genotypes for improved yield (Mohammadi et al., 2016). Changes in cultivars' rank under multi environmental crop trials are of great concern. Most common approach had been the parametric relies heavily on distributional assumptions about genotypic, environmental and GxE interaction effects. Alternatively well known other approach is nonparametric / analytical without specific modeling assumptions. Nonparametric procedures are based on the ranks of genotypes in each environment and stable genotypes possess similar ranking across environments (Parmar et al., 2012). Large number of nonparametric procedures had been seen in literature to interpret the GxE interaction in multi-environmental trials (MET). Huehn (1979), Huehn (1990), Thennarasu (1995) and Lima et al (2013), proposed several nonparametric indices of stability. Also, Sabaghnia et al (2012) and Rasoli et al (2015) had pro-posed procedures to test the GxE interaction apart from the conventional analysis of variance. Among these nonpara-metric procedures, Huehn and Leon (1995) measures had been used widely to assess the stable behavior of genotypes evaluated under Multi environmental trials (MET) (Hussein *et al*, 2000; Karimizadeh *et al.*, 2012; Khalili and Aboughadareh, 2016).

MATERIALS AND METHODS

Seventeen dual purpose barley genotypes were evaluated at 10 major barley growing locations across country during 2015-16 cropping season by randomized block designs with three replications. Parentage and location details had reflected in table 1 for ready reference. The recommended practices were followed to harvest the good crop. The grain yield of these genotypes were analysed further to calculate non parametric measures. Huehn and Leon (1995) proposed seven nonparametric methods for assessing GxE interaction and stability analysis. For a two-way dataset with k genotypes and n environments x_{ii} de-notes the phenotypic value of ith genotype in jth environ-ment where $i=1,2, \dots k$, $j=1,2,\dots, n$ and r_{ij} as the rank of the ith genotype in the *i*th environment, and \overline{r} as the mean rank across all environments for the ^{*}_ith geno-type. The following measures were calculated as the ranks of genotypes in studied locations as:

ISSN : 0974-9411 (Print), 2231-5209 (Online) All Rights Reserved © Applied and Natural Science Foundation www.jans.ansfoundation.org

NP;

i

$$S_{i}^{(1)} = \frac{2\sum_{j=1}^{n-1}\sum_{j=j+1}^{n}|r_{ij}-r_{ij'}|}{[n(n-1)]}$$

$$S_{i}^{(2)} = \sum_{j=1}^{n} (r_{ij} - \bar{r}_{i})^{2} / \sum_{j=1}^{n} |r_{ij} - \bar{r}_{i}| \qquad \text{ii}$$

$$S_{i}^{(3)} = \frac{\sum_{j=1}^{n} (r_{ij} - \bar{r}_{i})^{2}}{\bar{r}_{i}}$$
 iii

$$S_{i}^{(4)} = \sqrt{\frac{\sum_{j=1}^{n} (r_{ij} - \bar{r_{i}})^{2}}{n}}$$

$$S_{i}^{(5)} = \frac{\sum_{j=1}^{n} |r_{ij} - \bar{r}_{i}|}{n}$$
 v

$$S_{i}^{(6)} = \frac{\sum_{j=1}^{m} |r_{ij} - \bar{r}_{i}|}{\bar{r}_{i.}} \qquad {}^{\text{vi}}$$

$$S_i^{(7)} = \frac{\sum_{j=1}^n (r_{ij} - \bar{r}_{i'})^2}{(n-1)}^{2}$$
 vii

Karimizadeh *et al.* (2012) proposed the correction for yield of ith genotype in jth environment as $(x^*_{ij} = x_{ij} - \bar{x_i} + \bar{x_i})$ as x^*_{ij} , was the corrected phenotypic value; $\bar{x_i}$. was the mean of ith genotype in all environments and $\bar{x_i}$ was the grand mean. Thennarasu (1995) proposed stability measures as NP_i⁽¹⁾, NP_i⁽²⁾, NP_i⁽³⁾ and NP_i⁽⁴⁾ based on ranks of adjusted means of genotypes. In the above formulas, r^*_{ij} was the rank of x^*_{ij} , and \bar{t} and M_{di} were the mean and median ranks for original (unadjusted) grain yield, where \bar{t} and M^*_{di} were the same parameters computed from the

corrected (adjusted) data.

$$NP_i^{(1)} = \frac{1}{m} \sum_{j=1}^m | r_{ij}^* - M_{di}^*$$
 viii

$$NP_i^{(2)} = \frac{1}{m} \left(\frac{\sum_{j=1}^m |r_{ij}^* - M_{di}^*|}{M_{di}} \right)$$
 ix

х

$$^{(3)} = \frac{\sqrt{\Sigma(r_{ij}^* - r_i^*)^2/m}}{r_i}$$

$$NP_i^{(4)} = \frac{2}{m(m-1)}$$
 xi

$$\left[\Sigma_{j=1}^{m-1} \Sigma_{(j'=j+1)}^m \frac{\left| r_{ij}^* - r_{ij'}^* \right|}{r_{i'}} \right]$$

SAS-based computer programs of Lu (1995) and SASGESTAB (Hussein *et al*, 2000) exploited to calculate the nonparametric measures based on the ranks of genotypes as per original and corrected grain yield. Spearman's rank correlation coefficient calculated among each possible pairs as follows :

$$\bar{r}_s = 1 - \frac{6\sum_{i=1}^n d_i^2}{n(n^2 - 1)}$$
 XII

 d_i = difference between two ranks of investigated trait and n was number of correlated pairs

RESULTS AND DISCUSSION

As per average grain yield of dual purpose barley genotypes, RD2552 was the highest yielding with 32.9q/ha followed by NDB1650 and RD2035, although remarkable differences were evident among the studied genotypes (Table 2). The following three descriptive statistics; mean of ranks (MR), standard deviation of ranks (SD) and coefficient of variation of ranks (CV) were calculated for original ranks. MR pointed towards RD2925, BH1008 and SD for KB1401, UPB1054 whereas CV for JB322 and RD2925 as stable genotypes, while AZAD and NDB1650 based on MR, UPB1053 and RD2715 based on SD and AZAD and RD2035 based on CV, were most unstable. Simple descriptive statistics based on the ranks of genotypes can be used to study comparative evaluation of genotypes. Liu et al (2010) proposed two ranking methods according to mean and standard deviation of ranks and Ashgar et al (2008) reported advantages of these non - parametric procedures in phenotypic stability studies. Many authors used the nonparametric measures of phenotypic stability based on the ranks of genotypes as per corrected yield trait and demonstrated these measures associated with the biological concept of stability (Sabaghnia et al, 2006; Ebadi et al, 2008).

Nonparametric measures based on the ranks of geno-

Ajay Verma <i>et al</i> .	/ J. Appl. c	& Nat. Sci. 9	(4): 2332 -	· 2337 (2017)
---------------------------	--------------	---------------	-------------	---------------

Code	Genotype	Parentage	Code	Locations	Latitude	Longitude	Altitude (m)
IVTIRTSDP-2	RD2715	RD387/BH602//RD2035	E1	Durgapura	26°51 'N	75 °47 ' E	390
IVTIRTSDP-3	UPB1054	IBYT-LRA-M-12	E2	Bikaner	28° 02' N	73° 31' E	225.3
IVTIRTSDP-4	KB1420	EIBGN(13)-7	E3	Ludhiana	30°54' N	75°52' E	247
IVTIRTSDP-5	BH1008	EIBGN-9/BH902(2009)	E4	Hisar	29°10'N	75 °46 ' E	215.2
IVTIRTSDP-6	RD2927	RD2624/RD2696	E5	Varanasi	25 °20 ' N	83° 03 ' E	75.5
IVTIRTSDP-7	RD2035	RD103/PL101	E6	Kanpur	26°29 ' N	80°18 ' E	125.9
IVTIRTSDP-8	BH1010	BHMS22A/WG81	E7	Faizabad	26°47'N	82°12 'E	113
IVTIRTSDP-9	JB325	RD2615/DL88	E8	Rewa	24 °31 ' N	81°15 ' E	365.7
IVTIRTSDP-10	RD2925	RD2606/RD2719//RD2660	E9	Kota	25° 21' N	75° 86' E	259.7
IVTIRTSDP-11	AZAD	K12/K19	E10	Udaipur	24°34 ' N	70 °42 ' E	582
IVTIRTSDP-12	RD2552	RD2035/DL472	E11	Jabalpur	23°90' N	79 ° 58' E	394
IVTIRTSDP-13	KB1401	IBYT-HI (13)-14		-			
IVTIRTSDP-14	UPB1053	IBYT-MRA-12					
IVTIRTSDP-15	JB319	LAKHAN/BH353					
IVTIRTSDP-16	RD2928	RD2552/BH902					
IVTIRTSDP-17	JB322	JB101/BH331					
IVTIRTSDP-18	NDB1650	38th IBON-9030 (2006-07)/NB3					

Table 1. Parentage details of dual purpose genotypes along with environmental conditions

 Table 2. Descriptive statistics and non parametric stability statistics based on original values for grain yield of dual purpose barley genotypes.

Original	Genotype	Yield(q/ha)	MR	SD	CV	Med	S_i^1	S_i^2	S _i ³	S_i^4	S _i ⁵	S _i ⁶	S_i^7
IVTIRTSDP-2	RD2715	23.64	11.18	5.40	0.48	13.00	5.58	5.90	26.08	5.15	4.50	4.42	29.16
IVTIRTSDP-3	UPB1054	30.32	6.91	3.48	0.50	6.00	3.20	4.18	17.50	3.32	2.63	4.18	12.09
IVTIRTSDP-4	KB1420	28.05	10.09	4.83	0.48	10.00	4.89	5.96	23.08	4.60	3.55	3.87	23.29
IVTIRTSDP-5	BH1008	24.57	11.27	5.10	0.45	12.00	5.00	5.82	23.08	4.86	4.07	3.97	26.02
IVTIRTSDP-6	RD2927	26.59	8.82	5.29	0.60	9.00	5.33	5.57	31.71	5.04	4.56	5.69	27.96
IVTIRTSDP-7	RD2035	32.76	6.55	5.16	0.79	6.00	5.25	5.99	40.75	4.92	4.05	6.81	26.67
IVTIRTSDP-8	BH1010	28.06	10.55	4.08	0.39	9.00	4.11	4.11	15.81	3.89	3.69	3.85	16.67
IVTIRTSDP-9	JB325	27.37	9.09	3.91	0.43	10.00	4.15	4.65	16.82	3.73	2.99	3.62	15.29
IVTIRTSDP-10	RD2925	23.34	12.64	4.54	0.36	14.00	4.31	5.68	16.35	4.33	3.31	2.88	20.65
IVTIRTSDP-11	AZAD	31.96	5.64	4.72	0.84	3.00	4.76	5.10	39.48	4.50	3.97	7.74	22.25
IVTIRTSDP-12	RD2552	32.88	5.82	4.00	0.69	5.00	3.76	5.42	27.44	3.81	2.68	5.06	15.96
IVTIRTSDP-13	KB1401	29.06	9.73	4.47	0.46	9.00	4.82	5.17	20.58	4.27	3.52	3.98	20.02
IVTIRTSDP-14	UPB1053	29.43	8.36	6.04	0.72	6.00	6.40	6.39	43.59	5.76	5.19	6.82	36.45
IVTIRTSDP-15	JB319	27.29	9.18	4.49	0.49	11.00	4.78	4.82	21.96	4.28	3.80	4.55	20.16
IVTIRTSDP-16	RD2928	24.55	10.36	5.14	0.50	11.00	5.35	5.99	25.53	4.90	4.02	4.26	26.45
IVTIRTSDP-17	JB322	26.14	10.64	3.53	0.33	11.00	3.73	4.39	11.71	3.36	2.58	2.67	12.45
IVTIRTSDP-18	NDB1650	32.64	5.45	2.70	0.49	6.00	2.76	3.08	13.33	2.57	2.15	4.34	7.27

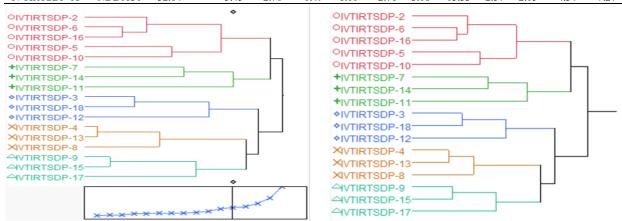


Fig. 1. Hierarchical cluster analysis of dual purpose barley genotypes based on non parametric measures by Ward's method.

types as per grain yield $(S_i^1, S_i^2, S_i^3, S_i^4, S_i^5, S_i^6)$ and S_i^7) indicated that NDB1650, JB322 and UPB1054 were the stable genotypes, however UPB1053, RD2715, RD2927and RD2035 were unstable genotypes. Genotypes BH1010 and KB1401 pointed by the mean of ranks based on corrected grain yield (CMR),

RD2552 and JB322 by standard deviation of ranks based on corrected yield (CSD) and coefficient of variation (CCV) observed stable performance of RD2552 and NDB1650 (Rasoli *et al* 2015). Good potential of the measures S_i^3 and S_i^6 for the selection of stable high yielder genotypes. Furthermore, nonparametric

	1	I							P	ŋay	y v	err	na	et	аі.	/ J.	. <i>A</i>]	<i>эрі</i> .
	$\mathrm{NP}_{\mathrm{i}}^{(4)}$	0.576	0.566	0.506	0.463	0.633	0.978	0.472	0.498	0.413	0.952	0.659	0.535	0.809	0.475	0.554	0.383	0.753
	$NP_i^{(3)}$	0.538	0.589	0.495	0.427	0.629	0.872	0.440	0.447	0.401	0.837	0.593	0.500	0.703	0.431	0.523	0.335	0.695
	$NP_i^{(2)}$	0.158	1.238	0.675	0.351	0.175	0.477	0.643	0.471	0.133	2.033	1.228	0.969	0.430	0.518	0.158	0.355	1.223
	$NP_i^{(1)}$	2.050	7.430	6.752	4.214	1.577	2.859	5.785	4.711	1.865	6.099	6.141	8.720	2.578	5.695	1.736	3.909	7.339
genotypes	CS_i^7	39.87	18.22	27.49	25.47	33.82	35.87	23.65	18.16	28.25	24.49	13.07	26.05	38.05	17.25	32.36	14.00	15.82
barley	cs''	8.02	4.04	4.63	4.98	7.34	6.08	4.47	4.63	6.67	4.72	3.33	4.43	6.45	4.21	6.87	3.78	3.01
purpose	CS_{i}^{2}	5.50	3.57	4.25	3.87	5.16	5.22	4.21	3.29	4.63	3.90	2.86	4.28	5.49	3.31	5.11	3.09	2.66
d of dual	CS_i^4	6.02	4.07	5.00	4.81	5.54	5.71	4.64	4.06	5.07	4.72	3.45	4.87	5.88	3.96	5.42	3.57	3.79
grain yiel	CS_i^3	52.84	18.73	27.24	29.81	43.76	37.94	22.82	23.23	37.00	26.94	13.83	24.50	40.64	19.98	39.56	15.56	16.26
alues for	CS_i^2	6:59	4.64	5.88	5.99	5.96	6.24	5.10	5.02	5.55	5.71	4.16	5.53	6.30	4.75	5.76	4.12	5.40
l on corrected values for	CS ¹	6.44	3.91	5.11	5.22	5.58	6.40	4.98	4.53	5.22	5.36	3.84	5.20	6.76	4.36	5.75	4.07	4.11
cs based on c	CMed	6.00	11.00	11.00	8.00	5.00	8.00	10.00	8.00	6.00	10.00	9.00	13.00	8.00	9.00	6.00	7.00	10.00
lity statisti	CCV	0.84	0.44	0.52	0.59	0.75	0.63	0.47	0.55	0.70	0.54	0.38	0.48	0.66	0.48	0.70	0.42	0.41
ametric stabi	CSD	6.31	4.27	5.24	5.05	5.82	5.99	4.86	4.26	5.32	4.95	3.62	5.10	6.17	4.15	5.69	3.74	3.98
nd non para	CMR	7.55	9.73	10.09	8.55	7.73	9.45	10.36	7.82	7.64	9.09	9.45	10.64	9.36	8.64	8.18	9.00	9.73
ive statistics an	Genotype	RD2715	UPB1054	KB1420	BH1008	RD2927	RD2035	BH1010	JB325	RD2925	AZAD	RD2552	KB1401	UPB1053	JB319	RD2928	JB322	NDB1650
Table 3. Descriptive statistics and non parametric stability st	Corrected	IVTIRTSDP-2	IVTIRTSDP-3	IVTIRTSDP-4	IVTIRTSDP-5	IVTIRTSDP-6	IVTIRTSDP-7	IVTIRTSDP-8	IVTIRTSDP-9	IVTIRTSDP-10	IVTIRTSDP-11	IVTIRTSDP-12	IVTIRTSDP-13	IVTIRTSDP-14	IVTIRTSDP-15	IVTIRTSDP-16	IVTIRTSDP-17	IVTIRTSDP-18

Ajay Verma et al. / J. Appl. & Nat. Sci. 9 (4): 2332 - 2337 (2017)

statistics were reviewed by Mohammadi et al (2014) for statistical properties. Mohammadi et al (2016) pointed out that the S_i^1 and S_i^2 nonparametric measures of stability, were similar in concept to GxE interaction and defined stability in terms of homeostasis.

Nonparametric measures based on the ranks of genoper corrected yield types as $(CS_i^1, CS_i^2, CS_i^3, CS_i^4, CS_i^5, CS_i^6 \text{ and } CS_i^7)$ identified stable genotypes as JB322, RD2552, RD2925 and NDB1650.

The cluster analysis by Ward's (1963) method, considered yield and nonparametric measures, revealed two distinct clusters among seventeen genotypes: cluster A consisted of genotypes RD2715, RD2927, RD2928, BH1008, RD2925, RD2035, UPB1053 and AZAD and cluster B consisted of UPB1054, NDB1650, RD2552, KB1420, KB1401, JB319, JB322 genotypes as the favorable as mentioned by Mortazavian and Azizinia 2014. Corrected statistics identified genotypes JB322, NDB1650 and RD2552 were the stable ones, while based on uncorrected statistics, genotypes NDB1650 JB322 and UPB1054 were the preferable. Regarding mean yield regardless of stability, the most favorable genotype would be NDB1650.

Relationship among nonparametric statistics: According to Spearman's rank correlation analysis among all possible pairs there was a highly significant (p< 0.01) positive rank correlation of mean yield with SD (0.67), $S_i^{-1}(0.65)$, $S_i^{-2}(0.59)$, $S_i^{-5}(0.68)$, $S_i^{-7}(0.67)$ and negative correlation observed for CMR(-0.62), CMed(-0.60). More over no significant correlation with stability measures $NP_i^{(1)}$, $NP_i^{(2)}$, $NP_i^{(3)}$ and $NP_i^{(4)}$. Mean rank (MR) expressed positive correlation with $NP_i^{(1)}$ (0.67), NP₁⁽²⁾(0.52) and negative with CV(-0.75), Si³(-0.60), Si⁶(-0.72), CMR(-0.73) and CMed(-0.67). SD maintained (p<0.01) significant positive with S_i^{1} $(0.97), S_i^2(0.97), S_i^3(0.85), S_i^5(0.97), S_i^7(0.76), CSD$ (0.68), CCV(0.74) as well as with CS₁¹(0.65), CS₁² $(0.69), CS_i^3(0.69), CS_i^4(0.70), CS_i^5(0.62), CS_i^6(0.67)$ and $CS_i^{7}(0.68)$ as observed by Scapim *et al* 2010. Also S_i¹ had a highly significant positive rank correlation with S_i^2 (0.93), S_i^3 (0.84), S_i^4 (0.97), S_i^5 (0.98), S_i^6 (0.75), S_i^7 (0.97) as well as with CS_i^1 (0.60), CS_i^2 (0.64), CS_i^2 $(0.66), CS_i^4(0.65), CS_i^5(0.58), CS_i^6(0.65)$ and CS_i^7 (0.64). Subsequently positive correlations seen among $Si^{s}(0.69 \text{ to } 0.99)$ and with $CS_{i}^{s}(0.70 \text{ to } 0.99)$. However, $NP_i^{(1)}$ showed negative association with CV, S_i^3 , CMR and CMed. While NP_i⁽²⁾ expressed negative rank correlation with CV, S_i⁶, CMR and CMed. NP_i⁽³⁾ maintained negative correlation with most of the measures though the magnitude was of low magnitude. Similar behavior observed for NP_i⁽³⁾ with other nonparametric measures. Seven nonparametric measures based on corrected datasets (CS_i^1, CS_i^2) CS_i^3 , CS_i^4 , CS_i^5 , CS_i^6 , CS_i^7) were correlated with each

	Yield	MR SD	DCV	Med	- S-	S.	S.	Si ⁴	S.o	ŝ	Si'	CMR	CSD	CCV	C Med	CS.	CSi ²	CS'	CS:	CSi	CSi [°]	CS'	NP _i ⁽¹⁾ NP _i ⁽²⁾	$P_{i}^{(2)} N P_{i}^{(3)}$
MR	0.275																							
SD	0.674	-0.174																						
CV	0.254	-0.749 0.	0.702																					
Med	0.266	0.942 -0	-0.200 -0.686	86																				
S. ¹	0.652	-0.169 0.	0.973 0.695	5 -0.170	70																			
S_i^2	0.588	-0.145 0.	0.971 0.643	ł3 -0.156	56 0.934	4																		
S_i^3	0.426	-0.605 0.	0.848 0.955	55 -0.567	67 0.838	8 0.797	97																	
Si⁴	0.674	-0.174 1.	1.000 0.702	0.200	00 0.973	3 0.971	71 0.848	~																
Si ⁵	0.675	-0.146 0.	0.972 0.696	96 -0.172	72 0.977	7 0.915	15 0.832	0.972	0															
si [°]	0.326	-0.716 0.	0.760 0.989	39 -0.668	68 0.750	0 0.696	96 0.978	3 0.760	0.756															
$\mathbf{S_i}^7$	0.674	-0.174 1.	1.000 0.702	0.200	00 0.973	3 0.971	71 0.848	3 1.000	0.972	0.760														
C MR	-0.616	-0.734	-0.278 0.400	0 -0.652	52 -0.229		-0.327 0.156	5 -0.278	8 -0.248	3 0.308	-0.278													
GS 23	0.895	0.042 0.	0.684 0.455	55 0.099	9 0.640	0 0.600	00 0.564	1 0.684	4 0.680	0.517	0.684	-0.337												
20 20 36	0.949	0.262 0.	0.735 0.278	78 0.259	9 0.711	1 0.701	01 0.453	3 0.735	5 0.737	0.348	0.735	-0.656	0.850											
C Med	-0.602	-0.665	-0.180 0.417	009.0- 7	00 -0.126	26 -0.183	183 0.205	5 -0.180	0 -0.115	5 0.352	-0.180	0.887	-0.317	-0.565										
CSi ¹	0.890	0.032 0.	0.652 0.450	50 0.097	7 0.603	3 0.574	74 0.544	1 0.652	2 0.653	0.500	0.652	-0.357	0.983	0.863	-0.347									
CSi^2	0.705	0.063 0.	0.688 0.419	9 0.123	3 0.638	8 0.688	88 0.533	889.0	8 0.676	0.494	0.688	-0.319	0.879	0.778	-0.169	0.854								
CS_i^3	0.971	0.213 0.	0.694 0.320	20 0.237	7 0.657	7 0.627	27 0.480	0.694	4 0.695	0.392	0.694	-0.548	0.944	0.949	-0.506	0.946	0.808							
CSi^4	0.901	0.028 0.	0.697 0.466	6 0.081	1 0.648	8 0.614	14 0.577	7 0.697	7 0.691	0.528	0.697	-0.350	0.999	0.857	-0.328	0.984	0.870	0.950						
CS_i^5	0.900	0.051 0.	0.623 0.420	20 0.124	4 0.578	8 0.537	37 0.525	0.623	3 0.619	0.473	0.623	-0.352	0.978	0.846	-0.357	0.980	0.805	0.949	0.979					
cs_i^6	1.000	0.275 0.	0.674 0.254	54 0.266	6 0.652	2 0.588	88 0.426	0.674	4 0.675	0.326	0.674	-0.616	0.895	0.949	-0.602	0.890	0.705	0.971	0.901	0.900				
CS_i^7	0.895	0.042 0.	0.684 0.455	55 0.099	9 0.640	0 0.600	00 0.564	1 0.684	4 0.680	0.517	0.684	-0.337	1.000	0.850	-0.317	0.983	0.879	0.944	0.999	0.978 (0.895			
NP _i ⁽¹⁾	0.282	0.672 0.	0.054 -0.428	28 0.646	-6 0.076	6 0.020	20 -0.279	9 0.054	4 0.026	-0.400	0.054	-0.580	0.100	0.154	-0.688	0.027	0.004	0.159	0.089	0.049 (0.282 (0.100		
$NP_i^{(2)}$	0.195	0.518 0.	0.026 -0.316	16 0.542	2 0.045		-0.013 -0.210	0 0.026	5 -0.012	2 -0.300	0.026	-0.343	0.055	0.023	-0.483	-0.021	-0.074	0.107	0.051	0.009	0.195 (0.055 0	0.891	
$NP_i^{(3)}$	-0.010	-0.221	-0.042 0.112	2 -0.129	29 -0.061		-0.074 0.056	5 -0.042	12 -0.138	3 0.059	-0.042	0.141	-0.061	-0.181	-0.060	-0.049	-0.298	-0.044	-0.045	0.002 -	-0.010 -	-0.061 0	0.061 0.	0.406
NP _i ⁽⁴⁾	-0.017	-0.245	-0.025 0.131	31 -0.158	58 -0.037		-0.059 0.071	-0.025	5 -0.124	4 0.076	-0.025	0.170	-0.074	-0.181	-0.048	-0.061	-0.308	-0.054	-0.058	-0.012 -	-0.017 -	-0.074 0	0.059 0.	0.398 0.993

Ajay Verma et al. / J. Appl. & Nat. Sci. 9 (4): 2332 - 2337 (2017)

other. The most prominent relation was no positive or negative association of $NP_i^{(s)}$ with CS_i^s . The effect of correction and removing the genotype effect is clear on the negative association between mean yield and CMR. Mean rank (MR) had a significant negative rank correlation with CV and S_i^3 while it had a significant negative rank correlation with CMR, CMed and had low rank correlation with the other CS_i^s nonparametric statistics.

Conclusion

Non parametric measures based on the ranks of genotypes in studied environments showed advantages over their counter parts i..e. parametric measures. Non parametric measures based on the ranks as per the original and corrected grain yield values explained the static and dynamic concept of stability. The strong relationship among measures suggested the possible use of non parametric measures instead of parametric values to point out the stable as well as unstable performance of genotypes.

REFERENCES

- Ashgar, E. S., Sayyed H. S., Hamid, D. and Morteza, K. (2008). Non-parametric measures of phenotypic stability in chickpea genotypes (Cicer arietinum L.). *Euphytica*, 162:221–229
- Ebadi, S. A., Sabaghpour, S.H., Dehghani, H. and Kamrani, M. (2008). Non-parametric measures of phenotypic stability in chickpea genotypes (*Cicer arietinum L.*). *Euphytica*, 2:221-229
- Huehn, M. and Leon, J. (1995). Non-parametric analysis of cultivar performance trials: Experimental results and comparison of different procedures based on ranks. *Agron J.*, 87:627–632
- Huehn, M. (1979). Beitrage zur erfassung der phanotypischen stabilitat. EDV Med Biol 10:112-117
- Huehn, M. (1990). Non-parametric measures of phenotypic stability: Part 2. Application. *Euphytica*, 47:195-201
- Hussein, M.A., Bjornstad, A. and Aastveit, A.H. (2000). SASG × ES-TAB: A SAS program for computing genotype and environ-ment stability statistics. *Agron J*, 92:454-459.
- Karimizadeh, R., Mohammadi, M., Sabaghnia, N. and Shefazadeh, M. K.(2012). Using Huehn's nonparametric stability statistics to investigate Genotype × Environment interaction. *Not Bot Horti Agrobo.*,40(1):293-301.
- Khalili, M. and Pour-Aboughadareh, A. (2016). Parametric

and non-parametric measures for evaluating yield stability and adaptability in barley doubled haploid lines. *J. Agr. Sci. Tech.*, 18: 789-803

- Kharub, A.S., Verma, R. P. S., Kumar, D., Kumar, V., Selvakumar, R. and Sharma, I. (2013). Dual purpose barley (Hordeum vulgare L.) in India: Performance and potential. J. Wheat Res., 5 (1): 55-58
- Lima, L.K., Ramalho, M.N.P., Ferreira, R.A.D.C. and Abreu, A.F.B. (2013). Repeatability of adaptability and stability parameters of common bean in unpredictable environments. *Pesqui Agropecuá Bras.*, 48:1254–1259
- Liu, Y.J., Duan C., Tian M.L., Hu, E.L. and Huang, Y.B. (2010). Yield stability of maize hybrids evaluated in maize regional trials in southwestern china using nonparametric methods. *Agric Sci China*, 9:1413-1422
- Lu, H.Y. (1995). PC-SAS program for Estimation Huehn's non-parametric stability statistics. Agron. J. 87:888-891
- Mohammadi, R., Haghparast, R., Sadeghzadeh, B., Ahmadi, H., Solimani, K. and Amri, A. (2014). Adaptation patterns and yield stability of durum wheat landraces to highland cold rainfed areas of Iran. *Crop Sci.*, 54:944– 954
- Mohammadi, R., Farshadfarar, E. and Amri, A. (2016). Comparison of rank-based stability statistics for grain yield in rainfed durum wheat. *New Zealand J. Crop and Hort Sci.*, 44(1): 25–40
- Mortazavian, S. M. M. and Azizinia, S. (2014). Nonparametric stability analysis in multi-environment trial of canola. *Tur J Field Crops*, 19(1): 108-117
- Parmar, D. J., Patel, J. S., Mehta, A. M., Makwana, M. G. and Patel, S. R. (2012). Non-Parametric methods for interpreting Genotype×Environment interaction of Rice Genotypes (*Oryza sativa* L.). J. Ric. Res., 5: 33-39
- Rasoli, V., Farshadfar E. and Ahmadi, J. (2015). Evaluation of Genotype × Environment Interaction of grapevine genotypes (*Vitis vinifera* L.) by non parametric method. *J. Agr. Sci. Tech*, 17: 1279-1289
- Sabaghnia, N., Karimizadeh, R. and Mohammadi, M. (2012). The use of corrected and uncorrected nonparametric stability measurements in Durum wheat multienvironmental Trials. Span. J. Agric. Res, 10:722-730
- Scapim, C.A., Pacheco, C.A.P., do Amaral ATJúnior, Vieira R.A., Pinto R.J.B. and Conrado, T.V. (2010). Correlations between the stability and adaptability statistics of popcorn cultivars. *Euphytica*, 174:209–218
- Thennarasu, K. (1995). On certain non-parametric procedures for studying genotype × environment interactions and yield stability. PhD. Thesis. P.G. School, IARI, New Delhi, India.
- Ward, J.H. (1963). Hierarchical grouping to optimize an objective function. J. Am Stat Assoc., 58:236–224