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INTRODUCTION 

Plants being exposed to different environmental stress-

es learn and or adopt to these stresses ina number of 

ways. Thus among these stresses, Osmolytes  

production stress, in particular that is caused due to 

abioteic stress such as drought and salinity is the most 

critical problem that limits plant growth and crop  

productivity in agriculture (Boyer, 1982). Plant  

physiological development and productivity is largely 

affected by many environmental stresses such as 

drought, high salinity, and low temperature. These 

stresses trigger expression of an array of gene in  

response. Thus the expressed products of these genes 

function not only in stress response but also in stress 

tolerance. In the signal transduction network from the 

first discrimination of stress signals to  

stress-responsive gene expression, many concerned 

transcription factors and cis-acting elements in the 

stress-induced promoters function for plant mitigation 

to environmental stresses. Recent a lot of advances 

have been made in studying the complex cascades of 

gene regulation in drought and cold stress responses, 

especially in identifying specificity and cross talk in 

stress signaling. In this review article, we highlight 

transcriptional regulation of gene expression in  

response to abiotic stresses, with particular emphasis 

on the role of transcription factors and cis-acting  

elements in stress-inducible promoters. Genes  

expressed during stress conditions function not only in 

protecting cells from stress by producing important 

metabolic products/bio-molecules, but also in regulating 

genes for signal transduction in the stress response. 

Thus, these gene products are classified into two 

groups (Fowler and Thomashow, 2002; Kreps et al., 

2002; Seki et al., 2002). The primary group includes 

proteins that mainly function in stress  subjection, such 

as osmotin, antifreeze proteins, chaperones, LEA (late 

embryogenesis abundant) proteins, RNA-binding  

proteins, and it also includes important catalyzing  

bio-molecules i.e enzymes for osmolyte biosynthesis 

such as water channel proteins, proline, sugar and pro-

line transporters, The second group contains protein 

factors which play important role in regulation of  

signal transduction and gene expression machinery that 

probably works in response to stress reflex. This  

included an array of different transcription factors, 

suggesting that various transcriptional regulatory 

mechanisms function in the drought-, cold-, or  

high-salinity-stress signal transduction pathways (Seki 

et al., 2003). Many works indicate that there are more 

than 300 genes that have been identified as being stress

-inducible (Kazuo and Kazuko, 2006). Among these 

different physiologically activated genes, more than 

half of the drought induced genes are also induced by 

high salinity, indicating the existence of significant 

cross talk between the drought and high-salinity  

responses. The section of small molecules known as 

"compatible osmolytes" includes certain amino acids 

(notably proline), quaternary ammonium compounds 

(e.g. glycinebetaine, proline betaine, β-alanine betaine, 
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and choline-O-sulfate), and the tertiary sulfonium 

compound 3-dimethylsulfoniopropionate (DMSP).  

Throughout their life cycle, plants are subjected to 

various types of environmental stresses, water deficit, 

temperature extremes, toxic metal ion concentration 

and UV radiations depending upon the severity of 

stress. The environmental factors retard the growth and 

productivity of plants to different degrees. In reflex 

response to different stresses plants accumulate large 

quantities of different types of compatible solutes 

(Serraj and Sinclair, 2002). Thus accumulation of  

osmolyte compounds, usually called „osmotic  

adjustment‟ or „osmoregulation‟, is certainly a remedial 

measure to overcome the negative consequence of  

water deficite condition in plant‟s growth and survival. 

It has been proposed since long before as a remedial 

mechanism for drought and salt tolerance (Martin, 

1930; Bernstein, 1961), but it has gained fame during 

the last 20 years.  Compatible solutes are low molecular 

weight, highly soluble organic compounds that are 

usually non-toxic at high cellular concentrations. The-

se solutes provide  immunity, to plants from   

environmental-induced stress by regulating cellular 

osmotic adjustment, ROS detoxification, protection of 

membrane integrity and enzymes/protein stabilization 

(Ashraf and Foolad, 2005; Bohnert and Jensen, 1996; 

Yancey, 1994) These include proline, sucrose, polyols, 

trehalose and quaternary ammonium compounds 

(QACs) such as glycine betaine, alinine betaine, pro-

line betaine and pipecolate betaine Exepidition of the 

action of these solutes would providea clear cut evi-

dence to combat environmental stresses, which is im-

portant as it gives direct hope to genetically manipulate 

plants to withstand this condition. There are many  

cellular mechanisms by which organisms mitigate the 

effects of abiotic stresses; for instance, accumulation 

of compatible osmolytes such as proline is one such 

phenomenon. The phenomenon of proline accumulation 

is known to occur under water deficit (Naidu et al., 

1991), Salinity (Munns, 2005; Rhodes and Hanson 

1993), low temperature (Hare et al., 1998), heavy met-

al exposure (Bassi and Sharma, 1993a; Bassi and Shar-

ma, 1993b; Schat et al., 1997; Sharma and Dietz, 

2006) and UV radiations, etc. Apart from acting as 

osmolyte for osmotic adjustment, proline contributes 

to stabilizing sub-cellular structures (e.g., membranes 

and proteins), scavenging free radicals and buffering 

cellular redox potential under stress conditions (Ashraf 

et al., 2007). In many plant species, proline accumulation 

under salt stress has been correlated with stress tolerance, 

and its concentration has been shown to be generally 

higher in salt tolerant than in salt sensitive plants 

(Fougère et al., 1991; Gangopadhyay et al., 1997;  

Madan et al., 1995; Petrusa and Winicov, 1997). It 

may also act as protein compatible hydrotrope 

(Strizhov et al., 1997), alleviating cytoplasmic acidosis 

and maintaining appropriate NADP+/NADPH ratios 

compatible with metabolism. Work relating to this i.e 

proline osmoprotectant is reviewed here. Some  

generalizations can be made: Firstly, the availability of 

the precursor to synthesize the osmoprotectants could 

limit the amount of osmoprotectant made in a transgenic 

host. Secondly, negative physiological consequences 

of diverting the precursor to the osmoprotectants away 

from primary metabolism should be considered (Su 

and Wu 2004). Thirdly, despite the availability of 

physiological data and techniques for assessing stress 

tolerance in plants, but still transgenic plants are rarely 

had been put to test their functioning which calls for 

their examination. Proline accumulation normally  

occurs in cytoplasm where it plays the role of molecular 

chaperons stabilizing/conditioning the structure of  

proteins and its accumulation by buffering cytosolic 

pH and maintaining cell redox status. It has also been  

proposed that its accumulation may be part of stress 

signal cascade influencing adaptive responses thus 

taking in account this feature would be beneficial to 

incur stress tolerance via engineering transgenic over 

expressing proline gene (Hoque et al., 2008). 

SENSORS OF ABIOTIC STRESS- OSMOLYTES 

There are many mechanisms at cellular level through 

which organisms ameliorate the effects of  environ-

mental stresses; for instance, accumulation of compati-

ble osmolytes such as proline is one such  phenome-

non. Many plants, including halophytes, accumulate 

compatible osmolytes, such as proline (Pro), glycine 

betaine and sugar alcohols, when they are exposed to 

drought or salinity stress (Hellebust, 1976; Csonka, 

1989; McCue KF, Hanson, 1990; Delauney and Ver-

ma, 1993). The accumulation of Pro has been observed 

not only in plants but also in eubacteria, marine inver-

tebrates, protozoa, and algae (Delauney and Verma, 

1993; Roosens et al., 2002). It has been suggested that  

compatible osmolytes do not interfere with normal 

biochemical reactions and act as osmoprotectants dur-

ing osmotic stress. Among known compatible  solutes, 

Proline is probably the most widely distributed osmo-

lytes. Results of investigations of the relationship be-

tween the expression of these genes and the accumula-

tion of Proline under water stress indicate that the level 

of Pro in plants is mainly regulated at transcriptional 

level during water stress. Moreover, the overproduc-

tion of Pro results in the increased tolerance of trans-

genic tobacco plants to osmotic stress. Thus tolerance 

to abiotic stress,  

especially to salt and improved plant growth, was  

observed in a variety of transgenics that were  

engineered for overproduction of proline (Kavi Kishor 

et al., 1995; Bohnert and Shen, 1999; Kavi Kishor et 

al., 2005). Proline seems to have diverse roles under 

osmotic stress conditions, such as stabilization of  

proteins, membranes and sub-cellular structures and 

protecting cellular functions by scavenging reactive  
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oxygen species (Sasaki et al., 2005). 

Salinity is detrimental to the various processes of crops 

such as seed germination, seedling growth and vigor, 

vegetative growth, flowering and fruit set and  

ultimately it causes diminished economic yield and 

also quality of produce (Stewart and Larher, 1980). 

Rice crop is important not only as food crop but also 

due to its medicinal value (Bajaj and Mohanty, 2005), 

due to virtue of it, it acts as a model monocot system 

for various biotechnological, metabolic, genetic  

engineering and functional genomics development 

studies worldwide (Munns and Tester, 2008).  

However, the yield of rice, especially Asian rice, is 

severely susceptible to salinity (Sairam et al., 2005). In 

India and especially the rainfed rice is hindered by 

three major abiotic stresses namely drought,  

submergence and Salinity (Rice Knowledge  

Management Portal, 2011).  

PROLINE AND ITS FUNCTION IN OSMOREG-

ULATION 

Proline plays versatile functions in plants. As amino 

acid it is a one of the building blocks of protein  

structure, but it also plays a major role in of stress  

osmolytes solute under environmental stress conditions. 

Proline synthesis has been associated with tissues  

undergoing rapid cell divisions, such as shoot apical 

meristems, and appears to be involved in floral transition 

and embryo development. Lofty levels of proline can 

be found in pollen and seeds, where it serves as  

compatible solute, where it acts as dehydration  

protector of cellular structures during plant  

development. The agglomeration of proline at various 

terrain such as cells, tissues and other vital organs such 

as vascular bundles are controlled by  reciprocity of 

biosynthesis, degradation, and cellular transport arcade. 

Thus, both the uniques properties of proline and its 

variegated action through two most widely studied 

transporter, both general amino acid permeases and 

selective compatible solute transporters indicates its 

prime position to be use in production of abiotic resilient 

plants engineered through manipulating it genes 

(Armengaud et al., 2004). 

All the mechanisms encompassing the proline action 

be it accumulation or degradation shows that mechanisms 

regulating proline differ substantially from other amino 

acids (Yu et al., 1983). Proline accumulation is a  

common metabolic riposte, of higher plants to water 

deficits, and salinity stress, and has been the subject of 

numerous reviews over the last 20 years (Stewart and 

Larher, 1980; Thompson, 1980; Stewart, 1981; Hanson 

and Hitz, 1982; Samaras et al., 1995; Taylor, 1996; 

Rhodes et al., 1999). This versatile  amino acid has 

highest water solubility and is accumulated by leaves 

of many halophytic higher plant species grown in  

saline environments (Stewart and Lee, 1974; Briens 

and Larher, 1982; Treichel, 1986), in leaf tissues and 

shoot apical meristems of plants undergoing water 

stress (Barnett and Naylor, 1966; Boggess et al., 1978; 

Jones et al., 1980) in desiccating pollen (Hongqi et al., 

1982), in root apical regions growing at low water  

potentials (Voetberg and Sharp, 1991), and in  

suspension cultured plant cells reorganized to water 

stress (Tal and Katz, 1980; Rhodes, 1987), or NaCl 

stress (Tal and Katz, 1980; Rhodes and Handa, 1989; 

Thomas et al., 1992). Proline shields membranes and 

proteins against the adverse effects of elevated  

concentrations of inorganic ions and extreme  

temperature (Pollard et al., 1979; Paleg et al., 1981; 

Nash et al., 1982). Proline may also function as a  

protein-compatible hydrotrope (Srinivas and Bal-

asubramaniam, 1995) and as a hydroxyl radical scav-

enger (Smirnoff and Cumbes, 1989). The proline gath-

ered in response to water stress or salinity stress in 

plants is primarily confined in the cytosol (Leigh et al., 

1981; Pahlich et al., 1981; Ketchum et al., 1991). In 

addition, the transient accumulation of proline, might 

serve as a safety valve to calibrate cellular redox state 

during stress (Shen et al., 1999; Kuznetsov and 

Shevyakova, 1999). 

PROLINE METABOLISM AND ITS IMPLICA-

TIONS FOR PLANT-ENVIRONMENT INTER-

ACTION 

Very high agglomeration of cellular proline (upto 80% 

of the amino acid pool under stress and 5% under nor-

mal condition) has been documented in many plant 

species (Choudhary et al., 2005; Widodo et al., 2009). 

The increase in osmoprotectants is achieved either by 

amendment of metabolism (increasing biosynthesis 

and/or decreasing degradation) or by transport 

(increase uptake and/or decrease export) which also 

depends upon the type of stress and the type of species 

under consideration. Unlike other amino acids, proline 

has cyclized amino nitrogen that has significant  

influence on the conformation as well as uniqueness of 

polypeptides. Proline is also a prime component of 

structural proteins in animals and plants besides being 

a known osmoprotectants capable of mitigating the 

footprint of drought, salt, and temperature stress in 

plants (Rodriguez and Redman, 2005). 

Proline, and its metabolism, is eminent from other ami-

no acids in several ways. In plants proline is  

synthesized from glutamate as well from arginine/

ornithine. The most fundamental is that proline is the 

only one of the proteogenic amino acids where the  

a-amino group is present as a secondary amine. While 

this may seem like a distinction more important to 

chemists than plant biologists, the unique properties of 

proline are highly relevant to understanding its role in 

plants. Second important feature of proline has been 

studied a lot and recorded that its accumulation is 

caused by most of stresses relating to environmental 

stresses (Hare et al., 1998). The role of proline and 
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sulphur metabolism during osmotic stress tolerance in 

plants has been emphasized recently (Verma, 1999). 

Gene involved in biosynthesis of enzymes for  

biosynthesis and degradation of Proline is very well 

documented. Results of exploration of the relationship 

between the expression of these genes and the  

agglomeration of proline under deficit water stress 

indicate that the level of proline in plants is mainly 

regulated at micro-cellular transcriptional level during 

water stress. Moreover in this context, the overproduction 

of proline results in the increased tolerance of  

transgenic tobacco plants to osmotic stress was reported 

by Dobra et al. (2011). 

The basic of proline metabolism involves two enzymes 

catalyzing proline synthesis from glutamate in the  

cytoplasm or chloroplast, two enzymes catalyzing pro-

line catabolism back to glutamate in the mitochondria, as 

well as an alternative pathway of proline synthesis via 

ornithine (Fig. 3). The inter conversion of proline and 

glutamate is sometimes referred to as the “proline cy-

cle”. The transcriptional up regulation of proline syn-

thesis from glutamate and down regulation of proline 

catabolism during strain condition provides a concep-

tion to control proline levels, although  

inconsistency to this pattern has been observed (Stines 

et al., 1999). This is not the only side of the story  

however, as posttranslational modulation, of these  

enzymes has been little inspected and the role of  

ornithine as a proline precursor remains obscure 

(Phang, 1985). Likewise, the proline cycle may at first 

seem to be an ineffectual cycle; however, apprehending 

the intrinsic corporative modulation of this cycle and 

metabolic flux is the clue to understanding the proline 

metabolism biochemistry. 

Proline not only being n important constituent of  

protein it is also a very versatile molecule playing a 

important part in osmoprotectant, cellular signal  

molecule during stress condition. After plant exposed 

to salt stress in Arabidopsis it accounted for 20% of the 

amino acid pool (Verbruggen et al., 1996). There are 

two different pathways in proline biosynthesis in high-

er plants: the ornithine and the glutamate  

pathways. The plant glutamate pathway is quite  

different from those in microbes and human. In  

bacteria and human, the conversion of glutamate to 

glutamate-5-semialdehyde (GSA) is catalyzed by two 

enzymes via two successive reactions, whereas, in 

higher angiosperms the conversion is catalyzed by a bi

-functional enzyme in a single step reaction (Hu et al., 

1992). This brings us to the conclusion that many  

research activities are being drawn specifically  

studying salinity and drought tolerance induced by 

proline (Williamson and Slocum, 1992).  
The pathway for the biosynthesis of proline in plants 

was elucidated by reference to the pathway in  

Escherichia coli (Leisinger, 1987). Fig. 3 shows the 

proline biosynthesis and metabolism pathway in 

plants. The pathway in bacteria begins with the  

ATP-dependent phosphorylation of the γ-carboxy 

group of L-glutamic acid (L-G1U) by γ-glutamyl kinase 

(γ-GK). The product of γ-GK is reduced to glutamic-γ-

semialdehyde (GSA) by GSA dehydrogenase 

(GSADH), with which γ-glutamyl kinase forms an 

obligatory enzyme complex. GSA cyclizes spontaneously 

to form ∆1-pyrroline-5-carboxylate (P5C), which is 

finally reduced to proline by P5C reductase (P5CR). It 

has been suggested that, in plants, proline is  

synthesized either from Glu or from ornithine and that 

the pathway from Glu is the primary route for the  

synthesis of Pro under conditions of osmotic stress and 

Fig. 1. An overview of salinity stress. 

Fig. 2. Potential roles of proline during abiotic stress 

(Made by the author). 
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Table 1. Transgenic plants developed for abiotic stress tolerance through the manipulation of proline metabolism related genes. 

S. 

No. 
Gene Targeted Trait Species References 

1 Pyrroline-5-

carboxylate 

synthetase 

(P5CS) 
  

Salinity stress tolerance   
Nicotiana spp. 

Kavi Kishor et al., 1995 
Increased proline accumulation Zhang et al., 1995 
Salinity stress tolerance Sokhansanj, et al., 2006 
Increased proline accumulation and osmotic 

stress tolerance 
Yamchi et al., 2007 

Increased proline accumulation and salinity 

stress tolerance 
Razavizadeh and Ehsanpour, 

2009 
Abiotic stress tolerance Dobra et al., 2010 
Increased proline accumulation and salinity 

stress tolerance 
Jazii et al., 2011 

Salinity stress tolerance Mahboobeh and Akbar, 2013 
Salinity stress tolerance Ibragimova et al., 2015 
Drought and salinity tolerance   

  
  
Oryza sativa 

Zhu et al., 1998 
Increased proline accumulation and osmotic 

stress tolerance 
Hong et al., 2000 

Salinity stress tolerance Anoop and Gupta, 2003 
Drought and salt stress conditions Su and Wu, 2004 
Enhanced salt and cold stress  

tolerance 
Hur et al., 2004 

Salinity stress tolerance Kumar et al., 2010 
Salinity stress tolerance Karthikeyan et al., 2011 
Drought and salinity stress tolerance Priya et al., 2015 
Hypersensitivity to osmotic stress Arabidopsis thaliana Nanjo et al., 1999 
Drought and salinity stress tolerance Chen et al., 2010 
Salinity stress tolerance Chen et al., 2013 
Salinity stress tolerance Triticum aestivum Sawahel and Hassan, 2002 
Proline accumulation and water stress toler-

ance 
Triticum aestivum Vendruscoloa et al., 2007 

Tolerance to toxic heavy metals Chlamydomonas 

reinhardii 
Siripornadulsil et al., 2002 

Salinity stress tolerance Daucus carota Han and Hwang, 2003 
Drought stress tolerance Citrus spp. Molinari et al., 2004 
Drought stress tolerance De Campos et al., 2011 
Proline accumulation and salt 

tolerance 
Solanum tuberosum Hmida-Sayari et al., 2005 

Cold, salt, and freezing stress  

tolerance 
Larix leptoeuropaea 
  

Gleeson et al., 2005 

Osmotic stress tolerance Medicago truncatula Verdoy et al., 2006 

Water deficit stress tolerance Saccharum  

officinarum 
Molinari et al., 2007 

Proline accumulation and salt  

tolerance 
Cicer arietinum Ghanti et al., 2011 

Salinity stress tolerance Olea europaea Behelgardy et al., 2012 
Salinity stress tolerance Lilium spp. Li et al., 2013 
Drought stress tolerance Hordeum vulgare  

var. nudum 
Deng et al., 2013 

Proline accumulation and salt  tolerance Cajanus cajan Surekha et al., 2014 

Proline accumulation and salt tolerance Saccharum officinar-

um 
Guerzoni et al., 2014 

Proline accumulation and salt  

tolerance 
Sorghum bicolor Surender Reddy et al., 2015 

Salinity stress tolerance Brassica napus Szymon et al., 2015 
  
2 
  

  
Pyrroline-5-

carboxylate 
reductase 

(P5CR) 

Salinity stress tolerance Nicotiana tabacum LaRosa et al., 1991 
Enhanced heat and drought stress tolerance Glycine max De Ronde et al., 2000 

Osmotic and drought stress tolerance De Ronde et al., 2004 
Salinity, drought and ABA stress tolerance Arabidopsis thaliana Ma et al., 2008 

Salinity stress tolerance Ipomea batata Liu et al., 2014 

Contd.  
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nitrogen limitation, while the pathway from ornithine 

predominates at high levels of available nitrogen 

(Delauney et al., 1993). 

The other degree that controls production of Pro in 

plants is the degradation or metabolism of Pro.  

L-Proline is oxidized to P5C in plant mitochondria by 

proline dehydrogenase (oxidase) (ProDH; EC 

1.5.99.8), and P5C is converted to L-G1U by P5C  

dehydrogenase (P5CDH) (Boggess et al., 1975; Elthon 

and Stewart, 1981). Such oxidation of Pro is repressed 

during the buildup of Pro under water stress and is 

triggered in rehydrated plants (Stewart et al., 1977; 

Rayapati and Stewart, 1991). ProDH and P5CDH  

catalyze reactions that are the opposite of those  

catalyzed by P5CS and P5CR, respectively, in the  

biosynthesis of Proline. Although stress-induced pro-

line accumulation is evolutionarily conserved in a wide 

range of plants, its regulatory mechanism is  

subject to considerable variation. In most plant species 

studied, proline accumulation during stress is the result 

of reciprocal action of increased biosynthesis and  

inhibited degradation (Kavi Kishor et al., 2005). 

DEGRADATION OF PROLINE  

Proline degradation in eukaryotes takes place in  

mitochondria and thus in plants are compartmentalized 

spatially from the biosynthetic pathway. The catabolism 

of Proline commences with the oxidation of proline to 

P5C by proline dehydrogenase (PDH), using FAD as 

cofactor. P5C is sequentially converted to glutamate by 

pyrroline-5-carboxylate dehydrogenase (P5CDH)  

using NAD+ (Fig. 3). Whereas in eukaryotes two  

enzymes catalyze these sequential steps in proline  

degradation, in bacteria both mono- and bifunctional 

enzymes exist (Tanner, 2008). Two homologous genes 

have been diagnosed to encode proline dehydrogenase 

in Arabidopsis and tobacco (Mani et al., 2002; Ribarits 

et al., 2007; Verbruggen and Hermans, 2008; Funck et 

al., 2008), while the available literature is scarce. In 

contrast, the enzyme catalyzing the second step of pro-

line degradation (P5CDH) is ciphered by a single copy 

gene in all monocot and dicot species analyzed so far 

(Ayliffe et al., 2005; Deuschle et al., 2006; Mitchell et 

al., 2006). Biochemical investigation revealed the 

presence of two P5CDH activities with slightly diver-

gent characteristics in Nicotiana plumbaginifolia and 

Zea mays (Elthon and Stewart, 1982; Forlani et al., 

1997). But the present scenario does not clearly reveal 

that whether both activities arise from a single gene or 

if a second P5CDH gene is exist in these species. 

Role of proline metabolism in plant for interaction 

and development of stress tolerance: It is or it is not 

the agglomeration proline responsible for adaptive 

retaliation; to abiotic stress has been  

argued since Kemble and McPherson (Kemble and 

Macpherson, 1954) first documented proline  

accumulation in wilted ryegrass. Evident correlations 

between high proline and greater stress caused injury 

led to conclude that proline was the first manifestation 

of damage which results in decreased growth and  

metabolism rather than an adaptive retaliation (Stewart 

and Hanson, 1980). Indeed, it seems contradictory that 

plants synthesize large amounts of proline and at the 

same time restricting carbohydrate biosynthesis by 

restricting photosynthesis which severely retards 

growth and reproductive performance during drought 

(Boyer, 2010). However, controlled experiments  

demonstrated that proline agglomeration occurs even 

in plant tissues/cell where growth prevails and injury is 

nominal (Voetberg and Sharp, 1991; Ober and Sharp, 

1994) and also occurs to remarkable extent under mild 

and moderate stress treatments (Sharma and Verslues, 

2010). Proline also accumulates to elevated high levels 

in pollen and this is likely related to pollen desiccation 

tolerance (Schwacke et al., 1999). Moreover, a number 

of groups have pointed out a higher proline in more 

drought adapted varieties of wild or cultivated plants 

(Ben Hassine et al., 2008; Parida et al., 2008; Evers et 

  
3 

  
Proline  

dehydrogenase 

(ProDH) 

Salt and freezing stress tolerance Arabidopsis thaliana Nanjo et al., 1999 

Hypersensitivity to proline Mani et al., 2002 
Elevated salt tolerance Nicotiana tabacum Kolodyazhnaya et al., 2006 
Increased proline content and drought 

stress tolerance 
Nicotiana tabacum Kochetov et al., 2004 

Enhanced water stress tolerance Arabidopsis thaliana Ueda et al., 2008 
Over-expression for Osmotic stress  

tolerance 
Arabidopsis thaliana 
and Nicotiana tabacum 

Miller et al., 2009 

Salinity and water stress tolerance through 

elevated proline content 
Nicotiana tabacum Ibragimova et al., 2012 

Enhanced oxidative stress tolerance Arabidopsis thaliana Monteoliva et al., 2014 
4 ProBA Increased proline content and drought 

stress tolerance 
Arabidopsis thaliana Chen et al., 2007 

5 Ornithine-δ-

aminotransfer-

ase (δ-OAT) 

Increased proline biosynthesis and osmo-

tolerance 
Nicotiana tabacum Roosens et al., 2002 

Drought and salinity tolerance Oryza sativa Wu et al., 2003 
Multiple abiotic stress tolerance You et al., 2012 

Table 1. Contd.  
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al., 2010). Also, the salt-tolerant Arabidopsis relative 

Thellungiella halophila agglomerates more proline at 

salinity stress than the standard Columbia-0 ecotype of 

Arabidopsis (Kant et al., 2006). Proline play a role as a 

precursor for proline- or hydroxyproline-betaines 

which is even more effective osmoprotectants for 

plants in acute dry environments (Hanson et al., 1994). 

With advancement of molecular techniques data has 

clearly indicated that proline metabolism is actively 

controlled by stress induced signals and the usage of 

reverse genetics (such as p5cs1 mutants; Szekely et al., 

2008) has made possible a more direct tests of the  

requirement of proline accumulation for stress  

resistance. The main challenging question is how pro-

line contributes to plant stress resistance, the  

metabolic modulation that allows elevated levels of 

proline to accumulate, and whether fine-tuning of pro-

line metabolism is useful for biotechnological  

improvement of plants which is yet to be answered. 

Genetic engineering for abiotic stress tolerance 

By overexpression of proline genes: Metabolic engi-

neering is the directed improvement of cellular proper-

ties through the modification of species biochemical 

reactions or the introduction of new ones, with the use 

of recombinant DNA technology (Stephanopoulos, 

1999). Osmoprotectant accumulation is only one facet 

of a myriad of stress-tolerant traits found in nature. 

Since oxidative stress is a component of drought and 

salinity, manipulations aimed at  

improving oxidative stress tolerance have also resulted 

in salinity tolerance (Roxas et al., 1997). This could be 

done either via repeatedly engineering the gene or by 

crossing and selecting transgenic plants engineered for 

different traits. For example, manipulation of genes 

involved in ion transport together with osmoprotectant 

synthesis can be expected to increase a cell's ability to 

withstand salinity stress. The gene products involved 

in ion homeostasis have been identified by the use of 

yeast model systems (Serrano et al., 1999) and by  

analyzing mutants altered for salt sensitivity (Wu et 

al., 1996; Liu et al., 2000). Osmoprotectant synthesis 

in naturally stress-tolerant species is highly regulated 

by stress. In addition to the use of stress inducible  

promoters for engineering osmoprotectant synthesis 

pathways, genes involved in stress signal sensing are 

additionally useful for engineering stress tolerant 

plants.  
Stress tolerance via proline: Kavi Kishor et al. 

(2005) reported over expression of proline in transgen-

ic tobacco and the transgenic plants produced in-

creased root biomass under moisture  

deficient stress. While in one other recent study, 

the OsP5CS1 and OsP5CS2 genes were co-expressed 

in tobacco that conversed transgenic plants with high 

Fig. 3. Pathways for the biosynthesis and metabolism of proline in higher plants (http://themedicalbiochemistry page.org/amino

-acid-metabolism.php). 
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levels of proline accumulation as well as reduced  

oxidative harm to cells under abiotic stress conditions 

(Zhang et al., 2005). Similar proline production was 

also reported in transgenic rice, wheat and carrot 

plants overexpressing P5CS gene that showed re-

sistance to salinity stress (Zhu et al., 1998; Sawahel et 

al., 2002; Han et al., 2003). 

Transgenic Arabidopsis plants that expressed P5CS 

antisense gene were constitute with morphological 

aberrations, and the plants were hypersensitive to  

water-influx stress which was seen by Nanjo et al. 

(1999).  In addition to playing a role in safeguarding 

vital proteins, it was also projected that proline would 

play a viable, role in ROS scavenging; this was  

conceptualized by Smirnoff and Cumbes (1989). In 

transgenic Arabidopsis P5CS mutant lines, it was  

proposed that the ROS scavenging enzymes  

demonstrated significantly lower activities. This  

evidence clearly points out the possibilities that either 

proline protects the enzymes of the glutathione–

ascorbate cycle or increases their activities during  

osmotic stress. Hmida-Sayari et al. (2005)  

concluded a study of transfer the Arabidopsis P5CS gene 

into potato in which the stress induced promoter got 

activated as a result of stress condition and thus its 

subsequent effect was observed on the plant‟s growth, 

tuber morphology and yield and the data compiled 

accordingly.  Transgenic potato plants accumulated 

high proline content compared to those at control  

under high salt stress (100 mM NaCl) and, in turn, 

exhibited improved salinity tolerance by  

diminished tuber yield and weight when compared to 

that of non-transgenic control. In addition, some other 

studies were conducted on transgenic petunias and 

pigeon pea (Cajanus cajan) with the P5CS gene that 

rendered these plants abiotic stress tolerant (Surekha et 

al., 2013). Petunia was modified with pyrroline 

-5- carboxylate Synthetase genes 

(AtP5CS from A. thaliana L. or OsP5CS from Oryza 

sativa L.) the results showed more proline production 

which resulted in water stress tolerance for a period of 

14 days. Modified pigeon pea was also mutagenized 

with the alternate version (P5CSF129A) of 

wild P5CS gene from Vigna aconitifolia. The resultant 

transgenic plants showed enhanced level of proline 

content than their non-transgenic counterparts. About 

four times higher proline content was observed in the 

T1 transgenic plants compared to that of nontransgenic 

under 200 mM NaCl stress, this study was done by 

Surekha et al. (2013). As a result of correspondingly 

levels high proline accumulation, under salt stress the 

transgenic plants displayed more chlorophyll, better 

growth, and relative water content and reduced levels 

of lipid peroxidation. These findings indicated the  

importance of proline biosynthesis in transgenic plants 

when compared osmotic stress induced by salt and 

drought stresses. 

Huang et al. (2013) have scrutinized HtP5CS, HtOAT 

and HtPDH enzyme activities and gene expression 

mosaic of putative HtP5CS1, HtP5CS2, HtOAT, 

HtPDH1, and HtPDH2 genes. Ashfaque et al. (2014) 

applied H2O2 on plants to demonstrated the different 

parameters related to water and salinity stress. The 

application of both 50 and 100nM H2O2 minimized the 

extremity of salt stress by reducing the level of Na+ 

and Cl- content; and thereby elevating the levels of 

proline and N assimilation. The outcome was increased 

water relations, photosynthetic pigments and growth 

under salinity stress. This was evident even under non 

saline condition where application of H2O2 increased 

all the parameters under study. Szymon et al. (2015) 

showed the role of priming-induced modulation of 

activities of concerned genes and proline turnover  

enzymes, and its interplay with higher levels of  

hydrogen peroxide, in enhancing the seed germination 

capability under various stress. During the events such 

as priming and post-priming germination the buildup 

of proline was analogous with strong up-regulation of 

the P5CSA gene, down-regulation of the PDH gene 

along with production of hydrogen peroxide. 

P5CSA  transcript was up-regulated which was found 

in consistent with the expanded activity of  P5CS gene  

and the other genes intricate such as ornithine-δ-

aminotransferase (OAT), pyrroline-5-carboxylate  

synthetase (P5CS), and proline dehydrogenase (PDH) 

was examined in detail which clearly indicated the role 

of proline biosynthesis as well as proline metabolism 

genes in rendering plant tolerant to various abiotic 

stresses. 

Conclusion 

Fabricating transgenic plants utilizing biotechnological  

approaches has become an eminent tool in plant-stress  

biology. The abiotic stresses effects the plant at all possible 

levels of organization i.e. morphological, physiological,  

biochemical and molecular which demands attention. Thus 

comprehending the apparatuses that regulate gene expression 

and the possibility to transfer genes from other organisms 

into plants will definitely expand our horizon to master the 

plant genetically. The use of new and useful approaches 

combining molecular genetics, physiological, biochemical 

and other related techniques will definitely provide us the 

better understanding to exploit it to the prime extent to get 

mastered transgenic crops. The abiotic stresses such as  

salinity and drought are more complex traits, controlled by 

many genes. Transgenic plant development for these stresses 

has utilized many single genes. However, much emphasis has 

been placed on Proline, its function and metabolism. This re-

view focuses on the current status of research on  

osmoprotectant proline genetic engineering and their  

overexpression to abiotic stress tolerance in transgenic plants. 
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