

Journal of Applied and Natural Science 9 (1): 201 - 205 (2017)

Tannery effluent effect on the haematological parameters of freshwater fish, *Channa punctatus*

S. Parveen¹, D. Singh², Ram Bharose¹, S. Rout^{1*}, M. A. Khan³ and E. F. Ansari²

¹School of Forestry and Environment, Sam Higginbottom Institute of Agriculture Technology and Sciences, Allahabad-211007 (Uttar Pradesh), INDIA

²Department of Environmental Science, Chhatrapati Shahu ji Maharaj University, Kanpur- 208024 (Uttar Pradesh), INDIA

³Department of Crop Physiology, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur-208002 (Uttar Pradesh), INDIA

*Corresponding author. E-mail: srout.forestry@gmail.com

Received: May 2, 2016; Revised received: November 4, 2016; Accepted: January 20, 2017

Abstract: The present investigation was undertaken to evaluate the tannery effluent toxicity stress symptoms in fish blood during a long term of exposure period. The effect of tannery effluent on various haematological parameters were evaluated exposing fresh water fish, *C. punctatus* to different concentration i.e., [Control, 5% Tannery effluent (TE), 10% TE and 20% TE] of tannery effluent. Exposed of fish to tannery effluent showed a significant decrease in the haemoglobin (Hb) content (9.16± 0.08), red blood cells (3.32 ± 0.12), packed cell volume (34.66 ± 0.33) and mean corpuscular haemoglobin (MCH) values, whereas significant increase in the white blood cells (WBC), erythrocyte sedimentation rate (ESR) and clotting time was recorded with increase in exposure periods as compared to control respectively. Hb, RBC and MCHC values showed fluctuating results. The haematological parameters were decreases from 15th days of exposure periods to 45th days of exposure period. The decrease in haematological parameters.

Keywords: Blood, Channa punctatus, Haemoglobin, Tannery effluent, White blood cells

INTRODUCTION

Rivers are the natural source of freshwater. Water pollution has become a global problem; it carries a load of dissolved and particulate matters from both natural and anthropogenic sources along with other contents. These substances move downstream and may cause chemical and biological changes in the quality of water. Thus, the water chemistry of a river is affected by the lithology of the reservoir, atmospheric, and anthropogenic inputs. Industrialization has become an important factor to the development of a country's economy, through the establishment of plants and factories. However, the waste or by-products discharged from them are severely disastrous to the environment. These waste products are various kind of contaminant which contaminates surface water, ground water and soil. The discharges from these industries constitute biohazard to man and other living organisms in the environment because they contain toxic substances detrimental to health (Adebisi et al., 2007; Adriano, 2001; Bakare et al., 2003). Recently, there has been an alarming and worrisome increase in organic pollutants (Nadal et al., 2004). Since many effluents are not treated properly, these products are discharged on the ground or in the water bodies and most of these

discharges to water bodies accumulate in the system through the food chain (Odiete, 1999). The waste water discharge form industries are the major source of pollution and affect the ecosystem (Morrison et al., 2001). The degradation of the environment was due to the adverse effect of industrial waste on living organism and agriculture (Anikwe and Nwobodo, 2006). Kanpur is also known as Industrial city in the world which is mainly famous for tanneries, footwear and leather industries. In the global scenario, Kanpur is the top and famous for tannery industries. The main reason of the pollution in Kanpur is due to the tannery. Only about 20% of chemicals used in the tannery process are absorbed by leather, rest of these were released as waste which absorbed by bioaccumulation process by flora and fauna (Sahu et al., 2008). The tannery industry is one of the oldest industries, which is unevenly scattered in the country. There are more than 2,500 tanneries located in different urban centers of India processing about 500,000 tones of hides and 314 kg skins per annum which generates about 100,000 m³ of wastewater per day (Sugasisni and Rajgopala, 2015). The discharge of tannery waste water increases from January to May because of higher production rate in

tanning industry diurnal this time water quality

ISSN : 0974-9411 (Print), 2231-5209 (Online) All Rights Reserved © Applied and Natural Science Foundation www.jans.ansfoundation.org

decreases. Aquatic system is an ultimate sink of heavy metal pollutants and since aquatic animals tend to accumulate heavy metals from various sources including sediments, soil erosion and runoff, air depositions of dust and aerosol, and discharges of waste water (Goodwin *et al.*, 2003) they provide the insights of toxicity mechanisms induced by these heavy metals.

Fish is an important component of human nutrition and those from contaminated sited present potential risk to human health. Abnormal physico-chemical characteristics of industrial effluents are responsible for mortality of fishes (Mishra et al., 1988; Pawar, 1988). Metals can accumulate in the aquatic organism including fish. When fish are exposed to elevated levels of metals in a polluted aquatic ecosystem they tend to take these metals up from the environment (Adakole, 2012). Haematological tests in fish are important diagnostic tools and valuable indicator of diseases or stress due to environment pollution (Kori-Siakere and Ubogu, 2008). Hence keeping in view the importance the present investigation was carried out to determine the effect of tannery effluent on haematological parameters of fresh water fish Channa punctatus.

MATERIALS AND METHODS

The study on tannery effluent toxicity on freshwater fish's *C. punctatus* was conducted to explore the tolerance and toxic limits against different level of diluting tannery effluents. The experiment on aquatic fish *C. punctatus* was conducted at Laboratory in Department of Environmental Science, I.B.S.B.T., C.S.J.M. University, Kanpur.

Collection of effluent sample: Tannery effluent is collected from the tannery located at Jajmau, Kanpur in 100 Liter of plastic container and transported to the laboratory.

Collection and acclimatization of fish sample: The small size freshwater fish, *C. punctatus*, weighing 20 ± 2 g and measuring 11 ± 2 cm, were collected with the help of local fisherman from water bodies located in the sub region of Kanpur. The fish was properly washed in tap water and treated with 0.02% KMNO4 and 0.004% formalin solution to remove the external infection of fungi, algae, etc. Prior to the experimentation the normal uninfected healthy fish were selected for the experiment. The fish were acclimatized to laboratory conditions for 15 days before taken for experimentation. The animals were fed TOKYO made in Japan on a day at 8 pm every day.

Experimental set up: The bioassay study was conducted using tap water (University water supply) as dilution medium was estimated by the method of APHA, (2005). The fish were divided into 4 equal groups consisting of 10 each and each group was transferred separately to glass aquaria of 100L volume. While the group I fish were maintained as the control

without any treatment, the group II, III and IV fish were exposed to different concentration (5% TE, 10% TE and 20%TE) of tannery effluent for 15 and 45 days. The waste products were removed from aquaria water by using good quality of aquaria water filter. The changes in the Temperature, TDS mgL⁻¹, pH, EC dSm⁻¹, DO mgL⁻¹, BOD mgL⁻¹, COD mgL⁻¹, TH mgL⁻¹, TA mgL⁻¹, Chloride mgL⁻¹ of the experimental water were recorded throughout the experimental period.

Haematological study: The blood from the caudal vein of control and treated fish was collected for haematological investigation. Hb, RBC, WBC, ESR and PCV were examined following the procedures of Wintrobe, (1957) and Sood, (1996). The anticoagulant heparin liquid power (5,000 I.U) was used for estimation of ESR and PCV.

Statistical analysis: The data observed in the experiment were statistically analyzed for the calculation of standard error (S.E.) and students' 't' test was administered for testing the hypothesis with the help of computer software SPSS program. The data shown are the averages of three replicates \pm S.E.

RESULTS AND DISCUSSION

In the present study, exposure to various concentrations i.e., 5%, 10% and 20% of tannery effluent to fish, C. punctatus for 15th and 45th days of exposure periods caused significant alterations in haematological parameters. The alteration observed in various physicochemical parameters of tannery effluent along with tap water, such as, Temperature, TDS mgL⁻¹, pH, EC dSm⁻¹, DO mgL⁻¹, BOD mgL⁻¹, COD mgL⁻¹, TH mgL⁻¹, TA mgL⁻¹, Chloride mgL⁻¹ and control of experimental system were indicated in Table.1. The Hb% (11.20 \pm 0.11) , RBC (5.55 \pm 0.13), ESR and PCV (35.33 ± 0.33) increased significantly (p<0.05) for 5% TE at 15th day exposure periods, but increase in 10% TE was found after at 15th day, and decreases Hb%, RBC, ESR and PCV was recorded after at 45th day of exposure period. Hb% decreased significantly in 20% TE at all exposure period. The maximum decrease in Hb% was observed after longest exposure of 45th days. The total red blood cells (RBCs) count also registered an increasing 5% of tannery effluent in comparison to controls for 15th and 45th day of exposure periods. Whereas the decrease in total RBC count was significant (p<0.05) for 10% and 20% TE in 45^{th} day of the exposure periods. A significant increase in total white blood cells (WBC) count over and above controls was observed for all (5% TE, 10% TE and 20% TE) three sets of exposure periods. The erythrocyte sedimentary rate (ESR) decrease at 15th day exposed fish for 5% TE, and also increased significantly under stress condition for 45th days of exposure periods respectively in comparison with control. All the values of ESR are significant at p<0.05. The pact cell volume

Is ⁶ day treatment 45 ⁶ day treatment Control 5% IE 10% IE 20% 1E 20% 1E 20% 1E 10% 1E <th></th> <th>20% TE 30.00±0.00 488.53*±9.74 8.50*±0.05 3.085*±0.02 5.19*±0.25 8.36*±2.35 8.36*±2.35 8.36*±2.96 303.33*±3.52 414.00*±2.62 414.00*±2.62 414.00*±2.62 2665.50*±13.82 H= potentia of hydro</th> <th>Control$30.00\pm0.00$$30.00\pm0.00$$12.6.14\pm7.18$$7.54\pm0.08$$7.54\pm0.03$$6.36\pm0.22$$3.18\pm0.17$$18.00\pm1.15$$148.38\pm4.66$$390.66\pm1.466$$390.66\pm1.466$$390.25\pm5.946$$236.25\pm5.946$$246.25\pm5.946$$246.25\pm5.946$$246.25\pm5.946$$246.25\pm5.946$$246.25\pm5.946$$246.25\pm5.946$$246.25\pm5.946$$246.25\pm5.946$<tr< th=""><th>45th 5% TE 30.00±0.00 348.36*±9.3(8.13*±0.06 4.140*±0.11 5.46*±0.24 6.26*±0.24 176.66*±4.8(300.33*±5.0) 1590.52*±17. 1590.52*±17. crical conductivity ree replicate SE an</th><th>day treatme 10 30.0 0 471.9 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 6 337.3 6 337.3 6 337.3 6 337.3 6 337.3 6 337.3 6 337.3 6 337.3 6 337.3 6 337.3 7 7 7 7 7 7 7 7 7 <</th><th>mt % TE 00±0.00 66±8.10 6±0.03 8*±0.20 *±0.20 6*±0.26 5*±0.26 33*±4.05 *±4.05 *±4.26 5(*±30.55 33*±4.05 **±4.05 *±4.05 ************************************</th><th>20% TE 30.00±0.00 567.03*±10.28 7.46*±0.20 7.311*±0.13 5.18*±0.22 14.93*±0.29 532.66*±6.56 354*±8.08 303.66*±2.42 368*±2.42 368*±2.660 BOD = Biological</th></tr<></th>		20% TE 30.00±0.00 488.53*±9.74 8.50*±0.05 3.085*±0.02 5.19*±0.25 8.36*±2.35 8.36*±2.35 8.36*±2.96 303.33*±3.52 414.00*±2.62 414.00*±2.62 414.00*±2.62 2665.50*±13.82 H= potentia of hydro	Control 30.00 ± 0.00 30.00 ± 0.00 $12.6.14\pm7.18$ 7.54 ± 0.08 7.54 ± 0.03 6.36 ± 0.22 3.18 ± 0.17 18.00 ± 1.15 148.38 ± 4.66 390.66 ± 1.466 390.66 ± 1.466 390.25 ± 5.946 236.25 ± 5.946 246.25 ± 5.946 246.25 ± 5.946 246.25 ± 5.946 246.25 ± 5.946 246.25 ± 5.946 246.25 ± 5.946 246.25 ± 5.946 246.25 ± 5.946 <tr< th=""><th>45th 5% TE 30.00±0.00 348.36*±9.3(8.13*±0.06 4.140*±0.11 5.46*±0.24 6.26*±0.24 176.66*±4.8(300.33*±5.0) 1590.52*±17. 1590.52*±17. crical conductivity ree replicate SE an</th><th>day treatme 10 30.0 0 471.9 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 6 337.3 6 337.3 6 337.3 6 337.3 6 337.3 6 337.3 6 337.3 6 337.3 6 337.3 6 337.3 7 7 7 7 7 7 7 7 7 <</th><th>mt % TE 00±0.00 66±8.10 6±0.03 8*±0.20 *±0.20 6*±0.26 5*±0.26 33*±4.05 *±4.05 *±4.26 5(*±30.55 33*±4.05 **±4.05 *±4.05 ************************************</th><th>20% TE 30.00±0.00 567.03*±10.28 7.46*±0.20 7.311*±0.13 5.18*±0.22 14.93*±0.29 532.66*±6.56 354*±8.08 303.66*±2.42 368*±2.42 368*±2.660 BOD = Biological</th></tr<>	45 th 5% TE 30.00±0.00 348.36*±9.3(8.13*±0.06 4.140*±0.11 5.46*±0.24 6.26*±0.24 176.66*±4.8(300.33*±5.0) 1590.52*±17. 1590.52*±17. crical conductivity ree replicate SE an	day treatme 10 30.0 0 471.9 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 6 337.3 6 337.3 6 337.3 6 337.3 6 337.3 6 337.3 6 337.3 6 337.3 6 337.3 6 337.3 7 7 7 7 7 7 7 7 7 <	mt % TE 00±0.00 66±8.10 6±0.03 8*±0.20 *±0.20 6*±0.26 5*±0.26 33*±4.05 *±4.05 *±4.26 5(*±30.55 33*±4.05 **±4.05 *±4.05 ************************************	20% TE 30.00±0.00 567.03*±10.28 7.46*±0.20 7.311*±0.13 5.18*±0.22 14.93*±0.29 532.66*±6.56 354*±8.08 303.66*±2.42 368*±2.42 368*±2.660 BOD = Biological
Temper Control 5% TE 10% TE 20% TE	Control 5% TE 10% TE 20% Temp °C 30.00 ± 0.00 30.0 ± 0.00 30.00 ± 0.00	20% TE 30.00±0.00 488.53 ±9.74 8.50 ±0.05 3.085 ±40.02 5.19 ±±0.25 8.36 ±2.96 303.33 ±43.23 414.00 ±22.62 414.00 ±22.62 414.00 ±22.62 2665.50 ± ±13.82 H= potentia of hydro	Control 30.00 ± 0.00 $12.6.14\pm7.18$ 7.54 ± 0.08 7.54 ± 0.08 1.082 ± 0.03 6.36 ± 0.22 3.18 ± 0.17 18.00 ± 1.15 148.38 ± 4.66 390.66 ± 1.466 390.66 ± 1.466 236.25 ± 5.94 usenai, EC = Eleusenai, EC = Ele	5% TE 30.00±0.00 348.36*±9.3(8.13*±0.06 4.140*±0.11 5.46*±0.20 6.26*±0.24 176.66*±4.8(300.33*±5.0 1590.52*±17. 1590.52*±17. crical conductivity ree replicate SE an	10 30.0 7.7 7.7 5.47 5.23 10.6(337.3 6 337.3 0 272 6 337.3 10 6 337.3 10 6 337.3 0 272 6 377.3 0 272 6 377.3 10 6 377.3 10 6 6 377.3 10 6 10 5.47 10 6 7.7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	% TE 00±0.00 66*±8.10 5 6±0.03 8*±0.20 **±0.20 6*±0.26 5*±4.05 *±4.05 *±4.26 *±4.26 *±4.26 *±4.26 *±4.05 *±5.05 *	20% TE 30.00±0.00 567.03 *±10.28 7.46*±0.20 7.311 *±0.13 5.18*±0.02 14.93 *±0.29 532.66 *±6.56 532 *±8.08 303.66 *±2.42 303.68 *±2.42 80D = Biological
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Temp °C 30.00 ± 0.00 30	30.00±0.00 488.53 ±9.74 8.50 ±0.05 3.085 ±40.02 5.19 ±±0.25 8.36 ±±2.96 303.33 ±±3.52 414.00 ±±2.62 414.00 ±±2.62 H= potentia of hydro	30.00±0.00 126.14±7.18 7.54±0.08 1.082±0.03 6.36±0.22 3.18±0.17 18.00±1.15 148.38±4.66 390.66±1.466 390.66±1.46 236.25±5.94 ue are mean of th	30.00±0.00 348.36*±9.3(8.13*±0.06 4.140*±0.11 5.46*±0.00 6.26*±0.24 212.36*±2.9(176.66*±4.8(300.33*±5.0) 1590.52*±17. crical conductivity crical conductivity ree replicate SE an	30.0 7.7(7.7(5.43) 5.27 5.27 5.27 10.60 10.60 337.3 6 337.3 6 337.3 6 310 6 310 6 310 6 310 6 310 6 310 6 310 6 310 6 310 6 310 6 310 8 5.433 5.433 5.433 5.433 5.433 5.433 5.433 5.433 5.433 5.435 5.433 5.435 6 6 7.77 7.77 5.2775 5.27755 5.27755 5.277555 5.2775555555555	00±0.00 66±48.10 2 6±0.03 8±0.20 *±0.10 6*±0.26 53±4.05 *±4.26 *±4.26 *±4.26 *±4.26 *±4.05 *±4.05 *±4.05 *±4.05 *±4.05 *±4.05 *±4.05 **±0.05.33 **±0.05	30.00 ± 0.00 567.03 ± 10.28 7.46 ± 0.20 7.311 ± 0.13 5.18 ± 0.02 14.93 ± 0.29 532.66 ± 6.56 324 ± 8.08 303.66 ± 2.42 303.66 ± 2.42 303.66 ± 2.66
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TDS mg L ⁻¹ 125, 79 \pm 7, 16 295, 53 \pm 3, 7, 6 434, 73 \pm 10, 58 488.53* pH 7.93 \pm 0.06 8.20 \pm 0.30 8.50* \pm 0.05 8.50* \pm 488.53* EC dSm ⁻¹ 1.052 \pm 0.03 1.797 \pm 0.05 2.748* \pm 0.05 3.085* DO mg L ⁻¹ 6.36 \pm 0.22 6.24 \pm 0.11 5.83* \pm 0.03 5.19* \pm BOD mg L ⁻¹ 3.13 \pm 0.17 4.20* \pm 0.34 6.93* \pm 0.13 8.36* \pm 368* \pm COD mg L ⁻¹ 17.66 \pm 0.88 125.66* \pm 1.20 204.33* \pm 2.02 253.66* TH mg L ⁻¹ 17.66 \pm 0.66 489 125.66* \pm 1.20 204.33* \pm 2.02 253.66* TA mg L ⁻¹ 3.147.33\pm4.66 160.66*{}\pm2.40 209.66* \pm 32.28 303.33* Colloride mg L ⁻¹ 234.45 \pm 5.91 1386.58 \pm 11.08 2304.32* \pm 2.777 2665.50* TE=Tannery effluent, Temp.= Temperature, TDS = Total dissolved solids, pH= potentia oxygen demand, COD = Chemical oxygen demand, TH = Total hardness, TA = Total alkalin a oxygen demand, COD = Chemical oxygen demand, TH = Total hardness, TA = Total alkalin Table 2. Effect of tannery effluent on haematological parameters in freshwater fish, C. <i>punc</i> Treatments Hb RBC WBC 5.07 8.04.67 4.03 23.44.67 4.03 23.44.65	488.53*±9.74 8.50*±0.05 3.085*±0.02 5.19*±0.25 8.36*±2.96 303.33*±5.25 414.00*±2.62 414.00*±2.62 H= potentia of hydro	126.14 \pm 7.18 7.54 \pm 0.08 1.082 \pm 0.03 6.36 \pm 0.22 3.18 \pm 0.17 18.00 \pm 1.15 148.38 \pm 4.66 390.66 \pm 1.466 390.66 \pm 1.466 236.25 \pm 5.94 bgenai, EC = Ele	348.36*±9.3(8.13*±0.06 4.140*±0.11 5.46*±0.00 6.26*±0.24 212.36*±2.9(176.66*±4.8(300.33*±5.0(1590.52*±17) crical conductivity crical conductivity ree replicate SE an	0 471.9 7.7(5.438 5.27 5.27 10.66 337.3 6 337.3 6 337.3 6 337.3 6 337.3 6 310 6 272 6 310 6 10 (*) significe	66*±8.10 :6 6±0.03 6±0.03 8*±0.20 **±0.10 6*±0.26 5*±4.05 *±4.05 *±4.26 *±4.26 *±4.26 *±4.05 *±4.05 *±4.05 *±4.05 *±4.05 *±4.05 **±0.05.3 **±0.05	567.03 ± 10.28 7.46 ± 0.20 7.311 ± 0.13 5.18 ± 0.02 14.93 ± 0.29 532.66 ± 6.56 354 ± 8.08 303.66 ± 2.42 303.68 ± 2.42 303.68 ± 2.42 8629.89 ± 26.60 800
pH 7.93±0.06 8.20±0.30 8.50*±0.05 7.54±0.03 7.76±0.03 7.76±0.03 7.76±0.03 7.76±0.03 7.76±0.03 7.76±0.03 7.76±0.03 7.76±0.03 7.76±0.03 7.76±0.03 7.76±0.03 7.76±0.03 7.76±0.03 7.76±0.03 7.311* D0 mg L ¹ 6.54±0.17 5.83*±0.03 5.83*±0.02 5.83*±0.23 5.86±0.24 10.666*±0.26 14.93** BOD mg L ¹ 7.156±0.88 1.55.66*±1.20 2.03*±0.25 6.56±0.23 3.18±0.17 6.26*±0.24 10.666*±0.26 14.93** COD mg L ¹ 7.17.66±0.88 1.25.66*±1.20 2.09,5±0.24 3.05,6±1.26 3.05,4* 3.52,66 TH mg L ¹ 7.17.66±0.88 1.25.66*±1.20 2.09,3*±0.77 2.665.50*±1.32 3.06,65±4.46 3.03,56*±4.65 3.05,64*±4.66 3.03,54*±4.65 3.05,64*±4.66 3.05,64*±4.66 3.03,54*±4.65 3.05,64*±4.66 3.03,54*±4.65 3.05,64*±4.66 3.03,54*±4.66 3.05,64*±4.66 3.05,64*±4.66 3.05,64*±4.66 3.05,64*±4.66 3.05,64*±4.66 3.05,64*±4.66 3.05,64*±4.66 3.05,64*±4.66 3.05	pH 7.93±0.06 8.20±0.30 8.50*±0.05 8.00*±0.5 8.30*±0.05 8.30*±2.05 8.36*±0.02 8.36*±0.02 8.36*±0.02 8.36*±0.02 8.36*±0.02 8.36*±0.02 8.53±±27.77 2665.50* 8.30+32*±27.77 2665.50* 8.30+32*±27.77 2665.50* 8.30+32*±27.77	8.50*±0.05 3.085*±0.02 5.19*±0.25 8.36*±0.23 8.36*±2.96 303.33*±3.52 414.00*±2.62 H= potentia of hydro	7.54 \pm 0.08 1.082 \pm 0.03 6.36 \pm 0.22 3.18 \pm 0.17 18.00 \pm 1.15 148.38 \pm 4.66 390.66 \pm 1.466 390.66 \pm 1.466 236.25 \pm 5.94 bgenai, EC = Ele	8.13*±0.06 4.140*±0.11 5.46*±0.00 6.26*±0.24 212.36*±2.9 176.66*±4.81 300.33*±5.00 1590.52*±17. ctrical conductivity ree replicate SE an	7.7 5.23 5.2438 5.27 10.66 337.3 0 272 6 337.3 10.66 310 6 310 14 2456.8 , DO = Diss d (*) significe	6±0.03 8*±0.20 **±0.10 6*±0.26 5*±4.05 *±4.05 *±4.26 *±4.26 *±4.26 *±4.05 *±4.05 *±4.05 *±4.05 *±4.05 *±4.05 ***0.05.3	7.46* \pm 0.20 7.311* \pm 0.13 5.18* \pm 0.02 14.93* \pm 0.29 532.66* \pm 6.56 354* \pm 8.08 303.66* \pm 2.42 8629.89* \pm 26.60 80D = Biological
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	EC dSm ⁻¹ 1.052 ± 0.03 1.797 ± 0.05 2.748 ± 0.05 $3.085^{4.5}_{-1}$ DO mg L ⁻¹ 6.36 ± 0.22 6.24 ± 0.11 5.83 ± 0.03 $5.19^{*\pm0.5}_{-1}$ BOD mg L ⁻¹ 3.13 ± 0.17 4.20 ± 0.34 6.93 ± 0.13 $8.36^{4.5}_{-1}$ BOD mg L ⁻¹ $1.7.66\pm0.88$ 125.66 ± 1.20 204.33 ± 2.02 253.66^{4}_{-1} TH mg L ⁻¹ 177.66 ± 0.88 125.66 ± 2.40 209.66 ± 2.28 303.33 ± 3.66 TH mg L ⁻¹ 571.66 ± 4.06 489.33 ± 4.26 414.00^{*}_{-1} TA mg L ⁻¹ 571.66 ± 4.06 489.33 ± 4.26 414.00^{*}_{-1} Thermery effluent, Temp.= Temperature, TDS Total hardness, TA 704.32 ± 2.777 2665.50^{*}_{-1} TE=Tannery effluent, Temp.= Temperature, TDS Total hardness, TA 704.32 ± 2777 2665.50^{*}_{-1} TE=Tannery effluent, Temp.= Temperature, TDS Total dissolved solids, pH= potentia 900.432 ± 27777 2665.50^{*}_{-1} TE=Tannery effluent, Temp.= Temperature, TDS Total dissolved solids, pH= potentia 72665.50^{*}_{-1} 7665.50^{*}_{-1} TE=Tannery effluent, Temp.= Temperature, TDS Total dissolved solids, pH= potentia 714.00^{*}_{-1} 7665.50^{*}_{-1}	3.085*±0.02 5.19*±0.25 8.36*±0.23 253.66*±2.96 303.33*±5.25 414.00*±2.62 H= potentia of hydro	1.082±0.03 6.36±0.22 3.18±0.17 18.00±1.15 148.38±4.66 390.66±1.46 236.25±5.94 genai, EC = Ele	4.140*±0.11 5.46*±0.00 6.26*±0.24 212.36*±2.94 176.66*±4.81 300.33*±5.04 1590.52*±17. ctrical conductivity ree replicate SE an	5.43(5.27 5.27 10.66 337.3 0 272 6 310 6 310 6 310 6 310 6 310 6 310 6 310 8 (*) significe	8*±0.20 *±0.10 6*±0.26 5*±4.05 *±4.05 *±4.26 *±4.26 *±4.26 *±4.26 *±4.26 *±4.05 *±4.05 ***0'05.3	7.311*±0.13 5.18*±0.02 14.93*±0.29 532.66*±6.56 354*±8.08 303.66*±2.42 8029.89*±26.60 80D = Biological
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.19*±0.25 8.36*±0.23 253.66*±2.96 303.33*±3.52 414.00*±2.62 H= potentia of hydro	6.36±0.22 3.18±0.17 18.00±1.15 148.38±4.66 390.66±1.46 236.25±5.94 pgenai, EC = Ele	5.46*±0.00 6.26*±0.24 212.36*±2.90 176.66*±4.80 300.33*±5.00 1590.52*±17. ctrical conductivity ree replicate SE an	5.27 10.66 337.3 0 272 6 310 14 2456.8 , DO = Diss d (*) significe	*±0.10 6*±0.26 5*±4.05 *±4.05 *±4.26 *±4.26 56*±30.55 36*±30.55 36*±30.05 ance of p<0.05.	5.18*±0.02 14.93*±0.29 532.66*±6.56 354*±8.08 303.66*±2.42 8629.89*±26.60 80D = Biological
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BOD mg L ⁻¹ 3.13 ± 0.17 $4.20*\pm0.34$ $6.93*\pm0.13$ $8.36*\pm0.13$ $8.36*\pm0.12$ 8.33 ± 0.14 8.33 ± 0.14	8.36*±0.23 253.66*±2.96 303.33*±3.52 414.00*±2.62 2665.50* ±13.82 H= potentia of hydro	3.18±0.17 18.00±1.15 148.38±4.66 390.66±1.46 236.25±5.94 genai, EC = Ele- ue are mean of th	6.26*±0.24 212.36*±2.9(176.66*±4.8(300.33*±5.0(<u>1590.52*±17</u> . ctrical conductivity ree replicate SE an	10.66 6 337.3 0 272 6 310 14 2456.8 , DO = Diss d (*) significe	6*±0.26 (3*±4.05 *±6.42 *±4.26 *±4.26 6(*±30.55 3(6*±30.55 3(0^{+2})(0^{-1})(0	14.93*±0.29 532.66*±6.56 354*±8.08 303.66*±2.42 8629.89*±26.60 8OD = Biological
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	COD mg L ⁻¹ 17.66±0.88 125.66*±1.20 204.33*±2.02 253.66* TH mg L ⁻¹ 147.33±4.66 160.66*±2.40 209.66*±3.28 303.33* TA mg L ⁻¹ 571.66±4.06 489.33±4.26 435.33*±3.66 414.00* Chloride mg L ⁻¹ 571.66±4.06 489.33±4.26 435.33*±3.66 414.00* TF mg L ⁻¹ 571.65±4.06 489.33±4.26 435.33*±3.65 414.00* Chloride mg L ⁻¹ 234.45±5.91 1386.58±11.08 2304.32*±27.77 2665.50* TE=Tannery effluent, Temp.= Temperature, TDS Total dissolved solids, pH= potentia 9004.32*±27.77 2665.50* TE=Tannery effluent, Temp.= Temperature, TDS Total dissolved solids, pH= potentia 9004.65.50* 9004.65.50* Teatmend, COD = Chemical oxygen demand, TH = Total hardness, TA = Total alkalin 9004.65.50* 904.07 9665.50* Table 2. Effect of tannery effluent on haematological parameters in freshwater fish, C. punc 6 6 10.334.0 904.057 433.31* Treatments 10.334.06 2.054.04 63.88+0.77 8.00+0.67 433.34*	253.66*±2.96 303.33*±3.52 414.00*±2.62 2665.50* ±13.82 H= potentia of hydro	18.00±1.15 148.38±4.66 390.66±1.46 236.25±5.94 genai, EC = Ele- ue are mean of th	212.36*±2.90 176.66*±4.80 300.333*±5.00 1590.52*±17. ctrical conductivity ree replicate SE an	6 337.3 0 272 6 310 14 2456.8 d (*) significe	(3*±4.05 *±6.42 *±4.26 6(*±30.55 3 6(*±30.55 3 6(*±30.55 3 ince orygen, B	532.66*±6.56 354*±8.08 303.66*±2.42 3629.89*±26.60 30D = Biological
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TH mg \tilde{L}^{-1} 147.33±4.66 160.66*±2.40 209.66*±3.28 303.333* TA mg L^{-1} 571.66±4.06 489.33±4.26 435.33*±3.66 414.00* Chloride mg L^{-1} 234.45±5.91 1386.58±11.08 2304.32*±27.77 2665.50* TE=Tannery effluent, Temp.= Temperature, TDS = Total dissolved solids, pH= potentia 914.00* 914.00* TE=Tannery effluent, Temp.= Temperature, TDS = Total dissolved solids, pH= potentia 914.00* 916.5.50* oxygen demand, COD = Chemical oxygen demand, TH = Total hardness, TA = Total alkalii 916.5.50* 916.5.50* Tealt bardness, TA = Total dissolved solids, pH= potentia 916.5.50* 916.5.50* 916.5.50* Tealt bardness, TA = Total alkalii 916.5.50* 916.5.50* 916.5.50* 916.5.50* Tealt bardness The Total hardness, TA = Total alkalii 916.5.50* 916.5.50* 916.5.50* Table 2. Effect of tannery effluent on haematological parameters in freshwater fish, C. punc 6 6 90.6.5.50* 917.50* 90.6.57 92.33+11 Treatments 10.33+0.06 96.4.04 67.98+0.77 80.4.057 47.33+11	303.33*±3.52 414.00*±2.62 2665.50* ±13.82 H= potentia of hydro	148.38±4.66 390.66±1.46 236.25±5.94 genai, EC = Eleoue are mean of th	176.66*±4.8(300.33*±5.00 <u>1590.52*±17.</u> ctrical conductivity ree replicate SE an	0 272 6 310 <u>14 2456.8</u> 7, DO = Diss d (*) signific:	*±6.42 *±4.26 66*±30.55 3 60*e oxygen, B ance of p<0.05.	354*±8.08 303.66*±2.42 3629.89*±26.60 30D = Biological
$ TA \ m_{2} L^{-1} \qquad 571.66\pm4.06 \qquad 489.33\pm4.26 \qquad 435.33\pm5.66 \qquad 414.00\pm2.62 \qquad 390.66\pm1.46 \qquad 300.33\pm5.06 \qquad 310^{\pm}\pm4.26 \qquad 303.66^{\pm} \\ \hline \ $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	414.00*±2.62 2665.50* ±13.82 H= potentia of hydrc	390.66±1.46 236.25±5.94 geenai, EC = Eleo ue are mean of th	300.33*±5.00 1590.52*±17. trical conductivity ree replicate SE an	6 310 14 2456.8 7, DO = Diss d (*) signific	*±4.26 56*±30.55 3 60ve oxygen, B ance of p<0.05.	303.66*±2.42 3629.89*±26.60 30D = Biological
$ \frac{L^{-1}}{234.45\pm5.91} = \frac{1386.58\pm11.08}{1386.58\pm11.08} = \frac{2304.32*\pm27.77}{2665.50^*\pm13.82} = \frac{236.25\pm5.94}{236.25\pm5.94} = \frac{1590.52*\pm17.14}{1500.52^{*}\pm17.14} = \frac{2456.86^{*}\pm30.55}{245.90^{*}\pm30.55} = \frac{3629.89^{*}}{320.95} = \frac{15}{300.95} = \frac{1100}{100.5} = \frac{1000}{100.5} = \frac{10000}{100.5} = \frac{1000}{100.5} = \frac{10000}{1$	Chloride mg L ⁻¹ 234.45±5.911386.58±11.082304.32*±27.772665.50*TE=Tannery effluent, Temp.= Temperature, TDS = Total dissolved solids, pH= potentiaoxygen demand, COD = Chemical oxygen demand, TH = Total hardness, TA = Total alkalinoxygen demand, COD = Chemical oxygen demand, TH = Total hardness, TA = Total alkalinoxygen demand, COD = Chemical oxygen demand, TH = Total hardness, TA = Total alkalinoxygen demand, COD = Chemical oxygen demand, TH = Total hardness, TA = Total alkalinoxygen demand, COD = Chemical oxygen demand, TH = Total hardness, TA = Total alkalinTable 2. Effect of tannery effluent on haematological parameters in freshwater fish, C. puncTreatmentsIs the RBCMBCControl10.33+0.0620.5+0.04678.00+0.578.00+0.5720.33+1	2665.50* ±13.82 H= potentia of hydrc	236.25 ± 5.94 ogenai, EC = Eleo ue are mean of th	1590.52*±17. strical conductivity ree replicate SE an	14 2456.8 /, DO = Diss d (*) significa	86*±30.55 3 olve oxygen, B ance of p<0.05.	8629.89*±26.60 80D = Biological
TE=Tannery effluent, Temp.= Temperature, TDS = Total dissolved solids, pH= potentia of hydrogenai, EC = Electrical conductivity, DO = Dissolve oxygen, BOD = E oxygen demand, COD = Chemical oxygen demand, TH = Total hardness, TA = Total alkalinity. Value are mean of three replicate SE and (*) significance of $p<0.05$. Table 2. Effect of tannery effluent on haematological parameters in freshwater fish, <i>C. punctatus</i> . Treatments IS MEC VBC VBC VBC VBC VBC VBC VBC VBC VBC VB	TE=Tanneryeffluent, Temp.= Temperature, TDS= Total dissolved solids, pH= potentiaoxygen demand, COD = Chemical oxygen demand, TH = Total hardness, TA = Total alkaliioxygen demand, COD = Chemical oxygen demand, TH = Total hardness, TA = Total alkalii Table 2. Effect of tannery effluent on haematological parameters in freshwater fish, C. punc TreatmentsTreatmentsHbRBCWBCSRControl 10.3340 06, 70.8840 77 Control 10.3340 06, 70.8840 77	H= potentia of hydrc	ogenai, EC = Ele ue are mean of th	strical conductivity ree replicate SE an	/, DO = Diss d (*) significa	olve oxygen, B ance of p<0.05.	30D = Biological
ents 15 th days treatment 45 th days treatment 85 th days 45 th days	tents 15 th days treatment Hb RBC WBC ESR 10 33+0 06 2 95+0 04 62 88+0 77 8 00+ 0 57	fish, C. punctatus. Exposure	t periods				
Hb RBC WBC ESR PCV Hb RBC WBC ESR 10.33 ± 0.06 2.95 ± 0.04 62.88 ± 0.27 8.00 ± 0.57 42.33 ± 1.20 10.33 ± 1.20 2.95 ± 0.04 62.88 ± 0.27 8.00 ± 0.57 42.33 ± 1.20 $11.20\pm\pm0.11$ $5.55\pm\pm0.13$ $8.02.33\pm0.88$ 10.33 ± 1.85 10.96 ± 0.08 $4.63\pm\pm0.19$ 87.68 ± 0.57 39.33 ± 0.33 8.40 ± 0.11 2.62 ± 0.02 20.33 ± 1.85 20.33 ± 1.85 9.16 ± 0.08 3.32 ± 0.13 17.66 ± 0.88 34.66 ± 0.33 7.26 ± 0.29 2.13 ± 0.18 $24.00\pm0.23\pm0.57$ 24.00 ± 0.57	Hb RBC WBC ESR 10 33+0 06 2 95+0 04 62 88+0 27 8 00+ 0 57			45 th d	ays treatmer	nt	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10 33+0 04 5 02+0 07 62 88+0 22 80+0 52	PCV	Чŀ	RBC	WBC	ESR	PCV
$10.73\pm0.06 3.39\pm0.12 82.30^{\pm}0.15 5.00^{\pm}0.57 45.00^{\pm}1.73 11.20^{\pm}\pm0.11 5.55^{\pm}0.13 83.50^{\pm}0.55 10.33\pm0.88 10.96\pm0.08 4.63\pm0.19 87.63^{\pm}0.45 13.00^{\pm}\pm0.57 39.33\pm0.33 8.40^{\pm}\pm0.11 2.62^{\pm}\pm0.02 136.00^{\pm}\pm3.34 20.33^{\pm}1.85 9.16^{\pm}\pm0.08 3.32\pm0.12 89.13^{\pm}\pm1.33 17.66^{\pm}\pm0.88 34.66^{\pm}\pm0.33 7.26^{\pm}\pm0.29 2.13^{\pm}\pm0.18 191.68^{\pm}\pm1.87 24.00^{\pm}\pm0.57 31.26^{\pm}\pm0.29 2.13^{\pm}\pm0.18 24.00^{\pm}\pm0.57 31.26^{\pm}\pm0.29 2.13^{\pm}\pm0.18 24.00^{\pm}\pm0.57 31.26^{\pm}\pm0.29 2.13^{\pm}\pm0.18 24.00^{\pm}\pm0.57 31.26^{\pm}\pm0.28 21.03^{\pm}\pm0.18 24.00^{\pm}\pm0.57 31.26^{\pm}\pm0.28 21.03^{\pm}\pm0.18 24.00^{\pm}\pm0.57 31.26^{\pm}\pm0.28 21.03^{\pm}\pm0.18 24.00^{\pm}\pm0.57 31.26^{\pm}\pm0.28 21.03^{\pm}\pm0.28 21.03^{\pm}\pm0.28 21.00^{\pm}\pm0.57 21.00^{\pm}\pm0.57 $		42.33 ± 1.20	10.33 ± 1.20		.88±0.27	8.00±0.57	42.33 ± 1.20
$10.96\pm0.08 4.63\pm0.19 87.63\pm0.45 13.00^{\pm}\pm0.57 39.33\pm0.33 8.40^{\pm}\pm0.11 2.62\pm0.02 136.00^{\pm}\pm3.34 20.33^{\pm}\pm1.85 9.16\pm0.08 3.32\pm0.12 89.13^{\pm}\pm1.33 17.66^{\pm}\pm0.88 34.66^{\pm}\pm0.33 7.26^{\pm}\pm0.29 2.13^{\pm}\pm0.18 191.68^{\pm}\pm1.87 24.00^{\pm}\pm0.57 100^{\pm}\pm0.29 2.13^{\pm}\pm0.18 101.68^{\pm}\pm1.87 24.00^{\pm}\pm0.57 100^{\pm}\pm0.29 2.13^{\pm}\pm0.18 101.68^{\pm}\pm1.87 24.00^{\pm}\pm0.57 100^{\pm}\pm0.29 2.13^{\pm}\pm0.18 100^{\pm}\pm0.29 2.13^{\pm}\pm0.18 100^{\pm}\pm0.29 2.13^{\pm}\pm0.18 100^{\pm}\pm0.29 2.13^{\pm}\pm0.18 24.00^{\pm}\pm0.57 24$	10.73 ± 0.06 $3.39^{\pm}\pm0.12$ $82.30^{\pm}\pm0.15$ $5.00^{\pm}\pm0.57$	$45.00*\pm1.73$	$11.20^{*\pm} 0.11$	æ	$50^{*\pm} 0.55$	10.33 ± 0.88	$35.33*\pm0.33$
9.16 ± 0.08 3.32 ± 0.12 89.13 ± 1.33 17.66 ± 0.88 34.66 ± 0.33 7.26 ± 0.29 2.13 ± 0.18 191.68 ± 1.87 24.00 ± 0.57	10.96 ± 0.08 4.63 ± 0.19 87.63 ± 0.45 13.00 ± 0.57	39.33 ± 0.33	$8.40^{*\pm} 0.11$	_	$6.00*\pm3.34$	$20.33*\pm 1.85$	$31.00*\pm0.57$
	$89.13^{\pm} 1.33 17.66^{\pm} 0.88$	$34.66^{\pm 0.33}$	$7.26^{\pm} \pm 0.29$	$2.13^{\pm} 0.18$ 19]	1.68 ± 1.87	$24.00*\pm0.57$	$27.00*\pm1.01$

C. punctatus.
Ĵ,
fisł
freshwater
.ш
indices
blood
on
y effluent on blood indices in freshwa
ftannery
t of
. Effect
3
Table

				Exposure periods	periods			
Treatments		15 th (day			45 th days	ays	
	CT/sec	MCV cµ	MCHC g %	MCH g %	CT/sec	ΜCV cμ	MCHC g %	MCH g %
Control	50.52 ± 0.03	143.68 ± 6.05	24.45 ± 0.82	35.04 ± 0.61	50.51 ± 0.01	143.68 ± 6.05	24.45 ± 0.82	35.04 ± 0.61
5% TE	52.53 ± 0.01	$132.32^{*\pm} 3.22$	23.91 ± 0.79	$31.66^{*\pm} 0.95$	52.55 ± 0.01	$63.69^{*\pm} 2.62$	$31.73 * \pm 0.73$	$20.17^{*\pm} 0.36$
$10\% \mathrm{TE}$	$56.35^{*\pm} 0.04$	$78.56^{*\pm} 4.05$	$27.26^{*\pm} 0.18$	$23.22^{*\pm} 0.85$	$57.23^{*\pm} 0.06$	$79.16^{*\pm} 2.60$	$27.10^{*\pm} 0.13$	$32.01^{*\pm} 0.27$
20% TE	$57.70^{*\pm}0.15$	$104.43^{*\pm} 3.02$	$26.44^{*\pm} 0.39$	$27.63^{*\pm} 1.12$	$59.20^{*\pm} 0.31$	$127.94^{*\pm} 7.59$	$26.98^{*\pm} 1.37$	34.42 ± 2.10
TE= Tannery efflue	ent, CT= clotting time	'E= Tannery effluent, CT= clotting time, MCV= mean corpuscular volume, MCHC= mean corpuscular haemoglobin concentration, MCH= mean corpuscular haemoglobin . Value	scular volume, MCH	[C= mean corpusculi	ar haemoglobin conc	centration, MCH= me	ean corpuscular hae	moglobin . Value

are mean of three replicate SE and $(\overset{\sim}{*})$ significance of p<0.05.

S. Parveen et al. / J. Appl. & Nat. Sci. 9 (1): 201 - 205 (2017)

(PCV) was found increased in 5% TE at 15th day and also decreased significantly after 45th day of exposure periods. The PCV was found decreased for 10% TE and 20% TE significantly after 15th and 45thday of exposed fish (Table 2). The clotting time (CT) registered an increasing trend over and above controls for all exposure periods. The mean corpuscular volume (MCV) value, mean corpuscular haemoglobin (MCH) and corpuscular haeamoglobin concentration mean (MCHC) values decreased after 15th day 5% TE exposed fish, and MCHC values increased 45th days of exposure to 5%, 10% and 20% TE exposed fish in comparison with control value (Table 3). Short term exposure to pollutants and low concentration of heavy metals mostly induce an increase in these haematological indices to tolerate the stress condition. Similar results were reported by Singh and Singh, (1982) in fish Mystus vittatus exposed to copper and Zinc Sulphate. Haniffa and Porchelvi (1985) and Bhatkar (2010) reported erythrocytosis and increase in haemoglobin after exposure to stress condition. This can be due to impairment of gas exchange. According to Shah (2006) it may be due to the consequent stimulation of erythropoesis or compensatory erythropoesis in fish Tinca tinca.

In the present study when the freshwater fish C. punctatus was exposed to various concentration of tannery effluent and evaluated haematological toxicity. The Hb%, RBC count and PCV% was significantly increased after 15th day of exposure period, but decreased Hb%, RBC count and PCV% values after 45th day of exposure period leading to anemia. The anemic condition of fish resulting from an unusually low numbers of red blood cells or too little haemoglobin content in the red blood cells Kori-Siakepere et al. (2006). Bhagwant and Bhikajee (2000) reported that the prolonged reduction in haemoglobin content is deleterious to oxygen transport and any blood dyscrasia and degeneration of the erythrocytes could be ascribed as pathological conditions in Oreochromis hybrid fish.

The fall in RBC count, Hb% and PCV%, in the fish C. punctatus upon treatment with both copper and chromium, shows the occurrence of acute anemia in toxic condition Mallesh et al. (2015). Cirrhinus mrigala exposed to hexavalent chromium. A decrease in the concentration of haemoglobin in the blood, which is usually caused by the effect of toxic metals on gills, as well as a decrease in oxygen also indicates anemia or confirms negative changes occurring in fish. Singh et al. (2008) revealed in Cirrihna mrigala and *Catla catla* fishes that decreased haemoglobin percent, RBC count and PCV percent values leading to anemia. They also suggested that the anemia might have lead to fall in the red blood cell, haemoglobin concentration and hematocrit values and anemia under metal stress may be due to blood cell injury and disturbed haemoglobin synthesis. Hematocrit is also used to determine the ratio of plasma to corpuscles in the blood (Larsson *et al.*, 1985) and hemopoietic functioning of tissues (Kori-Siakepere *et al.*, 2006). Ates *et al.* (2008) also found the reduction in erythrocyte, haemoglobin and hematocrit values in fish *Onchorynchus mykiss ex*posed to lead and copper which can be an indicator of anemia with the subsequent result of inhibition of erythropoietin in the hemopoietic organism.

The white blood corpuscles count was significantly increased in the experimental groups at the end of 15th and 45th day of exposure periods. Increased population of white blood corpuscles might indicates a stimulation of immune system to protect the fish against infections under hexavalent chromium toxicity. Singh, (1995) also found similar findings, increase in leucocytes count in C. punctatus exposed to chromium and copper, and in Cyprinus carpio exposed to hexavalent chromium (Shaheen, 2009). Leucocytes increased following copper exposure and were significantly higher in Prochilodous scrofa fish exposed to increased copper concentration (Mazon et al., 2002). Similar trends were reported in the fish exposed to various pollutants in C. punctatus exposed to zinc (Tyagi and Srivastava, 2005).

Conclusion

Haematological characteristics are an important tool that can be used to understand as an effective and sensitive index to monitor physiological and pathological changes in fishes. Exposed of fish to tannery effluent showed a significant decrease in the haemoglobin (Hb) content (9.16 \pm 0.08), red blood cells (3.32 \pm 0.12), packed cell volume (34.66 \pm 0.33) and mean corpuscular haemoglobin (MCH) values, whereas significant increase in the white blood cells (WBC), erythrocyte sedimentation rate (ESR) and clotting time was recorded with increase in exposure periods. Changes in haematological parameters depend on the aquatic biotope, fish species, age, and sexual maturity and health status. Haematological parameter are highly useful as the early warning for the process of xenobiotic and their effects, which make it possible to implement corrective measures before aquatic organisms and their communities suffer irreversible damage.

REFERENCES

- Adakole, J.A. (2012). Changes in some haematological parameters of the African catfish (*Clarias gariepinus*) exposed to a metal finishing company effluent. *Indian Journal of Science and Technology*. 5: 4.
- Adebisi, S.A., Ipinromiti, K.O. and Amoo, I.A. (2007). Heavy Metals Contents of Effluents and Receiving Waters from Various Industrial Groups and their Environs. J. Appl. Sci. 2(4): 345-348.
- Adriano, D.C. (2001). Trace Elements in Terrestrial Environments: Biochemistry bioavailability and risks of metals. *Springer Verlag.* p.867.

- Anikwe, M. and Nwobodo, K.C.A. (2006). Long term effect of municipal waste disposal on soil properties and productivity of sites used for urban agriculture in Abakaliki, Nigeria. *Bioresources Technol.*, 83: 241-251
- APHA.(2005). Standard methods for the examination of water and wastewater, 21st Edn., Wasington D.C.
- Ates, B., Orun, I., Talas, Z.S., Durmaz, G. and Yilmaz, I. (2008). Effects of sodium selenite on some biochemical and hematological parameters of rainbow trout (*Oncorhynchus mykiss* Walbaum, 1792) exposed to Pb2+ and Cu2+. Fish Physiology and Biochemistry, 34: 53–59
- Bakare, A.A., Lateef, A., Amuda, O.S. and Afolabi, R.O. (2003). The aquatic toxicity and characterization of chemical and microbiological constituents of water samples from Oba River, Odo-oba, Nigeria. Asian J. Microbiol Biotechnol. Environ. Sci., 5: 11-17
- Bhagwant, S. and Bhikajee, M. (2000). Induction of hypochromic macrocytic anemia in Oreochromis hybrid (cichlidae) exposed to 100mg/l (sublethal dose) of aluminium. *Sci. Technol. Res. J.*, 5: 9-20
- Bhatkar, N. V. (2010). Chromium, nickel and zinc induced alterations in the gills of the fresh water fish *Labeo rohita. J. Appl. & Nat. Sci.*, 2 (2): 234-238
- Goodwin, T. H., Young, A. R., Holmes, M. G. R., Old, G. H., Hewitt, N., Leeks, G. J. L., Packman, J. C. and Smith, B. P. G. (2003). The temporal and spatial variability of sediment transport and yields within the Bradford Beck catchment, West Yorkshire. *Sci. Total Environ.*, 314-316: 475–494
- Haniffa, M. A. and Porchelvi, M. (1985). Effects of distillery effluents on oxygen consumption of freshwater fish, Sarotherodon mossambicus. J. Environ. Biol., 6: 17-23
- Kori Siakpere, O., Ake, J. and Avworo, U. M. (2006). Sublethal effects of some selected haematological parameters of Heteroclarias (A hybrid of *Heterobranchus bidorsalis* and *Clarias gariepinus*). Int. J. Zool. Res., 2: 77-83
- Kori-Siakpere, O. and Ubogu, E. O. (2008). Sublethal haematological effects of zinc on the freshwater fish, *Heteroclarias* sp. (Osteichthyes: Clariidae). African Journal of Biotechnology, 7 (12): 2068-2073
- Larsson, A., Haux, C. and Sjobeck, M. (1985). Fish physiology and metal pollution. Result and experiences from laboratory and field studies. *Ecotoxicol. Environ. Saf.*, 9: 250-281
- Mallesh, B., Pandey, P. K., Kumar, K., Vennila, A. and Kumar, S. (2015). Bioconcentration of hexavalent chromium in Cirrhinus mrigala (Ham 1822): effect on haematological parameters. *Journal of Biology and Earth sciences*, 5 (1): 59-67
- Mazon, A.F., Cerqueira, C. and Fernandes, M.N. (2002). Gill cellular changes induced by copper exposure in the South American tropical fresh water fish *Prochilodous*

scrofa. Environ. Res., 88: 52-63

- Mishra, S., Sharma, D. and Melkania, V. (1988). Physicochemical .characterstics of effluents from a textile mill at Ra.Inpur and their effect on fish mortality. IXth annual Session of and national symposium on Fish. Assess and Management of Acad.
- Morrison, M.L., Block, W.M., Strickland, M.D. and Kendall, W.L. (2001). Wildlife Study Design. New York: Springer-Verlag.
- Nadal, M., Schuhmacher, M. and Domingo, D.L. (2004). Metal pollution of soils and vegetation in an area with petrochemical industries. *Sci. Total Environ.*, 321(1-3): 59-69
- Odiete, W.O. (1999). Impacts associated with water pollution in Environmental Physiology of Animals and Pollution. Diversified Resources Ltd, Lagos 1st edition. 187-219
- Pawar, C. D. (1988). Studies on fish and fisheries of river, Panchganga. M.Phil. dissertation, Shivaji University, Kolhapur (India).
- Sahu, R. K., Katiyar, S., Yadav, A. K., Kumar, N. and Srivastava, J. (2008). Toxicity Assessment of Industrial Effluent by Bioassays Clean. *Soil, Air, Water*, 36:517-520
- Shah, S.L. (2006). Haematological parameters in Tench, *Tinca tinca* after short term exposure to Lead. *Journal* of *Applied Toxicology*, 26 (3): 223-228
- Shaheen, T. (2009). Studies on chromium toxicity in *Cyprinus carpio* brood stock progeny relationship. Ph.D Thesis, University of Punjab, Lahore, Pakistan.
- Singh, M.(1995). Haematological responses in a fresh water teleost, *Channa punctatus* to experimental copper and Cr poisoning, *J. Environ. Biol.*, 16:339-341
- Singh, S. R. and Singh, B. R. (1982). Effect of Copper and Zinc Sulphate on the blood parameters of *Mystus vittatus*. *Matsya*, 8: 1-6
- Singh, Y., Kant, K., Sharma, H.B. and Rana, K.S. (2008). Bioaccumulation of cadmium in Tissues of Cirrihna mrigala and Catla catla. Asia. J. Exp. Sci., 22(3): 411-414
- Sood, R. (1996). Haematology for Students and Practitioners Jaypee Brothers Medical Publishers (P) Ltd., New Delhi.
- Sugasini, A. and Rajagopal, K.(2015). Characterization of Physicochemical Parameters and heavy metal Analysis of Tannery Effluent. *Int. J. Curr. Microbiol. App.*, 4(9): 349-359
- Tyagi, A. and Srivastava, N. (2005). Haematological response of fish *Channa punctatus* (Bloch) to chronic zinc exposure. *J Environ. Biol.*, 26(2 Suppl):429-432
- Wintrobe, M.M. (1957). Clinical Haematology. Lea and Febiger, USA.