

Journal of Applied and Natural Science 8 (3): 1638 - 1642 (2016)

Prediction of storability of organically produced paddy seeds through natural and accelerated ageing techniques

Gajendra Khidrapure^{1*}, S. N. Vasudevan¹, S. R. Doddagoudar¹, A. G. Sreenivas² and Satyanarayana Rao³

¹Department of Seed Science and Technology, University of Agricultural Science (UAS), Raichur-584104, INDIA ²Department of Agricultural Entomology, UAS, Raichur-584104, INDIA

³Department of Agronomy, Organic Farming Institute, UAS, Raichur-584104, INDIA

^{*}Corresponding author. E-mail: gajumk@gmail.com

Received: January 21, 2016; Revised received: May 30, 2016; Accepted: July 24, 2016

Abstract: The present study was conducted to know the storage potential of organically produced paddy seeds in the Department of Seed Science and Technology, University of Agricultural Sciences, Raichur. The seed lot were divided into two parts, one part was stored in cloth bag for a period of 12 months under ambient conditions. At the same time another set of seeds were subjected to accelerated ageing at $42 + 1^{\circ}$ C temperature and 90 per cent relative humidity (RH) for a period of 0-12 days. Among the ageing methods, artificially aged seeds showed drastic decreases in seed quality as compared to natural ageing. Among the treatments T₉ (37.5 % FYM + 37.5 % vermicompost + 25 % neem cake + foliar spray of panchagavya on 30, 60, 90 and 120 DAT) recorded significantly highest seed quality parameters *viz*, seed germination (97.81 %), seedling length (29.42 cm) and SVI (2878) at initial stage in both the method of aging and at the end of storage period; seed germination (71.23 and 87.33 %), seedling length (19.66 and 27.00 cm) and SVI (1400 and 2358) in accelerated ageing (AA) and natural ageing (NA) respectively, whereas, lowest in control (Inorganic treatment). The seed quality parameters of four days of AA were similar to that of six months of NA. Hence, storability of organically produced paddy seeds were better as compared to inorganic seeds and it can be predicted that four days of AA is equal to six months of NA. The information generated will be useful in retention or disposal of a particular variety or seed lot.

Keywords: Accelerated ageing, Natural ageing, Paddy, Prediction, Storability

INTRODUCTION

Seeds are uniquely equipped to survive as viable regenerative organisms until the time and place are right for the beginning of a new generation. However, like other forms of life, they cannot retain their viability indefinitely and eventually deteriorate and die. High quality seed shows no appreciable drop in germination (Vijayan, 2005). Standard germination test does not predict the extent of deterioration that occur in seeds, which is the sole deficiency of germination test for predicting relative storage potential of seeds (Shantappa Tirakannanavar et al., 2006). Many a time most of the seed producers (private or government organizations) will be forced to store a part of the seed produced may be because of excess production or due to less demand of the product. Under these circumstances, they will be put under confusion to take the decision or which seed lot need to be stored and which are need to be disposed off immediately. This emphasizes the need for a suitable technique through which we can assess the relative storability of seeds. Till date there is no widely accepted methods for measuring the relative storage potential of seed lot. However, stress test known as accelerated ageing test has been first developed by (Delouche, 1965) at Mississippi State University. Accelerated Ageing (AA) test show greater potential as a test for predicting the relative storability of different seed lots of crops (Desai, 1976). This test operate on the principle that under high temperature $(40-45 \ ^{0}C)$ and high relative humidity $(90-100 \ \%)$ conditions for short period, increases the catabolic changes at the cellular levels beyond the threshold of tolerance reduction in seed quality parameters leading to (Vasudevan et al., 2012). It is assumed that the process of deterioration under AA condition is same as in natural ageing (Delouche and Baskin, 1973). Hence, it is possible to predict the relative storability of a particular seed lot by exposing to high temperature and relative humidity for different durations and comparing the results with natural ageing. Keeping these in view an experiment was conducted with the objective of determining the storage potential of organically produced paddy seeds through accelerated ageing technique.

MATERIALS AND METHODS

Studies were undertaken at the Department of Seed Science and Technology, University of Agricultural

ISSN : 0974-9411 (Print), 2231-5209 (Online) All Rights Reserved © Applied and Natural Science Foundation www.jans.ansfoundation.org

Sciences, Raichur to know the storage potential of organically produced paddy seeds during 2013. Freshly harvested organically produced bulk seeds obtained from field experiment conducted by application of different nutrient treatments viz., T1- control (RDF 100: 50: 50 kg NPK kg⁻¹ ha), T₂-100 % RDN through FYM, T₃-100 % RDN through vermicompost (VC), T₄-50 % RDN through FYM + 50 % RDN through VC, T₅-37.5 % RDN through FYM + 37.5 % RDN through VC + 25 % RDN through neem cake, T_6-T_2+ panchagavya @ 3 %, T₇-T₃ + panchagavya @ 3 %, T₈-T₄+ panchagavya @ 3 %, T₉-T₅+ panchagavya @ 3 %, T₁₀-Green manuring (Organic farmer practices) and foliar spray of panchagavya at 30, 60, 90 and 120 days after transplanting. The seed lot of each treatment was divided into two parts out of which one part was subjected to accelerated ageing at 40 + 1 ⁰C temperature and 98 per cent relative humidity (RH) by keeping them in monolayer on a wire mesh for a period of 0-12 days (Delouche and Baskin, 1973). Accelerated aged samples were drawn at an interval of two day and subjected for different test to determine various quality parameters. At the same time sizable quantity of another part seeds were placed in cloth bag and stored for a period of 12 months and the observations on various seed quality parameters were recorded once in two months. The germination test was conducted in top of paper method (Anonymous, 2013). The seedling length of 10 randomly selected normal seedlings from germination test was measured from tip of shoot to root tip and the mean length was calculated and expressed as seedling length in centimeters. The seedling vigour index was determined by multiplying the percentage germination and total seedling length (Abdul-Baki and Anderson, 1973). The experiment was conducted in completely randomized design with four replication. The data obtained was statistically analysed as per (Panse and Sukhatme, 1978).

RESULTS AND DISCUSSION

There exist significant differences in the seed quality parameters (Tables 1-3) due to treatments (application of different sources of nutrients). The seed quality parameters viz., mean seed germination (94.48 %), seedling length (27.29 cm) and SVI (2578) were same at initial stage of ageing and decreased with advancement of storage period in both the ageing methods. Whereas, mean seed germination (67.95 and 82.79 %), seedling length (18.38 and 24.17 cm) and SVI (1249 and 2001) were recorded at the end of AA and NA, respectively. Artificially aged seeds showed drastic decreases in seed quality as compared to natural ageing because of adverse effect of higher temperature and relative humidity leads to faster depletion of food reserves (Kovalenko et al., 1977); loss of membrane integrity, denaturation of protein and enzyme system and ultra structural changes (Roberts, 1972). Similar results were also observed by (Manimekalai, 2006) in black gram *i.e.* application of organics to seed and seed crop helps to increase seed quality by improving nutrient composition of seed and (Vijayan and Krishnaswamy, 2014) studied the impact of organic techniques of seed crop management on seed quality and reported that seed grown under organic condition recorded better quality as compared to inorganic method in paddy.

Among the treatments T_9 (37.5 % FYM + 37.5 % vermicompost + 25 % neem cake + foliar spray of panchagavya on 30, 60, 90 and 120 DAT) recorded significantly highest seed quality parameters viz., seed germination (97.81 %), seedling length (29.42 cm) and SVI (2878) at initial stage in both the method of aging. Whereas at the end of storage period; seed germination (71.23 and 87.33 %), seedling length (19.66 and 27.00 cm) and SVI (1400 and 2358) in AA and NA respectively. The lowest seed germination (61.23 and 77.59 %), seedling length (15.29 and 19.92 cm) and SVI (936 and 1546) in AA and NA respectively were recorded in inorganic treatment (RDF). The retention of higher germination potential may be due to initial vigour potential of resultant seeds (T_9) . Better germination of seeds in the treatment (T_9) might be due to combined application of different sources of nutrients which helps to supply of both macro and micro nutrients there by better growth and development of plant. Panchagavya spray might also contribute for proper development of seed and virtue of its effect on enhancing the level of growth promoting substances in the seed brought out additional benefit there by increases in germination and vigour. Similar findings influence of organic manure on the plant growth and seed quality parameters in sesame and seed quality parameters of organic upland rice seed production was reported by (Vijayakumari and Hiranmai, 2012) and (Raumjit Nokkoul, 2014) respectively. The accelerated ageing

Fig.1. *Prediction of relative storability of seeds though accelerated and natural ageing.*

Turoturonto			Agein	ng in days	(AA)			Tucotmonto			Agein	ıg in montl	hs (NA)		
T)	Initial	7	4	9	×	10	12	I reaumenus (T)	Initial	6	4	9	×	10	12
T_1	92.22	90.91	86.57	81.09	75.00	69.30	61.23	T_1	92.22	92.00	90.38	87.04	84.40	80.20	77.59
T_2	93.06	90.73	87.50	85.82	77.63	71.91	69.08	T_2	93.06	92.08	91.46	88.60	86.33	84.60	82.63
T_3	93.16	90.93	88.20	85.75	79.03	73.50	67.61	T_3	93.16	92.37	91.56	88.90	87.08	85.40	81.68
T_4	93.11	90.77	88.09	85.81	78.50	72.22	67.50	T_4	93.11	92.15	91.50	88.64	86.96	85.23	82.00
T_{5}	94.39	91.20	89.07	86.06	78.81	72.50	67.90	T_{5}	94.39	93.57	91.74	89.27	87.96	85.73	82.00
T_6	95.41	93.25	91.48	88.10	80.16	74.90	68.21	T_6	95.41	94.08	93.18	91.91	90.30	88.17	83.63
${f T}_7$	96.16	94.01	92.70	88.98	82.90	76.38	69.51	T_7	96.16	95.63	93.70	92.91	91.57	88.79	84.78
T_8	96.23	95.61	93.91	89.72	82.02	76.45	70.45	T_8	96.23	96.01	95.63	94.17	92.78	89.27	85.78
T_9	97.81	95.66	93.94	90.97	84.51	78.90	71.23	T_9	97.81	97.36	95.69	94.23	92.80	90.21	87.33
T_{10}	93.21	91.10	87.00	84.15	77.33	71.32	66.80	T_{10}	93.21	92.67	91.70	89.09	86.01	83.41	80.48
Mean	94.48	92.42	89.86	86.64	79.59	73.74	67.95	Mean	94.48	93.79	92.65	90.48	88.62	86.10	82.79
SEm <u>+</u>	0.58	0.33	0.36	0.35	0.34	0.31	0.33	SEm <u>+</u>	0.58	0.57	0.56	0.63	0.57	0.55	0.52
CD @ 1 %	1.74	0.99	1.09	1.08	1.03	0.94	1.00	CD @ 1 %	1.74	1.70	1.68	1.89	1.71	1.65	1.56
		υ			0 0		0	0	J						
Treatments	Ageing i	n days (AA		,		1	2	Treatments	Ageing in	n months (]	NA)	,			:
(T)	Initial	7	4	9	∞	10	12	(T)	Initial	7	4	6	∞	10	12
\mathbf{T}_1	24.14	23.96	21.00	19.78	18.02	15.72	15.29	\mathbf{T}_1	24.14	23.40	22.71	21.83	21.41	20.78	19.92
T_2	25.43	25.24	23.08	21.94	21.01	19.13	17.67	T_2	25.43	24.57	24.10	23.60	23.02	22.75	22.21
T_3	26.95	26.48	24.47	23.53	21.90	19.83	18.27	T_3	26.95	26.40	25.65	25.11	24.48	23.81	23.49
T_4	25.65	25.24	23.12	22.10	21.09	19.58	18.01	\mathbf{T}_4	25.65	25.33	24.91	24.20	23.66	23.30	22.38
T_{5}	27.51	28.01	26.09	24.36	22.40	20.38	18.81	T_{5}	27.51	27.00	26.47	26.23	25.71	25.19	24.71
T_{6}	28.47	28.28	26.89	24.99	23.12	20.98	19.12	T_6	28.47	28.18	27.41	26.92	26.62	26.34	25.40
\mathbf{T}_7	28.84	28.41	27.10	25.57	23.78	21.48	19.38	\mathbf{T}_7	28.84	28.74	28.28	27.73	27.24	26.69	25.98
T_{s}	29.17	28.85	27.59	26.50	23.94	21.77	19.57	T_{s}	29.17	29.05	28.81	28.38	27.94	27.41	26.81
T_9	29.42	29.12	27.84	26.72	24.07	21.90	19.66	T_9	29.42	29.23	28.94	28.52	28.13	27.69	27.00
T_{10}	27.29	27.87	25.82	23.87	21.91	20.00	18.15	T_{10}	27.29	26.58	26.21	25.66	25.10	24.60	23.83
Mean	27.29	27.14	25.38	23.92	22.13	20.08	18.38	Mean	27.29	26.85	26.35	25.82	25.33	24.86	24.17
SEm <u>+</u>	0.20	0.18	0.17	0.19	0.18	0.17	0.18	SEm <u>+</u>	0.20	0.18	0.17	0.16	0.17	0.18	0.18
CD @ 1 %	0.60	0.55	0.50	0.56	0.53	0.52	0.54	CD @ 1 %	0.60	0.58	0.50	0.49	0.52	0.55	0.54

Gajendra Khidrapure et al. / J. Appl. & Nat. Sci. 8 (3): 1638 - 1642 (2016)

<i></i>
÷
E
õ
S
5
E
а
Ę
\mathbf{S}
~
5
Ś
ŝ
2
ĸ
š
>
Ġ.
p
g
5
S.
Ĕ.
Ð
0
Ξ.
-
L,
al
ö
Ξ.
aı
ρĎ
E
q
X
÷,
ă
·
H
Z
ക
· 27
-
50
.=
=
3
~
o
Se
n se
on se
) on se
A) on se
NA) on se
(NA) on se
g (NA) on se
ing (NA) on se
eing (NA) on se
geing (NA) on se
ageing (NA) on se
al ageing (NA) on se
tral ageing (NA) on se
tural ageing (NA) on se
atural ageing (NA) on se
natural ageing (NA) on se
d natural ageing (NA) on se
nd natural ageing (NA) on se
and natural ageing (NA) on se
() and natural ageing (NA) on se
A) and natural ageing (NA) on se
AA) and natural ageing (NA) on se
(AA) and natural ageing (NA) on se
g (AA) and natural ageing (NA) on se
ing (AA) and natural ageing (NA) on se
eing (AA) and natural ageing (NA) on se
geing (AA) and natural ageing (NA) on se
ageing (AA) and natural ageing (NA) on se
d ageing (AA) and natural ageing (NA) on se
ted ageing (AA) and natural ageing (NA) on se
ated ageing (AA) and natural ageing (NA) on se
erated ageing (AA) and natural ageing (NA) on se
slerated ageing (AA) and natural ageing (NA) on se
celerated ageing (AA) and natural ageing (NA) on se
ccelerated ageing (AA) and natural ageing (NA) on se
accelerated ageing (AA) and natural ageing (NA) on se
of accelerated ageing (AA) and natural ageing (NA) on se
of accelerated ageing (AA) and natural ageing (NA) on se
ce of accelerated ageing (AA) and natural ageing (NA) on se
nce of accelerated ageing (AA) and natural ageing (NA) on se
ence of accelerated ageing (AA) and natural ageing (NA) on se
luence of accelerated ageing (AA) and natural ageing (NA) on se
fluence of accelerated ageing (AA) and natural ageing (NA) on se
Influence of accelerated ageing (AA) and natural ageing (NA) on se
. Influence of accelerated ageing (AA) and natural ageing (NA) on se
3. Influence of accelerated ageing (AA) and natural ageing (NA) on se
e 3. Influence of accelerated ageing (AA) and natural ageing (NA) on se
ble 3. Influence of accelerated ageing (AA) and natural ageing (NA) on se
able 3. Influence of accelerated ageing (AA) and natural ageing (NA) on se

1 1

	12	1546	1835	1919	1835	2026	2124	2203	2300	2358	1918	2001	79	233
	10	1667	1925	2033	1986	2160	2322	2370	2447	2498	2052	2140	LL	231
(NA)	8	1807	1987	2132	2057	2261	2404	2494	2592	2610	2159	2245	80	238
in months	9	1900	2091	2232	2145	2342	2474	2576	2673	2687	2286	2336	78	232
Ageing	4	2053	2204	2349	2279	2428	2554	2650	2755	2769	2403	2441	LL	230
	2	2153	2262	2439	2334	2526	2651	2748	2789	2846	2463	2518	69	205
	Initial	2226	2367	2511	2388	2597	2716	2773	2807	2878	2544	2578	64	194
Treatments	(L)	\mathbf{T}_1	T_2	T_3	${f T}_4$	T_5	T_6	$\mathbf{T}_{\mathcal{T}}$	T_8	T_9	T_{10}	Mean	SEm_{\pm}	CD @ 1 %
	12	936	1221	1235	1216	1277	1304	1347	1379	1400	1212	1249	38	115
	10	1089	1376	1458	1414	1478	1571	1641	1664	1728	1426	1481	40	121
(VA)	8	1352	1631	1731	1656	1765	1853	1971	1964	2034	1694	1761	43	130
g in days (9	1604	1883	2018	1896	2096	2202	2275	2378	2431	2009	2072	47	141
Agein	4	1818	2020	2158	2037	2324	2460	2512	2591	2615	2246	2281	50	150
	2	2178	2290	2408	2291	2555	2637	2671	2758	2786	2539	2508	52	155
	Initial	2226	2367	2511	2388	2597	2716	2773	2807	2878	2544	2578	64	194
Treatments	(T)	\mathbf{T}_{I}	T_2	T_3	T_4	T_{5}	T_6	T_7	T_8	T_9	T_{10}	Mean	SEm <u>+</u>	CD @ 1 %

seems to be promising tool for evaluating the seed vigour and predicting relative storage potentiality. The results of accelerated ageing are almost similar to the results of natural ageing as evident by present study. The mean seed germination of four days of AA (89.86 %) was similar to that of six months of NA (90.48 %) as depicted in (Fig. 1). Similar result that is seed quality as influenced by accelerated and natural ageing in bitter gourd was reported by (Shantappa Tirakannanavar *et al.*, 2006) and they predicted that seed quality deterioration in accelerated ageing was similar to that natural ageing except rate of deterioration.

Conclusion

From this study it was concluded that storability of organically produced paddy seeds were better (14 months) as compared to inorganic seeds (10 months) and it can be predicted that four days of accelerated ageing with mean seed germination (89.86) is equal to six months of natural ageing with mean seed germination (90.48).

ACKNOWLEDGEMENTS

The authors acknowledge the Department of Science & Technology (DST), Government of India for providing INSPIRE fellowship, the Department of IT, BT and ST, VGST, GOK and Department of Seed Science & Technology, UAS, Raichur for providing laboratory facilities to carry out research work.

REFERENCES

- Abdul-Baki, A. A. and Anderson, J. D. (1973). Vigour determination in soybean seeds by multiple criteria. *Crop Sci.*, 13: 630-633.
- Anonymous (2013). International rules for seed testing, International Seed Testing Association (ISTA), Zurich, Switzerland. pp- 5-74.
- Delouche, J. C. and Baskin, C. C. (1973). Accelerated ageing techniques for predicting the relative storability of seed lots. *Seed Sci. and Technol.*, 1: 427-452.
- Delouche, J. C. (1965). An accelerated ageing techniques for predicting the relative storability of crimson clover and tall fescue lots. *Agron. Abst.*, 40 : 50.
- Desai, D. B. (1976). Predicting the relative storability of seed lots. *Seed Research*, 4:62-65.
- Kovalenko, G. I., Badev, D. and Falik, R. A., 1977, Some aspects of seed germination loss of cotton seed. *Biol. Kishnask*, 6: 26-30.
- Manimekalai, C. (2006). Organic seed invigouration in black gram (Vigna mungo L.) cv. APK-1. M. Sc. (Agri.) Thesis, Tamil Nadu Agric. Univ., Coimbatore (India).
- Panse, V. G. and Sukhatme, P. V. (1978). Statistical methods for agricultural workers, Indian Council of Agric. Res., New Delhi (India).
- Raumjit Nokkoul (2014). Organic upland rice seed production. Advance Journal of Food Science and Technology, 6(12): 1313-1317.
- Roberts, E. H. (1972). Loss of viability and crop yields. in: viability of seeds (Ed. E.H. Roberts), Chapman Hall

Gajendra Khidrapure et al. / J. Appl. & Nat. Sci. 8 (3): 1638 - 1642 (2016)

- Ltd., London, p. 313. Shantappa Tirakannanavar, M. Shekhargouda, M. N. Merwade, Laxman Kukanoor and S. B. Bellad (2006). Seed quality as influenced by accelerated and natural ageing in bitter gourd (Momorrdica charantia L.). Seed Research, 34(1): 66-69.
- Vasudevan, S. N., Shakuntala, N. M., Doddagoudar, S. R., Mathad, R. C. and Macha, S. I. (2012). Biochemical and molecular changes in aged peanut (Arachis hypogaea L.) seeds, The Ecoscan, 1: 347 – 352.
- Vijayakumari, B. and Hiranmai, Y. R. (2012). Influence of

fresh, composted and vermicomposted parthenium and poultry manure on the growth characters of sesame (Sesamum indicum). Journal of Organic Syst., 7(1): 14-19.

- Vijayan, R. and Krishnaswamy, V. (2014). Impact of organic techniques of seed crop management on seed yield and quality in rice cv. ADT 43. Scientific Research and Essays, 9 (13): 611-618.
- Vijayan, R. (2005). Organic seed production in rice cv. ADT 43, Ph.D. Thesis, Tamil Nadu Agric. Univ., Coimbatore (India).