

Journal of Applied and Natural Science 8 (1): 196 - 207 (2016)

Geochemistry of some ferruginous soils of Kerala, India

P. N. Dubey^{1*}, B. P. Bhaskar², P. Chandran², B. Singh¹ and B. K. Mishra¹

¹National Research Centre on seed Spices, Ajmer-305206 (Rajasthan), INDIA

²Division of Soil Resource Studies, National Bureau of Soil Survey and Land Use Planning, Nagpur-440033 (Maharashtra), INDIA

*Corresponding author. E-mail: pradyumnnarayan@yahoo.co.in

Received: May 26, 2015; Revised received: September 26, 2015; Accepted: February 12, 2015

Abstract: The four representative ferruginous soils on lateritic cover developed over Precambrian rocks in parts of Kottayam of Kerala were studied to understand the weathering pattern and genesis through geochemistry. These soils are strongly to moderately acidic, reddish brown with low Cation exchange capacity CEC and base saturation having SiO₂ - 33 to 57%, Al₂O₃ - 16-31%, Fe₂O₃ - 8 to 15% and TiO₂ -0.7 to 1.4%. Kanjirapalli (P3) and Athirampuzha (P4) soil series were more intensely weathered as compared to the Kinalur (P1) and Chingavanam series (P2) with silica to alumina-iron ratio less than 2 and had a significant negative relationship with Chemical index of alteration CIA (-0.75**), Harnois index (-0.678**), Richie index (-0.953**) and Plagioclase Index of Weathering (-0.705**). The trace elemental concentration ranges were above the values of world soils having an enrichment index more than 1 in Kanjirapalli series (P3) and Ni contamination in genetic horizons (Ni > 200µgg⁻¹). The cluster analysis showed similar major oxide concentration pattern in Group -1 and Group - 2 but varied in trace elemental pattern with Cr > Ba > Cu in Group - 1 and Cu > Cr > Ba in Group - 2 soils whereas Zr > Ni > Mn in Group - 3 to Ni > Mn > Zr in Group - 4 soils. The study further showed that differential rate of weathering in soils under tropical climate was further accelerated due to anthropogenic activities such as improper land use practices and deforestation on sleep slopes.

Keywords: Chemical index of weathering, Enrichment index, Index of laterization, Kerala, Trace elements

INTRODUCTION

Chemical weathering is one of the most important processes that change the chemical composition of soils and distribution of elements in weathering products that differ from parent rocks (Nesbitt and Markovics, 1997). Chemical compositions of soils have been used effectively to evaluate weathering and soil formation conditions, to trace the provenance of soils (Nesbitt et al., 1996) and to reconstruct paleoclimate records (Zabel et al., 2001; Wei et al., 2004). Thus, quite a number of studies have been carried out in the past several decades to investigate chemical weathering (Price et al., 1991; Little and Aeolus Lee, 2006). Previous studies show elements that are conserved in temperate zone, such as Ti and Zr, are mobile during extreme chemical weathering in tropical regions (Cornu et al., 1999). Probing into element behaviour during weathering is pivotal to understanding element mobilization and redistribution during chemical weathering. In addition, laterites, the products of extreme weathering, account for over 85% of the present world soil cover (Nahon, 2003).

Quantitative characterization of weathering in soils is made through development of weathering indices (Price and Velbel, 2003; Abbaslou *et al.*, 2013 and

Yousefifard et al., 2014). The chemical index of alteration (CIA, Nesbitt and Young, 1982), chemical index of alteration (CIW, Harnois, 1988) and plagioclase index of alteration (Fedo et al., 1995) serve as examples of the decomposition of unstable minerals. According to the principles of soil genesis, alkali and alkaline earth elements move through soil horizons prior to silicon as weathering progresses (Souri et al., 2006). Laterite and lateritic soils are formations peculiar to India and some other tropical countries with intermittently moist climate. In India they cover a total area of about 248,000 sq. Kilometres in the states of Deccan, Karnataka, Kerala, Madhya Pradesh, Eastern Ghat regions of Orissa, Maharashtra, Malabar and parts of Assam (Raychaudhuri, 1980) but cover onefourth of the total geographical area of 329 millon ha on the basis of soil resource inventory (Sehgal, 1998 and Bhattacharyya et al., 2009).

The general characteristics of laterite associated soils in Kerala were reported by Satyanarayana and Thomas (1962) and of Nellore district in Andhra Pradesh by Bhaskar and Subbaih (1995). The geochemical trends in lateritic profiles of Kerala were reported by Narayanaswamy (1992) indicating the depletion of silica and enrichment of sesquioxides and TiO_2 during the process of weathering. Later , Ramahashay *et al.*(1987) reported the occurrence of halloysite in association with kaolinite , goethite, gibbsite and quartz in these soils possessing high plasticity and cation exchange capacity. Silica as invariant was used to work out geochemical mass balance sheet of laterite associated soils of Somasila project (Bhaskar *et al.*, 1999). The distinguishing feature of these laterite soils is development of strong chroma and redder hue accumulation of clay, and relatively minor accumulation of Fe and Al sesquioxides in the B horizons where in silica to sesiquioxide ratio is less than 2 (Chandran *et al.*, 2005).

The recent review on pedology of red ferruginous soils of India was made by Pal et al (2014) describing several pedological and edaphological aspects of alfisols, mollisols and ultisols mainly of humid tropical climate but little emphasis was made on geochemical records of these soils. .The lateritic soils are dominant in Southern mid land zone (SMZ) mostly used for rubber (Hevea brasiliensis) under terraced hill slopes from Tiruvananthapuram to Kottayam. The intensive monsoon climate in the region is strongly interlinked with strong chemical weathering of lateritic soils and occurrence of devastating land slides. Among various geo-environmental factors, slope plays vital role for many land use associations and cautious towards necessity of adopting land use control. In India, therefore, comprehensive understanding of the behaviour of elements during extreme weathering in the tropical laterite profile may aid in our understanding of the mechanisms of weathering and for drawing meaningful geotechnical measures in the region. There is scanty of literature on geochemical interpretations of lateritic soils dealing with elemental organizations as controlled by geology in Kerala. Hence in the present study, an attempt has been made for geochemical characterization of lateritic soils from parts of Kottavam, Kerala (India) to decipher the pedogenic association and interrelationships of these soils with geology and bioclimatic conditions.

MATERIALS AND METHODS

Details of study area: The study area is part of southern midland zone of Kerala and confined to the parts of Kottayam, Ernakulam and Kozhikode where Precambrian rocks like charnockites with narrow bands of pyroxene granulites and magnetite-quartz rocks are dominant (Damodaran, 1955). In Nilambur Valley, Kozhikode district, magnetite - quartzite, pyroxene and hornblende granulites and charnockite gneiss constitute the charnockite group (Sawarkar, 1980). Broadly, the soils of this region have been categorized as red sandy or sandy clay loams (Kamath, 1985) or more specifically by Bourgeon (1989) as mainly ferrallitics (French soil taxonomy) or subgroups of Ultisols, Alfisols and Inceptisols as per USDA soil taxonomy (USDA, NRCS, 2008). Kerala has substantial portion of laterites (around 60 percentage of the exposed surface area Krishnan et al., 1996 and Haridranath et al.,

1999) developed over rocks of different composition and age. South midland zone of Kerala receives mean annual rainfall of 3265 mm from early June to late September. The soil moisture regime is ustic with soil temperature regime of Isohyperthermic (Eswaran et al. 1990) with a length of growing period of 210 to 270 days (Sehgal et al., 1992). The dominant natural vegetation comprises of Canarium strictum, Mesa fer-Dipterocarpus spps., Callophylum elatum, rea. Cullinia excels, Palaquium ellipticum, Tectonia grandis, Terminalia tomentosa, Dalbergia latifosa, Xylia xylocarpa, Pterocarpus marsupium, Santalum album, Avecinnia spps., Rhizophora spps., etc. Patches of scrub vegetation with other xerophytic plants are found in association with tropical fruit trees like jack fruit and cashew.

The soil profiles under study in the midlands (\leq 300m) of Kerela (Fig. 1) were as follows.

P1: Kinalur series $(11^{0}28'00"N)$ latitude and $75^{0}50'00"E$ longitude) is a member of clayey, kaolinitic, Ustic Kanhaplohumults. These soils are very deep, well drained, dark red, gravelly sandy clay loam surface and red to reddish brown gravelly sandy clay sub soils with argillic horizon occurring on uplands and mounds.

P2: Chingavaram series $(9^{0}44'00")$ latitude and $76^{0}51'48"E$ longitude) is a member of loamy skeletal, kaolinitic, family of Typic Kandiustults . These soils are deep, well drained dark red surface horizons and red argillic Bt horizons with sandy clay loam texture. These soils occur on midlands having >15 per cent slopes.

P3: Kanjirapalli series($9^{0}33'00''$ N latitude and $76^{0}47'00''$ E longitude) is a member of clayey-skeletal, kaolinitic, Ustic Kandihumults. These soils are very deep, well drained formed on charnokite with dark reddish brown gravelly sandy clay loam surface and red to reddish brown gravelly sandy clay sub soils with argillic horizon occurring on uplands mounds and hills having more than 30 % slopes.

P4: Athirampuza series $(9^{0}39'34''N)$ latitude and $76^{0}31'35''E$ longitude) is a member of clayey-skeletal, kaolinitic, Ustic Kanhaplohumults. These soils are deep, well drained formed on laterized rocks (charnokites) with yellowish red gravelly clay surface and red to yellowish red gravelly argillic clay subsoils. This soil occurs on uplands, mounds and hills having slopes more than 30 per cent. This is a competing series of Arur series (Harindranath *et al.*, 1999).

Laboratory analysis: Horizon wise soil samples for each soil series were collected and passed through 2mm sieve after air drying. The fine earth fraction was used for laboratory analysis for particle size distribution (International pipette method), pH (1:2.5), organic carbon (OC, Walkley Black), cation exchange capacity (CEC) and exchangeable bases (ammonium acteate) and percent base saturation was estimated as sum of bases/CEC*100. The ECEC (Effective cation exchange capacity) was derived as summation of ex-

Table 1. Summary of weathering indices formula.

Index	Formula	References
Chemical index of	$CIA = Al_2O_3/Al_2O_3 + Na_2O + CaO = K_2O*100$	Nesbit and Young
alteration (CIA)		(1989)
WIP	$(2*Na_2O / (0.35) + (MgO / 0.90) + (2*K_2O)0.25) + (CaO/0.70)*100$	Parker (1970)
Si/Al		Birkeland (1999)
Bases/Alumina		
Bases/R2O3		
Reiche product index (RPI)	$100^{*}(SiO_{2}) / (SiO_{2}+R_{2}O_{3})$	Reiche (1943)
Vogt ratio	$Al_2O_3 + K_2O / MgO + CaO + Na_2O$	Vogt (1927)
Weathering Ratio (WR)	$(CaO + MgO + Na_2O) / TiO_2$	Chittleborough(1991)
Weathering Index -1	$(CaO + SiO_2) / (Fe_2O_3 + TiO_2)$	Darmody (2005)
Weathering Index -2	$(CaO + SiO_2) / (Al_2O_3 + Fe_2O_3 + TiO_2)$	
Ignition loss index	H_2O^*	Jayawardena (1994)

Fig. 1. Location map of soil profiles under study in Kerala.

changeable aluminium and exchangeable bases. 1M KCl extractable aluminium was determined titrimetricaly, apparent CEC and ECEC was estimated as CEC/ clay*100 and ECEC/clay*100 (Sarma *et al.*, 1987; Jackson, 1975).

Elemental analysis was carried out using 1mm soil fraction by acid digestion (HF) for all elements except silica. Silica was estimated separately by sodium carbonate fusion using platinum crucibles (Page *et al.*, 2002). Molar concentrations were estimated by dividing the elemental concentrations with atomic weight of the elements. The weathering indices were calculated by various methods as listed in table 1.

RESULTS AND DISCUSSION

Soil characteristics: The characteristics red and lateritic soils of Kerala developed over granite (P1), laterite (P2 and P3) and charnokite (P4) are listed as below

Fig. 2. Soil grouping based on geochemical data.

and presented in table 2. Kinalur series (P1) have 10cm thick, dark brown, very strongly acid (pH < 4.5) A horizons and have 70cm thick kandic dark reddish (5YR3/4) to reddish brown(5YR4/4) or red (2.5YR/6) strongly acid (pH of 5.1 -5.5) with more than 30% clay and base saturation less than 35% to classify than under the subgroup of Ultisols. The kandic horizon has an apparent CEC less than 16 cmol/kg clay and an apparent ECEC less than 12 cmol/kg within 100cm to further classify Kanhaplic Haplustults. The very strongly acid Chingavanam series (P2) have 15 cm thick, dark red (2.5YR3/6) Ap horizons and red (2.5YR4/6) to reddish brown (2.5YR4/4) clay rich kandic horizons (30 to 36% clay) with base saturation less than 35%, to classify as Typic Kandiustults.

The very strongly acid Kanjiraplli series (P3) and Athiram puzha series (P4) are classified as Ustic Kandihumults because these soils have an organic carbon more than 0.9 per cent in upper 15 cm of kandic horiozon with low base saturation. These soils have reddish brown Ap horizons (5YR3/3 to 3/4) and dark

Base satura-	tion	(%)	0	12.5	9.0	9.2	10.8	13.7		44.2	19.7	23.3	19.2	37.1			21.7	17.1	14.0	13.2	13.2	16.8		6.3	5.7	5.1	6.7	0 . .
ECEC/	C*100		⁰ 50'E longitude	7.27	5.52	4.96	4.19	5.31		7.16	3.01	4.26	3.97	5.24	5.31		7.54	3.51	2.76	2.72	2.10	2.91		6.97	6.50	5.5	5.78	0
CEC/ C*100		cmol(P+)kg ⁻¹	⁰ 28'N latitude - 75	23.41	16.56	18.94	16.16	16.94	51'E longitude	13.43	10.36	9.83	11.00	9.66	10.93	$76^{0}31$ 'E longitude	21.22	11.18	12.80	15.95	13.68	16.66	5 ⁰ 47'E longitude	24.12	15.48	12.16	11.94	
ECEC			Gneiss) - 11	2.3	1.8	1.6	1.4	1.6	atitude - 76^{0}	2.4	0.9	1.3	1.3	1.9	1.7	N latitude -	1.6	1.1	0.8	0.7	0.6	0.7	latitude -76	2.6	3.4	3.3	3.1	
CEC			(Granite (7.4	5.4	6.1	5.4	5.1	9 ⁰ 44''N l	4.5	3.1	3.0	3.6	3.5	3.5	e) - 9 ⁰ 39']	4.5	3.5	3.7	4.1	3.9	4.0	- 9 ⁰ 33'N	9.0	8.1	7.3	6.4	
OC 0C	g/kg	1	Haplustults	31.9	22.2	14.8	12.0	6.1	(Laterite) -	8.7	3.5	2.3	3.1	3.9	3.1	s (Charnokit	23.5	18.6	15.0	9.0	11.1	12.2	tts (Laterite)	23.6	12.6	9.9	6.7	
Hq	-		, Kanhaplic	4.5	5.1	5.3	5.2	5.1	andiustults	4.5	4.7	4.7	4.9	4.8	5.0	andihumults	4.8	4.4	4.5	4.5	4.4	4.7	Kandihumul	4.0	3.8	4.1	4.3	
oution		clay	Kaolinitic.	31.6	32.6	32.2	33.4	30.1	of Typic K	33.5	29.9	30.5	32.7	36.2	32.0	of Ustic Ka	21.2	31.3	28.9	25.7	28.5	24.0	of Ustic F	37.3	52.3	60.0	53.6	
size distril		silt	family of	21.2	18.7	19.3	19.5	19.2	tic family	16.3	17.9	22.1	20.4	24.3	22.8	cic family o	9.0	12.5	11.1	11.4	11.3	13.4	tic family	11.0	8.0	6.7	11.8	
Particle 5	(%)	sand	yperthermic	47.2	48.7	48.5	47.1	50.7	stal, Kaolini	50.2	52.2	47.4	46.9	39.5	45.2	stal, Kaolinii	6.69	56.1	59.9	62.8	57.1	62.6	stal, Kaolini	51.7	39.7	33.3	34.6	
Texture			loamy, isoh	SCI	SCI	SCI	SCI	SCI	Loamy skele	SCI	SCI	SCI	SCI	SCI	SCI	Loamy skele	SCI	SCI	SCI	SCI	SCI	SCI	Clayey skele	SC	C	C	C	i
Matrix col-	our		code, Kerala: Fine	7.5YR 3/4	5 YR 3/4	5 YR 4/4	5 YR 4/4	2.5YR 4/6	Cottayam, Kerala:	2.5YR 3/6	2.5 YR 4/6	2.5 YR 4/6	2.5 YR 4/4	2.5 YR 4/4	2.5 YR 4/4	ottayam, Kerala:	5YR 3/3	5 YR 3/4	2.5 YR 3/6	2.5 YR 3/6	2.5YR 4/6	2.5YR 4/6	rnakulam, Kerala:	5 YR 4/4	5 YR 4/6	5 YR 4/6	2.5 YR 4/6	
Horizon			series, Kozhik	Apl	AB	Bt1	Bt2	Bt3	anam series, F	Ap	AB	Bt1	Bt2	Bt3	Bt4	ally series, Ku	Ap	Btl	Bt2	Bt3	Bt4	Bt5	uza series, En	Ap	Bt1	Bt2	Bt3	1
Depth	(cm)		P1-Kinalur s	0-10	10-36	36-48	48-66	66-80	P2-Chingava	0-15	15-41	41-66	66-99	99-140	140-176	P3-Kanjirap	0-13	13-32	32-56	56-83	83-112	122-150	P4.Athiramp	0-16	16-42	42-66	66-89	

Table 2. Selected morphological, physical and chemical properties of soils of Kerala.

P. N. Dubey et al. / J. Appl. & Nat. Sci. 8 (1): 196 - 207 (2016)

Depth	Hori-							E	lementa	l compo	sition								Enrichment
(cm)	uoz	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃ (%	TiO ₂	CaO	MgO	Na ₂ O	K ₂ 0	Cu	Zn	Mn N	ii C	λr Ct μg/g-	l Zr	Ba	Sr	(%) LOI	Index (EI)
P1-Kinalı	ur series																		
0-10	Ap1	55.80	17.40	1.20	0.80	1.59	0.68	1.97	1.08	304	142	324 6	0	8	14	33	40	16.91	0.66
10-36	Ap2	54.40	16.40	8.10	0.70	2.13	0.71	2.46	-	47	156	311 5	6 8	2 9	13	68	34	14.02	0.33
36-48	Btl	56.30	17.80	3.70	1.00	1.59	1.15	3.09	1.17	43	234	359 3	3 8	9 8	15	54	36	14.17	0.32
48-66	Bt2	57.20	17.00	3.90	0.80	1.39	0.65	2.74	0.98	42	204	275 4	9 9	4 9	15	40	33	13.26	0.34
66-80	Bt3	50.30	17.80	13.20	0.70	1.05	0.77	1.87	1.05	43	327	250 4	6 7	2 8	13	60	31	13.05	0.38
P2-Ching	avanam se	eries																	
0-15	Ap	45.10	22.00	8.20	1.70	1.46	0.41	2.67	0.42	64	172	221 3	8 1	05 10	17	90	28	16.1	0.33
15-41	Btl	43.70	21.20	13.50	1.80	1.10	0.41	2.79	0.45	67	274	192 1	8 7	4 11	16	76	23	14.52	0.87
41-66	Bt2	44.30	20.60	15.90	1.40	1.43	0.33	3.33	0.42	450	184	180 2	2	07 11	19	59	23	12.37	0.29
66-99	Bt3	40.10	20.40	16.30	1.30	1.05	0.4	4.13	0.48	55	213	199 1	8	1 14	16	64	24	16.53	0.33
99-140	Bt4	45.50	20.60	13.80	1.20	1.19	0.44	3.44	0.49	70	151	160 2	6 1	10 11	16	69	25	12.97	0.30
140-	Bt5	46.70	22.00	11.80	1.30	1.23	0.39	3.05	0.46	74	145	172 5	1	22 10	17	78	25	11.9	1.41
176																			
P3-Kanjii	capally ser	ies																	
0-13	Ap	45.40	26.10	6.40	1.10	0.74	0.54	0.2	0.52	17	151	535 6	24 1	27 0	371	38.64	17	18.18	0.94
13-32	Btl	37.90	27.30	12.70	1.10	0.46	0.49	0.17	0.51	34	140	707 3	84 9	9 0	350	36.21	16	19.59	2.13
32-56	Bt2	37.30	30.90	11.60	1.00	0.54	0.67	0.17	0.53	20	126	784 9	90 1	67 26	261	30.45	14	18.93	1.33
56-83	Bt3	36.10	27.60	14.90	1.10	0.57	0.48	0.19	0.63	251	137	484 4	16 1	21 67	513	32.3	14	18.52	0.53
83-112	Bt4	33.70	30.00	14.90	1.20	0.52	0.31	0.13	0.65	59	117	299 1	75 6	2 0	221	52.4	11	18.96	1.54
112-	Bt5	33.00	31.30	12.70	1.20	0.42	0.29	0.15	0.5	316	109	357 5	07 6	9 0	256	19.74	12	20.39	0.78
150																			
P4.Athira	mpuza sei	ries																	
0-16	Ap	46.80	24.60	8.30	1.90	0.44	0.43	0.22	0.79	15	185	360 2	96 1	16 0	220	25.91	21	16.56	0.61
16-42	Bt1	43.70	29.20	8.10	1.50	0.33	0.43	0.17	0.62	6	164	268 2	33 8	1 0	360	24.5	25	16.22	0.69
42-66	Bt2	39.20	30.40	12.50	1.40	0.55	0.41	0.17	0.69	162	148	169 1	56 9	1 65	473	42.81	25	15.12	0.76
66-89	Bt3	40.70	30.60	10.20	1.40	0.36	0.41	0.2	0.69	18	200	182 2	86 1	04 13	376	31.91	22	15.94	0.95
89-105	BC	41.60	31.80	7.80	1.40	0.33	0.45	0.17	0.71	18	145	188 4	15 6	7 13	269	26.67	22	15.41	2.84

Table 3. Elemental composition of selected soil of Kerala.

P. N. Dubey et al. / J. Appl. & Nat. Sci. 8 (1): 196 - 207 (2016)

200

P. N. Dubey et al. / J. Appl. & Nat. Sci. 8 (1): 196 - 207 (2016)

Clusters	Horizon sequences	Major elements	Trace elements
Group -1	P2Bt4- P2Bt5- P2Ap-P2Bt3	Si>Al>Fe>Na>Ti>Ca>K>Mg	Mn>Zn>Cr>Ba>Cu>Sr>Ni>Zr
Group-2	P1Bt3-P1Bt4-P1A/B-P1Bt2-		Mn>Zn>Cu>Cr>Ba>Ni>Sr>Zr
	P1Bt1-P1Ap-P2Bt2		
Group-3	P3Bt4-P4Ap-P4Bt1-P4Bt3-	Si>Al>Fe>Ti>K>Ca>Mg>Na	Zr>Ni>Mn>Zn>Cr>Cu>Ba>Sr
	P4BC-P4Bt2		
Gropu-4	P3Ap-P3Bt1-P3Bt3-P3Bt5-		Ni>Mn>Zr >Zn>Cr>Cu>Ba>Sr
	P3Bt2		

Table 4. Geochemical grouping based on elemental affinity in soils of Kerala.

reddish brown (5YR3/4, P5) to reddish brown(5YR4/6, P4) but changed to red (2.5YR4/6) in lower kandic horizons. The texture is uniformly sandy clay loam in Kanjirapalli series (P3) but of clay in case of Athirampuzha series (P4). The apparent CEC and ECEC are similar to that of kandic horizons reported elsewhere in India (Bhaskar et al., 2005; Bhattacharyya et al., 2006). The occurrence of kandic gentic horizons in ferruginous soils of rubber growing areas in Kerala and Tamil nadu were reported (Krishnan et al., 1996). The kandic horizons have set of properties resembling ferralic horizon with low CEC (<4 cmol/kg in sub horizons of B) and apparent effective cation exchange capacity <12cmol_ckg-1clay and cation exchange capacity <16cmol_ckg-1clay with thickness more than 30cm (FAO, 2006). It is interesting to mention here that the top soils of these profiles meet the criteria to define as modic that display characteristics like incompletely mineralized OM (intensive rubber growing area and frequent additions of leaf) and an OC content of >0.6 percent, blackish brownish in the hue of 5YR with base saturation < 10 per cent and pH <5.0 (FAO, 1998). The occurrence of modic topsoils in ferruginous soils of Shillong plateau were reported and proposed to use modic at subgroup level for Sombrihumults in Shillong plateau (Bhaskar et al., 2009). The difficulties in identifying the clay skins in argillic horizons in soils of Kerala and in Northen states was very well expressed in review of red ferruginous soils of India by Pal et al., 2014 and places some soils in the subgroups of Dystrudepts.

Elemental composition: The elemental composition of four lateritic and associated soils of Kerala is presented in table 3. Among major elemental oxide, SiO₂ is dominant with it gradational decrease in concentrations to less than 40 per cent in kandic horizons of Kanjirapalli series(P3) but 40 to 50% with irregular trends in Chingavanam series (P2) and Athirampuzha series(P4) and exceeding 50 per cent in Kinalur series (P2). Next to SiO_2 , Al_2O_3 concentration is 25 to 31 per cent with irregular depth trends in Kanjirapalli (P3) and of increasing trends in Athirampuzha series (P4). The Chingavanam series (P2) have Al₂O₃ concentration of 20 to 22 per cent with fairly uniform depth distribution but less than 20 per cent in Kinalur (P1, irregular trends). The Fe₂O₃ content is 3.7 per cent in kandic B horizons (P1) and reached to a maximum of 16.3 per cent in Bt3 horizon of P4. These soils have 1.1 to 2.2 per cent of TiO_2 with high concentration of 1.9% in P4 but decrease its concentrations in Bt horizons. The concentration of alkali and alkaline earth elements are less than 1 per cent in majority of soil horizons with the exceptions in soils where CaO and Na₂O exceed 1% (P1/P2).

Trace elements: Trace elements concentration in the lateritic profiles is mainly driven by weathering of bedrocks .Trace elements are defined as those elements that are present at concentrations below 1000 mgkg⁻¹ or 0.1% (Rollinson, 1993). The distribution of trace elements with depth varies according element and to the different soil profiles due to variations in mobility characteristics, oxidation or intense leaching, effects of organic carbon contents and iron/ manganese co - precipitation under humid climate. The concentration range of these elements is as follows: Cu - 9 - 450 μgg^{-1} , Zn - 109-327 μgg^{-1} , Mn - 117-1571 μgg^{-1} , Cr - 48-281 μgg^{-1} , Ni - 5 - 990 μgg^{-1} , Ba - 19.7 -94 μgg^{-1} , Sr - 11.2 - 40 μgg^{-1} , and Zr - 13-513 μgg^{-1} . The Cu content is $304 \ \mu gg^{-1}$ in Ap horizon but decreases to 42to 43 µgg⁻¹ in genetic Bt horizons(P1) while in Chingavanam series (P2), the Cu content is 64 μ gg⁻¹ in Ap horizon but reached to 450 µgg⁻¹ in Bt2 layer with its concentrations varying from 55 to 74 µgg⁻¹. In Kanjirapalli series (P3), the Cu content is $17 \ \mu gg^{-1}$ in Ap horizon but varying from 20 to 59 µgg⁻¹ in genetic layers with maximum value of 251 (Bt3) to 316 μ gg⁻¹ (Bt5) . The Cu content in Athirampuza (P4) is $15 \ \mu gg^{-1}$ in Ap layer, 9 to 18 μ gg⁻¹ in B horizon with 162 μ gg⁻¹ in Bt2 layer (Table 3). The Cu anamolies are well expressed due to greater dispersion of Cu in iron rich lateritic soils. The Zn contents are more than 200 µgg⁻¹ in genetic horizons of P1 and P2 as compared to P3 and P4. The mean Zn concentration is $180 \ \mu gg^{-1}$ which is three times more than world average for soils (90 mg/kg, Bowen, 1979). The surface enrichment of Mn contents (268 to 535 µgg⁻¹) in A horizons of all soils with decreasing values in Bt horizons except in P3 where its concentration reached to more than 700 µgg⁻¹ In Bt1 and Bt2 layers .The Ni contents are less than 100 μ gg⁻¹ in P1 and P2 but reached to a maxima of 990 μ gg⁻¹ in Bt2 horizon of P3 and 415 μ gg⁻¹ in BC horizon of P4. The mean Ni content is 220 μ gg⁻¹ which is almost four times higher than world average for soils (60 mg/kg, given by Bowen, 1979). Comparing the Ni contents (> 200 μ gg⁻¹) with the Great London Council (2001), these soils are registered as contaminated. The strong negative relation of Ni with SiO₂ (r = -0.51**, significant at 1% level) indicating its decrease with

201

	71.52 14.79	11 11 32 13	04./0 14.41	66.24 14.81 66.24 14.81	04.72 14.41 66.24 14.81 68.34 14.17	04.72 14.41 66.24 14.81 68.34 14.17 76.08 16.57 · d	04.75 14.41 66.24 14.81 68.34 14.17 76.08 16.57 	04.75 14.41 66.24 14.81 68.34 14.17 76.08 16.57 	P. N. Duped 66.24 14.17 68.34 14.17 76.08 16.57 75.07 20.77	b. N. Driped et al 66.24 14.11 68.34 14.17 76.08 16.57 75.07 20.77 75.55 20.50	04.02 14.41 66.24 14.17 68.34 14.17 68.34 14.17 76.08 16.57 75.07 20.77 75.55 20.50 71.05 20.14	b. V. Dnpeck et al. / Y. Vi 66.24 14.11 66.24 14.13 66.24 14.14 76.08 16.57 76.05 20.77 75.55 20.50 71.05 20.14 71.05 20.17 71.05 20.17	04.75 14.41 66.24 14.81 68.34 14.17 76.08 16.57 76.08 16.57 75.07 20.77 75.55 20.50 71.05 20.14 71.05 20.14 71.05 20.14 71.57 19.89	04.75 14.41 66.24 14.17 68.34 14.17 68.34 14.17 68.34 14.17 76.08 16.57 75.07 20.77 75.55 20.50 71.05 20.14 71.05 20.14 71.57 19.89 74.46 20.52	b. N. Dnpeh et al. 7. W. Dnpeh et al. 68.34 14.17 68.34 14.17 76.08 16.57 76.08 16.57 75.55 20.50 75.55 20.14 71.05 20.17 71.57 19.89 71.57 19.89 71.57 19.89 71.57 19.89 71.57 19.89 71.57 19.89 71.57 19.89 71.57 19.89 71.57 19.89 71.57 19.89	b. N. Dnpeh et al. 7. Yer Sci 68.34 14.17 68.34 14.17 76.08 16.57 75.55 20.50 75.55 20.50 71.05 20.14 71.05 20.14 71.55 20.50 71.57 19.89 71.57 19.89 71.57 19.89 71.57 19.89 71.57 19.89 71.57 19.89 71.57 19.89 71.57 19.89 71.57 19.89	04.75 14.41 66.24 14.81 66.24 14.81 68.34 14.17 76.08 16.57 75.07 20.77 75.55 20.50 71.05 20.14 71.05 20.14 71.05 20.14 71.57 19.89 74.46 20.52 93.75 24.32	04.75 14.41 04.17 14.41 66.24 14.81 68.34 14.17 68.34 14.17 76.08 16.57 76.08 16.57 - - 75.07 20.77 17.105 20.14 71.57 19.89 71.57 19.89 71.57 19.89 71.57 19.89 93.75 24.32 95.94 28.76	04.75 14.41 66.24 14.81 66.24 14.81 68.34 14.17 76.08 16.57 7 5.55 75.57 20.77 75.67 20.77 75.07 20.77 75.55 20.50 71.05 20.14 71.57 19.89 71.57 19.89 71.57 19.89 71.57 19.89 71.57 19.89 93.75 24.32 95.94 28.76 95.95 31.92	04.75 14.41 66.24 14.81 66.24 14.81 68.34 14.17 68.34 14.17 75.07 20.77 75.07 20.77 75.05 20.50 75.07 20.77 75.55 20.50 71.05 20.14 71.05 20.14 71.57 19.89 71.57 19.89 71.57 19.89 71.57 19.89 71.57 19.89 71.57 19.89 71.57 19.89 93.75 24.32 95.95 31.92 95.14 30.01	04.05 14.41 66.24 14.81 68.34 14.17 76.08 16.57 7 7.5.55 20.70 16.57 75.07 20.77 75.08 16.57 75.07 20.77 75.07 20.77 75.08 16.57 71.51 19.89 71.55 20.14 71.57 19.89 71.51 19.89 71.52 21.71 71.52 21.71 71.52 21.31 93.75 24.32 95.14 30.01 95.14 30.01 95.14 30.01	04.75 14.41 66.24 14.81 66.24 14.17 66.24 14.17 75.07 20.77 75.07 20.77 75.07 20.77 75.07 20.77 75.07 20.77 75.05 20.50 71.05 20.14 71.05 20.14 71.05 20.14 71.05 20.14 71.57 19.89 71.57 19.89 71.57 19.89 71.53 24.32 93.75 24.32 95.94 28.76 95.14 30.01 95.12 33.29 96.12 33.29 96.78 34.76	04.75 14.41 66.24 14.81 66.24 14.81 66.24 14.81 66.24 14.81 66.24 14.81 66.24 14.81 68.34 14.17 75.07 20.77 75.05 20.50 75.05 20.14 75.05 20.12 71.05 20.14 71.05 20.14 71.57 19.89 71.57 19.89 71.57 19.89 71.57 19.89 71.57 19.89 71.51 19.89 71.51 19.89 95.94 28.76 95.14 30.01 96.78 34.76 96.78 34.76 96.78 34.76	04.75 14.41 66.24 14.81 68.34 14.17 76.08 16.57 7 - <th>04.75 14.41 66.24 14.81 66.24 14.81 66.24 14.17 76.08 16.57 7 75.55 75.60 16.57 75.07 20.77 75.07 20.77 75.07 20.77 75.07 20.77 75.65 20.50 71.57 19.89 71.57 19.89 71.57 19.89 71.57 19.89 71.57 19.89 93.75 24.32 95.94 28.76 95.14 30.01 95.14 30.01 95.14 30.01 95.12 21.21 95.14 20.199</th> <th>04.75 14.41 66.24 14.81 66.24 14.81 66.24 14.81 66.24 14.17 75.07 20.77 75.07 20.77 75.07 20.77 75.07 20.14 71.05 20.14 71.05 20.14 71.05 20.14 71.05 20.14 71.05 20.14 71.05 20.14 71.05 21.71 71.05 21.71 71.65 21.71 71.65 21.71 71.65 21.31 93.75 24.32 95.94 28.76 96.12 33.29 96.12 33.29 96.95 26.98 96.95 26.98</th> <th>04.75 14.41 66.24 14.81 66.24 14.81 66.24 14.17 66.24 14.117 76.08 16.57 7 75.07 75.07 20.77 75.07 20.14 75.07 20.14 75.05 20.50 71.05 20.17 71.05 20.17 71.05 20.14 93.75 24.32 95.95 31.92 95.14 30.01 96.12 33.29 96.12 33.29 96.12 33.29 96.95 26.98 96.95 26.98 96.95 26.99 96.95 26.99 96.95 26.99 96.95 20.15</th> <th>04.75 14.41 66.24 14.81 66.24 14.17 66.24 14.17 75.07 16.57 - - 75.07 20.77 75.07 20.77 75.07 20.77 75.07 20.77 75.07 20.77 75.07 20.77 75.07 20.14 71.55 20.50 93.75 24.32 95.94 28.76 95.14 30.01 96.78 34.76 96.79 30.15 96.79 30.15 96.79 30.15 96.79 30.15</th> <th>04.75 14.41 66.24 14.81 66.24 14.81 66.24 14.17 75.07 20.77 75.07 20.77 75.07 20.77 75.07 20.77 75.07 20.77 75.07 20.14 75.05 20.104 71.05 20.114 93.75 24.32 95.94 28.76 95.94 28.76 96.12 33.29 95.14 30.01 96.75 20.50 96.75 29.51 96.75 29.51 96.75 29.51 96.75 29.51 96.75 29.51 96.75 29.51 96.75 29.51 97.19 29.59</th>	04.75 14.41 66.24 14.81 66.24 14.81 66.24 14.17 76.08 16.57 7 75.55 75.60 16.57 75.07 20.77 75.07 20.77 75.07 20.77 75.07 20.77 75.65 20.50 71.57 19.89 71.57 19.89 71.57 19.89 71.57 19.89 71.57 19.89 93.75 24.32 95.94 28.76 95.14 30.01 95.14 30.01 95.14 30.01 95.12 21.21 95.14 20.199	04.75 14.41 66.24 14.81 66.24 14.81 66.24 14.81 66.24 14.17 75.07 20.77 75.07 20.77 75.07 20.77 75.07 20.14 71.05 20.14 71.05 20.14 71.05 20.14 71.05 20.14 71.05 20.14 71.05 20.14 71.05 21.71 71.05 21.71 71.65 21.71 71.65 21.71 71.65 21.31 93.75 24.32 95.94 28.76 96.12 33.29 96.12 33.29 96.95 26.98 96.95 26.98	04.75 14.41 66.24 14.81 66.24 14.81 66.24 14.17 66.24 14.117 76.08 16.57 7 75.07 75.07 20.77 75.07 20.14 75.07 20.14 75.05 20.50 71.05 20.17 71.05 20.17 71.05 20.14 93.75 24.32 95.95 31.92 95.14 30.01 96.12 33.29 96.12 33.29 96.12 33.29 96.95 26.98 96.95 26.98 96.95 26.99 96.95 26.99 96.95 26.99 96.95 20.15	04.75 14.41 66.24 14.81 66.24 14.17 66.24 14.17 75.07 16.57 - - 75.07 20.77 75.07 20.77 75.07 20.77 75.07 20.77 75.07 20.77 75.07 20.77 75.07 20.14 71.55 20.50 93.75 24.32 95.94 28.76 95.14 30.01 96.78 34.76 96.79 30.15 96.79 30.15 96.79 30.15 96.79 30.15	04.75 14.41 66.24 14.81 66.24 14.81 66.24 14.17 75.07 20.77 75.07 20.77 75.07 20.77 75.07 20.77 75.07 20.77 75.07 20.14 75.05 20.104 71.05 20.114 93.75 24.32 95.94 28.76 95.94 28.76 96.12 33.29 95.14 30.01 96.75 20.50 96.75 29.51 96.75 29.51 96.75 29.51 96.75 29.51 96.75 29.51 96.75 29.51 96.75 29.51 97.19 29.59
	73.94 80.48 71.5	67.44 81.16 64.7.		69.06 79.49 66.2	69.06 79.49 66.2 70.73 80.95 68.3	69.06 79.49 66.2 70.73 80.95 68.3 78.12 79.45 76.0	69.06 79.49 66.2 70.73 80.95 68.3 78.12 79.45 76.0 	69.06 79.49 66.2 70.73 80.95 68.3 78.12 79.45 76.0 	69.06 79.49 66.2 70.73 80.95 68.3 78.12 79.45 76.0 - - - 75.74 72.15 75.0	69.06 79.49 66.2 70.73 80.95 68.3 78.12 79.45 76.0 - - - 75.74 72.15 75.0 76.29 71.72 75.5	69.06 79.49 66.2 70.73 80.95 68.3 78.12 79.45 76.0 - - - 75.74 72.15 75.0 75.29 71.72 75.5 71.83 73.49 71.0	69.06 79.49 66.2 70.73 80.95 68.3 78.12 79.45 76.0 - - - 75.74 72.15 75.0 76.29 71.72 75.5 71.83 73.49 71.0 70.09 72.40 69.1	69.06 79.49 66.2 70.73 80.95 68.3 78.12 79.45 76.0 - - - 75.74 72.15 75.6 75.74 72.15 75.5 75.23 71.72 75.5 71.83 73.49 71.0 70.09 72.40 69.1 72.48 74.56 71.5	69.06 79.49 66.2 70.73 80.95 68.3 78.12 79.45 76.0 - - - 75.74 72.15 75.0 76.29 71.72 75.5 76.29 71.72 75.5 71.83 73.49 71.0 70.09 72.40 69.1 72.48 74.56 71.5 75.20 73.91 74.4	69.06 79.49 66.2 70.73 80.95 68.3 78.12 79.45 76.0 - - - 75.74 72.15 75.0 76.29 71.72 75.5 71.83 73.49 71.0 70.09 72.40 69.1 72.48 74.56 71.5 72.48 74.56 71.5 75.20 73.91 74.4	69.06 79.49 66.2 70.73 80.95 68.3 78.12 79.45 76.0 - - - 75.74 72.15 75.0 75.74 72.15 75.0 76.29 71.72 75.5 71.83 73.49 71.0 70.09 72.40 69.1 72.48 74.56 71.5 72.48 74.56 71.5 75.20 73.91 74.4	69.06 79.49 66.2 70.73 80.95 68.3 78.12 79.45 76.0 - - - 75.74 72.15 75.0 75.74 72.15 75.5 76.29 71.72 75.5 71.83 73.49 71.0 70.09 72.40 69.1 70.19 72.46 71.5 72.48 74.56 71.5 75.20 73.91 74.4 75.20 73.91 74.4 93.97 78.81 93.7	69.06 79.49 66.2 70.73 80.95 68.3 78.12 79.45 76.0 - - - 78.12 79.45 76.0 - - - 75.74 72.15 75.0 76.29 71.72 75.5 71.83 73.49 71.0 70.09 72.40 69.1 70.09 72.40 69.1 72.48 74.56 71.5 75.20 73.91 74.4 75.20 73.91 74.4 93.97 78.81 93.7 96.07 67.76 95.9	69.06 79.49 66.2 70.73 80.95 68.3. 78.12 79.45 76.0 - - - 75.74 72.15 75.0 75.74 72.15 75.0 76.29 71.72 75.5 71.83 73.49 71.0 70.09 72.40 69.1 72.48 74.56 71.5 72.48 74.56 71.5 72.48 73.91 74.4 75.20 73.91 74.4 75.20 73.91 74.4 75.20 73.91 74.4 75.20 73.91 74.4 75.20 73.91 74.4 7 - - - 93.97 78.81 93.7 95.9 96.07 65.38 95.9 95.9	69.06 79.49 66.2 70.73 80.95 68.3 78.12 79.45 76.0 - - - 75.74 72.15 75.0 76.29 71.72 75.5 76.29 71.72 75.5 71.83 73.49 71.0 70.09 72.46 69.1 71.83 73.49 71.5 70.09 72.40 69.1 72.48 74.56 71.5 72.48 74.56 71.5 72.48 74.56 71.5 72.48 74.56 71.5 75.20 73.91 74.4 93.97 78.81 93.7 96.07 65.38 95.9 95.35 66.61 95.1	69.06 79.49 66.2 70.73 80.95 68.3 78.12 79.45 76.0 - - - 75.74 72.15 75.0 75.74 72.15 75.0 76.29 71.72 75.50 71.83 73.49 71.0 70.09 72.40 69.1 72.48 74.56 71.5 72.48 74.56 71.5 72.48 74.56 71.5 75.20 73.91 74.4 75.20 73.91 74.4 93.97 78.81 93.7 96.07 65.38 95.9 96.07 65.38 95.1 95.35 66.61 95.1 96.28 63.47 96.1	69.06 79.49 66.2 70.73 80.95 68.3 78.12 79.45 76.0 - - - 75.74 72.15 75.0 75.74 72.15 75.0 75.74 72.15 75.0 71.83 73.49 71.0 70.09 72.40 69.1 70.09 72.40 69.1 72.48 74.56 71.5 72.48 74.56 71.5 72.49 73.91 74.4 75.20 73.91 74.4 75.20 73.91 74.4 75.20 73.91 74.4 93.97 78.81 93.7 93.97 78.81 93.7 96.07 67.76 95.9 96.07 65.38 95.9 96.28 63.47 96.1 96.88 63.47 96.1 96.87 63.47 96.1 <td>69.06 79.49 66.2 70.73 80.95 68.3 78.12 79.45 76.0 - - - 75.74 72.15 75.0 76.29 71.72 75.5 76.29 71.72 75.5 71.83 73.49 71.0 70.09 72.46 71.5 70.09 72.40 69.1 72.48 74.56 71.5 72.48 74.56 71.5 72.48 74.56 71.5 72.48 74.56 71.5 75.20 73.91 74.4 93.97 78.81 93.7 95.35 66.61 95.9 95.35 65.19 96.1 96.87 62.19 96.1 96.87 62.19 96.7</td> <td>69.06 79.49 66.2 70.73 80.95 68.3 78.12 79.45 76.0 - - - 78.12 79.45 68.3 78.12 79.45 76.0 - - - 75.74 72.15 75.0 76.29 71.72 75.5.5 71.83 73.49 71.0 70.09 72.48 74.56 71.5 70.09 72.40 69.1 74.4 75.20 73.91 74.4 93.7 93.97 78.81 93.7 95.9 96.07 67.76 95.9 95.9 95.35 66.61 95.1 95.1 96.87 62.19 96.7 - 96.87 62.19 96.7 - - - - -</td> <td>69.06 79.49 66.2 70.73 80.95 68.3 78.12 79.45 76.0 - - - 75.74 72.15 75.0 75.74 72.15 75.0 75.74 72.15 75.0 71.83 73.49 71.0 70.09 72.40 69.1 72.48 74.56 71.5 72.48 74.56 71.5 72.48 74.56 71.5 72.48 74.56 71.5 75.20 73.91 74.4 75.20 73.91 74.4 93.97 78.81 93.7 96.07 67.76 95.9 96.07 65.38 95.9 96.87 62.19 96.7 96.87 62.19 96.7 95.49 71.01 95.2</td> <td>69.06 79.49 66.2 70.73 80.95 68.3 78.12 79.45 76.00 - - - 75.74 72.15 75.0 75.74 72.15 75.0 75.74 72.15 75.0 71.83 73.49 71.0 70.09 72.40 69.1 70.09 72.40 69.1 72.48 74.56 71.5 72.48 74.56 71.5 72.48 73.91 74.4 72.48 73.91 74.4 75.20 73.91 74.4 93.97 78.81 93.7 93.97 78.81 93.7 96.07 67.76 95.9 96.87 62.19 96.7 96.88 63.47 96.1 96.54 71.01 95.2 97.08 68.53 96.9</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>69.06 79.49 66.2 70.73 80.95 68.3 78.12 79.45 76.00 - - - 75.74 72.15 75.0 75.74 72.15 75.0 75.74 72.15 75.0 76.29 71.72 75.5 71.83 73.49 71.0 70.09 72.40 69.1.1 71.83 73.91 74.4 72.48 74.56 71.5 72.48 74.56 71.5 72.48 73.91 74.4 72.48 74.56 71.5 93.97 73.91 74.4 - - - - - - 93.97 78.81 93.7 96.07 65.347 96.1 96.28 63.47 96.1 96.87 62.19 96.7 97.08 68.53 96.9 97.08 66.60 96.7<</td>	69.06 79.49 66.2 70.73 80.95 68.3 78.12 79.45 76.0 - - - 75.74 72.15 75.0 76.29 71.72 75.5 76.29 71.72 75.5 71.83 73.49 71.0 70.09 72.46 71.5 70.09 72.40 69.1 72.48 74.56 71.5 72.48 74.56 71.5 72.48 74.56 71.5 72.48 74.56 71.5 75.20 73.91 74.4 93.97 78.81 93.7 95.35 66.61 95.9 95.35 65.19 96.1 96.87 62.19 96.1 96.87 62.19 96.7	69.06 79.49 66.2 70.73 80.95 68.3 78.12 79.45 76.0 - - - 78.12 79.45 68.3 78.12 79.45 76.0 - - - 75.74 72.15 75.0 76.29 71.72 75.5.5 71.83 73.49 71.0 70.09 72.48 74.56 71.5 70.09 72.40 69.1 74.4 75.20 73.91 74.4 93.7 93.97 78.81 93.7 95.9 96.07 67.76 95.9 95.9 95.35 66.61 95.1 95.1 96.87 62.19 96.7 - 96.87 62.19 96.7 - - - - -	69.06 79.49 66.2 70.73 80.95 68.3 78.12 79.45 76.0 - - - 75.74 72.15 75.0 75.74 72.15 75.0 75.74 72.15 75.0 71.83 73.49 71.0 70.09 72.40 69.1 72.48 74.56 71.5 72.48 74.56 71.5 72.48 74.56 71.5 72.48 74.56 71.5 75.20 73.91 74.4 75.20 73.91 74.4 93.97 78.81 93.7 96.07 67.76 95.9 96.07 65.38 95.9 96.87 62.19 96.7 96.87 62.19 96.7 95.49 71.01 95.2	69.06 79.49 66.2 70.73 80.95 68.3 78.12 79.45 76.00 - - - 75.74 72.15 75.0 75.74 72.15 75.0 75.74 72.15 75.0 71.83 73.49 71.0 70.09 72.40 69.1 70.09 72.40 69.1 72.48 74.56 71.5 72.48 74.56 71.5 72.48 73.91 74.4 72.48 73.91 74.4 75.20 73.91 74.4 93.97 78.81 93.7 93.97 78.81 93.7 96.07 67.76 95.9 96.87 62.19 96.7 96.88 63.47 96.1 96.54 71.01 95.2 97.08 68.53 96.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	69.06 79.49 66.2 70.73 80.95 68.3 78.12 79.45 76.00 - - - 75.74 72.15 75.0 75.74 72.15 75.0 75.74 72.15 75.0 76.29 71.72 75.5 71.83 73.49 71.0 70.09 72.40 69.1.1 71.83 73.91 74.4 72.48 74.56 71.5 72.48 74.56 71.5 72.48 73.91 74.4 72.48 74.56 71.5 93.97 73.91 74.4 - - - - - - 93.97 78.81 93.7 96.07 65.347 96.1 96.28 63.47 96.1 96.87 62.19 96.7 97.08 68.53 96.9 97.08 66.60 96.7<
	.61 0.56 73	.77 0.56 63	.70 0.59 69		.53 0.44 70	.53 0.44 70 .57 0.38 78	.53 0.44 7(.57 0.38 78 .61 0.48 -	.53 0.44 70 .57 0.38 78 .61 0.48 -	.53 0.44 7(.57 0.38 78 .61 0.48 - .41 0.31 75	.53 0.44 7(.57 0.38 78 .61 0.48 - .41 0.31 7 .44 0.29 70	.53 0.44 7(.57 0.38 7(.61 0.48 - .41 0.31 7(.44 0.29 7(.53 0.34 7(.53 0.44 7(.57 0.38 78 .61 0.48 - .61 0.48 - .41 0.31 7(.44 0.29 7(.53 0.34 71 .46 0.29 7(.53 0.44 7(.57 0.38 78 .61 0.48 - .41 0.31 7 .44 0.29 70 .53 0.34 71 .46 0.29 70 .45 0.30 77	.53 0.44 7 .57 0.38 78 .61 0.48 - .41 0.31 7 .42 0.31 7 .44 0.29 7 .53 0.34 7 .45 0.30 7 .45 0.30 7	.53 0.44 7(.57 0.38 78 .61 0.48 - .61 0.48 - .41 0.31 7(.45 0.29 7(.45 0.30 7(.45 0.30 7(.41 0.14 7(.53 0.29 7(.53 0.29 7(.45 0.30 7(.41 0.14 7(.41 0.27 -	.53 0.44 7(.57 0.38 78 .61 0.48 - .61 0.48 - .41 0.31 7(.45 0.29 70 .46 0.29 70 .45 0.30 72 .41 0.14 7(.45 0.30 72 .41 0.27 -	.53 0.44 7 .57 0.38 7 .61 0.48 - .41 0.31 7 .44 0.29 7 .53 0.34 7 .46 0.29 7 .45 0.30 7 .45 0.30 7 .41 0.29 7 .45 0.34 7 .45 0.30 7 .41 0.27 7 .41 0.27 - .41 0.27 - .41 0.27 -	.53 0.44 7 .57 0.38 7 .61 0.48 - .41 0.31 7 .45 0.29 7 .45 0.29 7 .53 0.14 7 .45 0.29 7 .45 0.29 7 .45 0.20 7 .41 0.27 - .41 0.27 - .15 0.13 9	.53 0.44 7 .57 0.38 7 .61 0.48 - .41 0.31 7 .45 0.34 7 .46 0.29 7 .45 0.30 7 .41 0.29 7 .45 0.30 7 .41 0.27 7 .41 0.27 7 .15 0.14 7 .12 0.13 9 .13 0.10 9	53 0.44 7 57 0.38 78 61 0.48 - 41 0.31 7 45 0.29 7 53 0.34 7 45 0.29 7 53 0.34 7 53 0.34 7 53 0.34 7 54 0.29 7 21 0.14 7 21 0.14 7 31 0.27 - 15 0.13 9 13 0.10 9 13 0.09 9	.53 0.44 7 .57 0.38 7 .61 0.48 - .41 0.31 7 .45 0.34 7 .46 0.29 7 .45 0.30 7 .41 0.29 7 .45 0.30 7 .41 0.29 7 .41 0.27 - .12 0.13 9 .13 0.10 9 .13 0.09 9	.53 0.44 7 .57 0.38 7 .61 0.48 - .41 0.31 7 .45 0.34 7 .46 0.29 7 .45 0.34 7 .46 0.29 7 .41 0.29 7 .41 0.29 7 .41 0.27 7 .41 0.27 9 .12 0.14 7 .13 0.10 9 .13 0.09 9 .11 0.08 9	.53 0.44 7 .57 0.38 7 .61 0.48 - .41 0.31 7 .45 0.34 7 .46 0.29 7 .45 0.30 7 .46 0.29 7 .41 0.29 7 .45 0.34 7 .41 0.29 7 .41 0.29 7 .41 0.27 - .12 0.14 7 .13 0.10 9 .13 0.09 9 .11 0.08 9 .11 0.09 9	53 0.44 7 .57 0.38 7 .61 0.48 - .41 0.31 7 .45 0.34 7 .46 0.29 7 .45 0.34 7 .45 0.30 7 .45 0.30 7 .45 0.30 7 .45 0.09 9 .13 0.10 9 .11 0.09 9 .11 0.09 -	.53 0.44 7 .57 0.38 7 .61 0.48 - .41 0.31 7 .45 0.34 7 .46 0.29 7 .45 0.34 7 .46 0.29 7 .41 0.29 7 .41 0.27 - .12 0.14 7 .13 0.10 9 .13 0.09 9 .11 0.09 9 .11 0.09 9 .11 0.09 9 .11 0.09 9	.53 0.44 7 .57 0.38 7 .61 0.48 - .41 0.31 7 .42 0.34 7 .46 0.29 7 .45 0.34 7 .46 0.29 7 .41 0.29 7 .45 0.30 7 .41 0.27 7 .41 0.27 9 .12 0.14 7 .13 0.10 9 .11 0.09 9 .12 0.09 9 .11 0.09 9 .15 0.11 9 .16 0.07 9 .17 0.09 9 .18 0.10 9 .19 0.09 9 .11 0.09 9 .11 0.09 9 .15 0.11 9	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
122 00 001	10.U U0.621 V	8 17.86 0.77	9 40.44 0.70		<u>دد. ۷ ۲۷.۵۶ م</u>	دد <i>1</i> 0.13 0.57 0 2 10.13 0.57	cc.v vv.sc d 2 10.13 0.57 7 0.24 0.61	cc.v 22.8c d 2 10.13 0.57 7 0.24 0.61	cc.u ve.se d 2 10.13 0.57 7 0.24 0.61 1 0.14.62 0.41	cc.u ve.86 d 2 10.13 0.57 7 0.24 0.61 10.0 14.62 0.41 0 14.62 0.44 7 8.61 0.44	cc.u ve.se d 2 10.13 0.57 7 0.24 0.61 0 14.62 0.41 7 8.61 0.44 7 8.61 0.53	cc.u exect of the second	cc.u ve.se d 2 10.13 0.57 7 0.24 0.61 0 14.62 0.41 7 8.61 0.53 9 7.41 0.53 6 6.54 0.46 6 8.76 0.46	cc.u 62.50 62.00 53.50 65.57 2 10.13 0.57 0 14.62 0.41 0 14.62 0.44 9 7.41 0.53 5 6.54 0.45 6 8.76 0.45 1 10.52 0.45	5v 92v 92e 6 2 10.13 0.57 7 0.24 0.61 0 14.62 0.41 7 8.61 0.43 9 7.41 0.53 5 6.54 0.46 6 8.76 0.45 1 10.52 0.24	cc.v 98.99 0.57 2 10.13 0.57 7 0.24 0.61 0 14.62 0.41 7 8.61 0.42 9 7.41 0.53 5 6.54 0.45 6 8.76 0.45 1 10.52 0.21 1 10.52 0.21 6 0.42 0.41	50.00 90.00 50.00 <th< td=""><td>$\begin{array}{ccccc} & 56.99 & 0.57 \\ 2 & 10.13 & 0.57 \\ \hline 7 & 0.24 & 0.61 \\ 0 & 14.62 & 0.44 \\ 0 & 14.62 & 0.46 \\ 0 & 7.41 & 0.53 \\ 5 & 6.54 & 0.46 \\ 6 & 8.76 & 0.45 \\ 6 & 8.76 & 0.41 \\ \hline 1 & 10.52 & 0.21 \\ 6 & 0.42 & 0.41 \\ \hline 5 & 18.86 & 0.15 \\ 5 & 18.86 & 0.15 \\ \hline 7 & 7.93 & 0.12 \end{array}$</td><td>$\begin{array}{ccccc} &,,,,,,, .$</td><td>$\begin{array}{ccccc} & 56.59 & 0.57 \\ 2 & 10.13 & 0.57 \\ \hline 7 & 0.24 & 0.61 \\ 0 & 14.62 & 0.44 \\ 9 & 7.41 & 0.53 \\ 5 & 6.54 & 0.46 \\ 6 & 8.76 & 0.45 \\ 6 & 8.76 & 0.41 \\ 1 & 10.52 & 0.21 \\ 6 & 0.42 & 0.12 \\ \hline 5 & 18.86 & 0.12 \\ 5 & 18.86 & 0.12 \\ \hline 7 & 7.93 & 0.12 \\ 2 & 8.55 & 0.12 \\ \end{array}$</td><td>$\begin{array}{ccccc} &,,,,,,, .$</td><td>$\begin{array}{ccccc} & 5.59 & 0.57 \\ 2 & 10.13 & 0.57 \\ \hline 7 & 0.24 & 0.61 \\ 0 & 14.62 & 0.41 \\ 7 & 8.61 & 0.46 \\ 6 & 8.76 & 0.45 \\ 6 & 8.76 & 0.45 \\ 6 & 0.42 & 0.41 \\ \hline 1 & 10.52 & 0.21 \\ 6 & 0.42 & 0.41 \\ \hline 5 & 18.86 & 0.12 \\ \hline 7 & 7.93 & 0.12 \\ \hline 7 & 7.93 & 0.12 \\ \hline 2 & 6.44 & 0.13 \\ \hline 2 & 6.01 & 0.01 \\ \hline 9 & 6.91 & 0.05 \end{array}$</td><td>$\begin{array}{ccccc} & 5.59 & 0.57 \\ 2 & 10.13 & 0.57 \\ \hline 7 & 0.24 & 0.61 \\ 0 & 14.62 & 0.44 \\ 9 & 7.41 & 0.53 \\ 5 & 6.54 & 0.46 \\ 6 & 8.76 & 0.45 \\ 6 & 8.76 & 0.41 \\ \hline 1 & 10.52 & 0.21 \\ 6 & 0.42 & 0.13 \\ \hline 5 & 18.86 & 0.13 \\ \hline 6 & 0.42 & 0.13 \\ \hline 7 & 7.93 & 0.13 \\ \hline 5 & 18.86 & 0.13 \\ \hline 6 & 0.42 & 0.13 \\ \hline 6 & 0.42 & 0.13 \\ \hline 7 & 7.93 & 0.13 \\ \hline 7 & 7.93 & 0.13 \\ \hline 9 & 6.91 & 0.06 \\ \hline 9 & 6.91 & 0.05 \\ \hline \end{array}$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccc} & 5.5.99 & 0.57 \\ \hline 2 & 10.13 & 0.57 \\ \hline 7 & 0.24 & 0.61 \\ \hline 0 & 14.62 & 0.41 \\ \hline 0 & 14.62 & 0.45 \\ \hline 0 & 7.41 & 0.53 \\ \hline 5 & 6.54 & 0.46 \\ \hline 6 & 8.76 & 0.45 \\ \hline 1 & 10.52 & 0.21 \\ \hline 6 & 0.42 & 0.41 \\ \hline 6 & 0.42 & 0.13 \\ \hline 7 & 7.93 & 0.12 \\ \hline 7 & 7.93 & 0.12 \\ \hline 2 & 6.01 & 0.13 \\ \hline 2 & 6.01 & 0.13 \\ \hline 2 & 6.01 & 0.11 \\ \hline 8 & 14.99 & 0.15 \\ \hline \end{array}$</td><td>$\begin{array}{ccccc} & 5.59 & 9.5.79 & 0.57 \\ & 2 & 10.13 & 0.57 \\ & 7 & 0.24 & 0.61 \\ & 7 & 8.61 & 0.446 \\ & 8.61 & 0.445 & 0.45 \\ & 8.76 & 0.45 & 0.45 \\ & 8.76 & 0.45 & 0.12 \\ & 1 & 10.52 & 0.21 \\ & 6 & 0.42 & 0.12 \\ & 1 & 10.52 & 0.21 \\ & 2 & 8.55 & 0.13 \\ & 2 & 6.91 & 0.05 \\ & 2 & 6.91 & 0.05 \\ & 2 & 0.28 & 0.11 \\ & 9 & 6.91 & 0.05 \\ & 14.99 & 0.11 \\ & 8 & 14.99 & 0.15 \\ & 8 & 14.99 & 0.11 \\ & 8 & 14.94 & 0.11 \\ & 8 & 14.99 & 0.11 \\ & 8 & 14.94 & 0.11 \\ & 14 & 14.94 & 0.11$</td><td>$\begin{array}{ccccc} &,,,,,,, .$</td><td>$\begin{array}{ccccc} & 5.59 & 0.57 \\ & 2 & 10.13 & 0.57 \\ & 7 & 0.24 & 0.61 \\ & 7 & 8.61 & 0.445 \\ & 8.61 & 0.45 \\ & 8.76 & 0.45 \\ & 8.76 & 0.45 \\ & 8.76 & 0.45 \\ & 10.52 & 0.21 \\ & 6 & 0.42 & 0.13 \\ & 5 & 18.86 & 0.13 \\ & 6 & 0.42 & 0.13 \\ & 5 & 10.52 & 0.21 \\ & 6 & 0.42 & 0.13 \\ & 6 & 0.44 & 0.13 \\ & 8 & 14.99 & 0.15 \\ & 6 & 14.34 & 0.11 \\ & 8 & 8.34 & 0.11 \\ & 8 & 8.34 & 0.11 \end{array}$</td><td>$\begin{array}{ccccc} & 5.59 & 0.57 \\ & 2 & 10.13 & 0.57 \\ & 7 & 0.24 & 0.61 \\ & 7 & 0.24 & 0.41 \\ & 7 & 8.61 & 0.445 \\ & 8.76 & 0.45 \\ & 8.76 & 0.45 \\ & 8.76 & 0.45 \\ & 1 & 10.52 & 0.21 \\ & 6 & 0.42 & 0.41 \\ & 1 & 10.52 & 0.21 \\ & 6 & 0.42 & 0.12 \\ & 7 & 793 & 0.12 \\ & 7 & 793 & 0.12 \\ & 6 & 0.42 & 0.13 \\ & 8 & 14.99 & 0.11 \\ & 8 & 8.34 & 0.11 \\ & 6 & 14.18 & 0.11 \end{array}$</td></th<>	$\begin{array}{ccccc} & 56.99 & 0.57 \\ 2 & 10.13 & 0.57 \\ \hline 7 & 0.24 & 0.61 \\ 0 & 14.62 & 0.44 \\ 0 & 14.62 & 0.46 \\ 0 & 7.41 & 0.53 \\ 5 & 6.54 & 0.46 \\ 6 & 8.76 & 0.45 \\ 6 & 8.76 & 0.41 \\ \hline 1 & 10.52 & 0.21 \\ 6 & 0.42 & 0.41 \\ \hline 5 & 18.86 & 0.15 \\ 5 & 18.86 & 0.15 \\ \hline 7 & 7.93 & 0.12 \end{array}$	$\begin{array}{ccccc} &,,,,,,, .$	$\begin{array}{ccccc} & 56.59 & 0.57 \\ 2 & 10.13 & 0.57 \\ \hline 7 & 0.24 & 0.61 \\ 0 & 14.62 & 0.44 \\ 9 & 7.41 & 0.53 \\ 5 & 6.54 & 0.46 \\ 6 & 8.76 & 0.45 \\ 6 & 8.76 & 0.41 \\ 1 & 10.52 & 0.21 \\ 6 & 0.42 & 0.12 \\ \hline 5 & 18.86 & 0.12 \\ 5 & 18.86 & 0.12 \\ \hline 7 & 7.93 & 0.12 \\ 2 & 8.55 & 0.12 \\ \end{array}$	$\begin{array}{ccccc} &,,,,,,, .$	$\begin{array}{ccccc} & 5.59 & 0.57 \\ 2 & 10.13 & 0.57 \\ \hline 7 & 0.24 & 0.61 \\ 0 & 14.62 & 0.41 \\ 7 & 8.61 & 0.46 \\ 6 & 8.76 & 0.45 \\ 6 & 8.76 & 0.45 \\ 6 & 0.42 & 0.41 \\ \hline 1 & 10.52 & 0.21 \\ 6 & 0.42 & 0.41 \\ \hline 5 & 18.86 & 0.12 \\ \hline 7 & 7.93 & 0.12 \\ \hline 7 & 7.93 & 0.12 \\ \hline 2 & 6.44 & 0.13 \\ \hline 2 & 6.01 & 0.01 \\ \hline 9 & 6.91 & 0.05 \end{array}$	$\begin{array}{ccccc} & 5.59 & 0.57 \\ 2 & 10.13 & 0.57 \\ \hline 7 & 0.24 & 0.61 \\ 0 & 14.62 & 0.44 \\ 9 & 7.41 & 0.53 \\ 5 & 6.54 & 0.46 \\ 6 & 8.76 & 0.45 \\ 6 & 8.76 & 0.41 \\ \hline 1 & 10.52 & 0.21 \\ 6 & 0.42 & 0.13 \\ \hline 5 & 18.86 & 0.13 \\ \hline 6 & 0.42 & 0.13 \\ \hline 7 & 7.93 & 0.13 \\ \hline 5 & 18.86 & 0.13 \\ \hline 6 & 0.42 & 0.13 \\ \hline 6 & 0.42 & 0.13 \\ \hline 7 & 7.93 & 0.13 \\ \hline 7 & 7.93 & 0.13 \\ \hline 9 & 6.91 & 0.06 \\ \hline 9 & 6.91 & 0.05 \\ \hline \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccc} & 5.5.99 & 0.57 \\ \hline 2 & 10.13 & 0.57 \\ \hline 7 & 0.24 & 0.61 \\ \hline 0 & 14.62 & 0.41 \\ \hline 0 & 14.62 & 0.45 \\ \hline 0 & 7.41 & 0.53 \\ \hline 5 & 6.54 & 0.46 \\ \hline 6 & 8.76 & 0.45 \\ \hline 1 & 10.52 & 0.21 \\ \hline 6 & 0.42 & 0.41 \\ \hline 6 & 0.42 & 0.13 \\ \hline 7 & 7.93 & 0.12 \\ \hline 7 & 7.93 & 0.12 \\ \hline 2 & 6.01 & 0.13 \\ \hline 2 & 6.01 & 0.13 \\ \hline 2 & 6.01 & 0.11 \\ \hline 8 & 14.99 & 0.15 \\ \hline \end{array}$	$\begin{array}{ccccc} & 5.59 & 9.5.79 & 0.57 \\ & 2 & 10.13 & 0.57 \\ & 7 & 0.24 & 0.61 \\ & 7 & 8.61 & 0.446 \\ & 8.61 & 0.445 & 0.45 \\ & 8.76 & 0.45 & 0.45 \\ & 8.76 & 0.45 & 0.12 \\ & 1 & 10.52 & 0.21 \\ & 6 & 0.42 & 0.12 \\ & 1 & 10.52 & 0.21 \\ & 2 & 8.55 & 0.13 \\ & 2 & 6.91 & 0.05 \\ & 2 & 6.91 & 0.05 \\ & 2 & 0.28 & 0.11 \\ & 9 & 6.91 & 0.05 \\ & 14.99 & 0.11 \\ & 8 & 14.99 & 0.15 \\ & 8 & 14.99 & 0.11 \\ & 8 & 14.94 & 0.11 \\ & 8 & 14.99 & 0.11 \\ & 8 & 14.94 & 0.11 \\ & 14 & 14.94 & 0.11$	$\begin{array}{ccccc} &,,,,,,, .$	$\begin{array}{ccccc} & 5.59 & 0.57 \\ & 2 & 10.13 & 0.57 \\ & 7 & 0.24 & 0.61 \\ & 7 & 8.61 & 0.445 \\ & 8.61 & 0.45 \\ & 8.76 & 0.45 \\ & 8.76 & 0.45 \\ & 8.76 & 0.45 \\ & 10.52 & 0.21 \\ & 6 & 0.42 & 0.13 \\ & 5 & 18.86 & 0.13 \\ & 6 & 0.42 & 0.13 \\ & 5 & 10.52 & 0.21 \\ & 6 & 0.42 & 0.13 \\ & 6 & 0.42 & 0.13 \\ & 6 & 0.42 & 0.13 \\ & 6 & 0.42 & 0.13 \\ & 6 & 0.42 & 0.13 \\ & 6 & 0.42 & 0.13 \\ & 6 & 0.44 & 0.13 \\ & 8 & 14.99 & 0.15 \\ & 6 & 14.34 & 0.11 \\ & 8 & 8.34 & 0.11 \\ & 8 & 8.34 & 0.11 \end{array}$	$\begin{array}{ccccc} & 5.59 & 0.57 \\ & 2 & 10.13 & 0.57 \\ & 7 & 0.24 & 0.61 \\ & 7 & 0.24 & 0.41 \\ & 7 & 8.61 & 0.445 \\ & 8.76 & 0.45 \\ & 8.76 & 0.45 \\ & 8.76 & 0.45 \\ & 1 & 10.52 & 0.21 \\ & 6 & 0.42 & 0.41 \\ & 1 & 10.52 & 0.21 \\ & 6 & 0.42 & 0.12 \\ & 7 & 793 & 0.12 \\ & 7 & 793 & 0.12 \\ & 6 & 0.42 & 0.13 \\ & 8 & 14.99 & 0.11 \\ & 8 & 8.34 & 0.11 \\ & 8 & 8.34 & 0.11 \\ & 8 & 8.34 & 0.11 \\ & 8 & 8.34 & 0.11 \\ & 8 & 8.34 & 0.11 \\ & 6 & 14.18 & 0.11 \\ & 6 & 14.18 & 0.11 \\ & 6 & 14.18 & 0.11 \\ & 6 & 14.18 & 0.11 \end{array}$
) 54.59 5.09		37 15.86 4.28	\$ 27.05 4.59) 28.37 4.86		5 9.37 3.22	5 9.37 3.22 t 24.06 4.37) 9.37 3.22 I 24.06 4.37	9.37 3.22 1 24.06 4.37 3 10.70 2.70	0 9.37 3.22 1 24.06 4.37 3 10.70 2.70 5 6.98 2.37	9.37 3.22 1 24.06 4.37 3 10.70 2.70 4 10.70 2.37 5 6.98 2.37 6 6.8 2.37	9.37 3.22 1 24.06 4.37 3 10.70 2.70 4 10.70 2.37 5 6.52 2.39 5 5.80 2.15	9.37 3.22 1 24.06 4.37 3 10.70 2.70 4 10.70 2.37 5 6.98 2.37 6 5.80 2.15 54 7.68 2.56	1 9.37 3.22 1 24.06 4.37 5 10.70 2.70 6.98 2.37 6.52 2.39 6.52 2.39 6.52 2.39 6.52 2.39 8.87 2.15 7 8.87 2.561	9.37 3.22 1 24.06 4.37 1 24.05 2.37 2 6.98 2.37 2 6.98 2.37 3 6.52 2.39 4 7.68 2.15 3 5.80 2.15 34 7.68 2.56 7 8.87 2.61 7 7.56 3.56	9.37 3.22 1 24.06 4.37 1 10.70 2.70 2 6.98 2.37 2 6.98 2.37 3 5.80 2.15 3 5.80 2.15 34 7.68 2.56 34 7.56 3.56 7 8.87 2.61 7 7.56 3.56	9.37 3.22 1 24.06 4.37 1 10.70 2.70 2 6.98 2.37 5 6.98 2.37 6 5.80 2.15 94 7.68 2.56 7 8.87 2.61 7 14.28 2.56 7 14.28 2.56	9.37 3.22 1 24.06 4.37 1 24.05 2.37 1 10.70 2.70 1 6.52 2.39 5 5.80 2.15 4 7.68 2.56 7 8.87 2.61 9 7.56 3.56 7 14.28 2.45 8 6.85 1.77 8 6.85 1.77	9.37 3.22 1 24,06 4.37 1 10.70 2.70 1 10.70 2.37 1 6.98 2.37 1 6.52 2.39 1 6.52 2.39 1 7.68 2.15 1 7.68 2.56 1 7.68 2.56 1 8.87 2.61 1 8.87 2.61 1 14.28 2.56 1 14.28 2.45 2 14.28 2.45 3 6.85 1.77 1 7.40 1.62	9.37 3.22 1 24.06 4.37 1 24.05 4.37 1 10.70 2.70 1 6.98 2.37 5 5.80 2.15 4 7.68 2.56 7 8.87 2.61 9 7.56 3.56 7 14.28 2.45 8 6.85 1.77 6 7.40 1.62 8 5.71 1.62	9.37 3.22 1 24.06 4.37 1 24.05 4.37 1 10.70 2.70 1 6.98 2.37 1 6.52 2.39 5 80 2.15 4 7.68 2.56 7 8.87 2.61 9 7.56 3.56 7 14.28 2.45 8 6.85 1.77 6 7.40 1.62 8 5.71 1.62 8 5.71 1.62	9.37 3.22 1 24.06 4.37 1 24.05 4.37 1 10.70 2.70 1 0.6.98 2.37 1 6.52 2.39 1 5.80 2.15 1 5.80 2.15 1 7.68 2.56 1 8.87 2.61 1 7.56 3.56 1 14.28 2.45 8 6.85 1.77 1 14.28 2.45 3 6.85 1.77 4 7.56 3.56 5 5.71 1.62 5 5.71 1.62 5 5.27 1.42 5 5.89 1.39	9.37 3.22 1 24.06 4.37 1 24.05 4.37 1 10.70 2.70 1 0.6.52 2.39 1 6.52 2.39 1 6.52 2.39 1 5.80 2.15 1 7.68 2.56 1 7.68 2.56 1 8.87 2.61 1 7.56 3.56 1 14.28 2.45 8 6.85 1.77 1 14.28 2.45 8 6.85 1.77 1 14.28 2.45 8 5.71 1.62 7 5.27 1.42 7 5.27 1.42 8 6.83 1.39 8 6.83 1.62	9.37 3.22 1 24.06 4.37 1 10.70 2.70 1 6.52 2.39 1 6.52 2.39 1 5.80 2.15 1 5.80 2.15 1 5.80 2.15 1 7.68 2.56 1 8.87 2.61 1 14.28 2.45 3 6.85 1.77 1 14.28 2.45 3 6.85 1.77 1 5.50 1.62 3 5.71 1.62 4 5.89 1.39 5 5.77 1.42 5 5.77 1.62 8 5.71 1.62 8 5.83 1.39 8 6.83 1.62	9.37 3.22 1 24.06 4.37 1 10.70 2.70 1 10.70 2.37 1 6.52 2.39 1 5.80 2.15 1 5.80 2.15 1 8.87 2.61 1 14.28 2.56 1 14.28 2.45 1 14.28 2.45 1 14.28 2.45 1 14.28 2.45 2 5.71 1.62 3 6.85 1.77 4 5.89 1.39 5 5.27 1.42 5 5.37 1.62 3 6.83 1.39 4 5.89 1.39 5 6.83 1.62 5 6.83 1.62	9.37 3.22 1 24.06 4.37 1 24.05 4.37 1 10.70 2.70 1 0.6.52 2.39 1 6.52 2.39 1 5.80 2.15 1 5.80 2.15 1 7.68 2.56 1 7.56 3.56 1 14.28 2.45 1 14.28 2.45 1 14.28 2.45 1 14.28 2.45 3 6.85 1.77 4 5.571 1.62 5 5.577 1.42 5 5.39 1.39 5 6.83 1.62 5 6.83 1.62 6 10.39 2.48 6 10.39 2.48	9.37 3.22 1 24.06 4.37 1 24.05 4.37 1 10.70 2.70 1 6.52 2.39 1 6.52 2.39 1 6.52 2.39 1 5.80 2.15 1 5.80 2.15 1 5.80 2.15 1 8.87 2.61 1 14.28 2.45 1 14.28 2.45 1 14.28 2.45 1 14.28 2.45 2 5.71 1.62 3 5.71 1.62 3 5.77 1.42 5 5.89 1.39 3 6.83 1.62 3 6.83 1.62 3 10.39 2.48 3 6.93 1.62 3 6.93 1.62 3 10.55 2.06 <	9.37 3.22 24.06 4.37 1 24.05 4.37 1 10.70 2.70 1 10.70 2.37 1 6.52 2.39 1 6.52 2.39 1 6.52 2.39 1 7.68 2.56 1 7.56 3.56 1 14.28 2.61 1 14.28 2.45 1 14.28 2.45 1 14.28 2.45 1 14.28 2.45 2 5.71 1.62 3 6.83 1.62 3 6.83 1.62 3 6.83 1.62 3 6.83 1.62 3 6.91 1.68 3 6.91 1.68	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
9.77 7.69		4.59 10.87	2.70 8.53	4.82 8.50	7.28 7.76		3.97 9.24	3.97 9.24	3.97 9.24 5.57 3.73	3.97 9.24 5.57 3.73 6.19 3.32	3.97 9.24 5.57 3.73 6.19 3.32 1.36 4.99	3.97 9.24 5.57 3.73 6.19 3.32 1.36 4.99 8.83 5.86	3.97 9.24 5.57 3.73 6.19 3.32 1.36 4.99 8.83 5.86 3.08 5.834	3.97 9.24 5.57 3.73 6.19 3.32 4.99 4.99 8.83 5.86 3.08 5.834 9.00 4.97	3.97 9.24 5.57 3.73 5.57 3.73 6.19 3.32 1.36 4.99 8.83 5.86 3.08 5.834 9.00 4.97 1.42 4.99	3.97 9.24 5.57 3.73 5.57 3.73 6.19 3.32 1.36 4.99 8.83 5.86 3.08 5.834 9.00 4.97 1.42 4.99	3.97 9.24 5.57 3.73 6.19 3.32 6.19 3.32 1.36 4.99 8.83 5.86 3.08 5.834 9.00 4.97 1.42 4.99 2.77 2.17	3.97 9.24 5.57 3.73 5.57 3.73 6.19 3.32 6.19 3.32 1.36 4.99 8.83 5.834 9.00 4.97 9.00 4.97 1.42 4.99 1.42 4.99 1.42 2.17 1.49 1.68	3.97 9.24 5.57 3.73 5.57 3.73 6.19 3.32 1.36 4.99 8.83 5.86 3.08 5.834 9.00 4.97 1.42 4.99 2.07 2.17 2.77 2.16 2.49 2.316	3.97 9.24 5.57 3.73 5.57 3.73 6.19 3.32 6.19 3.32 1.36 4.99 8.83 5.834 9.00 4.97 1.42 4.99 1.42 4.99 1.42 4.99 2.77 2.17 2.77 2.17 2.49 1.68 3.67 1.83	3.97 9.24 5.57 3.73 5.57 3.73 6.19 3.32 1.36 4.99 8.83 5.834 9.00 4.97 9.00 4.97 1.42 4.99 2.77 2.17 2.79 2.316 2.49 2.316 3.67 1.83 2.81 1.27	3.97 9.24 5.57 3.73 5.57 3.73 6.19 3.32 1.36 4.99 8.83 5.86 3.08 5.834 9.00 4.97 1.42 4.99 2.07 2.17 1.42 4.99 2.77 2.17 2.77 2.16 1.49 1.68 2.49 2.316 2.49 2.316 2.49 2.316 2.49 2.316 2.49 2.316 3.67 1.83 3.67 1.83 0.51 1.14	3.97 9.24 5.57 3.73 5.57 3.73 6.19 3.32 6.19 3.32 1.36 4.99 8.83 5.834 9.00 4.97 1.42 4.99 9.00 4.97 1.42 4.99 1.42 4.99 2.77 2.17 2.77 2.17 1.49 1.68 3.67 1.83 3.67 1.83 2.81 1.27 0.51 1.14 0.51 1.14 2.16 1.63	3.97 9.24 5.57 3.73 5.57 3.73 6.19 3.32 1.36 4.99 8.83 5.86 3.08 5.834 9.00 4.97 9.00 4.97 1.42 4.99 2.77 2.17 2.49 2.316 3.67 1.68 3.67 1.83 2.16 1.63	3.97 9.24 5.57 3.73 5.57 3.73 6.19 3.32 1.36 4.99 8.83 5.86 3.08 5.834 9.00 4.97 1.42 4.99 9.00 4.97 1.42 4.99 2.77 2.17 2.79 2.316 2.49 2.316 3.67 1.83 3.67 1.83 2.81 1.27 0.51 1.14 0.51 1.63 2.81 1.63 2.81 1.63 2.81 1.63 2.81 1.63 2.81 1.63 2.81 0.93	3.97 9.24 5.57 3.73 5.57 3.73 6.19 3.32 1.36 4.99 8.83 5.86 3.08 5.834 9.00 4.97 1.42 4.99 9.00 4.97 1.42 4.99 2.77 2.17 2.77 2.16 1.68 2.316 2.81 1.68 3.67 1.83 2.81 1.27 0.51 1.14 0.51 1.14 2.16 1.63 5.81 0.93 5.81 0.93 5.81 0.93 5.81 0.93	3.97 9.24 5.57 3.73 5.57 3.73 6.19 3.32 1.36 4.99 8.83 5.834 9.00 4.97 9.00 4.97 1.42 4.99 9.00 4.97 1.42 4.99 2.77 2.17 2.49 2.316 3.67 1.68 3.67 1.83 3.67 1.83 3.67 1.83 2.49 2.316 2.49 2.316 3.67 1.83 3.67 1.83 2.49 2.316 3.67 1.83 3.67 1.83 2.49 2.316 3.67 1.83 3.67 1.83 2.16 1.63 2.16 1.03 3.16 1.03 4.12 1.30	3.97 9.24 5.57 3.73 5.57 3.73 6.19 3.32 1.36 4.99 8.83 5.86 3.08 5.834 9.00 4.97 1.42 4.99 9.00 4.97 1.42 4.99 2.77 2.17 2.79 2.316 2.49 2.316 2.60 1.63 3.67 1.83 2.81 1.27 0.51 1.14 2.16 1.63 2.16 1.03 3.61 1.03 3.91 1.13	3.97 9.24 5.57 3.73 5.57 3.73 6.19 3.32 1.36 4.99 8.83 5.86 3.08 5.834 9.00 4.97 1.42 4.99 1.42 4.99 2.77 2.17 1.49 1.68 2.49 2.316 2.49 2.316 3.67 1.83 2.81 1.27 0.51 1.14 0.51 1.14 2.16 1.03 5.81 0.93 5.81 0.93 5.81 0.93 5.81 0.93 5.81 0.93 5.81 0.93 5.81 0.93 5.81 0.93 5.81 0.93 5.81 0.93 5.81 1.03 3.96 1.13
	18.82 39	22.03 44	21.03 52	20.12 44	26.60 37.	21.84 43			28.84 35	28.84 35 31.50 36	28.84 35 31.50 36 31.91 41	28.84 35 31.50 36 31.91 41 31.84 48	28.84 35 28.84 35 31.50 36 31.91 41 31.84 48 30.35 43	28.84 35 28.84 35 31.50 36 31.91 41 31.84 48 30.35 43 30.50 39	28.84 35 28.84 35 31.50 36 31.91 41 31.84 48 30.35 43 30.60 39 30.94 41	28.84 35 31.50 36 31.91 41 31.84 48 31.84 48 30.50 39 30.60 39	28.84 35 31.50 36 31.91 41 31.94 48 31.84 48 30.35 43 30.50 39 30.94 41 30.94 11	28.84 35 28.84 35 31.50 36 31.91 41 31.92 43 31.84 48 31.84 48 31.84 48 30.35 43 30.60 39 30.94 41 30.98 12 30.98 12 30.91 11	28.84 35 28.84 35 31.50 36 31.91 41 31.84 48 31.84 48 31.84 48 31.84 48 31.84 48 31.84 48 31.84 48 30.50 39 30.94 41 30.98 12 30.98 12 30.98 12 38.82 12	28.84 35 28.84 35 31.50 36 31.91 41 31.84 48 31.84 48 31.84 48 31.95 43 30.94 41 30.98 12 30.98 12 37.78 13	28.84 35 28.84 35 31.50 36 31.91 41 31.84 48 31.84 48 31.84 48 31.84 48 31.84 48 31.84 48 31.84 48 30.50 39 30.50 39 30.94 41 30.98 12 30.98 12 30.98 12 37.78 13 40.26 12	28.84 35 28.84 35 31.50 36 31.91 41 31.84 48 31.84 48 31.84 48 31.84 48 31.84 48 31.84 48 31.84 48 30.95 43 30.94 41 30.98 12 30.98 12 36.11 11 38.82 12 37.78 13 40.26 12 40.15 10	28.84 35 28.84 35 31.50 36 31.51 41 31.84 48 31.84 48 31.84 48 31.84 48 31.84 48 31.84 48 30.95 43 30.94 41 30.98 12 30.98 12 36.11 11 37.78 13 37.78 13 40.26 12 40.15 10 38.23 12	28.84 35 31.50 36 31.91 41 31.91 41 31.84 48 30.35 43 30.50 39 30.94 41 30.94 11 30.98 12 36.11 11 38.82 12 37.78 13 37.78 13 40.15 10 40.15 10	28.84 35 28.84 35 31.50 36 31.91 41 31.84 48 31.84 48 31.84 48 31.84 48 31.84 48 31.84 48 31.84 48 30.95 39 30.94 41 30.98 12 36.11 11 36.11 11 38.82 12 37.78 13 40.15 10 38.23 12 38.23 12 31.70 15	28.84 35 28.84 35 31.50 36 31.91 41 31.84 48 31.84 48 31.84 48 31.84 48 31.84 48 31.84 48 31.84 48 30.95 41 30.94 41 30.98 12 30.98 12 36.11 11 37.78 13 37.78 13 37.78 13 37.78 12 37.78 12 37.78 12 37.78 12 37.78 13 37.78 13 38.23 12 38.23 12 31.70 15 35.59 12	28.84 35 28.84 35 31.50 36 31.51 41 31.84 48 31.84 48 31.84 48 31.84 48 31.84 48 31.84 48 30.94 41 30.98 12 30.98 12 37.78 13 38.82 12 37.78 13 40.15 10 38.23 12 31.70 15 35.59 12 35.59 12	28.84 35 28.84 35 31.50 36 31.91 41 31.84 48 31.84 48 31.84 48 31.84 48 31.84 48 31.84 48 30.95 43 30.94 41 30.98 12 30.98 12 37.78 13 37.78 13 40.26 12 38.82 12 37.78 13 37.78 13 37.78 13 37.78 13 37.79 12 38.23 12 38.23 12 37.40 14 38.15 13 38.15 13	28.84 35 28.84 35 31.50 36 31.51 41 31.84 48 31.84 48 31.84 48 31.84 48 31.84 48 31.84 48 30.95 43 30.96 39 30.95 12 30.96 12 30.98 12 36.11 11 37.78 13 37.78 13 37.78 13 37.78 13 37.78 12 38.82 12 38.15 12 38.15 13 37.83 13
	.11 68.15	.37 62.67	.20 63.71	.21 65.77	.52 71.98	.30 65.83			.34 73.77	34 73.77 52 74.07			.34 73.77 .52 74.07 .52 69.94 .59 68.02 .50 70.24	.34 73.77 .52 74.07 .52 74.07 .58 69.94 .59 68.02 .50 70.24 .43 73.08	.34 73.77 .52 74.07 .58 69.94 .59 68.02 .50 70.24 .43 73.08 .50 71.23	.34 73.77 .52 74.07 .52 74.07 .58 69.94 .59 68.02 .50 70.24 .43 73.08 .50 71.23	.34 73.77 .52 74.07 .52 74.07 .58 69.94 .59 68.02 .50 70.24 .43 73.08 .50 71.23 .51 90.82	.34 73.77 .52 74.07 .58 69.94 .59 68.02 .50 70.24 .50 71.23 .50 71.23 .51 90.82 .35 92.98	34 73.77 .52 74.07 .58 69.94 .59 68.02 .50 70.24 .50 71.23 .51 90.82 .35 92.98 .35 92.98 .28 93.23	.34 73.77 .52 74.07 .58 69.94 .59 68.02 .50 70.24 .43 73.08 .50 71.23 .51 90.82 .51 90.82 .52 71.23 .53 92.98 .54 93.23 .40 91.65	34 73.77 .52 74.07 .58 69.94 .59 68.02 .50 70.24 .50 71.23 .51 90.82 .52 71.23 .51 90.82 .51 90.82 .53 92.98 .58 91.65 .38 92.70	34 73.77 .52 74.07 .58 69.94 .59 68.02 .50 70.24 .43 73.08 .50 71.23 .51 90.82 .35 92.98 .31 94.18 .31 94.18	.34 73.77 .52 74.07 .58 69.94 .59 68.02 .50 70.24 .43 73.08 .50 71.23 .51 90.82 .35 92.98 .38 92.70 .33 92.84	34 73.77 52 74.07 58 69.94 59 68.02 50 70.24 43 73.08 50 71.23 21 90.82 35 92.98 31 94.18 33 92.84	34 73.77 52 74.07 58 69.94 59 68.02 50 70.24 50 71.23 50 71.23 21 90.82 35 92.98 31 94.18 33 92.70 31 92.84 33 92.84	34 73.77 52 74.07 58 69.94 59 68.02 50 70.24 43 73.08 50 71.23 51 90.82 31 94.18 33 92.84 31 90.36 31 90.36 31 90.36	34 73.77 52 74.07 58 69.94 59 68.02 50 70.24 43 73.08 50 70.24 31 90.82 31 94.18 31 94.18 31 92.84 31 92.84 32 92.84 33 92.84 31 90.36 32 92.84 33 92.84 31 90.36 32 92.84 33 92.84 33 92.84	34 73.77 52 74.07 58 69.94 59 68.02 50 70.24 43 73.08 50 71.23 21 90.82 35 92.98 36 91.65 31 94.18 33 92.70 31 94.18 33 92.84 31 92.84 31 92.84 33 92.84 31 92.84 32 92.84 33 92.84 31 93.51 32 92.84 33 92.84 33 92.84 33 92.84 33 92.84 33 92.84 33 92.84 33 92.84 33 92.84 33 92.84 33 92.84 33 92.84 33 92.84 33 92.84 33 92.84 33 93.51 33 92.84 33 92.84 33 92.84 33 92.84	34 73.77 52 74.07 58 69.94 59 68.02 50 70.24 43 73.08 50 71.23 50 71.23 51 90.82 33 92.70 31 91.65 33 92.84 31 90.36 32 92.84 33 92.84 31 90.36 32 92.84 33 92.84 31 90.36 32 92.84 33 92.84 31 90.36 32 92.84 33 92.84 31 91.65 32 92.84 33 92.84 31 90.36 32 93.51 33 93.55
		4.11 1	4.46 1	4.73 1	3.15 1	4.23 1			2.60 1	2.60 1 2.31 1	2.60 1 2.31 1 2.31 1 2.31 1	2.60 1 2.31 1 2.31 1 2.31 1 2.10 1	2.60 1 2.31 1 2.31 1 2.31 1 2.31 1 2.50 1 2.50 1	2.60 1 2.31 1 2.31 1 2.31 1 2.31 1 2.31 1 2.53 1 2.54 1	2.60 1 2.31 1 2.31 1 2.31 1 2.10 1 2.50 1 2.54 1 2.538 1	2.60 1 2.31 1 2.31 1 2.31 1 2.10 1 2.50 1 2.54 1 2.54 1 2.53 1	2.60 1 2.31 1 2.31 1 2.31 1 2.31 1 2.31 1 2.33 1 2.54 1 2.538 1 2.44 1 2.44 1	2.60 1 2.31 1 2.31 1 2.31 1 2.10 1 2.50 1 2.54 1 2.54 1 2.54 1 2.54 1 2.54 1 2.54 1 2.54 1 2.54 1 2.54 1 2.54 1 2.54 1	2.60 1 2.31 1 2.31 1 2.31 1 2.10 1 2.50 1 2.54 1 2.54 1 2.54 1 2.54 1 2.54 1 2.54 1 2.54 1 2.54 1 1.75 1 1.75 1 1.60 1	2.60 1 2.31 1 2.31 1 2.31 1 2.31 1 2.50 1 2.54 1 2.54 1 2.54 1 2.54 1 2.54 1 2.54 1 1.55 1 1.60 1 1.60 1 1.60 1	2.60 1 2.31 1 2.31 1 2.31 1 2.10 1 2.50 1 2.54 1 2.54 1 2.54 1 1.75 1 1.75 1 1.60 1 1.60 1 1.60 1	2.60 1 2.31 1 2.31 1 2.31 1 2.10 1 2.50 1 2.54 1 2.54 1 2.54 1 2.54 1 1.75 1 1.75 1 1.60 1 1.60 1 1.40 1 1.37 1	2.60 1 2.31 1 2.31 1 2.31 1 2.31 1 2.10 1 2.50 1 2.54 1 2.54 1 2.54 1 1.75 1 1.75 1 1.60 1 1.60 1 1.60 1 1.37 1 1.37 1 1.37 1	2.60 1 2.31 1 2.31 1 2.31 1 2.10 1 2.50 1 2.54 1 2.54 1 2.54 1 2.54 1 1.60 1 1.75 1 1.60 1 1.60 1 1.59 1 1.59 1	2.60 1 2.31 1 2.31 1 2.31 1 2.10 1 2.50 1 2.54 1 2.54 1 2.54 1 1.75 1 1.60 1 1.60 1 1.60 1 1.59 1 1.59 1 1.59 1 1.59 1 1.59 1	2.60 1 2.31 1 2.31 1 2.31 1 2.10 1 2.10 1 2.10 1 2.50 1 2.54 1 2.54 1 1.75 1 1.75 1 1.60 1 1.60 1 1.60 1 1.59 1 2.46 1 1.59 1 2.46 1 2.46 1 1.59 1 2.04 1	2.60 1 2.50 1 2.31 1 2.31 1 2.50 1 2.54 1 2.54 1 2.54 1 1.75 1 1.60 1 1.60 1 1.60 1 1.59 1 1.59 1 1.60 1 1.60 1 1.60 1 1.60 1 1.60 1 1.60 1 1.60 1 1.60 1 1.60 1 1.60 1	2.60 1 2.31 1 2.31 1 2.31 1 2.10 1 2.50 1 2.54 1 2.54 1 2.54 1 1.75 1 1.60 1 1.60 1 1.60 1 1.60 1 1.60 1 1.60 1 1.60 1 1.60 1 1.60 1 1.60 1 1.75 1 1.60 1 1.60 1 1.75 1 1.60 1 1.76 1 1.79 1 1.79 1 1.79 1 1.79 1 1.78 1	2.60 1 2.31 1 2.31 1 2.31 1 2.31 1 2.10 1 2.50 1 2.54 1 2.54 1 2.54 1 1.75 1 1.60 1 1.60 1 1.60 1 1.60 1 1.60 1 1.60 1 1.60 1 1.60 1 1.75 1 1.60 1 1.60 1 1.75 1 1.60 1 1.60 1 1.75 1 1.76 1 1.78 1 1.78 1 1.78 1 1.78 1
	5.44	5.63	5.37	5.71	4.80	5.43		Shies	3.48	3.48 3.50	3.65	ntes 3.48 3.50 3.65 3.34	anes 3.48 3.50 3.65 3.34 3.75	anes 3.48 3.50 3.65 3.34 3.75 3.61	ntes 3.48 3.50 3.55 3.34 3.75 3.57 3.57	artes 3.48 3.50 3.65 3.34 3.75 3.61 3.57 ies	antes 3.48 3.50 3.55 3.55 3.54 3.61 3.57 ies 2.95	antes 3.48 3.50 3.65 3.34 3.75 3.61 3.61 3.61 3.61 2.95 2.95 2.36	antes 3.48 3.50 3.65 3.34 3.65 3.61 3.57 2.95 2.95 2.95 2.05	antes 3.48 3.50 3.65 3.34 3.61 3.61 3.61 3.61 3.57 2.95 2.95 2.95 2.05 2.05	arres 3.48 3.50 3.65 3.55 3.75 3.61 3.61 3.57 2.95 2.95 2.95 2.05 2.05 2.05 1.91	antes 3.48 3.50 3.55 3.34 3.65 3.61 3.57 3.61 3.57 2.95 2.95 2.95 2.05 2.05 2.05 1.91 1.91	2.25 3.50 3.50 3.55 3.55 3.57 3.61 3.57 2.36 2.95 2.95 2.95 2.05 2.05 2.05 2.05 2.10 1.79 2.10	arres 3.48 3.50 3.65 3.34 3.61 3.75 3.61 3.57 ies 2.95 2.95 2.36 2.05 2.05 2.05 2.05 1.91 1.79 1.79 eries	ntes 3.48 3.50 3.65 3.65 3.61 3.75 3.61 3.75 3.61 3.77 2.95 2.95 2.95 2.95 2.05 2.05 2.05 2.10 1.91 1.91 1.79 2.10 ertes 3.23	ntes 3.48 3.50 3.65 3.34 3.65 3.61 3.75 3.61 3.57 2.95 2.95 2.95 2.05 2.05 2.05 2.05 2.05 2.05 2.05 2.10 1.79 1.79 2.10 ertics 2.54 2.54 2.54 2.55 2.55 2.55 2.55 2.55	ntes 3.48 3.48 3.48 3.48 3.48 3.48 3.48 3.57 3.61 3.57 1.57 2.95 2.95 2.95 2.05 2.05 2.05 2.05 2.10 1.79 1.79 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10	ntes 3.48 3.48 3.48 3.45 3.45 3.44 3.45 3.57 3.61 3.57 1.91 1.91 1.91 1.91 1.91 1.91 1.91 2.36 2.05 2.36 2.10 2.10 2.10 2.10 2.54 2.54 2.54 2.54 2.19 2.254	ntes 3.48 3.50 3.65 3.34 3.61 3.57 3.61 3.57 2.36 2.95 2.35 1.91 1.91 1.91 1.79 2.05 2.05 2.05 2.10 2.19 2.19 2.19 2.26 2.26 2.26
	0-10 Ap1	10-36 Ap2	36-48 Bt1	48-66 Bt2	66-80 Bt3	ú (weighted mean)	P2-Chingavanam se		0-15 Ap	0-15 Ap 15-41 Btl	0-15 Ap 15-41 Bt1 41-66 Bt2	0-15 Ap 15-41 Bt1 41-66 Bt2 66-99 Bt3	0-15 Ap 15-41 Bt1 41-66 Bt2 66-99 Bt3 99-140 Bt4	0-15 Ap 15-41 Bt1 41-66 Bt2 66-99 Bt3 99-140 Bt4 140-176 Bt5	0-15 Ap 15-41 Bt1 41-66 Bt2 66-99 Bt3 99-140 Bt4 140-176 Bt5 ô	0-15 Ap 15-41 Bt1 41-66 Bt2 66-99 Bt3 99-140 Bt4 140-176 Bt5 δ 0 P3-Kanjirapally ser	0-15 Ap 15-41 Bt1 41-66 Bt2 66-99 Bt3 99-140 Bt4 140-176 Bt5 $\hat{\omega}$ P3-Kanjirapally ser 0-13 Ap	0-15 Ap 15-41 Bt1 41-66 Bt2 66-99 Bt3 99-140 Bt4 140-176 Bt5 $\hat{\omega}$ <u>P3-Kanjirapally ser</u> 0-13 Ap 13-32 Bt1	0-15 Ap 15-41 Bt1 41-66 Bt2 66-99 Bt3 99-140 Bt4 140-176 Bt5 <u>6</u> <u>7</u> 0-13 Ap 0-13 Ap 13-32 Bt1 32-56 Bt2	0-15 Ap 15-41 Bt1 41-66 Bt2 66-99 Bt3 99-140 Bt4 140-176 Bt5 <u>ó</u> <u>73-Kanjirapally ser</u> 0-13 Ap 13-32 Bt1 32-56 Bt2 56-83 Bt3	0-15 Ap 15-41 Bt1 15-41 Bt1 41-66 Bt2 66-99 Bt3 99-140 Bt4 140-176 Bt5 $\hat{\alpha}$ P3-Kanjirapally ser 0-13 Ap 13-32 Bt1 32-56 Bt2 56-83 Bt3 83-112 Bt4	0-15 Ap 15-41 Bt1 15-41 Bt1 41-66 Bt2 66-99 Bt3 99-140 Bt4 140-176 Bt5 $\dot{\omega}$ P3-Kanjirapally ser 0-13 Ap 13-32 Bt1 32-56 Bt2 56-83 Bt3 83-112 Bt4 122-150 Bt5	0-15 Ap 15-41 Bt1 15-41 Bt1 41-66 Bt2 66-99 Bt3 99-140 Bt4 140-176 Bt5 ó f14 13-32 Bt1 13-32 Bt1 32-56 Bt2 56-83 Bt3 83-112 Bt4 122-150 Bt5 ó 122-150	0-15 Ap 15-41 Bt1 15-41 Bt1 41-66 Bt2 66-99 Bt3 99-140 Bt4 140-176 Bt5 ó Ap 13-256 Bt2 32-56 Bt2 32-56 Bt3 32-120 Bt4 122-150 Bt5 ó ó	0-15 Ap 15-41 Bt1 15-41 Bt1 41-66 Bt2 66-99 Bt3 99-140 Bt4 140-176 Bt5 \hat{m} -13 $0-13$ Ap $0-13$ Ap $13-256$ Bt2 $32-56$ Bt2 $32-56$ Bt3 $32-56$ Bt3 $32-56$ Bt4 $32-56$ Bt3 $32-56$ Bt3 $32-56$ Bt4 $12-150$ Bt5 6 0 $0-16$ Ap	0-15 Ap 15-41 Bt1 41-66 Bt2 66-99 Bt3 99-140 Bt4 140-176 Bt5 $\dot{\omega}$ P3-Kanjirapally ser 0-13 Ap 13-32 Bt1 32-56 Bt2 32-56 Bt2 32-56 Bt3 66-33 Bt4 122-150 Bt5 $\dot{\omega}$ 0-16 0-16 Ap 16-42 Bt1	0-15 Ap 15-41 Btl 15-41 Btl 41-66 Bt2 66-99 Bt3 99-140 Bt4 140-176 Bt5	0-15 Ap 15-41 Bt1 15-41 Bt1 41-66 Bt2 66-99 Bt3 99-140 Bt4 140-176 Bt5 $\dot{\omega}$ D-13 0-13 Ap 13-32 Bt1 32-56 Bt2 66-83 Bt3 83-112 Bt4 122-150 Bt5 $\dot{\omega}$ D-16 0-16 Ap 16-42 Bt1 66-89 Bt3	0-15 Ap 15-41 Bt1 15-41 Bt1 41-66 Bt2 66-99 Bt3 99-140 Bt4 140-176 Bt5 $\dot{\omega}$ P3-Kanjirapally ser 0-13 Ap 13-32 Bt1 32-56 Bt2 56-83 Bt3 83-112 Bt4 122-150 Bt5 $\dot{\omega}$ 0-16 0-16 Ap 16-42 Bt1 16-42 Bt1 66-89 Bt3 83-105 Bt3

Table 5. Weathering indices and ratios in soils of Kerala.

202 | increase of SiO₂ but has a strong relation with Al₂O₃ (r $= 0.67^{**}$) suggesting the occurrence of Al rich phases such as clay minerals excert significant control on abundance of Ni (Al Chalabi, 2004). The Cr contents varied from 48 to 167 µgg⁻¹ with mean of 94.9 µgg⁻¹ which is more than average of world soil (68 μ gg⁻¹) Callender, 2004). The mean strontium content is 23.62 μgg^{-1} with strong positive relation with SiO₂ (r = 0.48^{**}) and MgO (r = 0.78^{**}) suggesting its strong association with plagioclase feldspars. The source of Sr is andesine and presence of Zr in these soils can be explained by presence of plagioclase feldspars. It was reported by Brantley et al. (1999) that Sr releases from feldspar at pH 3.0 where bytownite releases Sr by factor of 60 to 400 times than anorthite and microcline respectively. The Ba content is 47.84 μ gg⁻¹ with strong positive correlation with CaO ($r = 0.67^{**}$) and K₂O (r $= 0.77^{**}$). Alkalis and alkaline earth elements, such as K, Na and Sr, are the most active elements and easily removed from the profile during chemical weathering (Nesbitt et al., 1980). This can be inferred from the major and trace element records that these soils are intensively weathered under tropical monsoon climate with an annual precipitation more than 2000 mm and the consecutively trapping Sr by clay minerals.

Soil grouping: The horizon wise major and trace elemental concentrations in these soils are grouped into four clusters (Fig.2) that displayed different patterns of dominance of these elements as shown below.

The major element concentration pattern in Group-1 and 2 is similar with an order of Si > Al > Fe > Na > Ti > Ca > K > Mg with Cr > Ba > Cu in Group-1 and Cu > Cr > Ba in Group-2 soils whereas Si > Al > Fe > Ti > K > Ca > Mg >Na with Zr > Ni > Mn in Group-3 to Ni > Mn > Zr in Group-4 soils (Table 4). In all soils ferric iron oxide is enriched in the lower and intermediate horizons while enrichment of titanium in Group-3 and Group-4 is controlled by the original mafic lithology that bears remarkable high percentages of titaniferous pyroxenes and Fe-Ti oxide minerals (Moufti, 2010).

Weathering indices: Chemical weathering indices are commonly used for characterizing weathering intensity of four lateritic profiles of Kerala by incorporating bulk major elemental oxide chemistry in a single metric (Table 5). The indicies are based on the principle that the ratio between concentrations of mobile (such as SiO₂, CaO, MgO, and Na₂O) and immobile elements (Al₂O₃, Fe₂O₃, TiO₂) should decrease over time as leaching progresses (Souri *et al.*, 2006). The ratio's of more active elements to that of more stable elements, like the molecular ratio of Si to Al or Si to (Al+Fe), have been used in soil genesis studies for a long time to judge soil weathering degree and as criteria in soil genetic classification systems.

The molar ratio of Si to Al (Ruxton, 1968), used to evaluate loss of SiO_2 with weathering that shows less than 2 in kandic horizons of Kanjirapalli series (P3)

indicating presence of kaolinite and Al chlorite with more weathering. The wider ratio's (> 3) in P1 is an indication of persistence of primary minerals such as quartz and muscovite and the values in between 2 and 3 in other soils is an indication of moderate weathering. This observation is further confirmed with silica to sesquioxide ratio (SiO₂ / R_2O_3). The classification is possible on the basis of geochemistry of this ratio (Gidigasu, 1976). The ratio is in between 1.33 to 2.0 in kandic horizons of P3 and P4 to define as lateritic (Raychaudhuri, 1980, Burke et al., 2006) whereas in other soils this ratio is above 2 to define as non lateritic tropical soils. The Kanjirapalli (P3) and Athirampuzha (P4) soils are subjected to intensive continuous weathering with hydrolysis of silicates, processes of argillation (mobilization and accumulation of clay particles due to sudden wetting of dry soils under extreme acid condition) and rubification (transformation of ferric oxide to bright red hematite). It was recognized that Fe and Al are retained preferentially because of the precipitation of poorly crystalline soild phases (e.g, ferrihydrite) from supersaturated solutions (Chadwick et al., 2003). These ferrallitic soils are characterized by low silica to sesiquioxide ratio and base saturation. The other soils are fersiallitic soils with this ratio more than 2. These soils are further divided based on base saturation less than 35 (P3 and P4) and moderate to high (Kalpage, 1974).

Vogt residual index values in these soils vary from 1.21 to 2.07 showing slight variations with depth and are less than 1.4 in majority of kandic horizons. The low vogt ratio corresponds to pH values between 3.8 to 5.3 and found to be less effective in capturing weathering trends in lateritic profiles. The chemical index of alteration (CIA), Harnois chemical weathering index (CIW) and plagioclase index of weathering (PIA) are more than 90 in P3 and P4 indicating high degree of weathering as reported in lateritic profiles of Kerala (Sanjinkumar et al., 2011). The rationale of the CIA is to give a quantitative measure of feldspar weathering by relating Al to Na, Ca and K, which should be removed from a soil profile in the course of plagioclase and K-feldspar weathering (Nesbitt and Young, 1982). The CIA values more than 90 in P3 and P4 indicates intense chemical weathering correspond to pH values less than 4.5 whereas CIA values less than 75 in Pland P2 indicates less intensely weathered with a corresponding pH more than 4.7. The assumption that Ca, Na and K decrease as weathering intensity increases and that Al stays mostly immobile (Kirkwood and Nesbitt, 1991) is valid here. These results are in accordance with observations in other weathering studies and theoretical considerations of the element behavior, suggesting that K release is small compared to the Na release. This is due to stronger weathering resistance of K phases such as K-feldspar and due to the fixation of K on clay minerals (Yang et al., 2004 and Reeder et al., 2006). Moreover, high CIA values, suggest derivation from a stable terrain (autochthonous in nature) of SMZ of Kerala (Hossain et al., 2010). The high PIA values (P3 and P4) further indicate that the plagioclases in parent rock displayed increasing chemical weathering with steadily decreasing contents of plagioclases and enriched in secondary aluminous clay minerals (Roy et al., 2008). These indices illustrate the relative loss of Ca, K and Na very rapidly in humid tropical environments and are perhaps more suitable for the study of early stages of rock weathering rather than for well-developed tropical soils. Given the formulations of weathering indices such as molar ratio of Si to Ti, Parker index and weathering ratio shows decreasing values signifying greater weathering in P3 and P4 as compared to the other soils under study. The parker index values less than 15 in P3/P4 and more than 40 in P1/P2. The kind variations in parker index were reported in highly weathered soils by Eswaran and Raghu Mohan (1973). The similar trends of weathering ratio's are recorded with its values of less than 2 in P3/P4, 9.24 in P3 and 4.99 in P2. The indices CIA and CIW are perhaps more suitable for the study of early stages of rock weathering rather than for welldeveloped tropical soils The serious loss of bases in these soils is evident with bases to alumina and sesiquioxide ratios (<0.5). The molar ratio of Al to Ti do not show any trends with respect to soils but its values vary from 9.67 to 34.76. The ratio is more than 20 in P2, P3 and P4. In general, the values of WPI, PI, Si-Al, Wp and MWPI decrease as the weathering grade or density increases. This is in accordance with findings from Jayawardena and Izawa (1994) and Gupta and Rao (2001). Decreasing values of WPI, MWPI and Wp indicated decreasing mobile cations and increasing hydroxyl water with increasing weathering. Decreasing PI, Si-Al and Si-Ti values are indicative of a decreasing silica content. It can be seen that there was a sharp decrease in these particular weathering indices from the highly weathered granite to granite saprolite state and this confirms the field observations of the abrupt change between the weathered rock and saprolite. Alternatively, CIA, CIW and loss on ignition showed a continuous increase with increasing degree of weathering. This can be attributed to the loss of mobile cations and alteration of the crystal structure, hence the increase in hydroxyl water.

It is interesting to note that high degree of weathering in P3/P4 profiles is reflected by low SiO_2/R_2O_3 ratios and high CIA, PIA and CIW (Ranger, 2002). The triangular plots of SiO_2 -Al₂O₃-Fe₂O₃ clearly shows that these soils are subjected to weak laterization in P1, moderate in case of P2 to strong laterization process in P3/P4 (Schellmann, 1981). The differential rates of weathering in other profiles is due to prevalence of tropical monsoonic climate triggering the mechanism of chemical weathering and also by anthropogenic activities such as improper land use practises on sleep slopes (Topioca and banana cultivation) and deforestation further accelerating chemical weathering in the region (Sanjinkumar *et al.*, 2011). It is further reported that the nature of clay minerals formed due to weather differs with intensity and duration of rainfall. The weathering profiles under high rainfall (300 cm) have clays, aluminium hydroxides and Fe-Al Oxides but in rain shadow zones (< 200cm) have complex clay mineralogy and absence of or low Fe-Al oxides in the clay fraction (Deepthy and Balakrishnan, 2005).

The applicability of the various weathering indices to different material types and weathering conditions has long been a source of debate. Parker (1970) stated that the Silica-Alumina Ratio was restricted as to its use because the amount of sesquioxides must remain approximately constant during weathering and there must preferably be no formation of smectites or vermiculites as initial weathering products. Harnois (1988) reported that the use of K_2O as a mobile component in the CIA, WPI and MWPI limits their application to soils in which potassium has been leached, as potassium, through its high exchange capacity can be adsorbed onto other clays in the weathering profile, thus masking its mobility. The Vogt ratio uses K₂O as an immobile component which contradicts the evidence that potassium is commonly leached. The common point made by all of these authors is that for chemical weathering indices to be effective, an understanding of the geochemical composition and nature of geochemical processes and trends of the particular material of interest is required for the successful application of any weathering index.

Conclusion

The geochemical properties of four representative ferruginous soils of Kerala showed strong laterization in Kanjirapalli (P3) and Athirampuzha (P4), weak laterization in Kinalur (P1) and moderate laterization in case of Chingavanam series (P2). These soils have Vogt residual index values less than 1.4 in majority of kandic horizons with chemical index of alteration (CIA), chemical weathering index (CIW) and plagioclase index of weathering (PIA) more than 90 in P3 and P4 indicating high degree of weathering. The enrichment index values more than 1 in majority of soil horizons of Kanjirapalli series (P3) in BC layers of Athirampuzha series (P4) and in Bt5 horizon of Chingavanam series (P2) indicated the high concentration of Ni and Sr thatassociation with SiO2 ,Al2O3 and MgO suggest he occurrence of Al rich phases such as clay minerals which exert significant control on abundance of Ni and strontium content. The kandic horizons with set of properties of ferralic horizon and mollic top soil properties (intensive rubber growing area and frequent additions of leaf) with pH < 5.0 must be considered to be placed at subgroup level of Ultisols.

ACKNOWLEDGEMENTS

This research was carried out under an institutional project at the ICAR-National Bureau of Soil Survey and Land Use Planning, Nagpur.

REFERENCES

- Abbaslou, H., Abtahi, A. and Baghernejad, M. (2013). Effect of weathering and mineralogy on the distribution of major and trace elements (Hormozgan province, Southern Iran) *Int. J. Forest, Soil and Erosion*, 3(1): 15-25.
- Al chalabi, S.N.A. (2004). Minerology and origin of chromate in qalander area, Northern Iraq. MSc. Thesis.Salahaddin University-Erbil., Iraq, 104pp.
- Bhaskar, B.P. and Subbaiah, G.V. (1995). Genesis, characterization and classification of laterites and associated soils along the east coast of Andhra Pradesh. *Journal of the Indian Society of Soil Science*, 43(1): 107-112.
- Bhaskar, B.P., Raja, P. and Srinivas, C.V. (1999). Genetic interpretation of pedological characteristics of laterite associated soils of somasila project, Andhra Pradesh. *Gondwana Geological Magazine*, 14(2): 39-47.
- Bhaskar, B.P., Saxena, R.K., Vadivelu, S., Baruah, U., Butte, P.S. and Dutta, D.P. (2005). Pedogenesis in high altitude soils of Meghalaya plateau. Agropedology, 14(1): 9-23.
- Bhaskar, B.P.; Saxena, R.K.; Vadivelu, S.; Baruah, U.; Dipak Sarkar;Raja, P.; Butte, P. S. (2009). Intricacy in classification of pine-growing soils in Shillong Plateu, Meghalaya, India. Soil Survey Horizons. 50 (1): 11-16.
- Bhattacharyya, T., Pal, D.K., Lal, S., Chandran, P. and Ray, S. K. (2006). Formation and persistence of Mollisols on Zeolitic Deccan basalt of humid tropical India. *Geoderma*, 136: 609–620.
- Bhattacharyya, T., Sarkar, D., Sehgal, J.L., Velayutham, M., Gajbhiye, K.S., Nagar, A. P., Nimkhedkar, S. S., 2009. Soil Taxonomic Database of India and the States (1:250, 000 scale), NBSSLUP Publ. 143, NBSS&LUP, Nagpur, India, (266 pp).
- Birkeland, P.W. (1999). Soils and Geomorphology. Oxford Univ.Press, New York. 430 pp
- Bourgeon, G. (1989). Explanatory booklet on the reconnaissance soil map of forest area Western Karnataka and Goa. Institut Francais de Pondichery, 96 pp. + 2 annexes dont 1 carte, 1989,Travauxdela Section Scientique et Technique. Hors Serie N 20, Head of Ecology Department, Institut Francais de Pondichery, e-mail: ifpeco@ifpindia.org. <hal-00504755>
- Bowen, H.J.M. (1979). Environmental chemistry of the elements / Academic Press, London, UK, pp.333.
- Brantley, S., Cesley, L.J. and Stillings, L.L. (1999). Isotopic Ratios and Release Rates of Strontium Measured from Weathering Feldspars," *Geochim. Cosmochim. Acta*, 62: 1493–1500.
- Burke, C., Benjamin, Heimsath, M. Arjun and White, F. Arthur (2006). Coupling chemical weathering with soil production across soil-mantled landscapes, *Earth Surface. Process. Landforms* DOI: 10.1002/esp.1443
- Callender, E. (2004). Heavy metals in the environment - historical trends. In H.D. Holland, K.K. Turekian (Executive Eds.), Treatise on Geochemistry (pp. 67–105), B.S. Lollar (Volume Ed.). Environmental Geochemistry (Vol. 9). Oxford: Elsevier-Pergamon.
- Chadwick, O.A., Gavenda, R.T., Kelly, E.F., Ziegler, K., Olson, C.G., Elliott, W.C. and Hendricks, D.M. (2003). The impact of climate on the biogeochemical function-

ing of volcanic soils. Chemical Geology, 202: 195-223.

- Chandran, P., Ray, S., Bhatacharyya, T., Srivastava, P., Krishnan, P. and Pal, D.K. (2005). Lateritic soils (Ultisols) of Kerala, India: their genesis and taxonomy. *Australian Journal of Soil Research*, 43:839-852.
- Chittleborough D.J. (1991). Indices of Weathering for Soils and Paleosols Formed on Silicate Rocks. *Austr. J. Earth Sci.*, 38: 115–120.
- Cornu, S., Lucas, Y., Lebon, E., Ambrosid, J.P., Luizãoe, F., Rouillerf, J., Bonnayg, M. and Nealh, C. (1999). Evidence of titanium mobility in soil profiles, Manaus, central Amazonia. *Geoderma*, 91: 281–295.
- Damodaran, A. (1955). Geology of the warkalli formation in parts of Trivandrurn District, Travancore State, *Pro*gress report of GSI, (Unpubl.) 1954-1955.
- Darmody, R.G., Thorn, C.E. and Allen, C.E. (2005). Chemical weathering and boulder mantles, Kärkevagge, Swedish Lapland. *Geomorphology*, 67: 159–170.
- Deepthy, R. and Balakrishnan, S. (2005). Climatic control on clay mineral formation: Evidence from weathering profiles developed on either side of the Western Ghats. *Jour. Earth System Sci.*, 114: 545-556.
- Eswaran, H. and Raghu Mohan, N.G. (1973). The microfabric of petroplinthite. *Soil Sci. Soc. Amer. Proc.*, 37: 79-82.
- Eswaran, H., De Coninck, F. and Varghese, T. (1990). Role of plinthite and related forms in soil degradation, In *Advance in Soil Science*, 11: 109-127.
- Fedo, C.M., Nesbitt, H.W. and Young, G.M. (1995). Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleo weathering conditions and provenance. *Geology* 23 (10): 921-924.
- FAO.(1998). Top soil characterization for sustainable land management. Land and Water Development Division Soil Resources, Management and Conservation Service. Draft. Rome. 1998.51p.
- Food and Agriculture Organization of the United Nations. (2006). World reference base for soil resources 2006 A framework for international classification, correlation and communication.World Soil Resource Reports 103.Rome. Italy.127p.
- Gidigasu, M.D. (1976). Laterite soil engineering. Development in geotechnical engineering. Elsevier Scientific Publishing Company.
- Gupta, A.S. and Seshagiri Rao, K. (2001). Weathering indices and their applicability for crystalline rocks. Bull. Eng. Geol. Env., 60: 201-221.
- Harindranath, C.S., Venugopal, K.R., Raghu Mohan, N.G., Sehgal, J.L. and Velayuthm, M. (1999). Soils of Goa for optimising land use. *NBSSPubl.*74. NBSS & LUP, Nagpur. P131.
- Harnois, L (1988). The CIW index: A new chemical index of weathering. *Sedimentary Geology*, 55(3-4): 319-322
- Hossain, H.M.Z., Roser, B.P. and Kimura, J.I. (2010). Petrography and whole-rock geochemistry of the Tertiary Sylhet succession, northeastern Bengal Basin, Bangladesh: Provenance and source area weathering. Sediment. Geol., 228: 171-183.
- Jayawardena, U.deS. and Izawa, E. (1994). A new chemical index of weathering for metamorphic silicate rocks in tropical regions: A study from Sri Lanka. Engineering Geology. 36(3-4): 303-310.
- Kalpage, F.S.C.P. (1974). Tropical soils, classification, fertility and management. University of Malya, Kaula Lum-

205

pur, pp294.

- Kamath, S.U. (1985). Karnataka State Gazetteer: Uttara Kannada District, Gazetteer of India, Government of Karnataka, Bangalore.
- Kirkwood, K.A. and Nesbitt, H. W. (1991). Formation and Diagenesis of Weathering Profiles. The *Journal of Geol.* 97: 129–147.
- Krishnan, P., Venugopal, K.R. and Sehgal, J.L (1996). Soils of Kerala for optimising land use. *NBSSPubl.* 48b . NBSS& LUP, Nagpur.P 54, Soil Series of India.10.
- Little, M.G. and. Aeolus Lee, C.T. (2006). On the formation of an inverted weathering profile on Mount Kilimanjaro, Tanzania: buried paleosol or groundwater weathering. *Chemical Geology*, 235: 205–221.
- Jackson, M.L. (1975). Soil chemical analysis–advanced course. Univ. of Wisconsin, College of Agric., Dept. of Soil Sci., Madison, WI Prentice-Hall, Inc., Englewood Cliffs, NJ.
- Moufti, A.M.B. (2010). Field, Mineralogical and Geochemical Characteristics of As-Sarat Laterite Profiles, SW Saudi Arabia. JAKU: Earth Sci., 21, (2): 47-75.
- Nahon, D. (2003). Weathering in tropical zone. Significance through ancient and still active mechanisms. *Comptes Rendus Geoscience*, 335: 1109–1119.
- Narayana Swamy (1992). Geochemistry and Genesis of Laterite in parts of Cannore District, North Kerala. Ph.D thesis. The Cochin University of Science and Technology. pp.1-111
- Nesbitt H.W., Markovics, G., and Price R.C. (1980). Chemical processes affecting alkalis and alkaline earths during continental weathering . *Geochimica et Cosmochimica Acta*. 44: 1659–1666.
- Nesbitt, H.W. and Young, G.M. (1982). Early Proterozoic climates and plate motion inferred from major element chemistry of lutites. *Nature*, 299: 715-717.
- Nesbitt, H.W. and Markovics, G. (1997). Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments. *Geochimica et Cosmochimica Acta*, 61: 1653 –1670.
- Nesbitt, H.W., Young, G.M., McLennan, S.M. and Keays, R.R. (1996). Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies. The *Journal of Geology*. 104: 525–542.
- Page, A.L., Miller, R.H. and Keeney, D.R. (2002). Methods of Soil Analysis, Prt-2: Chemical and microbiological properties. *American Society of Agronomy and Soil Science Society of America*, Madison, Wisconsin, pp.159-164.
- Pal, D.K., Wani, S.P., Sharawat, K.L. and Srivastava, P. (2014). Red ferruginous soils of tropical Indian environments: A reviewof the pedogenic processes and its implications for edaphology. *Catena*. 121:260-278.
- Parker, A. (1970). An Index of Weathering for Silicate Rocks, *Geol. Mag.*, 107: 501–504.
- Price, J.R. and Velbel, M.A. (2003). Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. *Chemical Geology*, 202: 397–416.
- Price, R.C., Gray, C.M., Wilson, R.E., Frey, F.A. and Taylor, S.R. (1991). The effects of weathering on rare-earth element, Y and Ba abundances in tertiary basalts from southeastern Australia. *Journal of Chemical Geology*, 93: 245–265.

- Ramahashay, B.C., Rao, K.S., Mehta, V.K. and Bhavana, P.R. (1987). Minerology and Geochemistry of lateritic soil profiles in Kerala, India. Chemical Geology. 6091-4):327-330.
- Ranger, J., Allie, S., Gelhaye, D., Pollier, B., Turpault, M.P. and Granier, A. (2002). Nutrient budgets for a rotation of a Douglas-fir plantation in the Beaujolais (France) based on a chronosequence study. *Forest Ecol Manag.*, 171: 3-16.
- Raychaudhuri, S.P. (1980). The occurrence, distribution, classification and management of laterite and lateritic soils. O.R.S.T.O.M., sér. Pédol., uol., XVIII, noa 3-4: 249-252.
- Reiche, P. (1943). Graphic representation of chemical weathering. *Journal of Sedimentary Petrology*, 13: 53-68.
- Reeder, S., Taylor, H., Shaw, R.A. and Demetriades, A. (2006). Introduction to the chem-istry and geochemistry of the elements. In: Tarvainen, T., de Vos, M. (Eds.), Geochemical Atlas of Europe. Part 2. Interpretation of Geochemical Maps, Additional Tables, Figures, Maps, and Related Publications. Geological Survey of Finland, Espoo, pp. 48-429.
- Rollinson, H.R. (1993). Using Geochemical data: evaluation, presentation, interpretation.Pearson Education Limited, NY, USA, pp.352.
- Roy, P.D., M. Caballeroa, R. Lozanoc and W. Smykatz-Klossd, 2008. Geochemistry of late quaternary sediments from Tecocomulco lake, central Mexico: Implication to chemical weathering and provenance. Chemie der Erde, 68: 383-393.
- Ruxton, B.P. (1968). Measure of the degree of chemical weathering of rocks, *J. Geol.*, 76: 518-527.
- Sajinkumar, K.S., Anbazhagan, S., Pradeep kumar, A.P. and Rani, V.R. (2011). Weathering and Landslide Occurrences in Partsof Western Ghats, Kerala. *Journal of Geological Society of India*, 78: 249-257.
- Sarma, V.A.K., Krishnan, P. and Budhihal, S.L. (1987). Laboratory methods –Soil resource mapping of different states in India. NBSS Publ. Technical Bulletin 14. NBSS&LUP. Nagpur.49p.
- Satyanarayana, K.V.S. and Thomas, P.K (1962). Studies on laterite associated soils. II. chemical composition of lateritic profiles. *Journal of the Indian Society of Soil Science*,10: 213-222.
- Sawarkar, A.R. (1980). Geological and Geomorphological features in part of Nilambur valley, Kozhikkode district, Kerala State with special reference to the Alluvial Gold deposits in the area G .S. I. special publication, 5: 29-37.
- Schellmann, W. (1981). Consideration on the definition and classification of laterites. In Leterization process. Proceedings of International Seminar on Laterization process. Trivandrum, India. pp1-10. *Geological Society of India*, Kolkata.
- Sehgal, J., Mandal, D.K., Mandal, C. and Vadivelu, S. (1992). Agroecological regions of India. Second edition. Technical bulletin. NBSS&LUP, Publ.24. P.130. NBSS&LUP, Nagpur.
- Sehgal, J. (1998). Red and lateritic soils: an overview.in: J. Sehgal, W.E. Blum, K.S. Gajbhiye (Eds.), Red and Lateritic Soils, Managing Red and Lateritic Soils for Sustainable Agriculture, 1, Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi (1998), pp. 3–10
- Souri, B., Watanabe, M. and Sakagami, K. (2006). Contribution of Parker and Product indexes to evaluate weather-

ing condition of yellow brown forest soils in Japan. *Geoderma*, 130: 346-355.

- USDA, NRCS. (2008). Official Soil Series Descriptions. Available online at (verified 7 May 2008). a.Official Soil Series Descriptions. Available online at http: // soils. usda. Gov / technical / classification / osd / index. html (verified 7 May 2008). 2008.
- Vogt, T. (1927). Sulitjelmefeltets geologiog petrografi. Norsk Geologisk Tidsskrift, 121: 1–560.
- Wei G., Ying, L., Xianhua, L., Lei, S. and Dianyong, F. (2004). Major and trace element variations of the sediments at ODP Site 1144, South China Sea, during the last 230 ka and their paleoclimate implications. *Palaeo*geogr. Palaeocl. 212: 331–342.
- Yang, S.Y., Li, C.X., Yang, D.Y. and Li, X.S. (2004). Chemical weathering of the loess deposits in the lower Changjiang Valley, China, and paleoclimatic implications. *Quaternary International*, 117, 27-34
- Yousefifard, M., Youbi, S.A., Jalallian, A., Khadun, H. and Makkizaddi, M.A. (2014). Mass balance of major elements in relation to weathering in soils developed on Igneous rocks in semi arid region, North Western Iran. J. Mt. Sci., 9: 41-58.
- Zabel, M., Schneider, R.R., Wagner, T., Adegbie, A.T., Vries, U.D and Kolonic, S. (2001). Late Quaternary climate changes in central Africa as inferred from terrigenous input to the Niger fan . *Quaternary Research*, 56: 207–217.