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Abstract: Microsatellite markers were used for genetic analysis of terminal heat tolerance in F2 (PBW373 × WH1081) 
population of wheat (Triticum aestivum L. em. Thell). Two parents were evaluated in field under normal sown and 
late sown conditions. For genotyping DNA from both parents PBW373 and WH1081 was amplified using 200 SSRs. 

Only 22 SSRs produced polymorphic bands, of size between 100 to 300 bp and an average of 1.45 alleles. The sin-
gle marker analysis identified 19 markers indicating the putative QTLs for yield, its components and heat stress re-
lated physiological traits. The number of markers on these 16 linkage groups varied from one to four. On A genome 
13 QTLs on B genome 5 QTLs and on D genome 9 QTLs were identified, respectively.  The A, B and D genomes 
had 1360.3 cM, 272.4 cM and 919.5 cM of linkage coverage with average interval distances of 104.63 cM, 54.48 cM 
and 102.16 cM/Marker. A total of nine QTLs were resolved following composite interval mapping, one QTL was de-
tected at a LOD score equal to threshold value of 2.5 while eight at LOD scores above the threshold value. All the 
nine QTLs  were shown to be on definitive location on chromosome 3A (QDh.CCSHAU-3A, QDa.CCSHAU-3A and 
QPm.CCSHAU-3A), chromosome (QBm.CCSHAU-5A, QCtd.CCSHAU-5A and QCl.fl.CCSHAU-5A), chromosome6A 
(QPh.CCSHAU-6A) and chromosome3B (QTgw.CCSHAU and QMts.CCSHAU-3B). Use of these markers save times, 
resources and energy that are needed not only for raising large segregating populations for sveral generations, but 
also for estimating the parameters used for selection. 
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INTRODUCTION  

Wheat is among the major three cereal crops, with over 

600 million tones being produced annually. It is tradi-

tionally grown as a cool-season crop, but with the in-

creased availability of more widely adapted germ-

plasm, its production has expanded into warmer re-

gions (Badaruddin et al., 1999). Continuous high-

temperature stress for wheat has been defined as when 

the mean average temperature of the coolest month is 

greater than 17.5°C (Fischer and Byerlee, 1991), but 

there are many areas world wide where the coolest 

month temperature is higher. These areas are exposed 

to terminal heat stress, since there is rise in tempera-

tures in grain filling period (Rane et al., 2007). Based 

on the special report, it is predicted that the annual 

daily maximum temperature is likely to increase by 

about 1-30C by mid-twenty-first century and by about 

2-50C by the late twenty first century (IPCC, 2012). 

So, it is expected that future wheat will be exposed to 

higher heat stress. Wheat experiences heat stress to 

varying degrees at different phenological stages but 

heat stress during the reproductive phase is more  

harmful than during the vegetative phase as high  

temperature disturbs mobilization of resources to grain 
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development leading to direct effect on grain number 

and grain weight (Wollenweber et al., 2003). Wheat 

production under late sown conditions in India is sub-

stantially low, due to heat stress during grain filling 

(Tewolde et al., 2006). High temperatures shorten the 

grain filling period significantly in bread and durum 

wheat genotypes, because of significant interaction of 

each genotype with temperature (Dias and Lidon, 

2009). With the development of methodologies for the 

analysis of plant gene structure and function, molecu-

lar markers have been utilized for identification of 

traits, to locate the gene(s) for a trait of interest on a 

plant chromosome and for the construction of genetic 

linkage maps. Direct selection under field conditions is 

generally difficult because uncontrollable environ-

mental factors adversely affect the precision and re-

peatability of such traits. Assessment of heat tolerance 

at the molecular level is more meaningful than at phe-

notypic level as the later involves data on morphological 

traits which are environmental dependent. Available 

genetic diversity in wheat offers opportunity for the 

breeders to develop genotypes with wider adaptability 

having resistance to biotic and abiotic stresses by se-

lection of recombinants of desired genes. The simple 

sequence repeats (SSR) markers can help breeders to 
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select genotypes carrying gene(s) of interest (Sadat et 

al., 2013), therefore, molecular maps based on these 

markers provide the breeders efficient strategies that 

may optimize time and resources and facilitate their 

manipulation in segregating plant breeding popula-

tions. These are powerful tools for many studies for 

genome characterization, detection of quantitative trait 

loci (QTL) for both abiotic and biotic stresses, evolu-

tionary studies, and for marker assisted selection 

(MAS) (Peleg et al., 2008; Chu et al., 2010 and Sadat 

et al., 2013). In bread wheat, a variety of complex 

traits have been subjected to QTL analysis (Borner et 

al., 2002; Wang et al., 2009, 2010; Wu et al., 2010; 

Rustgi et al., 2013) using SSR markers. Therefore, in 

present investigation genetic analysis of terminal heat 

tolerance was conducted to identify QTLs for stress 

related traits of wheat. 

MATERIALS AND METHODS 

Morphological characterization: A population of 

152 F2 plants from a cross of PBW373 × WH1081 was 

evaluated along with their parental genotypes and five 

check varieties (Raj3765, DBW17, WH730, 

WH711and PBW343) for phenological traits; days to 

heading, days to anthesis, days to physiological matur-

ity, grain filling duration, plant height, number of pro-

ductive tillers/plant, number of grains/spike, 1000 

grain weight, grain yield/plant, biomass/plant, harvest 

index and physiological traits- canopy temperature 

depression, membrane thermostability and chlorophyll 

fluorescence. Parents and check varieties were sown in 

3 meter paired rows in three replication in normal con-

ditions, (E1) on 29th November, 2011 and heat stress 

conditions, (E2) on 3rd January, 2012 in randomized 

block design at wheat research area, Department of 

Genetics and Plant Breeding, CCS HAU, Hisar. F2 

population was grown in 10 rows each with two meter 

row length under heat stress environment (E2). Row to 

row and plant to plant distance was kept at 25cm and 

10cm, respectively, so as to raise the plants under 

space planting conditions. 60 kg N : 40 kg P2O5 and 40 

kg K2O per ha were applied at the time of sowing 

while 60 kg N per ha was top-dressed 21 days after 

sowing coinciding with crown root initiation. The ob-

servations were recorded on five randomly selected 

plants from each replication of parental genotypes and 

checks in both the environments, E1 and E2 (normal 

and heat stress conditions), single plant data was re-

corded on 152 F2 plants of each of the cross PBW373 × 

WH1081 under stress conditions only. 

Molecular characterization using SSR markers: 

Genomic DNA was isolated from each of parental 

genotypes, check varieties and F2 plants using CTAB 

method of Saghai-Maroof et al. (1984). Agarose gel 

(0.8%) electrophoresis was used to check quality and 

quantity of genomic DNA by running DNA samples 

along with standard marker. 

A total of 200 simple sequence repeats (SSR) markers 

widely distributed on different wheat chromosomes 

were used in this study. PCR amplification of genomic 

DNA from parents, check varieties and F2 population 

was carried out in PCR machine ‘Bench top lab sys-

tems-BT-B960’ using following conditions: Initial 

Denaturation- 95C for 5 min, denaturation-94C for 1 

min, Annealing-50C to 65C for 1min, Extension-72

C for 1 min, 35 cycles and Final Extension-72C for 

10 min. PCR amplified DNA products were resolved 

by submerged horizontal electrophoresis in 2.5% (w/v) 

agarose gel.  For better resolution amplification 

products were also resolved on 6% polyacrylamide 

gels using Amersham Biosciences system as described 

by Chen et al. (1997). 

SSR amplification profiles were scored visually, with 

A and B codes for presence of specific band in tolerant 

and sensitive parent, respectively as: A- homozygous 

tolerant, B- homozygous sensitive, AB – heterozygous 

and ‘–‘ missing for each wheat genotype. Single 

marker analysis was carried out by fitting the data on 

the SSRs (as independent variable) and the phenotypic 

data (as dependent variable) of 152 plants F2 popula-

tion using single linear regression model given as y = 

bo+b1x+e (Basten et al., 2000). The estimated genetic 

map of SSRs was used as a framework for the posi-

tioning of QTL using composite interval mapping 

(Zeng, 1994; Basten et al., 2000) by associating the 

values for different traits. The percentage of variation 

and additive effect of each of phenotypic traits caused 

by the presence of QTLs were also estimated using 

WinQTL Cartographer version-2.5. 

RESULTS AND DISCUSSION 

Analysis of variance for five check varieties and two 

parents conducted in two environments, E1 and E2 in-

dicated significant variation due to genotypes for every 

trait studied except for chlorophyll fluorescence. 

Kumar et al. (2014) evaluated the 50 diverse wheat 

genotypes and exhibited highly significant differences 

at genotypic level for all the traits studied, under nor-

mal and heat-stress environments. All the traits ex-

pressed significant interaction with environments, indi-

cating that all traits respond to high temperature in 

different ways in different genotypes. Talukdar et al. 

(2014) reported one of the first linkage maps in wheat 

using genotype by sequencing SNP markers to extreme 

response to post anthesis heat stress conditions and 

also evaluated that the molecular markers Xbarc113 

and AFLP AGCTCG-347 on chromosome 6A, 

Xbarc121 and Xbarc49 on 7A, gwm18 and Bin1130 on 

1B, Bin178 and Bin81 on 2B and Bin747 and Bin1546 

on 1D were associated with these QTL. Analysis of 

variance, exhibited highly significant differences at 

genotypic level for all the traits studied, under normal 

and heat-stress environments. All the traits expressed 

significant interaction with environments, indicating 

that all traits respond to high temperature in different 

ways in different genotypes. This variability gives suf-
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  PBW373 × WH1081 
Number of  markers used 200 

Number of markers that did not show amplification 42 

Number of markers that show amplification 158 (79%) 

Number / percentage of  amplified markers showing polymorphisum 22 

Number of alleles detected using polymorphic markers 32 

Range of alleles 1-3 

Average number of alleles 1.45 

 Size of products 100-300 bp 

                 L  P1 P2   1  2   3   4   5   6   7  8  9  10 11 1213 14 15 16 17 18 19 20 21 22 23 24  25  26  27  28  29  30  31 32 33 34 35 36 37  

Fig. 1. Agarose gel showing polymorphic bands of F2 plants from cross PBW373 x WH1081 along with parental genotypes 

using SSRs Xgwm337. 

Traits Name of markers Chromosome Significance 

Days to heading Xbarc1044, Xgwm666.2, Xgwm635 3A, 3A, 7A *, *, * 

Days to anthesis Xgwm635, Xgdm125 7A, 4D *, * 

Days to physiological maturity Xwmc473 4D * 

Grain filling duration Xbarc142, Xwmc473 5A, 4D *, * 

Plant height (cm) Xbarc142, Xgwm337, Xwmc336 5A, 1D, 1D *, *, * 

Number of productive tillers/ plant Xgwm2, Xgwm666.2 3A, 3A *, * 

Number of grains/spike Xbarc142 5A * 

1000 grain weight (g) Xbarc142, Xwmc473 5A, 4D *, *, * 

Grain yield/plant (g) Xgwm2 3A * 

Membrane thermostability (%) Xgwm156 3B * 

Chlorophyll fluorescence (FV/FM) Xgwm611 7B * 

Linkage group SSRs Length (cM) 

  Number of markers Name of markers   

1A 1 Xwmc336 24.3 cM 

2A 1 Xwmc170 131.3 cM 

3A 4 Xgwm2, Xgwm369, Xbarc1044, Xgwm666.2 326.4 cM 

4A 1 Xwmc313 181.0 cM 

5A 2 Xgwm293, Xbarc142 207.5 cM 

6A 2 Xwmc398, Xbarc142 190.9 cM 

7A 2 Xgwm635, Xgwm260 296.0 cM 

1B 1 Xgwm413 25.0 cM 

3B 2 Xgwm156 , Xbarc147 102.8 cM 

6B 1 Xwmc398 55.6 cM 

7B 1 Xgwm611 89.0 cM 

1D 2 Xgwm337, Xwmc336 47.2 cM 

2D 2 Xbarc142, Xwmc170 274.1 cM 

3D 2 Xgdm8, Xcfd70 131.5 cM 

4D 2 Xwmc473, Xgdm125 386.2 Cm 

7D 1 Xgwm635 80.5 cM 

A genome 13 1360.3 Cm 

B genome 5 54.48 Cm 

D genome 9 919.5 Cm 

Table 1. DNA amplification profile of parental varieties of two wheat crosses using SSRs. 

 Table 2. Association of heat stress and related traits and primers detected by single marker analysis using F2 population of 

cross PBW373 × WH1081. 

Table 3. Distribution of markers over  16 chromosomes categorized as framework markers and their genetic lengths. 

Mamta Gupta et al.  / J. Appl. & Nat. Sci. 7 (2) : 739 - 744 (2015) 
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ficient scope for further selection of the traits under 

consideration. F2 population of 152 plants from viz; 

PBW373 (thermotolerant) × WH1081 (thermo sensi-

tive) was phenotyped for heat stress related physiologi-

cal, yield and its component traits.  The population 

exhibited large variability for each trait. 

Out of 200 SSRs used for amplification of parental 

DNA 158 SSRs (79%) showed amplification in parents 

out of which 22 SSRs (13.9% amplified SSRs) pro-

duced polymorphic bands.  A total of 32 bands were 

observed.  The number of alleles scored ranged from 1 

to 3 with an average of 1.45 alleles (Table 1).  

Association of QTLs with phenotypic traits (Single 

marker analysis, SMA): The single marker analysis 

allows the estimation of potential QTL by identifying 

markers segregating with phenotypic traits. This sim-

ple analysis was conducted with 22 SSRs to assess 

association of different traits with a marker using F2 

population. Three markers were detected to have asso-

ciation with QTL for days to heading (significant at 

5% level). First two markers (Xbarc1044, Xgwm666.2) 

were mapped on 3A while one Xgwm635 on 7A chro-

mosome (Figs. 1 and 2). Two markers were detected to 

have association with QTL for days to anthesis (at 5% 

level significance) and these markers (Xgwm635and 

Xgdm125) were mapped on 7A and 4D chromosomes, 

respectively. One markers (Xwmc473) was detected to 

have significant association with QTL (at 5% level) for 

days to physiological maturity, mapped on 4D chromo-

some. Total two markers were detected to have signifi-

cant association with QTL for grain filling duration at 

5% level of significance. Xbarc142 and Xwmc473 

markers were mapped on 5A and 4D chromosomes.  

In F2 population, three markers were detected to have 

 association with QTL for plant height at 5% level sig-

nificance. Xbarc142 and Xgwm337 markers were 

mapped on 5A while Xwmc336 marker was mapped on 

1D chromosome respectively. Two markers were de-

tected to have association with QTL for number of 

productive tillers/plant with significance at 5% level. 

Xgwm2 and Xgwm666.2 markers were mapped on 3A 

chromosome. Only one marker (Xbarc142) was de-

tected to have association for number of grains/spike 

with significance at 5% level and mapped on 5A chro-

mosome. Two markers were detected to have associa-

tion with QTL for 1000 grain weight at 5% level of 

significance while other was found to be associated 

with QTL at 0.1% significant level.  Xbarc142 and 

Xwmc473 markers were found to be mapped on 5A 

and 4D chromosomes.  One marker each Xgwm2 was 

detected to have significant association with QTL for 

grain yield/plant (at 5% level) mapped on 3A chromo-

some, Xgwm156 for membrane thermostability 

mapped on 3B chromosome and Xgwm611 for chloro-

phyll fluorescence with significance at 5% level and 

mapped on 7B chromosome (Table 2). The result of 

regression analysis of each of the traits (i.e. plant 

height, number of productive tillers/plant, days to 

heading, days to anthesis, days to physiological matur-

ity, grain filling duration, number of grains/spike, 1000 

grain weight, grain yield/ plant, membrane thermosta-

bility and chlorophyll fluorescence) on individual 

markers was significant at 5% to 1% levels (Table 2). 

Yang et al. (2002) also detected two QTLs for heat 

tolerance measured by grain filling duration with the 

method of single factor analysis in an F2 population. 

Pandey et al. (2013) screened Raj 4014 and WH 730 

with different SSR markers. Out of 300 SSR markers 

Mamta Gupta et al.  / J. Appl. & Nat. Sci. 7 (2) : 739 - 744 (2015) 

Fig. 2. Polyacrylamide gel showing polymorphic bands of F2 plants from cross PBW373 x WH1081 along with parental geno-

types using SSRs Xbarc1044. 

 P1   P2      1    2      3    4    L      5     6     7     8    9     L    10   11   12   13  15   L    16   17   18    19  20 

Fig 3. Maps showing the location of 9 QTLs on different chromosomes for physiological, yield related traits using cross 

PBW373 × WH1081. 



743  743  743  743  Mamta Gupta et al.  / J. Appl. & Nat. Sci. 7 (2) : 739 - 744 (2015) 

tested, 15% were found polymorphic. These polymor-

phic markers were utilized for genotyping a subset of 

RILs that had clear contrasting variation for difference 

in grain filling rate. To check for potential co-

segregation of DNA fragments and heat tolerant phe-

notypes, simple regression analysis was carried out in 

order to confirm an association between the markers 

and the grain filling rate as indicator for heat tolerance. 

Out of the 35 markers tested, relationship between the 

two markers Xbarc04 and Xgwm314 and the pheno-

types of RILs got established which were highly sig-

nificant. 

Composite interval mapping (CIM) 

Construction of linkage maps: The 22 SSRs were 

used to construct the map by using the mapmaker.  

These were mapped on 16 linkage groups. The number 

of markers on these 16 linkage groups varied from one 

to four. One marker (Xwmc336) was found to be pre-

sent on linkage groups 1A covering a length of 24.3 

cM whereas linkage group 1B and 1D covered a length 

of 25.0 cM and 47.2 cM with one (Xgwm413) and two 

(Xgwm337 and Xwmc336) markers respectively. Simi-

larly 2A and 2D contained one (Xwmc170) and two 

(Xbarc142 and Xwmc170) markers with overall chro-

mosome length of 131.2 cM and 274.1 cM respec-

tively. Four markers (Xgwm2, Xgwm369, Xbarc1044 

and Xgwm666.2) were found to be present on linkage 

group 3A, two markers (Xgwm156, Xbar147 and 

Xgdm8, Xcfd70) each were present on 3B  and 3D cov-

ered a total length of 326.4 cM, 102.8 cM and 131.5 

cM. Linkage groups 4A and 4D covered a length of 

181.0 cM and 386.2 cM with one (Xwmc313) and two 

(Xwmc473, Xgdm125)  markers respectively. Two 

markers (Xgwm293, Xbarc142) were found to be pre-

sent on linkage group 5A covered a length of 207.5 

cM. On the otherhand chromosome 6A and 6B cov-

ered a length of 190.9 cM and 55.6 cM with two 

(Xwmc398, Xbarc142) and one marker respectively. 

Two markers (Xgwm635, Xgwm260) on 7A and one 

marker (Xgwm611 and Xgwm635) each was found to 

be present on linkage group 7B and 7D with length of 

296.0 cM, 89.0 cM and 80.5 cM. The total linkage 

coverage and average interval distance were 116.00 

cM and 5.27 cM/Marker, respectively. The A-, B- and 

D- genomes had 1360.3 cM, 272.4 cM and 919.5 cM 

with average interval distance of 104.63 cM, 54.48 cM 

and 102.16 cM/ Marker. Partial genome maps were 

used in the present study and main effect QTL was 

detected by composite interval mapping using 

WinQTL Cartographer version-2.5. A logarithm of 

odds (LOD) score of 2.5 was used for suggesting the 

presence of a putative QTL. 

Threshold LOD scores, calculated using 1000 permu-

tations, were used for declaring definitive QTL. A total 

of nine QTLs were resolved following CIM (Table 3) 

of these, only one QTL was detected at a LOD score 

equal to threshold (2.5) value while eight were de-

tected above the threshold value. The phenotypic 

variation explained by individual QTL ranged from 

0.2% to 90.1%. 

All the nine QTLs  were having definitive located on chro-

mosome 3A (QDh.CCSHAU-3A, QDa.CCSHAU-3A and 

QPm.CCSHAU-3A), cromosome 5A (QBm.CCSHAU-

5A,QCtd.CCSHAU-5Aand QCl.fl.CCSHAU-5A), chromo-

some 6A (QPh.CCSHAU-6A) and chromosome 3B 

(QTgw.CCSHAU and QMts.CCSHAU-3B). Positive QTL 

effect suggested that an allele of the above QTL for heat 

stress tolerance is available in the tolerant parental geno-

type PBW373 (Fig. 3). Kumar et al. (2007) analyzed 

QTLs for grain weight (GW = 1000 grain weight) in 

common wheat using a set of 100 recombinant inbred 

lines (RILs) derived from a cross ‘Rye Selection 111 

(high GW) × Chinese Spring (low GW)’. Genotyping 

of RILs was done using 449 (30 SSRs, 299 AFLP and 

120 SAMPL) polymorphic markers. QTL analysis for 

GW was conducted following genome-wide single 

marker regression analysis (SMA) and composite in-

terval mapping (CIM) using molecular maps for the 

three chromosomes. Following SMA, 12 markers 

showed associations with GW, individual markers ex-

plaining 6.57% to 10.76% PV (phenotypic variation) 

for GW in individual environments. The CIM identi-

fied two stable and definitive QTLs, one each on chro-

mosome arms 2BS and 7AS, which were also identi-

fied through SMA and a third suggestive QTL on 1AS. 

These QTLs explained 9.06% to 19.85% PV for GW 

in different environments. Paliwal et al. (2012) pre-

pared a linkage map comprising 160 simple sequence 

repeat markers covering the whole genome of wheat. 

Using composite interval mapping, significant ge-

nomic regions on 2B, 7B and 7D were found to be 

associated with heat tolerance. Of these, two (2B and 

7B) were co-localized QTL and explained more than 

15% phenotypic variation for HSITGW, HSIGFD and 

CTD. The three major QTL obtained can be used in 

marker-assisted selection for heat stress in wheat. 

Conclusion 

Molecular markers are useful for breeders in selecting 

quantitative trait loci (QTL), where a trait has poly-

genic inheritance with variable heritability and needs 

to be selected in variable environments over genera-

tions. The objective of this study was to map and char-

acterize quantitative trait loci controlling heat tolerance 

measured by different heat stress related physiological, 

yield and yield related traits in late sown conditions 

and to find the molecular markers associated with 

them. So the present study concluded that heat stress 

caused due to delayed sowing leads to reduction in 

mean performance of the varieties for almost all eco-

nomic traits. However this reduction can be avoided to 

some extent by using thermo tolerant varieties. Breed-

ing for such genotypes/varieties can be eased by identi-

fying markers using molecular marker assisted selec-

tion. 
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