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Abstract: In this paper an attempt has been made to develop a discrete precipitation model for the daily series of
precipitation occurrences over North East India. The point of approach is to model the duration of consecutive dry
and wet days i.e. spell, instead of individual wet and dry days. Various distributions viz. uniform, geometric, logarithmic,
negative binomial, Poisson and Markov chain of order one and two, Eggenberger-Polya distribution have been fitted
to describe the wet and dry spell frequencies of occurrences. The models are fitted to the observed data of seven
stations namely Imphal, Mohanbari, Guwahati, Cherrapunji, Silcoorie, North Bank and Tocklai (Jorhat) of North-
East India with pronounced attention to summer monsoon season. The goodness of fit of the proposed model has
been tested using Kolmogorov-Smirnov test. Itis observed that Eggenberger-Polya distribution fairly fits wet and dry
spell frequencies and can be used in the future for an estimation of the wet and dry spells in the area under study.

Keywords: Geometric Distribution, Logarithmic Series, Negative binomial distribution, Poisson distribution, Markov

Chain, Kolmogorov-Smirnov test

INTRODUCTION

The definition of spell is based on the duration of
consecutivewet and dry days. A wet spell isasequence
of wet daysand it begins and endsthe day after and the
day before a dry day. In this study a wet day (W) is
considered as one where the precipitation is = 1mm

and, obviously, dry day (D) the one where there is not
precipitation or is not > 1mm.

According to Fisher (1924) crop yield during a season
mainly influenced by the distribution of rainfall rather
than seasontotal amount of rainfall. Againthedistribution
of rainfall dependsonthewet and dry spellsover aperiod
of time, so it isvery important to investigate the pattern
of occurrence of such spells during the Indian Summer
Monsoon Season. The main objective of the present
study isto find the best fitting model to describe the wet
and dry spell frequencies of occurrences considering the
climatic featuresof thedifferent partsof North-East India.
Among the possible statistical models,we have used
Discrete uniform distribution; Geometric distribution;
Logarithmic series; Negative binomial distribution;
Poisson distribution; Markov chain of order one and two;
Eggenberger-Polya distribution. The Kolmogorov-
Smirnov test for goodness of fit was employed as the
significance test for every model, assuming the level of
significance as 5% (a =.05).

In order to put our discussion into proper perspective
we relate our work with the existing literature. The most

frequently used model for generating consecutive series
of dry and wet days is the first order, two state,
homogeneous Markov chain that has been applied by
several authors (cf. Gabriel and Neumann (1962), Katz
(1974), Bruhn et al. (1980), Richardson (1981), Geng
(1986), Matyasovszky and Dobi (1986), Wilks (1992),
Dubrovsky (1997). The major disadvantage of thismodel
isthat it overestimatesthe very short, but underestimates
the very long dry sequences. An essential improvement
to reproduce the short and long spells were made by
Berger and Goossens (1983) and Nobilis (1986) using
higher order Markov chain and Eggenberger-Polya
distribution. They found that short spellswerebest fitted
by fourth order Markov chain, where asthe Eggenberger-
Polya distribution gave the best fit to the long series.
Later, Racskoet al. (1991) proposed amodel constituting
two different geometric distributions. In the referred
study, both the geometric distributions were separated
according to thelength of dry spells. Resultsof theworks
suggested that mixed distribution, including geometric
one, could be promising in reproduction of long dry
periods. For wet spells, it was al so observed that simple
geometric distribution could be promising. Recently,
following the idea of Racsko et al. (1991) a mixture
distribution based on a weighted sum of two geometric
distributions, as well as that of one geometric and one
poisson distribution have been applied by Wantuch et
al. (2000). The first model exhibits good fitting for the
dry spells and the latter one can be advised to employ
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Table 1. Results of the Kolmogorov-Smirnov (K-S) tests for North Bank (1986-2005).

Summer Wet Spells

Summer Dry Spdlls

Serial Distributions K-S Statistic Serial Distributions K-S Statistic
No. No.
1 Discrete Uniform 0.3636 1 Discrete Uniform 0.3750
2 Geometric 0.4056 2 Geometric 0.4866
3 Logarithmic 0.4208 3 Logarithmic 0.4922
4 Neg. Binomia 0.5633 4 Neg. Binomial 0.5096
5 Poisson 0.2100 5 Poisson 0.2817
6 M.C of order one 0.0402 6 M.C of order one 0.0661
7 M.C of order two 0.0306 7 M.C of order two 0.0226
8 Eggenberger-Polya 0.0178 8 Eggenberger-Polya 0.0121
Critical valueat @ =.05 0.0545 Critical valueat a =.05 0.0545
Table 2. Results of the Kolmogorov-Smirnov (K-S) tests for Tocklai (1986-2005).
Summer Wet Spells Summer Dry Spells
Serial Distributions K-S Satistic Serial Distributions K-S Statistic
No. No.
1 Discrete Uniform 0.3333 1 Discrete Uniform 0.3333
2 Geometric 0.4439 2 Geometric 0.5385
3 Logarithmic 0.4526 3 Logarithmic 0.5484
4 Neg. Binomia 0.3313 4 Neg. Binomial 0.4692
5 Poisson 0.2095 5 Poisson 0.3749
6 M.C of order one 0.0235 6 M.C of order one 0.0730
7 M.C of order two 0.0152 7 M.C of order two 0.0096
8 Eggenberger-Polya 0.0178 8 Eggenberger-Polya 0.0186
Critical valueat 2 =.05 0.0505 Critical vaueata =.05 0.0504

for the wet periods. More recently, while Tolika and
Maheras (2005) have found that both Markov chain of
order two and Negative Binomial distribution can be used
to estimate the wet spellsin Greece, Eggenberger-Polya
and Truncated Negative Binomial werefound to be more
efficient in fitting observed data both for wet/dry spells
by Giuseppe et al. (2005). Although a good number of
literatures are available describing the model for daily
precipitation round the globe, no rigorous work barring
thework by Medhi (1976) pursuedintheNorth East region
of India.

A brief outline of this paper is as follows. Section 2,
introduces a brief specification of data set and the
statistical methods used in this work. In section 3, a
discussion is carried out on the results obtained from
different statistical models applied to analyze the wet and
dry spells frequencies. Finally, section 4 is devoted to a
critical assessment of the results obtained in section 3.

MATERIALSAND METHODS

Inthisstudy seriesof daily rainfall dataof seven stations
in North East India viz. Imphal (2001-2005), Mohanbari
(1993-2006), Guwahati (2001-2005), Cherrapunji (2001-
2005), Silcoorie (1986-2005), North Bank (1986-2005),
Tocklai (1986-2005) have been selected. Thelocations of
these seven stations of North East India are shown in
Fig 1. The series of daily rainfall are taken from Regional
Meteorological Centre, Guwahati and Tocklai
Experimental Station, Jorhat involving the aforesaid seven

stations for the summer season (April to September) in
each year.

When a spell overlaps a seasonal change (that is, it
includesthe 31% of march and 1% of April or 30" September
and the 1% of October) itisconsidered initswholeupto
itsmodality changeevenif it reachesthefollowing season
andweincludeit intheseasoninwhichit developlonger.
The sample gives the observed frequency of wet/dry
spell of i length (wherei goesfrom 1 tothelongest spell).
Thei length spell can be considered asacasual variable
and its probability density can be calculated with
theoretical models.

Themodelsthat have been used to describethe empirical
data are uniform, geometric, logarithmic, negative
binomial, Poisson, defined by [Eq. 1-Eq. 5] respectively.
Further, following the trend of Berger et al. (1983) the
spell frequencies have also been analyzed by
Eggenberger-Polya distribution [Eq. 6] and Markov chain
of order one and two defined by [Eq. 9] and [Eq. 10]
respectively.
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Table 3. Results of the Kolmogorov-Smirnov (K-S) Tests for Silcoorie (1986-2005).

Summer Wet Spells

Summer Dry Spdls

Serial Distributions K-S Statistic Serial Distributions K-S Statistic
No. No.
1 Discrete Uniform 0.3333 Discrete Uniform 0.4285
2 Geometric 0.3499 2 Geometric 0.5256
3 Logarithmic 0.3795 3 Logarithmic 0.5334
4 Neg. Binomial 0.4249 4 Neg. Binomial 0.4704
5 Poisson 0.2567 5 Poisson 0.3513
6 M.C of order one 0.0618 6 M.C of order one 0.0763
7 M.C of order two 0.0232 7 M.C of order two 0.0215
8 Eggenberger-Polya 0.0176 8 Eggenberger-Polya 0.0190
Critical vaueat a =.05 0.0597 Critical valueat & = .05 0.0601
am+k-10 p" dk h/d+Kk
P.(X =k) = 9P (1. p) Py(X k=0 Sdrl)
k gl-p (1+d) KIG(h/ d)
0<p <1,n0 @ where G isthe Gammafunction.
’ It follows from the argument of Giuseppe et al. (2005)
ek that the above distribution maintains the following
PR(X=kK)=——— recursive relation:
4 (l- e—l)k!= | >0 ) 1
where k (=1,2,3,...) is defined as the number of P.)=———F ™
. . - (1+ d)m/d
consecutive days of which a spell is composed. The
Eggemberger-Polyadistribution is:
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Fig. 1. Locations of rain gauge stations used in this study.
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Table 4. Results of the Kolmogorov-Smirnov (K-S) Tests for Mohanbari (1993-2006).

Summer Wet Spells

Summer Dry Spells

Serial Digtributions K-S Statistic Serial Distributions K-S Statistic
No. No.
1 Discrete Uniform 0.3333 1 Discrete Uniform 0.3571
2 Geometric 0.3951 2 Geometric 0.3922
3 Logarithmic 0.4126 3 Logarithmic 0.4104
4 Neg. Binomial 0.4439 4 Neg. Binomia 0.4343
5 Poisson 0.2237 5 Poisson 0.2292
6 M.C of order one 0.0574 6 M.C of order one 0.0368
7 M.C of order two 0.0287 7 M.C of order two 0.0105
8 Eqgenberger-Polya 0.0321 8 Eqgenberger-Polya 0.0325
Critical valueat a =.05 0.0695 Critical vaueat & =.05 0.0694
P.(K) = m+ (k- 2)d P.(k - 1) In the second order Markov chain the probability Q,
s\K) =2 — S K- ks, (g
- + . — -2
(k- 1)3+d) isexpressed as Q, = Pioo Poog - Poogs fOr N3 2 (11)

where (m+1) isthe mean length of aspell, d is given by
s 2/m- 1. s 2being the variance of sequences’

length.
In the case of first order Markov chain the probability
that adry spell will last exactly n daysisgiven by

Qn = Pho -Por = Poo (L~ Poo) fornz1 (9
where P, istheprobability of adry day following adry

day and P, the probability of arainy day following a

rainy day. Thetwo parametersp,, and p,, arerequiredto
be estimated for describing the Markov Chain of order
one. One can estimate these parametersaccording to the
principle of maximum likelihood estimation. The maximum

likelihood estimate of [3; (i,j=0,1) is given by

n.

[

I’lij
1

o] n
a N b

j=0

P =
(10)

N;; isthe number of direct transition from the statei to
the statej.

Q = Pus (12

and the maximum likelihood estimate of P (i,j,k=0,1)

isgiven by
o My My
Pik=7 "
2 ij, 13
a M ! (13
k=0

N;j isthe number of transition from the state i to the

statek throughj. Thefirst order Markov Chainonly takes
into account the state-wet or dry-of the day preceding a
given one. In the same way, the second-order considers
the states of the two preceding days. Raising the order
of Markov chain does not necessarily do away the
imperfectionsof themodel. Ontheother hand, thenumber
of parametersto estimate increases with 2<for two state,
k order Markov chain which may rapidly enhance the
uncertainty of the estimation. Thereforethe present study
is confined to the Markov chain of order one and two.

The Kolmogorov-Smirnov test for goodness of fitisthen
employed as the significance test for each model which
is one of the most powerful non parametric tests for
differences between two cumulative frequency

Table 5. Results of the Kolmogorov-Smirnov (K-S) Tests for Cherrapunji (2001-2005).

Summer Wet Spdls

Summer Dry Spells

Serial Digtributions K-S Statistic Serial Distributions K-S Statistic
No. No.

1 Discrete Uniform 0.2963 1 Discrete Uniform 0.4000
2 Geometric 0.2365 2 Geometric 0.5643
3 Logarithmic 0.3066 3 Logarithmic 0.5807
4 Neg. Binomial 0.2176 4 Neg. Binomial 0.4495
5 Poisson 0.3510 5 Poisson 0.4220
6 M.C of order one 0.0777 6 M.C of order one 0.0485
7 M.C of order two 0.0582 7 M.C of order two 0.0388
8 Eggenberger-Polya 0.0541 8 Eggenberger-Polya 0.0317

Critical valueat & =.05 01338 Critical valueat @ =.05 0.1338
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Table 6. Results of the Kolmogorov-Smirnov (K-S) Tests for Guwahati (2001-2005).

Summer Wet Spells

Summer Dry Spells

Serial Distributions K-S Statistic Serial Distributions K-S Statistic
No. No.

1 Discrete Uniform 0.3750 1 Discrete Uniform 0.3333
2 Geometric 0.4558 2 Geometric 0.5019
3 Logarithmic 0.4631 3 Logarithmic 0.5077
4 Neg. Binomial 0.5086 4 Neg. Binomia 0.4213
5 Poisson 0.2290 5 Poisson 0.3087
6 M.C of order one 0.0399 6 M.C of order one 0.0787
7 M.C of order two 0.0341 7 M.C of order two 0.0112
8 Eggenberger-Polya 0.0382 8 Eggenberger-Polya 0.0396

Critical valueat a =.05 0.1024 Critical vlueat a =.05 0.1018

Table7. Results of the Kolmogorov-Smirnov (K-S) Tests for Imphal (2001-2005).
Summer Wet Spells Summer Dry Spells
Serial Distributions K-S Statistic Serial Distributions K-S Statistic
No. No

1 Discrete Uniform 0.4167 1 Discrete Uniform 0.3333
2 Geometric 0.4416 2 Geometric 0.4663
3 Logarithmic 0.4505 3 Logarithmic 0.4727
4 Neg. Binomial 0.2187 4 Neg. Binomial 0.6678
5 Poisson 0.2415 5 Poisson 0.2466
6 M.C of order one 0.1056 6 M.C of order one 0.0736
7 M.C of order two 0.0435 7 M.C of order two 0.0307
8 Eggenberger-Polya 0.0491 8 Eggenberger-Polya 0.0152

Critical valueat @ =.05 01070 Critical valueat & = .05 0.1064

distributions of the observed and estimated ones.
Massey and Frank (1951) showed that Kolmogorov-
Smirnov test treats individual observation separately
leading to no loss of information in grouping whileloss
of informationin chi-square procedureislarge. Pal (1998)
mentioned that the Chi square test’s sensitivity to very
small cell frequencies make itself unsuitable when
expected frequencieswork out at lessthan 5in 20 percent
of the cells. In this study, we have also observed that
morethan 20% of the cell frequenciesarelessthan 5 and
therefore the Kolmogorov-Smirnov test is applied to test
the goodness of fit. Thetest statisticsused is

D= max|Sn ¥ -F (X)|

where S (x) and F(x) are empirical and theoretical
distribution functions, respectively. The distribution of
D, is independent of F(x). The theoretical distribution
function however, hasto be completely specified. Inthis
study the theoretical distribution function have been
calculated by using the estimated parameters of the
distribution in each case. The significance of a critical
value of D, depends on the no. of observations. For
example, if nisover 35, thecritical valuesof D at .05 level
of significance can be determined by the formula 1.36/
On. Any D, equal to or greater than 1.36/Cn will be
significant at .05 levels (two tailed test). In the second
phase, the goodness of fit has been tested by
Kolmogorov-Smirnov statistics and results are

summarized in Table 1 to Table 7.
RESULTS

This section deal swith the comparativeresultsobtained
from different statistical models applied to analyze the
wet and dry spells frequencies over North East India. In
the first phase of this work we have calculated the
empirical frequencies of wet and dry spells according to
their length. Then the same frequencies have been
estimated for each station using the af oresaid theoretical
distribution models.

Results of Kolmogorov-Smirnov tests presented in the
Tablelto Table 7 clearly indicatethat apart fromthe M.C
of order two (in some cases order 1 also) and
Eggenberger-Polya distribution, the rest of the
distributions work poorly to represent the spell
frequencies.

In case of dry series, Eggenberger-Polyadistribution and
Markov Chain of order two shows better results in all
seven stations where as Markov chain of order one
shows good fit for the stations M ohanbari, Cherrapunji,
Guwahati and Imphal. While Eggenberger-Polya
distribution gives best fit for the stations North-Bank,
Silcoorie, Cherrapunji and Imphal, Markov Chain of order
two shows best fit for the stations Tocklai, Mohanbari
and Guwahati. Summarizing the above experiences, we
may conclude that Eggenberger-Polya distribution and
Markov Chain of order two are competing each other in
case of dry spells.



S. Dekaet al. / J. Appl. & Nat. Sci. 2 (1): 42-47 (2010) 47

In comparison to dry series Markov Chain of order two
shows better performance in case of wet series. Results
of the Kolmogorov-Smirnov tests for Markov Chain of
order one shows good fit to the observed datain most of
the investigated cases. Like dry spells, Eggenberger-
Polyaand Markov Chain of order two are the best fitting
modelsin case of wet spellsalso. Markov Chain of order
two gives best fit to the observed data for four stations
and Eggenberger-Polya distribution works better than
Markov chain of order two for the rest three stations.

Conclusion

This section concerns with the critical evaluation of the
work carried out. These are listed below:
Eggenberger-Polya distribution and Markov Chain of
order two (in some cases Markov Chain of order one
also) models are efficient in fitting the observed data.
The other models do not fit at all.

In case of dry spells (wet spells) Eggenberger-Polya
distribution (Markov Chain of order two) shows best fit
in four stations out of seven stations.

Markov Chain of order two needs four parameterswhile
Eggenberger-Polya needs only two parameters.
Considering the above discussions it can be concluded
that Eggenberger-Polya is better than Markov Chain of
order two and can be more easily used as a theoretical
model to estimate the seasonal climatic characterization
of precipitation over North-East India.
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