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Abstract

This thesis investigates paper-based electronics in terms of various substrates, fabrication methods

and example devices, including touch sensors and microwave resonators. The term ‘paper’ is very

broad and covers a wide range of substrates. A decision matrix has been created to determine the

optimum paper for an application, based on a range of properties. Thermal evaporation and screen

printing are compared for their use as fabrication methods for paper-based electronics and a second

decision matrix has been compiled. Based on these decision matrices, screen printing onto a thicker

matt paper was determined to be optimal. The printing process was further optimised to achieve the

best results from the in-house process.

Using this well-developed screen-printing method, passive components (including inductors and

interdigitated capacitive touch sensors) were fabricated and found to be comparable with state-of-the-

art results reported in the literature. Measurements from the touch pads were compared to modelling,

with little variation between the two, and were confirmed to work under a wide range of conditions,

showing that they are compatible with any user.

The microwave characteristics, up to 3 GHz, of both the chosen substrate and silver-flake ink

were investigated through production of screen-printed transmission lines. These characteristics were

then used to create microwave resonators. The frequency range is important for applications as the

industrial, scientific and medical radio band (ISM band) lies between 2.45 and 2.55 GHz which includes

Wi-Fi and Bluetooth. Initially, stub resonators were considered to determine the cause of differences

between theoretical and measured results. Then spiral defected ground structures were made, with

multiple resonances, and sensitivity to touch and humidity demonstrated.

As paper is hygroscopic, the effect of humidity on paper-based electronics is of key importance.

This has been considered for all the devices fabricated in this work and it has been determined that

the change in permittivity of the substrate, as a result of absorbed water within paper, is the most

dominant factor.
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Chapter 1

Introduction

Paper is one of the most versatile and flexible surfaces ever created by mankind. Invented over 2000

years ago in China, and further developed by Cai Lun [1], it is inexpensive, lightweight, mechanically

flexible and, most importantly, easily recyclable. Thanks to its properties, it has now become one of

the most common materials found in everyday life, such as printing paper, packaging, newspapers,

magazines, bags, artworks, etc. It is not surprising therefore that its use in electronic technology is

currently being heavily investigated, both commercially and in academia.

Paper-based electronics refers to electronic devices and circuits where either the substrate or part

of the device itself consists of paper. While paper is not a direct competitor to silicon for high-

performance electronics, as it cannot rival the extremely low surface roughness or easily sustain

nanometre-scale features, it can be considered alongside silicon and other substrates for applications

where cost and ease of fabrication are more important than performance.

The fast production of paper and its ability to be recycled means it is highly suited for disposable

devices [2–4]. A key advantage of paper over plastic is the lack of un-recyclable waste. The UK

government is highly concerned over the amount of single-use plastic waste, and several policies are

now in place to monitor and reduce the amount of plastic used in packaging [5–7]. Currently, 81.9%

of paper and cardboard is recovered and recycled, compared to 44.9% of plastic [8]. The amount of

mismanaged plastic waste generated by the coastal population of a single country ranges from 1.1 to

8.8 million tonnes [9]. Paper can simply be burnt (Wang et al. have shown an example of an antenna

on paper being burnt which can be important for military applications [10]). Work has also been done

to ensure that silver ink can be removed from paper as part of the recycling process [11].

Paper has several properties which can be considered as both advantages and disadvantages

depending on the application. For example, the high surface roughness of paper in comparison to
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glass can be considered a disadvantage as it will increase the sheet resistance of deposited metal

layers. However, in paper-based batteries, high surface roughness leads to a high surface area for

reactants to be stored which makes the batteries more efficient [12].

One of the main advantages of paper over other substrates is the fact it is foldable [13]. This is

of great interest as it can be used to improve the performance of devices. For example, Liu et al.

have produced a piezoresistive cantilever strain sensor which, when the cantilever is folded, increases

in stiffness and sensitivity [14]. A carbon resistor is placed at the end of a paper cantilever and

connected to silver contact pads. The paper cantilever is much longer than the carbon and so the

conductive sections are not folded, only the paper. Groups have incorporated folding into batteries in

order to increase the areal energy but keep the surface area minimised when folded [15, 16]. Siegel et

al. have produced various foldable printed circuit boards from paper including a crane with LEDs and

an anti-tamper envelope [17]. Nogi et al. have investigated foldable antennas from silver nanowires

on nanopaper; when the antenna is folded, the resonant frequency shifts [18]. Lin et al. recently

demonstrated deformable photodetector arrays on paper [19]. While Lee et al. showed the potential

for folding memory [20].

Paper is thousands of times cheaper than silicon or glass. Printer paper is also lower in price than

plastics, making it the most cost-effective substrate for electronics. This low cost makes paper-based

devices disposable which may be required in smart packaging applications and biological assays. It

also paves the way for a new generation of low-cost, flexible gadgets on paper [21].

Technology is now moving towards ‘The Internet of Things’, this is the idea that everything will

eventually be connected in a ‘smart’ environment where day-to-day objects will communicate with

each other and to centralised control systems. A typical example of this is a refrigerator which

automatically stock audits then creates an order with the supermarket. It could also provide alerts

for items which are nearing their use-by date and potential recipes which include these items. This

also means that an object can be monitored from cradle to grave. The benefits of paper mean it can be

easily utilised, at a low cost, in this area. The possibility of home fabrication of printed paper-based

electronics has also been demonstrated [22].

An extensive review of existing fabrication methods and devices has been compiled by Tobjörk

and Österbacka [23].
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1.1 Types of Paper

There are many types of paper available, including those that can be bought off the high street,

speciality papers, and those that are created for a specific application. Devices have been created

on several standard papers including tracing paper [24], tissue paper [25] and card [26, 27]. Groups

have compared several papers throughout their work to determine the optimum paper for a certain

application. Ref. [28] looks into using thermoplastic electrically conductive adhesives on various

papers and also comparing them to PET film. Ohlund et al. compared readily available papers in

terms of their properties affecting conductivity of inkjet printed films, including absorption, porosity

and surface roughness [29]. Similarly, reference [30] studied the effect of conductivity with various

paper properties and reference [31] compared a smooth paper and a rough, porous paper for their

compatibility with screen printing.

In addition to commercially available papers, paper can also be fabricated for a specific purpose

or application from cellulose fibres or a standard paper can be adapted. For example, reference [32]

investigated the effect of altering the coating materials and manufacturing processes of paper, to change

its reaction with applied functional polymers such as PEDOT:PSS. In a similar way, Andersson et al.

studied the process of dip-coating paper in NaCl for use as humidity sensors; although this increased

resistance, it also increased humidity sensitivity [33]. Wang et al. used Teslin paper, which does not

deform in water, to demonstrate its ability to be folded and create three-dimensional devices [10].

Several groups have studied nano-cellulose paper, where only the smaller cellulose fibres are used,

reducing surface roughness but still producing a ‘green’ material [3, 18, 34–37]. The result of this can

be a transparent substrate which has been used for solar cells and transistors [38, 39]. Nanopaper

has also been used for a substrate on which to produce antennas [18], a specific example of this takes

advantage of the high dielectric constant in order to create miniaturised antennas [40].

In addition to nano-cellulose fibre paper, paper can be easily treated, for example with chemicals

or metal compounds, to make it conductive [41, 42]. Reference [41] presents the use of iongels to coat

raw cellulose pulp which increases the conductivity of the paper and reference [42] presents the use of

silica coating of paper to aid in the sintering of silver inks. Gullapalli et al. embedded piezoelectric

zinc oxide in a stable paper matrix to create a nano-composite strain sensor [43], Lessing et al. have

produced an omniphobic ‘fluoroalklated paper’ for high resolution patterns [44] and Thiemann et al.

have produced a cellulose based ion-gel for use as a high capacitance gate dielectric. Bioactive papers

have been created for use as a material in bioassays [45–47].
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1.2 Fabrication Methods for Paper Electronics

Traditionally, common fabrication methods for substrates used in the electronics industry, such as

silicon or glass, require a cleanroom environment to reduce the chance of defective devices, for

example photolithography. These processes are time-consuming and expensive, contrasting with the

simple and cost-effective properties of paper substrates [2]. Paper is compatible with both cleanroom

processes and also other, well-established, high-volume manufacturing methods. An example of this

is newspapers, which have been printed in volume for the last century. Paper-based electronic devices

have been produced using a number of large-scale printing methods including gravure printing [48, 49],

flexographic printing [50], screen printing [31, 51–58], electrohydrodynamic jet printing [59] and inkjet

printing [60–71].

A wide variety of non-printing fabrication methods have been used to create devices on paper

substrates including physical vapour deposition [72], soap film coating [73], filtration [74, 75],

electroplating [76], spray coating [77, 78], photolithography [79] and direct writing [34, 80–86]. The

dry transfer of silver nanowires was investigated by Kim et al. using a dry film photoresist and PET

by hot pressing [87].

Direct writing covers a wide range of methods which are often low cost and simple. Using a

pencil is a form of direct writing and is the easiest method of producing a conductive layer on paper.

Pencils have been used to create simple passive components as well as the active layer in field effect

transistors [88–90]. They have also been used to create strain gauges for use as weighing scales [91],

gas sensors [92] and chemiresistors [93]. Graphene itself can also be deposited on paper substrates

by filtration; although this is a more complex process, it often yields far better results than using a

pencil [74, 75, 94]. Huang et al. produced an antenna using a highly conductive graphene laminate

that had been compressed with rolling, improving the conductivity by more than 50 times [95].

Another simple example of direct writing is a roller-ball pen filled with liquid-metal ink [81, 83, 84].

Russo et al. have produced a colloidal silver ink which is used in a roller-ball pen to create simple

circuits to light up LEDs and a 3D antenna [84]. Li et al. use a similar ‘pen’ method to deposit a

thermocouple made from gallium/gallium oxide [80]. Using the same principles as a roller-ball pen,

Zheng et al. have produced a method using a static set-up in tapping mode; again, this utilises a

liquid metal ink [82]. Zheng et al. also use a roller-ball pen with a moving stage for mounting and

moving the substrate [34]. Conductive patterns can be produced in a similar way using a fixed syringe

rather than a rollerball pen [85, 86]. Anagnostou et al. used this technique to print antennas for use
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in flexible displays [86].

Printing techniques for paper-based electronics include inkjet printing, screen printing, gravure

printing and flexographic printing. These techniques are all well-established and have been used

for non-conductive ink printing for many years. Inkjet printing is commonly used for paper-based

electronics so there is a lot of literature presented here, however it is not scalable in the same way

as the other methods and so has not been considered for this work. Gravure printing uses a cylinder

with recessed cells which is coated in ink using a blade and then rolled over the substrate so that the

recessed pattern is transferred. Gravure printing can achieve a print resolution between 20 - 75 µm

and print speeds of 20 - 1000 m/min. Flexographic printing is similar to gravure printing however

the pattern is raised on the cylinder rather than recessed and the cylinder is made from a flexible

material. Flexographic printing can achieve a print resolution between 30 - 75 µm and print speeds

of 50 - 500 m/min. Screen printing will be described in detail in Chapter 2 but in short uses a screen

which consists of a frame and patterned mesh through which ink is forced onto a substrate using a

squeegee. Screen printing can achieve a print resolution between 50 - 100 µm and print speeds of 10

- 100 m/min. Screen printing was chosen for this work due to the ease of initial set up, its scalability

and low cost. The values quoted here for print features and print speeds are taken from the review

by Tobjörk and Österbacka [23].

Inkjet printing is one of the most common fabrication methods for flexible electronics and can

be used to print both conductive and dielectric materials [60–71, 96–103]. Fukuda et al. studied

the profile control of silver electrodes which can be altered by varying the relative humidity and the

jetting properties [62]. Andersson et al. have used inkjet printing to produce hybrid electronics in

which double-sided paper circuit boards consist of printed and standard components affixed to the

board [63]. Sanchez et al. detail the use of inkjet printing to produce skin mountable tattoo paper

tags which can be used for monitoring [60].

Several groups have studied the manufacturing of radio frequency identification (RFID) Tags and

radio frequency (RF) structures on paper [60, 61, 64, 67–71, 104]. Tentzeris’s group at the Georgia

Institute of Technology is one of the main groups working on inkjet-printed RF devices, looking

into reducing the cost and complexity [61, 64, 69–71, 105–110]. Reference [64] details their work

investigating printing only the outline of antenna structures in order to speed up the fabrication process

and reduce costs. Reference [71] details work towards RF devices for use in wireless devices including

a temperature sensor, a battery-less solar-powered tag and a running shoe with an incorporated piezo-

scavenging tag.
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Curing and sintering of conductive inks has been widely investigated to optimise printing methods.

Groups have addressed the transient variation of an area of inkjet-printed silver nanoparticle ink during

furnace sintering [111]. Ultraviolet (UV) curable inks have been formulated to avoid the use of heat

which can degrade paper-based substrates [112–114]. Microwave sintering has been considered for

its speed [115]. Allen et al. presented work on substrate facilitated nanoparticle sintering at room

temperature [116]. The sintering mechanism is based on the chemical removal of the nanoparticle

stabilising ligand and is shown to provide conductivity above a quarter that of bulk silver.

Screen printing is compatible with production line processing meaning that fast fabrication of

screen-printed devices is possible. It also has low capital costs and can be used to print large areas.

Bjorninen et al. compared screen printing, gravure printing and copper etching for fabricating RFID

tags [117]. The results of the study show that each of the studied fabrication methods can be used

to manufacture reliable RFID tags. Shin et al. compare screen-printed RFID antennas with those

fabricated by copper etching and these also show similar performance [118].

As with inkjet printing, different materials can be screen printed, including dielectrics [53]. Screen

printing is limited in feature size, often to hundreds of microns, but can be further reduced to tens

of microns with micro-machined silicon stencils and viscosity-controlled inks [55, 119]. The feature

size is limited by the screen, however literature is available to determine the achievable parameters

depending on the material and thread size [120, 121].

Other fabrication methods are often limited to certain papers and inks, for example inkjet printing

is not compatible with highly viscous inks as they cannot be printed through the small nozzles used. It

is also not compatible with matt papers as the low viscosity ink is absorbed into the porous structure.

Screen printing is shown in this work to be compatible with all types of paper and therefore can be

used to produce highly flexible devices such as capacitors for use in fully printed low-cost passive

RFID labels [51]. Screen printing requires higher viscosity inks than inkjet printing, however inks for

both printing methods are widely available.

1.3 Paper-based Electronic Devices

Research on paper-based devices is still a relatively new field in comparison to research into devices

which use substrates such as silicon or glass. Although it is still in its infancy, paper-based electronics

has yielded a number of devices including displays [122–126], transistors [89, 127–131] and photovoltaic

cells [132]. One of the aims of research into paper-based electronics is to produce complete systems
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on paper, including the inputs and outputs, the power supply and the device itself. Liu et al. have

produced a microfluidic device with integral battery and electrochromic read-out [133]. Paper can

also be part of larger device, and gold electrodes on paper have been shown as links between other

electronic components [134].

The simplest electronics on paper are hybrid devices that are generally aimed for outreach programs

and kits which can be used by anyone [135–137]. These kits include simple components like light

emitting diodes (LEDs) and conductive ink that can be directly written on paper substrates, acting

as connections between the components. For example, carbon-based inks have been used in order to

create LED circuits integrated with artwork or more complex circuits that can be used for pop-up

books [138] and also ‘paper robots’ [139, 140]. Karagozler et al. have created paper-based circuits

which use different gestures to harvest energy, which can be integrated into pop-up books so no

external power supply is required [141].

Another use for paper which is of great interest is in microfluidic devices which can be used for

disposable biological assays [142–150]. Highly porous paper (filter paper) and wax printing can be used

to create channels within the paper which guide solutions to combine or into test areas. An origami

box approach has been used to produce three-dimensional assays which can perform several tests in

parallel [151, 152]. Martinez et al. have produced programmable assays using push buttons which can

be activated using a pen or pencil [143]. Microfluidic timers have also been created so that assays with

time requirements can be realised [153, 154]. In addition to microfluidic devices, other biosensors have

been created with paper, including electrodes for electrocardiogram (ECG) signal acquisition [155], a

respiration sensor [156] and electrochemical sensors for detecting human papillomavirus [157].

A large area of interest is ‘electronic skin’ [158–162]; these are electronic/active devices which can

be adhered to the skin and monitor various parameters or conditions. These devices may be used

for healthcare applications but also as a skin-like sensor which is capable of sensing and visualising

various sensations and 3D shapes [163]. This research has been continued by a number of groups and

the idea of ‘multi-sensing’ has become of great interest. Many of these skin-like sensors will monitor

parameters such as strain, temperature, humidity and even pH. Some will also incorporate transistors,

LEDs and power sources.

The foldability of paper in electronic devices has been demonstrated by Siegel et al. who created

origami structures with printed electronics including an envelope which could potentially be used for

security applications [17]. Foldable touch pads fabricated by incorporating polypyrrole into paper and

wax patterning of chromatography paper are presented in [164]. Foldable antennas can be created
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for the miniaturisation and tunability of devices, in addition to adapting the shape for a specific

application [40, 165]. Cybulski et al. have created a microscope for which the casing of the lenses is

created using the principles of origami. This microscope can be produced at a very low cost for use

in third world countries [166].

Environmental monitoring has become of great concern in the past decade. Issues regarding air

pollution and the need for stable conditions have led to the need for high numbers of sensors in a

network to monitor conditions in various locations simultaneously [167]. Temperature sensors [168],

humidity sensors [24, 33, 35, 169–171] and gas sensors [168, 172–174] have all been produced on paper

to reduce costs so that they can be used on a large scale in a disposable manner. Work by Unander and

Nilsson [171] included the characterisation of moisture sensors in packaging monitoring applications,

for example along production lines in factories. Several fabrication methods and designs were explored

in order to produce an optimum monitoring device using paper as a substrate; the repeatability of the

devices and effect of humidity on the paper samples were considered. Nitrogen dioxide and ammonia

gas sensors [169, 174–176] have been produced in addition to carbon nano-tube chemiresistive sensors

which can identify a number of gases [177]. Kiasari et al. have created carbon dioxide and ultra-violet

sensors using zinc oxide ink ‘drawn’ onto paper [92].

As well as biological and chemical sensors, strain sensors have been developed on paper. Khajeh

et al. have created a strain sensing paper via micro-inkjet printing of conductive carbon black [178].

Many groups have created weighing systems from paper-based strain sensors [14, 91, 179]. Yang et

al. have created origami triboelectric nano-generators and self-powered pressure sensors which have

also been used as weighing systems [180]. Another application is using paper-based strain sensors for

structural health monitoring [43].

RFID is a technology which allows objects to be identified but it can also be used in conjunction

with a sensor; for this reason it is one of the key technologies in wireless sensor networks (WSN). A

number of groups work on RFID tags on paper [51, 181–185]. Bhattacharyya et al. [186, 187] have

investigated the potential for RFID tags to be used as low-cost sensors by mapping a change in some

physical parameter of interest to a controlled change in RFID tag antenna electrical properties. In

addition, it has been shown that the antenna can suffer a permanent change when critical thresholds

have been surpassed. Similarly, Tenzeris’ group [71, 107] have produced an integrated RFID-enabled

wireless sensor network infrastructure using ultra-high frequency/radio frequency (UHF/RF) RFID-

enabled sensor nodes by inkjet printing. Their work includes various antenna configurations and

sensors for a range of applications.
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Many other groups have produced antennas on paper using various conductive materials and

fabrication methods. Reference [188] detailed work using water-based isotropically conductive adhesives

to fabricate RF antennas on various substrates, including paper. Reference [28] detailed work

using thermoplastic electrically conductive adhesives to produce bendable antennas. Simple circuits

including an antenna and loudspeaker have been fabricated on paper using carbon nanotube ink [189].

In addition to the methods already covered, antennas have been fabricated using gravure printing [48],

inkjet overprinting [190] and direct writing [86]. Three-dimensional antennas have been realised, in

addition to those that have been folded [84, 191]. Monti et al. have created a three-dimensional

patch UHF reader antenna on a cardboard box which has omnidirectional irradiation and is circularly

polarised. Their work included comparisons of various antenna designs tested [192].

In addition to the devices detailed above, several other devices have been produced on paper.

Other examples include resistor, inductor and capacitor (RLC) circuits on three different papers using

direct writing [193]. Metamaterials on paper have been investigated for terahertz sensing [194]. Lien

et al. produced printed paper memory using inkjet and screen printing to create metal-insulator-metal

resistive random-access memory (RAM) [195]. Loudspeakers [196], actuators [197], photo-conductive

infrared sensors [198] and microplasma-generation devices [199] have also been fabricated on paper.

SensorTape is a paper-based tape which has a series of repeated proximity sensing modules which can

be cut and rejoined. The placement of the sensor nodes provides information on distances including

height which can be used to recreate a shape [200].

As many devices require power, paper-based storage devices and generators have been realised

to create complete systems on paper [12, 201–203]. Thom and Chen have studied fluidic batteries

for use in microfluidic devices [204] and electrophoretic devices [16] respectively. Cheng et al. have

produced foldable lithium ion batteries using origami principles, resulting in higher areal energy

with a low actual area [15]. Paper-based supercapacitors [205–208] and nano-generators have also

been fabricated [209]. A self-powered system has been created on paper consisting of a paper-based

triboelectric/piezoelectric hybrid nanogenerator and a paper-based supercapacitor which are capable

of sustaining power for low power portable devices [41].

1.4 Effect of Humidity on Paper

The hygroscopic nature of paper means that the relative humidity of the environment can have

dramatic effects on the performance or operation of paper-based devices. There is a large body
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of literature regarding the effect of relative humidity on the printing processes using paper substrates,

and also the changes which occur. Padfield reports on the interaction of water vapour with paper

and states that “a single piece of paper will come substantially to equilibrium with the surrounding

space within a minute or two” and that the diameter of the cellulose fibres increases more drastically

than the length [210]. The Handbook of Physical Testing of Paper details the hysteric nature of the

process; the water absorbed with high relative humidity is not completely desorbed when the humidity

is lowered and that the desorption process is much slower than the absorption one [211]. Above a

certain humidity, permanent changes can occur in the structure, for example the paper edges are often

longer than the centre dimensions and lead to pages no longer being flat [212].

The chemical interaction between paper and water is detailed later in Chapter 6. However it

is known that both the conductive and dielectric properties of a paper substrate can change with

relative humidity. The conductivity of bare cellulose fibres was studied by Han et al. with changing

humidity [169]. Water dissociation occurs under applied bias, producing H+ and OH- ions, and so

a current can flow due to the ionic conduction. Water has a higher permittivity than cellulose and

so the addition of water to the paper at higher humidities increases the permittivity of the mixture

[213, 214]. It has been shown that the addition of water to the substrate changed both the dielectric

and dimensional parameters, the water caused swelling of the cellulose fibres and so their dimensions

increased [215–217].

Some groups have utilised the dramatic change in the operation of paper-based devices at varying

humidities to create sensors [24, 33, 169, 171, 218–220]. Andersson et al. investigated the effect of

humidity on different paper coatings, finding that sodium chloride and silica coatings produce good

humidity sensors whereas alumina-only coatings result in poor humidity sensors [33]. Kanaparthi et al.

created humidity sensors, as part of a multifunctional sensor array, using an interdigitated capacitive

sensor drawn on paper using a 5B pencil [220]. The increase in permittivity of the paper with humidity

caused a change in capacitance of the sensor which can be used to measure the humidity.

Although the hygroscopic properties of paper can be utilised to create sensors, in many cases it

needs to be overcome. Bollstrom et al. investigated the issues with humidity and the use of curtain

printing to manufacture a multilayer coating with sealed barrier layer for improved printability, high

barrier properties and paper strength [221]. Dimensional changes in the paper, including a change

in surface roughness, with humidity were recorded. Niarchos et al. used ZnO nanoparticles as a

passivation layer for their gas sensors to control the effect of humidity on the paper substrate [222].

The effect of humidity on paper-based devices has often been included in lifetime or reliability

10



testing [221, 223]. Merilampi et al. considered five accelerated tests, including low temperature

(−40 ◦C), high temperature (125 and 150 ◦C), slow temperature cycling (between -55 and 100 ◦C), high

temperature/high humidity (90 ◦C and 65 % RH) and water dipping. The high temperature/humidity

was found to have the greatest effect on the RFID tags measured for this work; the humidity changed

the impedance and increased the losses [224].

1.5 Structure of the Thesis

Throughout the literature on paper-based electronics, groups often compared various papers for a

certain application however there was no definitive single source which looked at a wide variety of

paper types and applications. This work aimed to fill that void and act as a reference point for all

future work on paper-based electronics and was of fundamental importance for the field. The literature

showed a gap in the understanding of the changes in paper with humidity; although it was clearly

shown to heavily influence the performance of devices, most publications tended to only qualify this

effect at best, especially at microwave frequencies. This work provides the first detailed quantitative

analysis of this area. Although microwave devices are very well researched, there were minimal

examples of paper-based microwave devices in the literature. This work includes the fabrication of

screen printed microwave components on paper which have not yet been produced in the literature.

This thesis investigates paper-based electronics with the use of several types of paper and

fabrication methods. Touch pads and microwave devices are fabricated using screen printing to

illustrate paper-based devices and the effect of humidity is considered. Chapter 2 begins with the

description of the experimental techniques used in this work. Chapter 3 presents the investigation of

several types of paper, including readily available papers and papers designed for specific applications.

Similarly, thermal evaporation and screen printing are compared for their use in paper-based electronics.

Depending on the desired application, matrices for both different substrates and fabrication methods

can be used to determine the optimum of both. Screen printing is determined as the optimum

fabrication method for this work and the process is optimised in Chapter 4.

Chapter 5 presents results for screen-printed interdigitated capacitive touch pads. Measurements

are compared with numerical modelling for both the touched and untouched sensors. The effect of

contact area, force and placement of the finger are considered and it is shown that for any users and

touch conditions, there is a distinct, measurable change in capacitance with touch.

Results of microwave device simulation and fabrication are presented in Chapters 6 and 7. Coplanar
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waveguide structures are chosen as printing is only required on one side. Transmission lines with

various geometries are used to characterise both the substrate and conductor parameters between

300 kHz and 3 GHz. The effect of humidity is of high importance due to the hygroscopic nature of the

paper substrate and is shown in this work to have an effect on the transmission line parameters. The

results presented in Chapter 6 regarding the effect of humidity have been published [225].

Transmission line stubs are investigated in Chapter 7 as the simplest form of coplanar waveguide

resonators. Detailed investigation of the differences between theoretical and measured resonant

frequencies is included. More complex resonant structures are then considered using spiral defected

ground structures. Multiple resonances are achieved and the use of the devices as both touch and

humidity sensors presented.
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J. Zaumseil, “Cellulose-based ionogels for paper electronics,” Advanced Functional Materials, vol. 24,
no. 5, p. 625, 2014.

[37] J. Xue, F. Song, X.-W. Yin, X.-L. Wang, and Y.-Z. Wang, “Let It Shine: A transparent and
photoluminescent foldable nanocellulose/quantum dot paper,” ACS Applied Materials & Interfaces,
p. 10076, 2015.

[38] L. Hu, G. Zheng, J. Yao, N. Liu, B. Weil, M. Eskilsson, E. Karabulut, Z. Ruan, S. Fan, J. T. Bloking,
M. D. McGehee, L. Wagberg, and Y. Cui, “Transparent and conductive paper from nanocellulose fibers,”
Energy & Environmental Science, vol. 6, p. 513, 2013.

[39] J. Huang, H. Zhu, Y. Chen, C. Preston, K. Rohrbach, J. Cumings, and L. Hu, “Highly transparent and
flexible nanopaper transistors,” ACS Nano, vol. 7, no. 3, p. 2106, 2013.

[40] T. Inui, H. Koga, M. Nogi, N. Komoda, and K. Suganuma, “A miniaturized flexible antenna printed on
a high dielectric constant nanopaper composite,” Advanced Materials, vol. 27, no. 6, p. 1112, 2015.

[41] X. He, Y. Zi, H. Yu, S. L. Zhang, J. Wang, W. Ding, H. Zou, W. Zhang, C. Lu, and Z. L. Wang,
“An ultrathin paper-based self-powered system for portable electronics and wireless human-machine
interaction,” Nano Energy, vol. 39, p. 328, June 2017.

[42] H. Andersson, A. Manuilskiy, C. Lidenmark, J. Gao, T. Öhlund, S. Forsberg, J. Örtegren, W. Schmidt,
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Chapter 2

Experimental Techniques

2.1 Introduction

This chapter introduces fundamentals on the key experimental and numerical techniques used in the

work presented in this thesis. Fabrication methods are first discussed: although several approaches

for the deposition of conductive films have been investigated, only thermal evaporation and screen

printing are considered due their potential scalability.

Surface profiling and imaging are essential for the characterisation of both paper and conductive

films. Stylus profilometers, atomic-force microscopy and white-light interferometry have been utilised

for topographic analysis, whereas the use of scanning-electron microscopy and focused ion-beam

milling enabled high-resolution sample imaging.

The passive devices fabricated on paper were electrically characterised both under quasi-static

conditions and at microwave frequencies using a vector network analyser (VNA). A general overview

of the VNA operation has been included in this chapter, and further details on the experimental

methodology have been included in the relevant chapters.

The experimental results have been supported by numerical simulations. Two commercial packages,

COMSOL and Advanced Design System (ADS), have been used for simulating the device operation

at low and microwave frequencies. Their key features are briefly detailed at the end of this chapter.

2.2 Fabrication Methods for Paper Electronics

Fabrication methods for electronics vary dramatically in their characteristics; for example cost,

minimum feature size and thickness. Low cost and simplicity are desired characteristics in fabrication
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methods for paper-based electronics; a sheet of A4 paper can cost as little as 0.5 pence and so the

fabrication costs for the electronics should also be minimised. In addition to this, paper has a high

surface roughness (up to 10 µm) and so this should also be considered when determining an optimum

fabrication method, as the minimum feature size and thickness of the deposited layer will be limited

by the surface topography.

2.2.1 Thermal Evaporation

Thermal evaporation is a traditional method for depositing metal films (normally less than 500 nm) on

various substrates. During the process, the substrate and source are contained within a high vacuum

(less than 10-6 mbar), with the substrate suspended above the source as illustrated in Figure 2.1. Metal

is added to a crucible or coil which is then connected to a power supply. As the power is increased,

the crucible will heat up, melting and then evaporating the metal. The metal will evaporate towards

the substrate, where it will condense, as the substrate is at a lower temperature than the metal. A

shadow mask can be used to pattern the metal and is positioned in direct contact with the substrate

between that and the source.

Figure 2.1: Diagram of a thermal evaporator.

This work used an Edwards 306 Thermal Evaporator (Edwards, UK) to deposit aluminium films

on various paper substrates. A vacuum of less than 10-6 mbar was achieved by an Edwards RV12
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rotary pump backing an Edwards E04K diffusion pump. A liquid nitrogen cooled cryotrap was used

to prevent oil vapour from entering the bell jar and contaminating samples. The quartz crystal

microbalance was connected to an Edwards FTM7 film thickness monitor which was used to monitor

the rate of deposition and final film thickness. Several metals were trialled and it was decided that

aluminium was the most suitable for this work due to its low cost and low resistivity. Tungsten coils

were used to hold and heat the aluminium with a deposition rate of 0.3 nm/s.

2.2.2 Screen Printing

The screen printing process consists of a screen, which refers to the frame and patterned mesh, the

required ink and a squeegee. The mesh is patterned so that only certain areas allow the ink to

pass through to the substrate. A vast range of frames and meshes are available depending on the

application; aluminium and wooden frames are most commonly used and silk, nylon and stainless

steel are the most common materials used for the mesh.

For this work, screens were patterned in house. 90T monofilament silk mesh was fixed to a wooden

frame by Seasons Gallery and Framing (Durham, UK) who also produced the frame itself. 90T mesh

has a thread diameter of 48 µm and a mesh opening of 63 µm, and was chosen as a suitable compromise

between larger thread diameters, which would produce a thicker film, and smaller thread diameters,

which can sustain smaller features. To pattern the screens, a Jaquard photo emulsion kit has been

used; this contains JS12130 photo emulsion and Diazo Sensitiser which activates the emulsion so it

becomes Ultraviolet (UV) sensitive. As per instructions, the sensitiser is mixed with water and then

added to the emulsion. This solution was left to settle for an hour and then a layer was added to the

screen with a squeegee and left to dry.

To pattern the screen, the photo emulsion is developed/treated as a positive resist, meaning any

exposed areas will harden. The emulsion is cross-linked with exposure to UV light and unexposed

sections can be washed away with water. A Parker Countess Royale UV source (Parker, UK) was used

to expose the screen; an optimum exposure time was determined to be 30 seconds for the thickness

of photo emulsion used (93 ± 8 µm). The screen was then washed in water to remove the areas of

unexposed emulsion and an example result can be seen in Figure 2.2.
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Figure 2.2: Image of an example screen made in house for printing transmission line stubs (detailed in Chapter 6).

The printing process is shown in Figure 2.3. When printing, the screen is first held at an angle to

avoid contact with the substrate or table and flooded with ink as shown in Figure 2.3(a). The substrate

is placed beneath the screen and a 60 durometer square-edged squeegee is then used to apply pressure

to the screen. This forces the screen to come in contact with the substrate and the ink to be pushed

through the gaps in the screen. This part of the printing process is shown in Figure 2.3(b). An

example of the resulting print can be seen in Figure 2.3(c). For this work, all samples were produced

by printing Metalon HPS-021LV silver nano-flake ink onto 199 gsm Neenah paper. This paper was

chosen as the optimum paper for screen printing as detailed in Chapter 3. All samples were sintered

at 125 ◦C for 30 min in a Medline OV-11 vacuum oven to reduce sheet resistance.

Figure 2.3: The process of screen printing. (a) The screen is flooded with ink. (b) The screen is placed above the
substrate and the squeegee is used to push the ink through the screen onto the substrate. (c) The screen is removed,
showing the resulting print.
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2.3 Analysis of Surface Morphology

2.3.1 Surface Roughness Characterisation Techniques

Unlike established substrates for electronics, like silicon or glass, paper does not have a smooth

surface. In addition to this, different papers have different surface topographies dependent on the

manufacturing process used and any coatings added. Glossy photo papers are often coated with a

material with a roughness in the scale of nanometres, whereas matt papers are often not coated and so

the roughness is directly that of the cellulose fibres, which are often micrometres in size. The surface

roughness of the paper is of great importance when depositing metal layers, as the layer thickness

can be of the same scale as the roughness of the paper, meaning that the deposited layer can be

non-continuous and result in a longer path length than a metal layer deposited on a smoother surface.

Atomic Force Microscopy

An atomic force microscope (AFM) was used in this work to investigate the surface properties of

paper-based substrates as this is a very high resolution form of scanning probe microscopy. An AFM

consists of a cantilever with a sharp tip at the end (a radius of curvature of the order of nanometres),

as shown in Figure 2.4. The forces between this tip and the sample’s surface determine the vertical

measurement of the sample surface.

Figure 2.4: Diagram of an atomic force microscope.

The sample is mounted on a three-degree-of-freedom piezoelectric stage. The sample is moved

using the stage and the cantilever is deflected by height differences on the sample. A laser is reflected

from the cantilever to a quadrant detector. As the cantilever is deflected, the ratio of light intensity
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received by the different photodiodes changes, producing an output signal which can be translated

into the deflection of the cantilever. The stage is then moved so that the force between the tip and

substrate is kept constant. An AFM can be used in contact, tapping or non-contact mode. In tapping

mode, the tip oscillates in the repulsive region between the tip and the sample, driven by a piezoelectric

element mounted on the tip holder. In non-contact mode, the tip oscillates in the attractive region;

this oscillation is affected by the Van der Waals forces, decreasing the frequency of the cantilever [1].

For this work a Veeco NanoMan II (Veeco, New York) has been used in tapping mode. As the

maximum range in vertical variation is 5 µm, only coated papers were imaged by AFM as their

roughness was below this limit. Fibres present on the surface of matt and other papers were found to

catch on the tip and not provide reasonable data.

White Light Interferometry

White light interferometry is a non-contact optical method for measuring the vertical changes across

a sample. Interferometry makes use of the superposition of light waves. When two waves combine

and are in phase with each other, constructive interference occurs; conversely when the two waves are

out of phase, destructive interference occurs. White light is used as it is the most incoherent light so

constructive interference only occurs when the difference in length between two sources is zero.

A white light interferometer has a structure as shown in Figure 2.5. It consists of a white light

source, lenses, beam splitters and mirrors. The light source travels along the instrument, through the

objective lens and is split in half when it reaches the lower beam splitter. Half of the beam is passed

through the focal plane of a microscope objective and is reflected from the test sample, the other half is

reflected onto a reference mirror, which remains at a fixed distance from the beam splitter. The beam

splitter is located at an equal distance from the focal plane and the reference mirror, meaning that,

as the sample beam is moved across the varying surface, the path length of the light is altered and is

no longer equal to the distance between the beam splitter and the reference mirror. The z-scanner is

then used to change the path length until constructive interference occurs. As white light is the most

incoherent, there is a short coherence path and constructive interference only occurs at one point. The

camera identifies constructive interference as being lighter than the deconstructive interference and

so will obtain a pattern of interference fringes. From this pattern of interference fringes, the height

variation along the sample can be determined and the surface reconstructed [2].
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Figure 2.5: Diagram of a white light interferometer.

For this work, a Zygo white light interferometer (Zygo, Pennsylvania) has been used. Varying

magnifications were used to produce scans of varying areas between 5 × 5 µm and 5 × 5 mm. A

cylinder filter was added to the scans to remove any variation caused by the sample not lying flat on

the stage. One-, two- and three-dimensional data were taken with the surface roughness (Ra) being

of key importance. All imaging of the samples in this work has been done by Cyril Bourgenot under

the guidance of the author.

Stylus Profilometers

Stylus profilometers work on the basis of a stylus on the end of a cantilever, an example of which is

shown in Figure 2.6, with Figure 2.6(b) highlighting the actual stylus. This stylus physically moves

along the surface while a feedback loop monitors the force from the sample pushing up against the

stylus. From the forces measured, the changes in vertical distance can be extracted and a single line

scan is produced.
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Figure 2.6: Features of the Diative DH-7 stylus profilometer. (a) The whole system including the stylus, traversing
unit, computation and output equipment, example sample of matt paper and the corresponding example trace. (b)
Close-up of the tracer and diamond stylus.

For this work, two profilometers have been used to determine values for surface roughness for

papers; a Diavite DH-7 (Diavite AG, Switzerland) and a Talysurf PGI 1250 (Taylor Hobson, Leicester

UK). The maximum line scans of 15 mm and 10 mm were used for the Diavite and the Talysurf scans

respectively. The Diavite has a vertical resolution of 10 nm and the Talysurf has a vertical resolution

of less than 2 nm.

2.3.2 Dektak Surface Profiler

The Dektak surface profiler has a similar operating method to the stylus profilometers detailed above,

however is discussed separately as it was used to measure the thickness of deposited layers rather

than analyse the surface topography. For this work, a Dektak 3ST has been used and is shown in

Figure 2.7.
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Figure 2.7: Annotated photograph of the Dektak 3ST.

This system takes measurements electromechanically by moving a diamond-tipped stylus over the

sample. The scan length, speed and stylus force can be determined by the user. In this work, the

measurement range was kept at a maximum (1310 kA), the speed and resolution were set to medium

(12 second scan) and a scan length of 2000 µm was used. The stylus is linked to a linear variable

differential transformer (LVDT) which produces and processes the electrical signals corresponding to

surface variations on the sample [3].

2.3.3 Scanning Electron Microscopy

Optical microscopes are limited by the wavelength of visible light and can achieve a maximum

magnification of approximately 400. Electrons have a smaller wavelength and so have been utilised in

Scanning Electron Microscopes (SEMs) to achieve magnifications greater than 100,000. While SEMs

vary slightly from model to model, the basic principle for all can be seen in Figure 2.8. An SEM

consists of an electron source, anode, condenser lenses, deflection coils, objective lens and electron

and x-ray detectors. SEMs are held under vacuum to provide an uninterrupted path for the electrons

from source to sample.

29



Figure 2.8: Diagram of a scanning electron microscope.

The electron source provides the electron beam and is typically one of two types; a thermionic

gun which heats a filament to remove electrons or a field emission gun which uses a strong electric

field to remove electrons. The latter provides much higher resolution. The electrons are then directed

and accelerated towards the particle by the anode at different energies to optimise the contrast. The

beam is condensed and directed by lenses to increase the precision of the SEM. Once the beam has

been focused, the deflection coils (also known as scanning coils) move the beam in the X and Y axes,

enabling scanning over the sample.

The chamber in which the sample is contained is required to be very stable as only a small amount

of vibration can cause blurring of the images. When the beam meets the sample, it penetrates a

few microns and will produce secondary-electrons, backscattered electrons and X-rays as the beam

and the sample interact. Secondary-electrons are electrons released when the source electrons collide
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inelastically with the atoms on the surface of the sample, they have much lower energy than back

scattered electrons. Secondary electrons provide information on the topography of the sample with

height variations being illustrated in varying brightness. Backscattered electrons are those from the

source which collide elastically with the atoms on the surface and change trajectory back towards

the source. They can provide elemental compositional information about the sample, as atoms with

higher atomic numbers will have electrons which backscatter more efficiently [4].

For this work a Hitachi SU-70 FEG SEM (Hitachi, Tokyo) with a secondary-electron detector has

been used to produce images of topography. This particular SEM uses a Schottky field emission gun

and has an attainable resolution of a few nanometres. Prior to imaging, samples were sputter coated

with 45 nm AuPd to electrically ground the sample and prevent charging from the electron beam.

2.3.4 Focused Ion-Beam Milling

A focused ion-beam (FIB) instrument is similar to an SEM using ions rather than electrons as the

charged particles. A focused ion-beam instrument can be used to modify or ‘mill’ the surface of a

sample by sputtering and can have nanometre precision. This can be used in the fabrication process

to produce nanometre features or to remove unwanted material. In some systems, an FIB is used

in conjunction with an SEM, as shown in Figure 2.9, to produce real-time microscope images of any

milled areas.

Figure 2.9: Diagram of a dual beam system with an FIB and SEM.
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Often gallium is used as the source, with the most common source type for micro machining of

samples being the liquid-metal ion source. In a gallium liquid ion source, gallium flows from a reservoir

to a needle tip (approximately 10 µm) where a large potential between that and extraction electrodes

causes ionisation and emission of gallium ions. Lenses are used to condense the beam to ensure high

precision. Again, a detector is used to determine the interaction with the sample when used for

imaging [5, 6].

In this work, an FEI Helios Nanolab 600 Microscope (FEI, Oregon) has been used. This is a

dual beam system as shown in Figure 2.9, the gallium ion-column has been used to mill troughs in

screen-printed samples which have been imaged using the SEM column. All milling and imaging of

the samples in this work has been done by Leon Bowen under the guidance of the author.

2.4 Electrical Measurement Techniques

2.4.1 Four-Point Probe

To minimise the effect of contact resistance, a four-point probe measurement set up has been used in

this work to measure sheet resistance of metal layers deposited on various substrates. A four-point

probe measurement uses a constant current and measures the voltage with the set up that is shown in

Figure 2.10. The high impedance of the voltmeter means that there is no current through the inner

circuit, this removes the effect of contact resistance and resistance of the wires. This lack of contact

resistance is the advantage of the four-point probe method, as the sheet resistance values measured in

this work are small, the contact resistance can have a large affect on them. The governing equation

for this measurement is ρs = V
I C, taken from [7], where ρs is the sheet resistance for the measured

layer, V is the measured voltage, I is the applied current and C is the correction factor dependent

on the geometry.
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Figure 2.10: The principles of four-point probe measurements.

In this work, custom-made probes have been used consisting of spring-loaded pins in order to

prevent piercing of sharper probes into the substrate. The current was set to ten different values on a

linear scale and the voltage was measured for each current. An average resistance value was calculated

(R = V/I) for all ten readings and then this was multiplied by the correction factor C to determine

the sheet resistance. C is dependent on the geometry of the metal layer and the spacing between the

probes, for an infinite sheet, C = π/ ln 2. In this work, the spacing between the probes was 3 mm and

the metal layers are square, meaning the ratio of dimensions a and d, shown in Figure 2.10, is 1. Once

the ratio of a/d is determined, the ratio d/s must be calculated, for this work this was either 10 or

8.33 for 30 mm and 25 mm dimensions respectively. Using the reference tables in [7], C is taken to be

4.2209 when a is equal to 30 mm and 4.1500 when a is equal to 25 mm.

2.4.2 Vector Network Analyser

To investigate structures at microwave frequencies a vector network analyser (VNA) was used. As

the reflection and transmission of electrical networks are easy to measure at high frequencies, the

scattering parameters (s-parameters) are often measured using a VNA. The principles of how a VNA

works are shown in Figure 2.11.

33



Figure 2.11: Diagram of a vector network analyser.

The oscillator alternates between sending signals to port 1 and port 2, parts of these signals

are taken as references (a1 and a2). The reflected signals from port 1 and port 2 (b1 and b2) are

separated from the oscillator signals using directional couplers. The scattering parameters can then

be determined from the equation:

(
b1

b2

)
= (s)

(
a1

a2

)
(2.1)

where (s) =

s11 s12

s21 s22

.

This is also illustrated in Figure 2.12(a) where components of a and b are the same in both the

equation and the images. s11 and s22 are the ratios of reflected signal to the incident signal at port

1 and port 2 respectively. s12 is the ratio of the transmitted signal received at port 1 to the incident

signal from port 2, and s21 is the ratio of the transmitted signal received at port 2 to the incident

signal from port 1. These four s-parameters are for a two port network, as used in this work.
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Figure 2.12: Images of the vector network analyser and devices used in this work. (a) An illustration of the reference
and reflected signals from port 1 and 2. (b) A photograph of the experimental setup including the vector network
analyser and a transmission line under test. (c) The connectors used in this work.

In this work, a Hewlett Packard 8753C Network Analyser (HP, California), shown in Figure 2.12(b),

has been utilised as to measure s-parameters between 300 kHz to 3 GHz with 1601 points and a source

power of −20 dBm. Prior to measurements being taken, the VNA was turned on and left to warm up

for at least 30 min to ensure reliable and repeatable results. A full two-port calibration was undertaken

using a Hewlett Packard 85033C 3.5 mm calibration kit before all sets of measurements. The VNA
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was kept at room temperature and humidity and it was found that repeated measurements on several

days provided the same results. The data was extracted from the vector network analyser by the

Hewlett-Packard Interface Bus (HP-IB) and Matlab code; the s-parameter data was read and the real

and imaginary parts were saved to an Excel worksheet.

The paper-based microwave devices were connected to the VNA using custom connectors shown

in Figure 2.12(c). Two aluminium blocks were connected together using the black screws on either

side to allow for various thicknesses of substrate to be considered. An SMA connector was connected

to the top aluminium block such that the signal and ground could be independently put in contact

with the microwave device and the ground was common to both sides of the waveguide.

2.5 Simulation Packages

2.5.1 COMSOL Multiphysics

COMSOL Multiphysics, referred to as COMSOL in the thesis, is a comprehensive software environment

capable of simulating different physical mechanisms simultaneously in two and three dimensions. For

example, it is possible to couple electromagnetic and mechanical phenomena, a popular approach to

micro electromechanical system (MEMS) design. COMSOL is based on the finite-element method

(FEM), where the underlying couple partial differential equations are solved. COMSOL is organised

in core packages with optional add-on modules for simulating specific phenomena, for example

electromagnetics, structural mechanics or chemical reactions [8].

In this work COMSOL AC/DC module has been used to simulate the touch pads in Chapter 5.

The ‘Electrostatics interface’ option was used to compute the electric field, electric displacement field

and potential distributions in dielectrics under conditions where the electric charge distribution is

explicitly prescribed. The physics interface solves Gauss Law for the electric field using the scalar

electric potential as the dependent variable.

COMSOL provided capacitance values and images of the electric field distribution for this work.

Global parameters were assigned to the geometry and material properties so that they could be varied

using parametric sweeps.

2.5.2 Advanced Design System (ADS)

Keysight (formerly Agilent) Advanced Design System (ADS) Momentum is an electromagnetic

simulator based on the method of moments (MoM) for layered structures, which is optimised for
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the microwave simulation of printed circuit board and chip layouts [9]. Following the two-dimensional

definition of a layered substrate and the metal layers, the overall layout is simulated in three dimension.

In this work the substrate consisted of a stack of air, paper (modelled as a lossy dielectric), ink

(modelled as a metal with finite conductivity) and air again. Open boundary conditions were used

on the top and bottom faces. The parameters for the paper and ink were determined either by direct

measurement (paper permittivity and thickness, metal conductivity and thickness) or by data fitting

(paper loss tangent).

2.6 Conclusion

This chapter has given an overview of the experimental and numerical techniques used in this work.

Thermal evaporation and screen-printing results are presented in Chapter 3 where both substrates

and fabrication methods for paper-based electronics are compared. The surface profiling and imaging

techniques are also relevant for Chapter 3 as these have been used to investigate the topography of

various papers.

Images of samples which have undergone focused ion-beam milling are presented in Chapter 4

and were used to support thickness measurements taken using the Dektak profilometer. Electrical

characterisation is utilised throughout this work, Chapters 3 to 5 present results under quasi-static

conditions using the four-point probe method detailed here, whereas Chapters 6 and 7 present results

at microwave frequencies for which the vector network analyser has been used.

The numerical analysis of the devices produced in this work is presented in Chapter 5 where

COMSOL has been used to support the measurements of the interdigitated capacitive touch pads.

Results are also presented in Chapters 6 and 7 where Advanced Design System (ADS) has been used

to determine changes in transmission line response when changing parameters of the substrate or ink

and has also been used to design resonating structures.
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Chapter 3

Paper and Process Selection

3.1 Introduction

Having discussed the novelty of and current work on paper-based electronics, this chapter compares

several examples of paper and fabrication methods, with a view to determining an optimum substrate

and fabrication method for an end-user defined application. This chapter will start with a brief

background on paper manufacturing and will highlight the differences and diversity of the term ‘paper’

by presenting microscopy images of the structures of various papers and comparing their properties.

The work presented in this chapter aims at compiling a review of the most commonly available

paper types and their compatibility with metal deposition and patterning processes. The papers

selected were simple printer paper, papers coated with different materials (such as baking paper and

glossy photopaper) and speciality papers.

Thermal evaporation and screen printing were considered as possible fabrication methods. They

were compared in terms of available materials, process repeatability, minimum feature size, thickness

range of deposited layer as well as ease of use. Metal films have been deposited onto paper by both

methods, and these films were subsequently characterised in terms of sheet resistance and adhesion

(using the procedure detailed in the ISO 2409:2013 Cross Cut Test standard).

The key results of this investigation are summarised in the decision matrices compiled for both

paper types and fabrication processes. These matrices can be used to determine an optimum paper

and metal deposition process for a paper-based electronic device. A comparison with more traditional

substrates (glass, silicon and polyethylene terephthalate (PET)) is also included to highlight the

benefits of paper as an alternative in applications where cost and environmental impact are of primary

concern.
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3.2 Paper Structure

The structure, and therefore production, of different papers varies depending on the manufacturer.

Some papers may contain mainly cellulose with some additives, others may be coated and some

actually contain no cellulose at all. Cellulose papers make up 95% of all paper types and so a brief

overview is included below of the manufacturing process for this family of substrates.

Trees are cut down into logs, the bark is removed and burned as fuel and pulp is created from

the logs by one of several methods, either chemical or mechanical. This pulp contains water, cellulose

fibres and lignin; other additives may be added to alter the properties of the paper. Calcium carbonate

is often added to provide a smoother, more opaque paper; however it can leave a ‘chalky’ feel to the

paper, and so small amounts of sizings (often modified starches) are applied to the surface to counteract

this [1, 2]. Once a pulp has been obtained, and the required agents added, the pulp is then sprayed

onto a wire mesh to remove the bulk of the water and is subsequently pressed by large, heated rollers

to remove the remaining liquid.

3.2.1 Matt Papers

Matt papers are the most common type of paper and include the standard printer paper used in

most workplaces and homes. The majority of matt papers are produced using the fabrication method

detailed above and no further steps are required. These papers mainly consist of cellulose fibres and

calcium carbonate; these components are highlighted in Figure 3.1, a Scanning Electron Microscope

(SEM) image of a typical printer paper. This particular paper consists of deinked cellulose pulp (74%),

calcium carbonate (18%), small amounts of starch (5%) and other sizings (0.1%) [3].

Figure 3.1: SEM images of Office Depot 80 gsm printer paper. The image on the right highlights the calcium carbonate
(red) and cellulose fibres (blue) within the paper structure.

Cleanroom and Neenah paper are examples of other matt papers investigated in this work and can
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be seen in Figures 3.2 and 3.3 respectively. Cleanroom paper is designed to prevent the paper from

shedding and contaminating samples or chemicals. The cleanroom paper used in this work consists of

pure cellulose fibres with no calcium carbonate and is coated with a synthetic latex [4]. Neenah paper

can be seen to have a very similar structure to the basic printer paper as it is made up of cellulose

fibres (70-100%), calcium carbonate (1-20%) and starch (1-20%) [5]; it also contains aluminium oxide

(1-5%) which is often used for its whitening properties.

Figure 3.2: SEM image of 85.5 gsm Berkshire BCR bond cleanroom paper.

Figure 3.3: SEM image of 199 gsm Neenah paper.

3.2.2 Coated Papers

Coated papers are mainly used for applications with colour and images to produce high quality prints.

These papers are often cellulose pulp coated on both sides, with one side being more glossy than the

other. There are a large number of companies producing coated papers and the chemical structure of

these coatings is often commercially confidential and varies depending on the manufacturer.

Two examples of photo papers used in this work are Epson glossy photo paper and Felix Schoeller

250 gsm gloss/gloss photo paper. The surface structures of these papers are shown in Figures 3.4

and 3.5 respectively. It can be seen that both have a much smoother surface than the uncoated
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papers with no features of the paper being seen until a much higher magnification is used. It can

be seen that these papers are coated in differing grainy structures with sub-micron features. The

grain size of the Epson paper is approximately 0.05 µm which is approximately half the size in the

doubled-sided glossy paper, however the grains are less defined in the Epson paper. This is likely due

to the use of a different coating method or material.

Figure 3.4: SEM images of 225 gsm Epson glossy photo paper.

Figure 3.5: SEM images of 250 gsm Felix Schoeller gloss/gloss photo paper.

Coated papers often require an adhesion layer to prevent the coating and the cellulose fibres from

separating. This is shown in Figure 3.6, the cross-section of a paper which has an identical glossy

coating on both sides of the cellulose fibre centre.
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Figure 3.6: SEM image of 250 gsm Felix Schoeller gloss/gloss photo paper cross-section and a pictorial representation,
illustrating the various layers within the paper.

Another example of a coated paper used in this work is Powercoat HD paper, which is specifically

designed for printed electronics. The structure of the paper is very similar to that of the other coated

papers. However, the grains contained within the coating of the paper are larger (approximately

1 µm), as can be seen in Figure 3.7. This paper is coated on both sides with kaolin and calcium

carbonate and a further mineral coating is added to one side, producing the glossy finish [6].

Figure 3.7: SEM images of Powercoat HD 95 paper.

A final example of a coated paper used in this work is baking paper, which is often used when

cooking to prevent foods from sticking to a dish or tray. Many baking papers begin with cellulose

pulp which is treated with acid to give high stability and heat resistance, they are then coated with

silicone or an oil-based coating to give non-stick properties. As detailed later in this chapter, baking

paper is found to have characteristics of both non-coated and coated papers, which can be explained

by looking at Figure 3.8 which shows SEM images of Morrison’s baking paper. As with matt papers,

the cellulose fibres are clearly visible within the structure. However, it is also clear there is some

coating on the paper which will lead to characteristics more like the coated papers.
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Figure 3.8: SEM images of Morrison’s baking paper.

3.2.3 Stone Papers

Stone papers are paper-like products often made from stone combined with high-density polyethylene

or resin, and they often have a higher density than cellulose papers. They are also water resistant and

hard to tear. An example of stone paper which has been investigated in this work is Parax paper,

which comprises limestone (80%) and non-toxic high-density polyethylene (20%) [7]. Terraskin paper

is another example of stone paper, made up of ground up rocks (75%) and resin (25%) [8].

Parax stone paper was found to have a similar surface structure to the coated paper and this is

shown in Figure 3.9. This structure is continuous throughout the paper, unlike the coated papers

which are not homogeneous.

Figure 3.9: SEM images of 192 gsm Parax stone paper.

3.3 Comparison of Paper-based Substrates

The diversity of the images and structure of paper described above highlights the fact that ‘paper’ is a

very loose term and can cover many materials with very different structures. The papers investigated

in this work have been compared by examining various properties, some of these refer directly to
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the paper itself, whereas others refer to conductive tracks deposited onto the paper. Table 3.6 is a

decision matrix which compiles all of this data and, again, highlights the diversity in papers. The

work is presented so that each property is addressed and then all results come together into Table 3.6

towards the end of the chapter.

3.3.1 Surface Roughness

The surface roughness of the papers provides similar information to that in the SEM images. The

surface roughness can affect the profile of conductive layers deposited on the paper and so it is

important to take into consideration. Several methods were used to determine the surface roughness

of the papers in this work: an atomic force microscope (AFM), a Zygo white light interferometer, a

Talysurf CLI 2000, a Talysurf PGI 1250 profilometer and a Diavite DH-7. Details on the operation

of these instruments has been presented previously in Chapter 2. The AFM, Zygo and the Talysurf

CLI collect data from an area of the papers whereas the Talysurf PGI and Diavite only collect data

from a line scan. When referring to surface roughness, the arithmetic average of absolute values, Ra,

has been used.

The AFM used (NanoMan II scanning probe microscope) is designed for small area measurements

(50 µm squares) with small deflections, meaning it is not suitable for matt papers which can have

roughness values outside this range. A selection of coated papers were analysed using the AFM and

images similar to Figure 3.10 were obtained. This AFM image of gloss/gloss photo paper shows the

same structure as in Figure 3.5, with a roughness value of 6.5 nm. The values of roughness obtained

for the coated papers tested were all below 10 nm. This is due to the small area scan producing only

a local value of roughness rather than a representation of the whole paper.
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Figure 3.10: An AFM image of the top surface of 250 gsm Felix Schoeller gloss/gloss photo paper illustrating the
nanometer grain structure of the coating.

The Zygo white light interferometer can only be used on reflective samples as the white light

must be reflected back to the source and so only glossy papers were tested in this way. Figure 3.11

shows example data taken from the Zygo for Powercoat HD paper. The area of the measurement was

2.11 × 2.81 mm and Ra is calculated to be 724.9 nm. Table 3.1 presents surface roughness values for

measurements over different sized areas. PV is the peak value measured in the z direction, providing

information on the maximum height. It is evident that the larger the area, the higher the surface

roughness. The value for lower areas is in keeping with the results obtained by the AFM.
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Figure 3.11: Data taken from the Zygo software showing Powercoat HD 95 paper. (a) A two-dimensional representation
of a 2.81 × 2.11 mm section. (b) A three-dimensional surface profile of the same section and (c) A one-dimensional plot
along the line shown (a).

Table 3.1: Surface roughness values for Powercoat HD 95 paper with various scan areas taken using a Zygo white light
interferometer.

Size of scan (mm) Peak Value (µm) Ra (nm)

0.005 × 0.005 0.051 5.0

1.42 × 1.06 7.38 702

1.79 × 1.34 7.64 914

2.81 × 2.11 6.91 725

3.54 × 2.65 7.31 1050

The Talysurf CLI 2000 produces 2D plots similar to those obtained by the Zygo, however it is not

restricted to reflective materials. It has a lower resolution and scans take longer, for a 0.5 × 0.5 mm

scan with 501 × 52 points it took 11 minutes in comparison to 20 seconds for the Zygo. For a scan of

0.5 × 0.5 mm with 501 × 52 points, the Powercoat HD 95 paper had a roughness value of 116.4 nm

which is comparable to 195 nm for a 0.35 × 0.27 mm scan on the Zygo white light interferometer.

Although the results taken using the AFM, Zygo and Talysurf CLI provide detail on an area of the

paper, each have proven to have their disadvantages for measuring the surface roughness of several

types of paper. The AFM and Zygo are only suited to a small number of papers and the Talysurf CLI

takes a long time for scans.

The Talysurf PGI 1250 profilometer and the Diavite DH-7 are both compatible with all papers

and take line scans, meaning they are much faster. An example line profile taken from the Talysurf

47



PGI can be seen in Figure 3.12, which is similar to the printed output of the Diavite.

Figure 3.12: Data taken from the Talysurf software showing a 10 mm line profile of printer paper.

Results from both profilometers are shown in Table 3.2 and can be seen to be in agreement with

each other. The surface roughness measured for the largest scan with the Zygo for Powercoat paper

is found to be 0.911 µm, as shown in Table 3.1. This is in agreement with data from the profilometers

which have a longer scan (> 1 cm) and so are likely to have higher roughness values. Although both

are fast and compatible with all papers, it was decided that the Diavite would be used to take readings

as it was simple to use and portable.

Table 3.2: Comparison of surface roughness measurements for Diavite DH-7 and Talysurf PGI 1250 profilometers.

Paper
Surface Roughness (µm)

Diavite DH-7 Talysurf PGI 1250

Epson Photo 0.25 0.286

Gloss/Gloss Photo 0.69 0.659

Powercoat HD 95 1.34 1.28

Parax 1.68 1.29

Printer 3.08 3.21

Baking 3.56 4.00

Cleanroom 3.67 3.84

It is evident that photo papers are less rough than matt papers; this is due to the features of the

coating of the paper being much smaller than the cellulose fibres. The SEM images presented earlier

show that cellulose fibres are approximately 200 µm wide and hundreds of µm long and are the main

component of matt papers, whereas the grain type structure on many of the coated papers is less than

0.1 µm. Baking paper is found to have a similar roughness to matt papers. Figure 3.8 shows that

the fibres inside the baking paper are prominent and so will affect the roughness of the surface rather

than be dominated by the coating.
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3.3.2 Thermal Resilience

For some applications, substrates may have to withstand high temperatures, for example printed

temperature sensors. For this investigation, paper samples were put in a Medline OV-11 oven and the

temperature was increased between 50 and 200 ◦C. Changes in their colour and shape were recorded.

The temperature was limited below 200 ◦C to prevent the spontaneous combustion of any samples.

The value recorded for each paper shows the temperature at which the sample was removed from the

oven due to excessive curling or yellowing. ‘200+’ indicates the sample survived above 200 ◦C and

would have been able to withstand even higher temperatures. Figure 3.13 shows examples of some

papers after the heat treatment and notes the temperature at which the sample was removed from

the oven.

Figure 3.13: Examples of papers after heat treatment. From top left going clockwise: Parax paper removed from the
oven at 100 ◦C due to excessive curling; gloss photo paper removed at 175 ◦C due to excessive yellowing; baking paper
and matt paper removed at 200 ◦C but both could have withstood higher temperatures. All samples were 4 × 7.5 cm
before being placed in the oven.

Many of the matt papers were able to withstand higher temperatures than coated papers which

often yellowed and curled at approximately 150 ◦C. Parax papers and the mineral papers were not

able to withstand high temperatures at all and were found to curl and deform at temperatures as low

as 50 ◦C. These samples hardened in the deformed positions once cooled and so were unusable after

thermal testing. Powercoat and baking papers were found to withstand temperatures over 200 ◦C with

very little change. Many of these results are explained by the chemical composition of the papers, for

example, baking papers are often coated with silicone and Powercoat papers with kaolin, which both
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have heat resistant properties. Alternatively, Parax papers and the mineral papers are made with

polymers which are unlikely to be heat resistant.

3.3.3 Water Resilience

Similarly to heat, some applications may require the papers to be water resistant or waterproof, for

example if the device needs to be used outside. This is a subjective measurement that was based on

two experiments. In the first experiment, a sample (4 × 6 cm) of each paper was submerged into a

beaker of water and examined after it was removed and left to dry. The second experiment used a

sample of the same size, and 2 ml of water from a pipette was dropped onto it, again examining the

sample after it was left to dry. ‘Excellent’ was used to indicate that the sample was not affected by

the water in both experiments and no visible change had occurred, for example Parax paper. ‘Good’

indicates the sample was unaffected by the water on one side or there was only a slight visible change,

for example baking paper. ‘Average’ indicates that there was a change after being submerged, but no

visible change from the droplets, for example glossy papers. ‘Poor’ indicates the sample curled and

changed shape and there is a significant change after the experiment, for example matt papers. ‘Very

Poor’ indicates the paper tore easily when wet, for example cigarette paper.

The contact angle gives further, quantitative information on the surface of the papers and their

interaction with water. It was found that, on the whole, matt papers absorbed water whereas glossy

papers did not, meaning contact angle measurements could be taken for glossy papers but not for

matt samples. Microscope images of a 2 µl drop on each paper were taken and the contact angle was

calculated manually, with results shown in Table 3.3.
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Table 3.3: Comparison of contact angle measurements for a range of papers.

Paper Contact angle measurement image
Average Contact

Angle (◦)

Powercoat HD 95 71

Parax 84

Epson 52

180 Gloss 58

Gloss/Gloss 32

Baking 115

Photo 68

From all results taken in the water resilience testing, the coated papers are seen to be more water

resistant than matt papers. By comparing Figures 3.1 and 3.4, it can be seen that the coating of the

Epson paper will prevent water being absorbed into the fibrous structure, whereas the printer paper

has no coating and so the water can be easily absorbed into the paper structure. Figure 3.6 shows

the cross section of the glossy paper coated on both sides and it can be seen that the pulp within the

paper is exposed at the cut edges, meaning that water can be absorbed here and explaining why the

results for the submerged test will differ slightly from the contact angle results. Parax paper has a

homogeneous structure and is designed to be submerged in the water; although it was rated ‘excellent’

in these results, the contact angle is actually not the highest due to baking paper being coated with

silicone which provides a hydrophobic surface.
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3.3.4 Flexibility

Some applications may require a substrate which can be folded or rolled around something. As with

the waterproof test, this is a subjective scale dependent on how easily the paper can be folded and

rolled. A4 sheets were used in this experiment, the corners were folded to determine any permanent

damage, as in Figure 3.14(a), and the whole sheet was rolled around a 1.5 cm radius, as shown in

Figure 3.14(b).

Figure 3.14: Images illustrating flexibility testing on paper samples. (a) Shows folding of the sample, (b) shows rolling
of the sample, (c) and (d) show matt paper before and after rolling respectively and (e) shows photo paper where the
coating cracked during folding.

‘Excellent’ was used to indicate that a paper can be rolled and returns to its original shape and

that it can also be folded easily with no damage to the sample. ‘Good’ indicates the paper stays

loosely rolled/creased but can be easily folded. This is illustrated in Figure 3.14, where (c) shows

the paper before rolling and (d) shows the paper after. ‘Average’ indicates the paper stays loosely

rolled/creased and is harder to fold; this applied mainly to thicker matt papers. ‘Poor’ indicates the

paper stays rolled and part of the paper tears when folded; this applied mainly to coated papers where

the plastic layer cracked during folding, as shown in Figure 3.14(e). ‘Very Poor’ indicates the paper

could not be folded or rolled; this is more appropriate for card.

All papers were shown to have some permanent change when rolled and folded, although the coated

glossy papers were found to have a more severe change than the matt papers. It can be seen from

Figure 3.14(e) that the gloss coating has cracked when folded. Looking again at the SEM images of

printer paper and Epson paper (Figures 3.1 and 3.4), it can be seen that with matt papers the fibres

are exposed and can easily move over each other, whereas the coating on glossy papers is stiff and
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restricts this movement. Some coated papers like baking paper are found to be flexible which is due

to the coating being a silicone, which is an elastomer.

3.3.5 Cost

Although all papers are much cheaper than traditional substrates like silicon or glass, there is still a

large difference in cost between printer paper and some speciality papers. Printer paper can be bought

in bulk for less than half a pence per A4 sheet, whereas some coated papers investigated here were up

to 60 pence per sheet. It must also be noted that, due to supply and demand, the price of speciality

papers may be reduced if the demand for paper-based electronics increases. Each cost is calculated

using a quote from the company who provided the paper for the project. The cost is calculated for

an A4 sheet to make comparisons simpler, although some papers may not be directly available in this

size. For example Morrison’s baking paper is sold per roll (380 mm × 10 m) and Rizla Green cigarette

paper comes in small sheets (67 × 35 mm).

Coated papers and speciality papers which have added ingredients and require more complex

fabrication methods are more expensive. Simple printer paper that is produced in very large quantities

and has a simple structure and manufacturing process is obviously cheaper.

3.3.6 Weight/Thickness

The weight and thickness of a paper are basic properties that may be useful to know if paper is to be

used as part of the device. For example, the thickness is key when paper is used as the dielectric in

a parallel plate capacitor. Weight consideration may be important in some applications, such as for

use in aeroplanes. These values have been obtained using a balance (for weight) and a micrometer

(for thickness). The tolerances are ±0.05 g and ±0.005 mm for weight and thickness measurements

respectively. As with cost, simple papers with no coating are likely to weigh less and be thinner than

those with a coating and added components. This was found with the papers investigated here.

3.4 Comparison of Thermal Evaporation and Screen Printing

As with substrates for paper-based electronics, fabrication methods can also be compared and the

optimum method for a certain application can be determined. This must be considered in parallel with

the substrate to ensure they are compatible with each other. Thermal evaporation and screen printing

are considered here in terms of the available materials, process repeatability, minimum repeatable
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feature size, thickness range of deposited layer, paper compatibility as well as ease of use. The

results of these investigations are summarised in a decision matrix, Table 3.7. Both methods are then

used to deposit metal layers on various papers which are characterised in terms of sheet resistance

and adhesion, with results shown in Table 3.6. As with the investigation into papers, the matrix is

presented towards the end of the chapter.

In this work, the term ‘repeatability’ is somewhat subjective and is a combination of the

repeatability of both the feature size and the achieved sheet resistance. The rating given is relative

to the other method, and was determined by four point probe measurements to calculate the sheet

resistance and measurements of dimensions using microscopy and profilometry techniques. Although

this is a key factor in choosing an optimum fabrication method, this can also be greatly improved on

a larger, industrial scale.

It should be noted that the results are for the equipment available and it could be possible to

achieve better results in an industrial environment. The thermal evaporator was existing prior to this

work, the screen printing process was developed for this work and details of both processes have been

presented in Chapter 2.

3.4.1 Thermal Evaporation

The minimum repeatable feature size when using a shadow mask is limited by both the quality of the

mask and the distance between the mask and the substrate. As the shadow mask is moved further

out of contact with the substrate, shadowing occurs and so features are larger than intended. When

depositing patterns as shown in Figure 3.15, the minimum feature size was found to be 200 µm. It

can be seen that the smaller features on the left-hand side do not have sharp corners, however the

connections between pads are distinct. The mask used in this work could be better quality leading to

higher definition and smaller features. Shadow masks with nanoscale features have been successfully

produced in a free-standing silicon nitride membrane which can then produce nanoscale features,

although these require long production times [9].
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Figure 3.15: Examples of thermally evaporated samples. The left-hand samples show features down to 200 µm and
highlight the rounding of corners due to a suboptimal shadow mask. The right-hand, larger samples highlight the issue
of the shadow mask moving during deposition.

The red circle on the right-hand side of Figure 3.15 highlights a possible issue when using a shadow

mask in which there are sections which are secured on only one edge and can be considered as ‘floating’.

The mask moved during deposition and so features different to those that have been designed were

achieved. This can be avoided by designing the shadow mask so that all sections have two points of

contact with others and are not free to move.

The thickness of thermally evaporated layers is determined by the user; when the thickness monitor

shows the desired thickness, the evaporation is stopped. The thickness is often lower than 500 nm

due to long deposition times, these thicknesses produce layers with low conductivity. Figure 3.16

shows values of sheet resistance obtained were in the order of 1 Ω/�, whereas sheet resistances down

to 10 m Ω/� were obtained for screen printing. The percentage error for the sheet resistance of

each paper sample is similar due to the large area (25 × 25 mm) over which the four point probe

measurements are taken, meaning discontinuities are averaged out. These results are seen to be very

repeatable. The use of a shadow mask ensures repeatability in feature sizes, and even when the

dimensions produced are not as desired, they are highly repeatable.
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Figure 3.16: Plot of sheet resistance of thermally evaporated layers on various papers listed in order of surface
roughness. 180 Gloss has a roughness (Ra) of 0.098 nm and cleanroom paper has a roughness (Ra) of 3.67 nm. Rougher
papers were found to have higher sheet resistance values due to the thin layers deposited.

Thermal evaporation is a straightforward process as the user is only required to load samples,

observe evaporation and then remove samples. It is not a messy process, although it does require

long waiting times for the vacuum level to be reached. It is compatible with all papers except Parax

paper, which was found not to be able to withstand the heat of the process and so curled and wilted

during evaporation.

3.4.2 Screen Printing

Screen printing is a very quick method for depositing large areas of thick patterned material. For this

work, a simple start-up kit was purchased from Novacentrix, which, compared to thermal evaporation,

was inexpensive. Several inks are compatible with screen printing, including conductive, dielectric and

semi-conductive inks. This work uses Metalon HPS-021LV silver nano-flake ink [10]. Silver is the most

common conductive material used in screen printing [11–19], but others are also available including

copper oxide, nickel and carbon [20].

Screens are used to pattern the deposited conductive layer and were made in house, as detailed in

Chapter 2, with the minimum feature size being limited by the quality of the screen. Stainless steel

screens can produce minimum feature sizes down to approximately 200 µm, whereas the polyester

screens used in this work were limited to 500 µm. Scanning electron microscope images of screen-
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printed lines 1 mm wide can be seen in Figure 3.17. These are printed on matt paper and so the

roughness of the paper leads to a non-uniform layer of ink. However, due to the thickness of the ink

(between 10 and 23 µm, determined using a Dektak profilometer), the non-uniformity does not affect

the sheet resistance of the printed layers. Although the layer shows some non-uniformity, there is a

clear distinction between the ink and the paper at the edge of the printed area.

Figure 3.17: SEM image of screen-printed 1 mm lines using silver ink on 199 gsm matt paper.

It was found that gaps between features smaller than 500 µm suffered from thin short circuits,

illustrated in Figure 3.18. This was found to be the main concern during screen printing and was due

to the poor tension across the mesh of the screens made in house. During printing, the screen should

‘snap off’ the substrate as it is being printed, and the only contact between the screen and substrate

should be at the point of contact of the squeegee. When the tension is poor, the screen does not ‘snap

off’ and so after printing the screen must be peeled off the substrate and small amounts of ink are

flicked off, producing the shorts. This can be overcome by using a screen with higher tension across

the mesh.

Figure 3.18: Image illustrating shorting between two screen-printed lines due to insufficient tension in the mesh.
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3.4.3 Sheet Resistance

It is important to know the sheet resistance which can be achieved for metallic layers deposited by

thermal evaporation and screen printing on each paper when producing devices. Sheet resistance

measurements were taken for 20 × 20 mm squares of 110 nm thick aluminium deposited by thermal

evaporation and 30 × 30 mm squares of screen-printed Metalon HPS-LV silver nano-flake ink. The

values were obtained using a four point probe set up. As it is a time-consuming process to deposit

the metal with thermal evaporation, not all samples were tested; however at least one sample of each

type of paper has been tested.

Values for sheet resistance of a selection of papers are presented in Table 3.4. As some papers were

found not to withstand high temperatures, and the screen-printed samples were sintered at 120 ◦C for

30 min, they were found not to produce conductive tracks. The values presented here and in Table 3.6

marked with a ‘*’ are those measured without sintering, for example Parax papers.

Table 3.4: Comparison of sheet resistance values obtained for thermally evaporated and screen-printed layers on
various papers.

Paper
Sheet Resistance (Ω/�)

Thermal Evaporation Screen Printing

Gloss/Gloss Photo 0.47 0.018

Epson Photo 0.50 0.11

Baking 0.5 0.013

Cleanroom 1.23 0.012

Neenah 3.96 0.015

Parax 4.92 0.93*

Layers Deposited by Thermal Evaporation

Thermally evaporated layers of metal deposited on matt papers were found to have a higher sheet

resistance than those deposited on coated papers. This can be explained by looking at the surface

topography of the paper. Thermally evaporated layers result in a conformal coating of the metal. For

papers which are not coated, the layer of deposited metal follows the profile of the paper and results

in a longer path length compared to those papers which are coated and have a smoother surface. This

is illustrated in Figure 3.19, to the right of the image, the red line is clearly broken, which will lead

to areas of no connection, also increasing the resistance.
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Figure 3.19: Adapted SEM images illustrating the difference in theoretical metal layers (shown in red) deposited on
matt (top) and coated papers (bottom).

Layers Deposited by Screen Printing

Conversely to the thermally evaporated layers, the screen-printed layers will be much thicker (10-

20 µm where evaporated layers are 50-100 nm). Therefore, rather than having metal layers as shown

in Figure 3.19, the metal layers will fill in all the voids in the matt papers between the fibres and be

thicker. As the screen is placed on top of the paper and the metal ink is applied to the same thickness

as the mesh, the coated papers will have an actual metal thickness the same as the thickness of the

mesh, whereas the matt papers will have a metal layer of this thickness plus anything which is below

the highest points on the paper surface where the screen will rest, meaning a thicker layer of ink. This

theory is illustrated in Figure 3.20. Thicker layers of ink produced on matt papers will therefore have

a lower sheet resistance than thinner ones printed on coated papers.

Figure 3.20: Illustration to show the difference between screen-printed layers on smooth and rough papers.
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3.4.4 Surface Roughness and Sheet Resistance

From the investigations into surface roughness and sheet resistance, it was noted that there could

be some trend between the two properties. Figure 3.21 shows a graph of various papers and the

sheet resistance for both thermally evaporated and screen-printed layers. The papers are in order of

surface roughness with 180 Gloss being the smoothest paper (with a surface roughness of 0.098 µm)

and chromatography paper being the roughest (with a surface roughness of 6.15 µm). Glass, silicon

and PET have been added as a comparison with established substrates and are discussed in more

detail later in this chapter. Figure 3.21 shows clear opposing trends in sheet resistance compared

to surface roughness for thermally evaporated and screen-printed conductive layers, as explained by

Figures 3.19 and 3.20. Single, average, values have been plotted as varying numbers of samples were

taken for each paper. Some papers were investigated in further detail and others were found to be

unsuitable at an early stage. For example chromatography paper was found to be a poor choice in

terms of its adhesion and surface roughness and so only one sample was tested, whereas Epson photo

paper provided promising results and low resistivity for thermally evaporated samples, and so several

samples were tested.

When paper is used as the substrate for electronic components, the surface topography must be

considered as it has been shown here to have a large effect on the sheet resistance of deposited layers.

The morphology of the paper must be carefully considered for a chosen deposition method, for thermal

evaporation, a smoother paper results in lower sheet resistance whereas with screen printing, a rougher

paper results in lower sheet resistance.
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3.4.5 Adhesion

Adhesion between a conductive layer and the paper is another important factor to be considered; if

the conductive layer does not adhere to the surface then devices cannot be successfully produced. The

value for adhesion given in this work was based on the ISO Standard 2409:2013 Cross cut test [21]. A

small area (1.5 cm square) of the deposited metal was scored using a scalpel in the pattern shown in

Figure 3.22. Scotch A81925R3 Magic Tape was then placed on the area and peeled off. The number

(between 0 and 5) given for adhesion was then determined by the amount of metal removed. As can be

seen in Figure 3.22, ‘0’ indicates that none of the metal has been removed from the substrate whereas

‘5’ indicates more than 65% of the metal has been removed by the Tape. ‘Split’ was noted for samples

when some of the paper itself was also removed by the Scotch Tape.

Figure 3.22: Illustration of ISO Standard for adhesion testing. Classification is taken to be 0 for no metal removed
and 5 for more than 65% of the metal removed. The white regions are the deposited metal layer and the black regions
are the paper substrate where the metal has been removed.

As it is a time-consuming process to deposit the metal with thermal evaporation, not all samples

were tested; however at least one sample of each type of paper has been tested. Some examples are

shown in Table 3.5. The adhesion of screen-printed layers on Epson photo paper was rated at 0 as

no metal was removed, whereas the adhesion of screen-printed layers on Parax stone paper was rated

at 4 as approximately half of the metal layer was removed, and the adhesion of thermally evaporated

layers on Powercoat HD papers were rated at 5 as almost all of the metal was removed.
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Table 3.5: Examples of adhesion testing, including the ISO standard rating and images of the samples after testing.

Sample Image ISO Rating

Screen-printed

layer on Epson
0

Screen-printed

layer on Parax
4

Thermally evaporated

layer on

Powercoat HD 95

5

3.5 Decision Matrices for Paper and Fabrication Method

Table 3.6 and Table 3.7 are presented below and contain all the experimental results for each paper

and fabrication method respectively.
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Table 3.7: Fabrication methods and their relative properties as determined in this work.

Property Thermal Evaporation Screen Printing

Available Materials Low melting point metals Silver

Process Repeatability Very Good Average

Minimum Feature Size 200 µm 500 µm

Paper Compatibility All but Parax All but baking paper

Thickness Range

of Deposited Layer
Up to 500 nm 1 - 100 µm

Ease of use Straightforward, long waiting times Straightforward, messy

3.5.1 Determining an Optimum Paper and Fabrication Method

The optimum paper and fabrication method for paper-based electronic devices must be determined

in parallel. Results have been presented here which show that matt papers are more suited to screen

printing whereas gloss papers are more suited to thermal evaporation.

As can be seen from Table 3.6 and the results presented here, papers vary greatly in terms of their

properties. Despite this, it can be seen that the same ‘types’ of paper have similar characteristics.

For example, all matt papers are cheap, rough and flexible whereas gloss coated papers are expensive,

smooth and water resistant. When deciding on an optimum substrate for a particular application, a

type of paper is likely to be chosen and then a specific brand and paper decided on after.

Although thermal evaporation was found to be more repeatable than screen printing and relatively

straightforward, it was not considered optimal for this work due to the thickness of conductive layers

attainable and the following lower conductivity of devices and difference in results when using different

papers. In addition to this, the area over which conductive materials can be deposited is far smaller

than screen printing. In industry, this area can be increased, but in this work the patterning area for

thermal evaporation was approximately 20% of that of screen printing.

Screen printing has been shown to be compatible with nearly all papers used in this work. It is

a very easy process, it produces layers with sheet resistances less than 20 m Ω/� and can produce

feature sizes down to 500 µm. It was decided that for this work, screen printing was the optimal

fabrication method. It has been shown there were issues with shorting between smaller feature sizes

but it was determined that this could be overcome by optimisation of the process.

Screen printing has been shown to produce metallic layers of lower sheet resistance when used with

rougher papers. For this reason, it was decided a matt paper should be used. Some matt papers were

not compatible with the screen-printing process, due to chemical interactions with the ink. Neenah
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paper was provided with the screen-printing kit used in this work and it produced ideal prints, and so

it was decided that this would be the substrate used for this work. As many matt papers have very

similar characteristics, several papers may be suitable for one application and there may not be only

one optimum solution.

3.6 Comparison of Paper with Established Substrate Materials

Table 3.8 compares a selection of different types of paper with silicon, glass and polyethylene

terephthalate (PET) which are established substrates and materials in current electronics fabrication.

A silicon wafer with an oxide layer was used to prevent conduction through the silicon.
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It can be seen from Table 3.8 that the established substrates have a much higher cost than paper.

This is due to the raw materials and also the manufacturing process being much more complex and

expensive. They also have much lower surface roughness values than all other papers. This leads to

the thought that when a metal is thermally evaporated onto them, the metal layer will have a much

lower resistance. This is not the case, as the resistance of the metal layers measured is lower but

still of the same order of magnitude as those on paper. This is likely due to the cleanliness of the

substrates. It can be seen in Table 3.8 that the surface roughness of PET is comparable with that of

glossy papers; however, when prepared for standard fabrication, this roughness value would be much

lower. During testing, all substrates were handled in the same way, they were not cleaned or treated

in any way before metal deposition and no extreme care was taken when handling the samples. With

paper, this has been shown to make little difference, but with silicon, glass and PET, the lack of

preparation has resulted in a higher resistance than the values which can be obtained with cleaning.

This also leads to an issue with the adhesion; when silicon, glass and PET are cleaned and treated

before deposition, the adhesion would rate a 0 on the ISO standard scale, however, when they are

‘dirty’ the metal does not have good adhesion with the substrate and is rated 2 or 3.

These results highlight another advantage paper has over current substrates for electronics. Paper

does not need to be cleaned or treated in some way before fabrication, like silicon, glass or PET do.

In reality, silicon, glass and PET can give much lower resistance than can be obtained using paper,

and so paper is a suitable substrate to be used alongside silicon where its properties are more suited

for the application and not as a replacement for silicon or glass.

3.7 Conclusion

The term paper is a diverse term: this chapter has shown how paper may refer to fundamentally

different substrates, which may not even include cellulose. Matt papers, consisting of cellulose fibres

and calcium carbonate, were compared to gloss papers, which are essentially matt paper coated with

polymers, and speciality papers.

Thermal evaporation and screen printing have both been shown to produce conductive films on

papers. However, screen printing combined with matt paper resulted in thicker films with higher

conductivity, and were thus the preferred option for the devices presented in the next chapters.

One of the key results reported in this chapter is the compilation of two decision matrices to

aid the selection of paper and conductive film deposition, targeted to a specific application. Other
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combinations (instead of matt paper and screen printing) may be more suitable for developing

devices and circuits which have different requirements: for example, being waterproof or providing an

extremely smooth substrate.

It was also found that the adhesion of metal films on matt paper is aided by the natural paper

porosity, resulting in a substrate which is easier to handle than silicon or plastics. As small particles do

not affect the adhesion, as they are trapped in the paper voids, the overall deposition process can take

place outside a cleanroom. If commercially scaled, the relaxed requirements on a tight environment

control result in considerable cost savings.
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Chapter 4

Screen Printing Optimisation

4.1 Introduction

From the decision matrices compiled in the previous chapter, it was determined that the best paper

was Nenah 199 gsm matt combined with the screen-printing process. The work presented in this

chapter addresses the optimisation of the screen-printing process to achieve small features and high

reproducibility.

The effects of the actual screen mesh density, thread size and mesh tension were investigated in

detail. Furthermore, the choice of squeegee profile, pressure, angle, pass speed and number of passes,

was shown to affect the quality of the print out. It was also found that curing the ink film improved

its sheet resistance. Constraints regarding the maximum temperature that paper could be exposed to

were determined and correlated to the ink properties.

The work presented was carried out on a manually operated screen-printing system. Nevertheless,

the process is scalable, and commercial, automated, roll-to-roll systems exist. The manual system

is however sufficient to identify the optimal printing parameters, and the developed process can be

easily scaled-up to larger systems.

As a demonstrator for assessing the performance of the developed process, passive electrical

components, such as capacitors and inductors, were printed. The performance of the inductors was

directly comparable with state-of-the-art inductors screen printed on PET.
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4.2 The Screen

The minimum achievable feature size and the quality of the screen were found to be the main drawbacks

of screen printing in the preliminary investigation. The minimum feature size can be decreased by

improving the quality of the screen and by using a finer mesh. Initially, screens were produced by

stretching 90T mesh over a photo frame by hand and fastening with drawing pins. This method

produced screens which did not have uniform tension across the mesh and the frames warped over

time, meaning continuous contact with the substrate was not possible.

To improve the quality of the screen, wooden frames were constructed at a local framing shop

(Season’s Gallery, Durham) and the mesh was attached there with uniform tension. The initial screen

exhibited a 3 cm ± 0.5 cm deflection when a 3 kg weight was added in the centre, while the new screen,

created by the framing shop only exhibited a 0.5 cm ± 0.1 cm deflection when the same weight was

added. This new screen did not warp with time and print quality was greatly improved. As the new

screen had sufficient, uniform tension, ‘snap off’ occurred and so shorting between the tracks was no

longer an issue. For tracks with a 500 µm gap between them, the yield of successful printing with no

shorts for the old screen was 40% and for the new screen 90%. The improved quality of printing is

shown in Figure 4.1.

Figure 4.1: Images illustrating the difference in print quality when using different screens. (a) Preliminary printing
with a 90T mesh screen made in-house, (b) and (c) printing with a 32T mesh screen made by a framing shop, d) printing
with an 90T mesh screen made by a framing shop and after optimisation. All images are the same scale.

The mesh count of the screen is another important factor to consider: the lower the mesh count,

the poorer the quality of the print as also shown in Figure 4.1. 32T, 55T, 90T and 120T mesh counts

were considered in this investigation and their relevant properties are listed in Table 4.1. A 32T mesh

count yielded a much thicker printed layer and the larger mesh opening meant smaller feature sizes

were not possible. For a screen with a 32T mesh count, the screen was much rougher to the touch and

the threads themselves were visible. A comparison of 32T and 120T mesh count screens, patterned

with simple squares, is shown in Figure 4.2. The screen with 32T mesh has larger threads which are

visible in this image, leading to a more pixelated pattern and poorer detail than the 120T mesh.
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Table 4.1: Details on mesh properties of polyester meshes with different thread counts.

Mesh Count
Thread Diameter

(µm)

Mesh Opening

(µm)

Open Surface

(%)

Weight

(g/m2)

32T 100 200 44.5 90

55T 63 115 41.75 65

90T 48 63 32.5 50

120T 33 51 36.75 35

Figure 4.2: Comparison of a screen with 32T mesh (left) and a screen with a 120T mesh (right), highlighting the
larger, more visible threads in the 32T mesh and the poorer definition in features.

The patterning method of the screens is detailed in Chapter 2; the screens were coated in photo-

emulsion and then a patterned acetate was used to harden certain areas and create the final patterned

screen. Two methods of producing acetate were considered here, one was created in house using a

standard printer and one was created commercially, by Microlithographic service limited (Essex, UK).

The acetate produced by Microlithographic service limited had much more defined features which

were measured to be at the designed dimensions, whereas the one created in house had features which

could be out by over 100%; examples of both acetates are shown in Figure 4.3. These dimensions are

measured using a usb camera, a known microscope scale and ImageJ software.

Figure 4.3: Comparison of feature sizes of acetate masks produced commercially (left) and in house (right), highlighting
the poorer quality for those produced in house.
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Both acetates were used to create screens, the error for the commercially made mask was 20%

better than the one made in house. As the acetate produced by Microlithographic service limited cost

nearly £100, it was decided that the in-house masks would be used and were improved upon by using

a better-quality printer, reducing the error by half.

The feature sizes and gaps between feature sizes on the screen itself were measured for all four

mesh counts and are displayed in Figure 4.4 (the designed values are 0.5 mm for both). It can be

seen that as the mesh count was increased, the measured values became closer to the designed values

and exhibited fewer errors. As detailed earlier, the higher the mesh count, the smaller the opening

between threads and so the more accurate the smaller features were.

Figure 4.4: Comparison of feature sizes and gaps between features on the screen for various mesh thread counts. The
whiskers of the box plots show the maximum and minimum values measured.

Similarly, the feature sizes and gaps between features were measured for printed tracks, again with

both dimensions intended to be 0.5 mm with results shown in Figure 4.5. For these results, the results

of the screen itself must be considered. As the lower mesh counts had poorer results, it was assumed

that this variation would then carry through to the prints. This was shown to be the case but it was

also seen that as the mesh count decreased, the printed results were more spread out than the screen

itself. When using a lower mesh count, more ink can be held within the screen as it is much thicker.

This leads to a higher volume of ink being transferred to the substrate which will spread and create

larger resulting dimensions.
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Figure 4.5: Comparison of feature sizes and gaps between features for printed structures printed using meshes with
various thread counts. The whiskers of the box plots show the maximum and minimum values.

As the volume of ink increases with decreasing mesh count, it was expected that the thickness of the

prints would increase and the sheet resistance would decrease. Both of these theories were confirmed

by Figures 4.6 and 4.7 which show thickness measurements taken using a Dektak profilometer and

sheet resistance measurements taken using a four point probe setup. In addition to showing the

increasing ink thickness with decreasing mesh count, it was shown that the variation in thickness was

much larger at lower mesh counts. This was likely due to the larger volume of ink leading to weeping

and movement of the ink and so less uniform layers. The variation with sheet resistance was increased

with increasing mesh count; this was likely due to the decrease in thickness and so any discontinuities

along the substrate surface were more dominant.
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Figure 4.6: Comparison of thicknesses of printed structures using meshes with various thread counts. Measurements
were taken using a Dektak profilometer. The whiskers of the box plots show the maximum and minimum values.

Figure 4.7: Comparison of sheet resistance values for squares printed using meshes with various thread counts. The
whiskers of the box plots show the maximum and minimum values.

Increasing the mesh count of the screen increases the sheet resistance but also decreases the

attainable feature sizes and the error associated with them. The ink thickness is also reduced and
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so minimises the volume of ink used. The sheet resistance can be considered acceptable for all mesh

counts used, but lower values are more highly desired. The optimal mesh count was determined to be

90T to optimise both sheet resistance and feature size/definition. Results detailed below are for 90T

mesh counts using screens produced at the framing shop.

4.3 The Printing Process

During screen printing, the squeegee is the component that forces the ink through the screen and

onto the substrate. There are several factors which affect the quality of the resulting print, including

squeegee pressure, angle, speed and the type/material of squeegee used. The type of squeegee used

in this work was a 60 durometer square-edged squeegee, which was provided by the supplier of the

initial screen-printing kit.

Type of Squeegee

A round-edged squeegee was trialled in addition to the square-edged squeegee and found to produce

sub-optimal results as shown in Figure 4.8. Square-edged is the most common squeegee profile and is

used for cylinder and manual systems. Round-edged is normally limited to the textile industry and

applications which require deposition of much thicker layers. The side profiles for both a square-edged

and round-edged squeegee can be seen in Figure 4.9.

Figure 4.8: Comparison of printed features using a round-edged squeegee (left) and a square-edged squeegee (right).
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Figure 4.9: Illustration of the side profile of a square-edged squeegee (left) and a round-edged squeegee (right).

As evident in the image of the resulting prints, the square-edged squeegee transferred a complete,

uniform layer of ink to the substrate and the printed features were well-defined. This is considered

an acceptable result and an example of what was sought after in this investigation. The print on the

left, produced by the round-edge squeegee, was not a complete uniform layer and the right-hand side

features were not well defined. The difference in the two prints was due to the contact shape of the

squeegee and the screen. With a square-edged squeegee, the contact area had a defined edge which

had a large amount of traction on the screen. This was not the case with the round-edged squeegee as

it had a curved contact shape which meant it was more likely to slide along the screen. This tendency

to slide provided less control over the print and resulted in areas of ink not being pushed through to

the substrate.

Pressure on the Squeegee

When little pressure was applied to the squeegee, the vertical distance between the substrate and the

screen was not overcome and so less ink reached the substrate. Increasing the pressure applied to the

squeegee increased the amount of ink received by the substrate. However, large pressures could lead

to slipping of the screen/substrate and less control over the print. This can be seen in Figure 4.10

where an applied mass of middling magnitude produced the more defined and uniform print. The

mass was measured rather than the pressure as the contact area between the squeegee and the screen

was difficult to measure as it deformed during printing and was not constant.
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Figure 4.10: Comparison of printed features using different forces applied to the squeegee. Equivalent mass values
are shown for each print.

To achieve these results, an existing setup was reconfigured to measure the equivalent mass acting

on the squeegee. This setup was created to measure several changes in resistance at the same time.

An analogue to digital converter with multiple inputs was used to measure the change in voltage of

several Wheatstone bridge formations with one common reference. The voltages were read by an

Arduino Mega and processed in Matlab. For this work, the Wheatstone bridge formations were each

connected to a force sensitive circular sensor with 0.5” diameter.

The setup was calibrated using a balance. The sensors were each adhered to the balance and the

voltage was recorded for several different applied masses. The sensors were then taped to the table

under the substrate and the voltage values measured during printing allowed the equivalent mass to

be determined.

Squeegee Angle

The angle of the squeegee and the force applied to the squeegee are related. As the force was increased,

the angle between the squeegee and the substrate decreased, however the angle could be independently

investigated by keeping the force constant, equivalent to applying approximately 500 g. Similarly to

the force, the optimum angle was somewhere between the extremes (0 and 90◦) with resulting prints

shown in Figure 4.11.

Figure 4.11: Comparison of printed features using different squeegee angles while printing.
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When the angle was at the extremes, the user had little control over the print and so a non-uniform

layer was produced. When printing with an angle of 15◦, it was more difficult to apply the required

force to the squeegee and it resulted in the majority of the force being applied to the centre and

unbalanced pressure along the squeegee. The print produced with an angle of 90◦ showed slipping

where the user had lost control and the screen had slipped along the substrate, decreasing the gaps

between features.

Speed of Printing

The faster the squeegee was pulled over the screen, the poorer the quality of the print, as shown in

Figure 4.12. As with the other printing parameters, this was due to the control of the user. When

printing very quickly, the user had less control and so the print was no longer uniform and features

were lost due to non-uniform pressure along the squeegee. However, above four seconds for one print

was determined to be redundant as a uniform layer with well defined features could be printed over

four seconds; further time decreases efficiency with no added benefits.

Figure 4.12: Comparison of printed features when printing took place over different speeds.

The length of the print was 25 cm and so speeds of 2.3 cm/s, 6.3 cm/s and 1 cm/s were achieved.

Number of Passes with the Squeegee

More than one pass during printing was required to produce an optimal print; above this, results are

acceptable as shown in Figure 4.13. The number of passes quantified how many times the squeegee

was pulled over the screen to produce a print. With the first print, although the screen was always

flooded, the ink could adhere to the screen itself and so not all of the ink was transferred to the

substrate. For multiple passes, there was already a layer of ink which had adhered to the screen and
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so a larger percentage of the ink deposited on the screen was transferred to the paper and a thicker,

more uniform layer was produced. Similarly to the speed of printing, the optimum number of prints

was minimised to improve efficiency.

Figure 4.13: Comparison of printed features when different number of passes with the squeegee has taken place.

Many of the factors considered for the printing process were user controlled and so it is important

that users follow the prescribed, well-defined process detailed in this work. This process can then be

used to scale up screen printing for an automated system.

4.4 Curing of the Ink

There are three types of silver ink commonly used for printed electronics: silver nanoparticle, silver

nanowire and silver flake. Silver nanoparticles are between 1 - 100 nm in size for all dimensions, silver

nanowires are around 10 nm in width and 10 µm in length and silver flakes are single micrometers

in size. Silver nanoparticle inks produce thinner layers via processes like inkjet printing which can

often be more desirable and is not achievable with flake inks. Silver nanowire inks can be made to be

transparent and can also be desirable for some applications [1]. However, in this work, the thickness
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and transparency of the ink is not important for the application. In addition to this, silver flake ink

has higher conductivity and lower cost, which is advantageous for the components in this work, with

a view to them being low cost, disposable, with a high performance.

To increase the conductivity of the ink, prints must be cured. For this work, prints were cured in

a Medline OV-11 oven at 75, 125 and 175 ◦C with sheet resistance measurements taken periodically as

shown in Figure 4.14. It was found that samples cured at higher temperatures resulted in lower sheet

resistance and the sheet resistance decreased with time before stabilising after 30 minutes. However,

the difference in sheet resistance for samples cured at 125 ◦C and at 175 ◦C was not great enough to

outweigh the physical change in samples shown in Figure 4.15. At higher temperatures, the paper

curled and yellowed but this effect was minimal/acceptable for samples cured at 125 ◦C but was too

extreme at 175 ◦C.

Figure 4.14: Sheet resistance values of printed squares over time with different curing temperatures.
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Figure 4.15: Image of samples after being cured at 75, 125 and 175 ◦C for 30 minutes.

No physical changes were seen within the ink after curing. Scattering electron microscopy images

of the ink structure before curing and after three hours of curing at 120 ◦C are shown in Figure 4.16

and it can be seen that there was no change in the structure of the silver flakes. At temperatures

below 250 ◦C, the silver particles within inks are not able to melt however more binder within the

ink is removed with increasing temperature [2]. Although this is not visible on the SEM images, the

decrease in sheet resistance can be seen in Figure 4.14.

Figure 4.16: SEM images of screen-printed samples prior to curing (top) and samples which have been cured for three
hours at 125 ◦C (bottom).

Increasing the curing temperature to above 250 ◦C caused the flakes to coalesce and the resistivity

to be reduced even further. Even though this is much lower than the melting temperature of bulk

silver, this is possible due to the high surface area to volume ratio of the silver flakes. The silver atoms
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on the surface of the flakes have fewer interatomic bonds and so much less energy is required to break

these bonds than those of a silver atom in the centre of the flake which has many more bonds. Due

to the high temperatures required for the flakes to coalesce, this was not possible when using paper

substrates, however a sample was printed on glass and cured at 500 ◦C for 30 minutes. The resulting

structure of the ink is shown in Figure 4.17.

Figure 4.17: Curing of screen-printed silver ink on glass, cured at 500 ◦C for 30 minutes.

Following this investigation, it was decided that curing samples for 30 minutes at 125 ◦C would

be optimal to avoid any changes within the substrate, while simultaneously providing high reductions

in sheet resistance. All screen-printed samples and devices throughout this work have therefore been

cured in this way. The sheet resistance obtained for this curing was less than 15 mΩ/� for 80% of

samples and under 20 mΩ/� for 100% of samples.

Samples left at room temperature to dry for 70 days achieved a minimum sheet resistance of

0.3 Ω/� as shown in Figure 4.18. These samples were found to be mostly insulating until at least

eight hours after being printed. This confirmed the need for curing of the samples to ensure acceptable

values of sheet resistance and fast production of working devices.
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Figure 4.18: Sheet resistance values of screen-printed samples which have been air dried for over 70 days at room
temperature.

4.5 Ink/Paper Interface

To investigate the interface of the ink and paper, focused ion beam milling was used to mill a trough

in samples, and images were taken of the cross-section. An example of these images is shown in

Figure 4.19. The paper substrate consisted of cellulose fibres, starches and calcium carbonate, whereas

the ink was made up of silver flakes. Although the fibres in the paper were several mm long and

approximately 200 µm wide, and the silver flakes were less than 5 µm in lateral size, it was found that

the ink flakes formed a layer on top of the surface of the cellulose fibre matrix and did not penetrate

into deeper layers, giving rise to a well-defined interface, except for voids larger than 10 µm in the

cellulose fibre matrix, which were filled with the flakes. This was likely due to the high viscosity of the

ink and resulting surface tension not allowing the flakes to penetrate deeper into the cellulose matrix.

Figure 4.19: SEM image of a focused ion-beam milled section of screen-printed silver ink on paper.
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These voids led to a variation in ink thickness across the print, as shown in Figure 4.20; in this small

section the ink thickness varied from 11 µm to over 17 µm in the void. This reinforced the theory that

rougher papers have thicker layers of ink in some areas, which leads to higher conductivity as detailed

in Chapter 3. There was a clear incline at the edges of the printed track as shown in Figure 4.21,

where the thickness of the ink decreased from 5.5 µm to 0. This was due to the spreading of the ink

as the screen was removed while printing.

Figure 4.20: SEM image of a focused ion-beam milled section of screen-printed silver ink on paper with thickness
values added.

Figure 4.21: SEM image of a focused ion-beam milled section of the edge of screen-printed silver ink on paper with
thickness values added.
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4.6 Screen-printed Passive Components

To demonstrate the quality of the screen-printing method that has been optimised here, passive

components were fabricated and compared to state-of-the-art passive components screen printed

by other groups. Measurements of capacitance and inductance were taken using a HP 4192A low

frequency impedance analyser between 100 Hz and 10 MHz. All components here were screen printed

using Metalon HPS-021LV silver nano-flake ink on 199 gsm Neenah paper.

4.6.1 Resistors

Due to the high conductivity of the silver nano-flake ink it would not be suitable for producing

resistors, however rectangles were printed and treated as proof-of-concept resistors. Rectangles of

varying length were printed to compare measured resistance to calculations using R = ρsL/W where

L is the length of the resistor, W is the width and ρs is the sheet resistance, taken to be 20 mΩ/�.

For rectangles 1 mm × 20 mm, the resistance was measured to be 0.5 Ω (expected to be 0.4 Ω from

calculations). All of the samples were found to be within 30% of the calculated value of resistance and

any discrepancies could be explained by the differences in actual dimensions printed and variations in

thickness, changing the sheet resistance.

Other inks are available which have lower conductivities and would be more suited to produce

resistors. Table 4.2 shows required dimensions for example silver, nickel and carbon resistors assuming

a thickness of 15 µm. This table highlights the need for materials with lower conductivity to produce

resistors.

Table 4.2: Example dimensions for screen-printed resistors using differing metal inks.

Resistor Dimensions
Silver Ink

Resistance (Ohms)

Nickel Ink

Resistance (Ohms)

Carbon Ink

Resistance (Ohms)

5 µm × 100 µm 0.4 200 20k

5 µm × 1 mm 4 2k 200k

5 µm × 10 mm 40 20k 2M

5 µm × 1 m 4k 2M 200M

4.6.2 Capacitors

Parallel plate and interdigitated capacitors have been considered in this work and examples are shown

in Figure 4.22. The values shown are the measured capacitance for geometries covering a similar

area. The work here concentrated on parallel plate capacitors, as interdigitated structures were
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considered later for their use as touch pads (Chapter 5). Although interdigitated structures have a

lower capacitance, they were found to be more touch sensitive.

Figure 4.22: Examples of screen-printed parallel plate (left) and interdigitated capacitors (right) with their respective
capacitance values.

To produce parallel plate capacitors, squares of 20, 30 and 40 mm were printed on both sides

of a selection of papers. The capacitance of these components was measured and compared to the

equation C = εoεrA/d, where A is the area of the printed squares, d is the thickness of the paper, εo

is the relative permittivity of free space and εr is the permittivity of the paper. As the capacitance

is measured here and the thickness of the paper was previously measured to be 235 ± 8 µm by a

micrometer, the permittivity of the paper can be calculated. Capacitance values in the pF range have

been achieved. For a 30 × 30 mm square, the measured capacitance was 110 pF ± 10 pF from 400 Hz

to 20 MHz, above which the inductive nature of the device dominated, shown in Figure 4.23. Several

repeats of the different sizes were printed and found to have very good repeatability; 100% of samples

resulted in a value for εr within 5% of 3.25. This is a realistic value for paper, which is often found to

have a permittivity of between 2 and 6 [3–5]. The permittivity of the paper was a key factor in later

work presented in Chapter 6.

The impedance of the capacitors was measured using the impedance analyser with typical results

shown in Figure 4.23. It can be seen that there is a resonating structure; below 66 MHz, the device

behaves like a capacitor and, above 71 MHz, the device behaves like an inductor. This is explained

by the fact that this structure is not purely capacitive, the parallel plates are capacitive but the leads

are inductive, creating a series LC (inductor capacitor) circuit.
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Figure 4.23: Capacitance and phase against frequency for the parallel plate capacitor shown in Figure 4.22.

4.6.3 Inductors

Circular spiral inductors were printed on paper to maximise the inductance and minimise the

resistance, and an example is shown in Figure 4.24. Track spacing was set at 1 mm, track widths

of 1 mm and 2 mm were considered and the inner diameter of the spirals was 20 mm. The maximum

number of turns was 15 and, due to the nature of paper, coils could be cut easily to reduce the number

of turns.

Figure 4.24: Example of a screen-printed inductor with 1 mm track width and spacing, an outer diameter of 76 mm
and 14 turns.
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The inductance of the spirals was calculated using Equation (4.1), taken from [6], where n is

the number of turns, c1−4 are pre-determined coefficients 1, 2.46, 0 and 0.2 respectively, davg is

the average of the inner and outer diameters of the spiral and ρ is the fill factor, calculated by

ρ = (dout − din)/(dout + din).

L =
µon

2davgc1
2

[
ln

(
c2
ρ

)
+ c3ρ+ c4ρ

2

]
(4.1)

In order to maximise inductance, the number of turns and the outer diameter of the spirals should

be maximised. The resistance should be minimised by maximising the track width and keeping

dimensions within the constraints of the application. Results from some of the trialled geometries are

shown in Table 4.3, comparing theoretical calculations to measured values. It can be seen that although

the measured resistance values are higher than those calculated, the inductance is comparable.

Table 4.3: Screen-printed inductors, comparing measured values of inductance and resistance with theoretical
calculations.

Number

of turns

Track

width

(mm)

Track

spacing

(mm)

Outer

Diameter

(mm)

Calculated

Inductance

(µH)

Measured

Inductance

(µH)

Calculated

Resistance

(Ω)

Measured

Resistance

(Ω)

14 1 1 76 8.91 8.37 40.46 54.0

11 2 1 98 5.85 5.90 17.28 28.6

9 2 1 74 3.64 3.50 12.44 34.3

These devices are comparable to work by Ostfeld et al who have produced screen-printed passive

components on polyethylene terephthalate (PET) for flexible power electronics [7]. Their findings are

for spirals with a similar number of turns but with a line width and spacing of 500 µm, resulting in

a smaller outer diameter. Inductances of approximately 5 µH were achieved, which are comparable

with the results in this work, presented in Table 4.3. Ostfeld et al have achieved a sheet resistance of

4 mΩ/�. However, this required six coats of ink, leading to a slower process and issues with alignment.

The a.c. characteristics of the inductors should be considered to determine operating frequency of

the devices. An example spiral with 2 mm track width, 1 mm spacing and 11 turns was considered here.

The inductance was stable at a value of 5 ±1 µH between 10 kHz and 50 MHz and so could be used

for such MHz devices as those by Ostfeld et al.citeOstfeld2015. The inductor could be approximated

using the simple model in Figure 4.25 where the resistance represents the series resistance of the tracks

and the capacitance represents the capacitance between the tracks. The impedance and phase could

be calculated from combining the impedances of the resistance R, the capacitance (−1/iωC) and the

inductance (iωL). The values for resistance and inductance were measured and calculated and are
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listed in Table 4.3 and the value of capacitance could then be chosen to minimise the error between

the theoretical and measured data. Other models and various values for R, L and C were trialled

however this method produced the best fit for the measured data. The values 28.6 Ω and 5.9 µH for

the resistance and inductance were taken from the middle row of Table 4.3. The value of 0.1 nF for

the capacitance was chosen as it provided the best fit with the data, as shown in Figure 4.26.

Figure 4.25: Model of paper-based spiral inductors for a.c. analysis.

Figure 4.26: Typical plot of impedance with frequency for inductors on paper, comparing theory with measurements.

4.7 Conclusion

This chapter has presented work on the optimisation of the in-house screen printing process. This

has included investigating the properties of the screen itself, the printing procedure and the curing

temperature and time. To illustrate the capabilities of the improved printing process, passive
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components were then screen printed onto Neenah paper.

From the optimisation process, it was determined that the screen must be manufactured to have

uniform tension and so screens were created at a local photo-framing company. There is a trade off,

when choosing the screen mesh, between ink thickness (and resulting conductivity) and the feature

size which can be obtained, in this work a 90T mesh has been used. When printed, the feature size is

approximately 0.1 mm larger than the designed value but a minimum feature size of 500 µm was still

repeatedly achievable.

Through the optimisation of the ink curing, it was found that the optimum temperature was

125 ◦C. Above this, the paper yellowed and curled and, below this, suboptimal sheet resistance values

were achieved. Coalescing of the ink does not occur on paper as temperatures over 250 ◦C are required.

Passive components were printed using the optimised process and it was determined that the

silver ink is not suitable to create resistors but carbon and nickel inks are more suited. Both parallel

plate capacitors and interdigitated capacitors were produced and the use of these as touch pads is

investigated in the next chapter. Spiral inductors were produced which are comparable with state-of-

the-art work by other groups who have screen printed spiral inductors on plastic.
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Chapter 5

Fabrication and Characterisation of

Interdigitated Touch Sensors

5.1 Introduction

Electronic systems often include sensors or devices with a number of inputs and outputs. A common

example is the touch pad. Touch sensors on paper could potentially be integrated with disposable

sensors to create completely disposable devices. These offer the promise of a low-cost, recyclable or

disposable solution for everyday applications. It is possible that such applications could include simple

fast-food menus, accessible packaging, interactive posters, and medical devices. Such devices have the

potential to revolutionise cost-effective interactive packaged items as well as helping to meet carbon

footprint requirements for waste.

This chapter presents work on screen-printed interdigitated capacitance devices and their use as

touch sensors. A proof-of-concept touch detector based on paper sensors and an embedded system

(an Arduino microcontroller) is presented. Numerical simulations (using COMSOL) were carried out

to support the experimental results.

Changes in the device geometry are correlated to changes in the device operation and performance.

Work was undertaken to study how different users may interact with the touch pads, and how this has

an effect on the overall operation of the device. Finally the environmental effects, such as humidity,

on the touch pad performance were considered.

Various examples of paper-based and flexible electronic devices were detailed in Chapter 1. Many

of these device applications require a user interface. Therefore, a large amount of research is ongoing
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into various touch pads on flexible substrates for integration into flexible and disposable sensors.

Current, commercial touch screens, for example those on smart phones, can be a complex structure of

several layers of different materials, which can be expensive and require a complex fabrication process,

and therefore flexible touch pads on cheaper substrates are desirable. An example of work where touch

pads have been developed as part of a system has been presented by Kanaparthi et al. who produced

touch, temperature, pH and humidity sensors on paper [1]. In addition to being flexible and foldable,

touch sensors on paper are also cuttable, meaning that a variety of designs can be achieved with

multiple touch points and a central control node [2].

Flexible touch pads can be used for anti-tamper devices on packages [3, 4], keyboards [5–7] and

interactive pop-up books for children [8, 9]. Gestural input surfaces have been designed which can be

mounted on the fingertip or nail and use capacitive sensing to act as touch pads [10, 11]. Table-top

games can be improved with capacitive coupling between the user’s chair and their touch, the location

of the touch of each use can be determined by location-dependent electric fields [12]. Savage et al.

have created prototypes of interactive objects, one of which is a ‘papercraft pinball machine’ which

highlights the foldability of paper and integration of touch pads to a larger system [13].

As flexible touch pads are a high area of interest, a large amount of research is ongoing into the

theory and operation of touch sensors. Holz et al. look at the theory behind capacitive touch screens

and how the user acquires their target and the errors this leads to [14]. Several groups have used

computer modelling to determine the effect of the device with touch. However, the finger is often

modelled as a single material [15–17].

Resistive [18], inductive [19], pressure sensitive [6, 20, 21], piezoelectric [22–26], piezoelectrect

[27, 28] and pyroelectric [29] touch sensors have all been investigated and groups have also produced

devices which can be used on a person; for example, nail or finger pads which can be mounted on

parts of the hand and react to gestures [10, 11]. For the majority of these designs, paper or plastic

is the chosen substrate for the device to provide flexibility and is not the active component within

the device. For the piezoelectric touch sensors, materials such as zinc oxide nanowires are used [22].

Silver nanowires are often used for their flexibility and compatibility with printing methods to create

touch pads on flexible substrates [24, 30].

More commonly, capacitive designs are used as touch pads with parallel plate or interdigitated

structures. Parallel plate structures can use paper as the dielectric, or some other material such

as graphene oxide [31]. Manabe et al. used several capacitive sensors in series which require only

two contact points with the measurement system [32]. Mazzeo et al. [4] have produced paper-based
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capacitive touch pads from metallised paper and determined that an interdigitated structure produces

a larger change in capacitance than a parallel plate structure of a similar size. The two structures

are shown in Figure 5.1 along with the values of capacitance for both the structures when they are

touched and not touched.

Figure 5.1: Capacitance buttons fabricated on metallised paper, highlighting the greater increase in capacitance when
using an interdigitated structure. Adapted from [4].

Both structures are produced by laser ablation of the metallised paper. The parallel plate design

(Figure 5.1 A - C) uses two sheets of the metallised paper and so has two planes, the interdigitated

design (Figure 5.1 D - F) is only in one plane and has two sets of electrodes which are separated by

laser ablated lines. The parallel plate design is governed by the equation C = εoεrA/d and so the

change in capacitance with touch is due to the change in d, the thickness of the paper dielectric which

is minimal. The interdigitated structure is dominated by the electric field as shown in Figure 5.2.
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Figure 5.2: The electric field patterns for both the un-touched and touched states of the interdigitated touch pad
design.

It should be noted that this figure is not to scale and the thickness of the electrodes is less than

one tenth of the thickness of the paper. This means that the horizontal component of the electric

field between the electrodes is insignificant in comparison to the three dimensional electric field within

the paper and the air. When the sensor is touched, the electric field will be constrained within the

finger rather than the paper due to its significantly higher permittivity (approximately 550 compared

to 3). As the parallel component of the electric field (E) and the normal component of the electric

displacement (D) are conserved at the boundary between the finger and the paper and D = ε0εrE,

the field will be very close to the surface of the finger and not easily visible within the finger. This

change in gradient at the boundary has been reduced in Figure 5.2 for illustrative purposes however

in the later simulations, the field cannot be seen within the finger on this scale as it is very close to

the surface of the finger. This results in a large change in capacitance (at least an order of magnitude)

which is larger than that of the parallel plate design. For this reason, the majority of flexible touch

pads have an interdigitated electrode structure [1, 24, 33–38].

Li et al. fabricated interdigitated capacitive touch pads by direct write of silver ink through a

syringe pump [24]. The electrode finger width and the gap between electrode fingers were 0.5 mm and

the electrode finger length was varied between 4 and 16 mm. Devices with 2 - 10 electrode fingers

were considered. The resulting capacitance of the device varied between 1 and 5 pF when untouched

and between 5 and 35 pF when touched. The rise time of the devices was measured and converted to

a capacitance value using an Arduino. Four touch pads were connected to LEDs as proof of concept

and the bending radius altered with no change in response.

Kanaparthi et al. fabricated touch pads by direct write of 5B pencils on filter paper [38]. The

electrode finger width and the gap between electrodes was 0.6 mm and the finger length was varied

between 5 and 15 mm. Devices with 4 - 20 electrode fingers were considered. The resulting capacitance

of the device varied between 1 and 3.5 pF when untouched and between 5 and 23 pF when touched.

The devices were measured using the same technique as Li et al. with an Arduino.
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Yun et al. fabricated touch pads using home inkjet printing onto photo paper [34]. The electrode

finger width and the gap between electrodes were 1 mm and 0.5 mm respectively, and the finger length

was varied between 5 and 15 mm. Devices with 12 electrode fingers were considered. The resulting

capacitance of the device varied between 228 and 236 pF when untouched and between 340 and 564 pF

when touched. The devices were measured using the same technique as Li et al. with an Arduino.

The larger capacitance for the work by Yun et al. in comparison with others is caused by the use of

a large ground plane rather than ground electrodes. This is the same design as used by Mazzeo et al.

in [4] shown in Figure 5.1.

5.2 Interdigitated Capacitive Sensor Geometries

This work considered four different designs of interdigitated electrodes in order to look at the effect

of changing different parameters on the capacitance of the sensor. An example interdigitated design

is shown in Figure 5.3 which labels the electrode finger length, L, the electrode finger width, W , the

gap between the electrode fingers, g, and the combination of the electrode finger width and the gap,

∆.

Figure 5.3: Illustration of an interdigitated capacitive sensor with key dimensions added.

The four designs are shown in Figure 5.4 and details of their relative dimensions are listed in

Table 5.1.
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Figure 5.4: Four designs of interdigitated capacitive touch pads considered in this work.

Table 5.1: Dimensions of interdigitated touch sensor designs.

Sensor

Design

Number

of Fingers

Finger

Width (W, mm)
Gap (g, mm)

Finger

Length (L, mm)
Yield (%)

1 8 2 1 20 95

2 8 2 1 30 90

3 8 1 1 30 60

4 16 2 1 20 90

Design 2 looked at the effect of increasing the electrode finger length L, which would increase the

capacitance of the device due to the higher surface area between the two sets of electrode fingers.

Design 3 looked at the effect of increasing the electrode finger length but also decreasing the electrode

finger width. When compared to Design 1, Design 3 should have had higher capacitance as the change

in electrode finger length was much greater than the change in width. However, compared to Design

2, Design 3 should have had a lower capacitance as the electrode finger width was smaller, but the

length was the same. Design 3 should also have a lower yield than the other designs due to the smaller

feature sizes. Design 4 looked at the effect of increasing the number of electrode fingers in the device,

which should have increased the capacitance compared to Design 1 and so should have had the largest

capacitance of all the four designs.

In Chapter 4, the deviation in feature size of the screen-printing method was considered. The

feature size and gap between features, when both designed to be 0.5 mm, were between 0.46 - 0.60 mm

and 0.38 - 0.48 mm respectively. For this reason, the capacitive devices were designed so that the

minimum feature size was 1 mm. For all designs, the gap between electrodes was designed to be 1 mm

to achieve maximum capacitance but remain within the fabrication parameters.
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Designs with features larger than those designed here would not be considered suitable as touch

pads. Design 1 was considered the most suitable for use as a touch device based on its dimensions. This

was approximately a square with 2 cm long sides and was the smallest of the touch devices designed.

The size of an adult finger is not larger than this and so this design can maximise device density.

For this reason, this device was used as the example data throughout this work. It is understood

that using a higher quality fabrication method could result in features which could mean the same

capacitance was achieved within a smaller area. However, this work showed a proof-of-concept which

could then be improved using a higher quality process at a later stage.

5.3 Theoretical Analysis of the Interdigitated Sensors

5.3.1 Analytical Expression for the Sensor Capacitance

A simple analytical expression was used to determine the sensor capacitance prior to design and to

ensure the values were in a measurable range. The change in capacitance between designs must also

be measurable. Several equations have been proposed to determine the capacitance of interdigitated

electrodes [24, 36, 38–41]. This work uses Equation (5.1), taken from [41], as this considers all

dimensions which have been varied between the designs. The calculated values using Equation (5.1)

for Designs 1, 2, 3 and 4 were 1.73, 2.74, 2.16 and 3.46 pF respectively. These calculated values of

capacitance showed the same trend which was hypothesised above when considering the differences in

parameters between the designs.

NC1L

2
where C1 = 2(1 + εr)(6.5s

2 + 1.08s+ 2.37) (5.1)

where C is the capacitance, εr is the relative permittivity of the substrate, N is the number of electrode

pairs, C1 is a variable used to simplify the calculation of C, L is the length of the electrode fingers

and s is the ratio W/∆. W is the electrode finger width and ∆ is equal to the electrode finger width

and the gap between electrode fingers. All dimensions are labelled on Figure 5.3.

These values were all within the pF range and so are measurable using devices such as impedance

analysers, vector network analysers and LCR meters. The change in capacitance between the designs

was also greater than 0.4 pF for all and so, should also have been within a measurable range.
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5.3.2 COMSOL Modelling of the Sensors

As Equation (5.1) only provides a single value for the capacitance of the sensors, COMSOL modelling

was used to include the material properties of the sensor and determine more information about

the sensor operation. Using COMSOL modelling, the electric field patterns of the sensor could be

simulated. The addition of a human finger to the model was also possible with COMSOL and was

able to provide a great deal of information about the sensor when used as a touch pad.

Modelling of the Sensor

An example of sensor design 1, modelled in COMSOL, is shown in Figure 5.5 and details of the

parameters of the model are listed in Table 5.2. The paper thickness was measured using a micrometer

and the electrode finger parameters were taken from Table 5.1. The metal properties were determined

in Chapter 4 for the screen-printing method. The permittivity was taken to be 3.25 as calculated from

measurements using parallel plate capacitors in Chapter 4.

Figure 5.5: Example of Design 1 touch sensor created in COMSOL. All units are in mm.

The paper was modelled as a block of size 29 x 38 x 0.235 mm, which covered the whole touch pad.

An air block with dimensions 49 x 58 x 30 mm was used to simulate the touch pad being surrounded

by air.

The values of capacitance for Designs 1, 2, 3, and 4 were determined to be 2.81, 4.00, 3.42 and

5.75 pF respectively using the COMSOL model. Design 4 had double the number of electrode fingers
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Table 5.2: Parameters and dimensions used in the COMSOL modelling of the touch sensors.

Parameter Value

Paper Thickness 235 µm

Paper Permittivity 3.25

Electrode Finger Width 20 mm

Electrode Finger Height 2 mm

Gap Between Electrode Fingers 1 mm

Number of Electrode Finger Pairs 4

Metal Thickness 16 µm

Metal Conductivity 4.17× 106 S/m

than Design 1 and subsequently had double the capacitance, as would be expected. Design 2 had

electrode fingers which were 50% longer than Design 1, the increase in capacitance (42%) was in

keeping with this. Design 3 had an electrode finger width 50% less than Design 2, which resulted

in a 17% decrease in capacitance. These values were in agreement with the values calculated by

Equation (5.1) and showed the same trend with increasing capacitance moving from Designs 1, 3,

2 and then 4. The difference in values of capacitance between Equation (5.1) and the COMSOL

modelling was likely due to the modelling accounting for material properties and providing a more

accurate value.

The electric field was confined within the paper and then decayed in the air, as shown in Figure 5.6.

This was a cross section of the device in the plane shown in the insert of the Figure. The paper had

a higher dielectric constant than air and so the change between high and low field regions of electric

field were much more defined as it was harder for the electric field to penetrate these regions. There

was no visible change in the field strength on this scale at distances more than 3 mm away from the

paper, which showed that a finger placed further than 3 mm from the sensor was unlikely to have an

effect on the electric field.
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Figure 5.6: Cross-sectional view to show the electric field for sensor design 1 as modelled by COMSOL when one set
of electrodes are set to 1V and the other to 0V. The electrodes are situated on top of the paper substrate.

Modelling of the Finger in Contact with the Sensor

When considering the interdigitated electrodes for use as a touch sensor, the individuality of different

users and their relative touch must be included. People use touch devices in several ways, with

different fingers and different positions of their finger relative to the touch pad. Initially, the angle

between the finger and the sensor was considered and other differences included later in the chapter

when measurements of the sensors have been taken. A finger perpendicular to the touch pad, a finger

at 45◦ to the touch pad and a finger parallel to the touch pad were modelled in COMSOL and are

illustrated in Table 5.3.

Table 5.3: Comparison of the original three finger models trialled in COMSOL. In reality, touch pads are touched on
the back, the front is shown here for clarity.

Description Photo Illustration Contact Area Shape

Finger

perpendicular

to device

Finger

at 45◦

to device

Finger

parallel

to device
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Modelling the finger perpendicular to the touch pad was proved not to be realistic as the finger

nail often caused the finger to be forced at an angle to the sensor. Modelling the finger at 45◦ to

the touch pad was more realistic of the way in which people would use a touch device. However, the

model became complex at the point where the finger contacted the pad. The model was made using a

cylinder and a sphere connected. At the point of contact with the pad, the sphere had to be sliced in

order to allow a contact region which produced a non-uniform skin thickness. As the COMSOL model

was used later in this chapter to simulate altering the contact area between the finger and the touch

pad, the model at 45◦ to the touch pad was unsuitable as the area could not be easily altered and

led to further complexity. Although modelling the finger parallel to the touch pad was not how touch

devices are commonly used, it was how the touch pad was measured in this work; the user placed

their finger parallel with the touch pad to ensure stability and repeatability of the measurements.

The final model is shown in Figure 5.7. The model was made up of three layers; skin, fat and bone

and was compared to an anatomical model of the finger. In reality, the finger was found to be much

more complex than the model shown here, but a large portion of the interior structure of the finger tip

is made up of fat [42]. However, this model was found to be sufficient in modelling the relative change

in capacitance with touch. The finger in the model is in contact with the unprinted side of the touch

pad rather than the printed side, which was to prevent conduction between the metal electrodes.

103



Figure 5.7: Anatomical and COMSOL model of the human finger with skin, fat and bone labelled. The anatomical
drawing has been adapted from [43].

When a finger was placed parallel to the touch pad, this was the simplest shape which best

represented the contact area. The finger was taken to be 1 cm wide and 2 cm long as these were the

measured dimensions of the contact area of the user’s finger. An average adult human index finger is

16-20 mm long (from the tip to the first knuckle) [44]. However, the contact area with a touch pad is

smaller than this due to the curvature of the finger. In this work, the curvature of the finger has been

ignored for the simplicity of the model.

The distance between the ‘tip’ of the finger and the spherical end of the bone was determined to

be approximately 3.8 mm according to Buryanov et al. who took an average of measurements from

the x-rays of 66 adult hands [45]. The position of the bone in the z-axis (the distance from the plane

of the paper) was set to 3.5 mm from the top of the fat and 0.5 mm from the bottom of the fat. This

was an educated guess based on findings from Buryanov et al. [45]. The thickness of the skin was

taken to be 0.75 mm, as it is known to vary between 0.05 mm for eyelids and 1.5 mm for the soles of

feet [46].

The permittivity values for the skin, fat and bone were taken from the work by Gabriel et al. [47]

which was re-constructed using Matlab code. Values of permittivity taken at 3.4 MHz were used in

this work as this is the frequency at which the measurement system operates. The permittivity value
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of skin was taken to be 540, which is the value for dry skin; however the value could be varied between

this and the value for wet skin (860). For the sake of this model, the epidermis and the dermis were

considered as one uniform skin layer. The relative permittivity value for bone was taken to be 106,

which is the value for cortical bone. Although a finger contains cancellous bone as well (permittivity

equal to 110), the majority is cortical and the permittivity values are so similar, therefore 106 was

used. The value of permittivity used for the fat layer was 21.3, which is that of subcutaneous fat

as would be found in the finger. All other material properties for the finger were provided by the

COMSOL material library for skin, fat and bone.

Figure 5.8: Example of the electric field for Design 1 touch sensor in contact with the finger as calculated by COMSOL.

The electric field was seen to alter dramatically when the finger was added to the model, as in

Figure 5.8. The electric field was restricted to the paper owing to the high dielectric constant of the

skin in comparison to both paper and air. To compensate for this, the regions of high electric field were

much larger within the paper. As detailed previously, the finger was modelled as a rectangle and a

circle which were combined and extruded. This led to a ‘flat’ finger and is obvious in Figure 5.8 where

the curve of the finger is taken into account on the sides but not on the bottom of the finger. The

high permittivity of the skin meant that there was no change due to changes of the fat or bone. The

capacitance value when the touch sensor was touched with this finger model was 6.88 pF according to

the COMSOL modelling.

The effect of skin thickness on the capacitance was investigated to ensure the thickness value used
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was suitable. Increasing the thickness was shown to increase the capacitance of the device up to a

point and then the capacitance value saturates, with results shown in Figure 5.9. As there was less

than 2% increase in capacitance when the skin thickness was increased above 0.6 mm, the chosen value

should not have had an effect on the capacitance. The thickness of the skin was not likely to be lower

than 0.6 mm on fingers due to their robust and well-used nature.

Figure 5.9: Change in capacitance as the thickness of the skin layer is varied between 0.05 and 1.5 mm in the COMSOL
model.

Altering the dimensions of the fat or bone layers was shown to have no effect on the capacitance.

As the permittivity of the skin was so high and the electric field did not penetrate into the fat or bone

layers, altering the fat or bone should have had no effect on the capacitance. Moving the bone in the

z-axis within the fat layer showed no change in capacitance, the value was found to remain at 6.89 pF.

The conductivity of the skin, fat and bone did not need to be considered in this model as the user

touched the back side of the touch pad with no direct contact to the metal.

5.4 Impedance Measurement of the Interdigitated Sensors

As in Chapter 4, a Hewlett-Packard 4192A Low Frequency Impedance Analyser (Hewlett-Packard,

California, US) was used to measure the impedance, phase and capacitance of the interdigitated

structures in the range 40 - 100 MHz. A 16047E adapter was used so that devices could easily be

connected to the system. The analyser was calibrated, including the adapter, using open, short and
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load standards. An example of the capacitance data measured using the impedance analyser is shown

in Figure 5.10; this is for a Design 1 sensor.

Figure 5.10: Capacitance data taken from an impedance analyser for a Design 1 touch sensor in the touched and
untouched states.

It can be seen that there was an increase in capacitance when the device was touched, and it also

showed that the response was stable between 10 kHz and 10 MHz. The increase in capacitance when

the sensor was touched was from approximately 3.2 pF to 50 pF at 3.4 MHz. This was much higher

than the change in the COMSOL modelling and was likely due to the proximity of the finger to the

adapter and the resulting effect on capacitance. The change in capacitance with frequency when the

sensor was touched was likely due to the frequency dependence of the permittivity of the finger.

An equivalent model for the touch devices was determined and was constructed from a capacitor

and resistor in parallel which are both in series with a resistor, as illustrated in Figure 5.11. R1

represents the resistance of the substrate (in this case, paper), R2 represents the resistance of one set

of electrode fingers and C represents the capacitance between the two sets of electrode fingers.
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Figure 5.11: A schematic of the equivalent model for the touch sensors used in this work. The ends of the circuit are
equivalent to the ‘legs’ on the sensors.

The impedance and phase could be determined by calculating the total impedance considering

ZR = R and Zc = −1/iωC. The total impedance due to the resistance, R1, and the capacitance, C,

was equal to:

1

Z1
=

1

ZR1

+
1

ZC
=
ZC + ZR1

ZCZR1
=

1− iωCR1

R1
(5.2)

and so

Z1 =
R1

1 + (ωCR1)2
+

iωCR2
1

1 + (ωCR1)2
(5.3)

where Z1 was the combined impedance of R1 and C, ZR1 was the impedance of R1, ZC was the

impedance of C and ω was the frequency. When R2 was also included, the real and imaginary parts

of the impedance, Zreal and Zimag were:

Zreal = R2 +
R1

1 + (ωCR1)2
, Zimag =

iωCR2
1

1 + (ωCR1)2
(5.4)

This total impedance and the corresponding phase was plotted with the measured data in

Figures 5.12 and 5.13 respectively. To fit the model data to the measured values, the capacitance

was 5 pF, and R1 and R2 were 1 GΩ and 5 Ω respectively.
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Figure 5.12: Comparison of impedance data taken from the impedance analyser and RC modelling technique.

Figure 5.13: Comparison of the corresponding phase data taken from the impedance analyser and RC modelling
technique.
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5.5 Measurement of the Sensors using an Embedded System

Although the impedance analyser provides information on the capacitance and impedance with

frequency, it is not portable and so may not be suitable for many applications. In the majority of touch

sensor applications, only a ‘touched’ or ‘not touched’ response is required rather than information on

the impedance and phase of the sensor. For this reason, a system was designed and built to measure the

capacitance of the touch pads using a Texas Instruments FDC 2214 chip (Texas Instruments, Texas,

US), an Arduino MEGA Microcontroller and Matlab to interface with the measurement system and

extract capacitance values. An image of the system can be seen in Figure 5.14.

Figure 5.14: The custom-built measurement system for the touch sensors consisting of an Arduino MEGA, a PCB
with FDC 2214 chip and RLC components and an example of a Design 2 interdigitated sensor.

The FDC 2214 chip is a multichannel capacitance-to-digital converter for implementing capacitive

sensing solutions, and a schematic taken from the data sheet is shown in Figure 5.15 [48]. A change in

the LC tank, shown in Figure 5.15 where L is an inductance and C is a capacitance, could be observed

by a change in the resonant frequency which was then extracted as a digital value proportional to the

frequency. The digital value was read out through an Arduino using an I2C peripheral. The value

of L and C for the LC tanks were known and, by comparing the measured resonant frequency with

the known resonant frequency, the capacitance of the capacitive device in the shaded box could be

determined by the equation fr = 1/
√
LC. To achieve a resonant frequency of 3.4 MHz, which was

within the operating frequency of the chip, an inductance of 22 µH and a capacitance of 100 pF were

chosen for L and C respectively. The FDC 2214 chip was chosen as it is capable of having connections

to four touch pads and so, in an application, four touch sensors could be used at the same time.
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Figure 5.15: Schematic of the PCB and Arduino system, taken from [48].

It was understood that any changes in L and C within the LC tank would result in large changes

in frequency and, because of this, the tolerances of both the fixed inductor and capacitor were of

importance. In this case, the tolerance of the inductor and the capacitor were ±10% and ±5%

respectively. Any following variations in measurements would affect the absolute values for capacitance

read by the Arduino. In this investigation the concern was the relative change in capacitance with

touch which would not be affected by the variations and tolerances of the components.

The oscillator-based measurement system is highly stable and drift free. A sample was left for

15 minutes and the capacitance varied in the range 4.93 ± 0.04 pF. Several standard capacitors

were measured using the system and the capacitance values were all within the tolerances of the

components.

The oscillator-based measurement system, as well as measuring the state of the sensor (touched

or not touched), is also accurate in measuring the capacitance of the sensors. Table 5.4 compares

the capacitance values determined by Equation (5.1), COMSOL modelling, the impedance analyser

and the oscillator-based system. The value of capacitance quoted here for the impedance analyser

is the capacitance measured at 3.4 MHz to be directly comparable to the value measured using the

oscillator-based system. It can be seen that the oscillator-based system was directly comparable with

the other methods and showed the same trend in capacitance with changing design.

The large variation in capacitance values with the impedance analyser was due to measurement

difficulties rather than the touch pad fabrication method. There was limited availability of connection

modules for the impedance analyser, resulting in movement of the sample when touched. This could

have been avoided with an alternative connection module but would incur added costs which were not
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available for this work. The oscillator-based measurement system was shown to give results that were

comparable to the impedance analyser, with less variation due to its configuration for measurements.

Therefore there was confidence that the data from this was of a sufficient accuracy to continue future

measurements using that system alone.

Table 5.4: Comparison of capacitance values for the touch pad designs calculated by Equation (5.1), COMSOL
modelling, measured by the impedance analyser and the oscillator-based system.

Sensor

Design

Capacitance (pF)

COMSOL Equation (5.1) Impedance Analyser Oscillator-based System

1 2.81 1.73 2 - 8 3.1 - 3.3

2 4.00 2.74 4.5 - 15 4.2 - 5.1

3 3.42 2.16 3.8 - 12 3.1 - 3.9

4 5.75 3.46 2 - 9 6.8 - 8.0

5.5.1 Repeatability of the Fabrication Method

In Chapter 4, the deviation in feature size and thickness of the screen-printing method was considered.

It was shown that the ink thickness for this method varied between 14 - 31 µm. The feature size and

gap between features, when both designed to be 0.5 mm, were between 0.46 - 0.60 mm and 0.38 -

0.48 mm respectively. These changes in dimensions due to the fabrication method could lead to over

a 25% change in dimensions and therefore capacitance. Capacitance values for 20 samples of each of

the four designs were found to be within ±15% of the average value, as shown in Figure 5.16, which

was within the variation of the fabrication method.
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Figure 5.16: Repeatability of the fabrication method for the interdigitated touch pads.

Design 1 was shown to be more repeatable than the other designs and the variation was no more

than ±4% of the average value. This was due to the larger electrode finger width and shorter electrode

finger length of this design. These factors meant there was less area for the print to contain defects, but

the features were large enough to be distinct from each other and not merge together. Defects could

have included shorting between the electrode pairs, thinner (or no) ink being deposited or weeping of

the ink during printing which would have led to larger electrodes and a smaller gap. Due to the lower

variation in fabrication and the lower area, Design 1 was used for the example results throughout this

chapter unless stated otherwise.

5.5.2 Comparing Touch of the Printed and Non-printed Sides of the Sensor

As the printed side of the capacitive device was not coated, unlike the designs from other groups, the

change in capacitance when this side was touched was highly variable in comparison to touching the

non-printed side. In this work, the ‘front’ side refers to the printed side and the ‘back’ side refers to

the non-printed side. Touching the front of the capacitive device could cause shorting between the

two sets of electrode fingers, especially if the finger was warm and moist. Although the COMSOL

model did not include the conductive nature of the finger, in reality the finger was slightly conductive

(< 20 µS) [49]. When the finger was moist due to sweat or water, this conductivity increased.
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Touching the back of the device, wearing gloves while touching the front of the device or touching

the front when it had been covered with tape (or some other dielectric material) was shown to have

smaller variation when compared to touching the uncoated front of the device. Example results for

touching the device under each of these conditions are shown in Figure 5.17. To show the data clearly,

the scale of the y-axis was chosen so that it did not include the full data range of the capacitance

when the front of the touch pad was touched. This data actually ranged from 3 pF to 2 nF as can be

seen in the figure inset.

Figure 5.17: Comparison of capacitance values for touching the touch pad in different ways. Touching the front,
touching the back, touching the front of the touch pad with gloves on and touching the front when it had been covered
in a layer of tape.

Adding tape to the printed side of the sensor or wearing gloves prevented connection between

the two pairs of electrodes which could happen when the printed side was contacted with bare skin.

However, as the sensor could simply be turned over, the addition of gloves or tape would increase the

cost of the device. Touching the back side of the sensor also allowed the addition of an application-

based design on the non-printed side of the sensor. For example the keys on a keyboard could be

drawn on the non-printed side to indicate the touch sensitive areas to the user.

As touch sensors are used by a highly diverse audience, further measurements were taken with

different users touching an example device, results are shown in Figure 5.18. The users included a

variety of sexes, nationalities and body types in order to accommodate the possible diversity of users.

When touching the front of the sensors, the capacitance varied between pF and µF between different
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users. This was due to the change in conductivity of the users’ fingers, some were warmer and more

moist than others. The variability in capacitance values for different users touching the back of the

device was due to the difference in force and contact area among users. Even with this variation, the

results for touching the back of the touch sensor were within a more reasonable range. These results

emphasised the difference in repeatability when touching the front and back of the device. Any results

presented below for touched devices are for those touched on the back of the device.

Figure 5.18: Example data for various users touching the front and back of a touch pad.

5.5.3 Comparing Touch of the Sensor Using Different Parts of the Hand

In addition to comparing a variety of users, it was important to consider the part of the body used

to touch the touch pad. Although many users use their index finger to touch a sensor, some may use

other fingers or parts of their hand. Some applications or situations may mean that the index finger

is not available and maybe the knuckle or another finger is used. As detailed when developing the

COMSOL model, a simple model of the finger can be made up of three layers: skin, fat and bone which

all have varying mechanical and electrical properties. In reality, the finger is far more complicated

than this and is made up of many more layers and materials, and different parts of the hand are also

made of different materials with different structures. To illustrate using different parts of the hand to

contact the sensor, the index finger and knuckle, the ring finger and knuckle, the nail and the cushion

were considered and are shown in Figure 5.19. It is shown that the front of the touch pad is touched
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for better illustration although measurements were taken on the back of the touch sensor.

Figure 5.19: Various parts of the hand used to compare the difference in capacitance when each part is used to touch
the sensors. In reality, the sensor was touched on the back, however the front has been shown for clarity.

Using any section of the finger was found to produce more repeatable results than using the

‘cushion’ part of the hand, with results shown in Figure 5.20. In a real situation, it is unlikely that

the cushion part of the hand would be used but it is important to consider many possibilities and find

a working range based on this. These results showed that the touch sensor was operational for all

parts of the hand tested. The larger variation in capacitance change when using the cushion part of

the hand was due to the variable area and force which would be used, this was much easier to control

when using the fingers or knuckles.
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Figure 5.20: Measured capacitance values when different parts of the hand are used to touch the touch pad.

5.5.4 Untouched and Touched Capacitance of the Sensors

The capacitance value was found to more than double for each design when touched. Capacitance

values for each design in their untouched and touched states are listed in Table 5.5. Designs 2 and

4 are seen to have a much higher change in capacitance with touch, which was due to their larger

area. A larger area will lead to a larger contact area between the touch pad and the finger and so

the effective permittivity will increase, increasing the capacitance. This should be taken into account

when designing a touch pad.

Table 5.5: Capacitance values for the various designs in touched and untouched states measured using the custom
set-up. All values represent the maximum and minimum data.

Sensor Design No Touch (pF) Touch (pF) Capacitance Change (pF)

1 3.2± 0.12 7.7± 1.4 4.5± 1.5

2 4.7± 0.4 14.4± 2 10.0± 2

3 3.5± 0.4 10.0± 1 6.4± 1.5

4 7.3± 0.8 17.0± 1 9.7± 4

The dimensions of the electrode fingers were comparable with those detailed in the literature, all

of which resulted in capacitances in the low pF range. The change in capacitance was 30 pF for Li

et al. [24], 20 pF for Kanaparthi et al. [38] and 100 pF for Yun et al. [34] when the touch devices

were touched. The change in capacitance for the sensors here was lower than work by Yun although
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in keeping with work by Li and Kanarparthi. This comparison is shown in Table 5.6.

Table 5.6: Comparison of capacitance values for untouched and touched sensors for work by different groups.

Group Dimensions Fabrication Method

Untouched

Capacitance

(pF)

Touched

Capacitance

(pF)

Li et al. [24]

W and g = 0.5 mm

L varied 4 - 16 mm

N = 2 - 10

Direct write

syringe pump
1 - 5 5 - 35

Kanarparthi et al. [38]

W and g = 0.6 mm

L varied 5 - 15 mm

N = 4 - 20

Direct write

5B pencil
1 - 3.5 5 - 23

Yun et al. [34]

W = 1 mm

g = 0.5 mm

L varied 5 - 15 mm

N = 12

Inkjet printing 228 - 236 340 - 564

This Work

W = 1 - 2 mm

g = 1 mm

L varied 20 - 30 mm

N = 8 - 16

Screen print 3 - 8 6.5 - 18

5.5.5 Varying the Touching Pressure

Increasing the force applied to the sensor was shown to increase the resulting capacitance. A touch

pad was secured to a digital balance and the mass measured was converted into a force. From the

equation P = F/A, where P is the touching pressure, F is the force and A is the contact area between

the finger and the touch pads. The pressure was calculated and has been used to present the results

in Figure 5.21. The area was taken to be 2 cm2 and was measured based on the contact area of the

user for this experiment. The user touched the touch pad, ensuring the same mass was registered on

the scale, 20 times at each level.

118



Figure 5.21: Measured capacitance values when different forces were applied to a touch pad with a paper substrate.

It is thought that increasing the force was not directly causing the change in capacitance but that

it was due to the resulting decrease in the air gap between the device and the finger. The finger

was modelled in COMSOL as a flat surface in direct contact with the device, however this is not the

case in reality since, as the finger is both curved and ridged, the contact area and air gap between

the device and the skin will vary based on the force applied by the user. When a force is applied

resulting in a pressure of 1× 104 Pa, the finger will deform and the contact area between the device

and the finger will increase. The air between the fingerprint ridges will be decreased and so both

the area decreases and the effective permittivity increases, increasing the capacitance dramatically.

When a larger force is applied, resulting in a pressure of 1× 105 Pa and then 15× 105 Pa, the amount

of deformation possible will reduce and so less air is removed and the contact area tends towards a

maximum value. This explains why increasing the force increases the capacitance by large amounts

to begin with and then by less as more force is applied.

To ensure that the change in capacitance was not related to the compression of the substrate, an

identical touch pad was printed on a 1 mm thick glass substrate and tested in the same way as the

paper-based device. The results shown in Figure 5.22 for the glass substrate show the same trend as

those for the paper substrate. Therefore, the change in capacitance was not due to compression of

the substrate. The lower change in capacitance in comparison to the paper substrate was due to the
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thickness of the glass being four times that of the paper and so there was less interaction with the

electric field.

Figure 5.22: Measured capacitance values when different forces were applied to a touch pad with a glass substrate.

5.5.6 Varying the Contact Area Between the Finger and Sensor

Users of any touch sensor have varying finger sizes, even one user has different sized fingers which

can be used to contact the sensor. Increasing the contact area between the capacitive device and the

finger was shown to increase the capacitance both in the measurement and COMSOL modelling, as

shown in Figure 5.23. Both results were for when the finger was in contact with the back of the touch

pad.
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Figure 5.23: Comparison of measured and simulated capacitance values when the contact area between the finger and
touch pad was varied.

In measurements, the contact area was changed by placing the finger so it covered 1/5, 1/3 and 1/2

of the device. To achieve an area of 1, two fingers were used close together to cover all of the pad. At

each point, the measurements were taken 10 times. Due to the subjective nature of ensuring a certain

fraction of the device was covered, the variation in the measurements was high, approximately ± 20%.

Although the variation was high, there was a clear trend between contact area and capacitance. When

the finger covered a larger area of the touch pad, the effective permittivity increased for that area,

leading to an increase in capacitance.

The finger model used in the COMSOL model was varied between the sizes shown in Figure 5.24.

Again, as the area was increased, the effective permittivity was increased and so the capacitance was

increased. The COMSOL model parameter sweep was independent of any other factors and only the

area was varied in this case. The area and capacitance did not vary completely linearly as expected

for the COMSOL results. This was due to the shape of the finger and an area equal to 1 including the

connection ‘legs’. As the finger is increased, a portion of the finger may not be in proximity to the

electrodes but instead, is in proximity to the space between the legs, leading to a lower capacitance

than if it was covering electrodes.
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Figure 5.24: Illustration of the smallest and largest contact area between the finger and touch pad when using the
COMSOL modelling.

Both the COMSOL modelling and measurements indicated that there was a linear trend between

contact area and capacitance, and so the resulting capacitance based on an area could be calculated.

The gradient for the COMSOL modelling was 14.75 pF/m2 and the gradient for the measured values

was 11.71 pF/m2. These values were within the variation of the measured values and in good agreement

with each other. The difference in intercept of the graph was due to the use of modelled touch pads

and printed touch pads. The printed touch pads had different dimensions to the model due to the

25% variation in printed features determined in Chapter 4. The added complexity of an actual finger

compared to the model would also have affected the results.

5.5.7 Varying the Position of the Finger on the Sensor

The change in position of the finger around the outside of the device was shown to have no effect

on capacitance but using the middle of the touch pad was shown to increase the capacitance. These

results are shown in Figure 5.26, the positions A to F are labelled in Figure 5.25. The dimensions

of the finger model used in this section were reduced in order to have distinct positions of the finger

with minimal overlap. In this investigation, the finger was 0.5 cm wide and 1 cm long.
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Figure 5.25: Illustration of the various positions of the finger in the COMSOL model to determine any change in
capacitance with position.

Figure 5.26: Simulated capacitance values for a finger touching the touch pad in different positions.

When the finger was placed in the centre of the device, there was more interaction between the

finger and the electric field than when it was along the edge of the device. Measurements taken using

the same principle of moving the finger showed large variation, which was likely due to changes in

contact area and pressure and so results have not been presented here.
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5.5.8 Varying the Proximity of the Finger to the Sensor

Figure 5.6 showed that the electric field exists out of the paper substrate, meaning that the touch

sensor should be proximity sensitive as well as force and area sensitive. Using the custom set up, the

wires were found to be proximity sensitive and so it was not possible to take measurements regarding

the proximity sensitivity of the touch sensors. When the touch pad was face up or face down or not

connected at all, the largest change in capacitance due to proximity of the hand with the wires was

2 pF. The change in capacitance of the device when touched ‘lightly’ on the back was 9 pF, therefore,

the change in capacitance from touch was not simply proximity to the wires.

COMSOL modelling has been used to determine the effect of proximity on the capacitance of the

touch sensors. The finger was moved so that the distance between it and the device was increased

up to 1 mm, with results shown in Figure 5.27. The capacitance dropped dramatically from 6.9 pF to

2.9 pF within this distance. This was in agreement with the figures showing the electric field as the

electric field strength was non-linear with distance from the paper.

Figure 5.27: Simulated capacitance values when the proximity of the finger and the touch pad was varied between 0
and 1 mm.

5.6 Effect of Humidity on the Sensors

The effect of humidity on paper substrates is widely known and a great concern in the printing

industry and has been discussed in detail previously (Chapter 1). As the design of the capacitive
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sensors has now been established and the change in capacitance with different users considered, the

effect of humidity on the sensors was also investigated to determine possible environments where they

might no longer operate as touch sensors.

The effect of relative humidity on the response of the touchpads was determined by recording

the variation of capacitance in an Espec SH-641 bench-top type temperature and humidity chamber,

where the relative humidity was systematically varied between 40% and 90% in 10% steps. The set

up is shown in Figure 5.28 and the results are shown in Figure 5.29. Throughout this work, the

temperature was constant, at 30 ◦C.

Figure 5.28: Set-up for humidity measurements showing an example device under test. An environmental chamber and
the custom measurement system were used to vary the relative humidity and simultaneously measure the capacitance
of the touch pads.
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Figure 5.29: Measured capacitance values for the four touch sensor designs when the relative humidity is varied from
40 to 90% and returned again to 40%.

Due to the hygroscopic nature of paper, the substrate for the touch sensors will absorb water as the

humidity is increased. Therefore, the permittivity of the substrate will increase as the permittivity of

water is greater than that of paper (approximately 80 compared to 3.25 for paper). As the permittivity

of the substrate increases, the capacitance will increase proportionally. Based on this, it can be seen

that the amount of water absorbed by the substrate increases at a higher rate with humidity. The

increase in water content and the resulting change in permittivity is explained in detail in Chapter 6.

The increasing change in capacitance between designs was due to the change in substrate area.

The paper substrate was cut around the sensor leaving a 1 mm gap between the edge of the printed

area and the edge of the paper. The areas of each of the sensors used in this investigation were 858,

958, 796 and 1096 mm2 for Designs 1, 2, 3 and 4 respectively. The area of sensor designs 2 and 4

were higher than that of 1 and 3 and so the change in capacitance was greater as more water could

be absorbed.

The change in capacitance was less than 1 pF for all four designs when the humidity was varied

between 40 and 70%. When the humidity was increased above this, the capacitance increased greatly

with maximum change being 1.5, 1.9, 2.8 and 4.5 pF for Designs 1, 3, 2 and 4 respectively. The

maximum change for each design with humidity was lower than the average change when touched,
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shown in Table 5.5. However, in any environment in which the relative humidity will rise above 70%,

this change in capacitance should be taken into account.

5.7 Conclusion

The results in this chapter have shown that it is possible to fabricate reliable touch pads on paper for

use in systems which require a touch interface. This is a significant requirement for the development

of a final device which includes an interactive element and has the potential to be integrated with the

sensing elements detailed in Chapter 7.

Interdigitated capacitive structures have been screen printed for use as touch sensors with

successful results showing a measurable increase in capacitance when touched. The measured results

achieved have been supported by COMSOL modelling and are comparable with the performance of

interdigitated touch pads by other groups, which have often been produced with more costly fabrication

techniques.

The sensors were found to be compatible with a large range of users who have different body types

and they produced a distinct, measurable change in capacitance when touched. Increasing both the

force of touch and the contact area between the finger and touch pad was found to increase the change

in capacitance when touched owing to the increase in relative permittivity. The touch pads were also

found to be proximity sensitive, however only in regions close to the touch pad.

As paper is hygroscopic, the effect of humidity on the interdigitated sensors was considered. All of

the designs were humidity sensitive, with approximately a 50% increase in capacitance from 40 to 90%

relative humidity. It was found that the larger area touch pads had a larger change in capacitance

with humidity due to the larger water intake and therefore the larger change in relative permittivity

of the substrate. This increase in capacitance is lower than the change when the device was touched,

but should still be taken into consideration when used in applications.
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Chapter 6

Paper-based Microwave

Transmission Lines

6.1 Introduction

The work in this chapter aims at designing and characterising microwave transmission lines, screen

printed on Neenah paper, in the frequency range 300 kHz–3 GHz. Transmission lines are the building

blocks for many microwave circuits and can be used to determine the working range of parameters,

such as characteristic impedance and propagation velocity, and any losses that may arise from the

ink and paper combination. Coplanar waveguides (CPW) have been chosen as they are printed only

on one side, so simplifying the printing process. The chapter first details the theory on transmission

lines, discussed in detail in [1], which closely follows Heaviside’s approach [2]. The effect of humidity

was also considered as the hygroscopic nature of paper will affect the operation of CPWs at different

humidity levels.

As detailed in Chapter 1, when discussing paper-based devices, radio frequency identification

(RFID) tags and antennas are common high frequency devices to be created on paper. These devices

often operate around the MHz frequency range to be used with WiFi or bluetooth components. Devices

operating at microwave frequencies are required to be smaller and so paper is often unsuitable owing

to the less accurate and larger feature sizes. However, there is a great deal of literature on the topic of

microwave devices if paper is disregarded [1, 3–9]. Paper-based microwave devices result in a thinner

substrate which has lower permittivity when compared to traditional microwave components. This

leads to a higher propagation velocity but also a higher characteristic impedance as shown in the
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results for this chapter. Paper is also hygroscopic so in environments with varying humidity, the

permittivity of the substrate will vary between 3.25 and 80, the effects of this are highlighted within

this chapter.

Printed resonators can be used to measure the permittivity of paper and plastic substrates [10, 11].

Sahu et al. take this a step further by determining both the dielectric properties of flexible substrates

and the conductive properties of the deposited metal [12].

Coplanar waveguides are an example of microwave devices, made up of two ground planes and a

signal track in between with a gap either side [13]. They have an advantage over other structures like

microstrips as everything can be fully printed on one side of the substrate. Examples of touch pads

using coplanar waveguides on paper are presented in [14–17]. A serpentined transmission line covers

a large area and a touch event causes a change in the local impedance of the waveguide, generating a

reflection of the signal towards the input.

6.2 Transmission Line Theory

6.2.1 Lossless Transmission Line

An ideal transmission line provides a link between two points where the voltage and current changes are

transmitted instantly with no losses. In most of the literature an ideal transmission line is considered

as two linear, lossless and infinitely long conducting wires running parallel to each other. The simple

model used for an ideal transmission line with no losses is shown in Figure 6.1, where the line has

been split into several sections ∆x long, each with a corresponding series inductance, due to the wire,

and a parallel capacitance, due to the coupling between the two wires.

Figure 6.1: Simple model for an ideal transmission line. Two parallel, lossless wires of infinite length were split into
sections made up of series inductance L and parallel capacitance C per unit length.

At low frequencies, it is possible to ignore this inductance and capacitance. However, at microwave
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frequencies, these values must be taken into account. The voltage across the inductor and the current

through the capacitor can be determined by Equations (6.1) and (6.2) respectively.

VL = L∆x
∂I(x, t)

∂t
= V (x, t)− V (x+ ∆x, t) (6.1)

IC = C∆x
∂V (x+ ∆x, t)

∂t
' C∆x

∂

∂t
[V (x, t) +

∂V (x, t)

∂x
∆x]

= C∆x
∂V (x, t)

∂t
+ C

∂

∂t
[
∂V (x, t)

∂x
]∆x2

' C∆x
∂V (x, t)

∂t
= I(x, t)− I(x+ ∆x, t)

(6.2)

where V and I are the amplitudes of the voltage and current waves propagating along the line

respectively, L and C are the series inductance and parallel capacitance of the transmission line per unit

length respectively, x is the length of the transmission line and t is time. Dividing Equations (6.1)

and (6.2) by ∆x and taking the limit ∆x → 0 results in the Telegrapher’s equations, which were

developed by Oliver Heaviside in the 19th century [2]:

L
∂I

∂t
= −∂V

∂x
(6.3)

C
∂V

∂t
= −∂I

∂x
(6.4)

Taking the derivative of Equation (6.3) with respect to x and the derivative of Equation (6.4) with

respect to t, we obtain the wave equation:

∂2V

∂t2
=

1

LC

∂2V

∂x2
(6.5)

Applying the reverse procedure to Equations (6.3) and (6.4), we obtain:

∂2I

∂t2
=

1

LC

∂2I

∂x2
(6.6)

The propagation velocity (v) of the voltage and current waves is given by:

v =
1√
LC

(6.7)
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6.2.2 Characteristic Impedance

To determine the characteristic impedance of a transmission line, an infinite lossless transmission line

was considered. The Telegrapher’s equations state that to support an oscillating voltage, an oscillating

current is required. Assuming there is a constant relationship between the two sinusoidal signals

propagating in the forward direction: V+(ω) = Z0(ω)I+(ω) where Z0 is the characteristic impedance,

V+ and I+ are the amplitudes of the voltage and current signals propagating in the forward direction

and V = V+e
−iβxeiωt and I = I+e

−iβxeiωt, the second Telegrapher’s equation (Equation (6.4)) can

be written as:

iωCV+e
−iβxeiωt = iβI+e

−iβxeiωt (6.8)

where β is the phase constant of the signals. Simplifying, using Equation (6.7) and β = ω/v,

Equation (6.8) can be re-written as:

V+ =

√
L

C
I+ (6.9)

Therefore, the characteristic impedance is equal to:

Z0 =

√
L

C
(6.10)

When a transmission line is terminated with a complex load impedance, ZL as shown in Figure 6.2,

part of the voltage and current signals is reflected and part is dissipated by the load.

Figure 6.2: Simple model for an ideal transmission line terminated with a load impedance ZL

The overall voltage and current is the sum of the forward and reflected waves. At the point of the

load impedance, when x = 0, the ratio between the voltage and current is set by the load impedance:

V (0, t)

I(0, t)
=
V+ + V−
V+ − V−

Z0 = ZL (6.11)
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where V− is the amplitude of the reflected voltage signal. This leads to a relationship between the

forward and reflected voltage amplitudes V+ and V−:

V− =
ZL − Z0

ZL + Z0
V+ = ΓV+ (6.12)

where Γ is the reflection coefficient. When ZL is equal to a short circuit, the reflection coefficient is

equal to -1. When ZL is equal to an open circuit, the reflection coefficient is equal to 1 and total

reflection occurs. When ZL is equal to Z0, the transmission line is said to be terminated on a matched

load and the reflection coefficient is equal to 0. In the final case, there is the same response as if it

were an infinitely long transmission line.

6.2.3 Transmission Lines with Losses

Real transmission lines have power losses which must be accounted for, typically due to the finite

resistance of the tracks and the substrate. These power losses can be accounted for by the series

resistance of the tracks, R, and the shunt conductance of the dielectric substrate, G, resulting in the

model shown in Figure 6.3.

Figure 6.3: Simple model for a real transmission line. Two parallel wires of infinite length are split into sections made
up of series inductance L, resistance R, parallel capacitance C and conductance G per unit length.

If we limit this to the signal propagating in the forward direction (i.e. V = V+e
−iβxeiωt, as we are

considering the impedance). Equations (6.3) and (6.4) then become:

γV+ = Z(ω)I+ (6.13)

γI+ = Y (ω)V+ (6.14)

where, in a lossy line, Z(ω) is the series impedance per unit length and is equal to (iωL+R), Y (ω) is

the shunt admittance per unit length and equal to (iωC +G) and γ is the propagation constant and
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is equal to γ = α+ iβ. In addition to the phase constant β (as in the lossless transmission line), there

is now also the attenuation constant, α, which results in a wave that decays exponentially along the

direction of propagation.

Multiplying Equations (6.13) and (6.14) together, the propagation constant is then equal to γ =√
Z(ω)Y (ω) and the characteristic impedance equal to Z0 =

√
Z(ω)/Y (ω). By substituting the

series impedance and shunt admittance in terms of R,G,L and C, the propagation constant can be

represented by:

γ =
√

(iωL+R)(iωC +G)

= iω
√
LC

√
1− i

(
R

ωL
+

G

ωC

)
− RG

ω2LC

(6.15)

In the limit of low losses (R << ωL and G << ωC), the propagation constant can be approximated

by:

γ ' iω
√
LC +

1

2

(
R

√
C

L
+G

√
L

C

)
(6.16)

6.3 Transmission Line Parameter Extraction from Measured

Scattering Parameters

An example of a screen-printed transmission line on matt paper is shown in Figure 6.4 (for information

on the fabrication method, see Chapter 4). Metalon HPS-021LV silver-flake ink was used in this case

as it has a high conductivity which minimises losses and optimises transmission. Scattering parameters

(s-parameters) were measured using a HP 8753C Vector Network Analyser (VNA).

Figure 6.4: Example transmission line geometry using the coplanar waveguide structure which includes a signal track
and two ground planes all printed on one side of a paper substrate. This example is 17 cm long with 2 mm and 15 mm
signal and ground track widths respectively.

The s-parameters can be calculated from the transmitted and reflected signals at ports 1 and 2 as

shown in Figure 6.5 and Equation (6.17). Further detail on the operation of the VNA and signals a

and b was presented previously in Chapter 2.
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Figure 6.5: Illustration for transmitted and reflected signals for a two port microwave device, used to calculate the
scattering parameters. This should be considered in conjunction with Equation (6.17).

b1
b2

 =

s11 s12

s21 s22

a1
a2

 (6.17)

where s11 and s22 are the ratios of reflected signal to the incident signal at port 1 and port 2 respectively,

s12 is the ratio of the transmitted signal received at port 1 to the incident signal from port 2 and s21

is the ratio of the transmitted signal received at port 2 to the incident signal from port 1 [6].

The same network can also be defined or represented using the ABCD matrix, often known as

the transmission matrix. The ABCD matrix is well suited to cascading two-port networks and has

been used in this work for the conversion between s-parameters and the line parameters α, v and Z.

The ABCD matrix can be defined by considering the input/output voltages and currents, as shown

in Figure 6.6 and Equation (6.18) [5].

Figure 6.6: Illustration for the transmission (ABCD) matrix in terms of port 1 and 2 voltages and currents. This
should be considered in conjunction with Equation (6.17).

V1
I1

 =

A B

C D

V2
I2

 (6.18)

The model for a transmission line with losses, described previously by Figure 6.3, using the series

resistance, inductance and shunt capacitance, and conductance per unit length is a simple model of

the lossy transmission line and in reality was not well suited to the transmission lines investigated

here, so the line parameters were considered. The conversion from the s-parameters to the propagation

velocity (v), the losses (α) and the characteristic impedance (Z) was not trivial. However, the reverse

was much more straightforward.

136



The ABCD matrix for a transmission line can be determined from:

(ABCD) =

 cos(g) iZL sin(g)

iZ−1L sin(g) cos(g)

 (6.19)

where g = −iγLl = βl − iαl and l is the physical length of the line [18]. The ABCD matrix can then

be converted to the s-parameters using the conversion in [19].

In order to determine the line parameters, an initial guess of α, v and Z was determined, which

was then converted to the ABCD matrix and the s-parameters. These calculated s-parameters were

then compared to the measured ones. This process was repeated to minimise the error and determine

line parameters to fit the data.

The Taylor’s expansion of α, v and the magnitude and phase of Z with frequency using three

coefficients were used as the initial guess for the calculated s-parameters:

α = α0 + α1f + α2f
2

β = β0 + β1f + β2f
2

Zr = Zr0 + Zr1f + Zr2f
2

Zi = Zi0 + Zi1f + Zi2f
2

(6.20)

where f is the frequency and α0−2, β0−2, Zr0−2 and Zi0−2 are the coefficients for the expansion of α,

β, the real and imaginary parts of the characteristic impedance respectively.

Using more than three coefficients was found to have negligible increase in the accuracy of the

scattering parameter fit but resulted in an increase in computation time. The ‘fminsearch’ function

in Matlab was utilised to minimise the error between the calculated and measured s-parameters to

find the combination of α, β, Zr and Zi, i.e. the function ||sc(f) − se(f)|| is minimised, where sc(f)

are the calculated s-parameters from the Taylor’s expansion and se(f) are the measured s-parameters.

When the error is small, the values of the input parameters can be ascribed to those of the ‘fitted’

parameters.

Example measured and fitted s-parameter data are shown in Figure 6.7 for the geometry in

Figure 6.4. It can be seen that the fitted data represent the measured data well and remove the

calibration artefacts, smoothing the data.
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Figure 6.7: Comparison of measured and fitted scattering parameters for a 17 cm long transmission line with a
2 mm wide signal track. The fitted scattering parameters have been constructed by taking an initial guess of the line
parameters and calculating the ABCD matrix. From this, the s-parameters could be extracted and the error between
these and the measured values limited.

The losses, propagation velocity and magnitude/phase of the characteristic impedance produced

from the scattering parameters in Figure 6.7 can be seen in Figure 6.8.
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Figure 6.8: Corresponding losses, propagation velocity and magnitude/phase of the characteristic impedance for
the same transmission line as the results shown in Figure 6.7. These line parameters were constructed by the fitting
algorithm detailed in the text.

The values for v and Z can easily be verified graphically. When the length of the transmission

line is equal to nλ/2, transmission is at a maximum (|s11| is a minimum and |s12| is a maximum).

The propagation velocity at this point was calculated to be 0.85c at the first minimum of |s11| (at

0.75 GHz) from λ = v/f = 2π/k. This is in agreement with Figure 6.8 where v = 0.86c at this point.

When the length of the transmission line is equal to λ/4, Zeq = Z2
x/Z0, where Zeq is the equivalent

characteristic impedance and Zx is the characteristic impedance. The λ/4 transformer equation:

s11 =
Zeq − Z0

Zeq + Z0
(6.21)

can be rearranged to:

Zx = Z0

√
1 + s11
1− s11

(6.22)

Taking the first maximum of |s11| = 6.1 dB, where l = λ/4, Zx can be calculated to be 86 Ω which is
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also in agreement with Figure 6.8. Although this is only true for real impedances, it can be used as a

good estimate to verify the values obtained for the characteristic impedance.

Although many microwave components require a characteristic impedance of 50 Ω, this is a

somewhat arbitrary traditional value taken as a compromise for coaxial cables. In fact the value

of characteristic impedance required will vary depending on the circuit requirements. The value for

the characteristic impedance achieved for this work is the most convenient value within the limitations

of the fabrication method. The ability to alter this characteristic impedance is of high importance

when designing devices with multiple components.

6.4 Effect of Changing Transmission Line Parameters on the

Transmission Line Response

The s-parameters and line parameters (α, v and Z) for transmission lines with differing properties

and geometries have been considered here to determine a working parameter range and the effect of

varying parameters on transmission line response. The repeatability of the fabrication process is of

key importance in device design. Ten identical transmission lines, 17 cm long with 2 mm and 15 mm

signal and ground track widths respectively, as in (Figure 6.4), were measured and the extracted line

parameters are shown in Figure 6.9.
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Figure 6.9: Line parameters of ten transmission lines with identical geometry to show repeatability of the devices.
The maximum deviation is 3σ from the magnitude of the characteristic impedance.

The scattering parameters when the same transmission line was measured ten times were identical

and so the changes seen in Figure 6.9 were not due to fluctuations in the measurements. The error

bars show the maximum and minimum values at each frequency for all of the data taken from the

ten different transmission lines. Although the variations look large, for transmission lines on paper

fabricated by screen printing, these were good results as they could be fully explained by the fabrication

method. As detailed in Chapter 4, the variation for the fabrication method was 25%. The increase

in variation with frequency was due to the larger change which could be more easily measured; the

percentage change was the same.

The length had no effect on the line parameters, as shown in Figure 6.10 where an example

transmission line was reduced in length from 17 to 5 cm in 2 cm steps. Again, any discrepancies were

likely due to the fabrication method. If sections of the transmission line where the ink is much thinner

are removed, then the response will differ accordingly. Lengths below 5 cm provided an unphysical

response owing to the proximity of the connectors to each other.
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Figure 6.10: Line parameters of a transmission line with length varied between 17 and 5 cm in 2 cm steps. Results
show a maximum deviation of 2σ from the magnitude of the characteristic impedance.

The width of the ground plane also had negligible effect on the s-parameters or line parameters

until sizes comparable with the gap between the signal and ground tracks, as seen in Figure 6.11.

The s-parameters are presented rather than the line parameters, to highlight the noise added to the

response as the ground width approaches that of the gap (1 mm). In theory, it is assumed that the

ground plane is infinite and so is often designed to be as large as the device will allow; however, this

increases costs and so is normally limited. It is shown here that ground planes above 10 mm, for a

gap of 1 mm between the signal and ground track, are sufficient.
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Figure 6.11: Scattering parameters of transmission line with ground plane width varied between 30 and 2 mm.

Unlike the ground plane, the signal track width was found, as expected, to alter the line parameters,

with results shown in Figure 6.12. Increasing the signal track width increases the capacitance as there

is a larger area for the electric field to interact between the signal and ground tracks. Increasing

the signal track width causes the inductance to decrease because, as the track is increased, the

magnetic field strength will decrease. The inductance decreases and the capacitance increases so,

from Equation (6.10), the characteristic impedance will decrease. As can be seen from Figure 6.12,

the propagation velocity increases with signal track width and so the decrease in inductance must

dominate over the increase in capacitance, if Equation (6.7) is considered.
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Figure 6.12: Line parameters of transmission lines with signal track widths of 1, 2, 3, 5 and 6 mm.

Varying the gap between the signal and ground tracks changes the capacitance per unit length of

the transmission line; increasing the gap lowers the capacitance. From Equations (6.7) and (6.10),

lowering the capacitance increases the characteristic impedance and the propagation velocity. This

trend is seen in Figure 6.13. As the characteristic impedance is increased, the ratio between the

voltage and current will increase and so the current will decrease. As the ohmic losses are directly

linked to the current, the ohmic losses will decrease, as evident in Figure 6.13.
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Figure 6.13: Line parameters of transmission lines with a gap between signal and ground of 1, 2 and 4 mm.

Agilent Advanced Design System (ADS) was used to simulate the effect of varying the substrate

thickness and permittivity, as well as the metal thickness and conductivity, as these cannot be easily

modified with fabricated samples. In all cases, the permittivity of the substrate was 3.25, the loss

tangent was equal to 0.14, the thickness of the substrate was 235 µm, the conductivity of the metal

was 4× 106 S/m and the thickness of the metal was 16 µm, unless stated otherwise. The length of the

transmission line was 17 cm and the signal track width and ground plane were 2 and 15 mm respectively.

The value of permittivity was decided based on measurements detailed earlier in Chapter 4.

An example comparison of measured and simulated s-parameters is shown in Figure 6.14 using

the parameters mentioned. It can be seen that the simulated data shows higher response in |s11|

and |s22| when compared to the measured, meaning lower losses, which is expected from a simulated
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transmission line. In the simulation software, all layers are assumed to be uniform, without defects

and do not take into account the real-life complex geometries.

Figure 6.14: Comparison of measured and simulated scattering parameters for a transmission line that is 17 cm long
with 2 mm signal track width and 15 mm ground track width.

Increasing the thickness of the substrate increases its effective permittivity and so these properties

should be considered together. The increase in substrate permittivity with thickness is caused because

a larger part of the electric field is contained in the substrate and not in air. This increase in effective

permittivity will increase the capacitance and so, from Equations (6.7) and (6.10), the characteristic

impedance and propagation velocity will decrease, as shown in both Figures 6.15 and 6.16 where the

substrate thickness and permittivity have been varied independently. The propagation speed of the

signal is higher in air compared to the paper substrate and so if more of the signal is confined to the

paper, the propagation speed will decrease. In addition to this, as more of the field is in the substrate,

the substrate losses will increase and so α increases.
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Figure 6.15: Simulated line parameters of transmission lines of substrate thickness varying between 100 and 500 µm.
Scattering parameters were simulated using ADS software and line parameters extracted.
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Figure 6.16: Simulated line parameters of transmission lines varying the substrate permittivity between 1 and 10.
Scattering parameters were simulated using ADS software and line parameters extracted.

Increasing the metal thickness changes both the geometry and the conductivity of the ink and so

these properties should be considered together. Increasing the conductivity of the metal results in

fewer metallic losses and so α decreases, as shown in both Figures 6.17 and 6.18. The propagation

velocity and characteristic remain the same since the inductance is unaffected by altering the metal

layer properties within this range. Considering the geometric changes when increasing the substrate

thickness, the inductance will only be affected when the aspect ratio is drastically altered by an

increase in thickness, which was not the case in this instance as it was only changed between 1 and

50 µm. Increasing the thickness will also impact on the effect of skin depth. As the thickness is always

large in comparison to the skin depth, this will not have an effect in this work.
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Figure 6.17: Simulated line parameters of transmission lines varying the metal conductivity between 1 × 106 and
1 × 107 S/m. Scattering parameters were simulated using ADS software and line parameters extracted.
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Figure 6.18: Simulated line parameters of transmission lines varying the metal thickness between 1 and 50 µm.
Scattering parameters were simulated using ADS software and line parameters extracted.

The effect of changing each parameter is summarised in Table 6.1. The relationship with α, v and

Z has been considered for varying each parameter. The terms ‘moderate’ and ‘considerable’ have

been used to show the relative effect of changing parameters, the absolute values can be found in the

results presented earlier in this chapter.
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Table 6.1: The effect of changing various transmission line parameters on α, v and Z.

Parameter

Effect on

transmission line

response

Relationship

with α, v and Z

Length None No change to α, v and Z

Ground Plane Width
None

(as long as larger than gap)
No change to α, v and Z

Signal Track Width Considerable

Increasing width:

increases v

decreases α and Z

Gap between

signal and ground tracks
Considerable

Increasing gap:

increases v and Z

decreases α

Substrate Thickness Moderate

Increasing thickness:

increases α

decreases v and Z

Substrate Permittivity Moderate

Increasing permittivity:

increases α

decreases v and Z

Metal Conductivity Moderate

Increasing conductivity:

decreases α

No change to v and Z

Metal Thickness Moderate

Increasing thickness:

decreases α

No change to v and Z

6.5 Effect of Humidity at Microwave Frequencies

6.5.1 Scattering Parameters and Line Parameters

The effect of relative humidity on the response of the transmission lines was determined by recording

the variation of s-parameters in an Espec SH-641 bench-top type temperature and humidity chamber,

where the relative humidity was systematically varied between 40% and 90% in 10% steps. The set

up is shown in Figure 5.28 in Chapter 5. Throughout this work, the temperature was constant, at

30 ◦C.

Readings were taken periodically at 1-minute intervals for the first 15 minutes, then 10-minute

intervals for two hours. The humidity was shown to vary the s-parameters with higher changes

occurring at higher humidities, as seen in Figure 6.19. Unless stated otherwise, the results shown here

are for a transmission line which was 17 cm long with 2 and 15 mm signal and ground track width

respectively. There are no error bars on Figures 6.19 and 6.20 so as not to overpopulate the plots, at

each humidity the measurements were within 2% of the value shown.
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Figure 6.19: Measured scattering parameters for a transmission line 17 cm long with 2 and 15 mm signal and ground
track width respectively as the relative humidity was varied between 40 - 90% in 10% steps.

This change in response with relative humidity is not permanent but rather reversible, such that

when the relative humidity was reduced back to 40%, the s-parameters returned to the initial values

measured at 40%, results to confirm this are shown in Figure 6.20.
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Figure 6.20: Measured scattering parameter s11 for a transmission line 17 cm long with 2 and 15 mm signal and
ground track width respectively as the relative humidity was varied between 40 - 90% in 10% steps and then returned
to 40%.

It was also found that there was a faster rate of change in response when the humidity was first

changed, which then slowed down. This is expected as paper acclimatises quickly to its environment

[20]. Within 15 minutes, 95% of the total change had occurred and, after this time, the response was

determined to be stable. This supports the idea that water is absorbed into the paper within two

minutes but takes longer to be desorbed. Little change in response was found for a transmission line

where the humidity was increased from 40 to 50% and left for a week, as shown in Figure 6.21.
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Figure 6.21: Measured scattering parameters for a transmission line 17 cm long with 2 and 15 mm signal and ground
track width respectively as the relative humidity was varied between 40 - 50% and left for one week.

After the first five minutes of measurements, further results varied owing to slight variations in

humidity rather than a further change in the transmission line response due to humidity. The chamber

is a dynamic system and so the humidity may vary slightly with time. The scattering parameters did

not change after the relative humidity was left to settle for 30 minutes. Holding the sample at 50%

relative humidity for a long period showed that the response due to lower humidities was not just

slower compared with those at higher humidities.

Using the fitting algorithm detailed previously in this chapter, the losses, propagation velocity and

characteristic impedance were extracted at each relative humidity; these are presented in Figure 6.22.

As expected, these show the same changes as with the s-parameters where the change in response

between 40 and 50% relative humidity was much lower than between 80 and 90%. The change in

propagation velocity is not visible between 40 and 50%, whereas it decreased by 0.05 between 80 and

90%.
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Figure 6.22: Measured line parameters for a transmission line 17 cm long with 2 and 15 mm signal and ground track
width respectively as the relative humidity was varied between 40 - 90% in 10% steps.

The losses (α) can be seen to increase with humidity in Figure 6.22; this could be due to metallic

losses, dielectric losses or a combination of both. The metallic losses could be as a result of the paper

absorbing water and swelling, stretching the ink and changing its conductive properties. The dielectric

losses could be as a result of the effective permittivity of the paper increasing as the water content

increased.

The propagation velocity was seen to decrease with humidity. When using the simple model for a

transmission line consisting of resistance and inductance of the metal tracks and the capacitance and

conductance of the substrate, as in Figure 6.3, the propagation velocity is inversely proportional to the

square root of the inductance-capacitance product (v = 1/
√
LC). If the dielectric constant of paper

increases with added water, the capacitance per unit length will increase, and so the propagation
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velocity will decrease. Similarly, if the geometry of the transmission line changes such that the length

increases and the gap decreases, the propagation velocity would decrease.

The characteristic impedance decreases with relative humidity and this can be explained with the

same theory as that used for the changes in propagation velocity. These possible changes for α, v and

Z are likely caused by changes in the effective permittivity of the substrate or changes in the geometry

from swelling of the cellulose fibres, which could also lead to differences in the conductivity of the ink.

6.5.2 Effect of Humidity on the Ink

As seen with simulations in Figure 6.17, altering the conductivity of the ink does not cause changes to

the characteristic impedance and the propagation velocity. Further investigation took place to confirm

that the changes in line parameters were not due to structural changes within the ink. In order to

prevent water absorption into the substrate, an identical transmission line was printed on glass and

measured in the same way as the paper-based sample, with results shown in Figure 6.23.
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Figure 6.23: Measured scattering parameters for a transmission line printed on glass as the relative humidity was
varied between 40 - 90% in 10% steps. The transmission line was 17 cm long with 2 and 15 mm signal and ground track
width respectively.

The s-parameters presented in Figure 6.23 for the transmission line printed on glass were found

not to change with humidity, leading to the conclusion that there is no change in the ink itself with

changing humidity. The scattering parameters differed from those obtained when using paper as a

substrate, as the characteristic impedance of the glass sample tends towards 50 Ω, and so the reflection

(s11, s22) is minimal. There are calibration non-idealities as the calibration does not account for the

connectors; these are more dominant in the glass sample as the reflection is lower. The interaction of

the glass and the ink in comparison to the interaction of the paper and the ink will differ hugely. The

ink will adhere less to the glass than the paper, as shown in Chapter 3 with adhesion testing, and so

these material issues must also be considered when comparing Figure 6.19 with Figure 6.23.
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The d.c. sheet resistance values of the ink on both glass and paper were measured at relative

humidities between 40 and 90% using a four point probe method, with results shown in Figure 6.24.

Figure 6.24: Variation in measured sheet resistance for screen-printed silver ink on glass and paper substrates as the
relative humidity was varied. Measurements were taken using a four point probe method.

The sheet resistance of the ink on glass was shown not to vary, in keeping with s-parameter

measurements taken, and which further proved that there were no changes within the ink at differing

humidities. The sheet resistance of the ink on the paper sample was shown to increase with relative

humidity due to the swelling of paper fibres with increased water content, leading to sagging of the

sample and hence a longer path. The increase in d.c. sheet resistance was minimal, rising from 15.4

to 19.7 m Ω/�. From the ADS simulations (Figure 6.17), it can be seen that much larger changes in

conductivity produce no changes in the propagation velocity and characteristic impedance, and so this

cannot be the cause of the changes seen for v and Z in Figure 6.22. The change in α in Figure 6.17 is

not as large as that in Figure 6.22, and so the increase in conductivity of the ink may likely contribute

to an increase in α but cannot be the only cause. The ink is made up of silver flakes, at d.c. an

increase in distance between the flakes will result in a longer path length as the flakes must be in

direct contact with each other for an electrical connection. In a.c. an increase in distance between the

flakes is not problematic as no direct contact is required for an electrical connection. Any capacitive

effects which may occur from increasing gaps between the flakes as the path length is increased will

be negligible at the frequencies measured here.

In addition to the comparison of transmission lines on paper with transmission lines on glass,
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Environmental SEM (ESEM) images of the silver ink on paper were taken. No change was seen

within the ink layer as shown in Table 6.2. Imaging was undertaken by Richard Walshaw at Leeds

University using an FEI Quanta 650 Field Emission Gen Environmental Scanning Electron Microscope

(FEGSEM). This operates in a similar way to a conventional SEM, as described in Chapter 2, and

utilises the changing of water content within the air with temperature and pressure to vary the

humidity within the chamber. In order to increase the relative humidity within the chamber, the

temperature was maintained at 3 ◦C and the pressure was increased between 0.7 and 5.6 Torr. This

achieved a relative humidity between 10% and 100%. These results confirmed the lack of change in

morphology of the ink with increased relative humidity. The small scale of the sample (1 cm2) used in

ESEM does not illustrate the sagging of the sample at high relative humidities and so any movement

of flakes caused by this are not obvious here.
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Table 6.2: Environmental Scanning Electron Microscope (ESEM) images of silver flake ink on matt paper at relative
humidities between 10 and 90%.

Relative humidity ESEM Images

10%

30%

50%

70%

90%

The porosity of paper meant that the pressure must be increased above 5.6 Torr to confirm water

saturation on the surface of the paper. At 100% relative humidity, the water vapour is contained
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within the paper and ink structure and so water saturation cannot be verified on the image. An image

of a saturated sample with evident water droplets formed on the surface is shown in Figure 6.25, where

the pressure has been increased to 7.1 Torr.

Figure 6.25: An ESEM image of silver flake ink on paper at a temperature of 3 ◦C and a pressure of 7.1 Torr showing
the saturation of the sample with water and evident water on the sample surface. This combination of temperature and
pressure results in a relative humidity past the point of 100%. The water droplets are the darker regions on the sample
surface.

6.5.3 Water Absorption of Paper

Dimensional changes of the paper in x and y directions (length and width), due to added water content,

were found to have no effect on the response of the transmission line as determined by simulations,

with results in Figure 6.26. Paper samples were completely soaked in water and a maximum of 3%

±1.5 increase in dimensions in the x, y directions was measured by vernier callipers. Figure 6.26 shows

simulation results for a 5% increase in dimensions, resulting in no change to the scattering parameters.

The changes in length and width of the paper can be seen to have no effect on the response of the

transmission line.
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Figure 6.26: Simulations for a 5% increase in x and y dimensions of the transmission line due to water intake of the
paper. The substrate thickness was kept constant as the effect of this has been shown previously.

It has been shown in Figures 6.15 and 6.16 that increasing the substrate thickness will produce a

similar effect to increasing the effective permittivity of the substrate. It is thought that both of these

are the key factors in the change of line parameters with humidity. It has been shown in Figures 6.15

and 6.16 that increasing both the substrate thickness and substrate permittivity can cause changes

in the line parameters similar to those seen in Figure 6.22. Altering either the substrate thickness or

permittivity will change the effective permittivity of the substrate, changing the capacitance per unit

length.

The water content of paper with relative humidity was found to follow the same trend as the

s-parameters and line parameters in Figures 6.19 and 6.22. The mass of a transmission line was

measured immediately after being placed on a hotplate at 125 ◦C for 30 minutes to determine the

mass of paper with no water. It was then measured again in the environmental chamber as the

relative humidity was varied from 40 to 80%. The balance was rated to 85% relative humidity and so

measurements at 90% were not possible. The water content as a percentage is presented in Figure 6.27
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and is seen to have a higher change between 70 and 80% than at 40 and 50% relative humidity.

Figure 6.27: Total water content of paper when relative humidity was varied between 30 and 90%. The blue line
represents data taken from [21], the red line represents measurements from this work.

The water content in paper is made up of three types of water-paper absorption mechanisms

[21–25]: non-freezing water (tightly bound water), freeze-bound water (slightly bound water) and

freezing-unbound water (free water). Tightly and slightly bound water-paper absorption mechanisms

are shown in Figure 6.28.

Figure 6.28: Illustration of tightly and loosely bound water mechanisms in water-paper mixtures.
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Tightly bound water is hydrogen bonded to the polymer matrix of the cellulose fibres. Hydrogen

bonding is an attraction between two polar groups; the bond between oxygen and hydrogen is polar

because oxygen is more electronegative than hydrogen and so the oxygen in water is attracted to the

hydrogen of the ‘OH group’ in the cellulose chain. Slightly bound water is attracted to the cellulose

and the monolayer of water hydrogen bonded to the cellulose; however the molecules are not hydrogen

bonded. This attraction is called a Van der Waal force and is also due to the polarity of two molecules

but is much weaker than a hydrogen bond. The cellulose chains combine together into a plane, and

these planes are then ‘stacked’ on top of each other. The planes are not connected by any bonding to

their adjacent planes, but are held together with Van der Waal forces. The addition of water on the

surface of the planes will also result in Van der Waal forces and slightly bound water. Free (freezing

unbound) water is held to other water molecules by capillary forces and is not bonded in any way to

the cellulose.

To determine the relative permittivity for the three types of water-paper mechanisms, the

relaxation time is required, as in [26]. The relaxation time is a measure of the mobility of a material’s

molecules and is equal to the time taken for dipoles to become orientated in an electric field. Molecules

which are bonded to each other have little freedom to move when an electric field is applied, and so

have a higher relaxation time. The frequency at which the electric field is changed must therefore

be considered. If the dipoles are slow to move then they cannot keep up with a quickly alternating

electric field. Above a certain frequency, both the real and imaginary parts of the dielectric constant

will decrease because of this.

As the tightly bound water is hydrogen bonded to the cellulose, the mobility of the water molecules

is greatly decreased, and so for this work the dielectric constant of the tightly bound water was

considered to be equal to that of paper (3.25). The slightly bound water has reduced mobility due to

the additional interactions with cellulose and the value for the dielectric constant is often approximated

to 30 [27]. The relaxation time of free water is well established and the Debye relationship can be

used to calculate the real and imaginary parts of the dielectric constant. The Debye equation is:

ε(ω) = εinf +
εs − εinf
1 + iωτ

(6.23)

where ε is the complex dielectric constant of the material; εinf is the optical value of the dielectric

constant and is equal to 4.9; εs is the static value of the dielectric constant and is equal to 76.47; and

τ is the relaxation time and is equal to 7.2 ps. These values are all taken for water at 30 ◦C [26]. The
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resulting plot of the complex dielectric constant against frequency is shown in Figure 6.29. The value

for the dielectric constant of free water has been taken as 78 for this work [28].

Figure 6.29: Calculated real and imaginary parts of the relative permittivity of pure water between 300 kHz and
3 GHz using the Debye equation and values from [26].

In a similar way to Davies in [29], a simple model for the total dielectric constant of a paper-water

mixture was developed based on the weighted sum of the above described different dielectric constants

and is presented as Equation (6.24):

εT = AεUBW +BεFW + CεNW +DεC (6.24)

where εT is the total dielectric constant of the substrate including cellulose and water; A,B,C and

D are the fractions; and εUBW , εBW , εNW and εC are the dielectric constants of freezing-unbound

water, freeze-bound water, non-freezing water and cellulose respectively.

The total water content values of this work and the work of Bedane et al. are shown to be in

agreement in Figure 6.27, however the individual percentages for the types of water absorption could

not be measured in this work. The percentages of the three forms of water at 30, 50, 70 and 90%

relative humidity according to Bedane et al. for uncoated paper can be used in Equation (6.24) as A,

B and C, along with the respective values of permittivity to determine the total effective permittivity

of the paper substrate with relative humidity. Values for A, B, C and D are shown in Table 6.3 and a

plot of theoretical permittivity of the paper and water mixture with relative humidity in Figure 6.30.
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Table 6.3: Percentages and permittivity values for non-freezing water (tightly bound water), freeze-bound water
(slightly bound water), freezing-unbound water (free water) and paper at 30, 50, 70 and 90% relative humidity.
Percentages have been taken from [21] for uncoated paper, permittivity of free water taken from [28] and permittivity
of loosely bound water from [27].

Relative

Humidity

Free Slightly Bound Tightly Bound Paper

% εr % εr % εr % εr

30 % 0.68 78 1.47 30 2.47 2.5 95.38 3.25

50 % 0.87 78 2.32 30 3.00 2.5 93.81 3.25

70 % 1.20 78 2.66 30 3.80 2.5 92.34 3.25

90 % 1.25 78 4.82 30 4.64 2.5 89.29 3.25

Figure 6.30: Theoretical values of the effective permittivity of a paper-based substrate with increasing relative humidity
based on Equation (6.24) and values in Table 6.3.

The percentage of non-freezing water (C) increases linearly with relative humidity; initially, water

is hydrogen bonded to two anhydroglucose units of the cellulose but, as the water content is increased,

these bonds break and only one anhydroglucose unit per water is hydrogen bonded. The percentage

of freeze-bound water (B) increases with relative humidity; above 70% relative humidity this increases

at a higher rate due to the formation of stronger dimer/trimer assemblies of water. The percentage

of freezing-unbound water (A) increases with humidity, but at a lower rate at higher humidities due

to the increase in freeze-bound water at this point.

The dramatic increase in the percentage of freeze-bound water above 70% relative humidity

explains the larger change in line parameters with humidities above 70%; since the dielectric constant

of the freeze-bound water is 30 whereas the dielectric constant of paper is 3.25. The change in
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permittivity, as seen in Figure 6.30, between 70-90% relative humidity is double that of the change

between 50-70% and 30-50%.

Neither this theory or the effect of varying substrate thickness can explain the change in line

parameters with relative humidity being larger at higher frequencies. The permittivity of water

is known to be highly frequency dependent and this relationship can be represented by a Debye

relaxation function, as shown in Figure 6.29 [26]. In the frequency range 300 kHz to 3 GHz, the real

part of the permittivity of water decreases by less than two, whereas the imaginary part increases by

approximately 10, with a higher rate of change at higher frequencies. As the imaginary part of the

permittivity increases with frequency, the loss tangent will therefore also increase and is the reason

for the greater change in response of the transmission lines at higher frequencies.

6.6 Conclusion

The theory of transmission lines has been presented and used to characterise screen-printed transmission

lines on matt paper. The conversion between s-parameters and line parameters α, v and Z has been

presented using a Matlab code. Changing the ground plane width and length of the transmission line

is found to have no effect on transmission line performance. However altering the signal width and

the gap between this and the ground plane is found to affect measured parameters. Substrate and

metal parameters are found to change the losses within the transmission line, and the substrate also

has an effect on the propagation velocity and characteristic impedance of the line.

The hydroscopic nature of paper is found to have a large effect on the microwave characteristics of

paper-based transmission lines. It has been shown that the change in microwave characteristics with

relative humidity is not due to changes within the ink but to the increase in both the thickness and

effective permittivity of the paper substrate caused by increased water content. There are three types

of water absorption mechanisms in paper and it has been concluded that the freeze-bound (slightly

bound) water is the reason for the larger change in losses at higher relative humidities. The percentage

of freeze-bound water increases dramatically above 70% relative humidity and has a permittivity of 30

which is higher than that of pure cellulose. These findings must be considered in all applications using

coplanar waveguides at microwave frequencies as these changes in line parameters can alter device

operation significantly and have been shown to also vary with frequency.

Possible applications for screen-printed paper-based coplanar waveguides are considered in the

next chapter when looking at coplanar waveguide resonators.
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Chapter 7

Paper-based Microwave Resonators

7.1 Introduction

This chapter addresses the design, fabrication and measurement of screen-printed microwave resonators

on Neenah paper. This follows on from the work in Chapter 6 which reported on the operation of

coplanar waveguides (CPWs) and the behaviours of the ink and paper at microwave frequencies.

A device or system that has a stronger response at particular frequencies is termed a resonator

and this stronger response can be exploited in many applications, for example sensors, couplers and

filters. In this work, the resonant frequency was designed to be between 0.5 and 3 GHz which provides

a good compromise between minimum feature size and device footprint.

First the general theory for resonators consisting of a resistor R, inductor L and capacitor C, known

as RLC resonators, is detailed to introduce basic concepts. Work on transmission line stubs is then

presented, followed by spiral defected ground structures. The experimental results were supported

by analytical models and numerical simulations using Advanced Design Systems (ADS). Possible

applications for these resonators as humidity and touch sensors are addressed at the end.

7.2 Theory

An RLC resonator is one of the simplest forms of electrical resonator. For this work, the series RLC

resonator was considered. This can be seen in Figure 7.1.
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Figure 7.1: Example series RLC resonator where R is the resistance, L is the inductance, C is the capacitance, V is
the voltage and I is the current.

In the series RLC example, resonance occurs at the frequency where there is a periodic energy

transfer between the magnetic energy of the inductor and the electrical energy of the capacitor. At this

frequency, the combination of the inductance (L) and the capacitance (C) act as a short circuit and

the only opposition to the current flow is from the resistance (R), which accounts for the unavoidable

losses which degrade the quality of the resonator. The total impedance of the RLC circuit becomes

purely real and equal to the resistance. The impedance of the circuit (Z) is:

Z(f) = R+ ZL(f) + ZC(f) (7.1a)

Z(f) = R+ i2πfL+
1

i2πfC
(7.1b)

Z(f) = R
i2πfRC − (2πf)2LC + 1

i2πfRC
(7.1c)

Z(f) = R
i(1/Q)(f/fr)− (f/fr)

2 + 1

i(1/Q)(f/fr)
(7.1d)

where f is the frequency, fr is the resonant frequency, Q is the quality factor and:

fr =
1

2π
√
LC

and Q =
1

2πRCfr
(7.2)

The quality factor describes how under-damped a resonator is. The higher the quality factor, the

less damping there is. In an electrical resonator, the quality factor is equal to the ratio of the power

stored in the circuit reactance and the power dissipated in the capacitor and inductor. Examples

of the impedance of two series RLC circuits with differing quality factors are shown in Figure 7.2.

The gradient of the plots at frequencies lower than 0.5 and above 2.5 are equal; however the circuit

with the higher quality factor is seen to have a sharper minimum in impedance. A higher quality

factor is often desirable in circuits and can be altered by changing the values of the resistance and the
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capacitance as governed by Equation (7.2).

Figure 7.2: Impedance plots for two example resonators with quality factors of 10 and 50.

The bandwidth of an electrical resonator is defined as the difference in frequency when the

magnitude of the impedance is 3 dB (or
√

2) above the minimum impedance (equal to R) as shown

in Figure 7.3. At resonance, the impedance is equal to the resistance and so the bandwidth can be

taken as the difference between frequencies when the plot crosses the horizontal line equal to
√

2R.

The bandwidth, for the two plots in Figure 7.2 are illustrated in Figure 7.3.
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Figure 7.3: Impedance plots for two example resonators with different quality factors, highlighting the bandwidth for
each.

The bandwidth and quality factor of an RLC resonator are related by the relationship:

Q =
fr
BW

(7.3)

where BW is the bandwidth in Hertz. A smaller bandwidth, and resulting higher quality factor,

means the circuit is more selective which is often more desirable.

A resonance can be achieved at microwave frequencies by incorporating a resonator or discontinuity

into transmission lines. This can be done by altering the signal line, as demonstrated in Figure 7.4,

or as an addition to the transmission line. The main considerations during the design of these devices

are the resonant frequency, the quality factor and the coupling. The resonant frequency is dependent

on the dimensions of the resonator; in the example shown in Figure 7.4, the governing length, L, is

highlighted.
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Figure 7.4: An example of a coplanar waveguide microwave resonator. This example is a transmission line with an
altered signal track to create a resonance.

Coupling is the desirable or undesirable transfer of energy from one medium to another. This

can be interference between adjacent resonators or other circuit components. Resonators need to

be coupled to external circuitry, for example to the transmission lines in the example above. The

level of coupling achieved varies between applications and is often determined by the proximity of

the resonator and the external circuitry. A measure of the level of coupling between a resonator

and a transmission line is the coupling coefficient (g). To obtain maximum power transfer between

the resonator and transmission line, they should be critically coupled. This is when the resonator is

matched to the transmission line and the coupling coefficient is equal to 1. The coupling coefficient

can be defined as the ratio between the unloaded quality factor of the resonator and the quality factor

of the external circuit.

g =
Q0

Qe
(7.4)

where Q0 is equal to the unloaded quality factor of the resonator and Qe is equal to the quality factor

of the external circuit. When the coupling coefficient is less than 1, the resonator is said to be under-

coupled to the transmission line and when the coupling coefficient is greater than 1, the resonator is

said to be over-coupled to the transmission line. When considering the fabricated resonators presented

in this chapter, the coupling coefficient cannot be determined as it is not possible to calculate Q0 and

Qe independently. Examples of the scattering parameter s21 for a shunt resonator connected between

two ports are shown in Figure 7.5 for a critically coupled, an over-coupled and an under-coupled

system.
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Figure 7.5: Examples of resonances created by systems which are critically coupled, under coupled and over coupled.

Increasing the coupling between the resonator and the transmission line increases the transmission

of the system but decreases the quality factor. The over-coupled plot in Figure 7.5 shows higher peak

values, however the width of the peak is broader. Decreasing the coupling between the resonator and

the transmission line does the opposite of this and results in the under-coupled plot. Altering the

coupling of the system has no effect on the resonant frequency but should be considered alongside the

quality factor when designing and optimising resonators.

7.3 Transmission Line Stubs

A transmission line stub is a length of transmission line that is connected at only one end to the

signal track of a transmission line. The free end of the stub is either left as an open circuit, where

there is no connection to the ground plane of the transmission line, or it is connected to the ground

plane, resulting in a short circuit. Multiple stubs can be used in order to create multiple resonances

[1] and the length of the stub dictates the resonant frequency [2, 3]. An example of an open circuit

stub fabricated in this work is shown in Figure 7.6.
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Figure 7.6: Example of a screen-printed design 4 stub. The stub length and stub width are highlighted.

Considering a lossless transmission line, the input impedance of the stub is purely reactive, either

capacitive or inductive, depending on the electrical length of the stub and whether it is a short or an

open circuit. Stubs can therefore function as capacitors, inductors and resonant circuits at microwave

frequencies. Transmission line stubs have been used in this work for initial characterisation of resonator

circuits, as stubs have a simple design and are similar to the transmission lines characterised previously

in Chapter 6.

Figure 7.7: Illustration of a stub in parallel with the transmission line and the equivalent circuit.

The stub is connected in parallel to the transmission line as illustrated in Figure 7.7. The maximum

effect of the stub on the transmission line occurs when the impedance of the stub is equal to a short

circuit (i.e. Z = 0). This results in the scattering parameters s11 and s12 being a maximum and

minimum respectively.

7.3.1 Analytical Modelling of Transmission Line Stubs

The test circuit for the stub can be divided into the stub itself and two adjacent transmission line

sections. Each of these sections can be considered as an ABCD matrix which can then be cascaded
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to provide the ABCD matrix for the whole structure. The ABCD matrix for the transmission line is

that shown in Equation (7.5) as taken from [4].

TXL(ABCD) =

 cos(g) jZt sin(g)

jZ−1t sin(g) cos(g)

 (7.5)

The ABCD matrix for the stub is that shown in Equation (7.6) as taken from [5].

STUB(ABCD) =

 1 0

1
Zs

1

 (7.6)

where g = −jγl = βl − jαl, α is the attenuation constant, β is the phase constant, l is the physical

length of the transmission line section, Zt is the characteristic impedance of the transmission line and

Zs is the characteristic impedance of the stub. The resulting ABCD matrix obtained by cascading

the transmission line matrix, the stub matrix and the transmission line matrix can then be converted

to the s-parameters using the conversion in [6].

The characteristic impedance of the stub (Zs) can be determined by considering only the stub

transmission line section, as illustrated in Figure 7.8, where Zeq is the equivalent characteristic

impedance of the stub and equal to Zs in Equation (7.6), ZL is the load impedance and is determined

by whether an open or short circuit stub is considered.

Figure 7.8: Simple model for the stub where Zs is the equivalent impedance of the stub looking from the end it is
connected to the transmission line, ZL is the load impedance determined by the end of the stub and d is the stub length.

The reflection coefficient of this transmission line section is equal to:

Γ =
ZL − Z0

ZL + Z0
(7.7)

where Z0 is equal to the characteristic impedance (50 Ω). The voltage wave can be considered as:

V = V +e−iβxeiωt + ΓV +eiβxeiωt (7.8)
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where ω = 2πf . Similarly, the current is:

I =
V +

Z0
e−iβxeiωt + Γ

V +

Z0
eiβxeiωt (7.9)

Substituting Equations (7.8) and (7.9) into Zs = V/I and setting x = d, where d is the length of

the stub. The impedance of the stub (Zs) can be written as:

Zs = Z0
e−iβd + Γe−iβd

e−iβd − Γe−iβd
Zs = Z0

1 + Γe−2iβd

1− Γe−2iβd
(7.10)

For a short circuit stub, the reflection coefficient is equal to -1 and so Equation (7.10) becomes:

Zshort = Z0 tanβd (7.11)

For an open circuit stub, the reflection coefficient is equal to 1 and so Equation (7.10) becomes:

Zopen = −iZ0 cotβd (7.12)

The stubs used in this work were open circuit stubs and so the point at which they acted as a short

circuit and had maximum effect on the transmission line was when the length was equal to λ/4. The

resulting impedance was equal to zero and so the stub created a resonance in the response. Example

data for a design 2 stub using the analytical method is shown in Figure 7.9. Details of the dimensions

for a design 2 stub are shown in the next section.
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Figure 7.9: Scattering parameters generated by analytical modelling for a design 2 stub.

7.3.2 Screen-printed Transmission Line Stubs

Four stubs were designed and fabricated to determine the effect of stub length and the effect of

signal track width. The aim of the designs was to achieve resonances between 1 and 3 GHz. An

example of one of the stubs is shown in Figure 7.6, highlighting the stub length and signal track

width. Table 7.1 lists the dimensions of the four stub designs and their resonant frequencies based on

analytical calculations, simulations and measurements. All four stubs are open circuit design.

Table 7.1: Analytical, simulated and measured resonant frequencies for the stub designs.

Stub
Signal Width

(mm)

Stub Length

(mm)

Resonant Frequency (GHz)

Analytical Simulated Measured

1 6 26 2.68 2.08 1.95 ± 0.05

2 6 35 1.98 1.82 1.63 ± 0.02

3 2 25 2.63 2.13 2.02 ± 0.03

4 2 33 1.98 1.85 1.71 ± 0.02

The stubs were simulated using Agilent Advanced Design Systems (ADS) software, introduced in

the previous chapter, and the resulting simulated resonant frequency quoted in Table 7.1. Further
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details on the simulations will be presented later in this section. The stubs were measured using

a HP 8753C Vector Network Analyser (VNA) and the same connectors that were used to measure

the transmission lines. The value quoted in Table 7.1 for the analytical resonant frequency is using

fr = v/λ, where v is equal to the propagation velocity as a fraction of the speed of light. This equation

was used initially to determine the required length of the stubs for a desired resonant frequency. The

stub length is equal to λ/4 where λ is the wavelength in metres.

The measurement range of the VNA used is up to 3 GHz and so the designed resonant frequencies

were chosen to be 2 GHz and 2.5 GHz. The propagation velocity for each stub was determined from

the transmission line data taken in Chapter 6 at the frequencies chosen, for the 2 mm and 6 mm signal

track width transmission lines. The values for v were 0.9295c, 0.9227c, 0.8757c and 0.8704c for stubs 1

- 4 respectively. As the frequency and propagation velocity were known, the wavelength and required

length of the stub could be calculated.

The measured scattering parameters for the four stubs are shown in Figure 7.10. The resonant

frequency was the frequency at which s12 and s21 were at a minimum. The resonant frequency for

the stubs with equal length were within 3% of each other. The minima in s11 and s22 were due

to the transmission lines on either side of the stub; the results in Chapter 6 for the screen-printed

transmission lines show the same response.
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Figure 7.10: Measured scattering parameters for stubs with four different geometries.

The measured and simulated resonant frequency values for each of the stubs were in agreement

with each other, however the analytical values were not. Measured and analytical data for a design

2 stub are compared in Figure 7.11 and it can be seen that the resonant frequency of the measured

resonator is approximately 0.4 GHz lower than the analytical one. This could be due to the impedance

mismatch between the ports and the transmission line impedance; an additional effect caused by the

transmission lines; fringing at the end of the stub causing a change in capacitance and a change in

the electrical length of the stub; the length of the stub being measured incorrectly; or from additional

modes being injected into the system. These are considered individually here with relevant theory

added. Altering the shape of the device at the point where the transmission line and stub meet can

minimise errors. However this was not considered here as it was beyond the scope of this project.
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Figure 7.11: Comparison between the measured scattering parameters and those generated by analytical modelling
for a design 2 stub.

Accounting for the Mismatch Between Port and Transmission Line Impedance

The transmission lines in this work do not have a characteristic impedance equal to 50 Ω. This led

to a mismatch in impedance between the ports and the transmission line. This mismatch can result

in a non-ideal response and could be a possible reason for the difference in resonant frequency of the

measured and analytical values. In order to determine if this was the cause in resonant frequency

shift, the measured scattering parameters were converted to the ABCD matrix using the conversion

in [6] with the impedance set to 50 Ω and then converted back to the scattering parameters using

the impedance measured for a transmission line with the same signal track width. This compensated

for any effects due to the mismatch of the ports. Example measured data for a design 2 stub was

compared to measured data which was converted using the method above and is shown in Figure 7.12.
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Figure 7.12: Measured scattering parameters for stub 2 design compared to measured scattering parameters for which
the impedance mismatch of the ports and transmission lines is removed.

It can be seen that there were changes to the scattering parameters s11 and s22, however s12 and

s21 remained the same and so there was no effect on the resonant frequency. This indicated that the

difference in theoretical and measured resonant frequency was not due to the mismatch in port and

transmission line impedance.

Accounting for the Effect of Transmission Lines

As the transmission lines are not lossless, they could affect the resonant frequency. In order to confirm

if this was the case, the cascading method to determine the theoretical scattering parameters detailed

above can be used with only the effect of the stub considered. An example of the resulting scattering

parameters, which were converted from the ABCD matrix of the stub alone were compared to the

measured scattering parameters and the theoretical s-parameters with the transmission lines included,

shown in Figure 7.13.
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Figure 7.13: Measured scattering parameters for stub 2 design compared to scattering parameters calculated
analytically (theoretical) and scattering parameters calculated analytically with the effect of the transmission lines
(txl) removed.

It can be seen that there was some change in the overall shape of all the scattering parameters when

both theoretical sets of data were compared. However, there was no change in the resonant frequency

and the measured resonant frequency was still approximately 0.4 GHz lower than the theoretical ones.

This showed that the effect of the transmission lines was not causing the change in resonant frequency

seen when comparing the theoretical and measured data.

Accounting for the Effect of Fringing

When considering open circuit stubs, an electric field exists at the open circuit between the terminated

signal track of the stub and the surrounding ground plane, giving rise to a capacitance, which is known

as fringing. This capacitance is equivalent to an additional stub and so the combination of both stubs

can be equated to one single, longer stub. The additional length of the stub due to fringing is denoted

as loc and can be calculated from the open circuit capacitance (Coc) as in Equation (7.13). Theory

and equations for considering the effect of fringing are taken from [7].
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Coc =
tan(βloc)

ωZ0
(7.13)

Coc = Coc(air)εeff (7.14)

where εeff = 1 +
(εr − 1)

2

K(k1)

K(k′1)

K(k0)

K(k′0)
(7.15)

and Coc(air) =
2ε0
π

{
(S +W )

[
ln(η +

√
1 + η2)

η
+ ln

(√
1 + η2 + 1

η

)

− 1

3

(
1

1 +
√

1 + η2
+

1

η +
√

1 + η2

)]
− (S + 2/3W )

} (7.16)

where η =
g1

S +W
(7.17)

where S is equal to the signal track width, W is equal to the gap between the signal track and the

ground plane along the length of the stub and g1 is equal to the gap between the signal track and the

ground plane at the end of the stub. For this work, W is equal to g1 which is 1 mm.

Once the open circuit capacitance was calculated the additional stub length due to fringing could

be determined. The values for Z and β were taken from transmission line data with the same track

width at the resonant frequency. The resulting changes in length due to fringing for each of the four

stubs are summarised in Table 7.2. The theoretical resonant frequency, accounting for the additional

stub length, is also listed.

Table 7.2: Measured resonant frequencies (fr) for four stub geometries compared to analytically calculated resonant
frequencies for the same stubs with the effect of fringing accounted for.

Stub Measured fr (GHz) loc at fr (mm)
Theoretical fr

accounting for loc (GHz)

1 1.95 2.04 2.46

2 1.63 2.28 1.86

3 2.02 0.703 2.56

4 1.71 0.697 1.94

The resonant frequency was shown to reduce from the values quoted in Table 7.1, but the theoretical

values were still approximately 0.5 GHz higher for stubs 1 and 3 and approximately 0.2 GHz higher for

stubs 2 and 4 when compared to the measured values. Changing the length of the stub was shown to

alter the resonant frequency as expected; however, the change in stub length due to fringing was not
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sufficient to explain the difference in resonant frequency when comparing theoretical and measured

data.

Accounting for the Finite Transmission Line Width

The length of the stub can be taken from several positions. Changing the length of the stub has been

shown to alter the resonant frequency. Previous results took the stub length as being from the edge

of the signal track to the end of the stub; the effect of fringing and the resulting increase in stub

length has been shown to reduce the theoretical resonant frequency. The measurement for stub length

used to this point was considered the minimum stub length and the maximum physical stub length

was considered to be from the end of the stub to the opposite end of the signal track, as shown in

Figure 7.14.

Figure 7.14: Illustration of the minimum and maximum stub length dimensions.

The maximum electrical stub length can be considered as the maximum physical stub length, plus

the additional length due to fringing. This was the value used to produce the results in Figure 7.15,

which were created using the cascading method and varying the stub length. These results were for

an example of stub design 2 where the minimum length is 35 mm and the maximum length was a total

of 43.28 mm (41 mm physical length plus 2.28 mm additional length due to fringing).
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Figure 7.15: Comparison of measured scattering parameters for stub 2 design with those calculated analytically using
the minimum stub length and the maximum stub length with the effect of fringing also accounted for.

Considering the maximum stub length, including the effect of fringing, was shown to account for

the difference in resonant frequency between the measured and theoretical data. Considering the

maximum stub length and the additional length due to the effect of fringing, the theoretical resonant

frequency was then within 5% of the measured resonant frequency. The shape of the measured plot

when compared to the theoretical one was still not a perfect fit but this could be explained by the

effect of the transmission lines on the scattering parameters and the effect of the mismatch between

the ports and the transmission line.

Accounting for the Transmission Line Discontinuity

Discontinuities are often found in microwave networks and circuits, either by design or necessity; an

example of a discontinuity is the junction where the transmission line and the stub meet. Several modes

propagate along the transmission line, for example the design in this work supports full slab modes

due to the large area of substrate material exposed with no metallisation [8]. When a discontinuity

is included in the transmission line, further modes can be injected which interfere with the original

ones and lead to radiation losses. In order to reduce this effect, air-bridges can be added to the device
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between the ground planes. Air bridges are typically used in coplanar waveguide design, they short

the ground planes and prevent spurious modes. In reality, more uniform connections would be used

and the conductive sections would be made from the same material as the signal and ground tracks.

However for this work copper take and silver dag have been used as a proof of concept. Air-bridges

were added to the stubs to improve the resonant response with the designs shown in Figure 7.16 and

their resulting scattering parameters shown in Figure 7.17.

Figure 7.16: Examples of air-bridges created using copper tape, made to counteract the effect of discontinuities along
the transmission line.
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Figure 7.17: Measured scattering parameters for stub 2 design with: no air-bridge; a large air-bridge where the
discontinuity is fully covered; and a small air-bridge where the ground planes were connected with minimal copper tape.

Both air-bridges were created using copper tape with paper between the tape and the ground

plane to prevent connection between the signal and ground tracks. The larger air-bridge on the left of

Figure 7.16 covers the entire join between the stub and the main transmission line. This was shown to

largely affect the resonant frequency and prevented the stub from operating as it should. The smaller,

separate air-bridges shown on the right of Figure 7.16 had little effect on the resonance of the device

but removed the minima in s11 and s22. The scattering parameters s12 and s21 showed lower losses at

higher frequencies when the air-bridges were added. These air-bridges could be improved further and

have less effect on the resonance of the stub, but for this work the theory has been verified suitably.

The measured scattering parameters for the stubs were compared to theory and it were shown

that the difference in resonant frequency was mainly due to the measured length of the stub and

fringing effects. The differences in s11 and s22 could be explained by a combination of port impedance

mismatch, the effect of the transmission lines either side of the stub and also the modes injected

due to the stub discontinuity. Each of these factors were investigated and the discrepancies between

the measured and theoretical scattering parameters explained. The difference in resonant frequency

between the measured and analytical data is due to the difference in measured length of the stub
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and the effect of fringing at the end of the stub. The difference in reflection between the measured

and analytical data is due to the addition of the transmission lines and corresponding mismatch of

impedance between the port and the line. This will cause the minima in the reflection as seen for the

transmission line data in the previous chapter.

7.3.3 Simulations of Transmission Line Stubs

The stubs were simulated using Agilent Advanced Design Systems (ADS) software as in Chapter 6,

using the same parameters for the substrate and metal layers. The results for the simulations are

compared to the measured scattering parameters of the stubs in Figures 7.18 and 7.19 for stub designs

1 and 2 and then 3 and 4 respectively.

Figure 7.18: Measured and simulated scattering parameters for stub designs 1 and 2.
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Figure 7.19: Measured and simulated scattering parameters for stub designs 3 and 4.

These simulations were shown to be in agreement with the measured scattering parameters. The

measured resonant frequency of the spirals was consistently lower than the simulated values by 0.15

±0.03 GHz. This was good agreement and the lower value could be attributed to a longer stub length

due to variation in the fabrication process. All screen-printed devices show features larger than those

designed.

7.4 Defected Ground Structure Resonators

A defected ground structure (DGS) can be used to create a resonator coupled to a coplanar waveguide

or micro-strip [9–19]. Defected ground structures have an absence of conductor in the ground plane

which results in a change in the behaviour of the waveguide and often a resonance. The first example

of a DGS was by Jong et al. in 1999 who used the design shown in Figure 7.20, which is the etched

‘photonic bandgap structure’ in the ground plane of a microstrip, known as DGS. This shape is called

a dumbbell DGS and is common for both microstrip [20] and CPW [21] designs.
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Figure 7.20: The first example of defected ground structure, taken from [22].

Building on the dumbbell design, groups have created square-shaped designs and also used shorts

in these squares to create tunable resonators [21, 23, 24]. The substrate can also be altered in addition

to DGS to create resonators and are named ‘substrate integrated waveguides’ [25, 26]. Filters are a

common application for the DGS resonators [27–31].

This work investigates a spiral defected ground structure, with screen-printed examples shown in

Figure 7.21. The resonant frequency was determined by the size of the spiral, taking into account

the number of turns and the length/width of the spiral. Spiral resonators have been created by

other groups using microstrip designs for touch pad and humidity sensor applications [32–35]. Choi

et al. compared simulated results for measurements of microstrip-based spiral resonators for use as

touch pads [32]. The spirals are of approximately 3.5 and 5 mm in size and the microstrips are inkjet

printed onto photo paper, resulting in resonances of 1.83 and 0.94 GHz respectively. Preradovic et al.

produce spiral resonators of less than 1 cm in dimensions using copper etching with resulting resonant

frequencies between 2.5 and 3 GHz. Similar spiral DGS resonators have been fabricated for CPW and

grounded CPW, however not on paper substrates [36, 37].
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Figure 7.21: Example spiral defected ground structure resonators fabricated using screen printing on paper.

7.4.1 Design of Spiral Defected Ground Structure Resonators

For this work, the resonant frequency of the spiral resonators was determined using ADS simulations

prior to fabrication. The simulations were conducted using ADS with the same parameters as detailed

for simulation of the transmission lines. The longest length of the spiral, as shown in Figure 7.22,

was increased from 6 mm to 20 mm to determine the resulting resonant frequency. Results for these

simulations are shown in Figure 7.23. These dimensions were chosen as work from Lim et al. showed

that spirals up to 6 mm large produced resonant frequencies approximately 5 GHz [37].
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Figure 7.22: Schematic diagram of an example spiral defected ground structure resonator. Units for all dimensions
are in mm.
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Figure 7.23: Simulated scattering parameters for spiral defected ground structure resonators with varying dimensions
with the largest spiral edge ranging from 6 mm to 20 mm.

The maximum measurable frequency in this work was 3 GHz and so it could be seen that a spiral

with 6 mm maximum length was not suitable. Spirals with maximum lengths longer than 11 mm

have multiple resonances within the measurable range of the VNA and so were also not suitable as

this could lead to errors within the measurements. Spirals with maximum lengths between 7 mm and

11 mm were considered in this work as they have single resonant peaks within the range 1 - 3 GHz.
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The differences in s11 and s22 were due to the asymmetry of the device, the connection between the

DGS and the transmission line was at one side of spiral. However, the minima were below −10 dB

and clear peaks at 0 dB could be seen.

7.4.2 Measurement of Spiral Defected Ground Structure Resonators

Defected ground structures were made using the screen-printing method detailed in Chapter 4. Spirals

with maximum lengths of 7-11 mm were printed along a continuous transmission line with spacings

of 15 mm and 30 mm. Devices with identical spirals printed on either side of the signal track were

printed with examples shown in Figure 7.21. Examples where the spirals were not identical on either

side of the signal track were also fabricated. Results for single pairs of identical spirals are shown in

Figure 7.24.
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Figure 7.24: Measured scattering parameters for spiral defected ground structure resonators with varying dimensions
with the largest spiral edge ranging from 7 mm to 11 mm.

These results were comparable with the simulated results shown in Figure 7.23. The resonant

frequency (the minima in s12) were within 0.1 GHz for all spiral resonators. The transmission

at resonance for the simulated results was lower than the measured; this was as expected as the

dimensions will vary slightly and the simulations are often subject to lower losses. The measured

data had a drop in able transmission at lower frequencies due to additional losses which were not
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accounted for in the simulations, and there were oscillations due to the calibration non-idealities as

the calibration did not account for the connectors.

The quality factor was calculated for each of the resonators using Equation (7.3) and the measured

resonant frequency taken from scattering parameter s12 from Figure 7.24. The bandwidth and quality

factor are listed in Table 7.3 for five examples of each of the measured spirals. The bandwidth was

taken at the point 3 dB above the minima and the resonant frequency was at the point of the minima.

The bandwidth and quality factor of the 7 mm spiral could not be determined as the resonant frequency

was higher than what can be measured with the VNA. The values presented were based on maximum

and minimum measured data.

Table 7.3: Measured resonant frequencies for four spiral DGS resonators and their respective bandwidth and quality
factors.

Spiral longest length

(mm)

Resonant Frequency

(GHz)

Bandwidth

(GHz)
Quality Factor

8 2.25 ± 0.03 0.16 ± 0.04 15.4 ± 4

9 1.88 ± 0.02 0.09 ± 0.01 21.6 ± 2

10 1.56 ± 0.02 0.095 ± 0.01 16.7 ± 2

11 1.32 ± 0.02 0.078 ± 0.01 17.2 ± 3

The resonant frequency and the bandwidth were seen to be highly repeatable with low variation.

The variation in the quality factor was higher but only approximately 10% of the average values.

Although the quality factor of the 9 mm spiral was higher than that of the 10 and 11 mm ones, they

were still within the variation of each other. The quality factor will be highly dependent on the

fabrication method and so the change in quality factor was likely to be due to this. The quality factor

for the 8 mm and 7 mm was likely to be lower as the minima in s12 were consistently broader.

The effect of the transmission line length on either side of the spiral was considered and examples of

this for both measured and simulated data are shown in Figure 7.25. Only s12 or s21 are considered for

further results, as these showed the resonance of the device and this could be used in any application.
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Figure 7.25: Measured and simulated scattering parameter s12 for an example spiral defected ground structure
resonator with 15 (left) and 30 mm (right) transmission lines on either side of the resonator to determine the effect of
transmission line length.

The shorter transmission line results in a lower transmission at resonance as there were lower

losses in the line. Owing to this, it was decided that the transmission line length on either side of the

spirals would be limited to 15 mm, any smaller than this and there would be interference between the

connectors.

Examples of resonators with different sized spirals on either side of the transmission line were

considered, with an example shown in Figure 7.26. This example shows data for three devices: one

with two identical 9 mm spirals either side of the transmission line; one with two identical 10 mm

spirals either side of the transmission line; and another with one 9 mm and one 10 mm spiral opposite

each other.

199



Figure 7.26: Measured scattering parameter s12 for three spiral resonators. One with two identical 9 mm spirals on
either side of the transmission line, one with two identical 10 mm spirals on either side of the transmission line and a
third with two different spirals on either side of the transmission line, one of 9 mm and one of 10 mm.

Using two spiral DGSs of different sizes leads to two defined minima in s12. The locations of the

minima of the combined resonator agreed with the results obtained when two individual, identical

spirals were used. This meant that multiple resonances could be produced using non-identical spirals

on either side of the transmission line. A further example of multiple resonances is shown in Figure 7.27

where four sets of two identical sized spirals were measured along one transmission line. The examples

shown in Figure 7.21 show this with three spirals and then four spirals.
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Figure 7.27: Measured scattering parameter s12 for five devices. Four with one identical spiral on either side of the
transmission line of sizes 7, 9, 10 and 11 mm and another device with four different pairs of spirals connected along one
transmission line.

The individual resonator plots can then be considered. The trace with all four resonators can be

seen to have four distinct minima; however, these were shifted to a higher frequency than the individual

resonators. The transmission at this point was also lower, showing that the resonances were not as well

defined. This was due to loading between the resonators; when the resonators are in close proximity

with one another, coupling between them occurs. This was confirmed by ADS simulations with varying

spacing between two sets of identical spirals, with results shown in Figure 7.28.
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Figure 7.28: Simulated scattering parameters for two pairs of identical spirals, one with a longest length of 8 mm and
one with a longest length of 10 mm, when the spacing between them was increased from 1 mm to 25 mm.

As the spacing between the spirals was increased, the transmission at the resonance due to the

8 mm spiral decreased and the transmission at the point of the 10 mm spiral increased. Therefore,

the smaller spiral was a better resonator as there was less transmission at resonance. This was likely

due to the size of the spiral; the smaller spiral was closer to the transmission line and therefore had

stronger coupling. The minima for the resonance of the smaller spiral had a lower transmission but a

broader peak, which was consistent with stronger coupling.

The results for multiple, different-sized spirals show the tunability of the resonators for a possible

application. Spirals of different sizes can be utilised to alter the position of the resonances. The use

of the resonators for possible applications including humidity and touch sensing is presented next.
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7.4.3 Effect of Humidity on Spiral Defected Ground Structure Resonators

As with the transmission lines in Chapter 6, the spiral DGS structures were characterised with varying

relative humidity. The humidity was increased from 40 to 90% over an eight-hour period and then

reduced back to 40% for one hour. Three types of resonators were considered, all with two identical

sized spirals either side of the transmission line. 9, 10 and 11 mm examples were considered, with

results shown in Figures 7.29 to 7.31 respectively. As the full response has been shown previously,

the x-axis here has been modified to show the region with the major changes. For this work, the

temperature was kept constant at 30 ◦C.

Figure 7.29: Measured scattering parameters s21 and s22 for an example 9 mm spiral resonator with humidity increased
from 40% to 90% and then returned to 40%.
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Figure 7.30: Measured scattering parameters s21 and s22 for an example 10 mm spiral resonator with humidity
increased from 40% to 90% and then returned to 40%.
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Figure 7.31: Measured scattering parameters s21 and s22 for an example 11 mm spiral resonator with humidity
increased from 40% to 90% and then returned to 40%.

Chapter 6 determined that the increase in water content with relative humidity and the corresponding

change in permittivity was the reason for the shift in scattering parameters with frequency. These

results showed the same behaviour for all three resonators, i.e. the resonant frequency decreased with

relative humidity. The response was not permanent and if returned to, and left at 40% for a longer

period of time (six hours), the response would return to its original value.

For all three examples, the response was seen to have a higher change at higher relative humidity

except at 90%, where the change was much less than that at 80%. As this was not the case with

transmission lines (results presented in Chapter 6), it was speculated that the reason for this smaller

change at 90% was due to the difference in geometries of the printed structures. The substrate and

the metal layer were the same in both.

As the spiral DGS resonators are paper-based, they are lightweight, flexible, cheap and easily

disposable. The characterisation has shown that the resonators were sensitive to humidity and so

could be utilised as sensors. 9 and 10 mm sized spirals were shown to have a shift of 0.13 GHz between

40 and 90% relative humidity, and 11 mm spirals a change of 0.10 GHz. This was a measurable change

which could be calibrated to measure a change in humidity for a given environment. As this was not a
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permanent change, the sensors could be used repeatedly and not just to determine a rise above some

threshold.

7.4.4 Spiral Defected Ground Structure Resonators as Touch Pads

Chapter 5 presented results for interdigitated capacitive touch sensors which could be used with a

custom measurement system. Here, the resonators could be combined with antennas to create wireless

touch sensors where all aspects are screen printed. The response to touch for an example resonator

with one 8 mm and one 11 mm spiral is shown in Figure 7.32.

Figure 7.32: Measured scattering parameters for a spiral resonator with a 8 mm spiral and a 11 mm spiral when it is
not touched, and when the spirals are touched independently on the printed and non-printed side of the device.

When one of the spirals was touched, the resonance for that spiral was shifted owing to the large

change in effective permittivity of the finger. It was shown in Chapter 5 that the relative permittivity

of the skin is 540, which is vastly different to that of air. As with devices in Chapter 5, touching the

device on the printed side produced sub-optimal results. If the device was touched in such a way that

both the signal track and the ground plane were touched, the device no longer acted as intended and

could lead to false data. When the devices were touched on the paper side where the spirals were,

the resonance was shifted to a lower frequency by approximately 1 GHz. This is a repeatable and

predictable response and so can be taken into account in any measurement system.
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7.5 Conclusion

The theory of microwave resonators has been presented, beginning with RLC resonators and including

transmission line stubs and defected ground structures. Transmission line stubs have been fabricated

and their measured scattering parameters compared to analytical modelling. Due to the differences

in these scattering parameters, the effects of several non-idealities were considered to determine the

source of these differences including: the impedance mismatch between the ports and the transmission

line; the effect of the transmission line either side of the stub; fringing effects; the uncertainty in length

of the stub; and the effects from additional modes being injected into the system. It was determined

that the measurement of the stub length was important in obtaining the correct resonant frequency

and also the additional electrical length of the stub due to fringing.

Spiral defected ground structure resonators were fabricated and it was shown to be possible to

create more than one resonance by adding different sized spirals along the same transmission line.

The spacing between spirals was shown to have an effect on the response and that there is a trade off

between the size of the device and the interference between resonators. The use of the resonators as

sensors for both humidity and touch was demonstrated with predictable and recoverable changes in

the frequency response.
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Chapter 8

Conclusions and Outlook

This thesis has assessed the feasibility of screen printing paper-based passive components up to

microwave frequencies. One of the key achievements of this work has been the creation of two

decision matrices to determine the optimum substrate and fabrication method. Screen printing on

Neenah paper was judged to be optimum for this work and was then developed further. Touch pads,

microwave transmission lines and resonators were fabricated as demonstrators of the screen-printing

process developed, with measured results supported by numerical analysis.

The two decision matrices determined both optimum substrate and fabrication method for a given

application. Substrates were compared in terms of surface roughness, cost, weight, thickness, water

and heat resilience. Fabrication methods were compared in terms of available materials, minimum

feature size, process repeatability and ease of use. The fabrication method and paper were then

considered together in terms of compatibility, sheet resistance and adhesion of deposited conductive

layers. The method and substrate must be considered in parallel as it has been shown they may not

be well suited to each other.

This work has shown the vast variety in the term ‘paper’ as a substrate. Surface imaging and

topography measurements of a range of papers have provided information on the differences in paper

structures, with matt papers consisting simply of bare cellulose fibres and coated papers having a

smoother surface on top of this cellulose fibre structure. These images and measurements can be

used to explain why matt papers have a lower cost, weight and thickness, also why they are more

susceptible to water when compared to glossy papers. Papers were compared to silicon, glass and

PET to highlight paper as having a lower cost and being easier to handle.

The results presented in this thesis only include those for thermal evaporation and screen printing,

the investigation was not limited to these but they were the most scalable and provided acceptable
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results in the preliminary stages. Screen printing was determined to be the preferred fabrication

method for this work as it is cost effective, fast and large areas can be patterned. Neenah paper was

selected as the optimum substrate for use with screen printing as rougher papers lead to a thicker

layer of ink deposited, resulting in a higher conductivity.

The screen-printing process was optimised and ultimately produced minimum repeatable features

of 500 µm. The screen properties, printing parameters and ink curing were all considered and it was

determined, when considering the mesh, that there was a trade off between ink thickness (and resulting

conductivity) and minimum feature size. Although carbon and nickel inks were considered, a silver

flake ink was determined to be better suited to this work for its high conductivity. A sheet resistance

of 15 m Ω/� was achieved when the ink was cured at 125 ◦C. Coalescing of the ink did not occur as

this required temperatures of above 250 ◦C, which was proved to discolour and curl paper substrates.

To demonstrate the capabilities of the optimised screen-printing process, passive devices were

fabricated including resistors, capacitors and inductors. Due to the high conductivity of the silver ink,

this was not suited to resistors, however inductors which were directly comparable to state-of-the-art

inductors screen printed on PET were produced. Both parallel plate and interdigitated capacitors

were also fabricated and the use of the interdigitated structures as touch pads was demonstrated.

Although parallel plate structures have a higher capacitance, the change in capacitance with touch

is greater for interdigitated designs. The touch pads were shown to perform well for a wide variety of

users and the measured results were supported by COMSOL modelling, which also provided further

detail on the device operation. The change in capacitance with touch was shown to increase with

force of touch and contact area and the touch pads were also shown to be proximity sensitive.

Screen-printed paper-based passive devices have been considered so that the use of plastics can be

avoided. It was identified early in this thesis that paper is more recycled and environmentally friendly

than plastics. There are high requirements for cost effective, disposable substrates for use in the

‘Internet of Things’, especially in the ISM band for sensing and communications applications. This

work has included an investigation into the behaviour of paper and silver ink at microwave frequencies

using transmission line structures illustrating that changing the substrate and metal layer properties

have an effect on the line parameters.

A simple circuit using the transmission lines was created and a transmission line stub, which

creates a resonance, was investigated at microwave frequencies. The resulting measurements were

compared to both numerical and analytical modelling, which highlighted the effect of stub length,

fringing and injection modes at discontinuities. Based on these findings, spiral resonators were used
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to create multiple resonances which were sensitive to both touch and humidity.

A key result in this thesis has been determining the effect of humidity on paper-based devices due

to the hygroscopic nature of paper. The effect of humidity on the touch pads, the transmission lines

and the microwave resonators has been identified and shown not to be negligible. Paper and water

have three main bonding mechanisms and this work has suggested that the effect of loosely bound

water in the cellulose structure is the main cause in increased effective permittivity and resulting

change in response of the devices at higher humidities.

Overall, this work suggests that screen printing conductive ink on paper is a viable alternative to

current fabrication methods on flexible plastic substrates. The large amounts of plastic waste have

seen a drive towards paper-based electronics. This thesis provides a method to determine an optimum

fabrication technique and substrate and also highlights the possible effects of humidity which must be

considered for all devices using paper.

8.1 Suggestions for Further Work

This thesis has covered a wide range of topics within the title ‘Paper-based Electronics’ and for this

reason, there is a large range of further work that could take place based on this.

The screen-printing method could be used to create multiple layers of conductive and insulating

materials. Increasing the number of layers of conductive ink would increase conductivity, leading to

lower losses for the microwave devices presented in Chapters 6 and 7. Multiple layers of differing

metals can lead to the production of more complex devices, for example thermoelectric generators.

Examples of these have been fabricated in Durham using a syringe pump deposition method and both

silver and nickel inks.

Multiple layers of differing materials would allow the fabrication of devices which incorporate both

metals and insulators. Work is on going investigating the printing of silver ink and PVA using a

syringe pump method. The curing of multiple layers may be an issue, however the temperatures

required for both silver and PVA are lower than those which would deteriorate the substrate. The

main concern when screen printing multiple layers is the alignment, which is less of a concern with

syringe printing. Although the alignment would be difficult with the in-house system developed in

this work, it would not be an issue with an automated system.

The ability to screen print multiple layers leads to the possibility of producing active devices such

as transistors. These active devices could then be integrated into a larger system which includes
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sensors, batteries and inputs which have already successfully been printed on paper. Although some

groups have printed complete systems on paper, this is still in its early stages and further development

could lead to commercial applications.

The foldability of paper has been discussed in this work and could be considered for further work.

Foldable devices reduce the area and can also alter the operation of devices. Antennas are a device

which may likely be considered in an extension of this work and foldable antennas can provide multiple

transmitting and receiving frequencies.

Altering the chemical structure of the paper itself was not considered in this work, however this

has been considered by others and could be further explored. The porous structure of matt papers

especially makes it an ideal substrate for functionalisation, which can be utilised to create sensors.

The option of alternate substrates similar to paper substrates should also be considered, for example

textiles. Electronics on textiles would likely become a popular commercial area due to the novelty of

electronics embedded in clothing and footwear.
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