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Abstract 

 
Cell differentiation is the process by which a pluripotent cell acquires a determined, 

specialised state. This process relies on the precise spatiotemporal control of gene 

expression, which is partly regulated at the level of chromatin architecture. Chromatin 

is a complex of nucleic acids and histone proteins which compresses DNA to fit in 

the cell nucleus. The structure of chromatin modulates the ability of eukaryotic cells 

to respond to developmental cues. It does so by regulating the accessibility of DNA 

to transcription factors and the RNA polymerase transcriptional machinery. Histone 

post-translational modifications are key contributors to the regulation of chromatin 

architecture during development. 

 
This thesis investigates the key histone modifications associated with plant cell 

differentiation, and the role of auxin, cytokinin and brassinosteroids in guiding 

chromatin changes during plant cell differentiation. This entailed conducting 

numerous experiments on the model plant Arabidopsis thaliana, including observing 

the effect of loss of function of histone-modifying enzymes on root cell differentiation 

and cytokinin response. In addition, this thesis examined the effect of disturbing the 

balance of phytohormones on VASCULAR-RELATED NAC-DOMAIN 7 (VND7)-

induced xylem transdifferentiation. Finally, protein-protein interaction assays were 

conducted to identify molecular interactions between hormone signalling genes and 

histone-modifying enzymes. 

 
These experiments revealed that some loss-of-function mutants had a significantly 

different root meristem size to the wildtype and an impeded cytokinin response. This 

highlights the regulatory role of chromatin architecture in cell differentiation and 

indicates that hormone signals may guide histone-modifying enzymes during cell 

differentiation. Furthermore, disrupting the phytohormone balance resulted in 

defective VND7-induced xylem transdifferentiation, suggesting that a specific 

hormonal framework may be necessary to promote VND7 activity. Finally, the 

negative regulator of brassinosteroid signalling, BR-INSENSITIVE 2 (BIN2), was 

found to interact with histone methyltransferases SU(VAR)3–9-RELATED 5 

(SUVR5), SU(VAR)3–9 HOMOLOG 5 (SUVH5) and CURLY LEAF (CLF).  
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1. Introduction 
 
1.1 Cell differentiation 
 

Cell differentiation is the process of a cell changing from one pluripotent cell type to 

another more specialised cell type (Stange, 1965). This process plays an essential and 

ongoing role throughout the course of development in multicellular organisms. 

Fundamentally, the many functionally specialised cell types produced as a result of 

cell differentiation, are organised into the diverse tissues and organs that make up 

multicellular organisms (Cooper, 2000).  

 

When a cell differentiates it must make two sequential decisions. The first is when to 

stop proliferating and start undergoing differentiation, and the second is what cell fate 

to attain. Hormones play a major role in regulating the initiation of differentiation as 

well as cell type identity (Dello Ioio et al., 2008; Sabatini et al., 1999). Both of these 

processes rely on precise spatiotemporal gene expression patterns which determine 

cell morphology, biochemistry, and physiology. Such patterns of gene expression are 

controlled at multiple levels, one of which being chromatin architecture (Ralston 

and Shaw, 2008; Lelli et al., 2012).  

 

1.2 Chromatin remodelling 
 

 
Figure 1: The nucleosome. The nucleosome consists of a length of DNA wrapped 

around a histone octamer. Figure taken from Tsankova et al. (2007).  
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Eukaryotic cells tightly package their DNA into a nucleoprotein complex called 

chromatin. A fundamental subunit of chromatin is the nucleosome (Figure 1). The 

nucleosome consists of 147 base pairs of DNA wrapped around a histone octamer 

comprising of two copies of each of the four core histone proteins H2A, H2B, H3 and 

H4 (Morales et al., 2001; Kouzarides, 2007). These four core histones have a C-

terminal fold domain and an N-terminal tail (Davey et al., 2002). The C-terminal fold 

domain primarily mediates interactions between core histones (Arents et al., 1991; 

Arents et al., 1995) whilst the N-terminal tails protrude from the nucleosome core 

particle and are subject to a number of post-translational modifications that modulate 

chromatin architecture (reviewed in Kouzarides, 2007). 

 

Chromatin architecture regulates the accessibility of DNA for various genomic 

processes including DNA replication, repair, recombination and transcription 

(Morales et al., 2001; Berr et al., 2011). Epigenetic determinants, such as DNA 

methylation and histone post-translational modifications, make dynamic and 

reversible changes to DNA and associated histones. These changes do not affect the 

DNA sequence yet alter chromatin structure (reviewed in Goldberg et al., 2007). 

Histone post-translational modifications occur on different amino acid residues on N-

terminal histone tails or sometimes within the globular histone core (Bannister and 

Kouzarides, 2011). These modifications modulate transcription both directly and 

indirectly. This involves moderating DNA accessibility to transcription factors and 

RNA polymerase transcriptional machinery as well as recruiting effector protein 

complexes to the nucleosome surface (Berger, 2007).  

 

Numerous studies have shown that specific histone modifications are associated with 

open chromatin and actively transcribed genes, whilst other histone modifications are 

linked to chromatin condensation and transcriptional repression (Berger, 2007). For 

example, histone acetylation is activating (Zentner and Henikoff, 2013), whilst 

histone methylation can be both activating and repressive depending on the number 

of methyl groups added (Bannister et al., 2002) and the amino acid residue modified 

(Kouzarides, 2002). These post-translational histone modifications are regulated by 

enzymes which either add (“writers”) or remove (“erasers”) histone marks (Srivastava 

et al., 2016). According to the histone code hypothesis (Jenuwein and Allis 2001; 
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Strahl and Allis, 2000), histone writers and erasers mediate combinations of histone 

marks, which synergistically and antagonistically interact with one another to 

dynamically modulate chromatin compaction and gene expression. 

 

1.3 The Arabidopsis root and xylem differentiation pathway as model systems 

 

Plants are ideal systems for research into epigenetic regulation of development. As 

sessile organisms, plants have remarkable developmental plasticity and form most 

organs post-embryonically. This requires continuous epigenetic reprogramming and 

enables plants to adapt to dynamic growth environments. Furthermore, many plant 

epigenetic regulators are well conserved amongst metazoans (Geisler and Paro, 2015). 

Arabidopsis thaliana, in particular, has been widely recognised in plant research as a 

good model system. This is due to its small diploid genome, short generation time, 

small size, its ability to generate a lot of seed through self-pollination and it is easy to 

transform (Koornneef and Meinke, 2010).  

 

In plants, growth occurs through a combination of cell division and cell elongation 

which take place in meristems. Apical meristems located at the tip of shoots and roots 

give rise to primary growth, which increases the length of shoots and roots. On the 

other hand, lateral meristems, which include the vascular cambium and cork 

cambium, are responsible for increasing plant width, known as secondary growth 

(Nieminen et al., 2015; McManus and Veit, 2002). In the root apical meristem, stem 

cell initials give rise to all cell types of the root. These initials are located adjacent to 

the quiescent centre (QC), which is responsible for maintaining initials in an 

undifferentiated state (Dolan et al., 1993; van den Berg et al., 1997). Cell lineages can 

be easily identified in the root as continuous files of cells emerging from repeated 

transverse divisions in daughter cells of stem cell initials, called transit amplifying 

cells (Dolan et al., 1993; Perilli et al., 2012). The robust cellular organisation and 

simple structural and functional organisation of the Arabidopsis root make it an 

excellent model system to study developmental processes (Scheres and Wolkenfelt, 

1998). 
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Figure 2: Structure of Arabidopsis primary root. Figures adapted from Jaillais 

and Chory (2010) and Thies and Grossman (2006). 

 

The Arabidopsis root consists of concentric cell layers of epidermis, cortex, 

endodermis, pericycle and finally vascular tissue in the centre of the root (Figure 2). 

Along the longitudinal axis, typical plant roots contain four distinct developmental 

zones which reflect a temporally ordered series of developmental events that are easy 

to track. In the meristematic zone, the transit amplifying cells undergo rapid mitotic 

division. In the transition zone, cells stop dividing and increase slowly in length. In 

the zone of elongation, cells undergo rapid elongation. Finally, in the zone of 

differentiation, elongated cells become specialised mature cells. This differentiation 

zone is easily recognised by the formation of epidermal root hairs (Dolan et al., 1993).  
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The xylem differentiation pathway in roots, in particular, offers a tractable system to 

study chromatin remodelling processes during cellular differentiation. Xylem is part 

of the vascular system of plants which transports water and minerals through the plant 

body and also provides mechanical support (reviewed at Lucas et al., 2013). 

Tracheary elements (TEs) are one of three types of highly specialised cells which 

make up xylem. They undergo a well-defined differentiation process from 

meristematic cells of the procambium, which involves patterned secondary cell wall 

deposition, lignification, programmed cell death and autolysis (Fukuda, 1996). The 

establishment and utilisation of experimental systems for induced TE differentiation 

have enabled the discovery of many factors and key genes involved in their 

differentiation (Fukuda, 1997; Ye, 2002). Therefore, there is a variety of experimental 

tools and extensive transcriptional data available to study this process. 

 

1.4 Histone modifications and plant cell differentiation 

 
Cell differentiation is accompanied by dynamic chromatin remodelling. In 

mammalian systems, it has been shown that pluripotent stem cells are typically 

associated with a more open chromatin configuration that is accessible for 

transcriptional activation. On the other hand, differentiated cells have a more 

condensed and repressive chromatin configuration (Meshorer and Misteli, 2006; 

Mattout and Meshorer, 2010). In both mammalian and plant systems, this dynamic 

chromatin remodelling during cell differentiation has been linked to the deposition or 

removal of different sets of active and repressive chromatin marks. In differentiated 

cells, net genomic coverage of repressive chromatin marks increases (Aoto et al., 

2006; Bartova et al., 2008; De Lucas, 2016), yet decreases for transcriptionally active 

chromatin marks (Lee et al., 2004; Krejci et al., 2009; De Lucas, 2016).  

 

A variety of histone post-translational modifications exist that modulate chromatin 

compaction, including acetylation, methylation, phosphorylation, ubiquitination, 

amongst others (Huang et al., 2014). Of these, histone acetylation and histone 

methylation are the most studied in relation to chromatin remodelling and 

transcription and will therefore be focused upon in this study.  
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1.4.1 Histone acetylation 

 
Histone acetylation is a major histone modification whereby an acetyl group is added 

to lysine residues on amino-terminal tails of histones. This neutralises the positive 

charge of lysines and weakens histone interactions with negatively charged DNA, 

which subsequently leads to an open, permissive chromatin configuration and active 

transcription (Zentner and Henikoff, 2013). Histone acetylation is regulated by 

histone acetyltransferases (HATs) and histone deacetylases (HDAs) that add and 

remove acetyl groups, respectively (Struhl, 1998).  

 

Research has shown that histone acetylation can play a key role in maintaining 

meristem activity and controlling the transition from cell division to cell 

differentiation. Histone acetylation levels decrease as cells progress from mitotically 

active, undifferentiated meristematic cells to fully differentiated cells in the 

Arabidopsis root (Rosa et al., 2014). Moreover, loss of function of the histone H3 

acetyltransferase GENERAL CONTROL NONDEREPRESSIBLE 5 (GCN5), results 

in shorter roots and reduced meristem size (Kornet and Scheres, 2009). On the other 

hand, inhibition of certain HDAs using Trichostatin A (TSA) leads to 

hyperacetylation, which delays cell differentiation and induces the expression of a 

meristem marker in cells from the differentiation zone (Rosa et al., 2014).  

 

It has recently been shown that other HDAs, that are not inhibited by TSA treatment, 

namely HDT1 and HDT2, regulate the transition from cell division to cell elongation. 

Knockdown of HDT1/2 resulted in a premature switch from cell division to cell 

elongation and a reduction in root meristem cell number (Li et al., 2017). This is 

because HDT1/2 negatively regulate the acetylation levels and expression of C19-

GIBBERELLIN 2-OXIDASE 2 (GA2ox2), which encodes for a major gibberellin (GA) 

inactivating pathway in Arabidopsis (Rieu et al., 2008). GA promotes mitotic activity 

(Ubeda-Tomas et al., 2009; Achard et al., 2009) and delays the developmental switch 

from cell division to cell elongation (Moubayidin et al., 2010). Thus HDT1/2 control 

GA metabolism to regulate cell progression in roots. 
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Histone deacetylation also plays a crucial role in maintaining stem cell fate in the root 

apical meristem. WUSCHEL-RELATED HOMEOBOX 5 (WOX5) transcription 

factor is a key regulator of the root apical meristem stem cell niche. WOX5 is 

expressed in the QC cells and the protein moves to surrounding stem cells initials 

where it recruits the co-repressor TOPLESS (TPL) and HDA19 to differentiation-

promoting factor gene CYCLING DOF FACTOR 4 (CDF4). Thus, WOX5-mediated 

histone deacetylation represses CDF4 to maintain stem cells in their undifferentiated 

state (Pi et al., 2015).  

 

1.4.2 Histone methylation 

 

Histone methylation is defined as the transfer of one, two or three methyl groups to 

lysine (K) or arginine (R) residues on amino-terminal tails of histones (reviewed in 

Ng et al, 2009). The effect of histone methylation on gene expression is complex and 

varies according to which amino acid residue is modified (Kouzarides, 2002), and 

also how many methyl groups are added (Bannister et al., 2002). Whilst methylation 

of histone H3 at lysine 9 (H3K9) or lysine 27 (H3K27) correlates with transcriptional 

repression (Ikeuchi et al., 2015a; Schubert et al., 2006), methylation at H3K4 or 

H3K36 is activating (Jenuwein and Allis, 2001; Zhang et al., 2009). Arginine 

methylation also dynamically regulates transcription. Whilst methylation of histone 

H3 at arginine 17 (H3R17) has been associated with transcriptional activation (Niu et 

al., 2008), methylation at H4R3 has been associated with repressing target gene 

expression (Wang et al., 2007; Yue et al., 2013; Cho et al., 2012).  

 

Polycomb group (PcG) and trithorax group (trxG) proteins are key regulators of 

developmental gene expression, which mediate histone methylation deposition via a 

catalytic Su(var) 3-9, Enhancer of zeste and Trithorax (SET) domain (Jenuwein et al., 

1998). PcG proteins exist in two separate complexes, one of which, Polycomb 

Repressive Complex 2 (PRC2), is recruited to DNA via Polycomb response elements 

(PREs) (Xiao et al., 2017) and catalyses trimethylation of H3K27 (H3K27me3) 

(Kuzmichev et al., 2002; Cao et al., 2002; Muller et al., 2002). TrxG proteins on the 

other hand can counteract PcG function and catalyse methylation of H3K4 and 

H3K36. This activates gene expression by mediating chromatin decondensation (Byrd 
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and Shearn, 2003; Wysocka et al., 2005; Dorighi and Tamkun; 2013).  Such histone 

marks can be removed by jumonji domain C (JmjC domain) containing demethylases 

(Tsukada et al., 2006; Chen et al., 2006).  

 

A trxG protein, SET DOMAIN GROUP2 (SDG2), controls the H3K4me3 mark in 

most genes (Guo et al., 2010). Loss-of-function of SDG2 results in reduced root 

growth due to impaired mitotic activity in the meristem zone (Yao et al., 2013). 

Furthermore, another H3K4 histone methyltransferase, ARABIDOPSIS 

TRITHORAX 1 (ATX1)/SDG27, is known to play an important role in modulating 

cell proliferation and the transition to elongation such that atx1-1 mutants also show 

defects in root growth (Napsucialy-Mendivil et al., 2014).  

 

H3K27me3-mediated gene silencing is catalysed by homologs of Drosophila core 

subunit Enhancer of zeste [E(z)] in the Arabidopsis PRC2 complex, namely CURLY 

LEAF (CLF), SWINGER (SWN) and MEDEA (MEA) (Goodrich et al., 1997; 

Chanvivattana et al., 2004; Grossniklaus et al., 1998). PRC2 is known to target the 

H3K27me3 repressive mark to specific genomic regions in response to developmental 

cues (Boland et al., 2014) and De Lucas et al. (2016) found that H3K27me3 repressive 

mark is more prevalent in cells that have started the differentiation process.  

H3K27me3 may be responsible for restricting meristematic activity as Aichinger et 

al. (2011) found that loss of function of CLF resulted in larger meristem size and 

longer roots. Furthermore, loss-of-function mutants in multiple PRC2 subunits fail to 

retain mature somatic root hair cells in their differentiated state, resulting in 

dedifferentiation and the generation of a callus, an unorganised pluripotent cell mass 

(Ikeuchi et al., 2015b). Together, these studies demonstrate the importance of PRC2-

mediated H3K27me3 in establishing and maintaining the differentiated status of cells.  

 

1.5 Hormonal regulation of plant cell differentiation 
 

Plant hormones have essential roles in controlling diverse growth and developmental 

processes in the plant root. Extensive crosstalk occurs between phytohormones to co-

ordinately control specific developmental processes in roots including cell division, 

elongation and differentiation (Takatsuka and Umeda, 2014). In particular, the role of 
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auxin, cytokinin (CK) and brassinosteroid (BR) signalling in controlling cellular 

decisions during differentiation has been the subject of much research.  

 

1.5.1 Hormone signals and cell differentiation initiation 
 

In root cells, the first cell differentiation decision of when to switch from cell division 

to cell differentiation, is modulated by hormonal signals. Auxin is known to promote 

cell division in the root meristematic zone (Dello Ioio et al., 2008) such that 

exogenous application of auxin causes an increase in meristem size due to an increase 

in the rate of cell division (Dello Ioio et al., 2007). On the other hand, mutants in the 

auxin efflux carrier, PIN-FORMED 2 (PIN2), show a reduction in root meristem size 

as a result of a decrease in cell division (Blilou et al., 2005). CK promotes 

meristematic cell differentiation and delimits the transition zone in root meristems 

(Dello Ioio et al., 2008; Perilli and Sabatini, 2010). Dello Ioio et al. (2007) found that 

exogenous application of CK results in a decrease in the number of meristematic cells, 

and therefore reduction in meristem size. It was also found that CK-deficient plants 

with mutations in CK receptor ARABIDOPSIS HISTIDINE KINASE 3 (AHK3) and 

the ARABIDOPSIS TYPE B CK-RESPONSE REGULATORS (ARRs), ARR1 and 

ARR12 (Dello Ioio et al., 2007), exhibit an increased meristem size due to progressive 

accumulation of meristematic cells.  

 

The root meristem size is thought to be established and maintained by a balance 

between CK and auxin signalling. CK has been found to directly antagonise auxin 

action in the transition zone. It does so, in part, by regulating the expression of SHORT 

HYPOCOTYL 2 (SHY2), a member of the AUXIN/INDOLE-3-ACETIC ACID 

(AUX/IAA) family of transcriptional repressors and GH3.17, a member of the 

GRETCHEN HAGEN 3 (GH3) group II family of auxin-inducible acyl-acid-amido 

synthetases. ARR1, a transcription factor produced downstream of CK signalling, 

promotes SHY2 expression. SHY2 represses PIN auxin efflux carrier genes and 

inhibits polar auxin transport (Dello Ioio et al., 2008; Ruzicka et al., 2009). 

Furthermore, recent research has shown that ARR1 transcriptionally activates GH3.17 

which induces auxin catabolism (Di Mambro et al., 2017). CK control of both polar 

auxin transport, via SHY2, and auxin degradation, via GH3.17, defines the auxin 
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minimum. This CK-dependant auxin minimum controls the switch from cell division 

to cell differentiation to establish the position of the root transition zone and 

subsequently monitor meristem size (Di Mambro et al., 2017).  

 

In addition to auxin and CK, BRs also play a crucial role in regulating meristem 

activity. BR perception is required in the epidermis to promote cell division of transit 

amplifying cells, which increases the meristem size (Hacham et al., 2011; Vragović 

et al., 2015). Vragović et al. (2015) showed that epidermal BR control of cell 

proliferation is mediated by auxin. Furthermore, BRs maintain the self-renewing 

capacity of the QC, which also determines the root meristem size (González-García 

et al., 2011). Throughout root development, endogenous BR levels are controlled 

spatiotemporally such that low levels of BRs maintain QC activity and meristem size, 

whilst higher BR concentrations promote cell elongation and differentiation in the 

transition zone (Chaiwanon and Wang, 2015; González-García et al., 2011).  

 

1.5.2 Hormone signals and cell identity 

 

Hormonal signals also play an essential role in determining cell identity. For example, 

many studies have demonstrated the importance of auxin, CK and BR signalling in 

cell fate determination during vascular development. Auxin plays an important role 

in the early stages of vascular patterning. Polar auxin flow is essential for continuous 

vascular formation such that mutants in the auxin transport protein PIN1 show excess 

vascularisation (Gälweiler et al., 1998). Furthermore, mutations in the GNOM gene, 

which encodes an ADP-ribosylation factor G protein (ARF GEF) required for polar 

localisation of PIN1 (Steinmann et al., 1999), have clustered TEs or scattered single 

TEs that are not interconnected to form strands (Jürgens et al., 1991; Mayer et al., 

1991). Mutations in the MONOPTEROS (MP) gene, which encodes an auxin response 

factor, result in reduced vascular tissue due to formation of discontinuous vascular 

strands (Hardtke and Berleth, 1998). Reduced vasculature and severe vascular 

patterning defects are also observed in mutants with defects in perceiving auxin such 

as axr6 (Hobbie et al., 2000). Alongside vascular patterning, Yoshida et al. (2005) 

demonstrated the importance of auxin for transdifferentiation into TEs using a Zinnia 

elegans cell culture system. They found that treating cultured Zinnia mesophyll cells 
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with the auxin transport inhibitor 1-N-naphthylphthalamic acid (NPA) inhibited 

transdifferentiation. The inhibitory effect of NPA on transdifferentiation could be 

overcome by treatment with a high concentration of auxin 1-naphthaleneacetic acid 

(NAA). Later, NAA was found to promote expression of genes associated with auxin 

signalling and transcriptional regulators of vascular cell differentiation (Yoshida et 

al., 2009). 

 

CK has also been implicated in controlling specification of vascular cell files. In 

wildtype Arabidopsis, the root vascular cylinder constitutes phloem poles and 

procambial cell files flanking a central axis of xylem. In the xylem axis, metaxylem 

is typically located in central positions and protoxylem in marginal positions 

(Mähönen et al., 2006b). In mutants with defects in components of the CK signalling 

pathway, such as CK receptor WOODEN LEG (WOL) and ARR1, ARR10, and 

ARR12 transcription factors, all cells within the vasculature differentiate solely into 

protoxylem (Mähönen et al., 2000; Argyros et al., 2008). Moreover, treatment with 

CK inhibits protoxylem formation (Mähönen et al., 2006a). Together, these results 

suggest that CK negatively regulates protoxylem differentiation, such that in 

developing protoxylem, ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER 

PROTEIN 6 (AHP6) down-regulates CK signalling (Mähönen et al., 2006b).  

 

CK signalling has been shown to integrate with auxin signalling to specify vascular 

patterning in the root meristem. AHP6 expression is auxin-dependent and loss of 

function of AHP6 expands CK-related gene expression domains from procambium 

into protoxylem position, which prevents protoxylem differentiation (Mähönen et al., 

2006b). Moreover, CK signalling in the procambium promotes the bisymmetric 

distribution of the PIN auxin efflux proteins which channel auxin into the central 

xylem axis (Bishopp et al., 2011). CK is also thought to increase the sensitivity of 

cambial initials to auxin, which promotes initials to differentiate into TEs, as CK 

induces TE formation acropetally in the presence of auxin IAA (Baum et al., 1991). 

 

BRs also play an essential role in vascular patterning. BR biosynthesis mutants such 

as dwarf7-1 have fewer vascular bundles which are irregularly spaced and the size 

and number of xylem cells is greatly reduced (Choe et al., 1999). Another BR 
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biosynthesis mutant, cpd, was found to show unequal division of the cambium such 

that more phloem cells were present at the expense of the xylem (Szekeres et al., 

1996). The BR perception mutant bri1 shows a similar phenotype of increased phloem 

relative to xylem per vascular bundle (Caño-Delgado et al., 2004). Iwasaki and 

Shibaoka (1991) and Yamamoto et al. (1997) demonstrated that BRs are also 

necessary for TE differentiation. Transdifferentiation of mesophyll cells into TEs was 

inhibited when Zinnia cell cultures were treated with the BR biosynthesis inhibitor, 

uniconazole, whilst addition of brassinolide (BL) overcame this inhibitory effect 

(Iwasaki and Shibaoka, 1991). 

 

1.6 Histone modifications and plant hormone signalling 

 
Numerous studies have revealed a direct link between hormone signalling and histone 

modifications during plant development. TOPLESS (TPL)/TPL-RELATED (TPR) 

belongs to the plant Groucho corepressor family (Causier et al., 2012) and has been 

shown to repress the expression of numerous hormone-related genes by recruiting 

HDAs (Szemenyei et al., 2008; Causier et al., 2012). For example, TPL/TPR has been 

shown to recruit HDA19 to repress BR signalling positive regulator 

BRASSINAZOLE-RESISTANT 1(BZR1) target genes (Wang et al., 2013), AUXIN 

RESPONSE FACTOR (ARF) target genes (Long et al., 2006) and abscisic acid 

(ABA) signalling genes targeted by BZR2/BRI1-EMS-SUPPRESSOR 1 (BES1) 

(Ryu et al., 2014). Furthermore, it has recently been shown that BES1-mediated 

control of root meristem activity relies on TPL/TPR repressive function and the 

recruitment of HDA19 (Espinosa-Ruiz et al., 2017). 

 

Asides from TPL/TPR/HDA19 control of hormone signalling, Zhang et al. (2014a) 

demonstrated an interaction between BR and GA signalling and chromatin 

remodelling factor PICKLE (PKL). PKL controls BR and GA signalling and inhibits 

the H3K27me3 modification of cell elongation–related genes in the dark to promote 

hypocotyl growth (Zhang et al., 2014a). Other studies have shown that recruitment of 

HATs increases the expression of auxin-responsive genes (Weiste and Dröge-Laser, 

2014). A final example is that BES1 interacts with two JmjN/C domain-containing 
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proteins, thought to be histone demethylases that target H3K9me3, to regulate BR-

related gene expression and obtain the optimal BR response (Yu et al., 2008).  

 

In the context of cell differentiation, mutants in genes encoding chromatin 

remodelling enzymes have defects in cell differentiation (Ikeuchi et al., 2015a) and 

share characteristics with auxin and CK mutants (Dello Ioio et al., 2008). This 

suggests that hormone signalling components may interact with chromatin 

remodelling enzymes during differentiation. Much further investigation is required 

however to elucidate the mechanisms by which hormones integrate with chromatin 

remodelling during cellular differentiation. 

 

1.7 Experimental aims and hypothesis 
 

In light of previous research, I present the hypothesis that hormone signalling guides 

histone modifications during plant cell differentiation.  

 

To test this hypothesis, this study aims to answer the following questions: 

• What are the principal histone modifications associated with plant cell 

differentiation? 

• How does hormone signalling regulate TE differentiation? 

• What are the molecular interactions between hormone signalling genes and 

histone modifying enzymes and what is the context and biological meaning of 

these interactions? 

 

Firstly, loss-of-function mutants in histone modifying enzymes were treated with 

differentiation-promoting CK and the root meristem size was measured. This 

identified the key histone modifying enzymes associated with cell differentiation 

initiation that are regulated by CK.  

 

Next, a TE trans-differentiation experimental system was used which utilised 

estradiol-inducible overexpression of the master regulator VASCULAR-RELATED 

NAC-DOMAIN 7 (VND7). Hormones were applied to VND7 inducible seedlings, and 
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the impact of perturbing hormone levels on TE induction was identified by looking at 

secondary cell wall deposition.  

 

Finally, to identify the molecular interactions between hormone signalling genes and 

histone modifying enzymes, a yeast two-hybrid (Y2H) protein-protein interaction 

assay was performed. Positive interactions were validated in vivo by bimolecular 

fluorescence complementation (BiFC) before the context and biological meaning of 

these interactions was investigated using a number of different methods. These 

included analysing the expression of candidate genes in hormone-treated loss-of-

function mutants using quantitative real time (qRT)-PCR and investigating the effect 

of loss of function of histone modifying enzymes on hormone response.  
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2. Materials and methods 
 

2.1 Chemical suppliers 
 

Details of the suppliers of all chemicals and reagents used in this study are described 

in Appendix 1.  

 

All restriction enzymes and respective buffers were purchased from Thermo Fisher 

Scientific unless an alternative supplier is stated. 

 

2.2 Plant materials and growth conditions 
 

2.2.1 Plant material 
 

The wildtype Arabidopsis thaliana seeds were obtained from laboratory stocks of 

Columbia ecotype (Col0). All seeds used in this study were in Col0 ecotype 

background. 

 

Histone modifying enzyme loss-of-function mutants ash1 homolog 3 (ashh3, 

AT2G44150, SALK_131218.49.35.n), ash1-related 1 (ashr1, AT2G17900, 

SALK_018048.35.40.x), homologue of trithorax 1 (atx1, AT2G31650, 

SALK_149002.50.05.x), arabidopsis trithorax-related protein 5 (atxr5, 

AT5G09790.1, SALK_130607.54.85.x), curly leaf 29 (clf29, AT2G23380, 

SALK_021003.55.50.x), arabidopsis lysine-specific histone demethylase 1 (ld1, 

AT1G62830, SALK_034869.39.40.x), homolog of su(var)3-9 1 (suvr1, AT1G04050, 

SALK_021874.47.35.x), jumonji domain-containing protein 22 (jmj22, AT5G06550, 

SAIL_680_G02), swinger 7 (swn7, At4g02020, SALK_109121), su(var)3-9 homolog 

8 (suvh8, AT2G24740, SALK_123140.21.25.x), and su(var)3–9-related 5 (suvr5, 

AT2G23740, SALK_026224.41.90.x)  (Alonso et al., 2003; Sessions et al., 2002) 

were obtained from SALK and SAIL collections of T-DNA insertion lines courtesy 

of Nottingham Arabidopsis Stock Centre (NASC). 
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The VND7 conditional overexpression (VND7ox) line (Coego et al., 2014) was 

obtained from NASC. The HISTONE 2B::YELLOW FLUORESCENT PROTEIN 

(H2B::YFP) line (Boisnard-Lorig et al., 2001) was kindly donated by Dr. Peng Wang 

(Durham University). VND7ox plants were crossed with H2B::YFP plants to obtain 

the VND7ox;H2B::YFP line. The XVE::GUS line was obtained courtesy of Prof. 

Salomé Prat (CNB-CSIC, Madrid. Spain). 

 
2.2.2 Seed sterilisation 

 

Seeds were sterilised in 1.5ml Eppendorf tubes first with 500µL of sterilisation 

solution (70% ethanol (EtOH), 0.1% Tween 20) for 15 minutes with constant shaking 

using an orbital shaker. 500µL of 100% EtOH was then added to the tubes which were 

shaken for a further 5 minutes before repeating this step once again. The next stage of 

seed sterilisation was carried out in sterile conditions under a laminar flow hood. All 

liquid was removed from the seeds and 500µL of fresh 100% EtOH was added	 to 

each tube	followed by a further 5 minutes of constant shaking. After removal of the 

100% EtOH, the seeds were left to air dry in the laminar flow hood and stored at room 

temperature until used for experiments.   

 

2.2.3 Plant growth medium  
 

1X Murashige and Skoog (MS) medium was made up to contain 4.3g/l of MS basal 

salt mixture, 10g/l sucrose, 0.5g/l 2-(N-morpholino)ethanesulfonic acid (MES), and 

10g/l agar for vertical plates or 8g/l agar for horizontal plates. The pH was adjusted 

to pH 5.8 using a 0.1M KOH solution before the addition of agar. Media was 

autoclaved for 20 min at 121°C.  

 

Table 1: Hormone stock solution preparation 

Hormone Stock solution 
3-Indolacetic Acid (IAA) 10mM in EtOH 

Bikinin 10mM in dimethylsulfoxide (DMSO) 
Brassinazole (BRZ) 1mM in DMSO 
Epibrassinolide (BL) 10mM in DMSO 

ß-estradiol 100mM in EtOH 
Trans-zeatin 30mM in 1M NaOH 
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Hormones were filter sterilised through 0.22µm nylon syringe filters and added to 

cooled MS media after autoclaving. Stock solutions were prepared according to Table 

1, aliquoted and stored at -20ºC.  

 
2.2.4 Plant growth conditions  

 
In a laminar flow hood, sterilised seeds were sown onto square plates or petri dishes 

containing 1X MS medium. To synchronise germination, seeds were stratified for 2-

3 days at 4ºC before being grown vertically or horizontally in a growth chamber with 

a 16h light/8h dark cycle at 21ºC. 

 

For seeds sown onto soil, seeds were stratified in distilled water (dH2O) at 4ºC for 2-

3 days and then transferred to soil in pots. Pots were then covered with a plastic lid 

and placed in a greenhouse with a 16h light at 22ºC/8h dark at 18ºC growth cycle. 

 

2.3 Plant genotyping  

 
2.3.1 Plant genomic DNA extraction 

 
Sample material was placed in 1.5ml tubes along with two stainless steel grinding 

balls and 100µL of 1X extraction buffer (stock 10X extraction buffer: 200mM TRIS 

HCl pH 7.5, 250mM NaCl, 25mM Ethylenediaminetetraacetic acid (EDTA), 

and 0.5% Sodium Dodecil Sulfate (SDS) diluted to 1X with dH2O). The tubes were 

placed into grinding blocks and the samples were ground for 2 minutes at 25Hz. The 

samples were then centrifuged for 5 minutes at maximum speed and 50µL of the 

supernatant containing genomic DNA was added to new tubes along with 50µL water. 
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2.3.2 Genotyping PCR 

 
Table 2: Genotyping PCR reaction mix 

Reagent Volume/reaction (µL) 
Taq Mix 6 
Forward Primer (10µM) 0.1 
Reverse Primer (10µM) 0.1 
dH2O 3.8 
DNA 2 

 
Table 3: Genotyping PCR cycling conditions  

Temperature (ºC) Time Number of cycles 

95 2min 1 
95 15s 

41 50 30s/Kb 
72 1min 
72 5min 1 
12 ¥  

 

The genotyping PCR reaction mix was set up according to Table 2 and performed 

according to the PCR cycling conditions detailed in Table 3. All genotyping PCR 

primers used are listed in Appendix 2. 

 

2.3.3 Agarose gel electrophoresis  
 

PCR products were tested using agarose gel electrophoresis. Agarose gels were 

prepared from 1g agarose dissolved in 100ml 1X TAE buffer (40mM Tris pH 7.6, 

20mM acetic acid, 1mM EDTA) and ethidium bromide was added to a final 

concentration of 0.5μg/ml. 5μL of sample was loaded into wells with 6X DNA 

loading buffer (60% glycerol, 0.25% bromophenol blue, 0.25% xylene cyanol FF, 

150mM Tris pH 7.6). Each gel also had a separate well containing 5µL hyperladder 

for fragment size determination. Gels were run at 150V for approximately 20 minutes. 

Gels were imaged using a Syngene InGenius gel documentation system controlled by 

GeneSnap software. 
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2.4 Root meristem size analysis 

 
Seedlings were grown on vertical MS agar plates for 5 days as described under section 

2.2.4. 5-d-old seedlings were transferred using hooked forceps onto vertical MS agar 

plates supplemented with 0.1µM trans-Zeatin or 0.1µM DMSO as a control and 

incubated in a growth chamber for 16 hours. After 16 hours of treatment, a blade was 

used to cut away the shoot from the seedlings and only the root was placed on a glass 

slide containing 10µg/ml propidium iodide. The stained roots were imaged 

immediately using a Zeiss 510 Meta confocal laser scanning microscope.  

 

   
Figure 3: Root meristem size. The root meristem size was calculated as the number 

of cortex cells in a file (c) between the QC (white arrowheads) and the first elongated 

cortex cell (black arrowheads). Figure taken from Perilli and Sabatina (2010). 

 

The root meristem size was measured from the microscopy images using the ImageJ 

(NIH) software to count the number of meristematic cortex cells in a file extending 

from the QC to the first elongated cell excluded (from white to black arrowhead in 

Figure 3) (Perilli and Sabatina 2010).  

 

Stem cell niche 

Meristematic zone 

Transition zone 

Elongation zone 
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2.5 Hormone treatment of conditional overexpression lines 

 

Seedlings were grown on vertical MS agar plates for 5 days according to conditions 

described in section 2.2.4. 5-d-old seedlings were carefully transferred onto vertical 

MS agar plates supplemented with 10µM IAA, 10µM trans-Zeatin, 0.2µM BL or non-

supplemented MS agar plates as a control and placed in a growth chamber for 24 

hours. After 24 hours of pre-treatment, seedlings were carefully transferred onto 

vertical MS agar plates supplemented with either 10µM DMSO or 10µM estradiol as 

well as either 10µM IAA, 10µM trans-Zeatin, 0.2µM BL or non-supplemented MS 

agar plates and placed in a growth chamber for a further 72 hours.  

 

VND7ox roots were stained with propidium iodide according to the protocol 

described in Coiro and Truernit (2017) and mounted in clearing solution (chloral 

hydrate/glycerol/water, 8:1:2, w/v/v) on glass slides. VND7ox;H2B::YFP roots were 

cleared using ClearSee (10% xylitol, 15% sodium deoxycholate, 25% urea) and 

stained with 1mg/ml Calcofluor White following the methods as found in Kurihara et 

al. (2015) and mounted in ClearSee solution on glass slides. VND7ox and 

VND7ox;H2B::YFP stained roots were imaged using a Zeiss 880 confocal laser 

scanning microscope. 

 

XVE:GUS seedling roots were fixed in 90% acetone for 30 minutes, washed twice 

with water and submerged in GUS staining solution (50mM Phosphate buffer, 0.1% 

Triton TX-100, 1.5mM Potassium Ferrocyanide, 1.5mM Potassium Ferricyanide, 

2mM 5-bromo-4-chloro-3-indolyl ß-D-glucuronide cyclohexamine salt dissolved in 

DMSO). After 5 mins of vacuum infiltration, samples were incubated at 37°C in the 

dark for 18 hours. XVE:GUS roots were then washed with increasing concentrations 

of diluted ethanol (70%, 50%, 30% and 10%) and then dH2O before being mounted 

in clearing solution on glass slides. XVE:GUS roots were imaged using brightfield 

microscopy. 
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2.6 Xylem differentiation induction in Arabidopsis leaves 

 
Arabidopsis leaf discs were co-cultured with auxin, cytokinin (CK) and bikinin for 3 

days to induce ectopic transdifferentiation of mesophyll cells to tracheary elements 

(TEs) according to the protocol as in Saito et al. (2017). Images were taken of the leaf 

discs using brightfield microscopy. 

 

2.7 Hot fusion cloning  

 
2.7.1 Plasmid vectors 

 

Genes of interest were cloned into pGBKT7 DNA-binding domain cloning vectors 

and pGADT7 activation domain cloning vectors (Clontech). 

 

2.7.2 Primer design  
 

Primer pairs were designed to incorporate 17bp homologous to the target site of the 

plasmid vector, followed by 22bp homologous to the gene of interest. A list of the hot 

fusion cloning primers used in this study can be found in Appendix 3.  

 

2.7.3 PCR  

 

Table 4: PCR reaction mix 

Reagent Volume/reaction (µL) 
dH2O 35.5 
5X Phusion Buffer 10 
Forward Primer (10µM) 1 
Reverse Primer (10µM) 1 
dNTPs (10mM) 1 
Phusion DNA polymerase 0.5 
cDNA template 1 
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Table 5: PCR cycling conditions  

Temperature (ºC) Time Number of cycles 
98 2min 1 
98 15s 

10 60  30s 
72 30s/Kb 
98 15s 

30 65  30s 
72 30s/Kb 
72 7min 1 
4 ¥  

 

The PCR reaction was set up with the reaction mix and cycling conditions detailed in 

Tables 4 and 5.  

 

2.7.4 PCR product purification 
 

PCR products were analysed by agarose gel electrophoresis. If the band on the gel 

was unique and corresponded with the expected size, then 100µL of Ampure beads 

mix (carboxyl-modified Sera-Mag Magnetic Speed-beads in a PEG/NaCl buffer made 

according to Rohland and Reich (2012)) was added to the PCR product and left to 

incubate for 5 min at room temperature. The PCR tubes were then placed on a magnet, 

the supernatant was removed, the beads were washed twice with 80% EtOH, and left 

to dry out on the magnet for 5 min. The beads were next resuspended in 10µL dH2O, 

placed back on the magnet and the supernatant containing the clean PCR product was 

recovered. The concentration of the clean PCR products was measured using a 

Labtech Nanodrop ND-1000 Spectrophotometer.  

 

If multiple bands were present when the PCR products were analysed by agarose gel 

electrophoresis, bands of the expected size were cut out of the agarose gel and the 

DNA was extracted. The band of interest was cut out of the gel using an open UV box 

and sterile scalpel blade. The piece of gel was placed in a 1.5ml tube and 400µL NTI 

binding buffer was added to the tube which was incubated at 60ºC for 5 mins and then 

vortexed to ensure all the gel had dissolved. The total volume was added to a 

Macherey-Nagel™ NucleoSpinTM Gel and PCR Clean-up Column and centrifuged at 

maximum speed for 1 min and the liquid was discarded. The column was washed with 
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750µL of 80% EtOH, centrifuged at maximum speed for 1 min and the liquid was 

again discarded. Next, the column was placed in a new collection tube, 30µL of dH2O 

was added to the column which was centrifuged at maximum speed for 1 min to 

collect the purified PCR product.  

 

2.7.5 Vector preparation 
 

Table 6: Restriction digest reaction mix for pGBKT7  

Reagent  Volume/reaction (µL)  
Plasmid DNA  8  
dH2O  9  
10x Cut-smart Buffer  2  
NdeI  0.5 
PstI 0.5 
 

Table 7: Restriction digest reaction mix for pGADT7  

Reagent  Volume/reaction (µL) 
Plasmid DNA  8  
dH2O  9  
10x Cut-smart Buffer 2  
NdeI 0.5  
XhoI 0.5 
 

pGADT7 and pGBKT7 vectors were linearised by digestion with restriction enzymes 

purchased from New England Biolabs. The reaction mixes described in Tables 6 and 

7 were incubated at 37ºC for 2h and the enzyme was then inactivated by incubating 

at 70ºC for 15 min.  

 
Linearised plasmids were purified using 2x volume of Ampure beads Mix according 

to the method in section 2.7.4. 

 

2.7.6 Hot fusion reaction 

 
The hot fusion reaction was conducted according to the protocol in Fu et al. (2014). 
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2.7.7 E. coli transformation  

 
Table 8: Antibiotic working concentrations and stock solution preparation.  

Antibiotic Working 
concentration 
(μg/ml)  

Stock solution 

Carbenicillin 100 100 mg/ml in dH2O. Filter 
sterilised using 0.22μm nylon 
syringe filters and stored at -20°C. 

Kanamycin 25 50 mg/ml in dH2O. Filter sterilised 
and stored at -20°C. 

Hygromycin 40 500 mg/ml in PBS. Filter sterilised 
and stored at 4°C. 

Gentamycin 40 125 mg/ml in dH2O. Filter 
sterilised and stored at -20°C. 

Rifampicin 100 100 mg/ml in DMSO. Filter 
sterilised and stored at -20°C. 

 

Plasmids were transformed into DH5α Escherichia coli (E. coli) cells using heat 

shock as follows: 20µL hot fusion reaction product was added to 100µL of E. coli 

Dh5α competent cells and incubated on ice for 30 minutes. The cells were then heat 

shocked for 2 minutes at 42ºC and were placed immediately on ice for 5 minutes. 

200µL of liquid Luria-Bertani (LB) broth (25g per litre of dH2O of LB Broth High 

Salt Granulated comprised of 10g/l Tryptone, 5g/l Yeast Extract and 10g/l NaCl; 

autoclaved for 20 minutes at 121ºC) was then added to each tube and the tubes were 

shaken at ~200 rpm for 1 hour at 37 ºC to allow recovery. Aliquots of each culture 

were then spread onto LB agar plates (37g per litre of dH2O of LB Agar High Salt 

Granulated comprised of 10g/l Tryptone, 5g/l Yeast Extract, 10g/l NaCl and 12g/l 

Agar; adjusted to pH 7.2 and autoclaved for 20 minutes at 121ºC) containing the 

appropriate antibiotic for the selection of the plasmid (see Table 8 for working 

concentrations, all antibiotics were purchased from Melford). Plates were incubated 

at 37 ºC for 1 day to develop colonies.  
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2.7.8 Colony PCR  

 

Table 9: Colony PCR reaction mix 

Reagent Volume/reaction (µL) 
2x PCRBIO Taq Mix 6 
Forward Primer T7_F (10uM) 0.2 
Reverse Primer 3’AD or 2’BD (10uM) 0.2 
dH2O 3.6 
Template DNA 2 

 

Table 10: Colony PCR cycling conditions  

Temperature (ºC) Time Number of cycles 

94 5min 1 
94 15s 

40 50 30s 
72 30s 
72 5min 1 
12 ¥  

 

Positive colonies were screened by colony PCR.  The PCR reaction was set up with 

the reaction mix and cycling conditions detailed in Tables 9 and 10. All colony PCR 

primers used in this study can be found in Appendix 4. 

 
Positive colonies were selected and grown in liquid LB broth containing the 

appropriate antibiotic for the selection of the plasmid (ampicillin for pGADT7 and 

kanamycin for pGBKT7; see Table 8 for working concentrations) at 37ºC overnight. 

 

2.7.9 Plasmid DNA extraction and validation by digestion 
 

Plasmid DNA from two positive colonies was isolated from E. coli hosts using 

Wizard® Plus SV Minipreps DNA Purification System following Promega’s 

instructions. 
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Table 11: Restriction digest reaction mix 

Reagent  Volume/reaction (µL)  
H2O  12.5 
Buffer   2 
Restriction enzyme 0.5 
Plasmid DNA 5 
 

Plasmids were digested with restriction enzymes using a reaction mix described in 

Table 11 and this reaction mix was incubated at 37ºC for 2h.  Digested plasmids were 

then checked by agarose gel electrophoresis as described under section 2.3.3. 

 

If the result was positive, plasmids were sent for sequencing. All sequencing reactions 

were performed by the DNA Sequencing laboratory, School of Biological and 

Biomedical sciences, Durham University (DBS, Durham University). DNA sequence 

data was analysed using BLAST 2 sequencing tool 

(www.ncbi.nlm.nih.gov/blast/bl2seq) and APE software 

(http://biologylabs.utah.edu/jorgensen/wayned/ape/). 

 

2.8 Yeast two-hybrid assay  
 

2.8.1 Yeast strains 
 

The two yeast (Saccharomyces cerevisiae) strains used in this two-hybrid assay were: 

AH109 (MATa, trp1-901, leu2-3, 112, ura3-52, his3-200, gal4Δ, gal80Δ, 

LYS2::GAL1UAS-GAL1TATA-HIS3, GAL2UAS-GAL2TATA-ADE2, URA3::MEL1UAS-

MEL1TATA-lacZ) (Holtz, unpublished) and Y187 (MATα, ura3-52, his3-200, ade2-101, 

trp1-901, leu2-3, 112, gal4Δ, met–, gal80Δ, URA3::GAL1UAS-GAL1TATA-lacZ) (Harper 

et al., 1993). 

 

2.8.2 Reporter genes 

 
The reporter genes used in this yeast two-hybrid (Y2H) system were ADE2, HIS3, and 

MEL1. Expression of these reporter genes in response to two-hybrid interactions 

allowed cells to grow on plates lacking adenine and histidine and turned yeast colonies 
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blue in the presence of X-Gal, respectively. A Y2H interaction was considered 

positive if at least two of the reporter genes were activated. 

 

2.8.3 Yeast transformation and mating 
 

pGBKT7 and pGADT7 vectors that were generated according to the hot fusion 

protocol in section 2.7 were transformed into Y187 and AH109 cells, respectively. 

Pairs of positive interactions were identified by mating transformed Y187 and AH109. 

This was carried out according to the High-Throughput Transformations (96-Well 

Format) and Two-Hybrid Matrix protocols as in Walhout and Vidal (2001) with some 

minor adjustments. 

 

2.8.4 b-galactosidase assay 

 

b-galactosidase activity was qualitatively measured following a protocol similar to 

that in Möckli and Auerbach (2004). Colonies of mated transformants successfully 

grown on SD-Leu-Trp plates were resuspended in 200μL liquid SD-Leu-Trp and 

incubated overnight at 30ºC. Cells were pelleted by centrifugation at 2000rcf for 2 

minutes, the supernatant was discarded and the pellet was resuspended in 10μL dH2O. 

Cell lysis occurred through three cycles of flash freezing in liquid nitrogen followed 

by thawing at 30ºC. Cells were then mixed with 100μL of PBS buffer containing 

500μg/mL X-gal, 0.5% agarose, and 0.05% β-mercaptoethanol and incubated 

overnight at room temperature. Pictures were taken when the blue α-galactosidase 

phenotype was optimal. 

 

2.9 Bimolecular fluorescence complementation (BiFC) 

 
2.9.1 Preparation of BiFC expression vectors encoding fusion proteins 

 
Forward primer preparation for genes of interest and PCR amplification of the genes 

of interest were performed as mentioned in section 2.7. A list of the BiFC forward 

primers and universal reverse primer used in this study can be found in Appendix 5. 
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Table 12: Restriction digest reaction mix 

Reagent  Volume/reaction (μL)  
Plasmid DNA  10 
dH2O  6 
10x Cut-smart Buffer  2  
AscI 1 
SpeI 1 

 
BiFC plasmid vectors, pYFN43 and pYFC43 (Belda-Palazón et al., 2012) were 

linearised by digestion with restriction enzymes. The reaction mix was set up 

according to Table 12 and was incubated at 37ºC for 2h. Linearised plasmids were 

cleaned using Ampure beads according to the protocol as in section 2.7.4.  

 

The hot fusion cloning reaction, E. coli transformation and plasmid validation that 

followed were also performed as mentioned in section 2.7. 

 

2.9.2 Preparation of Agrobacterium cultures  

 

BiFC plasmids, pBiYFPc and pBiYFPn, encoding the fusion proteins were transfected 

into GV3101 Agrobacterium tumefaciens cells as follows: 5μl of plasmid (100μg/μL) 

was added to 100μL of A. tumefaciens GV3101 competent cells, mixed and incubated 

on ice for 5 mins. The cells were then frozen for 5 mins in liquid nitrogen, followed 

by 5 mins of heat shock at 37ºC. After heat shocking the cells, 300μL of LB media 

was added and the cells were incubated for 2h at 28ºC with agitation. Finally, the 

culture was spread onto selective LB plates containing gentamycin, rifampicin and 

kanamycin for the selection of the plasmid (see Table 8 for working concentrations) 

and incubated for 2 days at 28ºC to develop colonies. 

 

After 2 days, one single colony was picked and cultured over night at 30°C in 10ml 

of liquid LB broth containing the antibiotics gentamycin, rifampicin and kanamycin 

for the selection of the plasmid (see Table 8 for working concentrations). The OD600 

was calculated and used to work out the volume of each culture to add into a new flask 

in order to start with an OD600 of 0.2. This new flask contained 50ml of liquid LB 

broth supplemented with antibiotics and 200µM Acetosyringone. Cultures were left 

to grow for approximately 3 hours at 30°C until an OD600=0.4-0.6 was reached. The 
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cells were then centrifuged at 4000g for 10 minutes and re-suspended into MMA 

buffer (MS 5g/L, MES 1,95g/L, Sucrose 20g/L, pH=5,6 NaOH) supplemented with 

200µM Acetosyringone and shaken at room temperature for one hour in the dark. The 

volume of MMA buffer added was calculated using the culture volume and OD600 

value. Agrobacterium cultures containing p19 plasmid and BiFC constructs were 

mixed into a new 1.5ml tube in the ratio 1:1:1. P19 was used to suppress gene 

silencing.  

 

2.9.3 Infiltration 
 

Nicotiana benthamiana plants were grown for 3-4 weeks at 21°C with 16-h light/8-h 

dark cycles. A small incision was made in the epidermal cell layer of the lower leaf 

surface of the plants. The tip of a syringe containing the resuspended Agrobacterium 

mixture was placed against this incision and the liquid mixture was slowly infiltrated 

into the leaf.  Plants were then placed in a greenhouse for 3 days.  

 

2.9.4 Observation of the fluorescent signal 
 

A segment of leaf tissue in the infiltrated zone of Nicotiana benthamiana leaves was 

excised and mounted in water onto a glass microscope slide. The fluorescence was 

examined using a Zeiss 880 confocal laser scanning microscope.   

 

2.10 Measuring hypocotyl length in response to brassinosteroid treatment 

 
Seedlings were grown on vertical MS agar plates for 2 days according to the methods 

described in section 2.2.4. After 2 days, seedlings were carefully transferred onto 

vertical MS agar plates supplemented with either 0.2μM BL, 0.2μM BRZ or non-

supplemented MS agar plates as a control and placed in the growth chamber for a 

further 3 days. Photographs were taken of each plate and hypocotyl length was 

measured using ImageJ (NIH) software.  
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2.11 Quantitative PCR (qPCR) analysis 

 
2.11.1 Brassinosteroid treatment 

 
Seedlings were grown on vertical MS agar plates for 5 days according to conditions 

described in section 2.2.4. 5-d-old seedlings were carefully transferred into liquid MS 

media supplemented with 0.2µM BL, 0.2µM BRZ, or non-supplemented liquid MS 

media as a control and placed in a growth chamber for 16 hours. 

 

2.11.2 RNA extraction 

 
RNA was extracted according to the protocol in Townsley et al. (2015), which 

includes a number of steps previously described in Kumar et al. (2012). A few minor 

alterations were made to the protocol: (A) Tissues were lysed by adding 3-4 

Zirconia/Silica beads to 2ml tubes containing ~20mg tissue and ground for 1min. (B) 

TE cells were not ground. (C) The lysate from ground tissues was split in two with 

~200µl in each tube and one of these tubes was put aside at -80ºC before proceeding 

to mRNA isolation. (D) Volumes of all wash buffers were 200µl each. (E) A 

secondary wash was performed on the mRNA sample. 

 

2.11.3 cDNA synthesis 

 
Table 13: Reaction mixes and incubation times for cDNA synthesis  

RNA mix Volume (µL) per reaction Incubation 
RNA 5.75   
Random primers (100pMol) 0.5  
TOTAL 6.25 65ºC for 5 minutes 
cDNA synthesis mix   
5X First Reaction Buffer  2  
10mM dNTP  1  
RevertAid Reverse Transcriptase 0.5  
RNase Inhibitor  0.25  
Incubated RNA mix 6.25  

TOTAL 10 
25ºC for 10 minutes 
42ºC for 60 minutes 
70ºC for 10 minutes 
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For cDNA synthesis, reaction mixes were set up and incubated according to Table 13.  

cDNA solutions were then diluted 5-fold and stored at -20°C until required for qPCR.  

 

2.11.4 qPCR reaction 
 

Table 14: qPCR reaction mix 

qPCR mix Volume/reaction 
(μl) 

2X SYBR Green PCR Mix Lo-ROX 10 
Forward Primer (100μM) 0.1 
Reverse Primer (100μM) 0.1 
sterile dH20 4.8 
cDNA (1:10 dilution) 5 
 

Table 15: qPCR cycling conditions  

Temperature (ºC) Time Number of cycles 
94 3min 1 
94 15s 

40 55 30s 
72 30s – signal acquisition 

 

qPCR analysis was conducted on three biological replicates for each sample and three 

technical replicates for each biological replicate using a Rotorgene Q. The qPCR 

reaction mix and cycling conditions are detailed in Tables 14 and 15. All qPCR 

primers used are listed in Appendix 6. 

 

Gene expression levels were calculated from the average of the three technical repeats 

relative to the expression levels of a reference gene (UB10) and analysed using the 

comparative Ct method (ΔΔCt method) as described in Applied Biosystems User 

Bulletin No. 2.  

 

2.12 Statistical analysis 
 

The data collected in this study was tested for normality of distribution using the 

Kolgomorov-Smirnov test and data sets were also assumed approximately normally 

distributed when sample size (N) > 30 according to the central limit theorem. None of 
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the distributions were significantly deviating from the normal distribution and 

therefore parametric independent-samples T tests were applied to the means of all data 

sets and the type 1 error probability (α) was set to 0.05. All statistical analysis was 

carried out using IBM SPSS Statistics.  
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3. Results 
 

3.1 The effect of loss of function of histone modifying enzymes on meristem size 
and cytokinin response  

 
The Arabidopsis root apical meristem comprises of stem cells surrounding the 

quiescent centre (QC), which together form the stem cell niche. These stem cells give 

rise to transit amplifying cells which undergo division in the proximal meristem 

before entering the elongation/differentiation zone whereby they differentiate into all 

cell types of the root (Dolan et al., 1993). The number of cells in the root meristem 

depends on stem cell activity and the rate of transition of transit amplifying cells from 

cell division to cell elongation (Li et al., 2017). This is co-ordinately controlled, in 

part, by two hormones, auxin and cytokinin (CK). 

 

CK is known to antagonise auxin and promote cell differentiation such that exogenous 

application of CK reduces the number of meristematic cells and therefore the 

meristem size (Dello Ioio et al., 2007; Dello Ioio et al., 2008; Perilli and Sabatini, 

2010). It was hypothesised that if chromatin structure does guide cell differentiation, 

differences in meristem size and CK response should be observed when studying 

mutants impaired in chromatin remodelling processes. To test this hypothesis, loss-

of-function mutants in histone modifying enzymes (Table 16) were pre-treated with 

CK and the root meristem size was measured.  
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Table 16: Information on the histone modifying enzymes included in the root 

meristem size analysis 

Accession 
Number 

Name Function Potential role 
in 
transcription 

Reference(s) 

AT2G44150 
 

ASHH3 Histone lysine 
methyltransferase 

Unknown  

AT2G17900 
 

ASHR1 Histone lysine 
methyltransferase 

Unknown  

AT2G31650 
 

ATX1 H3K4 tri-
methyltransferase 

Active Alvarez-Venegas et 
al., 2003; Fromm 
and Avramova, 
2014; Napsucialy-
Mendivil et al., 
2014; Pien et al., 
2008 

AT5G09790 ATXR5 H3K27 mono-
methyltransferase 

Repressive Hale et al., 2016; 
Jacob et al., 2009 

AT2G23380 
 

CLF H3K27 tri-
methyltransferase 

Repressive Goodrich et al., 
1997; Wang et al., 
2016; De Lucas et 
al., 2016; 
Chanvivattana et 
al., 2004; Schubert 
et al., 2006; Jiang et 
al., 2008 

AT1G62830 
 

LDL1 H3K4 
demethylase 

Repressive Jiang et al., 2007; 
Shi et al., 2004 

AT1G04050 
 

SUVR1 Histone lysine 
methyltransferase 

Unknown  

AT5G06550 
 

JMJ22 H4R3 
demethylase 

Active Cho et al., 2012 

AT4G02020 
 

SWN H3K27 tri-
methyltransferase 

Repressive Chanvivattana et 
al., 2004 

AT2G24740 
 

SUVH8 Histone lysine 
methyltransferase 

Unknown  

AT2G23740  SUVR5 H3K9 di-
methyltransferase 

Repressive Caro et al., 2012 
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Table 17: Descriptive statistics for root meristem size of mock-treated and trans-

Zeatin-treated wildtype and histone modifying enzyme mutant seedlings. 

Plant line Treatment Sample size (N) Mean Standard Error of 
the Mean (SEM) 

Col0 Mock 14 32.0 1.04 
trans-Zeatin  13 24.1 1.00 

ashh3 Mock 15 28.1 1.07 
trans-Zeatin 14 28.6 1.02 

ashr1 Mock 8 27.8 1.33 
trans-Zeatin 8 29.5 0.926 

atx1 Mock 13 31.8 0.545 
trans-Zeatin 12 27.2 0.534 

atxr5 Mock 15 27.8 0.718 
trans-Zeatin 15 27.6 0.616 

clf29 Mock 11 28.5 1.13 
trans-Zeatin 9 30.2 1.52 

jmj22 Mock 10 25.2 0.940 
trans-Zeatin 13 25.5 0.676 

ldl1 Mock 6 27.7 1.20 
trans-Zeatin 4 25.0 1.83 

suvr1 Mock 12 35.8 0.968 
trans-Zeatin 16 28.1 0.800 

suvh8 Mock 18 34.2 1.04 
trans-Zeatin 13 30.0 0.913 

suvr5 Mock 6 37.2 1.08 
trans-Zeatin 10 37.7 1.07 

swn7 Mock 17 34.5 0.944 
trans-Zeatin 14 30.4 1.06 

 
Table 18: T-test statistics for the effect of loss of function of histone modifying 

enzymes on mean root meristem size 

Mutant T critical 
value 

Degrees of 
freedom (df) 

p-value 

ashh3 2.59 27 P < 0.05 
ashr1 2.50 20 P < 0.05 
atx1 0.197 19.5 P = 0.846 
atxr5 3.37 27 P < 0.05 
clf29 2.30 23 P < 0.05 
jmj22 4.64 22 P < 0.001 
ldl1 2.44 18 P < 0.05 
suvr1 -2.67 24 P < 0.05 
suvh8 -1.49 30 P = 0.147 
suvr5 -2.96 18 P < 0.05 
swn7 -1.76 29 P = 0.089 
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Table 19: T-test statistics for the effect of cytokinin treatment on mean root meristem 

size of wildtype and histone modifying enzyme mutant seedlings 

Plant line T critical value Degrees of 
freedom (df) 

p-value 

Col0 5.48 25 P < 0.001 
ashh3 -0.296 27 P = 0.770 
ashr1 -1.08 14 P = 0.299 
atx1 6.02 23 P < 0.001 
atxr5 0.211 28 P = 0.834 
clf29 -0.953 18 P = 0.353 
jmj22 -0.232 21 P = 0.819 
ldl1 1.28 8 P = 0.236 
suvr1 6.18 26 P < 0.001 
suvh8 2.92 29 P < 0.05 
suvr5 -0.330 14 P = 0.746 
swn7 2.91 29 P < 0.05 
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Figure 4: The mean meristem cell number of mock-treated and cytokinin-treated 

wildtype and histone modifying enzyme mutant seedlings. Mean number of root 

meristem cells in 5-d-old wildtype and histone modifying enzyme mutant seedlings 

after 16h of treatment with mock or trans-Zeatin (0.1µM). Error bars represent ± 1 

SEM. Mock-treated groups denoted by ‘a’ have a mean meristem cell number that is 

significantly lower than the wildtype and mock-treated groups denoted by ‘b’ have a 

mean meristem cell number that is significantly higher than the wildtype. Groups 

denoted by ‘*’ or ‘***’ have a significant difference (p< 0.05 or p < 0.001, 

respectively) between mean meristem cell number of mock-treated and trans-Zeatin-

treated roots. See Table 17 for sample sizes (N). 

 

Statistical analysis showed that the mean meristem cell number was significantly 

lower in mock-treated ashh3, ashr1, atxr5, clf29, jmj22, and ldl1 seedlings compared 

to mock-treated wildtype seedlings and significantly higher in mock-treated suvr1 and 

suvr5 seedlings compared to mock-treated wildtype seedlings (Tables 17 and 18, 
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Figure 4). There was no significant difference between mean meristem cell number 

in mock-treated atx1, swn7 and suvh8 seedlings and mock-treated wildtype seedlings 

(Tables 17 and 18, Figure 4). 

 

Statistical analysis showed that the mean meristem cell number was significantly 

lower in trans-Zeatin-treated seedlings compared to mock-treated seedlings in 

wildtype, atx1, suvr1, suvh8 and swn7 (Tables 17 and 19, Figure 4). On the other 

hand, there was no significant difference between mean meristem cell number in 

mock-treated and trans-Zeatin-treated ashh3, ashr1, atxr5, clf29, jmj22, ldl1 and 

suvr5 seedlings (Tables 17 and 19, Figure 4). 

 

3.2 The effect of auxin, cytokinin and brassinosteroid treatment on tracheary 
element differentiation 

 

Tracheary element (TE) differentiation is a well-defined process which provides a 

perfect model system to study cytodifferentiation in plants (Fukuda and Komamine, 

1980; Kondo et al., 2015; Kubo et al., 2005; Oda et al., 2010; Oda et al., 2005; Ohashi-

Ito et al., 2010; Pesquet et al., 2010). TE differentiation is characterised by the 

deposition of a patterned secondary cell wall with annular, spiral, reticulate, or pitted 

wall thickenings, autolysis and programmed cell death whereby TEs are emptied of 

all cell contents and nuclei to form a hollow, tubular vascular system (Fukuda, 1996).  

This TE differentiation process is regulated by a number of factors (Turner et al., 

2007; Ohashi-Ito and Fukuda, 2010) and auxin, cytokinin (CK), and brassinosteroids 

(BRs) are perhaps the most important regulators (Fukuda, 2004; Yoshida et al., 2005; 

Iwasaki and Shibaoka, 1991; Yamamoto et al., 1997).  

 

Many of the experimental systems that have been developed to study TE 

differentiation require the manipulation of the phytohormones auxin, CK and BRs 

(Fukuda and Komamine, 1980; Kubo et al., 2005; Oda et al., 2005; Pesquet et al., 

2010; Kondo et al., 2015; Saito et al., 2017). This poses issues when wanting to 

investigate the contribution of these hormones to the chromatin rearrangement that 

occurs during xylem differentiation. Yet this problem can be overcome by utilising 

experimental systems that induce TE differentiation by activating master transcription 
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factors (Oda et al., 2010; Ohashi-Ito et al., 2010; Yamaguchi et al., 2010a), rather than 

relying on application of hormones. 

 

Several NAC domain proteins have been identified as master switches of xylem cell 

differentiation. Specifically, VND6 and VND7 have been found to be expressed more 

in differentiating xylem vessels (Kubo et al., 2005; Yamaguchi et al., 2008). 

Moreover, overexpression of VND7 induces ectopic transdifferentiation of various 

non-vascular cells into protoxylem with secondary cell wall thickenings and 

repression of VND7 reduces xylem vessel formation (Kubo et al., 2005; Yamaguchi 

et al., 2008; Yamaguchi et al., 2010a). In undifferentiated procambial cells, VND-

INTERACTING 2 (VNI2) transcriptional repressor binds to VND proteins and 

inhibits VND7-mediated xylem-specific gene expression. Yet VNI2 is targeted for 

degradation when active VND7 is required to induce TE differentiation (Yamaguchi 

et al., 2010b).  

 

Knowing that VND7 is a master regulator of TE differentiation has resulted in the 

development of experimental systems where VND7 is expressed under the control of 

an estradiol-inducible promoter (Zuo et al., 2000; Coego et al., 2014) to induce xylem 

cell transdifferentiation without exogenous application of hormones. In this study, this 

system was used to determine whether specific hormonal contexts are required for 

proper TE differentiation. Firstly, XVE:GUS plant lines were treated with estradiol to 

check if estradiol induction is equally distributed in the root. Secondly, VND7ox plant 

lines were induced with estradiol to analyse the spatiotemporal pattern of VND7-

induced xylem differentiation by looking at secondary cell wall deposition across 

different root cell types and along the root longitudinal axis. Next, VND7ox plant 

lines were pre-treated with auxin, CK and BRs before induction with estradiol and the 

effect on VND7-induced xylem differentiation (depicted by secondary cell wall 

deposition) was studied. Finally, in an attempt to better identify the effect of 

disturbing the balance of phytohormones on VND7-induced xylem differentiation at 

the cell type specific level, VND7ox;H2B::YFP plant lines were used. H2B::YFP is a 

protein fusion of the histone 2B (H2B) protein and the yellow fluorescent protein 

(YFP) under the control of the cauliflower mosaic virus promoter (CaMV 35S) and 

can be used as a marker for nuclei. TE differentiation consists primarily of 
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programmed cell death and autolysis, which involves nuclear degradation. 

Transcriptional master switches VND7 and VND6 have been shown to directly 

control this programme of programmed cell death and autolysis (Escamez and 

Tuominen, 2014). Therefore, it was hypothesised that it will be possible to determine 

which specific cell types have successfully undergone VND7-induced xylem 

transdifferentiation by the absence of the nucleus and thus absence of a fluorescent 

signal from YFP. So VND7ox;H2B::YFP plant lines pre-treated with auxin, CK and 

BRs before induction with estradiol and the spatial domains (cell types) in which 

VND7-induced xylem differentiation occurs were identified by looking at the 

fluorescent signal from YFP. 

 

  
Figure 5: Estradiol-induced GUS expression in a root. GUS expression in 5-d-old 

XVE:GUS roots in which GUS expression is induced by estradiol treatment. 

XVE:GUS roots were treated with mock or estradiol (10µM) for 3 days.  

Mock Estradiol (10µM) 
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Figure 6: Spatio-temporal pattern of xylem transdifferentiation in VND7ox plant 

whole root. Xylem transdifferentiation in a 5-d-old VND7ox seedling whole root in 

which VND7 expression was induced by treatment with estradiol (10µM) for 3 days. 

Figure taken from M. de Lucas (personal communication). 
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Figure 7: The effect of phytohormone treatment on xylem transdifferentiation in 
VND7ox roots. Xylem transdifferentiation in 5-d-old VND7ox roots in which VND7 

expression was induced by estradiol treatment. Un-induced mock or estradiol (10µM) 

-induced VND7ox roots were treated for 3 days with brassinolide (BL) (0.2µM), 

indole-3-acetic acid (IAA) (10µM) or trans-Zeatin (Zt) (10µM) and hormone-free 

control. Red indicates cell walls and white arrows indicate secondary cell wall 

thickenings. Scale bars = 20µM. 

MOCK 

BL (0.2 µM) 
  

IAA (10 µM) 
  

Zt (10 µM) 
  

MOCK Estradiol (10µM) 
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Figure 8: The effect of phytohormone treatment on xylem transdifferentiation in 
VND7ox;H2B::YFP roots. Xylem transdifferentiation in 5-d-old 

VND7ox;H2B::YFP roots in which VND7 expression was induced by estradiol 

treatment. Un-induced mock or estradiol (10µM)-induced VND7ox;H2B::YFP roots 

were treated for 7 days with brassinolide (BL) (0.2µM), indole-3-acetic acid (IAA) 

(10µM) or trans-Zeatin (Zt) (10µM) and hormone-free control. Blue indicates cell 

walls, green indicates nuclei and white arrows indicate secondary cell wall 

thickenings. Scale bars = 20µM. 
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Estradiol treatment successfully induced GUS expression in all cell types of 

XVE:GUS roots (Figure 5). Spatiotemporal analysis of xylem transdifferentiation in 

estradiol-treated VND7ox roots revealed that VND7-induced xylem 

transdifferentiation (depicted by secondary cell wall thickenings) never appears to 

occur in the columella root cap, epidermis, meristematic zone, transition zone and it 

was less evident in the late differentiation zone (Figure 6). 

 

In all hormone conditions, estradiol-induced overexpression of VND7 induced the 

transdifferentiation of various non-vascular cell types into xylem vessel cells. The 

control VND7ox roots showed high levels of transdifferentiated cells whereas 

interestingly, BR and auxin-treated roots showed reduced levels of VND7-induced 

xylem transdifferentiation. On the other hand, in CK-treated VND7ox roots, estradiol-

induced VND7 overexpression appeared to result in similar levels of 

transdifferentiation of non-vascular cell types into xylem vessel cells as the hormone-

free control VND7ox roots (Figure 7).  

 

VND7ox;H2B::YFP roots after 7 days of induction and phytohormone treatment still 

showed a fluorescent signal from YFP in the nucleus of cells with secondary cell wall 

thickenings (Figure 8).  

 
3.3 The effect of loss of function of histone modifying enzymes on tracheary 

element differentiation 
 

Specific chromatin changes have been associated with TE differentiation according 

to preliminary data obtained from chromatin-immunoprecipitation sequencing 

analyses on pluripotent cells and cells committed to TE differentiation. De Lucas 

(unpublished) found that in fully differentiated TEs, the net genomic coverage of 

active chromatin marks such as H3K4me3, H3K36me2 and H3K36me3 decreased 

whereas the net genomic coverage of repressive chromatin marks such as H3K27me3 

and H3R2me2 increased (Appendix 7). Based on these results, it can be hypothesised 

that if chromatin structure guides TE differentiation, differences should be observed 

in this differentiation process when studying mutants impaired in chromatin 

remodelling processes.  
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To test this hypothesis, an experimental induction system recently developed by Saito 

et al. (2017) was used, which employs an inhibitor of GLYCOGEN SYNTHASE 

KINASE 3 (GSK3) proteins, bikinin, to induce TE transdifferentiation. BR-

INSENSITIVE 2 (BIN2) is an example of a GSK3-like kinase inhibited by bikinin 

and it is a known suppressor of xylem differentiation from procambial cells (Kondo 

et al., 2014). BIN2 is activated by TRACHEARY ELEMENT DIFFERENTIATION 

INHIBITORY FACTOR (TDIF), which binds specifically to putative TDIF 

RECEPTOR (TDR)/PHLOEM INTERCALATED WITH XYLEM (PXY) and 

suppresses the differentiation of procambial cells into xylem cells by phosphorylation-

dependent inhibition of BES1 in procambial cells (Kondo et al., 2014; Hirakawa et 

al., 2008; Fisher and Turner, 2007). BIN2 inhibition by upstream BR signalling is 

required to induce proper xylem cell differentiation (Kondo et al., 2014) and this 

concept has formed the basis of some in vitro induction experimental systems (Kondo 

et al., 2015; Saito et al., 2017).  

 

In this study Arabidopsis leaf discs of loss-of-function mutants in histone modifying 

enzymes were cultured with auxin, CK and bikinin for 3 days, and the 

transdifferentiation of mesophyll cells into TEs was studied to identify the key histone 

modifying enzymes associated with xylem cell fate. 
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Figure 9: Xylem differentiation induction in leaves of histone modifying enzyme 

mutants. Un-induced and bikinin-induced xylem differentiation in 3-4-week-old 

wildtype and histone modifying enzyme mutant seedlings. 

 

Transdifferentiation of mesophyll cells into TEs was induced in all histone modifying 

mutants (Figure 9). 
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3.4 Identifying the molecular interactions between histone modifying enzymes 

and hormone signalling genes  
 

More than thirty independent histone post-transcriptional modifications control 

chromatin architecture, and hundreds of enzymes contribute to this complex 

regulatory mechanism. To date, knowledge of the specific function of each histone 

modification process in regulating chromatin architecture is limited. A few examples 

exist in literature whereby hormone signalling components interact with chromatin 

modifying enzymes and together regulate key developmental processes (Zhang et al., 

2014b; Yu et al., 2008). Furthermore, mutants in auxin and CK signalling (Dello Ioio 

et al., 2008) exhibit phenotypic similarities with chromatin remodelling enzymes 

mutants which have defects in cell differentiation (Ikeuchi et al., 2015a). It is therefore 

plausible that hormone signalling integrates with chromatin remodelling during plant 

cell differentiation.  

 

To begin to understand how hormone signals guide chromatin changes during cell 

differentiation, a yeast two-hybrid (Y2H) protein-protein interaction assay was 

performed to screen for interactions between histone modifying enzymes and the BR 

signalling negative regulator and known suppressor of xylem cell differentiation, 

BIN2. Y2H protein-protein interaction assays involve fusing proteins-of-interest, 

known as bait and prey, to the DNA binding domain (BD) or activation domain (AD) 

of a fragmented transcription factor. If these proteins interact with one another, the 

DNA-binding and activation domains get close enough to one another to form a 

functional transcription unit which activates the transcription of reporter genes (Fields 

and Song, 1989). Activation of reporter genes typically enables yeast to grow on 

selective medium and/or changes the colour of yeast colonies.  

 

A large proportion of the work conducted in this study involved the generation of a 

Y2H library of 30% of the predicted histone modifying enzymes (Table 20), including 

both writers and erasers. This library was screened for interactions with BIN2 to get 

a better idea of how hormone signalling may guide chromatin remodelling during 

xylem cell differentiation.  
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Table 20: The histone remodelling enzymes screened for interactions with BR 

signalling component, BIN2 

Accession 
Number 

Name Function 

AT1G26760  ATXR1 histone-lysine methyltransferase 
AT5G09790 ATXR5 histone-lysine methyltransferase 
AT5G24330 ATXR6 histone-lysine methyltransferase 
AT1G76710 ASHH1 histone-lysine methyltransferase 
AT2G30580 BMI1A Histone-lysine E3 ubiquitin ligase 
AT1G06770 BMI1B Histone-lysine E3 ubiquitin ligase 
AT2G23380 CLF histone-lysine methyltransferase 
AT5G51230 EMF2 histone-lysine methyltransferase 
AT3G20740 FIE histone-lysine methyltransferase 
AT2G31650 ATX1 histone-lysine methyltransferase 
AT1G05830 ATX2 histone-lysine methyltransferase 
AT1G62310 JMJ histone-lysine demethylase 
AT1G30810 JMJ18 histone-lysine demethylase 
AT1G78280 JMJ21 histone-lysine demethylase 
AT5G06550 JMJ22 histone-arginine demethylase 
AT4G00990 JMJ27 histone-lysine demethylase 
AT3G20810 JMJ30 histone-lysine demethylase 
AT5G17690 LHP1 Maintains methylated state 
AT1G62830 LDL1 histone-lysine demethylase 
AT3G13682 LDL2 histone-lysine demethylase 
AT5G58230 MSI1 histone-lysine methyltransferase 
AT1G08620   PKDM7D histone-lysine demethylase 
AT1G04870 PRMT10 histone-arginine methyltransferase 
AT2G19670 PRMT1A histone-arginine methyltransferase 
AT4G29510 PRMT1b histone-arginine methyltransferase 
AT4G31120 PRMT5 histone-arginine methyltransferase 
AT4G16570 PRMT7 histone-arginine methyltransferase 
AT5G44280 RING1A Histone-lysine E3 ubiquitin ligase 
AT1G03770 RING1B Histone-lysine E3 ubiquitin ligase 
AT2G33290  SUVH2 histone-lysine methyltransferase 
AT2G35160 SUVH5 histone-lysine methyltransferase 
AT3G04380 SUVR4 histone-lysine methyltransferase 
AT2G23740   SUVR5 histone-lysine methyltransferase 
AT4G02020 SWN histone-lysine methyltransferase 
AT4G16845 VRN2 histone-lysine methyltransferase 
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Figure 10: Yeast two-hybrid assay for protein-protein interactions between 
histone modifying enzymes and BIN2. Y2H screen for protein-protein interactions 

between BIN2 and SUVR5, SUVH5 and CLF, with BD-BIN2 + AD-BZR1 as a 

positive control and BD-BIN2 + AD as a negative control. Saccharomyces cerevisiae 

strains were growth tested on SD-L-T (non-selective) and SD-L-T-A-H (selective) 

media incubated at 30ºC for 2-4 days. Colonies cultured on SD–L-T were also assayed 

for β-galactosidase activity (X-Gal). See Table 20 for list of histone modifying 

enzymes assayed for interactions with BIN2. 

SD-L-T SD-L-T-A-H  X-gal 

Positive 
control 

BD +  
AD-SUVR5 

BD-BIN2 + 
AD-SUVR5 

BD +  
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BD-BIN2 + 
AD-SUVH5 

BD +  
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BD-BIN2 + 
AD-CLF 

Negative 
control 
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All strains grew successfully on SD-L/T. This indicates that the strain has been 

successfully transformed with both pGADT7 and pGBKT7 plasmids which contain 

LEU2 and TRP1 genes that are required for the synthesis of leucine and tryptophan 

respectively (Figure 10).  

 

Growth on SD–L/T/A/H and presence of blue colour indicate expression of the three 

reporter genes, ADE2 and HIS3, which are required for synthesis of adenine and 

histidine respectively, and MEL1, which encodes b-galactosidase that interacts with 

X-gal and turns cells blue in colour. A Y2H interaction was considered positive if at 

least two of the reporter genes are activated. This Y2H screen therefore revealed 

positive interactions between hormone signalling protein, BIN2, and histone 

modifying enzymes, SUVR5, SUVH5 and CLF (Figure 10).   

 

3.5 Verifying interactions between histone modifying enzymes and hormone 
signalling genes in vivo 

 

Having identified positive protein-protein interactions between hormone signalling 

protein, BIN2, and histone modifying enzymes, SUVR5, SUVH5 and CLF by Y2H 

assay, next these interactions needed to be validated in vivo by bimolecular 

fluorescence complementation (BiFC). Validation of protein-protein interactions by 

BiFC entailed fusing the two putative interaction partners with the N-terminal and C-

terminal fragments of YFP (YN and YC). Positive interactions between the proteins 

of interest bring the two YFP fragments in close proximity resulting in the formation 

of a bimolecular fluorescent complex. This results in an appearance of the 

fluorescence signal (reviewed in Kerppola, 2008). There was only time in this study 

to generate BiFC plasmids encoding BIN2, BZR1, SUVR5 and CLF proteins fused to 

YFP fragments to validate the interaction between BIN2 and SUVR5 and CLF. 
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Figure 11: Validating putative interactions from yeast two-hybrid screening in 

vivo by BiFC. BiFC interaction assays were conducted in Nicotiana benthamiana leaf 

epidermal cells. Confocal micrographs were taken 3d post-infiltration. BIN2-YN + 

BZR1-YC and BIN2-YN + BIN2-YC are the positive and negative controls, 

respectively. Scale bars = 50µM. 

 
Strong fluorescence was observed in the nucleus of Nicotiana benthamiana cells 

infiltrated with a combination of successfully cloned BiFC plasmids containing the 

genes of interest (Figure 11), verifying that BIN2 interacts with SUVR5 and CLF.  

 

3.6 Expression analyses of a candidate gene associated with cell division that is 

regulated by brassinosteroid signalling and SUVR5  
 

Thus far, SUVR5 has been shown to play an important role in regulating meristematic 

cell division and the transition from cell division to cell elongation based on meristem 

size analysis. Y2H analysis also revealed that SUVR5 interacts with hormone 

signalling component BIN2. To begin to elucidate the specific role of SUVR5 during 

differentiation, this study set out to identify candidate genes associated with cell 

proliferation and cell differentiation which are regulated by BR signalling and 

SUVR5.  
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Caro et al. (2012) identified SUVR5 as a SET histone methyltransferase which 

facilitates DNA methylation–independent deposition of the repressive histone mark 

H3K9me2 to induce gene silencing. Caro et al. (2012) isolated a T-DNA mutant in 

SUVR5, suvr5-1, which shows an overall decrease in heterochromatic H3K9me2 

levels and analysed its transcriptome by mRNA sequencing (mRNA-Seq). They 

compiled a list of genes significantly upregulated in the suvr5-1 mutant, which is 

likely due to a decrease in H3K9me2 levels.  This list was compared to a list of 

common genes up-regulated after bikinin and BL treatment, up-regulated in the bzr1-

1d mutant and down-regulated in the bri1-116 mutant (Nemhauser, 2004; Goda, 2004; 

De Rybel et al., 2009; Sun et al., 2010). This comparison highlighted 23 candidate 

genes regulated by BRs and upregulated in suvr5-1.  

 

On this list of candidate genes was a gene which encodes for atypical E2F 

transcription factor E2Fe/DEL1. E2Fe controls the expression of an anaphase-

promoting complex/cyclosome (APC/C) activator gene and is a negative regulator of 

cell endocycle onset and cell cycle progression in proliferating cells (Lammens et al., 

2008). The transition from the mitotic cell cycle to the endocycle is associated with 

termination of cell division and initiation of cell elongation in the transition zone and 

later differentiation (Hayashi et al., 2013). The role of endoreduplication in xylem 

differentiation however is yet to be studied in depth. Nonetheless, Heyman et al. 

(2017) recently used transcriptional GUS reporter lines to determine the expression 

patterns of E2Fe/DEL1 in the Arabidopsis root. E2Fe/DEL1 expression was found to 

be high in the meristematic zone whereby cells show high cell division activity yet 

expression levels were low in the differentiation zone. This suggests that E2Fe may 

negatively regulate cell differentiation initiation by promoting and maintaining cell 

division.  

 

Moreover, González-García et al. (2011) found that BRs regulate Arabidopsis root 

meristem size by promoting cell cycle progression and differentiation. Gain-of-

function BR-related mutants and BL-treated plants underwent a premature cell cycle 

exit resulting in early differentiation of meristematic cells, which reduces the 

meristem size. The BR signalling pathway is therefore essential for normal cell-cycle 

progression and to maintain the balance between cell division and cell differentiation.  
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Based on these studies, it was hypothesised that BRs and SUVR5 may regulate E2Fe 

expression and subsequently cell cycle progression and cell differentiation initiation. 

The protein-protein interaction assays suggest that SUVR5 could be a 

phosphorylation target of BIN2. It was therefore postulated that when BR levels are 

high and BIN2 is inhibited, SUVR5 would not be phosphorylated and potentially 

inactivated by BIN2 and so can actively deposit the repressive mark, H3K9me2, onto 

E2Fe loci resulting in premature cell endocycle onset and early differentiation of 

meristematic cells.  

 

To test this hypothesis, E2Fe expression levels were measured by qPCR analysis in 

undifferentiated cells and fully differentiated TEs as well as in wildtype and suvr5 

loss of function mutant seedlings treated with BL and the BR inhibitor, BRZ. 

 

Table 21: Descriptive statistics for the relative expression of E2Fe in undifferentiated 

cells and TEs 

Cells N Mean Standard Error of 
the Mean (SEM) 

Undifferentiated 2 0.0040 0.00297 
TEs 2 0.0078 0.00323 

 

Table 22: T-test statistics for the effect of differentiation stage of a cell on relative 

expression of E2Fe 

 T critical value Degrees of 
freedom (df) 

p-value 

Undifferentiated cells 
vs. TEs 

-0.873 2 P = 0.475 
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Figure 12: The relative expression of E2Fe in undifferentiated cells and 

tracheary elements. qPCR analysis of the expression of E2Fe relative to the 

expression of reference gene UB10 in undifferentiated cells and TEs. Error bars 

represent the mean +/- 1 SEM for two biological and three technical repeats.  

 

Table 23: Descriptive statistics for the relative expression of E2Fe in mock-treated, 

brassinolide (BL)-treated and brassinazole (BRZ)-treated wildtype and suvr5 mutant 

seedlings 

Treatment Plant N Mean  Standard Error of 
the Mean (SEM) 

Mock Col0 3 0.0027 0.00076 
suvr5 3 0.0037 0.00078 

BR Col0 3 0.0029 0.00040 
suvr5 3 0.0047 0.00155 

BRZ Col0 3 0.0022 0.00026 
suvr5 2 0.0026 0.00198 

 

Table 24: T-test statistics for the effect of loss of function of SUVR5 on relative 

expression of E2Fe in mock-treated, brassinolide (BL)-treated and brassinazole 

(BRZ)-treated seedlings 

Treatment Plant T critical 
value 

Degrees of 
freedom (df) 

p-value 

Mock Col0 vs. suvr5 -0.856 4 P = 0.440 

BR Col0 vs. suvr5 -1.141 4 P = 0.317 
BRZ Col0 vs. suvr5 -0.185 1.033 P = 0.883 
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Table 25: T-test statistics for the effect of brassinolide (BL) treatment and 

brassinazole (BRZ) treatment on relative expression of E2Fe in wildtype and suvr5 

seedlings. 

Plant line Treatment T critical 
value 

Degrees of 
freedom (df) 

p-value 

Col0 Mock vs. BR -0.144 4 P = 0.892 
 Mock vs. BRZ 0.616 4 P = 0.571 
suvr5 Mock vs. BR -0.588 4 P = 0.588 
 Mock vs. BRZ 0.588 3 P = 0.598 

 

Figure 13: The effect of brassinosteroid treatment on the expression of E2Fe in 

wildtype and suvr5 seedlings. Quantitative real-time PCR analysis of the expression 

of E2Fe relative to the expression of reference gene UB10 in 5-d-old wildtype and 

suvr5 mutant seedlings treated for 16h with brassinolide (0.2µM), brassinazole 

(0.2µM), or mock control. Error bars represent the mean +/- 1 SEM from three 

biological and three technical repeats.  

 

Statistical analysis showed that there was no significant difference between the mean 

relative expression of E2Fe in undifferentiated cells and TEs (Tables 21 and 22, 

Figure 12). There was also no significant difference between mean relative expression 

of E2Fe in mock-treated, BL-treated and BRZ-treated wildtype and suvr5 mutant 

seedlings (Tables 23, 24 and 25, Figure 13). See Appendices 8 and 9 for figures 

depicting fold change of E2Fe expression levels.  
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3.7 The effect of loss of function of SUVR5 and CLF on brassinosteroid response  

 
Next, this study aimed to determine the biological meaning of the positive protein-

protein interactions identified and validated by Y2H and BiFC analyses between 

BIN2 and SUVR5, CLF and SUVH5. BRs have been shown to play a crucial role in 

regulating hypocotyl length. Whilst BL treatment drastically increases hypocotyl 

length and the length of hypocotyl cells in light-grown seedlings, treatment with BRZ 

suppresses the length of hypocotyl cells (Tanaka et al., 2003). Furthermore, 

overexpression of BR-biosynthesis gene DWARF4 resulted in a dramatic increase in 

hypocotyl length of light-grown seedlings (Choe et al., 2001). BRs therefore have 

been shown to promote hypocotyl elongation by regulating cell enlargement in 

hypocotyls of light-grown plants. 

 

If BRs regulate hypocotyl elongation and BR signalling integrates with SUVR5, CLF 

and SUVH5 via BIN2, it was hypothesised that loss of function of SUVR5, CLF and 

SUVH5 would impact upon BR response and thus hypocotyl length. To test this, loss-

of-function mutants that were available for SUVR5 and CLF were treated with BL 

and BRZ and the hypocotyl length was measured. 

 

Table 26: Descriptive statistics for the mean hypocotyl length of mock-treated, 

brassinolide (BL)-treated and brassinazole (BRZ)-treated wildtype, suvr5 and clf29 

seedlings 

Treatment Plant line N Mean (mm) Standard Error of the 
Mean (SEM) (mm) 

Mock Col0 95 1.56 0.0254 
suvr5 50 1.60 0.0286 
clf29 17 1.49 0.0965 

BL Col0 54 2.66 0.101 
suvr5 37 3.02 0.0868 
clf29 18 2.75 0.179 

BRZ Col0 74 1.26 0.0273 
suvr5 37 1.30 0.0462 
clf29 21 1.27 0.0319 

 

 

 
 



 
 

66 

Table 27: T-test statistics for the effect of brassinosteroid treatment on mean 

hypocotyl length of loss of function suvr5 and clf29 seedlings relative to wildtype.  

Treatment Plant line T critical 
value 

Degrees of 
freedom (df) 

p-value 

Mock Col0 vs. suvr5 -1.06 143 P = 0.291 
Col0 vs. clf29 0.715 18.3 P = 0.483 

BL Col0 vs. suvr5 -2.66 88.8 P < 0.05 
Col0 vs. clf29 -0.401 70 P = 0.689 

BRZ Col0 vs. suvr5 -0.812 109 P = 0.419 
Col0 vs. clf29 -0.330 93 P = 0.742 

 
Table 28: T-test statistics for the effect of brassinosteroid treatment on mean 

hypocotyl length of wildtype, suvr5 and clf29 seedlings  

Plant Treatment T critical 
value 

Degrees of 
freedom (df) 

p-value 

Col0 Mock vs. BL -10.6 59.8 P < 0.001 
Mock vs. BRZ 8.11 167 P < 0.001 

suvr5 Mock vs. BL -15.5 43.9 P < 0.001 
Mock vs. BRZ 5.64 62.2 P < 0.001 

clf29 Mock vs. BL -6.17 26.0 P < 0.001 
Mock vs. BRZ 2.12 19.5 P < 0.05 
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Figure 14: The effect of loss of function of SUVR5 and CLF on brassinosteroid 

response and mean hypocotyl length. Mean hypocotyl length of 2-d-old wildtype, 

suvr5 and clf29 seedlings treated for 3d with mock, brassinolide (BL) (0.2µM) and 

brassinazole (BRZ) (0.2µM). Error bars represent ± 1 SEM. Letters denote significant 

differences between groups when α=0.005. Groups denoted by the same letter are not 

significantly different from each other. See Table 26 for sample sizes (N). 

 
Statistical analysis showed that the mean hypocotyl length of BL-treated suvr5 

seedlings is significantly higher than BL-treated wildtype seedlings (Tables 26 and 

27, Figure14). There was no significant difference between the mean hypocotyl length 

in BL-treated wildtype seedlings and BL-treated clf29 seedlings. In addition, the mean 

hypocotyl length in BRZ-treated suvr5 and clf29 seedlings was not significantly 

different from BRZ-treated wildtype seedlings (Tables 26 and 27, Figure 14). 

 

Wildtype, suvr5 and clf29 seedlings all have a significantly higher mean hypocotyl 

length in BL-treated seedlings compared to mock-treated seedlings (Tables 26 and 28, 

Figure 14). On the other hand, wildtype, suvr5 and clf29 all have a significantly lower 

mean hypocotyl length in BRZ-treated seedlings compared to mock-treated seedlings 

(Tables 26 and 28, Figure 14).  
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4. Discussion 
 

4.1 Cytokinin signalling guides histone modifying enzymes which regulate cell 
differentiation initiation 

 
Key epigenetic regulators such as PcG and trxG proteins have been shown to play a 

crucial role in regulating meristematic activity and the balance between cell 

proliferation and cell differentiation (Aichinger et al., 2011). In this study, loss of 

function of SET domain methyltransferases ASHH3, ASHR1 and SUVR1, the H3K27 

monomethyltransferase ATXR5, the H3K27 trimethyltransferase CLF, the H3K9 

dimethyltransferase SUVR5, the H3K4 demethylase LDL1, and finally the H4R3me2 

demethylase JMJ22 (Table 15), impacted upon root meristem size and cytokinin (CK) 

response. This suggests that these histone modifying enzymes have an important role 

in regulating the expression of genes involved in cell differentiation and their activity 

is potentially modulated by CK. 

 

Firstly, mock-treated ashh3, ashr1, atxr5, clf29, jmj22 and ldl1 mutants had a 

significantly lower mean meristem cell number compared to mock-treated wildtype. 

Contrastingly, in mock-treated suvr1 and suvr5 mutants, the mean meristem cell 

number was significantly higher than mock-treated wildtype (Figure 4). Reduced cell 

number in the root meristem can either be representative of there being fewer cells 

due to a reduction in the division potential of meristematic transit-amplifying cells, or 

as a result of prolonged cell cycle duration and thus delayed transition from cell 

division to cell elongation (De Ioio et al., 2008; Li et al., 2017). An increase in 

meristem size, on the other hand, may be due to an increase in meristem activity and 

the expression of root stem cell and meristem marker genes as found by Aichinger et 

al. (2011). These changes in root meristem size relative to the wildtype in loss-of-

function mutants suggests that the specific histone modifying enzymes inactivated in 

these mutants may be associated with regulating cell proliferation and the transition 

to cell differentiation. 

 

Alongside identifying the key histone modifying enzymes associated with cell 

differentiation, this study aimed to test the hypothesis that hormone signals guide the 



 
 

69 

activity of histone modifying enzymes to modulate cellular decisions during 

differentiation. In Arabidopsis roots, CK promotes cell differentiation such that 

exogenous application of CK decreases the number of meristematic cells (Dello Ioio 

et al., 2007; Dello Ioio et al., 2008). If the hypothesis is correct, loss-of-function 

mutants in key histone modifying enzymes may therefore show differences in their 

response to CK. Root meristem size analysis did reveal that ashh3, ashr1, atxr5, clf29, 

suvr5, ldl1 and jmj22, were insensitive to CK-induced differentiation as there was no 

significant difference between the mean meristem cell number in untreated and CK-

treated roots (Figure 4). These results agree with the initial hypothesis that hormone 

signals such as CK signalling guide histone modifying enzymes during cell 

differentiation initiation.  

 

Altogether the results suggest that CK signalling may activate SUVR5 activity, as CK 

treatment reduces meristem size in wildtype seedlings yet suvr5 loss-of-function 

mutants have a larger meristem size compared to wildtype and are also insensitive to 

CK. On the other hand, CK signalling may inactivate ATXR5, CLF, LDL1 and JMJ22 

activity as similarly to CK-treated wildtype seedlings, loss-of-function mutants atxr5, 

clf29, ldl1 and jmj22 have a shorter meristem size compared to wildtype and are also 

insensitive to CK.  

 

This control of histone modifying enzyme activity by CK signalling can be put into 

the context of cell differentiation. Activation of SUVR5 by CK signalling may result 

in deposition of the repressive mark H3K9me2 on root stem cell and meristem marker 

genes or auxin signalling genes, which would result in reduced mitotic activity and 

initiation of cell differentiation. Aichinger et al. (2011) showed this to be the case for 

PcG-mediated H3K27me3.	 On the other hand, inactivation of ATXR5 by CK 

signalling may reduce the deposition of repressive mark H3K27me1 on genes 

involved in cell-cycle progression, thus promoting initiation of cell differentiation. A 

study by Raynaud et al. (2006) supports this as ATXR5 was found to accumulate 

during the S phase of the cell cycle whereby S phase progression is important in both 

proliferating cells and cells undergoing endoreduplication and entering differentiation 

(Inzé, 2005). Furthermore, inactivation of LDL1 by CK signalling may prevent 

removal of the active mark H3K4me(1/2/3) from similar cell-cycle genes, promoting 
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the transition from meristematic cell proliferation to differentiation. Finally, CK 

signalling-mediated inactivation of JMJ22 may prevent removal of the repressive 

H4R3me2 mark from genes involved in meristematic cell division and maintenance, 

enabling the transition from cell division to cell elongation. 

 

In this study, the root meristem size analysis showed that clf29 mutants had a shorter 

meristem compared to the wildtype and were insensitive to CK signalling, leading one 

to believe that CK signalling activates CLF. However, a number of studies have 

demonstrated that loss of function of CLF results in a larger meristem size (Aichinger 

et al., 2011; De Lucas et al., 2016) as seen with suvr5 in this study. This instead 

suggests that CLF may actually be activated by CK signalling. The conflicting result 

obtained for clf29 in this study is likely due to experimental error. This may perhaps 

be as a result of differences in seed germination between clf29 and wildtype seedlings 

used in this study which could be due to different seed harvesting times. There is no 

reason to doubt the meristem size for the other mutant lines however since 

observations made in this study for CLF disagree with what has previously been 

published, the experiment should be repeated with new sets of clf29 and Col0 seeds 

and on more individual seedlings.  

 

Overall, the root meristem size analysis conducted in this study suggests that 

chromatin remodelling processes play a critical role in regulating cell differentiation. 

Moreover, hormone signalling is thought to regulate the activity of histone modifying 

enzymes during cell differentiation.  In future, the specific effect of mutating key 

histone modifying enzymes on root meristem activity could be tested by analysing the 

expression of a G2/M transition marker, CYCLIN B1, to determine whether the cell 

proliferation is compromised in loss-of-function mutants as in Napsucialy-Mendivil 

et al. (2014). Furthermore, also similarly to Napsucialy-Mendivil et al. (2014), the 

effect of loss of function of histone modifying enzymes on the transition from cell 

division to cell elongation in cells entering differentiation could be analysed. A way 

to do this could be to measure the number of cells that start to elongate during a set 

time period in mutants and compare this to the wildtype. It would also be interesting 

to look at the root meristem size phenotype of SUVR5, ATXR5, CLF, LDL1 and JMJ22 

overexpression lines. If the hypothesis is correct, SUVR5 and CLF overexpression is 
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expected to result in a short meristem whereas overexpression of ATXR5, LDL1 and 

JMJ22 should result in a longer meristem. 

 

4.2 Specific hormonal signals are required to promote tracheary element 
differentiation 

 

Having demonstrated that specific histone modifying enzymes are associated with cell 

differentiation initiation and are controlled by CK signalling, this study next aimed to 

clarify the role of hormonal signalling in guiding cell fate. Tracheary element (TE) 

differentiation was used as a model system whereby the experimental system used 

induced TE differentiation independently of hormones by overexpressing the master 

transcription factor VND7. Knowing that a combination of auxin, CK and 

brassinosteroids (BRs) is required for proper TE differentiation (Fukuda, 2004), it was 

hypothesised that a specific balance of those hormones might control VND7 

transdifferentiation activity. If that is the case, VND7-induced xylem 

transdifferentiation may be impeded in scenarios where the hormone balance does not 

favour xylem differentiation.  

 

This hypothesis was tested first by looking at the spatiotemporal pattern of VND7-

induced xylem transdifferentiation. The secondary cell wall deposition of cells both 

along the longitudinal axis of the whole root and across different cell types after 3 

days of VND7 induction was analysed. This revealed that secondary cell wall 

deposition did not occur in the columella root cap, meristematic zone, transition zone 

and was reduced in the late differentiation zone. In addition, secondary cell wall 

deposition was never seen in epidermal cells throughout the root. However, ectopic 

transdifferentiation of various non-vascular cell types into xylem vessel cells was 

observed in the elongation zone and most of the differentiation zone (Figure 6). 

Estradiol-induced GUS expression was equally distributed across all cell types of 

XVE:GUS roots (Figure 5), which eliminated the possibility that estradiol treatment 

might affect the spatial pattern of VND7-induced xylem transdifferentiation. The 

differentiation stage of the cell may determine to some extent the transdifferentiation-

potential of a cell as overexpression of VND7 was unable to induce young 

meristematic or fully differentiated cells to transdifferentiate into xylem vessels. 
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Furthermore, the absence of transdifferentiation in epidermal cells suggests positional 

information influences VND7 activity. Knowing this, VND7ox plant lines were then 

pre-treated with auxin, CK or BRs for 24hrs before induction and during 3 days of 

induction in order to perturb the hormone balance, and the ratio of VND7-induced 

transdifferentiated xylem cells was analysed in order to evaluate the importance of 

specific hormonal scenarios in controlling VND7 activity.  

 

Regardless of hormonal treatment, estradiol-induced overexpression of VND7 was 

found to induce the transdifferentiation of numerous non-vascular cell types into 

xylem cells which were identified by secondary cell wall deposition (Figure 7). 

However, BR and auxin-treated roots showed a reduction in TE differentiation levels 

(Figure 7). Thus treatment with auxin and BRs appears to impair VND7-inducible 

xylem transdifferentiation. This suggests that specific hormonal contexts may be 

required for proper TE transdifferentiation to occur.  

 

To further analyse the role of these phytohormones in guiding VND7-induced xylem 

differentiation on a cell-type specific level, VND7 overexpressor plant lines were 

crossed with H2B::YFP lines to mark nuclei and then pre-treated with phytohormones 

before induction as before. Escamez and Tuominen (2014) reviewed evolutionary and 

molecular studies and came to the conclusion that during TE differentiation, 

programmed cell death and autolysis, which result in the loss of cell contents 

including nuclei, are directly regulated by VND7 and VND6. Secondary cell wall 

deposition and lignification were thought to have evolved later to improve the efficacy 

of the water-transport system and be regulated by transcription factors, such as 

MYB46 and MYB83, that are downstream of VND7 and VND6. However, in this 

study it was found that after 7 days of induction of VND7 overexpression in 

VND7ox;H2B::YFP roots, a fluorescent signal from YFP was still detected in the 

nucleus of cells with secondary cell wall thickenings (Figure 8). This indicates that 

secondary cell wall deposition, autolysis and programmed cell death constitute 

separate TE differentiation programmes with separate regulation whereby the master 

regulator VND7 may only control secondary cell wall deposition. Therefore, detecting 

the presence or absence of nuclei according to fluorescence signals may not be a valid 

system to confirm the xylem transdifferentiation of different cell lines. Instead, 



 
 

73 

lignified tissues could be stained with fuschin in the future to more clearly see the 

effect of phytohormones on VND7-induced xylem transdifferentiation detected by 

lignification. 

 

In this study, different hormone scenarios were indeed found to affect the ratio of 

VND7-induced transdifferentiated xylem cells identified by secondary cell wall 

deposition. This is in line with the original hypothesis that specific hormonal contexts 

may be required to promote TE differentiation. Braszewska-Zalewska et al. (2013) 

provided evidence for distinct levels of histone and DNA modifications across root 

meristematic tissues in Hordeum vulgare. For example, the active chromatin mark 

H4K5ac was observed at a high level in vascular tissues and low level in the epidermis 

and it was concluded that vascular tissue-specific H4K5ac levels may be associated 

with regulating vascular tissue differentiation. In addition, De Lucas et al. (2016) 

observed that PRC2, which catalyses the repressive mark H3K27me3, regulates genes 

in a cell-type specific fashion. Whilst VND7 is expressed in vascular cells, localised 

deposition of H3K27me3 mediates specific repression of VND7 in nonvascular cells. 

It is therefore possible that specific hormone signalling contexts mediate localised 

chromatin remodelling processes, which regulate the accessibility of DNA to VND7 

that in turn controls xylem cell differentiation. In future, it would be interesting to 

repeat this experiment and treat VND7ox plant lines with different hormone-

combinations such as auxin:CK, auxin:BRs, and CK:BRs to examine the effect this 

has on VND7-induced xylem transdifferentiation. In addition, whole-mount 

immunostaining using histone mark-specific antibodies could be performed on 

VND7ox roots treated with different hormone-combinations. The histone mark 

distribution could then be compared to the VND7-induced xylem transdifferentiation 

pattern to determine if there is any correlation. 

  

4.3 Histone modifying enzymes and tracheary element differentiation  

 

In order to test whether histone modifying enzymes play an important role in TE 

differentiation, an in vitro experimental system was used. Leaf discs of loss-of-

function mutants in histone modifying enzymes were cultured with auxin, cytokinin 

and bikinin for 3 days to induce xylem cell differentiation (Saito et al., 2017). If the 
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initial hypothesis is true, histone modifying enzyme mutants should have defects in 

bikinin-induced TE differentiation. 

 

In this study, wildtype and all the loss-of-function histone modifying enzyme mutants 

tested showed differentiation of a large number of mesophyll cells to TEs having 

cultured leaf discs for 3 days with auxin, CK and bikinin (Figure 9). These results do 

not necessarily disprove the initial hypothesis that histone modifying enzymes 

regulate xylem cell fate, instead, it likely demonstrates the redundancy of function 

observed amongst histone modifying enzymes such that loss of one enzyme is 

substituted by another. For example, SUVR5 is known to function redundantly with 

KRYPTONITE (KYP)/SUVH5/SUVH6 in depositing H3K9me2 in heterochromatin 

(Caro et al., 2012), and CLF has been found to function partially redundantly with its 

homolog SWN (Chanvivattana et al., 2004). Furthermore, SUVR5 and LDL1 have 

been shown to interact and form a repressor complex whereby their H3K9 

methyltransferase and H3K4 demethylase activities combined repress gene 

expression (Caro et al., 2012). This experiment should therefore be repeated using 

double and triple loss-of-function histone modifying mutants to determine whether 

chromatin remodelling modulates cell identity, specifically during TE differentiation. 

 

4.4 Histone modifying enzymes SUVR5, CLF and SUVH5 interact with a cell 
differentiation-regulating hormone signalling gene, BIN2 

 
To investigate how hormone signalling integrates with chromatin remodelling 

processes during cell differentiation, a yeast two-hybrid (Y2H) protein-protein 

interaction assay was performed to screen for interactions between a library of 30% 

of histone modifying enzymes and a key negative regulator of BR signalling, BIN2.  

 

BIN2 is inhibited by upstream BR signalling. This BR signalling pathway begins with 

BRs binding to and being perceived by a cell-surface receptor kinase, BR 

INSENSITIVE1 (BRI1) (Belkhadir and Chory, 2006). This activates BRI1 kinase 

activity (Wang, 2001) and BRI1 goes on to phosphorylate BR-SIGNALLING 

KINASE1 (BSK1), promoting binding of BSK1 to BRI1-SUPPRESSOR1 (BSU1) 

(Kim et al., 2009). BSU1 inactivates the GSK3-like kinase BIN2 by 
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dephosphorylating a conserved tyrosine residue (Kim et al., 2009) and the E3 

ubiquitin ligase, KIB1, mediates ubiquitination and degradation of BIN2 (Zhu et al., 

2017). Inactivation of BIN2 results in dephosphorylation of BZR1 and BES1 family 

of transcription factors allowing them to move into the nucleus and bind directly to 

the promoters of their target genes to activate or repress gene expression and mediate 

BR responses (Zhao et al., 2002; Wang et al., 2002; Yin et al., 2002; He et al., 2002). 

 

As is the case in the BR signalling pathway, many known BIN2 substrates are 

transcription factors (Li and Nam, 2002; Vert et al., 2008; Cho et al., 2014; Bernardo-

García et al., 2014; Zhang et al., 2014c). However, the Y2H assay conducted in this 

study revealed that BIN2 also interacts with histone methyltransferases SUVR5, 

SUVH5 and CLF (Figure 10), which mediate deposition of repressive chromatin 

marks H3K9me2 and H3K27me3 via their catalytic SET and SET and RING finger 

Associated (SRA) domains (Caro et al., 2012; Johnson et al., 2007; Ebbs and Bender, 

2006; Cao et al., 2002). A Y2H interaction was considered positive if at least two of 

the reporter genes were activated and thus if cells could grow on plates lacking 

adenine and histidine and/or yeast colonies turned blue in the presence of X-Gal. 

Some colonies appeared dark red in colour when grown on medium with low amounts 

of adenine due to poor synthesis of adenine suggesting these proteins may be less 

stable or have a weaker interaction with BIN2. Furthermore, for some positive 

protein-protein interactions no blue signal was observed in the presence of X-gal. This 

will be because the X-gal assay is time dependent and therefore at one time point the 

blue signal may be present for a particular protein-protein interaction, but it may not 

be seen at other time points. Nonetheless, the positive interactions between BIN2 and 

SUVR5 and CLF were validated in vivo by BiFC as a strong fluorescent signal was 

observed (Figure 11). The BIN2 interaction with SUVH5 was not analysed by BiFC 

due to unsuccessful cloning of a SUVH5 fusion protein into BiFC plasmid vectors 

within the time available.	
 

Previously in this study and according to literature, both SUVR5 and CLF have been 

shown to be associated with regulating meristem activity and the transition from cell 

division to cell elongation/differentiation. Furthermore, BR signalling has also been 

implicated with controlling the same processes (Chaiwanon and Wang, 2015; 
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González-García et al., 2011) as well as playing a crucial role in TE differentiation 

(Iwasaki and Shibaoka, 1991; Yamamoto et al., 1997) of which BIN2 is a suppressor 

(Kondo et al., 2015). Therefore, the positive protein-protein interactions between 

BIN2 and SUVR5, SUVH5 and CLF identified by Y2H suggests that BR signalling 

may guide chromatin architecture via these histone modifying enzymes during cell 

differentiation. Further research is required however to fully understand the context 

and biological meaning of these interactions.  

 

4.5 Brassinosteroid signalling and histone methyltransferase SUVR5 regulate 
common genes involved in cell differentiation initiation  

 

To start unravelling the specific role of BR signalling in guiding SUVR5 activity 

during differentiation, a list of candidate genes significantly upregulated in the suvr5-

1 mutant (Caro et al., 2012) and regulated by BRs (Nemhauser, 2004; Goda, 2004; 

De Rybel et al., 2009; Sun et al., 2010) was compiled. E2Fe was selected from this 

list of candidate genes for further investigation as similarly to BR signalling, it has 

been implicated in regulating cell cycle progression and the transition from cell 

division and cell differentiation (Lammens et al., 2008; González-García et al., 2011). 

It was hypothesised that BR signalling guides SUVR5-mediated chromatin 

remodelling, which may regulate E2Fe expression and subsequently cell 

differentiation initiation.  

 

However, results from qPCR analysis investigating the expression levels of E2Fe in 

undifferentiated cells and TEs as well as in untreated, BL-treated and BRZ-treated 

wildtype and suvr5 seedlings, did not agree with the initial hypothesis. There was no 

significant difference between the mean relative expression of E2Fe in 

undifferentiated cells and TEs, nor between untreated, BL-treated and BRZ-treated 

wildtype and suvr5 mutant seedlings. Whilst endocycle initiation has been associated 

with the transition from cell division to cell elongation and differentiation (Hayashi et 

al., 2013), the role of endoreduplication in TE differentiation remains largely 

unknown.  
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In future, BR-treating the seedlings for 3 days as opposed to overnight (16h) may have 

more obvious implications on E2Fe relative expression in Col0 and suvr5 roots. It 

may also prove more informative to conduct transcriptional analysis on BR 

biosynthesis and signalling loss- and gain-of-function mutants such as de-etiolated2-

1 (det2-1) (Chory et al., 1991), bri1-1 (Clouse et al., 1996), bsu1-1D (Mora-García et 

al., 2004), dwf4 (Choe et al., 2001), bin2-1 (Li and Nam, 2002), to get a more robust 

idea of the role of BR signalling in regulating E2Fe expression via SUVR5.  

 

4.6 Brassinosteroid signalling may inactivate SUVR5  
 

To further investigate the biological meaning of the molecular interactions between 

BIN2 and SUVR5, CLF and SUVH5, next this study analysed the BR response of the 

suvr5 and clf29 loss of function mutants that were available to use in this study. Since 

BR signalling is a known key regulator of hypocotyl elongation (Tanaka et al., 2003) 

and BR signalling integrates with the histone modifying enzymes SUVR5, CLF and 

SUVH5 via BIN2, it was hypothesised that loss-of-function mutants in SUVR5 and 

CLF would show differences in their BR response and therefore hypocotyl length.  

 

Tanaka et al. (2003) showed that BL-treatment increases hypocotyl length in light-

grown seedlings whilst BRZ-treatment decreases hypocotyl length. Similarly to the 

wildtype seedlings, the hypocotyl length of loss of function clf29 and suvr5 mutants 

significantly increased upon treatment with BL and significantly decreased upon 

treatment with BRZ. suvr5 mutants appeared more sensitive to BL treatment as 

statistical analysis revealed that the mean hypocotyl length of BL-treated loss of 

function suvr5 mutant seedlings was significantly higher than BL-treated wildtype 

seedlings. This suggests that BR signalling may modulate hypocotyl elongation by 

inactivating SUVR5 and therefore loss of function of SUVR5 confers hypersensitivity 

of hypocotyl elongation to BL.  

 

Zhang et al. (2014a) discovered that the chromatin remodelling factor PICKLE/ 

ENHANCED PHOTOMORPHOGENIC 1 (PKL/EPP1) directly interacts with BR 

signalling positive regulator, BZR1, and promotes hypocotyl elongation by repressing 

H3K27me3 at cell-elongated related genes. This demonstrated a role for BR signalling 
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in inhibiting repressive mark H3K27me3 at loci involved in cell elongation and 

regulating hypocotyl length. Therefore, SUVR5-mediated H3K9me2 deposition at 

cell-elongated related genes may also be repressed by BR signalling to promote 

hypocotyl elongation, explaining the hypersensitivity of suvr5 mutants to BL and thus 

longer hypocotyls. This suggests a role for BR signalling in guiding SUVR5-mediated 

histone marks during plant development. 

 

4.7 Conclusions 

 

Chromatin remodelling is a complex process whereby histone modifications are 

dynamically regulated by histone writers and erasers and interact with each other both 

antagonistically and synergistically to modulate gene expression during plant 

development. Investigating the specific role of histone modifying enzymes in 

regulating cell differentiation can therefore be met by some challenges. Namely, 

extensive redundancy of function is observed amongst chromatin remodelling 

enzymes (Caro et al., 2012; Chanvivattana et al., 2004). Furthermore, complex 

crosstalk exists between histone modifications (Lee et al., 2010) which can interact 

with multiple effector protein complexes to mediate dynamic chromatin states 

(Berger, 2007).  

 
Despite these challenges, the results from this study can be drawn together to propose 

a model for the role of BR signalling in regulating histone modifying enzymes during 

cell differentiation, in particular, when to switch from cell division to cell 

differentiation. Meristem size analysis conducted in this study and previous research 

(Aichinger et al., 2011; De Lucas et al., 2016) have demonstrated that loss-of-function 

of SUVR5 and CLF increases meristem size suggesting a role for these histone 

modifying enzymes in regulating meristem activity. Furthermore, BR-insensitive bri1 

mutants exhibit a reduced meristem size which suggests balanced BR signalling is 

required to maintain meristem size (González-García et al., 2011; Hacham et al., 

2011). Therefore, BR signalling may regulate meristem size by affecting the stability 

and activity of SUVR5 and CLF. Analysis of the BR response of suvr5 and clf29 

mutants indeed revealed that suvr5 mutants are hypersensitive to BL suggesting that 

BR signalling may inactivate SUVR5. Furthermore, SUVR5 and CLF were found to 
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interact with negative regulator of BR signalling, BIN2, in this study. BIN2 has 

previously been shown to positively regulate substrates by phosphorylating and 

stabilising them as is the case for the transcription factor ABSCISIC ACID 

INSENSITIVE5 (ABI5) to modulate ABA response; in addition to the transcription 

factors myeloblastosis family transcription factor like-2 (MYBL2) and 

homeodomain-leucine zipper protein 1 (HAT1) to inhibit BR-repressed gene 

expression (Hu and Yu, 2014; Ye et al., 2012; Zhang et al., 2014b). Moreover, studies 

have shown that loss of function of CLF and gain of function of BIN2 result in 

contrasting phenotypes. Whilst clf loss-of-function mutants show hyponastic leaves, 

early flowering and increased apical dominance (Goodrich et al., 1997), gain-of-

function mutations in BIN2 gene result in round and epinastic leaves, late flowering, 

and reduced apical dominance (Li et al., 2001). Knowing all this, the results of this 

study, supported by previous research, can be used to propose a model whereby BIN2 

activity in the absence of BR signalling may function in phosphorylating and 

stabilising SUVR5 and CLF perhaps via their shared catalytic SET domain to regulate 

meristem size. 

 

In addition, the interaction between BIN2 and SUVR5, CLF and SUVH5 may also be 

important in regulating xylem cell differentiation. In this study, disturbing the balance 

of hormones by treating VND7ox seedlings with BRs caused defects in VND7-

induced transdifferentiation into TEs. Localised deposition of histone marks has been 

found to control VND7 expression (De Lucas et al., 2016) and therefore specific 

hormonal signals may guide the spatial pattern of histone marks to control VND7 

expression and TE differentiation. However, in this study bikinin-induced 

transdifferentiation was not impeded in loss-of-function mutants in histone modifying 

enzymes, but this may be explained by redundancy of function between histone 

modifying enzymes. Nonetheless, the suppressor of xylem differentiation, BIN2, was 

found to interact with SUVR5 and CLF. Altogether, this research suggests that BIN2 

could guide SUVR5 and CLF activity to regulate deposition of repressive marks 

H3K9me2 and H3K27me3 on master regulators such as VND7 to suppress TE 

differentiation yet further research is required. 

 

 



 
 

80 

4.8 Future work 

 

Alongside the ideas already mentioned throughout the discussion, there remain a 

number of opportunities for further research. In future, a priority would be to try 

overcome the challenges that accompany the complexity of chromatin remodelling 

such as redundancy of function between histone modifying enzymes. This could 

include conducting experiments on double and triple loss-of-function histone 

modifying enzyme mutants, or on plants overexpressing the histone modifying 

enzyme of interest under the control of a 35SCaMV promoter. The phenotype of these 

mutants could then be compared to the single loss-of-function mutants to see if it is 

more severe.  

 

In order to further elucidate the level and context of the molecular interactions 

identified between BIN2 and SUVR5, CLF and SUVH5, a number of other 

experiments could be conducted in the future. Phosphorylation assays could be carried 

out on SUVR5, CLF and SUVH5 incubated with BIN2 to see if the histone 

methyltransferases are phosphorylated in the presence of BIN2. If the phosphorylation 

of SUVR5, CLF and SUVH5 incubated with BIN2 decreases in the presence of 

bikinin, this would suggest that observed phosphorylation of SUVR5, CLF and 

SUVH5 is indeed catalysed by BIN2. Furthermore, the stability of SUVR5, CLF and 

SUVH5 upon treatment with BL, BRZ and bikinin could be analysed by western blot. 

This altogether would test whether BIN2 phosphorylates and stabilises SUVR5, CLF 

and SUVH5 as hypothesised in the proposed model.   

 

In addition, the downstream consequences of BIN2 activity over SUVR5, CLF and 

SUVH5 should be studied at a number of levels. This could involve looking at 

H3K27me3 and H3K9me3 abundance and genome wide distribution in wildtype, 

clf29 and suvr5 seedlings treated with BL and BRZ and evaluating the transcription 

of key regulators of cell differentiation in these treated seedlings.   

 

It would also be useful to perform more Y2H screens for interactions between histone 

modifying enzymes and other BR signalling components as well as CK and auxin 

signalling genes and conduct similar follow up analysis as aforementioned. This 
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would provide a more in depth idea of the role of hormone signalling and chromatin 

remodelling during cell differentiation.  
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6. Appendices 
 

Appendix 1: List of suppliers of all chemicals and reagents used in this study 

Reagent Suppliers 
2-(N-morpholino)ethanesulfonic acid (MES) Melford 
2-Mercaptoethanol  VWR 
2X SYBR Green PCR Mix Lo-ROX PCR Biosystems 
3-Indolacetic Acid (IAA) Duchefa Biochemie 
5-Bromo-4-chloro-3-indolyl-ß-D-galactoside 
(X-GAL) Melford 
5X First Reaction Buffer  Thermo Fisher Scientific 
5X Phusion HF Buffer PCR Biosystems 
Acetic Acid  Thermo Fisher Scientific 
Acetone Scientific Laboratory Supplies 
Acetosyringone Sigma Aldrich 
Advance seed and modular compost plus sand Levington 
Agar  Melford 
Agarose Bioline 
Ammonium Sulphate  Melford 
Bikinin  Selleckchem 
Brassinazole (BRZ) Sigma Aldrich 
Bromophenol Blue Sigma Aldrich 
Calcofluor White/ Fluorescent Brightener 28  Sigma Aldrich 
Carbenicillin Disodium Melford 
Carboxyl-modified Sera-Mag Magnetic 
Speed-beads Thermo Fisher Scientific 
Chloral Hydrate Acros Organics 
D-Glucose Thermo Fisher Scientific 
Dimethyl Sulphoxide (DMSO) Melford 
DNA Gel Loading Dye (6X) Thermo Fisher Scientific 
dNTPs Thermo Fisher Scientific 

DTT Melford 
Epibrassinolide (BL) Sigma Aldrich  
Ethanol (EtOH) Thermo Fisher Scientific 
Ethidium Bromide Thermo Fisher Scientific 
Ethylenediamine Tetraacetic Acid (EDTA) Thermo Fisher Scientific 
Gentamycin Sulphate Melford 
Glycerol  Melford 
Hydrochloric acid (HCl) Thermo Fisher Scientific  
Hygromycin Melford 
Hyperladder 1kb Bioline 
Kanamycin Monosulphate Melford 
LB Agar High Salt Granulated Melford 
LB Broth High Salt Granulated Melford 
Lithium Acetate (LiAc) Sigma Aldrich   
Murashige & Skoog Medium  Duchefa Biochemie 
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NTI binding buffer Macherey-Nagel 
Paraformaldehyde Agar Scientific 
PEG 8000 Melford 
Periodic acid Honeywell 
Phusion DNA polymerase Thermo Fisher Scientific 
Potassium Ferricyanide Sigma Aldrich    
Potassium Ferrocyanide Sigma Aldrich    
Potassium hydroxide (KOH)  Melford  
Propidium Iodide  Sigma Aldrich    
Random primers  Thermo Fisher Scientific  
RiboLock RNase Inhibitor Thermo Fisher Scientific 
Rifampicin Melford 
Sc Dropout minus Leu Formedium 
Sc Dropout minus Trp Formedium 
Sheared Salmon Sperm DNA Invitrogen  
Sodium Chloride (NaCl) Scientific Laboratory Supplies 

Sodium Deoxycholate  Sigma 
Sodium Dodecil Sulfate (SDS) Melford 
Sodium Hydroxide (NaOH) Melford  
Sodium Metabisulphite (Na2S2O5) Thermo Fisher Scientific 
ß-estradiol Sigma Aldrich 
Streptavidin Magnetic Beads New England Biolabs 
Sucrose Melford 
RevertAid Reverse Transcriptase Thermo Fisher Scientific  
Synthetic Complete (Sc) Dropout minus 
ADE, HIS, LEU, TRP Formedium 
Taq Mix Red PCR Biosystems 
Trans-Zeatin Sigma Aldrich 
Tris pH 7.6 Melford 
Tris-HCl pH8 Scientific Laboratory Supplies 
Triton TX-100 Sigma Aldrich 
Tween 20 Melford 
Urea Melford 
X-alpha-gal  Apollo Scientific  
Xylene Cyanol FF Thermo Fisher Scientific   
Xylitiol Sigma 
Yeast Extract Peptone Dextrose (YEPD) Formedium 
Yeast Nitrogen Base (w/o amino acids) Formedium 
Zirconium silica beads  Thistle Scientific 
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Appendix 2: Primers used for genotyping PCR 

 

Gene Primer sequences 

XVE 
GCAGGAAGAGGAAGAAGGGT 
TCAAATCCACAAAGCCTGGC 

mGFP5 
TTCTTCAAGGACGACGGGAA 
CCATGTGTAATCCCAGCAGC 

 

 

 

 

Mutant Primer Name Primer sequences 
ashh3 LB ATTTTGCCGATTTCGGAAC 

LP GTGTCGTATCTTGCTCGCTTC 
RP TCAAGGCCAAAACAAATCTTG 

ashr1 LB ATTTTGCCGATTTCGGAAC 
LP TGATCCTTTTGGATCGTAACG 
RP AGTGCAATAACATGGTGTCGG 

atx1 LB ATTTTGCCGATTTCGGAAC 
LP AATGAAAGCATGCGGATACAC 
RP TCCGTGTTGACTGGAAAGATC 

atxr5 LB ATTTTGCCGATTTCGGAAC 
LP TTTCTCTTGTCCGGTGAAATG 
RP CCTGCAACAATCAGTGTGATG 

clf29 LB ATTTTGCCGATTTCGGAAC 
LP AAGAAACTTGCTAGTTCCGCC 
RP GAGGCATTGACTTTGATTTGC 

jmj22 LB GCTTCCTATTATATCTTCCCAAATTACCAATACA 
LP TCTTTGCTTGGTGTATTTGCC 
RP TCGGTTTCATTTCAAGATTCG 

ldl1 LB ATTTTGCCGATTTCGGAAC 
LP TGTTTCCGTGTAACTTCTGGG 
RP TTGTTCTTGACGACGACTGTG 

suvh8 LB ATTTTGCCGATTTCGGAAC 
LP CTGGCAAGTGACAGGAAAATC 
RP AAACAAAAACAAACACCACGG 

suvr1 LB ATTTTGCCGATTTCGGAAC 
LP TGGAATCTCGATCAAGTTTGC 
RP AAACAACGAATTTGCATTTGC 

suvr5 LB ATTTTGCCGATTTCGGAAC 
LP CATCATCGACGACACAAATTG 
RP TTGGAAATTCATGTGGAGGAG 

swn7 LB ATTTTGCCGATTTCGGAAC 
LP TGATTATTGCTCCGTTTCCAC 
RP CGAGGAATTTTCTAATTCCGG 
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Appendix 3: Primers used for hot fusion cloning analysis 
Gene Vector Primer Sequences 

ATXR1 pGADT7 
GTACCAGATTACGCTCATATGAGAGGAGAGCAATTCGAGC 
ATTCATCTGCAGCTCGATTACTCTATGCCAAGAAGAGTC 

ATXR5 pGADT7 
GTACCAGATTACGCTCATATGGCCACATGGAACGCATCCT 
ATTCATCTGCAGCTCGATCAGAGGAAGTGATGAGTAGGA 

ATXR6 pGADT7 
GTACCAGATTACGCTCATATGGTGGCTGTGAGGCGAAGGA 
ATTCATCTGCAGCTCGATTATACAAAATGTTCAGTTGGA 

ASHH1 pGBKT7 
CAGAGGAGGACCTGCATATGCAATTTTCTTGTGATCCTG 
GCTAGTTATGCGGCCGCTCATTTGGCTTCCAAGAGTTTA 

BMI1A 
 

pGADT7 
GTACCAGATTACGCTCATATGGAAGGAGACATGGTGGCTA 
ATTCATCTGCAGCTCGATTAGTTGTTGCATTCAGGGAGC 

pGBKT7 
CAGAGGAGGACCTGCATATGGAAGGAGACATGGTGGCTA 
GCTAGTTATGCGGCCGCTTAGTTGTTGCATTCAGGGAGC 

BMI1B 
 

pGADT7 
GTACCAGATTACGCTCATATGATGATTAAGGTGAAGAAGG 
ATTCATCTGCAGCTCGATTACATGTTGCACTCTGGTAGC 

pGBKT7 
CAGAGGAGGACCTGCATATGATGATTAAGGTGAAGAAGG 
GCTAGTTATGCGGCCGCTTACATGTTGCACTCTGGTAGC 

CLF 
 

pGADT7 
GTACCAGATTACGCTCATATGGCGTCAGAAGCTTCGCCTT 
ATTCATCTGCAGCTCGACTAAGCAAGCTTCTTGGGTCTA 

pGBKT7 
CAGAGGAGGACCTGCATATGGCGTCAGAAGCTTCGCCTT 
GCTAGTTATGCGGCCGCCTAAGCAAGCTTCTTGGGTCTA 

EMF2 
 

pGADT7 
GTACCAGATTACGCTCATATGCCAGGCATTCCTCTTGTTA 
ATTCATCTGCAGCTCGATCAAATTTGGAGCTGTTCGAGA 

pGBKT7 
CAGAGGAGGACCTGCATATGCCAGGCATTCCTCTTGTTA 
GCTAGTTATGCGGCCGCTCAAATTTGGAGCTGTTCGAGA 

FIE 
 

pGADT7 
GTACCAGATTACGCTCATATGTCGAAGATAACCTTAGGGA 
ATTCATCTGCAGCTCGACTACTTGGTAATCACGTCCCAG 

pGBKT7 
CAGAGGAGGACCTGCATATGTCGAAGATAACCTTAGGGA 
GCTAGTTATGCGGCCGCCTACTTGGTAATCACGTCCCAG 

ATX1 pGADT7 
GTACCAGATTACGCTCATATGGCGTGTTTTTCTAACGAAA 
ATTCATCTGCAGCTCGATTATTCTGCGGTCCAGTCTATT 

ATX2 pGADT7 
GTACCAGATTACGCTCATATGATTTCAATGTCGTGTGTCC 
ATTCATCTGCAGCTCGATCAGGACTCTGTCCACTCTTTT 

JMJ 

pGADT7 
GTACCAGATTACGCTCATATGGATTCTGGAGTTAAATTGG 
ATTCATCTGCAGCTCGATCAAAGAGATAAAAGACTTGCC 

pGBKT7 
CAGAGGAGGACCTGCATATGGATTCTGGAGTTAAATTGG 
GCTAGTTATGCGGCCGCTCAAAGAGATAAAAGACTTGCC 

JMJ18 

pGADT7 
GTACCAGATTACGCTCATATGGAAAATCCTCCATTAGAAT 
ATTCATCTGCAGCTCGATTACATCAAATCTACTCCGAAA 

pGBKT7 
CAGAGGAGGACCTGCATATGGAAAATCCTCCATTAGAAT 
GCTAGTTATGCGGCCGCTTACATCAAATCTACTCCGAAA 

JMJ21 
  

pGADT7 
GTACCAGATTACGCTCATATGGATTCTGGAGTTAAATTGG 
ATTCATCTGCAGCTCGATCAAAGAGATAAAAGACTTGCC 

pGBKT7 
CAGAGGAGGACCTGCATATGGATTCTGGAGTTAAATTGG 
GCTAGTTATGCGGCCGCTCAAAGAGATAAAAGACTTGCC 

JMJ22 

pGADT7 
GTACCAGATTACGCTCATATGCCAAAGTGCAAGAATCTGT 
ATTCATCTGCAGCTCGATTAGAAAGAAAACTTGAAAGTA 

pGBKT7 
CAGAGGAGGACCTGCATATGCCAAAGTGCAAGAATCTGT 
GCTAGTTATGCGGCCGCTTAGAAAGAAAACTTGAAAGTA 

JMJ27 pGADT7 
GTACCAGATTACGCTCATATGGAGAAAATGAGAGGGAAGC 
ATTCATCTGCAGCTCGATTAGGTATCACTGCGTCGGGAG 

JMJ30 

pGADT7 
GTACCAGATTACGCTCATATGTCAGGAGCTACCACCGCTT 
ATTCATCTGCAGCTCGACTACGAGCTAGAAGATTCTGCT 

pGBKT7 
CAGAGGAGGACCTGCATATGTCAGGAGCTACCACCGCTT 
GCTAGTTATGCGGCCGCCTACGAGCTAGAAGATTCTGCT 

LHP1 
 pGADT7 

GTACCAGATTACGCTCATATGAAAGGGGCAAGTGGTGCTG 
ATTCATCTGCAGCTCGATTAAGGCGTTCGATTGTACTTG 
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pGBKT7 
CAGAGGAGGACCTGCATATGAAAGGGGCAAGTGGTGCTG 
GCTAGTTATGCGGCCGCTTAAGGCGTTCGATTGTACTTG 

LDL1 

pGADT7 
GTACCAGATTACGCTCATATGTCAACAGAGACTAAAGAAA 
ATTCATCTGCAGCTCGACTAATCAAAGATCTGTCGATTC 

pGBKT7 
CAGAGGAGGACCTGCATATGTCAACAGAGACTAAAGAAA 
GCTAGTTATGCGGCCGCCTAATCAAAGATCTGTCGATTC 

LDL2 pGADT7 
GTACCAGATTACGCTCATATGAATTCTCCGGCGTCGGATG 
ATTCATCTGCAGCTCGATCAATTAAAATGCAGGGGGTTT 

MSI1 
 

pGADT7 
GTACCAGATTACGCTCATATGGGGAAAGACGAAGAGGAAA 
ATTCATCTGCAGCTCGACTAAGAAGCTTTTGATGGTTCT 

pGBKT7 
CAGAGGAGGACCTGCATATGGGGAAAGACGAAGAGGAAA 
GCTAGTTATGCGGCCGCCTAAGAAGCTTTTGATGGTTCT 

PKDM7D pGADT7 
GTACCAGATTACGCTCATATGGGGACAGAGCTAATGAGAA 
ATTCATCTGCAGCTCGATCAGCGACGGTTCTGGATCTCT 

PRMT10 pGADT7 
GTACCAGATTACGCTCATATGAGGAGCTCCCAAAACGGCG 
ATTCATCTGCAGCTCGATCACTCTATGAAGTAAGTCTTC 

PRMT1A pGADT7 
GTACCAGATTACGCTCATATGACTAGTACGGAGAACAACA 
ATTCATCTGCAGCTCGATTAGCGCATCTTATAGAAGTGG 

PRMT1b pGADT7 
GTACCAGATTACGCTCATATGACTAAGAACAGTAACCACG 
ATTCATCTGCAGCTCGATTAACGCATTTTGTAGTGTTGG 

PRMT5 

pGADT7 
GTACCAGATTACGCTCATATGCCGCTCGGAGAGAGAGGAG 
ATTCATCTGCAGCTCGACTAAAGGCCAACCCAGTACGAA 

pGBKT7 
CAGAGGAGGACCTGCATATGCCGCTCGGAGAGAGAGGAG 
GCTAGTTATGCGGCCGCCTAAAGGCCAACCCAGTACGAA 

PRMT7 

pGADT7 
GTACCAGATTACGCTCATATGTCGCCTCTGTCTTCTCTTC 
ATTCATCTGCAGCTCGATCAAGAAATAGTATGAGTGACG 

pGBKT7 
CAGAGGAGGACCTGCATATGTCGCCTCTGTCTTCTCTTC 
GCTAGTTATGCGGCCGCTCAAGAAATAGTATGAGTGACG 

RING1A 
 

pGADT7 
GTACCAGATTACGCTCATATGTCTGTCAAGAATAATAGCT 
ATTCATCTGCAGCTCGATCACTCAGTTTGCTTCTTCCGG 

pGBKT7 
CAGAGGAGGACCTGCATATGTCTGTCAAGAATAATAGCT 
GCTAGTTATGCGGCCGCTCACTCAGTTTGCTTCTTCCGG 

RING1B 
 

pGADT7 
GTACCAGATTACGCTCATATGCCTTCCTTGAAGAGCTTCT 
ATTCATCTGCAGCTCGACTACGCGATTTGCTTTCTCCGG 

pGBKT7 
CAGAGGAGGACCTGCATATGCCTTCCTTGAAGAGCTTCT 
GCTAGTTATGCGGCCGCCTACGCGATTTGCTTTCTCCGG 

SUVH2 

pGADT7 
GTACCAGATTACGCTCATATGAGTACATTGTTACCATTTC 
ATTCATCTGCAGCTCGACTAGTTGCAGATGGCGAGCTTG 

pGBKT7 
CAGAGGAGGACCTGCATATGAGTACATTGTTACCATTTC 
GCTAGTTATGCGGCCGCCTAGTTGCAGATGGCGAGCTTG 

SUVH5 pGADT7 
GTACCAGATTACGCTCATATGGTACATTCAGAGTCATCAA 
ATTCATCTGCAGCTCGATTAGTAGAGCCTACCACTACAC 

SUVR4 pGADT7 
GTACCAGATTACGCTCATATGATCAGTCTCTCCGGACTAA 
ATTCATCTGCAGCTCGATCATTTGCGCTTTTTAGACA 

SUVR5 pGADT7 
GTACCAGATTACGCTCATATGGAAGTTAAAATGGATGAGT 
ATTCATCTGCAGCTCGACTAACTTAAGAGACCTCTGCAA 

SWN 
 

pGADT7 
GTACCAGATTACGCTCATATGGTGACGGACGATAGCAACT 
ATTCATCTGCAGCTCGATCAATGAGATTGGTGCTTTCTG 

pGBKT7 
CAGAGGAGGACCTGCATATGGTGACGGACGATAGCAACT 
GCTAGTTATGCGGCCGCTCAATGAGATTGGTGCTTTCTG 

VRN2 
 

pGADT7 
GTACCAGATTACGCTCATATGTGTAGGCAGAATTGTCGCG 
ATTCATCTGCAGCTCGATTACTTGTCTCTGCTGTTATTG 

pGBKT7 
CAGAGGAGGACCTGCATATGTGTAGGCAGAATTGTCGCG 
GCTAGTTATGCGGCCGCTTACTTGTCTCTGCTGTTATTG 

 

Plasmids in italics were generated by Dr. De Lucas using Gateway LR clonase 

technology (Invitrogen). 
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Appendix 4: Primers used for colony PCR 

Primer name Sequence 
T7 Promoter Forward TAATACGACTCACTATAGGG 
3'AD Reverse AGATGGTGCACGATGCACAG 
3'BD Reverse TAAGAGTCACTTTAAAATTTGTATC 

 

Appendix 5: Primers used for BiFC analysis 

Gene Primer sequences 

BIN2 
GGAGGTGGATCTCTTGGCATGGCTGATGATAAGGAGATGC 
GGCCGCTCTAGAACTAGTACGATTCATCTGCAGCTCGAG 

SUVR5 
GGAGGTGGATCTCTTGGCATGGAAGTTAAAATGGATGAGT 
GGCCGCTCTAGAACTAGTACGATTCATCTGCAGCTCGAG 

CLF 
GGAGGTGGATCTCTTGGCATGGCGTCAGAAGCTTCGCCTT 
GGCCGCTCTAGAACTAGTACGATTCATCTGCAGCTCGAG 

BZR1 
GGAGGTGGATCTCTTGGCATGACTTCGGATGGAGCTACGT 
GGCCGCTCTAGAACTAGTACGATTCATCTGCAGCTCGAG 

 

Appendix 6: Primers used for qPCR 

Gene Primer Sequences 

UB10 
GGCCTTGTATAATCCCTGATGAATAAG 
AAAGAGATAACAGGAACGGAAACATAGT 

E2Fe/DEL1 
CCAATCTTCAGATCCCTCCA 
TCATAAAGCCGCCTCACTTT 

 

Appendix 7: Number of differentially regulated chromatin regions in undifferentiated 

cells and TEs. 

Histone mark Undifferentiated cell TE 
H3K4me3 11913 9632 
H3K36me2 7289 6006 
H3K36me3 10313 7758 
H3K27me3 4839 5762 
H3R2me3 3472 6295 
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Appendix 8: Fold change in expression of E2Fe in undifferentiated cells and TEs.  

 
Quantitative real-time PCR analysis of the fold change in expression of E2Fe relative 

to the expression of reference gene UB10 in undifferentiated and differentiated TEs. 

Error bars represent the mean +/- SE from three biological and three technical repeats. 

 

Appendix 9: The effect of BR treatment on fold change in expression of E2Fe in 

wildtype Col0 and suvr5.  

 
Quantitative real-time PCR analysis of the fold change in expression of E2Fe relative 

to the expression of reference gene UB10 in brassinolide (BL) and brassinazole 

(BRZ)-treated wildtype and suvr5 roots. Error bars represent the mean +/- SE from 

three biological and three technical repeats.  
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