
Confluence Analysis for a Graph
Programming Language

Ivaylo Stanislavov Hristakiev

PhD

University of York

Computer Science

September 2017

Abstract

GP 2 is a high-level domain-specific language for programming with graphs. Users
write a set of graph transformation rules and organise them with imperative-style
control constructs to perform a desired computation on an input graph. As rule se-
lection and matching are non-deterministic, there might be different graphs result-
ing from program execution. Confluence is a property that establishes the global
determinism of a computation despite possible local non-determinism. Conven-
tional confluence analysis is done via so-called critical pairs, which are conflicts in
minimal context. A key challenge is extending critical pairs to the setting of GP 2.

This thesis concerns the development of confluence analysis for GP 2. First, we
extend the notion of conflict to GP 2 rules, and prove that non-conflicting rule ap-
plications commute. Second, we define symbolic critical pairs and establish their
properties, namely that there are only finitely many of them and that they repre-
sent all possible conflicts. We give an effective procedure for their construction.
Third, we solve the problem of unifying GP 2 list expressions, which arises during
the construction of critical pairs, by giving a unification procedure which termi-
nates with a finite and complete set of unifiers (under certain restrictions). Last
but not least, we specify a confluence analysis algorithm based on symbolic critical
pairs, and show its soundness by proving the Local Confluence Theorem. Several
existing programs are analysed for confluence to demonstrate how the analysis
handles several GP 2 features at the same time, and to demonstrate the merit of
the used techniques.

2

Contents

Abstract 2

Contents 3

List of Figures 6

Acknowledgements 8

Declaration 9

1 Introduction 10
1.1 Motivation . 10
1.2 Research Hypothesis and Contributions 11
1.3 Thesis Structure . 12
1.4 Publication History . 13

2 Graph Transformation, Graph Programming and Confluence 15
2.1 Fundamentals of Graph Transformation 15

2.1.1 Graphs and Morphisms . 15
2.1.2 Rules, Matches and Direct Derivations 18
2.1.3 Pushouts and Relabelling . 19

2.2 Graph programming with GP . 22
2.2.1 Graphs and Rule Schemata . 23
2.2.2 Graph Programs . 28
2.2.3 Example Programs . 29
2.2.4 Operational Semantics . 36

2.3 Confluence . 39
2.3.1 Structural Confluence . 40
2.3.2 Independence and Conflicts . 42
2.3.3 Critical Pairs . 43
2.3.4 Critical Pair Construction Algorithm 45
2.3.5 Confluence Extensions . 46
2.3.6 Confluence Applications . 47

2.4 Summary . 48

3

3 Independence of GP 2 Rule Schemata 50
3.1 Reasoning about conflicts . 50
3.2 Lifting Independence to Rule Schema Derivations 51
3.3 Local Church-Rosser Theorem . 55
3.4 Generalized rule schemata . 57
3.5 Related work . 61
3.6 Summary . 61

4 Symbolic Critical Pairs for GP 2 62
4.1 Confluence Analysis with Critical Pairs 62
4.2 Symbolic Critical Pairs . 64
4.3 Construction and Finiteness . 67
4.4 Completeness of Symbolic Critical Pairs 70
4.5 Related Work . 73
4.6 Summary . 75

5 Unification of GP 2 labels 77
5.1 Solving Label Equations with Unification 77
5.2 Preliminaries . 79
5.3 Unification Algorithm . 82
5.4 Termination and Soundness . 88
5.5 Completeness . 90

5.5.1 Proving Completeness: The SELECT Algorithm 91
5.5.2 SELECT Examples . 94
5.5.3 Putting it all together: Proving The SELECT Lemma 95

5.6 From Single Equations to Systems of Equations 96
5.7 Related Work . 98
5.8 Summary . 99

6 Joinability and Local Confluence Analysis 100
6.1 Confluence Analysis with Critical Pairs 100
6.2 Symbolic Rewriting . 103
6.3 Joinability . 106
6.4 Local Confluence Theorem . 108

6.4.1 Auxiliary Results . 110
6.5 Confluence Analysis Algorithm . 112

6.5.1 Refinement 1: Graph Isomorphism 113
6.5.2 Refinement 2: Persistent Reducts 114
6.5.3 The issue with non-confluence 115

6.6 Related Work . 116
6.7 Summary . 117

7 Confluence Case Studies 118
7.1 Series-Parallel Graphs . 119
7.2 Shortest Distances . 126

4

7.3 2-colouring . 133
7.4 Vertex Colouring . 138
7.5 Chapter Summary . 140

8 Conclusions and Future Work 141
8.1 Conclusions . 141
8.2 Future Work . 142

A Basic Properties of G⊥ 146

B The SELECT Algorithm 148

C Proofs 151
C.1 Proof of the SELECT Lemma . 151
C.2 Equivalence between Joinability Definitions 156

References 161

5

List of Figures

2.1 Pictorial representation of graphs. 17
2.2 A rule. 18
2.3 A direct derivation. 19
2.3 Commutative square and the Universal property of pushouts. 20
2.4 Direct derivation in the double-pushout (DPO) approach. 21
2.5 A commutative square and the Universal property of pullbacks. . . 22
2.6 A direct derivation with relabelling. 23
2.7 Subtype hierarchy for GP expressions. 24
2.8 Abstract syntax of rule schema labels. 24
2.9 Abstract syntax of rule schema conditions. 26
2.10 A conditional rule schema. 26
2.11 A rule schema instance and application. 28
2.12 Abstract syntax of graph programs. 29
2.13 The program traverse, taken from [Plu09, Example 1] and allowing

node labels to be lists. 30
2.14 Series-parallel graphs and their compositions. Source: Wikipedia . . . 31
2.15 A program that checks whether a graph is series-parallel or not

[Plu16, Section 6]. 32
2.16 Shortest Distances program. 33
2.17 2-colouring program [Plu16, Section 4]. 35
2.18 The inc rule. 36
2.19 Inference rules for the core commands. 37
2.20 Inference rules for derived commands. 38
2.21 Confluence and Local Confluence. 41

3.1 Independent schema derivations. 52
3.2 The relabel rule. 53
3.3 Independent derivations involving relabel. 54
3.4 Conflicting derivations involving relabel. 54
3.5 Church-Rosser theorem for rule schemata. 56
3.6 Commutativity diagram of independent derivations. 58
3.7 Conflicting derivations involving relabel2. 60
3.8 Independent derivations involving the generalized relabel2. 60

4.1 A conflict of unlabel with itself. 63
4.2 Overlaps of unlabel with itself. 65

6

4.3 Systems of equations induced by each of the overlaps S1, . . . , S8. . . 66
4.4 A symbolic critical pair of unlabel with itself. 67
4.5 The critical pairs of unlabel with itself (except for S2). 69
4.6 Decomposed pushouts. 72
4.7 Construction of S⇒ T1 . 73

5.1 Unification rules. 84
5.2 Failure rules. 85
5.3 Unification tree example. 87
5.4 Lexicographic termination order. 89

6.1 Symbolic rewriting. 104
6.2 Symbolic derivation using the rule add. 105
6.3 Local Confluence diagram. 109
6.4 Example initial pushout in G⊥. 109
6.5 Joinability analysis with persistent reducts. 115

7.1 A program that checks whether a graph is series-parallel or not,
repeated from Subsection 2.2.3.1,. 119

7.2 Series-parallel critical pairs involving series with itself. 120
7.3 Series-parallel critical pairs involving both rules series and parallel.121
7.4 Series-parallel critical pairs involving parallel with itself. 122
7.5 Confluence counter example: an instance of SP2. 124
7.6 Confluent version of Series-Parallel program. 125
7.7 Shortest Distances program, repeated from Subsection 2.2.3.2. 126
7.8 Shortest Distances critical pairs involving add. 128
7.9 Shortest Distances critical pairs involving only reduce. 129
7.10 Z3 code for label equivalence analysis of shortest distances. 130
7.11 Joinability for Shortest Distances program. 131
7.12 2-colouring program, repeated from Subsection 2.2.3.3. 133
7.13 2-colouring critical pairs involving colour1 only. 134
7.14 2-colouring critical pairs involving colour2 only. 134
7.15 2-colouring critical pairs involving both colour1 and colour2. . . . 135
7.16 2-colouring confluence counterexample - an instance of 2C1. 136
7.17 2-colouring program, repeated from Subsection 2.2.3.4. 138
7.18 Critical pair of inc with itself. 139

A.1 Commutative diagrams in G⊥. 147

C.1 Commutative-squares formulation of a track morphism for direct
derivations. 157

C.2 Commutative-squares formulation of a track morphism for multi-
step derivations. 157

7

Acknowledgements

First and foremost, I would like to thank my parents and family, for being there
for me forever and always, for being patient with me throughout the eight years of
university studies. Without their support, I would probably not be standing where
I am today.

I am thankful to my supervisor, Dr Detlef Plump, for his support, guidance
and boundless patience. Detlef’s enthusiasm and interest in my work kept me on
track even in my darkest moments, even when my I could not see the light. Our
discussions were a great source of positivity and ideas that ultimately culminated
in the completion of this research. His attention to detail, technical understanding
and foresight had an enormous impression on myself and others. I also thank
my examiners, Prof Colin Runciman and Prof Andy Schür, for their interest in my
research and the useful feedback that ensured a very interesting viva!

I express my thanks to the Engineering and Physical Sciences Research Council
who provided me with financial support during my studies. I am grateful to
the Department of Computer Science at the University of York, both its staff and
students, for providing a positive environment for conducting my research, and
for providing the opportunities for me to engage with and teach numerous topics
in the broad field to Computer Science. I thank the Programming Languages
and Systems (PLASMA) group for providing a stimulating research environment.
More specifically, I give my thanks to the following people: Chris Bak, for going
out his way in welcoming me to the PLASMA group, later engaging in interesting
discussions regarding my research field and also giving me the opportunity to
contribute to the practical implementation of GP 2; Rudy Braquehais, for being a
great friend throughout the duration of my research, which made my time at York
that more enjoyable and fun; my office colleagues Matt Windsor, Tim Atkinson,
José Calderón, among others, for enriching my life and providing a stimulating
environment to discuss, grow and reflect.

Last but not least, I would like to thank all my University of York friends, for
making the eight years of university life pass seamlessly.

8

Declaration

I declare that this thesis is a presentation of original work and I am the sole author.
This work has not previously been presented for an award at this, or any other,
University. All sources are acknowledged as References. Some parts of this thesis
have been previously published in journal, conference, and workshop papers; the
details of which are given in Chapter 1.

Ivaylo Stanislavov Hristakiev, September 2017

9

Chapter 1

Introduction

1.1 Motivation

Graphs are natural way of specifying objects and their relationships in an intuitive
way. They are used in many fields of computer science to model system state
such as data and control flow diagrams, UML diagrams, Petri nets, hardware and
software architectures [HT06, Men05]. Graphs and graph theory have been subject
to extensive research [BG02].

Graph transformation and graph grammars add to the static description of
graphs by allowing us to express their dynamic evolution by means of graph trans-
formation rules. Graph grammars have been applied to many fields of computer
science such as model-driven software engineering [EE08, EEHP09], database
design [GPdBG94], compiler construction [Aßm96], network architectures, dis-
tributed systems [TGM98] and many more [EEKR99].

A rule describes local changes to a graph, and a sequence of such rule appli-
cations contain the intended computational thinking. Rules are similar to pattern-
matching and have a formal mathematical definition. Graph transformation has
been subject to formal verification and analysis.

Graph transformation is non-deterministic - several rules may be applicable at
the same time. This means that for any starting graph, there may be several differ-
ent result graphs (graphs to which none of the rules apply). However, sometimes it
may be the case that there is only one possible result due to how the rules interact
with each other. This special property is called confluence and comes from the area
of term and term graph rewriting.

A proof that a set of rules is confluent is done by constructing so-called critical
pairs, conflicts in minimal context. Critical pairs can be detected and analysed
statically, i.e. before the program is executed, and allow us to reason about all
conflicts that may arise during computation.

Graph transformation has been extended in several ways. When equipped with
sequential composition and as-long-as-possible iteration, it becomes computation-
ally complete [HP01] which has served as basis for implementing graph trans-
formation languages, one of them being the language GP 2 [Plu12] developed at
York. The language GP 2 is designed to be minimal and computationally com-

10

plete with intuitive formal syntax and semantics. The language’s features include
application conditions on rules that enable or forbid a rule from being applicable,
combining rules into programs (using composition, iteration, conditional branch-
ing, etc), label expressions, and others. All of these extensions increase the richness
of interactions between rules, and hence the increased complexity when proving
confluence.

Confluence analysis for GP 2 would be desirable for several reasons. If a given
program is proven confluent, then only a single result graph should be computed,
greatly increasing efficiency by disabling backtracking. Furthermore, GP 2 has
the explicit notion of failure, and if one possible execution of a confluent program
produces failure, then all such executions will produce failure. Both of these im-
provements improve the execution run-time without compromising the program
semantics. What is more, sometimes the correctness of GP 2 programs is tied to
their confluent behaviour.

1.2 Research Hypothesis and Contributions

The hypothesis of this thesis is the following:

The language GP 2 can be effectively equipped with a confluence analysis system,
facilitating proofs about confluence of many interesting graph programs

To support this hypothesis, such an analysis system must satisfy some criteria. In
particular, it should be:

• sound: every confluence result must be valid with respect to the semantics of
the language;

• realistic: in that it does not require impractical assumptions or restrictions on
programs;

• automatable: all components of the system must be fully specified or imple-
mented

These criteria will provide the basis for evaluating the work to be presented in
the following chapters. To this end, the major contributions of this thesis are as
follows.

Independence and Conflicts. We begin by introducing the notions of indepen-
dence and conflict for rule schemata, central to the study of confluence. We lift
the notions of independence and conflict to rule schemata, and prove the Local
Church-Rosser Theorem which establishes that independent derivations are com-
mutative and thus lead to the same result regardless of application order. This line
of work is important not only because it is a paving stone for defining critical pairs,
but also because without proving the commutativity of independent derivations,
the confluence analysis based on critical pairs would be unsound.

11

Critical Pairs. Next, we develop critical pair analysis for sets of rule schemata
by introducing symbolic critical pairs, which are pairs of derivations at the level
of schemata, i.e. labelled with expressions, that are minimal and in conflict. We
define our critical pairs at the level of graphs labelled with expressions to avoid an
infinite number of such pairs. Then we give an algorithm for their construction,
and showed the set of critical pairs is complete and finite (under suitable but
realistic restrictions). The construction algorithm is based on computing graph
overlaps, and unifying overlapped labels.

Unification Algorithm for List Expressions. We present our rule-based unifica-
tion algorithm for solving systems of label equations. We show that the unification
algorithm terminates, is sound and also complete meaning that every unifier of the
input system of equations is an instance of some unifier in the computed set of
solutions. Completeness of the algorithm is necessary for proving that our critical
pairs are complete.

Confluence Algorithm for graph programs. We continue by introducing our no-
tion of strong joinability of critical pairs, based on rewriting of graphs labelled
with expressions. This is necessary as graphs in critical pairs are, in general, la-
belled with expressions rather than concrete values. Then, we establish the Local
Confluence Theorem for GP 2 schema rewriting, which in effect allows for the
specification of a sound confluence analysis algorithm based on critical pairs. We
discuss the practical aspects of the algorithm by looking at two refinements that
reduce its search space and improve its accuracy.

1.3 Thesis Structure

The content of this thesis is structured as follows.
Chapter 2 presents the fundamental theory of graph transformation, specifi-

cally in the double-pushout approach, the framework used as basis for the lan-
guage GP 2. Then, it examines related research into confluence, first in its basic
form concerning unlabelled graphs, and later how extends over some of the men-
tioned graph transformation features.

Chapter 3 provides the notions of conflict and independence, and proves the Local
Church-Rosser Theorem for the case of GP 2. The result states that independent
transformations can be interchanged and always lead to the same result.

Chapter 4 introduces the notion of symbolic critical pairs for GP 2, which are con-
flicting pairs of transformations in minimal context, gives an algorithm for their
construction, and proves they have certain properties, namely that they represent
all possible conflicts (completeness) and that there are only finitely many such criti-
cal pairs (finiteness).

Chapter 5 is concerned with how labels of critical pairs are computed. It gives
a unification algorithm that solves equations between GP list expressions by pro-
viding a set of substitutions. These substitutions are used to construct the set of

12

critical pairs. Important properties such as soundness, termination and complete-
ness are shown.

Chapter 6 introduces our approach to using critical pairs in the context of a
confluence checker. We explain our notion of symbolic rewriting, which allows
us to rewrite the graphs found in critical pairs, in order to obtain joinability. We
prove the Local Confluence Theorem which asserts the local confluence of a set of
rule schemata given all their critical pairs are strongly joinable. Furthermore, we
present our confluence analysis algorithm, based on joinability analysis of critical
pairs, and study two refinements that improve its efficiency and accuracy.

Chapter 7 presents several case studies for the purposes of applying the devel-
oped techniques to existing graph programs.

Appendix A lists some definitions and properties of the class of partially la-
belled graphs and their morphisms in order to support some proofs in Chapter 4
and Chapter 6

Appendix B contains the full specification of the SELECT algorithm that is used
in Chapter 5

Appendix C contains the proof of some lemmata that are either too lengthy or
too technical to be contained in the main text.

1.4 Publication History

The results of this thesis have been published as the following papers. The author
of this thesis was the primary contributor in all cases.

[HP15] Ivaylo Hristakiev and Detlef Plump. A unification algorithm for GP 2. In
Graph Computation Models (GCM 2014), Revised Selected Papers, volume 71 of
Electronic Communications of the EASST, 2015.

– Introduced the unification algorithm for left-linear schemata, on which
Chapter 5 is based. The proof of completeness of the algorithm was
only given in the long version made available shortly after, and later
distributed as [HP17b]

[HP16a] Ivaylo Hristakiev and Detlef Plump. Attributed graph transformation via
rule schemata: Church-Rosser theorem. In Revised Selected Papers of Software
Technologies: Applications and Foundations (STAF 2016) Collocated Workshops,
volume 9946 of Lecture Notes in Computer Science, Springer, 2016, pages 145–
160

– Introduced our approach to independence and conflicts of rule schemata,
basis for Chapter 3. The paper treats label algebras as parametric in line
with the approach of attributed graph transformation. The main techni-
cal result is the lifting of the Church-Rosser Theorem from rule instances
to rule schemata, in this more general setting.

13

[HP16b] Ivaylo Hristakiev and Detlef Plump. Towards critical pair analysis for the
graph programming language GP 2, 2017. In Phillip James and Markus
Roggenbach, editors, Recent Trends in Algebraic Development Techniques (WADT
2016), Revised Selected Papers, volume 10644 of Lecture Notes in Computer Sci-
ence, pages 153–169, Springer, 2017

– Presents our approach to critical pairs for GP 2 by giving a construction
algorithm and also proving the important properties of completeness
and finiteness of the set of critical pairs. Much of Chapter 4 is based on
this.

[HP17a] Ivaylo Hristakiev and Detlef Plump. Checking graph programs for conflu-
ence. In Martina Seidl and Steffen Zschaler, editors, Software Technologies:
Applications and Foundations — STAF 2017 Collocated Workshops, Revised Se-
lected Papers, volume 10748 of Lecture Notes in Computer Science, pages 92–108,
Springer, 2017

– Extends critical pairs to consider joinability by means of symbolic rewrit-
ing, and presents our confluence analysis algorithm, on which Chapter 6
is largely based. Also shows the Shorest Distances case study, which is
part of Chapter 7. The long version contains the full case study discus-
sion.

14

Chapter 2

Graph Transformation, Graph
Programming and Confluence

This chapter has three primary aims: first, to review and explain the intuition
behind graph transformation, by only focusing on the essentials needed for the
thesis; second, to review the graph programming language GP 2 that we are setting
to analyse, discussing both its syntax and semantics, and illustrating its use with
some example programs; third, to present the essence of confluence analysis as
described in existing literature together with some variations.

2.1 Fundamentals of Graph Transformation

Graph transformation in its basic form is concerned with how to change one
graph into another. These changes are called transformations (or derivations) and
are guided by rules. Rules specify changes to a small substructure of the graph
such as adding an edge between two nodes or removing a loop edge. Sometimes
graph transformation is referred to as rule-based manipulation for this reason.

There exist several approaches to how exactly the rules operate. The alge-
braic approach, on which this chapter is based, uses pushout constructions from
category theory which model the gluing of graphs. The two variants, the single-
pushout (SPO) and the double-pushout (DPO) approaches, handle some details
differently [EHK+97]. For a comprehensive review of the different approaches in
graph transformation, we direct the interested reader to [Roz97], and, containing
a more recent state-of-the-art exposition, the handbook [EEGH15].

2.1.1 Graphs and Morphisms

We begin by defining graphs, and how graphs relate to each other by using
structure-preserving mappings called morphisms. In our setting, edges are di-
rected, nodes and edges have labels (unless specified), and parallel edges can exist.
In the case when the labels play no role we will omit them, formally represented

15

by a � label which is not drawn. Unlabelled nodes are required later for technical
reasons, when rules will be allowed to relabel nodes or edges.

Definition 2.1 (Label alphabet). A label alphabet L is a set of labels used for anno-
tating nodes and edges with labels.

Definition 2.2 (Partially labelled graph). A partially labelled graph over a label al-
phabet L is a tuple G = 〈V, E, s, t, l〉 where

• V and E are finite sets of nodes and edges

• s, t : E→ V are the source and target functions for edges

• l : V + E→ L is a partial node/edge labelling function

Given a node v, l(v) = ⊥ expresses that l(v) is undefined 1. We say that node
v is incident to edge e and vice versa if s(e) = v or t(e) = v. Graph G is totally
labelled if lG is a total function. The classes of partially graphs and totally labelled
graphs over a fixed label set L are written as G⊥(L) and G(L). For convenience,
we add indexes to graph elements to denote their graph, i.e. the labelling function
of graph G is written as lG.

Most of the graphs in this thesis will be totally labelled.
Example 1 (A graph). Consider the graphs in Figure 2.1 over the label alphabet
L = {a,b,�}. The graph on the left is the pictorial representation of

G1 = 〈{1, 2}, {e1, e2}, s : (e1 7→ 1, e2 7→ 1), t : (e1 7→ 2, e2 7→ 2),
lG : (e1 7→ �, e2 7→ �)〉

and the right one is a representation of

G2 = 〈{3, 4}, {e3, e4, e5}, s : (e3 7→ 3, e4 7→ 3, e5 7→ 3), t : (e3 7→ 4, e4 7→ 4, e5 7→ 3),
lG : (e3 7→ �, e4 7→ �, e5 7→ �)〉

Both graphs are totally labelled.
We follow the convention that nodes are drawn as circles and edges as arrows.

Node labels are drawn inside the circle and node identifiers are drawn next to
the nodes. Edge labels are drawn next to the arrows. Edge identifiers are not
usually drawn, but when they are relevant we add them in a id:label syntax next
to the arrows. If the label is � then we omit from drawing it and just include
the identifier in italics. Note that the box label is different from ⊥ in that a node
labelled with it has that distinct label whereas ⊥ denotes the labelling function is
undefined on that node. Later when we present graphs in the language of GP, we
will make the same distinction between the empty list and ⊥.

Graph morphisms allow us to relate graphs in a formal way. They are structure-
preserving mappings for nodes and edges from one graph to another graph and
allow us to properly define rule applications.

We start with the notion of a premorphism which is useful because it only talks
about the structure of graphs rather than also their labels.

1We do not distinguish between nodes and edges in statements that hold for either.

16

1

2

e1 e2 a3 b 4
e3

e4

e5

Figure 2.1: Pictorial representation of graphs.

Definition 2.3 (Premorphism). A premorphism g : G → H between graphs G, H in
G⊥(L) consists of two functions gV : VG → VH and gE : EG → EH that preserve
sources and targets : sH ◦ gE = gV ◦ sG, tH ◦ gE = gV ◦ tG.

Definition 2.4 (Graph morphism; undefinedness preservation). A graph morphism
is a premorphism g that also preserves labels of labelled nodes and edges, i.e.
(lH ◦ gE)(x) = lG(x) and (lH ◦ gV)(x) = lG(x) for all x ∈ G such that lG(x) 6= ⊥.

If a graph morphism also preserves the lack of labels of unlabelled nodes, then
it is also undefinedness-preserving: lH ◦ g = lG for all nodes and edges.

Example 2. (A premorphism and a graph morphism). From Example 1, we can find
several ways to map G1 to G2:

f1 = 〈1 7→ 3, 2 7→ 4, {e1 7→ e3, e2 7→ e4}〉

f2 = 〈1 7→ 3, 2 7→ 4, {e1 7→ e4, e2 7→ e3}〉
f3 = 〈1 7→ 3, 2 7→ 3, {e1 7→ e5, e2 7→ e5}〉

We have that f1 and f2 are injective graph morphisms and f3 is non-injective.
All three preserve node and edge labels because lG1 is undefined for all nodes
(lG1(1) =⊥ and lG1(2) =⊥) and edge labels are always �. The mapping h : G2 →
G1 = 〈3 7→ 1, 4 7→ 2, {e3 7→ e1, e4 7→ e2}〉 is not a proper graph morphism because
both nodes 3 and 4 end up unlabelled in G1.

Graph morphisms can be composed: given morphisms f : G → H and g :
H → T the composition g ◦ f is the morphism 〈gV ◦ fV , gE ◦ fE〉 where ◦ denotes
standard function composition.

A graph morphism is injective (surjective) if gV and gE are both injective (sur-
jective). It is an isomorphism, denoted by G ∼= H, if it is injective, surjective, and
preserves undefinedness 2. A graph morphism g : G → H is an inclusion if
g(x) = x for all items of G. Note inclusions need not preserve undefinedness, and
that inclusions are premorphisms.

2It is clear why this is the case: if labels are ignored, then unlabelled graphs are isomorphic,
meaning each item of G has a unique corresponding item in H; when labels are considered, for
each item in G, its corresponding item in H has the same label using the undefinedness-preserving
property.

17

a
1

b
2

b
2

a
1

r : ←↩ a
1

b
2

b

↪→

Figure 2.2: A rule.

2.1.2 Rules, Matches and Direct Derivations

A graph transformation rule allows us to change the graph to which the rule is
applied. In the setting of the double-pushout(DPO) approach, rule applications are
local in the sense that all changes to a given graph are as prescribed by the rule.

Definition 2.5 (Graph Transformation Rule). A graph transformation rule r = 〈L ←
K → R〉 over L (or rule for short) consists of two inclusions K → L and K → R
such that L, K, R are graphs in G(L).

The left graph L can be thought as the pattern that needs to be matched, and
the right graph R is what the pattern is replaced with. The interface K is used to
define how the right graph glues into the context of the rule application. We will
later allow K to be partially labelled, which facilitates relabelling of nodes/edges.

Example 3 (Example Rule). Figure 2.2 shows an example rule. It represents the
replacement of a graph of two connected nodes with a loop on the first by a graph
that is computed from the left graph by deleting both edges, and creating a new
node labelled with ’b’ that is connected to node 1. Note that nodes 1 and 2 are
kept the same.

Sometimes it will be easier to write rules in the shorthand 〈L ⇒ R〉 instead of
〈L ← K → R〉. In that case we assume that K consists of all and only nodes that
have the same labels as their images in L and R.

Informally, an application of a rule r to a graph will remove the items in L−
K, preserve K, and add the items in R − K. Such an application (in the DPO
approach) is possible only when the match for the rule’s left-hand graph L satisfies
the following condition.

Definition 2.6 (Dangling condition). Let r = 〈L ← K → R〉 be a rule and G a
graph in G(L). A graph morphism g : L → G satisfies the dangling condition if no
node in g(L)− g(K) is incident to an edge in G− g(L)

The morphism g is called the match of r in G. The dangling condition guaran-
tees that the graph D obtained by removing nodes in L− K is a proper graph, i.e.
has no edges without source or target.

Definition 2.7 (Direct Derivation). Let r = 〈L ← K → R〉 be a rule, G a graph
in G(L), and g : L → G an injective graph morphism satisfying the dangling
condition. The direct derivation of G to H using r, denoted by G ⇒r,g H or
G ⇒r H, is a direct derivation if H ∼= H′ where H′ is constructed as follows:

18

a
1

b
2

↪→

b
2

a
1

↪→

r : ←↩ a
1

b
2

b

↪→

↪→

a
1

b
2

c

b
2

a
1

c

←↩ a
1

b
2

b

c

↪→

Figure 2.3: A direct derivation.

1. Remove all nodes and edges in g(L)− g(K) from G, obtaining graph D

2. Add disjointly to D all nodes and edges from R − K, keeping their labels,
obtaining graph H′. For each edge e in R− K, define source like this:

sH′(e) =

{
sR(e) if sR(e) ∈ VR −VK

gV
(
sR(e)

)
otherwise

3. Define target analogously as source.

4. For labels, the graph items of H′ that originate from G keep the same labels
as in G. For those graph items that originate from R− K, their labels are as
in R.

If R is a set of rules, then G ⇒R H means that there is some r ∈ R such that
G ⇒r H. A sequence of direct derivations

G ⇒R H1 ⇒R H2 ⇒R . . .⇒R Hn

can be written as G ∗
=⇒R Hn (or G ∗

=⇒ Hn if R is obvious from the context), express-
ing that H is derived from G in 0 or more rule applications. A direct derivation of
length 0 is the isomorphism relation G ∼= H.

2.1.3 Pushouts and Relabelling

The above definition of rule application (Definition 2.7) is enough for operational
purposes, but makes it difficult to reason about graph transformation at an abstract
level. In the DPO approach, the definition can be restructured using the notion of
a pushout from category theory. This allows us to reason about properties of graph
transformation in a more abstract setting.

19

A

C

B

D

=

A

C

B

D

=

=

=

D′

Figure 2.3: Commutative square and the Universal property of pushouts.

Definition 2.8 (Pushout). A pushout over graphs (B ← A → C) is a graph D in
Figure 2.3 together with morphisms B→ D and C → D such that

• Commutativity: the morphisms commute, i.e. A→ B→ D = A→ C → D

• Universal property: for every pair of morphisms B→ D′ and C → D′ such that
the outer diagram commutes (A → B → D′ = A → C → D′), there exists a
unique morphism D → D′ such that the triangles commute B → D′ = B →
D → D′ and C → D′ = C → D → D′ .

A pushout is the formal way of gluing two objects B and C along a common
object A. The graph D is the disjoint union of B and C except on elements that are
common with A, which are merged. This is sometimes denoted as D = B +A C.
Note we do not consider pushouts over non-label-preserving pre-morphisms.

Pushouts have several important properties. First, every node in D has a pre-
image in either B or C (if in both, then it is also in A). Second, if A→ C is injective
(surjective), then B → D is also injective (surjective). Third, D is unique up to
isomorphism — if another graph D′ was a pushout of (B ← A → C), then by the
uniqueness property there would be morphisms from D to D′ and from D′ to D,
which define an isomorphism D ∼= D′ by the equations D → D′ → D = idD and
D′ → D → D′ = idD′ (shown using only the pushout properties of the definition).

A pushout complement is the last definition we need in order to formally re-
define direct derivations. It is similar to that of pushouts:

Definition 2.9 (Pushout complement). A pushout complement of graphs (A→ B→
D) is a graph C together with morphisms A→ B and B→ D such that (C → D ←
B) is a pushout of (B← A→ B)

Specific constructions of pushouts and pushout complements in the category of
(totally labelled) graphs can be found in [EEPT06].

A direct derivation can be viewed as a pushout complement construction fol-
lowed by a pushout construction. It can be shown that this is equivalent to Defini-
tion 2.7 (see [EPS73, EEPT06]), so we can redefine it:

20

L K R

G D H

(2)(1)

Figure 2.4: Direct derivation in the double-pushout (DPO) approach.

Definition 2.10 (Direct Derivation). Let r = 〈L ← K → R〉 be a rule, G a graph
in G(L), and g : L → G an injective graph morphism satisfying the dangling
condition. The transformation of G to H using r is given by the double-pushout
diagram in Figure 2.4 with pushouts (1) and (2) .

Even though the DPO approach allows us to further reason about graph trans-
formation at an abstract level by using results about (de)composition of pushouts
and pushout complements, it has the shortcoming of not handling relabelling very
well. For example, if we wanted to relabel an edge, we can do so by deleting it
and recreating it with the desired label. However, to relabel a node, we have to
delete it and then recreate it. This is only possible if the node is isolated due to the
dangling condition.

In [HP02], the authors solve this problem by allowing rule interfaces to be par-
tially labelled but requiring that pushouts (1) and (2) are also pullbacks. The paper
also keeps uniqueness of direct derivations (up to isomorphism). Furthermore, the
approach relaxes the requirement that all graphs are totally labelled, but places
further restrictions on such unlabelled nodes/edges. As we shall see later, in GP 2
the graphs L and R are totally labelled and K is unlabelled on the nodes that we
wish to relabel.

Definition 2.11 (Pullback). A pullback over graphs (C → D ← B) is a graph A (as
in Figure 2.5) together with morphisms A→ B and A→ C such that

• Commutativity: the morphisms commute, i.e. A→ B→ D = A→ C → D

• Universal property: for every pair of morphisms A′ → B and A′ → C such that
the outer diagram commutes (A′ → B → D = A′ → C → D), there exists a
unique morphism A′ → A such that the triangles commute A′ → B = A′ →
A→ B and A′ → C = A′ → A→ C .

Pullbacks are the dual construction of pushouts in category theory. Similarly,
they represent an intersection of two objects over a common object. The results for
pullbacks are similar to those of pushouts, e.g. injective/surjective morphisms are
closed under pullbacks, and that pullbacks are unique up to isomorphism. Note
we do not consider pullbacks over non-label-preserving pre-morphisms.

Definition 2.12 (Natural Pushout). A natural pushout is a pushout that is also a
pullback.

21

A

C

B

D

= A

B

C

D

=

=

=

A′

Figure 2.5: A commutative square and the Universal property of pullbacks.

What is special about the class of partially labelled graphs is that pushouts
need not always exist, and not all pushouts along injective morphisms are natural.

Definition 2.13 (Direct Derivation with relabelling). Let r = 〈L ← K → R〉 be a
rule, L, R ∈ G(L), K ∈ G(L⊥), G a graph in G(L), and g : L→ G an injective graph
morphism satisfying the dangling condition. A direct derivation with relabelling
is a direct derivation in the sense of Definition 2.7 and Figure 2.4, but with the
extra step:

4. For each unlabelled node v in K, lH(gV(v)) becomes lR(v)

The change to Figure 2.4 is that pushouts (1) and (2) have to be natural. This
requirement guarantees that double pushout diagrams are unique. For an example
direct derivation with relabelling, see Figure 2.6.

The paper [HP02] gives a characterization of natural pushouts in the sense of
the following lemma.

Lemma 1. The pushout in Definition 2.8 is natural if and only if for all elements x ∈ A,
lA(x) =⊥ implies lB

(
b(x)

)
=⊥ or lC

(
c(x)

)
=⊥ .

This restriction means that for every node we want to relabel, first we omit a
label in the interface K, and second, we omit a label in the gluing graph D. As a
result, the graph H becomes unique up to isomorphism, and is totally labelled iff
G is totally labelled.

2.2 Graph programming with GP

Graph transformation has been extended in several ways. One of them has been
to allow the explicit control of rule applications. The paper [HP01] showed that
when equipped with sequential composition and as-long-as-possible iteration con-
structs, graph transformation becomes computationally complete in the sense of
Turing. This led to the design of GP, a minimal complete language for graph trans-
formation that allows high-level problem solving on graphs [Bak16, Plu12, Plu09],
on which we concentrate for the rest of this thesis.

22

a
1 2

↪→

b
2

a
1

↪→

r : ←↩ a
1

c
2

b

↪→
↪→

a
1 2

c

b
2

a
1

c

←↩ a
1

c
2

b

c

↪→

Figure 2.6: A direct derivation with relabelling.

A graph program comprises of two components: (1) a set of rules, based on the
(DPO) rules with relabelling (but more general); and (2) program text expressing
how the rules are combined into programs, e.g. using sequential composition,
as-long-as-possible iteration and non-deterministic choice. The rules are actually
rule schemata that play the role of rule blueprints that are instantiated at run-time
with concrete data. The language is equipped with with an operational semantics,
intended to facilitate formal reasoning and verification.

Remark 1 (GP and GP 2). The language’s second version (called GP 2) was formally
described in [Plu12], and later implemented in [Bak16]. We will interchange the
terms “graph programs” or “GP” or “GP 2”, but it can be understood that we
refer to the most recent description of the language in [Bak16]. The language’s
first version was originally described in [Plu09].

The rest of the section is organized as follows — first we define GP’s building
blocks (conditional) rule schemata and what graphs they operate on. Then, we give
the abstract syntax of graph programs and give example GP programs. Finally, we
briefly outline the operational semantics of the core and derived commands.

2.2.1 Graphs and Rule Schemata

In GP, there is a difference between the labels in program rules and labels of graphs
on which the rules operate. The first are labelled over integer, string and list
expressions and may contain variables of those types. The latter are labelled over
integers, strings and lists of integers and strings and are provided as input to
programs. Both kinds of labels can also be marked.

Let Z be the set of integers, Char be a finite set of characters andM be the finite
set of marks {red, green, blue, grey, dashed}.

Definition 2.14 (Host graph label alphabet). The label alphabet L = (Z∪Char∗)∗×

23

list

atom

int string

char

⊆

⊆ ⊇

⊆

(Z∪Char*)*

Z∪Char*

Z Char*

Char

⊆

⊆ ⊇

⊆

Figure 2.7: Subtype hierarchy for GP expressions.

RSLabel ::= List [Mark]
List ::= empty | Atom | LVar | List ‘:’ List
Mark ::= red | green | blue | dashed | any
Atom ::= Integer | String | AVar
String ::= ‘”’ {Char} ‘”’ | SVar | String ‘.’ String
Integer ::= Digit {Digit} | IVar | ‘-’ Integer

| Integer ArithOp Integer | (indeg | outdeg) ‘(’ Node ‘)’
| length ‘(’ (LVar|AVar|SVar) ‘)’

ArithOp ::= ‘+’ | ‘-’ | ‘*’ | ‘/’
String ::= ‘”’ {Character} ‘”’ | SVar | CVar | String ‘.’ String

Figure 2.8: Abstract syntax of rule schema labels.

M is called the label alphabet for host graphs, where each label consists of a list of
atoms (integers or strings) and an optional mark (∈ M).

Sometimes the mark component is omitted, e.g. writing lG(v) = 25 means
that label of node v in graph G has list component 25 with an unspecified mark
component.

Each list expression is built up from constant symbols in Z and Char, variables,
and function symbols. Variables are typed, each drawn from a disjoint set of vari-
ables: IVar, SVar, AVar and LVar respectively for denoting integer, string, atom and
list variables. Their union is denoted as Var. The subtype hierarchy for expressions
is presented in Figure 2.7.

The grammar presented in Figure 2.8 defines how expressions are built us-
ing basic components. Node is the set of node identifiers occurring in a GP rule
schema, which must be the same for the left and the right graph. The intended
meaning of symbols is ‘+’ for addition, ‘.’ for string concatenation and ‘:’ for list
concatenation. The length operator returns the length of its variable argument
according to the variable’s assignment obtained during graph matching.

Definition 2.15 (Symbolic graphs). Let RS denote the label alphabet of all expres-
sions generated by the syntactic class RSLabel of the grammar in Figure 2.8, then
G(RS) is the set of all symbolic graphs over RS and G⊥(RS) is the set of all partially
labelled symbolic graphs over RS.

24

Rule schemata are rules in the sense of Definition 2.5, but with L and R being
labelled with expressions and K consisting of unlabelled nodes only. They rep-
resent possibly infinite sets of rules over G(L), obtained by assigning values to
variables and evaluating expressions. Because instantiation takes place at execu-
tion time and is determined by graph matching, it is required that expressions in
the left graph of a rule schema must have a simple shape.

Definition 2.16 (Simple list). An expression e ∈ List is simple if

1. e contains no arithmetic operators

2. e contains at most one occurrence of a list variable

3. each occurrence of a string expression in e contains at most one occurrence
of a string variable

For example, if x, y ∈ LVar, a ∈ AVar, s, t ∈ SVar are variables, then the expres-
sions a:x and ”no”.s:y:t are simple whereas x:y and s.t are not simple.

Definition 2.17 (Rule schema). A rule schema 〈L ← K → R〉 consists of two in-
clusions K → L and K → R such that L, R are graphs in G(RS) and K is a graph
in G(RS⊥) consisting of unlabelled nodes only. All list expressions in L must be
simple and that all variables occurring in R must also occur in L.

The requirements on labels and variables ensure that, for a given match, apply-
ing a rule produces a unique graph (up to isomorphism). See [PS04, Section 5] for
a formal proof.

Rule schemata are instantiated by evaluating their labels according to some
assignment α : Var→ L 3.

Definition 2.18 (Assignment). An assignment is a family of mappings

α =
(
αX
)

X∈{I,S,A,L}

where

• αI : IVar→ Z

• αS : SVar→ Char*

• αA : AVar→ Z∪Char*

• αL : LVar→ (Z∪Char*)*

We call rg,α = 〈Lg,α ← K → Rg,α〉 the instance of r with respect to g and α,
where Lg,α and Rg,α are obtained from L and R by replacing each label l with lg,α

which involves evaluation of expressions. See Figure 2.11 for a complete example.
We can restrict the application of a rule schema by a textual application condi-

tion. This extension is inspired by application conditions in graph transformation

3Var = LVar∪ AVar∪ SVar∪ IVar

25

Condition ::= Type ’(’ List ’)’ | List (’=’ | ’!=’) List
| Integer IntRel Integer
| edge ’(’ Node ’,’ Node [’,’ Label] ’)’
| not Condition | Condition (and|or) Condition

Type ::= int | string | atom
IntRel ::= ’<’ | ’≤’ | ’>’ | ’≥’

Figure 2.9: Abstract syntax of rule schema conditions.

z
3

y
2

x
1

a b

traverse(x,y,z:list; a,b:int)

where not edge(1,3)

⇒ z
3

y
2

x
1

a b

a+ b

Figure 2.10: A conditional rule schema.

that allow for the specification of a structure that must or must not exist for the
rule to be applied. Application conditions have been subject to extensive research
as their existence has implications for static properties of graph transformation like
confluence ([EGH+12, GLEO12, EHL+10]).

In GP, rule schemata can be equipped with conditions as specified by the gram-
mar in Figure 2.9. Here Node denotes a set of node identifiers occurring in the rule
schema.

The Type predicate expresses that a list expression must evaluate to a certain
concrete type. The List comparison allows for comparing the values of two list ex-
pressions, and similarly for integer comparison. The edge predicate gives a struc-
tural restriction on existence of an edge between two nodes in the matched graph
(the third optional parameter specifies the label of that edge). This is more useful
when negated, forbidding the rule application in contexts where edges (with a
particular label) exist outside of the match.

Definition 2.19 (Conditional rule schema). A conditional rule schema is a pair 〈r, ac〉
where r is a rule schema and ac is a condition generated by the Condition grammar
in Figure 2.9 such that all variables occuring in ac also occur in the left-hand graph
L of r.

Figure 2.10 shows a conditional rule schema traverse that links two indirectly
connected nodes with a direct edge. The rule schema identifier is written above the
two graphs along with any variable declarations. Multiple variables can have the
same type, separated by a semi-colon (:). The condition is written below the two
graphs following the keyword where. This condition ensures that in the context of
the match there isn’t already an edge connecting the nodes 1 and 2 and hence the
rule cannot be matched forever (i.e. not leading to non-termination).

26

From now on we will refer to conditional rule schemata as rule schemata and
be explicit in the cases when the condition matters.

Definition 2.20 (Rule schema application). The application of a rule schema r =
〈L← K → R, ac〉 to a host graph G ∈ G(L), denoted by G ⇒r,g H (or just G ⇒r H)
informally is done as follows:

1. Match L with a subgraph of G, ignoring labels, by means of a premorphism
g : L→ G

2. Check whether there is an assignment α of variables to values such that after
evaluating the simple expressions in L, g is label-preserving

3. Check whether the rule schema condition ac evaluates to true under the
given premorphism g and assignment α

4. Apply the rule rg,α, obtained from r by evaluating all expressions in L and R,
to G accroding to Definition 2.7 to obtain graph H .

We write G ⇒rg,α,g H to denote the application of rg,α to G with match g. Given
a set R of rule schemata, we write G ⇒R H if G ⇒r H for some rule schema r in
R.

Example 4 (Example direct derivation). Figure 2.11 shows the rule schema traverse

being applied to a labelled graph G. The application starts by finding an injective
premorphism g : L→ G — there are two of them:

g1 = 〈1 7→ 5, 2 7→ 6, 3 7→ 7〉

g2 = 〈1 7→ 5, 2 7→ 8, 3 7→ 7〉
If g2 is chosen as a match, then the next step fails because there is no assignment
of the integer variable a to the string ”a”. Therefore, the only match is g1 and the
corresponding assignment is

α = 〈x 7→ 0:1, y 7→ 2, z 7→ 3, a 7→ 5, b 7→ 6〉

The rule schema condition "not edge(1,3)" is checked next — it evaluates to
true because g(1) and g(3) in G (respectively nodes 5 and 7) do not have an edge
between them.

The derivation process can proceed by instantiating traverse with α and g
which is shown in the middle of the figure. Note that Rα,g contains evaluated
labels instead of expressions, i.e. the value 11 instead of 5+6 for node 3.

Once traverseα,g has been obtained, the process can proceed as a DPO direct
derivation with relabelling (Definition 2.13). The resulting graph H is shown in
the bottom right. None of the nodes change their labels, hence the rule instance
interface is totally labelled and essentially an unlabelled copy of L (not explicitly
shown).

27

x
1

y
2

z
3

a b
traverse:

7→

α

⇒ x
1

y
2

z
3

a b

a+b

7→

α∗

0:1
1

2
2

3
3

5 6
traverseα,g:

↪→g

⇒ 0:1
1

2
2

3
3

5 6

11

↪→

h

0:1
5

2
6

3
7

”a”

8

5

”a”

6

8

G :

gV = 〈1 7→ 5, 2 7→ 6, 3 7→ 7〉
α = 〈x 7→ 0:1, y 7→ 2, z 7→ 3, a 7→ 5, b 7→ 6〉

⇒ 0:1
5

2
6

3
7

”a”

8

5

”a”

6

8

11

: H

Figure 2.11: A rule schema instance and application.

2.2.2 Graph Programs

A graph program is a set of rule schemata declarations together with some pro-
gram text. As mentioned at the start of this section, the control constructs of
sequential composition and as-long-as-possible iteration are enough for computa-
tional completeness. However, GP offers a few extra operatros for usability clarity
and convenience. The syntax of programs is in Figure 2.12.

A program is a list of declarations, which are either a Rule Schema declaration,
a macro declaration, or a main program declaration. The main program signifies the
program text to be executed and contains several Command clauses (generalized
in Command Sequences). A command sequence is the sequential composition of
commands:

• RuleSetCall — either a single rule schema or a non-deterministic choice of
rule schemata. RuleID represents the set of rule identifiers, unique for each
rule schema.

• if-then-else — a conditional branching construct; executes the then clause

28

Prog ::= Decl {Decl}
Decl ::= RuleDecl | MacroDecl | MainDecl
MainDecl ::= main ’=’ ComSq
MacroDecl ::= MacroID ’=’ ComSq
ComSq ::= Com {’;’ Com}
Com ::= RuleSetCall | MacroCall

| if ComSq then ComSq [else ComSq]
| try ComSq [then ComSq] [else ComSq]
| ComSq ’!’
| ‘(’ComSq ’)’
| ComSq ’or’ ComSq
| skip | fail

RuleSetCall ::= RuleID | ’{’ [RuleID {’,’ RuleID }] ’}’
MacroCall ::= MacroID

Figure 2.12: Abstract syntax of graph programs.

or the else clause depending on the result of the condition execution on a
copy of the input graph.

• try-then-else — another conditional branching construct; the condition
program is executed on the input graph rather than on a copy

• ComSq! — the looping construct; the body is executed as many times as
possible

• ComSq or ComSq — non-deterministic choice of two programs

• skip — do nothing; equivalent to executing the empty rule which is always
applicable

• fail — manually trigger program termination. Equivalent to executing the
empty set of rule schemata {}

The skip,fail and or commands can be simulated by the others.

Example 5 (Transitive closure). Consider the example GP program in Figure 2.13
that computes the transitive closure of an integer labelled graph [Plu09, Exam-
ple 1]. It uses the rule schema from Figure 2.10.

The rule schema is applied as long as possible. At each step, two nodes that
are indirectly connected are joined with a direct edge. The program can be shown
to terminate and to be correct, see [Plu16, Section 3].

2.2.3 Example Programs

In this section, we present some example programs in order to give some intu-
ition into graph programming. These programs will be useful later in Chapter 7

29

main = traverse!

z
3

y
2

x
1

a b

traverse(x,y,z:list; a,b:int)

where not edge(1,3)

⇒ z
3

y
2

x
1

a b

a+ b

Figure 2.13: The program traverse, taken from [Plu09, Example 1] and allowing
node labels to be lists.

when we will study whether they are confluent or not by applying the techniques
developed in this thesis.

The first program recognizes a specific class of graphs called series-parallel
graphs; the second program computes the shortest path in a graph from a given
source node to all other nodes; the third manipulates the labels of nodes to com-
pute the 2-colouring of a graph (if it exists); the last program computes any graph
colouring (rather than 2-colouring).

2.2.3.1 Recognition of Series-Parallel graphs

This program is concerned with the recognition of a class of graphs called ’series-
parallel’ graphs (SPGs). These graphs have been introduced as models of elec-
trical networks [Duf65], and have been of interest in computational complexity
theory since many graph problems, some of which NP-complete, are solvable in
linear time for these graphs (e.g. maximum matching, maximum independent set,
Hamiltonian completion).

SPG definition. Series-parallel graphs can be defined inductively by two simple
composition operations (Figure 2.14):

• The graph G =
1 2

is series-parallel; define v1 to be the source of G, and

v2 to be the sink of G

• The parallel composition of two SPGs G and H is created from the disjoint
union G + H by merging the sources of G and H and merging the sinks of G
and H

• The series composition of two SPGs G and H is created from the disjoint
union G + H by merging the sink of G with the source of H

As the class of graphs is defined inductively, checking whether a graph is SPG
is difficult using the definition directly. There exists an alternative approach where

30

Figure 2.14: Series-parallel graphs and their compositions. Source: Wikipedia

one applies a set of rules to a graph and reduce the original problem to an isomor-
phism check.

Recognition of SPGs as a program. The recognition of SPGs is done by means
of graph reduction: for an input graph G, apply a set of reduction rules as long as
possible, obtaining graph H. Check for H having a specific property X to decide
whether the original graph G has the property Y. In the case of series-parallel
checking, the reduction algorithm is instantiated as follows:

• For an input graph G, apply the reduction rules Reduce = {series, parallel}
as long as possible, obtaining a graph H

• Check whether the graph H is isomorphic to the graph

– If yes, output ”G is a series-parallel graph”

– Otherwise, output ”G is not a series-parallel graph”

That algorithm is implemented by the program in Figure 2.15, which expects
an input host graph G that is assumed to not contain node or edge marks. (Node
marks are irrelevant to the problem of series-parallel recognition.) The program
first applies the set of reduction rules as long as possible, resulting in some graph
H. To determine whether H has the correct shape, the program first deletes the
predefined shape (see above), then checks whether the result is the empty graph.
If either the deletion or the non-empty check fails then the program fails. In this
context, termination of the program with a proper graph means the input graph
G is series-parallel, and failure means G is not series-parallel.

31

x

1

y z

2

a b

series(a,b,x,y,z:list)

1 2
⇒

Reduce = {series, parallel}
Main = Reduce!; delete; if nonempty then fail

x

1

y

2

a

b

parallel(a,b,x,y:list)

1 2
⇒

x ya

delete(a,x,y:list)

∅⇒ x

1

nonempty(x:list)

x

1
⇒

Figure 2.15: A program that checks whether a graph is series-parallel or not [Plu16,
Section 6].

A GP version of the program was first shown in [Plu09, Example 6], and here
we have presented it using GP 2’s syntax, the only difference being the semantics
of success / failure as opposed to wrapping the program in an if-then-else that
executes pre-specified sub-programs depending on the SPG check. A more recent
version is of [Plu16, Section 6] from which Figure 2.15 originates.

However, if the non-deterministic reduction results in a graph different than
, there might be some other execution sequence resulting in that graph.

Therefore, the correctness of the algorithm depends on the confluence of the reduc-
tion rules. Here correctness means the program succeeds for (unmarked) SPGs
and fails otherwise.

2.2.3.2 Computing Shortest Distances

The shortest distances problem is about calculating the minimal distances between
a given node (the source node) and all other connected nodes in a graph, where
the distance between two nodes is defined as the sum of edge weights on any path
connecting the two nodes. The Bellman–Ford algorithm [BG02] is an algorithm
that solves that problem. It is based on relaxation where the current distance to a
node is gradually replaced by more accurate values until eventually reaching the
optimal / minimal solution. An assumption made is that there is no negative cycle
(a cycle whose edge weights sum to a negative value) that is connected with the

32

Figure 2.16: Shortest Distances program.

source, in which case there is no shortest path. Furthermore, the input is assumed
to be unmarked except for the single red node as the program itself uses marks
to track information; this does not restrict the set of possible inputs as a marked
graph can have its mark translated as part of a pre-processing step.

A GP 2 program that implements the Bellman–Ford algorithm is shown in
Figure 2.16. Distances from the source node are recorded by concatenating the
distance value to each node’s label. Nodes marks are used: the source node is red,
visited nodes are gray, and unvisited nodes are unmarked. Given an input graph
G with a unique source node and no negative cycle, the program initializes the
distance of the source node to 0. The add rule explores the unvisited neighbours
of any visited nodes, assigns them a tentative distance and marks them as vis-
ited to avoid non-termination. The reduce rule finds occurrences of visited nodes
whose current distance is higher than alternative distances, i.e. only when the
application condition (m+ n < p) is satisfied by the schema instantiation. The pro-
gram terminates when neither add or reduce rules can be further applied. Note
that for simplicity the program only operates on input graphs that are (initially)
unmarked.

A GP version of the program was first shown in [Plu09], and here we have
presented it using GP 2’s syntax, the only difference being the assumption of a
unique red node as opposed to a node with a specific unique label.

However, since rule application is non-deterministic, different graphs may re-
sult from program execution. The algorithm is correct only if the loop {add,reduce}!

33

is confluent. In the absence of a full program verification, a programmer may want
to check that this loop indeed returns unique results. Here correctness means the
program, when given an input satisfying the described assumptions, terminates
with a graph such that each node’s label is augmented with the shortest distance
to the source node.

2.2.3.3 Computing a 2-colouring

This program is concerned with computing a 2-colouring of an input graph if such
a colouring is possible. To colour the nodes of a graph means to assign the values
0 or 1 to each node, representing node colours, such that no two adjacent nodes
have the same integer/colour. (A graph is 2-colourable iff its underlying loop-
free, undirected graph does not contain a cycle of odd length). The nature of the
colouring problem depends on the number of colours but not on how they are
represented. In this problem, we assume colours are represented by concatenating
the colour value to the node’s pre-existing label. If the input graph has existing
node labels, then those should be preserved, and the assigned colours should be
appended to the existing labels. An assumption of this algorithm is that the input
graph is connected and is unmarked. A more complicated algorithm is needed to
deal with disconnected components.

A program that computes such a 2-colouring (Figure 2.17) works as follows.
Then, apply the colour rule as long as possible. The colour rule pick an unmarked
node and explore its marked neighbours, assigning them alternative colours (0 or
1) and unmarking them. This process is guaranteed to terminate. If the resulting
graph has an invalid colouring, signal failure. Otherwise, output the graph as it
was initially. The latter is achieved by wrapping the computation in a try block.

The program uses so-called bidirectional edges which are essentially syntactic
sugar for matching edges in either direction. To avoid complications due to this
feature, we can consider colour to be a rule set where the given edge is directed
from node 1 to node 2 (rule colour1) or from node 2 to node 1 (rule colour2).

A GP version of this program was first shown in [Plu09], and here we have
presented it using GP 2’s syntax, the only differences being (1) the use of explicit
failure as opposed to undoing the illegal colouring, and (2) the changed input
assumption that there must be no marks as opposed to nodes having integer-
only labels 4. First, initialize all nodes as unvisited by marking them gray and
nondeterministically choose one marked (grey) node to append the initial colour
1 and unmark it. A different version of the solution where colours are represented
as GP 2 node marks (red and blue) is given in [Bak16, Section 6.3].

The application of colour is non-deterministic — give an input graph, there
may be several different assignments of colours for its nodes. The ‘illegal colour-
ing’ check relies on the correctness (and, more specifically, the confluence) of ap-
plying colour as long as possible — otherwise, there might be some other deriva-
tion sequence ending in a correctly coloured graph. Correctness of colouring
means that, given a connected unmarked input graph, after colouring is done, all

4GP did not have marks.

34

Example program: 2-colouring

Main = try (mark!; init; colour!; if illegal then fail)

mark(x : list) init(x : list)

1

x ⇒

1

x

1

x ⇒

1

x:1

colour(a, x, y : list; i : int)

x:i y

1 2

a
⇒ x:i y:1−i

1 2

a

illegal(a, x, y : list; i : int)

x:i y:i

1 2

a
⇒ x:i y:i

1 2

a

Assumption: input graph is connectedFigure 2.17: 2-colouring program [Plu16, Section 4].

nodes have been coloured and that no two adjacent nodes have the same colour.
Therefore, it is interesting to study the confluence of colour in the absence of full
program verification.

2.2.3.4 Computing a Graph Colouring

A vertex colouring (or colouring for short) is an assignment of colours to nodes such
that each non-loop edge has end points with distinct colours. Computing such a
colouring is always possible for loop-free finite graphs by just assigning unique
colours to nodes, and computing a minimal colouring is NP-complete. A program
that computes such a (non-minimal) colouring is as follows (copied from [Plu16,
Section 4]), and is very similar to the 2-colouring program given in the previous
section:

Main = mark!; init!; inc!

where the mark and init rules are as previously defined, and the inc (given in
Figure 2.18) finds adjacent nodes assigned the same colour and changes one of the
nodes’ colour assignment. No loops or marks are allowed.

The first part of the program (mark!; init!) is deterministic: it will append an
initial colour (1) to every node. The second part of the program is the loop inc!

which is terminating but highly non-deterministic. What is interesting about this

35

x:i

1

y:i

2

a

inc(a,x,y:list, i:int)

⇒ x:i

1

y:i+1

2

a

Figure 2.18: The inc rule.

program is that we can compute a counter example to confluence at the symbolic
(expression) level.

2.2.4 Operational Semantics

The language GP has formal semantics ([Plu12, Bak16]) in the style of Plotkin’s
structural operational semantics [Plo04]. Each programming construct has several
related inference rules that induce a transition relation → on configurations. A
configuration represents the current state of computation and is either a graph (a
proper result) or a command sequence and a graph (unfinished computation) or a
special element fail representing program failure.

Definition 2.21 (Transition relation). The small-step transition relation

→ ⊆
(
ComSq× G(L)

)
×
(
(ComSq× G(L)) ∪ G(L) ∪ {fail}

)
on configurations defines the single-step computation on graphs. The transitive
and reflexive-transitive closures are written as→+ and→∗ respectively.

A configuration λ is said to be terminal if there is no configuration δ such that
λ→ δ .

The inference rules for GP’s core and derived commands (”derived” because
they can be defined by core commands) are given in Figure 2.19 and Figure 2.20 re-
spectively. An inference rule has a premise and a conclusion. The rules contain (im-
plicitly) universally quantified meta-variables for command sequences and graphs
— R stands for a call in RuleSetCall, C, P, P′, Q stand for command sequences in
ComSq and G, H stand for graphs in G(L).

Definition 2.22 (Semantic inference rules for core commands). Figure 2.19 defines
the inference rules for the core GP commands. The notation G ;R H expresses that
for a host graph G ∈ G, there is no graph H such that G ⇒R H .

Consider the rule [call1] — intuitively it reads ”for all sets of conditional rule
schemata R and host graphs G, H, G ⇒R H implies 〈R, G〉 → H”.

Note the definition of the if-then-else — the alternative Q is executed if the
conditional program C fails. This is the concept of negation as failure that comes
from logic programming. Also, the programs P and Q are executed on the orig-
inal graph G, which allows for the hiding of ”destructive” tests. The alternative

36

[call1]
G ⇒R H
〈R, G〉 → H

[call2]
G ;R

〈R, G〉 → fail

[seq1]
〈P, G〉 → 〈P′, H〉

〈P; Q, G〉 → 〈P′; Q, H〉 [seq2]
〈P, G〉 → H

〈P; Q, G〉 → 〈Q, H〉

[seq3]
〈P, G〉 → fail

〈P; Q, G〉 → fail

[if1]
〈C, G〉 →+ H

〈if C then P else Q, G〉 → 〈P, G〉

[if2]
〈C, G〉 →+ fail

〈if C then P else Q, G〉 → 〈Q, G〉

[try1]
〈C, G〉 →+ H

〈try C then P else Q, G〉 → 〈P, H〉

[try2]
〈C, G〉 →+ fail

〈try C then P else Q, G〉 → 〈Q, G〉

[alap1]
〈P, G〉 →+ H
〈P!, G〉 → 〈P!, H〉 [alap2]

〈P, G〉 →+ fail

〈P!, G〉 → G

Figure 2.19: Inference rules for the core commands.

try-then-else executes the consequent P on the graph resulting from executing
C.

Failing executions of if-then-else, try-then-else and as-long-as-possible

are notable from the point of view of nondeterminism — if the guard C (or loop
body P respectively) may result in both a proper result graph and a fail, then
the choice of which alternative to take (whether to continue looping or to pass
back control to the outer program) is nondeterministic. To illustrate this subtlety,
consider a looping sequence (r1; r2)! (similar to [Bak16, p. 45]). If the first rule
succeeds and the second fails, i.e. G

r1⇒H and H ;r2 , then the loop body fails and
the program returns the original input G. However, if the result of the first rule
H is such a graph that the second rule succeeds, then the loop body succeeds and
the execution continues with trying the loop body again.

37

[or1] 〈P or Q, G〉 → 〈P, G〉 [or2] 〈P or Q, G〉 → 〈Q, G〉

[skip]〈skip, G〉 → G [fail] 〈fail, G〉 → fail

[if3]
〈C, G〉 →+ H

〈if C then P, G〉 → 〈P, G〉 [if4]
〈C, G〉 →+ fail

〈if C then P, G〉 → G

[try3]
〈C, G〉 →+ H

〈try C then P, G〉 → 〈P, H〉 [try4]
〈C, G〉 →+ fail

〈try C then P, G〉 → G

Figure 2.20: Inference rules for derived commands.

Figure 2.20 defines the inference rules for the derived commands of GP. Similarly
as above, the or command is nondeterministic in the sense that the evaluation may
choose which of the two programs to execute.

The meaning of the GP commands can be defined by the semantic function J K
which assigns to each program P the function JPK that maps an input graph G to
the set of all possible results of executing P on G. The application of JPK to G is
denoted by JPKG. This set may also contain the special symbols fail and ⊥. The
first indicates that the program can end in failure, and the second means that the
program may diverge (not terminate) or ”get stuck”.

Definition 2.23 (Divergence). A program P diverges from graph G if there is an
infinite sequence

〈P, G〉 → 〈P1, G1〉 → 〈P2, G2〉 → . . .

Definition 2.24 (Getting stuck). A program P gets stuck from graph G if there is
terminal configuration 〈Q, H〉 such that 〈P, Q〉 →∗ 〈Q, H〉

A program can get stuck in two situations:

• it contains a if-then-else (or try-then-else) such that the condition C can
diverge on some graph G and can neither produce a proper result graph nor
fail

• it contains a loop P! such that the body P has the previous property.

The evaluation of such programs gets stuck because none of the inference rules for
the respective constructs are applicable.

The intention of the semantic function is to assign to a program sequence a set
of possible outputs for any input. This set of results depends on the program and
the input graph.

38

Definition 2.25 (Semantic function). The semantic function J K : ComSq→
(
G(L)→

2G(L)∪{fail,⊥}) is defined by
JPKG = { X ∈ (G(L) ∪ {fail}) | 〈P, G〉 →+ X} ∪

{ ⊥ | P can diverge or get stuck from G}

Definition 2.26 (Semantic equivalence). Two programs P and Q are semantically
equivalent, denoted by P ≡ Q, if JPK = JQK.

For example, the following equivalences can be proven:

• skip ≡ null, where null is the empty rule schema ∅ ⇒ ∅ that is always
applicable

• fail ≡ {}, where {} is the empty set of rule schemata

• if C then P ≡ if C then P else null, for all programs C and P

• try C then P ≡ try C then P else null, for all programs C and P

• try C else P ≡ try C then null else P, for all programs C and P

2.3 Confluence

As already mentioned, the computational model of graph transformation is non-
deterministic. However, due to the ways that rules interact, it may be the case that
there exists exactly one result for each input graph.

A graph transformation system is a label alphabet L together with a finite set
of rules R over L. Given a graph G, transforming the graph under R means to
apply the rules as long as possible, obtaining a result graph H. The graph H is
called a normal form of G. If each graph has a unique normal form, then the order
of transformations does not matter and R is called confluent.

The notion of confluence originally comes from (abstract) rewriting systems
[KB83, Hue80]. A set of transformation rules R is confluent if for every pair of
diverging transformations H1

∗⇐= G and G ∗
=⇒ H2, there is a common graph H such

that H1
∗
=⇒ H ∗⇐= H2. Confluence ensures there exists at most one normal form.

Confluence is an important property in several aspects. First, together with
termination, it guarantees the global determinism (functional behaviour) of transfor-
mations. This is important when transformations are used to implement functions
or translations from one domain into another. Second, on a more practical level,
it alleviates the costs associated with non-determinism while keeping semantic
equivalence of the implementation. On a similar note, in the presence of failures, if
a confluent sequence of derivations fails, then any possible sequence from the same
start graph will also fail, thus removing the need for retrying a failed computation.

Counterexamples to confluence, i.e. pairs of non-isomorphic results for a given
input, can also be useful. An implementation may choose to first apply indepen-
dent derivation steps as long as possible and then start creating decision points

39

for backtracking, thus reducing memory footprint. Furthermore, the proof of non-
confluence allows for the classic Knuth-Bendix completion procedure that adds
extra rules until confluence of the expanded set of rules is established.

Confluence turns out to be a very useful property for several application ar-
eas of graph transformation. One such application is model transformation (see
[RLP+14] for a comprehensive comparison between existing model transformation
systems), one of the criteria for its correctness is the existence of confluence anal-
ysis. The compared model transformation tools in [RLP+14] all lack confluence
analysis: only the tool Kermeta comes close, achieving confluence in principle but
providing no tool support for a proof.

Other tools are also available: the tool AGG [RET11] implements confluence
analysis in the setting of typed attributed graph transformation, while Henshin
[ABJ+10, SBG+17] offers confluence support for a purpose-built model transfor-
mation language used for model refactoring, pattern introduction, and model evo-
lution.

It is well known that confluence is an undecidable property [Plu93]. How-
ever, a sufficient criterion for confluence exists which is concerned with minimal
conflicting situations called critical pairs. Critical pairs can be statically computed
and are representative of all conflicts that may arise during computation. Critical
pairs can be used to argue that a rewriting system is confluent or to provide a
counter-example to its confluence.

The rest of the chapter is organized as follows — first we properly study what
it means for two transformations to be in conflict; next, we present critical pairs
and the basic algorithm for their computation; last, we present flavours of critical
pairs that handle attribution, typing and application conditions.

2.3.1 Structural Confluence

We start by investigating the formal definitions of confluence and its flavour local
confluence.

Definition 2.27 (Confluence). A pair of derivations G ∗
=⇒R H1 and G ∗

=⇒R H2 is
confluent if there exist derivations H1

∗
=⇒R G′ and H2

∗
=⇒R G′. A graph transforma-

tion system R (a set of rules) is confluent if for all graphs G, all pairs of derivations
from G are confluent.

Informally, this means that two diverging derivations are confluent if they can
be further rewritten to a common graph. See Figure 2.21.

Remark 2. For the rest of this section we will only consider unlabelled graphs (graphs
in G(L⊥)), i.e. will only be interested in the structural aspect of confluence. Later
on we will discuss how labels/attributes affect confluence.

A similar version of confluence is called local confluence, which is concerned
with the pair of derivations in the definition to direct derivations (derivations of
length 1). According to a general result for rewriting systems, it is sufficient to
consider local confluence, given that the system is terminating.

40

G

H1 H2

G′

∗
⇐=
==

∗===⇒

∗===⇒ ∗
⇐=
==

G

H1 H2

G′

⇐=
==

===⇒

∗===⇒ ∗
⇐=
==

Figure 2.21: Confluence and Local Confluence.

Definition 2.28 (Local Confluence). A pair of direct derivations G ⇒R H1 and
G ⇒R H2 is locally confluent if there exist derivations and H1

∗
=⇒R G′ and H2

∗
=⇒R

G′. A graph transformation system R is locally confluent if for all graphs G, all
pairs of direct derivations from G are locally confluent.

The difference between confluence and local confluence is illustrated in Fig-
ure 2.21.

Local confluence is strictly weaker because it does not imply confluence, as
shown in the following example.
Example 6 (Local confluence does not imply confluence). Consider the locally con-
fluent system with four different direct transformations.

B C DA

The pairs A ⇐ B ⇒ C and B ⇐ C ⇒ D are locally confluent because they can
be joined by C ⇒ B⇒ A and B⇒ C ⇒ D respectively.

However, we can see that A and D are two unique normal forms of B (cannot
be transformed further) — the pair A ⇐ B ∗

=⇒ D cannot be joined. Similarly, the
pair A ∗⇐= C ⇒ D cannot be joined. Therefore, the system is not confluent.

Definition 2.29 (Termination). A system of rules R is terminating if there is no
infinite sequence of transformations

G0 ⇒R G1 ⇒R G2 ⇒R . . .

Termination ensures the existence of at least one normal form. However, ter-
mination is also an undecidable property [Plu98]. Some termination criteria for
graph transformation systems have been shown in [EEdL+05].

Lemma 2 (Newman’s Lemma). Every terminating and locally confluent graph trans-
formation system is also confluent.

The previous example is non-terminating because there exists an infinite se-
quence

B⇒ C ⇒ B⇒ . . .
As a consequence, the local confluence of the system does not imply confluence.
However, one might suspect that the cycle between B and C is responsible which
turns out to not be the case — even for acyclic relations, local confluence does not
imply confluence [BN98, Section 2.7].

41

2.3.2 Independence and Conflicts

In order to reason about local confluence, we will distinguish two types of pairs
of direct derivations — those that are independent and those that are dependent
(in conflict). The reason for this is that two independent derivations are always
interchangeable and can be applied in any order, whereas pairs that are depen-
dent may be a source of non-determinism. In this section we only show parallel
independence, and avoid talking about sequential independence which is its dual
(e.g. see [EEPT06] for further clarification, and Definition 3.4).

Definition 2.30 (Independence). Two direct transformations G ⇒r1,g1 H1 and
G ⇒r2,g2 H2 are independent iff the second derivation can be applied to H1 and
vice versa, i.e. there are morphisms (matches) L1 → D2 and L2 → D1 such that
L1 → G = L1 → D2 → G and L2 → G = L2 → D1 → G

G

L1K1R1 L2 K2 R2

D1 D2H1 H2

g1 g2
f1 f2

h21 h12

A pair of transformations is in conflict if it is not independent. An equivalent
definition [EEPT06, Fact 3.18] is to say the pair is independent iff all common items
are preserved, given by the following set-theoretic condition:

g1(L1) ∩ g2(L2) ⊆ g1(K1) ∩ g2(K2)

where for convenience we have assumed that Ki → Li are inclusions (and hence
the match gi is defined over the subgraph Ki ⊆ Li).

It has been shown that two independent transformations can be applied in any
order. This is the classic Local Church-Rosser Theorem — rule r2 can be applied to
the result of the first transformation H1 using the same match g2 (and vice versa).

Theorem 2.1 (Local Church-Rosser Theorem [Roz97, EEPT06]). Given two indepen-
dent transformations G

r1,g1
==⇒ H1 and G

r2,g2
==⇒ H2, there is a graph G′ together with

transformations H1
r2,g′2==⇒ G′ and H1

r1,g′1==⇒ G′ such that the following diagram commutes.

G

H1 H2

G′

r1, g1 r2, g2

r2, g′2 r1, g′1

Conflicts can be characterized depending on the setting — when dealing with
“plain” (unlabelled) graphs and rules, conflicts are called delete-use because one
of the rules deletes a node/edge which the other matches. In the presence of
attribution/labels and application conditions, there can be more types of conflicts
such as forbid-produce and delete-require.

42

2.3.3 Critical Pairs

Proving a transformation system is confluent may be a very difficult task just by
looking at the definition — joinability must hold for all graphs G and all derivable
graphs H1 and H2 from G. The presence of conflicts makes the task even more dif-
ficult as the Church-Rosser Theorem cannot be applied, and the resulting system
of rules may not be confluent.

In order to check confluence in finite time, the potentially infinite set of con-
flicting pairs must be reduced to a finite set of representatives. This is the aim of
constructing critical pairs, pairs of dependent transformations in minimal context.

Definition 2.31 (Critical pair). A pair of direct derivations T1 ⇐r1,g1 S r2,g2 ⇒ T2 is
a critical pair if:

1. The graph S is an overlap of the left-hand sides of the given rules, i.e. the
matches g1 and g2 are jointly surjective and that each item in S has a pre-
image in L1 or L2

S = g1(L2) ∪ g2(L2)

2. The derivations are in conflict:

g1(L1) ∩ g2(L2) * g1(K1) ∩ g2(K2)

3. If r1 = r2, then g1 6= g2 must hold

The minimality condition means that S does not contain unnecessary context.
The dependency condition ensures that the derivations are not applicable to each
others’ result graphs H1 or H2, i.e. the Church-Rosser Theorem does not apply.
The extra condition of different matches ensures that we are not dealing with the
same derivation.
Example 7 (Example Critical Pair). Consider the rule r1:

21
r1 :

21
←↩

21
↪→

The following diagram represents a critical pair of the rule with itself:

21

S

21

T1

r1,g1⇐==
21

r1,g2
==⇒

T2

with matches g1 = L → S : 〈1 → 1, 2 → 2〉 and g2 = L → S : 〈1 → 2, 2 → 1〉
respectively. (Here L is the left-hand graph of r1.)

The (critical pair) graph S is minimal because it contains no extra context that is
unused by the matches, i.e. g1 and g2 are jointly surjective. The pair of derivations
is a conflict because both delete the proper edges of S and the rules cannot be
applied to the results T1 and T2 at all. We also have that g1 6= g2, which is needed
since the derivations involve the same rule.

43

It can be shown that each pair of dependent transformations is an extension of
a critical pair.

Lemma 3 (Completeness of critical pairs). For each pair of conflicting direct derivations
H1 ⇐r1,g′1

G r2,g′2
⇒ H2, there is a critical pair T1 ⇐r1,g1 S r2,g2 ⇒ T2 such that S is a

subgraph of G.
S

T1 T2

G
H1 H2

m
r1,g1

⇐==
r2 ,g2==⇒

r1,g′1
⇐==

r2 ,g ′2==⇒

Both of these squares are extension diagrams in the sense of [EEPT06].
Apart from reasoning about conflicts, critical pairs have another important

property — in rewrite systems where the rules consist of finite graphs (such as
in graph transformation) the set of critical pairs is finite because the left-hand
sides of two rules can be overlapped in only finitely many ways. This is in contrast
to the number of pairs of conflicting derivations which is infinite in general.

If the set of critical pairs is empty, then the above lemma already implies local
confluence of the graph transformation system because all pairs of derivations will
be independent by the Church-Rosser Theorem. Otherwise, in order to show local
confluence, it is sufficient to examine all critical pairs and determine if they are
strongly joinable. Strong joinability means that the critical pair is

• joinable — for some graph S′, there exist derivations T1
∗
=⇒ S′ and T2

∗
=⇒ S′

• strictness — the largest subgraph N of S that is preserved by both steps in the
critical pair is preserved by the joining derivations T1

∗
=⇒ S′ and T2

∗
=⇒ S′.

Joinability without the strictness condition has been shown not to be enough for
verifying local confluence (see [Plu93]) because the isomorphism between the two
resulting graphs from the joining derivations may be destroyed when the critical
pair is embedded into context.

In Example 7, the critical pair is joinable because T1
∼= T2 with isomorphism

iso = T1 → T2 : 〈1 → 2, 2 → 1〉. However, it is not strongly joinable because
the isomorphism does not map nodes correctly: either of the nodes of G, when
tracked through the joining derivations, end up in different nodes. It is easy to see
a counter example to confluence by adding an extra edge, i.e. context:

21

G

21

H1

r1,g1⇐==
21

r1,g2
==⇒

H2

Both H1 and H2 are non-isomorphic normal forms of G. Therefore, the rule r1 does
not represent a confluent graph transformation system.

Strong joinability allows us to state the so-called Critical Pair Lemma.

44

Theorem 2.2 (Local Confluence Theorem, Critical Pair Lemma). A graph transfor-
mation system is locally confluent if all its critical pairs are strongly joinable.

2.3.4 Critical Pair Construction Algorithm

Having given an intuition of critical pairs and why they are useful for analysing
sets of rules for confluence, we now proceed with showing practical ways of com-
puting all critical pairs induced by a set of rules.

The basic algorithm for computing the set of all critical pairs can be derived
from the definition [LE06]. First, we need to compute all jointly surjective matches
for the two rules, i.e. suitable gluings of the left-hand sides. Second, we need to
analyse if the transformations given by the two rules and computed matches are
indeed parallel dependent. If that is the case, then that is indeed a critical pair.

input : Two rules r1 = 〈L1 ← K1 → R1〉 and r2 = 〈L2 ← K2 → R2〉
output: A set of critical pairs CP

1 CP← ∅
2 Compute all jointly surjective morphisms (g1 : L1 → S, g2 : L2 → S) of r1 and

r2
3 foreach (g1, g2) do
4 if r1 = r2 and g1 = g2 then skip;
5 Compute t1 = (S⇒r1,g1 T1) and t2 = (S⇒r2,g2 T2)
6 if t1 and t2 are not parallel independent then
7 CP← CP ∪ {(t1, t2)}
8 end
9 end

10 return CP
Algorithm 1: Basic algorithm for computing all critical pairs.

The main part of the algorithm is the computation of the jointly-surjective matches
— this is computationally expensive since their number will grow very large if the
left-hand sides of the two rules are large [Wel14, Section 7.2].

The number of overlaps (partitions) is bounded by the n-th Bell number

v(n) = Bn <

(
0.792n

ln(n + 1)

)n
, n ∈N+

where v(n) is the total number of possible overlaps (injective and non-injective)
of n elements (in our case n = |L1|+ |L2|). Note that the algorithm can be easily
modified to consider only injective matches.

Related Work. [LE06] present two possible optimizations to algorithm 1. First,
if both rules r1 and r2 are non-deleting, then they will always be parallely inde-
pendent. A rule r = 〈L ← K → R〉 is non-deleting if the morphism K → L is an

45

isomorphism. There are different ways of checking this, and the authors prefer the
construction of the context graph C of K → L (see [EEPT06] for further details).

The second optimization involves the situation between a deleting and a non-
deleting rule. Instead of computing all possible overlaps and later filtering them,
it is possible to compute only those ones which lead to a critical pair. This is
achieved by requiring that an element that is deleted by one rule to be matched
by the non-deleting rule. The authors define certain conditions under which the
pair of rules are guaranteed to be in conflict. In practice, this involves constructing
a pullback object of the context of the deleting rule and the left-hand side of the
non-deleting rule (and hence reusing the computation of the first optimization).

In a further paper [LEO08], the authors define essential critical pairs, which are
a subset of all critical pairs, and are complete in the sense that all critical pairs
are strongly joinable if and only if all essential critical pairs are strongly joinable.
However, the set of essential critical pairs is not significantly smaller than the set
of all critical pairs.

2.3.5 Confluence Extensions

In this section, we present several extensions to confluence that handle different
more complex approaches to graph transformation. The extensions we show han-
dle attributes of nodes/edges, and also application conditions.

Attributes. Confluence in its basic form is structural in the sense that the source
of non-determinism are delete-use conflicts, in the setting of unlabelled graphs (as
described in the previous part). However, in many cases where graph transforma-
tion is used as a modelling technique, the domain is attributed (labelled) graphs that
represent diagrams with textual, numerical, semantic annotations.

In [HKT02], the authors develop the theory of critical pairs to the setting of
attribution. The paper introduces typed, vertex-attributed graph transformation
systems 5 and proves the Local Confluence Theorem in that setting. The paper’s
running example considers a translation between simple UML state-charts into
CSP in the context of automated verification using a CSP model checker, and this
process needs to be functional (confluent and terminating).

In this setting, graph attributes are represented by means of special data nodes
and linked to ordinary graph nodes/edges by attribution edges. This gives rise
to infinite graphs as, for example, all natural numbers will exist as separate data
nodes. Attributed rules contain a data node for each term in the term algebra.
The attributes of the critical pairs are obtained by computing the most general
unifier of the overlapped terms. However, this construction has been shown to be
incomplete in [EEPT06, p.198]. The problem is avoided by requiring the severe
restriction that attributes are variables or variable-free.

5Typed graphs can be seen as a generalization of labelled graphs [EEPT06, Fact 2.9].

46

Application Conditions. Graph conditions allow us to restrict the application of
rules by equipping them with an extra graph that must or must not exist in the
match of a rule. They emerged as a general concept of restriction [EH86], and
were extended to negative application conditions [HHT96] and nested application
conditions [HP09]. The dangling condition in the DPO approach can be expressed
as a negative application condition.

Application conditions add to the expressive power of graph transformation.
However, their use poses additional problems for constructing critical pairs — a
pair of direct derivations may be independent in the sense of Definition 2.30, but
one of the rules creates a structure that is forbidden by the other rule’s applica-
tion condition. A more elaborate version of independence and confluence was
developed in [Roz97, LEO06, Lam09].

The paper [EGH+12] considers confluence of rules equipped with arbitrary
nested application conditions. The constructions rely on shifting conditions over
morphisms and rules. However, since application conditions are arbitrarily nested,
constructing a set of critical pairs in this setting turns out to be an undecidable
problem due to nesting being equivalent to first-order graph formulas. Showing
strong joinability turns out to also be undecidable.

Close to these ideas is the filtering of critical pairs who violate the normal con-
straints of the domain they ultimately model, represented using graph constraints
[HW95]. Graph constraints are special cases of application conditions. What is
important is that such critical pairs can be discarded without violating the sound-
ness of the approach. For example, this approach is taken in the tool SyGrAV
[Dec17, DKL+16, KDL+15]. We employ the same idea in Section 7.2.

2.3.6 Confluence Applications

Confluence has been used in various fields of computer science to reason about
properties of computation.

Reduction systems are a powerful way of finitely representing an infinite set of
graphs with some special property [ACPS93, BPR04]. They consist of a set of rules
and a finite number of accepting graphs. A reduction system defines a language
of graphs such that every normal form of a graph in the language is an accepting
graph. Classical examples of graph reduction consists trees, series-parallel graphs,
flowcharts. However, recognition of such languages can be a costly process since
all normal forms are to be computed. In the case when the reduction rules are
confluent, this becomes much more efficient as confluence implies uniqueness of
normal forms. We will see an example of this when we study the confluence of
recognizing series-parallel graphs in Chapter 7.

In [EEPT06, Ch. 14], the authors use graph transformation to implement the
model transformation between UML Statecharts and Petri Nets. One of the main
properties of model transformation is its functional behaviour, so the underlying
graph transformation system has to be proven locally confluent and terminating.
The tool AGG is used, and the graph transformation is in the context of typed
attributed graphs. The source and target languages are given as typed graphs. The

47

tool AGG is then used to construct the critical pairs of the translation rules, and
thus reason about local confluence and functional behaviour of the transformation.

Conflicts between requirements of different stakeholders may be difficult and
expensive to resolve during software development. [HHT02] propose a method for
detecting such conflicts as early as possible by means of graph transformation. The
authors use representations of UML use case, activity and collaboration diagrams
as typed attributed graphs and transformation rules between such graphs. Critical
pairs analysis can be used to annotate use cases and activity diagrams with extra
information regarding conflicts and dependencies and to trigger a re-iteration of
the requirements model to eliminate the undesired effects. Note that confluence
is not strictly required, but only the detection of potential conflicts between use
cases. Furthermore, not all such conflicts represent an error — if a requirements
analyst decides that two use cases or activities are meant to happen alternatively,
the conflict simply reflects this requirement at a semantic level.

Software refactoring is a common technique for improving the structure of
object-oriented code while preserving external behaviour [MT04]. Existing tools
only offer help with the automated application of such refactorings. The developer
has to choose interactively which refactorings he would like to apply, and use a
refactoring tool to apply these refactorings. [MTR07] propose a method for the
automated detection of implicit conflicts and dependencies between refactorings.
Their method is based on critical pair analysis which would allow a tool to suggest
refactorings that are more appropriate in a given context and offer explanation
why. The authors model refactorings as rules in the setting of typed attributed
graphs, and use AGG to compute all possible conflicts between them. Then, based
on the number of dependencies, some rules are suggested before others.

Visual languages are a programming paradigm where users create programs
that have spatial relationships between elements rather than being textual. Their
parsing can be described as a graph transformation system. [BTS00] propose an ef-
ficient parsing algorithm using critical pair analysis to delay decision between con-
flicting rule applications as much as possible. This means applying non-conflicting
rules first and reducing the graph as much as possible before creating decision
points for the backtracking.

2.4 Summary

In this chapter we have:

• given some prelimary definitions: label alphabets, graphs, graph morphisms;

• reviewed the DPO approach to applying rules in graph transformation, giv-
ing both the concrete steps and the algebraic constructions formed from two
pushouts;

• reviewed the DPO approach with relabelling;

48

• presented the language GP 2, facilitating the high-level specification of graph
programs;

• defined rule schemata, the building blocks of graph programs, allowing ex-
pressions in labels;

• explained the control constructs of graph programs together with their se-
mantics, and given a number of example programs;

• presented the notion of confluence, a property of a set of rules that ensures
every input has a unique result from a computation;

• studied conflicts and critical pairs, as basic elements for checking confluence,
and how they are constructed;

• discussed how confluence is extended in more complicated frameworks in
the general area of graph transformation, specifically involving attribution
and application conditions.

49

Chapter 3

Independence of GP 2 Rule Schemata

In this chapter we introduce the notions of independence and conflict for rule
schemata, the building blocks of graph programs, which follows the approach
initiated by [EK76] for graph transformation and later extended by [HP12] for
graph transformation with relabelling. We lift the notions of independence and conflict
to rule schemata. Our main technical result, the Local Church-Rosser Theorem,
establishes that independent derivations are commutative and thus lead to the
same result regardless of application order. These contributions are important
for two main reasons — (1) the idea of conflict is heavily used in critical pair
analysis, and (2) without proving the commutativity of independent derivations,
the confluence analysis based on critical pairs would be unsound.

This chapter is based on [HP16a] where we lift independence and conflicts
from rule instances to rule schemata. However, that paper does not fix the under-
lying label alphabet, whereas we assume GP 2’s fixed algebra of list expressions.
Schemata are assumed to be unconditional, as conditions interfere with which pairs
of derivations are considered in conflict.

3.1 Reasoning about conflicts

In graph transformation, the notions of independence and conflict have been
widely studied and are of significant practical importance [Cor16]. Independence
in its essence is a syntactic condition that ensures a pair of derivations on the
same graph, i.e. executed in parallel, are applicable to each other’s results. In
such situations, executing the derivations in any order is guaranteed to lead to the
same result, i.e. they are commutative (also known as the diamond property or the
Local Church-Rosser property). Since we talk about independence in the context of
derivations in parallel, we simply refer to parallel independence as independence.
This notion has been of particular importance in several fields, e.g. when graphs
are used to model software artefacts and rules to model changes to such artefacts
[MTR07, EET11].

However, in order to reason about confluence of a graph program, one needs
to lift the notion of conflict to derivations with rule schemata. And this is quite

50

natural — confluence checking is ultimately about restricting the infinite domain
of all graphs and all derivations that need to be considered. It is also not surprising
as the study of independence and conflicts pre-dates critical pairs and confluence,
at least in the case of graph transformation. The idea of lifting independence to
the schema derivation level is to allow confluence reasoning just from the syntax
of a program.

Fundamentally, the problem of (parallel) independence can be stated as this:
Find a condition, called (parallel) independence, such that two rule schema direct
derivations H1 ⇐r1 G ⇒r2 H2 are (parallel) independent if there are direct schema
derivations H1 ⇒r2 X and H2 ⇒r2 X such that the composed derivations G ⇒r1

H1 ⇒r2 X and G ⇒r2 H2 ⇒r1 X are equivalent.
The above problem is stated rather informally, and thus opens several lines

of questioning. First, we haven’t stated the matches used by the derivations, but
the idea is that the same matches are used in the joining derivations rather than
computing new matches. Second, the notion of equivalent derivations means the
derivations are isomorphic under the standard notion of sequential independence.
We explicitly refer to sequential independence when necessary, and also note that
sequential and parallel independence are related concepts. Third, we want the
condition to be universally quantified, i.e. commutativity to hold for all indepen-
dent derivations rather than for a particular subset. Last but not least, we want
the condition to be in some sense syntactic meaning it can be checked just by look-
ing at the components of the pair of derivations, as opposed to being a semantic
condition which would be actually checking the commutativity property directly.

In this chapter, we give our answer to the above problem. In particular, we lift
the notion of independence developed for derivations with relabelling in [HP12]
to schema derivations, and show our main technical result that the corresponding
property of commutativity holds, i.e. the correctness of the condition. We give
a more intuitive characterization of independence stating that two derivations are
in conflict if either deletes or relabels a common item. Furthermore, we study
generalized rule schemata which are semantically equivalent to GP 2 rule schemata
but induce less conflicts. This is achieved by means of a ‘maximal’ interface.

It should be noted that the notion of conflict is intrinsic to the study of critical
pairs, the idea being that, since independent derivations commute and thus have
the (local) confluence property, one need only look at conflicting derivations as
potential sources of non-confluence. Critical pairs are a subset of all conflicts that
have special properties. We cover critical pairs for GP 2 in Chapter 4. Furthermore,
the commutativity property is one of the central results used in the Local Conflu-
ence Theorem (Chapter 6), and the definition of independence plays a central role
in proving that critical pairs are complete, i.e. represent all possible conflicts.

3.2 Lifting Independence to Rule Schema Derivations

In this section, we explain our approach to independence and conflicts of rewriting
with rule schemata. The main idea is to lift the notion of independence of deriva-

51

G

Lα
1Kα

1Rα
1

L1K1R1

Lβ
2 Kβ

2 Rβ
2

L2 K2 R2

D1 D2H1 H2

m1 im2j
f1 f2

Figure 3.1: Independent schema derivations.

tions with relabelling. These notions have been obtained in [HP12] as a corollary of
the fact that derivations with relabelling fall into the category of so-called M,N -
adhesiveness and thus inherit many ‘classical’ results, the (algebraic) definition of
independence and the Local Church-Rosser Theorem being part of them.

Informally, two derivations with relabelling are independent if every common
item of the two matches is an interface item and no such common item is rela-
belled by either derivation. This intuition can be formally stated as an “existence-
of-morphisms” statement (Chapter 2). To lift this, we say that two rule schema
direct derivations are independent if their components, which are derivations with
relabelling, are parallel independent.

Definition 3.1 (Independence of schema derivations). Two rule schema direct
derivations G ⇒r1,m1,α H1 and G ⇒r2,m2,β H2 are independent as in Figure 3.1 if
their component derivations with relabelling G ⇒rα

1 ,m1 H1 and G ⇒
rβ

2 ,m2
H2 are

parallel independent, meaning the following:
Two direct derivations with relabelling H1 ⇐rα

1 ,m1 G ⇒rα
2 ,m2 H2 are independent

if there exist morphisms i : Lα
1 → D2 and j : Lα

2 → D1 such that f2 ◦ i = m1 and
f1 ◦ j = m2 where f1 : D1 → G, f2 : D2 → G are inclusions.

Definition 3.2 (Conflict between schema derivations). Two rule schema direct
derivations G ⇒r1,m1,α H1 and G ⇒r2,m2,β H2 are in conflict if they are not inde-
pendent.

The reason for introducing independence using morphisms and not in a set-
theoretic way is pragmatical – it is easier to use in the proof of the Local Church-
Rosser Theorem for derivations with relabelling, heavily based on diagrammatic
constructions, but also in the proof that our critical pairs are complete (Chapter 4),
also based on diagrammatic constructions. Even so, it is useful to provide an
equivalent characterization of independence, and we give such a characterization
in Lemma 4.

Several observations about independence can be noted. Firstly, the right-hand
sides of rules do not play a role when determining independence, i.e. whether
the rules create items is irrelevant. Secondly, the mappings between the left-hand

52

x
1

y

2

0

relabel(x,y:int)

←
1

y

2

→ x+y

1

y

2

1

Figure 3.2: The relabel rule.

graphs and the opposing intermediate graphs (D1 and D2) should preserve labels.
Thirdly, the interfaces of schemata play an important role. The conventions that
left-hand graphs are totally labelled and interface graphs consist only of unlabelled
nodes means too many derivations would be considered dependent regardless of
the semantics of the rule schema.

The first and second of the above points lead us to define conflict types, a classifi-
cation of conflicts based on whether they involve deleting a common matched item
or relabel such an item. The third observation leads us to generalize the interface
of a schema in order to reduce the number of potential conflicts.

In the following example(s), we consider the schema relabel over integer vari-
ables x,y , given as an expanded version showing its interface graph, given in
Figure 3.2. The schema is performing integer addition over the labels: it relabels
node 1, and deletes/recreates the 0 edge (in the opposite direction). Note that we
have allowed node 2 to keep its label. We will see in Section 3.4 that this is not
problematic, as the schema where node 2 is unlabelled in the interface (and thus
conforms to the language’s interface convention) can be generalized to the above
version without compromising the semantics.

Example 8 (Independent derivations). Figure 3.3 gives an example of two inde-
pendent derivations. The derivations involve the schema relabel of Figure 3.2,
instantiated in different ways. There are no common items, and the required map-
pings are the original matches. To avoid repeating the rule schema as in Figure 3.1,
we only show the instantiations with the assignments α and β that assign x to 1
and y to 2 and 3, respectively.

Example 9 (Conflicting derivations). Figure 3.4 shows two direct derivations H1 ⇐
G ⇒ H2 that are derivations of the relabel rule schema. Unlike the derivations of
Figure 3.3, here the matches have a common node (node 1) which gets relabelled by
both derivations. The derivations are not parallel independent, i.e. are in conflict:
there are no morphisms Lα

1 → D2 and Lβ
2 → D1 with the desired properties. The

problem is the premorphisms (equal to the matches) are not label-preserving, and
hence not graph morphisms.

Characterization. Now we are able to state our characterization of independence
in a set-theoretic style, which simply means that we directly work with the com-
mon items of the matches rather than talk about morphisms between the left-hand

53

1 30

Lβ
2

3

Kβ
2

4 31

Rβ
2

1 30

1 20

0

G

3

1 20

0

D2

4 31

1 20

0

H2

1 20

Lα
1

2

Kα
1

3 21

Rα
1

1 30

2

0

D1

1 30

3 21

0

H1

Figure 3.3: Independent derivations involving relabel.

1 30

Lβ
2

3

Kβ
2

4 31

Rβ
2

1 2

3

0

0 0

G

2

3

0

0

D2

4 2

3

0

1 0

H2

1 20

Lα
1

|

2

Kα
1

3 21

Rα
1

2

3
0 0

D1

|

3 2

3

1

0 0

H1

Figure 3.4: Conflicting derivations involving relabel.

graphs and opposite intermediate graphs.

Lemma 4 (Characterization of independence). Two direct derivations H1 ⇐r1,m1

G ⇒r2,m2 H2 are parallel independent if and only if for all items x1 ∈ Lα
1 and x2 ∈ Lα

2
such that m1(x1) = m2(x2), we have the following:

1. x1 ∈ Kα
1 and x2 ∈ Kα

2 , and

2. lKα
1
(x1) 6= ⊥ and lKα

2
(x2) 6= ⊥.

Rephrasing the condition, we are saying that each common item of G is (1) pre-
served by both derivations, i.e. the pre-images of that common item in the rules
are interface items, and (2) the pre-images of the common items in the interface
have labels, i.e. are not relabelled. Note that here we are using the injectivity and
totality of the matches, meaning that each common item has a unique pre-image
along each match.

54

The proof of the characterization is relatively short - the first condition is
the original set-theoretic condition of [EK76] that requires the intersection of the
matches to be a subset of the intersection of the interfaces; the second condition
correlates directly with the requirement that the induced morphisms are label-
preserving and that left-hand graphs are totally labelled.

Conflict type. Depending on which part of the independence condition does not
hold, we characterize the associated conflict by giving it a conflict type. Here
we exploit the fact that graph morphisms are premorphisms that preserve labels,
i.e. the existence-of-premorphisms condition means the structure (nodes/edges)
is preserved, while the condition of label preservation means the such nodes and
edges are labelled in the interface and intermediate graph.

Definition 3.3 (Conflict type). Two derivations in conflict are classified as one of
the following conflict types:

• (delete-use) if at least one of the derivations deletes a common item, i.e. there
does not exist a pair of premorphisms i : Lα

1 → D2 and j : Lα
2 → D1 such that

f2 ◦ i = m1 and f1 ◦ j = m2

• (relabel) if at least one of the derivations relabels a common item, i.e. the
above premorphisms exist but at least one of them is not a graph morphism

Without loss of generalization, we have skipped talking about the symmetric ver-
sions, e.g. use-delete and delete-delete. Furthermore, it is useful to note that a
conflicting derivation might fall into both conflict types when a common item is
deleted by the first and relabelled by the second derivation (delete-relabel). For
example, the conflict in Figure 3.7 is a relabelling conflict (type) as the common
nodes are preserved but relabelled by the derivations.

3.3 Local Church-Rosser Theorem

In this section we show the commutativity property of independent schema deriva-
tions. Recall that a pair of derivations is independent if neither deletes or relabels
common graph items. We now prove that, using this formulation, independent
derivations can be applied in any order, thus leading to the same result. Again, we
lift the results of [HP12] to schema derivations. More specifically, we use Theorem
2 of [HP12] that shows the commutativity of independent derivations in any so-
calledM,N -adhesive category and Theorem 3 of the same paper that shows that
rewriting using rules with relabelling is M,N -adhesive. However, before we do
so, we quickly formally define sequential independence, which is a formality that
is necessary to describe the equivalence of the resulting derivations.

55

G

Lα
1

Kα
1

Rα
1

D1

H1

m1

L1

K1

R1
Lβ

2

Kβ
2

Rβ
2

D2

H2

m2

L2

K2

R2

X

D2 D1

Rβ
2

Rα
1

Kβ
2

Kα
1

Lβ
2

Lα
1

m′2 m′1

Figure 3.5: Church-Rosser theorem for rule schemata.

Definition 3.4 (Sequential Independence). Two schema direct derivations G ⇒r1,m1,α
H1 ⇒r2,m′2,β H2 are sequentially independent if their component derivations with re-
labelling G ⇒rα

1 ,m1 H1 ⇒rβ
2 ,m′2

H2 are sequentially independent, i.e. there exist

morphisms i : Rα
1 → D2 and j : Lα

2 → D1 such that f2 ◦ i = m1 and f1 ◦ j = m2
where f1 : D1 → G, f2 : D2 → G are inclusions.

Lemma 5 ([HP12]). Given independent derivations G ⇒rα
1 ,m1 H1 and G ⇒

rβ
2 ,m2

H2,

there is a graph X and direct derivations H1 ⇒rβ
2 ,m′2

X and H2 ⇒rα
1 ,m′1

X that are sequen-

tially independent.

Proof. By combining Theorem 2 and Theorem 3 of [HP12].

Here rα
1 , rβ

2 are rule instances of any two schemata; the matches m′1, m′2 are de-
rived from m1, m2 using the morphisms Lα

1 → D2, Lβ
2 → D1 whose existence is

guaranteed by the definition of independence.
With this lemma, we are now able to state our main result, namely that inde-

pendent derivations commute.

Theorem 3.1 (Local Church-Rosser Theorem). Given two independent rule schema
direct derivations G ⇒r1,m1,α H1 and G ⇒r2,m2,β H2, there is a graph X and rule schema
direct derivations H1 ⇒r2,m′2,β X and H2 ⇒r1,m′1,α X. Moreover G ⇒r1,m1,α H1 ⇒r2,m′2,β
X as well as G ⇒r2,m2,β H2 ⇒r1,m′1,α X are sequentially independent.

Proof. From Lemma 5 and the definition of independence, we know that indepen-
dence of the derivations with relabelling G ⇒rα

1 ,m1 H1 and G ⇒
rβ

2 ,m2
H2 implies the

existence of a graph X and direct derivations H1 ⇒rβ
2 ,m′2

X and H2 ⇒rα
1 ,m′1

X. This

56

is illustrated in Figure 3.5. Here m′1 : Lα
1 → H2 is the composition Lα

1 → D2 → H2
where the first morphism is guaranteed by the definition of independence. Simi-
larly for m′2.

The direct derivations G ⇒rα
1 ,m1 H1 and G ⇒

rβ
2 ,m2

H2 involve rule instances of

the schemata r1 and r2. When used together with the morphisms, we get that there
are rule schema direct derivations H1 ⇒r2,m′2,β X and H2 ⇒r1,m′1,α X. Furthermore,
it also follows that both G ⇒r1,m′1,α H1 ⇒r2,m′2,β X and G ⇒r2,m′2,β H2 ⇒r1,m′1,α X are
sequentially independent.

Example 10 (Commutating independent derivations). Figure 3.6 shows the com-
mutativity of the independent derivations of Example 8 involving instances of
the schema relabel. The top derivations are the original G ⇒ H1 (top left) and
G ⇒ H2 (top right), and the bottom derivations are the joining derivations H1 ⇒ X
(bottom left) and H2 ⇒ X (bottom right).

3.4 Generalized rule schemata

In the previous sections we discussed the independence condition and associated
commutativity property without much attention to the practical aspects of the
condition. That is, from the point of view of a confluence checker, it would be
desirable to analyse as few conflicts as necessary to establish/disprove confluence.
As already observed, the interface of schemata plays a crucial role in determining
whether derivations are independent.

The main problem we explore in this section is this: how to relax the restric-
tion of a rule schema interface such that pairs of derivations which have been
previously in conflict are now considered independent, but without changing the
semantics of schema application nor the established notion of independence.

To illustrate the problem, consider the following GP 2 schema relabel2, a vari-
ant of relabel given in Figure 3.2, that adheres to the convention that the interface
consists of unlabelled nodes only:

x
1

y

2

0

relabel2(x,y:int)

←
1 2

→ x+y

1

y

2

1

Operationally, the schema relabels node 2 without needing to (it receives the same
label in the right-hand graph). This means any pair of derivations where node 2 is
a common node would be in conflict, but the derivations would have the Church-
Rosser property given no other items are reason for a conflict.

Our solution is to lift the restriction on GP 2 schema interfaces, and propose
so-called generalized rule schemata which can be obtained algorithmically from
existing schemata by inserting additional information in a schema’s interface in

57

X
⇐

H 2H
1 ⇒

X

H 1
⇐

G G
⇒

H
2

1 30

Lβ
2

3

Kβ
2

4 31

Rβ
2

1 30

1 20

0

G

3

1 20

0

D2

4 31

1 20

0

H2

1 20

Lα
1

2

Kα
1

3 21

Rα
1

1 30

2

0

D1

1 30

3 21

0

H1

1 30

Lβ
2

3

Kβ
2

4 31

Rβ
2

3

3 21

0

D2

4 31

3 21

0

X

1 20

Lα
1

2

Kα
1

3 21

Rα
1

4 31

2

0

D1

Figure 3.6: Commutativity diagram of independent derivations.

58

the form of labels and edges. This approach can be viewed as rule transformation
where the objects under transformation are rules rather than graphs.

Formally, our algorithm takes a schema and returns an equivalent generalized
schema with the same left- and right-hand graphs but a ‘maximal’ interface graph.
Our algorithm does not change the semantics of the transformed schema, and thus
we can simply equate schemata with their generalized versions, and there is always
a unique generalized schema. There are three types of changes to the interface:
(1) nodes which are not relabelled by the original schema become labelled in the
interface, using the same label; and (2) edges which get reinserted in the same
position become preserved as members of the interface; and (3) the edges inserted
in the previous step are labelled given any label attached to their images are also
labelled.

Definition 3.5 (Generalized rule schema). Given a rule schema r = 〈L← K → R〉,
its generalized rule schema r′ = 〈L ← K′ → R〉 contains the same left- and right-
hand graphs as r but the interface K′ obtained from K as follows:

1. for each node n ∈ K, check if it has the same labels in L and R – if lL(n) =
lR(n) then lK′(n) = lL(n)

2. for each deleted edge e ∈ L − K between preserved nodes, check if there
exists a corresponding created edge e′ ∈ R with the same source and target
(s(e′) = s(e) and t(e) = t(e′)), if yes then insert e in K′

3. For each edge added in the previous step, check if the corresponding edge
has the same label – if lR(e′) = lL(e) then lK′(e) = lL(e)

This definition specifies how to obtain the generalized rule schema. For example,
the schema relabel2 has its generalized version as relabel: node 2 is preserved
and has the same label in L and R and step 1 of generalization gives it the label y
in K′. Note the edge between nodes 1 and 2 is not part of the interface as there is
not a corresponding edge in R in the same direction.

The above process does not insert nodes in the interface K′. This is because
nodes have special status due to the dangling condition — in GP 2, the program-
mer has explicit control over which nodes are part of the interface, and thus can
control whether the rule is applicable or not. Changing the interface w.r.t. addition
of nodes would change the situations in which the rule is applicable. For example,
the rule 〈 ← ∅→ 〉 is only applicable to isolated empty-labelled nodes (nodes
not connected to any other nodes) whereas the rule 〈 ← → 〉 is applicable
to all empty-labelled nodes.

Example 11 (Reducing conflicts). In Figure 3.7 is a pair of conflicts of the schema
relabel2. The derivations are in conflict because the common node 2 gets rela-
belled by both derivations, albeit to the same value. In the generalized version of
the schema (which is just the schema relabel shown previously), node 2 preserves

59

its label, and thus the same situation is actually a non-conflict. This is depicted in
Figure 3.8 using the same graph G, same schema instances, and same matches as
above. The only changes are to the interfaces and the intermediate graphs D1 and
D2. This time the derivations are independent.

3 20
Lβ

2 Kβ
2

5 21
Rβ

2

1 2

3

0

0 0

G

1
0

0

D2

1 2

5

0

10

H2

1 20
Lα

1

|

Kα
1

3 21
Rα

1

3
0 0

D1

|

3 2

3

1

0 0

H1

Figure 3.7: Conflicting derivations involving relabel2.

3 20
Lβ

2

2

Kβ
2

5 21
Rβ

2

1 2

3

0

0 0

G

1 20

0

D2

1 2

5

0

10

H2

1 20
Lα

1

2

Kα
1

3 21
Rα

1

2

3
0 0

D1

3 2

3

1

0 0

H1

Figure 3.8: Independent derivations involving the generalized relabel2.

Generalized schemata can be seen as a conservative extension of GP 2 schemata
for the following reasons. First, only the interface of a schema is changed, and
the underlying theoretical framework of rules with relabelling already allows for
such an extension. Second, the change of the interface is such that edges that are
deleted/created are rather preserved, and labels that are reinstated to the same
value are rather not changed at all.

These extensions need not constitute a change to the semantics nor implemen-
tation of GP 2. The purpose of these is to reduce the number of conflicts during
confluence analysis rather than during program execution, meaning the existing
compiler would not need changes in its internal workings to handle generalized
schemata. Furthermore, nor would the language specification need changing be-
cause these extensions are in the context of confluence checking. However, changes

60

to the way the interface of a schema is specified would be welcome as it would al-
low the programmer more control over the meaning of a schema.

3.5 Related work

The earliest formalization of independence in double-pushout graph transforma-
tion with injective rules was given by [EK76] that expressed independence as a
set-theoretic condition (the intersection of matches is a subset of the intersection
of interfaces) and proved the associated Local Church-Rosser Theorem for inde-
pendent derivations. For term rewriting, steps are independent if they have a
non-critical overlap [BS01]. The algebraic formulation (as existence-of-morphisms)
has been used when extending the notion of independence to categories other
than graphs such as High Level Replacement systems [EHKP91], DPO transfor-
mations in Adhesive categories [LS05], graph transformation with negative appli-
cation conditions [LEO06], and many others. These richer notions of rewriting
also introduce more involved conflict types, e.g. when negative application condi-
tions are present, derivations can be in produce-forbid conflict where a rule creates
a structure forbidden by the other rule [Lam09].

[KDL+15] extend the notion of independence by giving a separate condition
called ‘direct confluence’ that checks the Church-Rosser property for steps that are
dependent but produce isomorphic graphs when attribute operations are taken
into account. If this is the case, then the steps are not conflicting, i.e. the relation-
ship between independence and conflicts is refined.

The proof of equivalence between the set-theoretic formulation and the existence-
of-morphisms condition has been proven for graphs and injective rules e.g. in
[EEPT06, Fact 3.18] by exploiting specific properties of pushouts in the category of
graphs.

3.6 Summary

In this chapter, we have:

• defined what it means for pairs of schema derivations to be independent and
in conflict, by lifting the existing notions for derivations with relabelling

• shown a characterization of independence that states no common nodes are
deleted or relabelled by a pair of independence derivations;

• proven that independent derivations commute (Local Church-Rosser Theo-
rem), by lifting the corresponding result about derivations with relabelling;

• proposed generalized rule schemata which are a conservative extension of
GP 2 schemata but have a ‘maximal’ interface, and thus fewerf conflicts.

61

Chapter 4

Symbolic Critical Pairs for GP 2

In Chapter 3, we developed the notions of independence and conflict of rule
schema derivations. The reason for this distinction is that independent pairs of
direct derivations commute, which has been called the Church-Rosser property
[BN98, CR36], whereas conflicting pairs of derivations may not be confluent at all.

The next step we take in this thesis is to study pairs of direct derivations which
are in conflict. In this chapter we develop critical pair analysis for sets of rule
schemata, which follows the approach initiated by [KB70] for term rewriting and
later by [Plu93] for graph transformation. We begin by introducing symbolic criti-
cal pairs, which are pairs of derivations at the level of schemata, i.e. labelled with
expressions, that are minimal and in conflict. We work at the level of graphs la-
belled with expressions to avoid an infinite number of such pairs. Then we give
an algorithm for their construction, and show the set of critical pairs is complete
(that is, every pair of conflicting derivations is represented by a critical pair) and
finite under suitable restrictions. Finally, we briefly review related work on critical
pairs for graph transformation.

This chapter is based on [HP16b]. Schemata are assumed to be unconditional.

4.1 Confluence Analysis with Critical Pairs

Critical pair analysis is a technique for rigorously reasoning about the confluence
of a set of rewriting rules. Central to the approach is the notion of a critical pair
- a pair of direct derivations H1 ⇐r1 G ⇒r2 H2 with suitable properties. Roughly
speaking, the pair has to be (1) minimal meaning the graph G is an overlap of
the left-hand graphs of the rules r1 and r2, i.e. all items in G originate from the
rules’ left-hand graphs; and (2) conflicting, i.e. either derivation modifies an item
matched by the other. The idea of critical pair analysis is to restrict the state space
of a confluence checker: instead of checking all pairs of conflicting derivations for
confluence, check only a finite set of representatives. (Confluence of critical pairs
is often referred to as joinability.) If all critical pairs are joinable, then the set of
rules is locally confluent.

The minimality property of critical pairs gives us an intuition of how to con-

62

struct them, namely by considering the rule schemata of a GP 2 program. Take,
for example, the following schema:

x
1

y

2

a

unlabel(a,x,y:list)

⇒
1 2

and consider an overlap of the left-hand graph of unlabel with itself such that the
two resulting matches are different. An obvious critical pair would be

1 2

3

3

5
1

1

2

2

3

3

4 5
1

1 2 3

4
⇐ ⇒

Figure 4.1: A conflict of unlabel with itself.

where the middle graph is obtained by overlapping the left-hand graph of unlabel’s
instance with a copy of itself, and the graphs on either side are the results of apply-
ing the schema in conflicting ways. The pair is in conflict because both derivations
relabel a common node (2) to the empty list. The critical pair represents all pairs of
derivations where unlabel is in conflict with itself by overlapping on a node. The
critical pair is joinable since unlabel can be applied to either result graph but with
a different assignment for its variables, resulting in the common graph
.

Constructing and using critical pairs is appealing because they are constructed
by overlapping the rule schemata of a program rather than depending on the in-
put graphs. (An analysis that accounts for properties of the input graph is more
complicated, and will be discussed in our Shortest Distances Case Study of Sec-
tion 7.2.) In a sense, critical pairs capture the conflict reasons of the rule set whilst
avoiding the need to look at all possible conflicts [LEO08].

To be useful, the set of critical pairs needs to have several properties. First, it
should be finite and computable. That is, there should exist a terminating algorithm
that, given a set of rules, returns exactly all of its associated critical pairs. Typically,
proving the correctness of such a construction involves appealing to the definition
of critical pairs. The above example overlap however illustrates that there might
be an infinite set of critical pairs due to GP’s infinite label algebra – different
assignments for the variables of unlabel result in a different critical pairs:

3 3

3

3

3
3

3

3

3

3

3

3 3
3

3 3 3

3
⇐ ⇒

4 4

4

4

4
4

4

4

4

4

4

4 4
4

4 4 4

4
⇐ ⇒

. . .

63

All we did was change the assignments of the schema to different concrete values.
To avoid this, we instead introduce critical pairs labelled with expressions.

Another desirable property of the set of critical pairs is completeness. That is,
each possible conflict is represented by a critical pair (according to some notion of
representation). Unfortunately, given an infinite label set, it is not always possible
to achieve completeness depending on how critical pairs are defined, as already
shown in Chapter 2 for the case of attributed graph transformation. Instead, one
needs to impose certain syntactic restriction on rules, and we use a so-called left-
linearity condition that forbids repetition of label variables (see Remark 3).

Last but not least, joinability of the critical pairs should imply the confluence
of the conflicts that the critical pairs represent. That is, if one can show that each
critical pair is joinable, then all conflicts are confluent. (For the time being, for
a terminating set of rules we assume joinability is a decidable property.) How-
ever, it turns out joinability of all critical pairs need not always imply confluence
of the rewrite rules, in contrast to the situation in term rewriting as discussed in
Chapter 2. The reason is the way critical pairs are embedded into larger context,
as observed in [Plu93]. Instead, a stronger notion of joinability (strong joinability)
needs to be considered. It turns out that strong joinability of all critical pairs is suf-
ficient for showing local confluence, but is not a necessary condition. From now on
we refer to strong joinability simply as joinability, unless explicitly distinguished.
We will explore in detail joinability and confluence implication in Chapter 6.

4.2 Symbolic Critical Pairs

Having given an intuition for what critical pairs are, we now proceed to give a
proper definition. This definition relies on the definition of the system of equations
induced by overlapping two left-hand graphs.

Informally, a pair of derivations T1
r1,m1,σ⇐= S

r2,m2,σ
=⇒ T2 between graphs labelled

with expressions is a critical pair if it is in conflict and minimal. Minimality means
the pair of matches (m1, m2) is jointly surjective – the graph S can be considered as
a suitable overlap of Lσ

1 and Lσ
2 . Computing overlaps is the first step of our critical

pair construction algorithm; we ignore the labels of overlaps for the time being.

Definition 4.1 (Overlap; Induced System of Equations). Two graphs L1 and L2
labelled with expressions are overlapped if there exists a pair of jointly surjective
premorphisms m1 : L1 → S, m2 : L2 → S to a graph S. The graph S is the overlap of
L1 and L2. An overlap induces a system of (label) equations EQ defined as:

EQ(L1
m1→ S

m2← L2) = {lL1(a) ?
= lL2(b) | (a, b) ∈ L1 × L2 with m1(a) = m2(b)}

Note the definition is symmetric in that it does not matter the way we write
the surjective morphisms, i.e. we consider the systems EQ(L1

m1→ S
m2← L2) and

EQ(L2
m2→ S

m1← L1) to be equivalent.

64

1

2

3

4

(a) S1

1

2=3

4

(b) S2

3

1=4

2

(c) S3

1=3

2

4

(d) S4

1

2=4

3

(e) S5

1=3

2=4

e1 e2

(f) S6

1=4

2=3

e1 e2

(g) S7

1=3

2=4

e1=e2

(h) S8

Figure 4.2: Overlaps of unlabel with itself.

Example 12 (Overlap; Induced System of Equations). Consider again the schema
unlabel, more specifically its left-hand graph

L1 = x1

1

y1

2

a1

and its copy
L2 = x2

3

y2
4

a2

where in L2 for clarity we have changed the nodes identifiers and indexed the
variables. The overlaps of L1 and L2 (when ignoring labels) are given in Figure 4.2
where we have used coloured boxes to distinguish between the matches for L1
(blue) and L2 (red). Overlapped nodes/edges are given identifiers like (2=3) to
denote which nodes/edges of L1 and L2 overlap.

In the graph S1 no items overlap, i.e. the graph is the disjoint union of the
unlabelled versions of L1 and L2, while in S8 all items are overlapped. The other
graphs (S2 . . . S7) have a varying amount of overlapped items. Note that S6 and S7
are denoted without boxes for L1 and L2 since the matches overlap on both nodes.
Instead, the edge identifiers are given, from which the matches become obvious.
Note that S2 is the overlap of the conflicting pair in Figure 4.1.

Each overlap induces a system of label equations, shown in Figure 4.3 The
intuition is that these systems of equations need to be solved in order to decide
the labels of each overlap.

Each set of equations is constructed by considering each pair of overlapped
items. S1 is the disjoint union (no common items) and hence the induced system
of equations is empty, while for S2 we have to require that the labels of node 2 (in
L1) and nodes 3 (in L2) are made equal.

A substitution σ is a mapping from variables to expressions. For critical pairs,
σ is taken from a complete set of unifiers of the induced system of equations.

65

EQ(S1) = {}

EQ(S2) = {y1
?
= x2}

EQ(S3) = {y2
?
= x1}

EQ(S4) = {x1
?
= x2}

EQ(S5) = {y1
?
= y2}

EQ(S6) = {x1
?
= x2, y1

?
= y2}

EQ(S7) = {x1
?
= y2, y1

?
= x2}

EQ(S8) = {x1
?
= x2, y1

?
= y2, a1

?
= a2}

Figure 4.3: Systems of equations induced by each of the overlaps S1, . . . , S8.

Informally, given a equation a ?
= b between simple list expressions (i.e. label expres-

sions occurring in left-hand graphs of rule schemata), a unifier for that equation
is a substitution such that σ(a) ≈ σ(b) where ≈ denotes equivalence of GP 2 list
expressions. The intuition extends to systems of equations where a unifier unifies
each equation given. We give a proper definition of a unifier and complete set
of unifiers in Chapter 5. For now, we assume there exists an algorithm UNIF to
compute such a set of unifiers for a given system of equations. The purpose of
substitutions is to construct the rule instances of the critical pair.

Formally, we define critical pairs as minimal conflicting derivations that are
labelled with expressions (rather than with GP 2 host graph labels). Each symbolic
critical pair represents a possibly infinite set of conflicting host graph derivations.
What is special about our critical pairs is that they show the conflict in the most
abstract way. To disambiguate between the critical pairs of our approach and
conventional critical pairs found in literature (e.g. [Plu93]), we introduce them as
symbolic.

Definition 4.2 (Symbolic Critical Pair). A symbolic critical pair is a pair of direct
derivations T1

r1,m1,σ⇐= S
r2,m2,σ
=⇒ T2 on graphs labelled with expressions such that:

(1) σ is a substitution in UNIF(EQ(L1
m1−→ S

m2←− L2)) where L1 and L2 are the
left-hand graphs of r1 and r2, m1 and m2 are injective premorphisms;

(2) the pair of derivations is in conflict;

(3) S = m1(Lσ
1) ∪m2(Lσ

2), meaning thatS is minimal;

(4) rσ
1 = rσ

2 implies m1 6= m2.

66

Remark 3 (Distinct variables; left-linearity). For the rest of this chapter, we assume
the variables occurring in rule schemata are distinct, which can always be achieved
by variable renaming. This is useful when we have to overlap left-hand graphs of
schemata, as in the previous example – the graph L2 is a copy of L1 with its
variables renamed. This assumption allows us to consider pairs of derivations
using the same assignment or substitution for instantiation.

We also assume rule schemata are left-linear - in a left-hand graph of a schema,
no list variable is shared between different node/edge labels. This will be neces-
sary for our unification algorithm UNIF to give a finite set of unifiers for a system
of equations (e.g. see EQ(S7) in Example 12).

Remark 4 (Symbolic derivations). The graphs S, T1, and T2 of a symbolic critical pair
are labelled with expressions, and hence the derivations S ⇒ T1 and S ⇒ T2 are
not ordinary GP 2 direct derivations as defined in Chapter 2 which only consider
derivations on host graphs. For the duration of this chapter, we abuse notation
while in Chapter 6 we properly define the rewrite relation V on graphs labelled
with expressions.

Example 13 (Symbolic critical pair of unlabel). An example symbolic critical pair
of the unlabel rule is shown in Figure 4.4 where the middle graph is obtained
by overlapping the left-hand graph of the unlabel schema with itself, and the
graphs on either side are the results of applying the schema in conflicting ways.
Note that this symbolic critical pair looks very similar to the pair of conflict-

1 2

y2

3

a2
x1

1

x2

2

y2

3

a1 a2
x1

1 2 3

a1
⇐ ⇒

Figure 4.4: A symbolic critical pair of unlabel with itself.

ing derivations in Figure 4.1. In fact, they are related by the instantiation λ =
{x1 7→ 1, y1 7→ 2, y2 7→ 3, a1 7→ 4, a2 7→ 5}.

There are 5 more symbolic critical pairs obtained by self-overlapping unlabel,
induced by the overlaps S3 . . . S7 of Figure 4.2. We will list them all in the next
subsection. The overlap S1 does not lead to a critical pair since the derivations
would be independent, and the overlap S8 violates the (distinction) condition (4)
requiring the matches to be different given the same rule instances.

4.3 Construction and Finiteness

Having defined critical pairs in our setting, in this subsection we give an algo-
rithm for their construction. Informally, this requires computing graph overlaps
and then solving the induced system of equations using our unification algorithm
(Chapter 5), giving rise to a set of unifiers per overlap. The pair of derivations is
checked for being in conflict, and if so, it is a symbolic critical pair.

67

Input : Left-linear rule schemata r1 = 〈L1 ← K1 → R1〉 and
r2 = 〈L2 ← K2 → R2〉

output: Set of symbolic critical pairs over r1 and r2

1 Compute all overlaps of L1 and L2, giving rise to pairs of jointly surjective

premorphisms (L1
m1→ S

m2← L2) into an unlabelled graph S
2 foreach overlap (L1

m1→ S
m2← L2) do

3 Check that m1 and m2 satisfy the dangling condition w.r.t. r1 and r2.
4 Check that the conflict condition is satisfied, i.e. at least one common

item is deleted or relabelled.
5 foreach unifier σ in UNIF(EQ(L1

m1→ S
m2← L2)) do

6 Instantiate r1 and r2 using σ to obtain the rules rσ
1 and rσ

2 , and if
rσ

1 = rσ
2 check that m1 6= m2

7 Define the labelling function of S as

lS(x) =

lLσ
1
(x′) if ∃x′ ∈ Lσ

1 such that m1(x′) = x

lLσ
2
(x′) if ∃x′ ∈ Lσ

2 such that m2(x′) = x

8 Construct the (critical) pair of derivations T1
r1,m1,σ⇐= S

r2,m2,σ
=⇒ T2.

9 end
10 end

Algorithm 2: Construction of Symbolic Critical Pairs.

The construction is given as the following theorem. We show that the construc-
tion produces exactly all critical pairs according to Definition 4.2.

Theorem 4.1 (Construction Correctness). Given left-linear rule schemata r1 = 〈L1 ←
K1 → R1〉 and r2 = 〈L2 ← K2 → R2〉, the construction of algorithm 2 computes all
symbolic critical pairs of r1 and r2 up to isomorphism.

Proof. The construction computes only symbolic critical pairs (according to Defi-
nition 4.2) - when line 8 is reached, the pair of derivation exists, is minimal and in
conflict, and is labelled using one of the substitutions returned by UNIF. The con-
struction computes all critical pairs since all overlaps and all unifiers per overlap
are considered.

The construction of symbolic critical pairs is similar to that of conventional crit-
ical pairs described in subsection 2.3.4: the left-hand graphs of the two schemata
are overlapped while ignoring labels, the labels of overlapped items are checked
for equality, and then certain syntactic properties are checked. The most important
difference occurs when overlapping graph nodes or edges since unification needs
to be considered. We use our unification algorithm UNIF which, given a system
of label equations, terminates with a finite set of unifiers due to the sufficient la-
bel restriction of left-linearity, thus making the construction also terminate with a
finite set of critical pairs. Recall that the number of conventional critical pairs is

68

3 1=4

y1
2

a1
x2

3

x1
1=4

a2 y1
2

a1 x2
3 1=4

a2

2
⇐ ⇒

1=3

2

y2

4

a2 x2

1=3

y1

2

y2

4

a1

a2
1=3

y1

2

4

a1

⇐ ⇒

1

2=4
x2

3

a2

x1

1
y2

2=4
x2

3

a1

a2

x1

1

2=4

3

a1

⇐ ⇒

1=3

2=4

a2

x2 1=3

y2 2=4

a1 a2

1=3

2=4

a1⇐ ⇒

1=4

2=3

a2

y2 1=4

x2 2=3

a1 a2

1=4

2=3

a1⇐ ⇒

Figure 4.5: The critical pairs of unlabel with itself (except for S2).

infinite in general due to the infinite number of rule instances that a schema rep-
resents. Consequently, the computation of symbolic critical pairs is more suitable
for automation as part of a confluence checker.

Example 14 (Construction of unlabel’s critical pairs.). All overlaps of unlabel with
itself (when ignoring labels) were shown in Example 12, which we would get after
line 1 of the construction algorithm. Since the schema doesn’t delete anything, the
dangling condition check that follows passes for all overlaps. However, the check
for conflicts rules out S1 as a critical pair since there are no common items, i.e.
the steps would be independent. The algorithm then computes the sets of unifiers
for each induced system of equations. It is not difficult to see these unifiers only
involve variable renaming, e.g. the labelling function lS3 assigns the overlapped
node (1 = 3) the label x1, and the other nodes/edges with labels of their pre-
images in L1 and L2. The check on line 6 rules out the overlap S8 since the matches
are equal.

All resulting symbolic critical pairs are shown in Figure 4.5. The symbolic
critical pair based on S2 was shown in Figure 4.4.

69

The fact that the set of critical pairs is finite is a direct consequence of our
construction algorithm. Formally, we state this as the following fact.

Corollary 1 (Finiteness of Symbolic Critical Pairs). For each pair of left-linear rule
schemata r1 and r2, the set of symbolic critical pairs induced by r1 and r2 is finite.

Proof. Since the Theorem 4.1 construction computes exactly all critical pairs and
terminates, then the set of symbolic critical pairs must be finite.

4.4 Completeness of Symbolic Critical Pairs

In this section, we show that our critical pairs are complete, i.e. they represent all
host graph conflicts. Intuitively, representation means that each conflict is an em-
bedding of a critical pair instance into larger context — by means of an instantiation
combined with an embedding morphism.

Our notion of representation is more involved than standard graph transfor-
mation (e.g. [EEPT06]), where it is enough to consider an embedding morphism
between a host graph conflict and its critical pair. Instead, we consider the rep-
resentation to consist of an instantiation and a graph morphism as components.
This is very similar to the approach taken in the framework of attributed graph
transformation where the match morphisms already contain a label instantiation
and graph morphism as components.

The completeness proof we give is concerned with the properties of the class of
partially labelled graphs G⊥ and the classes of horizontal and vertical morphisms
in direct derivations, namely the class of injective label preserving morphismsM
and the class of injective label and undefinedness preserving morphisms N . Their
basic properties have already been studied in [HP12] and [HP02]. We list these
properties in Appendix A and refer to them in proofs as Fact A.

The proof also relies on a restriction lemma, the idea being that an arbitrary
host graph conflict can be restricted to a minimal one, roughly corresponding to a
conventional critical pair. The lemma is formulated only for direct derivations as
subsequently we only require it for restricting conflicts which are pairs of direct
derivations. Restriction is in some sense the inverse of extending a derivation to a
larger context.

Lemma 6 (Restriction). Given a direct derivation G r,m,α
=⇒H, a morphism e : P→ G ∈ N ,

and a match m′ : Lα → P ∈ N such that m = e ◦ m′, then there is a direct derivation
P r,m′,α
=⇒ Q leading to the (extension) diagram below.

Lα Kα Rα

P N Q

G D H

m′

m

e

(2) (3)

(1) (4)

70

Proof. We start by constructing the pullback (1) of (D → G ← P), inducing a
morphism Kα → N such that the diagram (1+2) commutes (Fact A.1.2). Since D →
G ∈ M then (1) is anM-pullback. From P→ G ∈ N we get that N → D ∈ N due
to stability of N alongM-pullbacks (Fact A.1.3). Due to commutativity of (KαND)
and Kα → D, N → D ∈ N we get Kα → N ∈ N by decomposition property of
N (Fact A.1.1). By applying theM,N -pushout-pullback decomposition property
(Fact A.2.2), we get that squares (1) and (2) are NPOs. The argument that the
property can be applied is as follows: (a) square (1+2) is NPO by definition, (b)
square (1) is a pullback by construction, (c) Kα → Lα ∈ M by definition, (d)
P→ G ∈ N by construction, (e) Kα → N ∈ N was shown.

We then construct the pushout (3) over Kα → Rα ∈ M and Kα → N ∈ N .
This construction is possible because all M,N -pushouts exist (Fact A.1.2). We
obtain the induced morphism Q → H such that the diagram (3+4) commutes. By
pushout decomposition in any category, the square (4) is a pushout. We also show
it is a pullback. The argument needed is that M,N -pushouts are also pullbacks
(Fact A.2.1). The morphism N → Q ∈ M due to the following reasons - (3) is
an M,N -pushout by construction, Kα → Rα ∈ M by definition and M is stable
under M,N -pushouts (Fact A.1.3). We have already shown that N → D ∈ N .
Therefore (4) is anM,N -pushout and NPO.

The main theorem — that our critical pairs are complete — follows from this
lemma, the results about morphisms in our category, and the completeness result
of our unification algorithm (Chapter 5). The first part of the proof is concerned
with proving that each pair of conflicting derivations can be restricted to a minimal
conflicting pair of derivations on host graphs (e.g. see the proof of Lemma 6.22 in
[EEPT06]). In the second part we show that each conflicting and minimal pair of
host graph derivations is an instance of a symbolic critical pair. In this second part
we use the fact that our unification algorithm is complete assuming left-linearity.

Theorem 4.2 (Completeness of Symbolic Critical Pairs). For each pair of conflicting
rule schema applications H1

r1,m1,α⇐= G
r2,m2,α
=⇒ H2 between left-linear schemata r1 and r2 there

exists a symbolic critical pair T1
r1⇐ S

r2⇒ T2 with the (extension) diagrams between
H1 ⇐ G ⇒ H2 and the critical pair’s instance.

PQ1 Q2⇐= =⇒

GH1 H2⇐= =⇒

ST1 T2⇐= =⇒

Proof. We start by decomposing the pair of matches (m1 : Lα
1 → G, m2 : Lα

2 → G)
(Figure 4.6) to obtain a graph P = m1(Lα

1) ∪ m2(Lα
2) = m′1(Lα

1) ∪ m′2(Lα
2) together

with jointly surjective matches (m′1 : Lα
1 → P, m′2 : Lα

2 → P) and morphism e :
P → G ∈ N (Fact A.3.3) such that m1 = e ◦ m′1, m2 = e ◦ m′2, and m′1, m′2 ∈ N
(Fact A.1.1).

71

G

P

Lα
1Kα

1Rα
1 Lα

2 Kα
2 Rα

2

N1Q1

D1H1

N2 Q2

D2 H2

m1 m2

m′1 m′2

e(1) (5)

(2) (6)(3) (7)

(4) (8)

Figure 4.6: Decomposed pushouts.

Next we apply Lemma 6 twice to obtain the restricted derivations P⇒ Q1 and
P ⇒ Q2. It is not difficult to show that Q1 ⇐ P ⇒ Q2 is minimal and in conflict
using the commutativity of (1), the properties of (m′1, m′2), and Definition 3.1. We
know that (m′1, m′2) are jointly surjective by construction. Assume that the deriva-
tions are independent. This means there exist morphisms Lα

1 → N2, Lα
2 → N1 such

that Lα
1 → N2 → P = Lα

1 → P and Lα
2 → N1 → P = Lα

2 → P. We know that
m1 = e ◦ m′1 by construction. We get Lα

2 → G = Lα
2 → P → G = Lα

2 → N1 →
P → G. We have that square (1) commutes: N1 → P → G = N1 → D1 → G.
Therefore Lα

2 → G = Lα
2 → N1 → D1 → G, meaning there exists a morphism

Lα
2 → D1 with the required independence property in Definition 3.1. Similarly we

obtain morphism Lα
1 → D2. This means that H1 ⇐ G ⇒ H2 is independent, a

contradiction. Therefore, Q1
r1,m′1,α
⇐= P

r2,m′2,α
=⇒ Q2 is a conflicting and minimal pair of

derivations. This concludes the first part of the proof.
For the second part we will show that Q1 ⇐ P ⇒ Q2 is an instance of a

symbolic critical pair T1 ⇐ S ⇒ T2. The graphs have the same node/edge sets
as Q1 ⇐ P ⇒ Q2 but different labels. We use the fact that the assignment α is
an AU-unifier for the system of equations EQ(L1, L2, m1, m2) and therefore, by the
completeness of the generalized unification algorithm (Theorem 5.4) (r1 and r2 are
left-linear), α is an instance of a unifier σ ∈ UNIF(EQ(L1, L2, m′1, m′2)) such that
α = λ ◦ σ where λ is some assignment.

First, instantiate L1 and L2 using σ to obtain graphs Lσ
1 and Lσ

2 . Then define
S = m′1(Lσ

1) ∪m′2(Lσ
2). This definition is sound because σ is a unifier. It is easy to

show that P ∼= Sλ using α = λ ◦ σ — we have that Sλ = m′1(Lλ◦σ
1) ∪ m′2(Lλ◦σ

2) =
m′1(Lα

1) ∪m′2(Lα
2), but also P = m′1(Lα

1) ∪m′2(Lα
2) by construction.

We proceed by constructing the derivation S
r1,m′1,σ
=⇒ T1 - the double-pushout is

(9+10) of Figure 4.7 together with the instantiation squares right above it. The
morphism m′1 induces a morphism Lσ

1 → S ∈ N . We have that Kσ → Lσ
1 ∈

M. By uniqueness of M,N -pushout complements (Fact A.2.3), we get a graph
O1 such that square (9) is a M,N -pushout (and NPO) together with morphism
Kσ

1 → O1 ∈ N . The complement exists because m′1 satisfies the dangling condition
w.r.t. rα

1 and since the dangling condition is not concerned with labels, Lσ
1 → S

72

Sλ ∼= P

S

Lσ
1Kσ

1Rσ
1

L1K1R1

Lα
1σσ σ

α

λ

O1T1

N1Q1

λ

m′1

λ

(9)

λ

(10)

Figure 4.7: Construction of S⇒ T1 .

satisfies the dangling condition w.r.t. rσ
1 . Therefore we can also construct the

M,N -pushout (10) of Rσ
1 ← Qσ

1 → O1 to obtain the direct derivation S
r1,m′1,σ
=⇒ T1.

The same construction is applied to obtain S⇒ T2.

Finally, we show that T1
r1,m′1,σ
⇐= S

r2,m′2,σ
=⇒ T2 is a symbolic critical pair by using

Definition 4.2. We have that (m′1, m′2) are jointly surjective and σ is a unifier. It
remains to be shown that T1 ⇐ S ⇒ T2 are in conflict. Assume they are not, i.e.
there exist morphisms Lσ

1 → O2 and Lσ
2 → O1 such that Lσ

1 → O2 → S = m′1
and Lσ

2 → O1 → S = m′2. Since the graphs L1, Lα
1 , Lσ

1 and L2, Lα
2 , Lσ

2 have the
same node/edge sets, the above morphisms induce morphisms Lα

1 → N2 and
Lα

2 → N1 such that the independence conditions hold. This contradicts the fact

that Q1 ⇐ P⇒ Q2 is in conflict. Therefore T1
r1,m′1,σ
⇐= S

r2,m′2,σ
=⇒ T2 is a symbolic critical

pair.

Example 15 (Completeness diagram for unlabel). Consider the pairs of derivations
in Figure 4.1 and Figure 4.4. They form the layers of the diagram in Theorem 4.2.
The instantiation λ = {x1 → 1, y1 → 2, y2 → 3, a1 → 4, a2 → 5} ‘links’ the
symbolic critical pair to the concrete one.

4.5 Related Work

In this section we provide some pointers to related work on critical pairs. First, we
provide some historical references for critical pairs and confluence. Following this
we shall point to some recent parallel approaches extending the basic notions of
confluence analysis.

Theory. The concept of critical pairs was first developed in the area of term
rewriting [KB70], and later carried over to term graph rewriting [Plu94] and hyper-
graph rewriting [Plu93]. The approach has been extended to various flavours of

73

graph transformation systems, including graph transformation with negative ap-
plication conditions [LEO06], adhesive high-level replacement systems [EHPP04],
typed attributed graph transformation [HKT02, EPT04, GLEO12], M-adhesive
transformation systems with nested application conditions [EGH+12], SPO rewrit-
ing with negative application conditions [KMP05], layered graph transformation
[BTS00].

In the context of graph transformation, the undecidability of confluence was
first shown for hyper-graph rewriting in [Plu93] and later strengthened for DPO
graph transformation in [Plu05]. Confluence becomes decidable when all critical
pairs satisfy a special condition called coverability [Plu10], where a cover is a spe-
cial structure that essentially plays the role of non-deletable context attached to
persistent nodes. More recently, it has been shown that (non-ground) confluence
of DPO graph transformation with interfaces is decidable [BGK+17], where rather
than rewriting graphs one rewrites graph morphisms.

The paper [LE06] gives a more elaborate construction algorithm for the plain
graph transformation case. The idea is to statically analyse the rules to determine
whether (1) they can cause a conflict at all, e.g. a pair of non-modifying rules
1 cannot have conflicts; and (2) their overlap contains at least one modified item.
This is in contrast to constructing all possible overlaps of graphs and then checking
whether the derivations exist/conflict with each other. It remains an open question
whether this more involved construction leads to a significant optimisation. The
paper [LEO06] extends this critical pair construction algorithm to handle negative
application conditions (NACs).

Practice. Based on the rich theory of graph transformation, many tools have been
developed over recent years. However, only a few of them provide support for
conflict analysis.

The tool AGG [RET11] implements critical pair construction for the case of
typed attributed graph transformation. It supports several features like negative
application conditions, re-attribution, type graphs, layered transformations. In
this setting, graph attributes are represented by means of special data nodes and
linked to ordinary graph nodes/edges by attribution edges. This gives rise to
infinite graphs as, for example, all natural numbers will exist as separate data
nodes. Attributed rules contain a data node for each term in the term algebra
T(X). The critical pair construction however is restricted to rules whose attributes
are variables or variable-free. An earlier version of the construction was based on
computing a most general unifier of overlapped attributes [HKT02], which renders
the critical pairs incomplete (shown in [EEPT06, p. 198]). Attribute algebras are
treated as parameters.

Henshin [ABJ+10, SBG+17] is a tool for model transformation that has useful
support for several application areas such as model refactoring, pattern introduc-
tion, model evolution. The tool is based on concepts from attributed graph trans-
formation, offers a transformation language with formal semantics, and has rich

1A rule 〈L← K → R〉 is non-modifying if the inclusion L← K is an isomorphism.

74

support for attribute manipulation and application conditions. Henshin supports
DPO rules with negative / positive application conditions, attribution using either
literals or JavaScript expressions, injective / non-injective matching, rule orches-
tration, rule parameters (schemata). The critical pair module [BAHT15] (imple-
mentation available in Henshin v1.4) enables the detection of all potential conflicts
and dependencies of a set of Henshin rules. The implementation itself relies en-
tirely on AGG. Note the paper [BAHT15] does not say how the above rich rules
are translated and/or restricted to account for e.g. undecidability.

SyGrAV [Dec17, DKL+16, KDL+15] is a tool prototype aimed at formal verifi-
cation of symbolic graph transformations. The framework handles node-attributed
symbolic graphs combined with first-order logic formulas, with the intention that
graphs are attributed by variables only and whose values are constrained by the
formula. The tool is based on the theory of projective graph transformation sys-
tems over a fixed (but unspecified) data algebra. The critical pair component per-
forms construction of critical pairs for symbolic rules and also sub-commutativity
analysis (0-1 step joinability). The tool supports attributes that are integers, reals,
bitvectors (with finite domains) using the SMT-solver Z3 [dMB08], but without
support for strings in labels nor (non-nested) application conditions nor control
constructs. Since symbolic graph matching is undecidable in general, Z3 may be
unable to decide the validity of a formula during analysis. In those cases, the con-
flict is not discarded, ensuring soundness of the approach. The tool also uses a
pattern matching component called Democles.

The approach of [Dec17] has several similarities and some aspects are handled
differently. For example, graphs conditions are handled by the theoretical frame-
work (by using logic conjunction) whereas we do not handle conditions formally.
The actual restrictions on graph conditions that can be handled come from the
limited capabilities of Z3. Another difference are the kind of rules allowed — we
place restrictions in order to avoid an infinite number of critical pairs, which ac-
tually stem from the nature of the problem, whereas [Dec17] handles attributes as
a parameter (in the theoretical framework) and by relying again on Z3 to handle
undecidability at run-time. Application conditions during confluence analysis are
not supported. Similarly, control structures over rules are not formally treated, but
also the practical example (a campus management system) has no such control
flow and only a set of rules. A refreshing idea is the filtering of critical pairs who
violate the normal constraints of the system, as such critical pairs can be discarded
without violating the soundness of the approach. We exploit the same notion in
Section 7.2 (with the critical pair named SD6).

4.6 Summary

In this chapter we have:

• extended the conventional notion of critical pairs to the setting of GP 2
to allow for reasoning about the confluence of sets of unconditional rule
schemata;

75

• defined symbolic critical pairs that are minimal conflicts at the level of schemata;

• given a construction algorithm that involves a special-purpose E-unification
algorithm for GP 2 list expressions;

• shown that the set of such critical pairs is finite and complete under the
restriction of left-linearity;

• compared our approach with existing confluence analysis techniques in other
approaches.

76

Chapter 5

Unification of GP 2 labels

In Chapter 4, we introduced critical pairs for confluence analysis of sets of schemata,
and gave an algorithm for their construction by relying on a terminating algorithm
for computing their labels. We also showed that the set of critical pairs to be finite,
and that it represents all possible host graph conflicts. These properties rely on the
properties of the said algorithm.

The next step we take in this thesis is to introduce our rule-based unification
algorithm for solving systems of label equations. We show that the algorithm
terminates, and is sound meaning that each generated substitution is a unifier of
the input system. Moreover, the algorithm is complete meaning that every unifier
of the input system of equations is an instance of some unifier in the computed
set of solutions. Finally, we review related work on unification in critical pair
construction.

This chapter is based on our work in [HP15] which gives the unification al-
gorithm and proves termination and soundness. The completeness proof only
appeared in the long version of that paper [HP17b].

5.1 Solving Label Equations with Unification

Unification is an algorithmic process for solving equations between expressions,
and has a long tradition in automated reasoning [BS01]. The central idea of unifi-
cation is that of finding a unifier: given an equation between two expressions s and
t, find a unifier σ (a substitution) such that σ(s) ≈ σ(t). The choice of equivalence
≈ is important 1: under syntactic equality =, the process is called syntactic unifi-
cation; if one is given a set of identities E and thus considers equivalence modulo
E (=E), then the process is called equational unification (E-unification for short).
(Logically, E is a set of identities that are universally quantified, whereas the given
equation(s) is existentially quantified.)

To be more concrete, consider the unification problem P = 〈x : 1 =? y : 1〉
where x, y are list variables. To solve P, one has to replace the variables x,y by
expressions such that the resulting expressions are equivalent. An example unifier

1Some would even say crucial.

77

is σ = {x→ 1, y→ 1}, and its application to the expressions is σ(x : 1) = 1 : 1 =
σ(y : 1). Actually, the problem has an infinite number of such unifiers (in the
domain of integers). In syntactic unification however, it is sufficient to consider the
most general unifier, i.e. a unifier such that every other unifier can be obtained by
instantiation. In the given example, this is σ = {x→ y} since for all expressions e

we have {x→ e, y→ e} = σ{y→ e}. Computation of a most general unifier (if it
exists) is nearly linear in the size of the expressions.

Even though syntactic unification has been widely studied and applied in many
areas of reasoning, it is inadequate for the computation of critical pairs. As already
noted in Chapter 2, using only the most general unifier construction for label com-
putation leads to an incomplete set of critical pairs, and thus an unsound analysis.
Instead, one has to take into account the axioms valid in the label algebra. In our
setting, we consider solving equations in the theory of list concatenation ‘:’ that
is associative and has a unit element which is referred to as word unification in the
literature. Here the notion of a most general unifier can be extended to a com-
plete set of unifiers. Solving unification modulo associativity is decidable, albeit
in PSPACE [Pla99], and the set of solutions is infinite in general.

A related problem is to also generate the set of all unifiers for a given problem.
This problem becomes more complex when the generated set must be complete,
i.e. every solution is an instance of a generated solution, and minimal meaning
that every generated solution is unique. In the above example, the substitution
{x→ y} forms a minimal complete set of unifiers. However, for applications of
unification, one does not need the set of all unifiers, but rather a complete set from
which all unifiers can be generated.

Constructing and using sets of unifiers is necessary in our setting because to
construct critical pairs we have to overlap graphs labelled with expressions. In a
sense, the process of unification determines the labels of critical pairs in such a way
that we can prove the resulting critical pairs are suitable to be used in a confluence
checker. This is in contrast to e.g. placing severe restrictions on the syntax of labels
that appear in rule schemata which avoids the need for unification altogether, as
in the approach to attributed graph transformation [EPT04].

Constructing and using sets of unifiers is also appealing because it allows us
to solve systems of label equations that arise during construction of complete sets
of critical pairs. The label unification approach facilitates separation of concerns
when it comes to computing critical pairs and allows for the isolation of difficult
aspects of the associated proofs, whereas a uniform treatment of label computation
within the algebraic theory of graph transformation is cumbersome and makes
proofs difficult to establish.

We present our rule-based unification algorithm that solves systems of label
equations that copes with the equational axioms of GP 2 list concatenation. The
algorithm is essentially a tree generation process where nodes are labelled with
unification problems and edges represent applications of unification rules. The
input label equation is the root of the tree, and its solutions are leaves of the
tree. The algorithm produces a complete set of unifiers, but it is not minimal.
Furthermore, the algorithm deals with GP 2’s type system.

78

To be useful, the unification algorithm needs to have several properties. First,
it should be terminating and sound. That is, given a system of equations, it returns
a finite set of unifiers. Proving the correctness of such an algorithm is typically
done by induction on the unification rules, and its termination by defining a lex-
icographic ordering that reduces during each application step, thus proving the
unification tree has bounded depth. However, to avoid non-termination due to
the nature of unification in our setting, we place a restriction of left-linearity which
allows us to consider individual equations and combine their solutions rather than
having to consider systems of interdependent equations.

Another necessary property is completeness. As explained above, the computed
set of unifiers should represent all possible unifiers. The proof of this property
is rather complicated. It involves a separate algorithm that, given a unification
problem and a unifier, produces a branch in the unification tree associated with a
more general unifier. The intuition here is that the computation of such branches
proves a correspondence between the leaves of the unification tree and the desired
complete set of unifiers.

An interesting property is that of minimality. Minimality essentially means that
each pair of computed unifiers are incomparable, i.e. not instances of each other.
For unification problems where the complete sets of unifiers are finite, it is not nec-
essary to always return a minimal set of solutions, since dependent unifiers can
be effectively compared and removed. In this case, computational efficiency be-
comes an important factor. However, minimality is in general much more difficult
to achieve than correctness and completeness. We give a sufficient restriction that
ensures finiteness of the complete set of unifiers for a given system of equations,
and thus minimality concerns are avoided.

5.2 Preliminaries

We begin the exposition by giving some preliminary background on unification.
This is necessary to understand our unification algorithm and the formal proofs
of its properties. For general introduction and further reading on (E-)unification,
see [BS01] [BS94].

Informally, substitutions allow us to map variables to expressions. The notion
is required in the definition of critical pairs (labelled with expressions), and in the
construction of a complete set of unifiers. Substitutions can be seen as general-
ization of assignments. The notion of application can thus remain the same —
in label expressions, simply perform in-place replacement of variables with their
corresponding expressions. However, for the purposes of unification, we will also
need the ability to compose substitutions. This is due to the fact that our unification
algorithm is rule-based and thus needs to record partial solutions.

Definition 5.1 (Substitution; Application; Composition). A substitution is a family
of mappings σ = (σX)X∈{I,S,A,L} where σI : IVar → Integer, σS : SVar → String,
σA : AVar → Atom, σL : LVar → List. Here Integer, String, Atom and List are the
sets of expressions defined by the GP label grammar of Figure 2.8. By Dom(σ) we

79

denote the set {x ∈ Var | σ(x) 6= x} and by VRan(σ) the set of variables occurring
in the expressions {σ(x) | x ∈ Var}.

Applying a substitution σ to an expression t, denoted by σ(t) (sometimes tσ),
means to replace every variable x in t by σ(x) simultaneously. Composition of
substitutions λ and σ is written as λ ◦ σ (λ after σ). Given substitutions σ1, . . . , σn
with pairwise disjoint domains, their composition σ1 ◦ . . . ◦ σn is commutative.

It is useful to note that substitutions, like assignments, are well-typed in that
variables can only be mapped to expressions of less or equal type. Furthermore,
substitutions can be extended to mappings between terms in the usual way. To
simplify notation, we usually do not distinguish between a substitution and its
extension.

Example 16 (Substitution; Application; Composition). Consider the variables x ∈
LVar, n ∈ IVar and s ∈ SVar. We write σ = {n 7→ n+ 1, x 7→ s : −n : s} for
the substitution that maps n to n+ 1, x to s : −n : s and every other variable to
itself. The application of the substitution to the expression x : −n is σ(x : −n) =
s : −n : s : −(n+ 1).

Composing σ with σ′ = {s → “a“} leads to the substitution σ ◦ σ′ = {n 7→
n+ 1, x 7→ “a“ : −n : “a“, s 7→ “a“}. Note that during composition we have
applied σ′ to the existing expressions of σ.

Definition 5.2 (Unification problem). A unification problem is a pair of an equation
and a substitution

P = 〈s =? t, θ〉
where s and t are simple list expressions without common variables.

The symbol =? signifies that the equation must be solved rather than having to
hold for all values of its variables. The purpose of θ is for the unification algorithm
to record a partial solution (Section 5.3). An illustration of this concept will be seen
in Figure 5.3. When a problem is solved, we will represent it as the pair 〈, θ〉 that
has no equation component.

In Chapter 4, we already remarked that rule schemata need to be left-linear in
order to produce a finite complete set of unifiers and thus a finite complete set of
critical pairs. This restriction will be properly explained in Section 5.6 when we
show how the algorithm generalizes to systems of equations. Given this restriction,
the problem of solving a system of equations {s1 =? t1, s2 =? t2} can be broken
down to solving individual equations and combining the answers — if σ1 and σ2
are solutions to each individual equation, then σ1 ◦ σ2 is a solution to the combined
problem as σ1 and σ2 do not share (list) variables.

As stressed in the beginning of this chapter, the unification algorithm should
take into account the axioms valid in the label algebra. This this end, we define
unifiers (the solutions returned by our algorithm) to respect the axioms of list
concatenations, namely associativity and unity:

AU = {x : (y : z) = (x : y) : z, empty : x = x, x : empty = x}

80

where x, y, z are list variables. Note that brackets are part of the axioms even
though the GP 2 syntax omits brackets (exactly because list concatenation is asso-
ciative). Let the relation =AU be the equational theory on list expressions induced
by these axioms.

Definition 5.3 (Unifier). Given a unification problem P = 〈s =? t, θ〉 a unifier of P
is a substitution σ such that

σ(s) =AU σ(t) and σ(xi) =AU σ(ei)

for each binding {xi 7→ ei} in θ .

As mentioned, in general unification modulo associativity has an infinite num-
ber of unifiers. However, one need not compute all unifiers but only a represen-
tative set from which all other unifiers can be obtained by instantiation. For this
purpose, we define a quasi-ordering 5 on unifiers.

Definition 5.4 (More general unifier; Unifier Instance). A substitution σ is more
general on a set of variables X than a substitution θ if there exists a substitution λ
such that xθ =AU xσλ for all x ∈ X. In this case we write σ 5X θ and say that
θ is an instance of σ on X. Substitutions σ and θ are equivalent on X, denoted by
σ =X θ, if σ 5X θ and θ 5X σ.

If the set of variables X is irrelevant or clear from the context, we will often
omit it for clarity.

Remark 5 (Identity Substitution). The identity substitution id = {} maps every
variable to itself, and for every other substitution θ we have that id 5 θ because
id ◦ θ =AU θ. This will be useful later in the proof of completeness of the unification
algorithm.

Definition 5.5 (Set of All Unifiers; Failure; Initial and Solved Problem). The set of
all unifiers of a unification problem P is denoted by U (P). We say that P is unifiable
if U (P) 6= ∅. The special unification problem fail represents failure and has no
unifiers. A problem P = 〈s =? t, id〉 is initial and P = 〈 , θ〉 is solved.

Note that if a problem P = 〈 , θ〉 is solved, then θ ∈ U (P) by definition. This
observation will be useful when we prove the correctness of unification.

Definition 5.6 (Complete set of unifiers [Plo72]). A distinguished set C of substi-
tutions is a complete set of unifiers of a unification problem P if:

1. (Soundness) C ⊆ U (P), that is, each substitution in C is a unifier of P, and

2. (Completeness) for each θ ∈ U (P) there exists σ ∈ C such that σ 5X θ, where
X = Var(P) is the set of variables occurring in P.

Set C is also minimal if each pair of distinct unifiers in C are incomparable with
respect to 5X.

81

If a unification problem P is not unifiable, then by convention the empty set
∅ is a minimal complete set of unifiers of P. For reasons of efficiency, a complete
set of unifiers should be as small as possible, minimal at best. When minimality
cannot be achieved, the set should be at most finite, then its size is of practical
importance. For simplicity, we replace =? with = in unification problems from
now on.

Example 17 (Minimal Complete Set of Unifiers). The minimal complete set of uni-
fiers of the problem 〈a : x = y : 2〉 (where a is an atom variable and x,y are list
variables) is {σ1, σ2} with

σ1 = {a 7→ 2, x 7→ empty, y 7→ empty} and σ2 = {x 7→ z : 2, y 7→ a : z}.

We have σ1(a : x) = 2 : empty =AU 2 =AU empty : 2 = σ1(y : 2) and σ2(a : x) =
a : z : 2 = σ2(y : 2). Other unifiers such as σ3 = {x 7→ 2, y 7→ a} are instances of
σ2.

5.3 Unification Algorithm

Next, we present our rule-based unification algorithm UNIFY that solves systems
of label equations in the presence of list concatenation. The algorithm is essentially
a tree generation process where nodes are labelled with unification problems and
edges represent applications of unification rules. Due to left linearity, the algorithm
can consider each input equation in turn. Each input label equation is the root of
a (unification) tree, and its solutions are leaves of that tree.

The algorithm is similar to the A-unification algorithm presented in [Sch92]
which also terminates when the input problem has no repeated (list) variables,
and is sound and complete. Our approach can be seen as an extension from A-
unification to AU-unification, to handle the unit equations, and presented in the
rule-based style of [BS01]. Furthermore, the algorithm deals with GP 2’s type
system. The algorithm produces a complete set of unifiers, but it is not minimal.

Notation. We start with some notational conventions for the rest of this section:

• L, M stand for simple GP 2 expressions given in Definition 2.16,

• x, y, z stand for variables of any type (unless otherwise specified),

• a, b stand for

(i) simple string or integer expressions, or

(ii) string, integer or atom variables

82

Preprocessing. Given a unification problem P = 〈s =? t, θ〉, we rewrite the
expressions s and t using the reduction rules

L : empty→ L and empty : L→ L

where L ranges over list expressions. These reduction rules are applied exhaus-
tively before any of the transformation rules. For example,

x : empty : 1 : empty→ x : 1 : empty→ x : 1.

We call this process normalization. In addition, the rules are applied to each in-
stance of a unification rule (that is, once the formal parameters have been replaced
with actual parameters) before it is applied, and also after each unification rule
application.

Unique smallest type. As mentioned, the algorithm deals with GP 2’s typing
system. This is done by incorporating type checks when applying the unification
rules. Informally, they ensure variables can only be assigned expressions of equal
or lesser type. Formally, we say that each expression l (after being normalized) has
a unique smallest type, denoted by type(l), which can be read off the hierarchy in
Figure 2.7. We write type(l1) < type(l2) or type(l1) ≤ type(l2) to compare types
according to the subtype hierarchy. If the types of l1 and l2 are incomparable, we
write type(l1) ‖ type(l2).

Unification rules. Figure 5.1 shows the unification rules, the essence of our ap-
proach, in an inference system style where each rule consists of a premise and a
conclusion.

Remove: deletes trivial equations
Decomp1: syntactically equates a list variable with an atom ex-

pression or list variable
Decomp1’: syntactically equates an atom variable with an expres-

sion of lesser type
Decomp2/2’: assigns a list variable to start with another list vari-

able
Decomp3: removes identical symbols from the head
Decomp4: solves an atom variable
Subst1: solves a variable
Subst2: assigns empty to a list variable
Subst3: assigns an atom prefix to a list variable
Orient1/2: moves variables to left-hand side
Orient3: moves variables of larger type to left-hand side
Orient4: moves a list variable to the left-hand side

The rules induce a rewrite relation ⇒ on unification problems. In order to
apply any of the rules to a problem P, the problem part of its premise needs to be

83

〈L = L, σ〉
〈 , σ〉 Remove

〈x : L = s : M, σ〉 L 6= empty type(x) = list

〈L = M, σ ◦ {x 7→ s}〉 Decomp1

〈x : L = a : M, σ〉 L 6= empty type(a) ≤ type(x) ≤ atom

〈(L = M){x 7→ a}, σ ◦ {x 7→ a}〉 Decomp1′

〈x : L = y : M, σ〉 L 6= empty type(x) = type(y) = list x′ is fresh list variable
〈x′ : L = M, σ ◦ {x 7→ y : x′}〉

Decomp2

〈x : L = y : M, σ〉 L 6= empty type(x) = type(y) = list y′ is fresh list variable
〈L = y′ : M, σ ◦ {y 7→ x : y′}〉 Decomp2′

〈s : L = s : M, σ〉
〈L = M, σ〉 Decomp3

〈x = a : y, σ〉 type(x) = atom type(y) = list

〈empty = y, σ ◦ {x 7→ a}〉 Decomp4

〈x = L, σ〉 x /∈ Var(L) type(x) ≥ type(L)
〈 , σ ◦ {x 7→ L}〉 Subst1

〈x : L = M, σ〉 L 6= empty type(x) = list

〈L = M, σ ◦ {x 7→ empty}〉 Subst2

〈x : L = a : M}, σ〉 L 6= empty x′ is a fresh list variable type(x) = list

〈x′ : L = M, σ ◦ {x 7→ a : x′}〉 Subst3

〈a : M = x : L, σ〉 a is not a variable
〈x : L = a : M, σ〉 Orient1

〈x : L = y, σ〉 L 6= empty type(x) = type(y)
〈y = x : L, σ〉 Orient2

〈y : M = x : L, σ〉 type(y) < type(x)
〈x : L = y : M, σ〉 Orient3

〈empty = x : L, σ〉 type(x) = list

〈x : L = empty, σ〉 Orient4

Figure 5.1: Unification rules.

84

〈x = L, σ〉 x ∈ Var(L) x 6= L type(x) = list

fail Occur
〈a : L = empty, σ〉

fail Clash2

〈a : L = b : M, σ〉 a 6= b Var(a) = ∅ = Var(b)
fail Clash1

〈empty = a : L, σ〉
fail Clash3

〈x = L, σ〉 type(x) ‖ type(L)
fail Clash4

Figure 5.2: Failure rules.

matched onto P. Subsequently, the boolean condition of the premise is checked and
the rule instance is normalized so that its premise is identical to P.

For example, the rule Orient3 can be matched to P = 〈a : 2 = m, θ〉 (where a

and m are variables of type atom and list, respectively) by setting y 7→ a, x 7→ m,
M 7→ 2, and L 7→ empty. The rule instance and its normal form are then

〈a : 2 = m : empty, θ〉
〈m : empty = a : 2, θ〉 and

〈a : 2 = m, θ〉
〈m = a : 2, θ〉

where the conclusion of the normal form is the result of applying Orient3 to P.

Unification Failure. Showing that a unification problem has no solution can be
a lengthy affair because we need to compute all normal forms with respect to ⇒.
Instead, the rules Occur and Clash1 to Clash4, shown in Figure 5.2, introduce failure.
Failure cuts off parts of the unification tree for a given problem P. This is because
if P ⇒ fail, then P has no unifiers and it is not necessary to compute another
normal form. Effectively, the failure rules have precedence over the other rules.

The correctness of the failure rules are justified by the following lemmata.

Lemma 7 (Correctness of Occur). A normalised equation x = L with x 6= L has no
solution if L is a simple expression, x ∈ Var(L) and type(x) = list.

Proof. Since x ∈ Var(L) and x 6= L, L = a1 : a2 : . . . : an consists of several atom
expressions with n ≥ 2 and x = ai for some 1 ≤ i ≤ n. As L is normalised, none of
the expressions ai are the constant empty. Also, since L is simple, it contains no list
variables other than x and x is not repeated. It follows σ(x) 6=AU σ(L) for every
substitution σ.

Lemma 8 (Correctness of Clash1). An equation a : L = b : M with a 6= b has no
solution if a and b are atom expressions without variables.

Lemma 9 (Correctness of Clash2/3). Equations of the form a : L = empty or empty =
a : L have no solution if a is an atom expression.

85

Input : An initial unification problem P
output: A complete set of unifiers C

initialize C ← ∅
initialize empty queue Q
normalize P
Q.enqueue(P)
while Q is not empty do

next← Q.dequeue
if next is in the form 〈 , σ〉 then

add σ to C
else if next; fail then

foreach P′ such that next⇒ P′ do
normalize P′

Q.enqueue(P′)
end

else
skip

end
end
return C

Algorithm 3: The UNIFY algorithm.

The UNIFY algorithm. The unification algorithm in algorithm 3 starts by nor-
malizing the input equation. It uses a queue of unification problems to explore the
unification tree of P w.r.t⇒ in a breadth-first manner. The first step is to enqueue
the (normalized) input problem P.

The variable next holds the current unification problem (which is also the head
of the queue). If the problem next is in the form 〈 , σ〉, then σ is a unifier of the
original problem and is added to the set U of solutions. Otherwise, the algorithm
constructs all problems P′ such that next ⇒ P′ by applying the unification rules
shown above. If P′ is fail signalling failure, then the unification tree below next

is ignored, otherwise P′ gets normalized and enqueued.

Example 18 (Unification Tree). An example unification tree traversed by the algo-
rithm is shown in Figure 5.3. Nodes are labelled with unification problems and
edges represent applications of unification rules. The root of the tree is the prob-
lem 〈y : 2 = a : x〉 to which the rules Decomp1, Subst2 and Subst3 can be applied.
The three resulting problems form the second level of the tree and are processed
in turn. Eventually, the unifiers

σ1 = {x 7→ 2, y 7→ a}
σ2 = {x 7→ y′ : 2, y 7→ a : y′}
σ3 = {a 7→ 2, x 7→ empty, y 7→ empty}

are found, which represent a complete set of unifiers of the initial problem. Note
that the set is not minimal because σ1 is an instance of σ2.

86

{
y : 2 = a : x
id

}

{
2 = x
y 7→ a

}

{
x = 2
y 7→ a

}

 y 7→ a
x 7→ 2


solved

Subst1

Orient1

Decomp1 {
2 = a : x
y 7→ empty

}

{
a : x = 2
y 7→ empty

}


x = empty

y 7→ empty

a 7→ 2


 y 7→ empty

a 7→ 2
x 7→ empty


solved

Subst1

Decomp1′

Orient1

Subst2 {
y′ : 2 = x
y 7→ a : y′

}

{
x = y′ : 2
y 7→ a : y′

}

 y 7→ a : y′

x 7→ y′ : 2


solved

Subst1

Orient2

{
y′′ : 2 = empty

y 7→ a : x : y′′

}

{
2 = empty

y 7→ a : x

}

fail

Clash2

Subst2

Decomp2 
2 = x′

y 7→ a : y′

x 7→ y′ : x′




x′ = 2
y 7→ a : y′

x 7→ y′ : x′



 y 7→ a : y′

x 7→ y′ : 2


solved

Subst1

Orient1

Decomp2′

Subst3

Figure 5.3: Unification tree example.

87

String concatenation and Left-linearity (again). Since string concatenation is as-
sociative and has a unit element (the empty string), the problem of unifying two
string expressions is inherently the same as unifying two list expressions. In other
words, the relationship char--string is the same as atom--list. In this thesis,
we do not show the unification rules for unifying string expressions as that would
obfuscate the algorithm without posing a substantial challenge. With these con-
siderations in mind, one can also restate the left-linearity restriction as “no sharing
of list or string variables”.

To specify unification between string expressions, one can create variants of
the unification rules using a simple renaming strategy — for each rule, the empty
list (empty) becomes the empty string “”, list concatenation ‘:’ becomes string con-
catenation ‘.’, the list/atom types become string/char types (used for type com-
parisons). Some of the unification rules are already general enough not to require
such variants, e.g. Subst1, Orient3. Preprocessing would also involve normalization
of the empty string.

At the time of writing, we do not have the proofs that these variant rules have
the desired properties exhibited by the existing unification rules. We are confident
that these properties hold due to the similar nature of the problem. A full com-
pleteness proof would also involve an extended selector algorithm (Section 5.5).

5.4 Termination and Soundness

In this section and the next, we consider some important properties of the uni-
fication algorithm we have introduced. First, we consider the termination of the
algorithm given the condition of left-linearity. Informally, this establishes that the
unification tree for a given problem has finite depth. Then, we follow with techni-
cal result about soundness of the algorithm.

We show that the unification algorithm terminates if the input problem con-
tains no repeated list variables, where termination of the algorithm follows from
termination of the relation ⇒ on unification problems. This argument relies on a
measure function that maps a unification problem to a tuple of natural numbers
and showing each rule decreases w.r.t. the tuple’s lexicographic order.

Theorem 5.1 (Termination). If P is a unification problem without repeated list variables,
then there is no infinite sequence P⇒ P1 ⇒ P2 ⇒ . . .

Proof. Define the size |L| of an expression L by

• 0 if L = empty,

• 1 if L is an expression of category Atom (see Figure 2.8) or a list variable,

• |M|+ |N|+ 1 if L = M : N.

We define a lexicographic termination order by assigning to a unification problem
P = 〈L = M, σ〉 the tuple (n1, n2, n3, n4), where

88

n1 n2 n3 n4
Subst1− 3 >
Decomp1− 4 >
Decomp1′, 2′ >
Remove >
Orient1 = >
Orient4 = >
Orient3 = = >
Orient2 = = = >

Figure 5.4: Lexicographic termination order.

• n1 is the size of P, that is, n1 = |L|+ |M|;

• n2 =

{
0 if L starts with a variable
1 otherwise

• n3 =

{
1 if type(x) > type(y)
0 otherwise

where x and y are the starting symbols of L and M

• n4 = |L|

The table in Figure 5.4 shows that for each unification step P⇒ P′, the tuple associ-
ated with P′ is strictly smaller than the tuple associated with P in the lexicographic
order induced by the components n1 to n4.

For most rules, the table entries are easy to check. All the rules except for Orient
decrease the size of the input equation s =? t. The Orient rules keep the size equal,
but move variables and expressions of a bigger type to the left-hand side.

In order to prove soundness, we use the following helper lemma.

Lemma 10. If P⇒ P′, then U (P) ⊇ U (P′) .

Proof. We show that for each unification rule, a unifier θ of the conclusion unifies
the premise, i.e. θ ∈ U (P′) implies θ ∈ U (P). The substitutions of P and P′ are
referred to as σ and σ′.

Note that for Remove, Decomp3 and Orient1-4, we have that σ′ = σ .

Remove:
θ ∈ U (〈 , σ′〉) ⇐⇒ θ ∈ U (〈 , σ〉)

⇐⇒ θ ∈ U (〈 , σ〉) ∧ Lθ = Lθ
⇐⇒ θ ∈ U (〈L = L, σ〉)

Decomp3:
θ ∈ U (〈L = M, σ′〉) ⇐⇒ θ ∈ U (〈L = M, σ〉)

⇐⇒ θ ∈ U (〈L = M, σ〉) ∧ sθ = sθ
⇐⇒ θ ∈ U (〈s : L = s : M, σ〉)

89

Decomp1: We have xθ = sθ and Lθ = Mθ.

Then (x : L)θ = (s : L)θ = (s : M)θ as required.

Decomp1′: We have xθ = aθ and Lθ = Mθ.

Then (x : L)θ = (a : L)θ = (a : M)θ as required.

Decomp2: We have xθ = (y : x′)θ and (x′ : L)θ = Mθ.

Then (x : L)θ = (y : x′ : L)θ = (y : M)θ as required.

Decomp2′: We have yθ = (y : x′)θ and Lθ = (y′ : M)θ.

Then (y : M)θ = (x : y′ : M)θ = (x : L)θ as required.

Decomp4: We have xθ = aθ and yθ = (empty)θ = empty.

Then (a : y)θ = (x : y)θ = (x : empty)θ = xθ as required.

Subst1: We have xθ = Lθ

θ ∈ U (〈 , σ′〉) ⇐⇒ θ ∈ U (〈 , σS ◦ (x 7→ L)〉)
⇐⇒ θ ∈ U (〈 , σS ◦ (x 7→ L)〉) ∧ xθ = Lθ
⇐⇒ θ ∈ U (〈x = L, σS〉)

Subst2: We have xθ = (empty)θ and Lθ = Mθ.

Then (x : L)θ = (empty : L)θ = Lθ = Mθ as required.

Subst3: We have xθ = (a : x′)θ and (x′ : L)θ = Mθ.

Then (x : L)θ = (a : x′ : L)θ = (a : M)θ as required.

Orient1-4: Since =AU is an equivalence relation and hence symmetric, a unifier of the
conclusion is also a unifier of the premise.

Theorem 5.2 (Soundness). If P ⇒+ P′ with P′ = 〈 , σ′〉 in solved form, then σ′ is a
unifier of P.

Proof. We have that σ′ is a unifier of P′ by definition. A simple induction with
Lemma 10 shows that σ′ must be a unifier of P.

5.5 Completeness

In order to prove that our algorithm is complete, by Definition 5.6 we have to show
that for any unifier δ, there is a unifier in our solution set that is more general.

Our proof involves using a special algorithm SELECT that takes an (initial)
unification problem 〈s =? t〉 together with an arbitrary unifier δ, and outputs a
branch of the unification tree associated with a more general unifier than δ. The
intuition here is that the computation of such branches proves a correspondence

90

between the leaves of the unification tree and the desired complete set of unifiers.
This is very similar to [Sie78] where completeness of a A-unification algorithm is
shown using the same idea of a selector.

Lemma 11 (SELECT Lemma). There exists an algorithm SELECT(〈s =? t〉, δ) that
takes a unification problem 〈s =? t〉 and a unifier δ as input and produces a branch of its
unification tree represented as a sequence of rule selections B = (b1, . . . , bk) such that:

• UNIFY(〈s =? t〉) has a branch specified by B.

• For the sequence of rules b ∈ B: if σ is the substitution corresponding to b, then
there exists an instantiation λ such that σ ◦ λ ≤ δ .

For example, consider the unification problem 〈y : 2 = a : x〉 and its unifier
δ = (x 7→ 1 : 2, y 7→ a : 1). The unification tree was shown in Figure 5.3. Apply-
ing SELECT would produce the sequence of unification rules (Subst3, Decomp2′,
Orient1, Subst1), which corresponds to the right-most branch in the tree. The uni-
fier at the end of this branch is σ = (x 7→ y′ : 2, y 7→ a : y′) which is more general
than δ using the assignment λ = (y′ 7→ 1).

Now we are able to state our completeness result, which follows directly from
Lemma 11.

Theorem 5.3 (Completeness). For every unifier δ of a unification problem 〈s =? t〉,
there exist a unifier σ generated by UNIFY such that σ ≤ δ .

5.5.1 Proving Completeness: The SELECT Algorithm

The SELECT algorithm takes a unification problem 〈s =? t〉 together with a unifier
δ, and outputs a branch of the unification tree associated with a unifier that is more
general than δ. Here we present the core of the algorithm together with several
examples of how it works. The full algorithm details are given in Appendix B.
Afterwards, we show the proof of SELECT Lemma which establishes that SELECT
is correct w.r.t. UNIFY.

SELECT Algorithm. Informally, the algorithm does some preprocessing, e.g. ex-
panding and recording list variables, and then, depending on the current state,
selects a unification rule and updates the state. The algorithm itself has state which
is the given problem, together with some precomputed information based on the
input unifier. It essentially behaves like a 2-tape TM with look-ahead which ex-
amines both input tapes simultaneously (the “head” of the current problem) as
defined by pointers m and n, and can move each pointer separately and only to the
right.

Given a unification problem 〈s =? t〉 and a unifier δ for that problem, the
algorithm proceeds as follows:

1. Preprocess s and t according to δ to obtain expanded expressions s, t

91

2. Initialize the state by setting the pointers m and n to 1 (the head of the initial
problem)

3. Do case analysis based on the predicates L, AtEnd and Type, and current
state, until the pointers have reached the end of the input expressions. In
each case, say which unification rule is selected, and update the current state
by either moving the pointers or swapping the tapes.

The major part of the algorithm is the big case split depending on the predicate
values at locations m and n, with the result that a specific rule is selected (added
to the output) and pointers updated. This is repeated until both pointers reach
the end of the input. The number of cases is rather larger due to the intricate de-
pendencies between the different predicates and the current state of the algorithm.
See Appendix B for the full details.

Preprocessing Preprocessing of the problem 〈s =? t〉 w.r.t. a unifier δ involves:

• expanding each variable to the correct number of symbols, i.e. x → x1 : . . . :
xn where n = |δ(x)| is the size of the expression δ(x). Call x the parent symbol
of x1, . . . , xn, and the expanded strings s and t. Each symbol xi is called a
‘pseudo-variable’.

• for each binding {x 7→ empty} in δ, replacing x with xe in s̄ and t̄. When
SELECT sees such an empty list variable, it will select the rule Subst2.

• padding the shorter string with extra empty symbols to make s̄ and t̄ of equal
length.

For example, the problem 〈a : x =? y : b〉 has unifier δ = (x 7→ 1 : 2 : b, y 7→ a : 1 : 2).
Preprocessing would produce the expanded problem 〈s =? t〉 as

a : x1 : x2 : x3 =? y1 : y2 : y3 : b

where each xi and yi are pseudo-variables. The expanded expressions s̄ and t̄ can
be represented graphically:

a x1 x2 x3 s̄

y1 y2 y3 b t̄

m

n

which can be seen as the state of the SELECT algorithm. The pointers m and n point
to the current symbols examined by the algorithm, and are graphically represented
by the dashed boxes.

92

Predicates Apart from the current state, the execution of the algorithm is guided
by several predicates. These predicates allow the algorithm to determine by how
much it should move the above pointers, or whether it should move each pointer
individually, or whether it should swap tape contents as required by the Orient
rules. The predicates also allow the algorithm to infer the shape of the problem
represented by the current state, and thus ensure the selected unification rule is
indeed applicable.

L: The predicate L(lk) accepts a list expression l (either s or t) together with a
position value k (either m or n) and returns the number of adjacent pseudo-
variables of lk to the right of lk. If lk has no pseudo-variables adjacent to it or
is a constant then L(lk) = 0, i.e. it returns positive values only for symbols
that have list variables as parents.

For example, for the above expanded unification problem:

L(s, 1) = 0 a is a constant
L(s, 2) = 2 after x1 there is x2 and x3
L(s, 3) = 1 after x2 there is x3
L(s, 4) = 0 after x3 there is no x4

L(t, 1) = 2 after y1 there is y2 and y3
L(t, 2) = 1 after y2 there is y3
L(t, 3) = 0 after y3 there is no y4
L(t, 4) = 0 b is a constant

Type: The predicate

Type(sk)→ {ListVar, AtomVar, AtomExpr, EmptyListVar, empty}

accepts a list expression (either s or t) together with a position value (m or n)
and returns the type of the symbol of sk.

For example for the expanded list expression s = a : ”a” : xe : y : empty

Type(s, 1) = AtomVar
Type(s, 2) = AtomExpr
Type(s, 3) = EmptyListVar
Type(s, 4) = ListVar
Type(s, 5) = empty

AtEnd: The predicate AtEnd(sk) → {true, f alse} determines if the symbol to the
right of the specified symbol (or sequence of pseudo-variables when Type(sk) =
ListVar) is not the empty list constant (empty) or the blank symbol ∆.

For example for the expression s = x1 : x2 : a

AtEnd(s, 1) = true because of a
AtEnd(s, 2) = true because of a
AtEnd(s, 3) = f alse because at end of string

93

5.5.2 SELECT Examples

Next we give some examples of how the algorithm works in terms of its state,
pointers and rule selection.

The first two examples are of the problem P = 〈y : 2 =? a : x〉, with its uni-
fication tree already shown in Figure 5.3. The third example is of the problem
P = 〈n =? y : n〉 that has a single most general unifier σ = {y 7→ empty}.
Example 19.

P = 〈y : 2 =? a : x〉
δ = {a 7→ 2, x 7→ empty, y 7→ empty}

ye 2 ∆ s̄

a xe ∆ t̄

select Subst2
m++

(case 3.2.17)

m = 1

n = 1 →

ye 2 ∆ s̄

a xe ∆ t̄

select Orient1
swap

(case 3.2.12)

m = 2

n = 1 →

ye 2 ∆ t̄

a xe ∆ s̄

select Decomp1’
m++,n++

(case 3.2.8)

n = 2

m = 1

→

ye 2 ∆ t̄

a xe ∆ s̄

select Subst1
m++, n = 3
(case 3.2.20)

m = 2

n = 3 →

ye 2 ∆ s̄

a xe ∆ t̄

end

m = 3

n = 3

Example 20.
P = 〈y : 2 =? a : x〉

δ = {x 7→ a : 1, y 7→ 1 : 2}

y1 y2 2 ∆ s̄

a x1 x2 ∆ t̄

select Subst3
m ++, n ++

(case 2.3)

m = 1

n = 1 →

y1 y2 2 ∆ s̄

a x1 x2 ∆ t̄

select Decomp2’
m ++, n ++

(case 2.1)

m = 2

n = 2 →

y1 y2 2 ∆ s̄

a x1 x2 ∆ t̄

select Orient1
swap

(case 3.2.11)

m = 3

n = 3

→

y1 y2 2 ∆ t̄

a x1 x2 ∆ s̄

select Subst1
m ++, n ++

(case 3.2.3)

m = 3

n = 3 →→

y1 y2 2 ∆ s̄

a x1 x2 ∆ t̄

end

m = 4

n = 4

94

Example 21.
P = 〈n =? y : n〉

δ = {y 7→ empty}

n e ∆ s̄

ye n ∆ t̄

select Orient3
swap

(case 3.2.9)

m = 1

n = 1 →

n e ∆ t̄

ye n ∆ s̄

select Subst2
m++

(case 3.2.17)

m = 1

n = 1 →

n e ∆ t̄

ye n ∆ s̄

select Subst1
m++,n++

(case 3.2.7)

m = 2

n = 1 →

n e ∆ t̄

ye n ∆ s̄

end

n = 2

m = 3

5.5.3 Putting it all together: Proving The SELECT Lemma

Next we give a proof sketch of the helper lemma used in proving completeness
of UNIFY. The full proof is rather long (see Appendix C.1) due to the number of
combinations of the various predicates for remaining length L, typing given by
Type and check for end of input (AtEnd).

Proof Sketch of Lemma 11. The idea is to use induction on the number of rule se-
lections (b1, b2, . . .) of B. For the base case, since the initial unification problem
is equipped with the identity substitution id, then just picking λ = id gives us
σ ◦ λ = id ≤ δ.

For the inductive case, we have to show that from an arbitrary unification prob-
lem Pk at node bk of the unification tree, (1) UNIFY can apply the rule given by
SELECT, and (2) there exists an instantiation λk+1 such that when combined with
the new unifier (resulting from applying the rule), it still produces a substitution
more general than δ.

The rest of the proof is about considering all the cases for Pk ⇒ Pk+1, a case split
involving the above predicates. Here we only give the top-level considerations.

Case 1. L(s, m) < L(t, n). It must be the case that tn is a list variable because
L(t, n) > 0 only for list variables. Then the problem is in one of the following
forms depending on the other predicates: x : L = y : M (to which rule Decomp2′

is applicable); a : L = y : M (orientable by Orient3); x : L = M with δ(x) = empty

(Subst2 is applicable).
Case 2. L(s, m) > L(t, n). As in the previous case, sm is a list variable because

L(s, m) > 0 only for list variables. Then the problem is in one of the following
forms depending on the other predicates: x = L (to which rule Subst1 is applica-
ble); x : L = y : M (Decomp2 is applicable); x : L = a : M (Subst3 is applicable);

Case 3. L(s, m) = L(t, n). This is the largest case. Most of the subcases are
repeated, and their treatment is analogous. For L(s, m) = L(t, n) = 0 we have all

95

combinations of types (52 = 25) for the parent symbols represented by the current
state.

5.6 From Single Equations to Systems of Equations

Now that we have specified how the algorithm produces a complete set of unifiers
for a given label equation, we generalize the algorithm to handle systems of (inde-
pendent) label equations. This is because when constructing critical pairs, we get
systems of label equations rather than individual equations.

Before we go into how we specify our generalized version of UNIFY, we explain
what is the problem with non-left-linear rules.

Non-left-linear rules. Consider the following rule schemata:

1:x x:1 ⇒ ∅

and
y y ⇒ ∅

where x and y are list variables. These schemata are non-left-linear. The first
schema has the label variable x which is shared between different graph nodes.
The same situation arises in the second schemata and the variable y.

The overlap of these schemata in a critical way is as illustrated:

1:x x:1 ⇒ ∅yy⇐∅

? ?

This overlap induces a system of equations {y = 1 : x, y = x : 1}. We can solve
each equation individually: {y 7→ 1 : x} and {y 7→ x : 1} but now due to sharing
their combination is not a substitution as it maps y to different expressions. If
we apply the first solution to the second problem, we get {1 : x = x : 1} which
is one of the well known cases where AU-unification is infinitary, i.e. has an
infinite solution set: {x 7→ empty} , {x 7→ 1} , {x 7→ 1 : 1} This kind of infinite
solutions leads to an infinite number of critical pairs like the one shown above. For
this reason, we forbid the sharing of list variables.

Remark 6 (Sharing of integer variables). It is not a problem to share integer vari-
ables. We have that left-hand graphs of schemata do not contain list variables as
list expressions must be simple, and the unification algorithm presented previously
does not introduce integer expressions, meaning that if integer expressions are
part of the output of UNIFY then they are variables and original from the input
schemata.

96

Now, integer variables cannot contain other expressions, and can only be as-
signed to numbers or renamed to other integer variables, thus not having an effect
on subsequent application of unification rules or on other unification problems in
the same system.

Generalized UNIFY. As already noted in Section 5.2, having restricted ourselves
to left-linear schemata, the problem of solving a system of unification problems
{s1 =? t1, s2 =? t2} can be broken down to solving individual problems and com-
bining the answers. If σ1 and σ2 are solutions to each individual equation, then
σ1 ◦ σ2 is a solution to the combined problem as σ1 and σ2 do not share variables.
This intuition provides us with a generalization of UNIFY.

Definition 5.7 (Independent unification problems). Two unification problems P1
and P2 are independent if they do not share list variables. A system of unification
problems is independent if its unification problems are pairwise independent.

Definition 5.8 (Generalized UNIFY). For a finite system of independent unification
problems (P1, . . . , Pn), the output of the generalized UNIF is the set of unifiers
obtained by combining the unifiers of each individual unification problem:

UNIFY(P1, . . . , Pn) =
{

σ1 ◦ . . . ◦ σn | σi ∈ UNIFY(Pi), 1 ≤ i ≤ n
}

For example, given two unification problems P1 and P2 (that do not share list
variables) for which solving them individually produces UNIFY(P1) = {α, β} and
UNIFY(P2) = {λ}, then UNIFY(P1, P2) = {α ◦ λ, β ◦ λ}. In practice, a system
of such equations induces a forest of unification trees. The algorithm may gener-
ate/explore them one at a time. Furthermore, one may implement the sharing of
integer variables by applying the generated substitution for an integer variable to
the rest of the problems before they are solved. For example, if α in the above
solution set solves an integer variable i by the assignment {i → 5}, then instead
of calling on UNIFY on P2 directly, one first applies the mapping to it, i.e. calls
UNIFY(P2{i → 5}). This potentially introduces further non-determinism in the
unification algorithm.

Theorem 5.4 (Soundness, Termination and Completeness of Generalized UNIFY).
The Generalized version of UNIFY is sound, terminating and complete for a given finite
system of independent unification problems (P1, . . . , Pn) that do not share list variables.

Proof. Termination follows from the fact that UNIFY terminates for each of the finite
number of unification problems (Theorem 5.1). Soundness follows as UNIFY is
sound and that the problems do not share list variables. Integer variables are not an
issue due to the above remark about integer variables. Completeness follows from
the fact that every possible combination of unifiers σi ∈ UNIFY(Pi) is considered
in the output of the generalized UNIFY and that the basic unification algorithm is
complete.

97

5.7 Related Work

In this section, we give some bibliographic notes on unification for problems with-
out types, and also on the use of unification in critical pair construction.

Unification. Unification theory is a widely studied topic in automated deduction.
The technicalities of (syntactic) unification have been investigated since J.A. Robin-
son [Rob65]. The notions “unification” and “most general unifier” have been (in-
dependently) introduced by Knuth and Bendix [KB70] as means of testing term
rewriting systems for confluence by computing critical pairs. Equiational unifica-
tion has been introduced around the same time in the area of theorem proving
[Plo72] as it had become clear that certain axioms (associativity, commutativity)
need to be treated in a special manner.

Unification modulo associativity was shown to be decidable (i.e. whether there
exists a unifier for a word equation) by Makanin [Mak77] for the case of unifi-
cation with constants (albeit being in PSPACE [Pla99]), and a (non-minimal) uni-
fication algorithm given by [Sie78]. Siekmann [Sie78] also gave an extension to
AU-unification, and later Jaffar [Jaf90] gave a minimal AU-unification algorithm.
Plotkin [Plo72] describes a minimal A-unification procedure which need not ter-
minate for non-solvable problems or problems with finite minimal complete sets
of unifiers.

All of the above theory considers untyped variables, whereas in our case we
require that unifiers are well-typed in accordance with the GP 2 type system. We
encode this restriction in the special unification rules rather than e.g. filtering out
substitutions that are not well-typed.

Unification for Critical Pairs. The earliest use of unification in the context of
computing labels/attributes of critical pairs comes from [HKT02]. In this paper,
the proposed critical pairs over attributed rules are labelled using the most general
unifier of the overlapped terms, and the authors also give an alternative option
to compute and compare normal forms w.r.t. the confluent and terminating term
rewriting system (if it exists) induced by the equational axioms of the label algebra.
However, using syntactic unification leads to incomplete critical pairs [EEPT06]. A
restriction that avoids the need for unification altogether is to only allow variable or
variable-free terms in rules, as developed in [EPT04] and implemented in [AGG].

A similar approach to avoiding unification is that of symbolic graph trans-
formation [Dec17, KDL+15], where graphs do not contain label expressions but
instead have an associated logical formula describing the graph labels. Instead of
computing labels of critical pairs, the unification process is avoided by including
the induced system of label equations into the logical formula associated with the
critical pair, which is left unresolved during computation.

Furthermore, both of the above approaches consider the label algebra as a pa-
rameter, i.e. it is fixed but arbitrary, and thus no general construction procedure is
possible that includes the computation of labels. Moreover, even placing more se-

98

vere restrictions on terms need not help with undecidability — there exist theories
for which the ground word problem is undecidable [BS01].

5.8 Summary

In this chapter we have:

• described how to solve systems of label equations arising from the computa-
tion of critical pairs labelled with expressions;

• defined a rule-based unification algorithm;

• proven the soundness and termination of our algorithm;

• proven the completeness of the algorithm by defining a separate ‘selector’
algorithm;

• briefly reviewed alternative approaches to computing labels of critical pairs
in graph transformation with attributes/labels, and the use of unification in
such approaches.

99

Chapter 6

Joinability and Local Confluence
Analysis

In Chapter 4 and Chapter 5, we introduced our notion of critical pairs for GP 2
schemata, showed how to construct such critical pairs by graph overlaps and label
unification, and proved some useful properties about them, namely that there are
finitely many of them (finiteness) and that they represent all possible conflicts
(completeness).

The next step we take in this thesis is to study how critical pairs are used in the
context of confluence analysis: to (dis)prove confluence, one constructs all critical
pairs and analyses them for (strong) joinability. The correctness of this approach
is established by showing the Local Confluence Theorem for GP 2 schemata. The
practical side of this approach lies with the specification of a confluence analysis
algorithm which takes a finite set of critical pairs, analyses them for joinability,
and then outputs a confluence answer.

This chapter begins by introducing our notion of strong joinability of critical
pairs, based on rewriting of graphs labelled with expressions. This is necessary
as graphs in critical pairs are, in general, labelled with expressions rather than
concrete values. Then, we discuss our approach to confluence analysis and its
theoretical and practical apsects. The main theoretical result of this chapter is the
Local Confluence Theorem for GP 2 schema rewriting, which in effect allows for
the specification of a sound confluence analysis algorithm based on critical pairs.
We discuss the practical aspects of the algorithm by looking at two refinements
that reduce its search space and improve its accuracy. Finally, we explore some
related and historical work on confluence analysis.

This chapter is based on [HP17a]. Schemata are assumed to be unconditional.

6.1 Confluence Analysis with Critical Pairs

Critical pair analysis allows for rigorous reasoning about the confluence of a set of
rules. The main idea is checking of each critical pair T1 ⇐ S ⇒ T2 for joinability
which in the simplest terms can be described as searching for a common graph

100

derivable from T1 and T2. In such situations where this property holds for each
critical pair – and ignoring the issue of termination – we can establish that the set
of rules is confluent.

Fundamentally, joinability involves rewriting the graphs of critical pairs. Take,
for example, the rule schema unlabel introduced in Chapter 4, and one of its criti-
cal pairs constructed from overlapping the schema in conflicting ways (previously
shown in Figure 4.4):

x
1

y

2

a

unlabel(a,x,y:list)

⇒
1 2

1 2

y2

3

a2
x1

1

x2

2

y2

3

a1 a2
x1

1 2 3

a1
⇐ ⇒

where the variables are indexed to signify from which instance of unlabel they
originate. The critical pair represents a conflict over a three-node sequence where
the middle node gets relabelled to the empty list (relabelling conflict). The graphs
of the critical pair are non-isomorphic unless all variables get instantiated to the
empty list as well (e.g. see Figure 4.1). To join this critical pair means to keep ap-
plying the schema to reach a common graph, or equivalently, a pair of isomorphic
graphs. In this case, this is possible:

x1

1

y1

2

y2

3

a1 a2

S

1 2

y2

3

a2

T1

x1

1 2 3

a1

T2⇐
⇒

1 2 3

T3

1 2 3

T4

⇒⇒

∼=

101

The graphs resulting from the derivations T1 ⇒ T3 and T2 ⇒ T4
1 are isomor-

phic: they have the same structure, all nodes/edges are labelled with the empty
list, and all edges are dashed. These graphs are also normal forms (no rules are
further applicable) due to the semantics of the dashed mark.

We can therefore state the practical problem of confluence analysis we explore:
Find a condition, called strong joinability, such that a terminating set R of rule
schemata is confluent if each symbolic critical pair involving rules in R is strongly
joinable.

Due to the informal nature of the above statement, some clarifications are
needed. The above problem does not state at all the nature of strong joinabil-
ity, but in practice, it is about rewriting the result graphs of critical pairs, and that
is due to the definition of confluence. This leads to a subproblem, namely how
to apply schemata to graphs labelled with expressions, which we solve first. The
evidence of strong joinability, i.e. the joining derivations, are used in the proof
of the Local Confluence Theorem. Regarding the practical side of joinability, the
notions it is composed of should be computable, or at least we should be able
to distinguish between different sources of non-computability. An obvious source
of non-computability is the kind of label expressions that appear in rules — they
could involve non-linear arithmetic, and hence figuring out whether the graphs
derived from the critical pair are isomorphic becomes undecidable. Last but not
least, we want not only to establish soundness of the approach, i.e. proving the
Local Confluence Theorem, but also to give an algorithm for confluence analysis,
and discuss the practical implications of strong joinability checking.

In this chapter we propose our solution to the above problem. First, we define
symbolic rewriting, an approach for applying rule schemata to graphs labelled with
expressions. This kind of rewriting is shown to be sound in the sense that a
symbolic derivation can be instantiated to the host graph derivations it represents
by assigning the variables occurring in the derivation with concrete data. Second,
we define our notion of strong joinability based on symbolic rewriting. Third, we
prove the Local Confluence Theorem, i.e. that using out notion of strong joinability
is sufficient for showing local confluence of a set of terminating rules. To do so, we
closely follow the proof of the same theorem in other graph rewriting frameworks,
e.g. [EPT04]. Last but not least, we give our confluence analysis algorithm, and
propose several extensions that allow us to (1) restrict the joinability search space
using so-called persistent reducts, and (2) increase the precision of the analysis by
using a more relaxed notion of graph isomorphism.

The above approach to confluence analysis is appealing because it breaks down
the requirements of a confluence proof into several independent joinability proofs
that can be established independently. In other words, a confluence checker can
present individual critical pairs it was (un)able to join to a user who can decide on
what further action is necessary. Indeed, existing tools do that, and this kind of
separation of concerns is very helpful when trying to establish the confluence of
existing GP 2 programs (discussed in Chapter 7).

1Since ⇒ is not defined over such graphs, we abuse notation for now and fix it immediately at
the start of this chapter.

102

A related problem is that of showing non-confluence. Certainly when the con-
fluence analysis techniques presented in this thesis are unable to show that a set
of rules is confluent, the next reasonable question to ask is why?. Our approach to
non-confluence is to give two sufficient conditions that guarantee the soundness
of a non-confluence answer. We discuss those at the end of this chapter.

6.2 Symbolic Rewriting

In this section we propose symbolic rewriting for GP 2 allowing for the application
of rule schemata to the graphs in critical pairs. The current formalism of schema
application is defined in the setting of host graphs (labelled with concrete val-
ues). The major difference between symbolic rewriting and the previous notion of
schema rewriting is that symbolic rewrites use substitutions, i.e. mappings from
variables to expressions, rather than assignments, i.e. mappings from variables to
variable-free data. The overall aim is to provide a mechanism for establishing the
(strong) joinability of critical pairs.

Informally, symbolic rewriting introduces a relation on graphs (V) where
matching is done by treating variables as typed symbols/constants. Symbolic
rewriting allows for the representation of multiple host graph direct derivations.
Here the notion of representation is similar to that of Chapter 4: symbolic criti-
cal pairs represent an infinite number of minimal conflicts the same way symbolic
derivations represent an infinite number of direct derivations at the host level. This
type of rewriting is very similar to symbolic graph transformation, e.g. [OL12].

To apply a rule schema to a graph, the graphs of the schema are first instan-
tiated by replacing their labels according to some substitution σ. A substitution
σ maps each variable occurring in a given graph to an expression in GP 2’s label
algebra. Its unique extension σ∗ replaces the graph’s label expressions according
to σ. In the terminology of Chapter 2, the instantiation of a schema is done by
means of a substitution, and the rule instance is a graph transformation rule with
relabelling, albeit the labels being expressions rather than data values.

Definition 6.1 (Instance by substitution). Consider a graph G in G⊥ and a sub-
stitution σ : X → RSLabel. The graph instance Gσ is the graph in G⊥ obtained
from G by replacing each label l with σ∗(l). The instance of a rule schema
r = 〈L← K → R〉 is the rule rσ = 〈Lσ ← Kσ → Rσ〉.

Definition 6.2 (Symbolic direct derivation). A symbolic direct derivation using rule
schema r, substitution σ, and match g : Lσ → S, between graphs S, T ∈ G(RSLabel)
consists of two natural pushouts as in Figure 6.1a.

We denote symbolic derivations by S
r,g,σ
V T. Symbolic critical pairs, discussed

in Chapter 4, involve such symbolic derivations. Operationally, constructing sym-
bolic derivations involves obtaining a substitution σ for the variables of L given a
premorphism L→ S, and then constructing a direct derivation with relabelling as
in Chapter 2. The problem can be seen in Figure 6.1b.

103

Lσ Kσ Rσ

L K R

S O T

g NPO NPO

(a) A symbolic direct derivation.

x:1L

?Lσ

1:yS

(b) Symbolic matching.

Figure 6.1: Symbolic rewriting.

Example 22 (Symbolic derivation). In Figure 6.2 we give a symbolic derivation in-
volving the rule add, part of the Shortest Distances program previously shown in
Subsection 2.2.3.2. (The rule is reproduced at the top of the figure). The rule is
applied to a graph labelled with expressions S that appears during the confluence
analysis of the given program (see Chapter 7). For simplicity we have changed to
node identifiers of the rule schema to make obvious the match L → G rather than
explicitly naming the mapping.

The rule instance involves the substitution σ = {x 7→ y, m 7→ m+ n, y 7→ y′, n 7→ n}
where the domain of the substitution are the variables of the schema add and the
variable range are the variables of S, the input symbolic graph. An important point
is that the variables of L are different from the variables of Lσ and S: the variables
x, y, m, n in the top row are local to the schema, whereas the others variables (on
middle and bottom row) are part of the symbolic graphs Lσ, S, Rσ, T.

When we apply a schema to a graph S, it is impossible to replace the variables
of S as the substitution involved only names the variables of the rule schema. Thus
for the premorphism L → S in Figure 6.1b there is no valid substitution to make
the symbolic application work — one would need to substitute the variable y with
y′:1 where y′ is fresh. As a result, this kind of rewriting is incomplete in that not
all host graph derivations can be represented by symbolic derivations.

Remark 7 (Variable scope). The overall purpose of symbolic rewriting is to apply
schemata to graphs in critical pairs. It is important to note where the variables
of symbolic graphs come from. For schemata, variables are local to the schema
and never appear in host graphs. For symbolic graphs however, these variables
are local to the critical pair being investigated for joinability. Rules cannot create
variables, and hence no new variables can be created during symbolic rewriting.

104

x:m
1

y:m+n
2

y′

3

n n′

S

x:m
1

y:m+n
2

y′:m+n+n′

3

n n′

T

add
V

x:m
2

y
3

n

L

x:m
2

y:m+n
3

n

R

add
V

y:m+n
2

y′

3

n

Lσ

y:m+n
2

y′:m+n+n′

3

n

Rσ

add
V

Figure 6.2: Symbolic derivation using the rule add.

Remark 8. We can treat symbolic rewriting as the application of a rule schema to
a graph with label set being a term algebra, similar to the approach of [HP16a].
This is consistent with the fact that assignments X → A become substitutions
X → T(X) (set A = T(X)).

Another property of this type of rewriting is that derivations cannot introduce
new variables. This ensures that symbolic derivations are determined uniquely by
a match and substitution for the variables occurring in the left-hand graph of the
schema.

Proposition 1 (Existence and uniqueness of symbolic derivations). Consider a rule
schema r = 〈L ← K → R〉, an injective premorphism g : L → S with S in G⊥(T(X)),

and a substitution σ : X → T(X). Then there exists a symbolic direct derivation S
r,g′,σ
V T

such that g′ is induced by g and σ, if and only if g satisfies the dangling condition and
each item x in L satisfies:

lS(g(x)) = σ∗(lL(x)).

Moreover, in this case T is determined uniquely up to isomorphism.

Proof. Follows directly from Proposition 1 of [HP16a] and Remark 8.

The following lemma states that the application of symbolic rule schema coin-
cides, in some sense, with respect to the host graph derivations it represents. It
relates a symbolic derivation S V T and any host graph derivation that involves
an instance of its input graph S using the same rule and match.

105

Lemma 12 (Soundness of symbolic rewriting). For each symbolic derivation S
r,g,σ
V T,

host graph G and assignment λ such that G = Sλ, there exists a direct derivation G
r,g,α⇒ H

where H = Tλ and α = λ ◦ σ.

Proof. The double-pushout of G
r,g,α⇒ H is the same as the one of S

r,g,σ
V T when ig-

noring labels. Define α = λ ◦ σ. The label preservation property of the match
Lσ → S implies the label preservation of morphism (Lσ)λ → Sλ, i.e. of Lα → G.
Since the dangling condition is not concerned with labels, Lα → G is a valid match
for rα in G. The labelling functions of H and T are uniquely determined by rα, rσ, S
and G = Sλ, as shown in [HP16a, Proposition 1] and Proposition 1 above. As a
consequence, we get that Tλ = H.

6.3 Joinability

Confluence analysis is based on the joinability of critical pairs. Informally, a sym-
bolic critical pair T1 W S V T2 is joinable if there exist symbolic derivations from
T1 and T2 to a common graph T1 V∗ XW∗ T2.

As explained in Chapter 2, it is known that joinability of all critical pairs is
not sufficient to prove local confluence [Plu93]. Instead, one needs to consider a
slightly stronger notion called strong joinability that, apart from joinability, requires
a special set of so-called persistent items to be preserved by the joining derivations.
This is because extending the joining derivations is not always possible in the
context of graph transformation. The definition of persistent items is given below,
where we consider the graphs T1 and T2 (although distinct) to have common items.

Definition 6.3 (Persistent items). The set of persistent items P of a critical pair T1 W
SV T2 consists of all items in S that are preserved by both steps: P = T1 ∩ T2.

A similar formulation of joinability is based on strict joinability where instead
of talking about persistent nodes, one talks about the pullback of the inclusions
O1 ⊆ S and O2 ⊆ S where O1 and O2 are the intermediate graphs in the critical
pair of derivations (see Figure 6.1a). A formulation based on pullbacks is more
suitable when the subsequent proofs are done in an algebraic setting, specifically in
adhesive categories (e.g. see [EHPP04]), because the expression of set intersection
in such a setting is a pullback.

Even so, the intuition is the same: the common graph N, which is preserved
by both symbolic derivations of a critical pair, must be preserved by the joining
derivations.

Definition 6.4 (Strong joinability). A symbolic critical pair T1 W SV T2 is strongly
joinable if we have the following:

1. joinability: there exist symbolic derivations T1 V∗ X1
∼= X2 W∗ T2 where

i : X1 → X2 is an (E-)isomorphism.

106

2. strictness: let N be the pullback object of O1 → S ← O2 (1). Then there
exist morphisms N → O3 and N → O4 such that the squares (2), (3) and (4)
commute:

N

O1 O2

O3 O4

S

T1 T1

X1 X2
i

(1)

(3)

(4)

(2)

We will allow the morphism i : X1 → X2 to be an E-isomorphism where labels
are required to be equivalent (in GP’s label algebra) rather than equal: two graphs
G, H ∈ G(T(X)) are E-isomorphic (denoted by G ∼=E H) if there exists a bijective
premorphism i : G → H such that lH(i(x)) ≈E lG(x) for all items of G. (This
is further discussed in subsection 6.5.1.) Here ≈E is the equivalence relation on
GP2 expressions given by all the equations valid in GP 2’s label algebra of integer
arithmetic and list/string concatenation. This allows for a confluence algorithm
that is more accurate in terms of when are critical pairs joinable.

The strictness condition can be restated in terms of the track morphisms of
the joining derivations, as in [Plu93]: the track morphisms trackSVT1V∗X1 and
trackSVT1V∗X2 are defined and commute on the persistent nodes of the critical
pair, i.e. i(trackSVT1V∗X1(v)) = trackSVT2V∗X2(v) for each v ∈ P . The graphs O3
and O4 in the above definition are the derived spans of the joining derivations. For
a formal comparison between the two versions of the strong joinability definition,
see Section C.2.

Lemma 13. If a critical pair is strongly joinable according to Definition 6.4, then its set
of persistent nodes exist in N, i.e. P ⊆ N.

Proof. The definition of a persistent set of items can be interpreted as the existence
of inclusions P ⊆ O1 and P ⊆ O2 such that the square PO1O2S commutes. By the
universal property of pullbacks, there exists a morphism P → N ∈ M. Finally,
this morphism is an inclusion as the morphisms P ⊆ O1 and P ⊆ O2 are also
inclusions.

N O1

O2 S

P ⊆

⊆

⊆

PB

107

To prove the Local Confluence Theorem, we will need the following lemma that
relates the joinability of a symbolic critical pair and the joinability of all minimal
host graph conflicts it represents.

Lemma 14 (Joinability preservation). If a symbolic critical pair T1 W S V T2 is
strongly joinable, then for each of its instances according to any assignment λ for its
variables, we have that Tλ

1 ⇐ Sλ ⇒ Tλ
2 is also strongly joinable.

Proof. An instance Tλ
1 ⇐ Sλ ⇒ Tλ

2 involves the same double-pushouts as T1 W
S V T2 due to Lemma 12, with the only difference being graph labels. From the
E-isomorphism i : X1 → X2 we get that lX2(i(x)) ≈E lX1(x) for all nodes and
edges of X1. Applying λ to both sides, we get λ(lX2(i(x))) ≈E λ(lX1(x)) and thus
lXλ

2
(i(x)) ≈E lXλ

1
(x) meaning i induces an E-isomorphism Xλ

1
∼=E Xλ

2 . Moreover,

since Xλ
1 , Xλ

2 are host graphs, this also means Xλ
1
∼= Xλ

2 .

6.4 Local Confluence Theorem

In this section we present the Local Confluence Theorem which establishes the
local confluence of R given all symbolic critical pairs are strongly joinable. It was
first shown in [Plu93] for the (hyper)graph case and later extended to (weak) ad-
hesive categories in [EHPP04], and closely follows the Local Confluence Theorem
proof of [EEPT06, Theorem 6.28].

The proof loosely proceeds as follows. For a given pair of direct derivations
H1

r1,m1,α⇐ G
r2,m2,α⇒ H2, we have to show the existence of derivations H1 ⇒∗R X′1 ∼=

X′2 ⇐∗R H2 as the outer part of Figure 6.3. If the given pair is independent, this
follows from the Church-Rosser Theorem (Theorem 3.1). If the given pair is in con-
flict, the critical pair Completeness Theorem 4.2 implies the existence of a symbolic

critical pair T1

r1,m′1,σ
W S

r2,m′2,σ
V T2. By assumption, this critical pair is strongly joinable.

The proof then uses the definition of joinability to prove the joining derivations of
the critical pair can be extended by the morphism e : P→ G.

Theorem 6.1 (Local Confluence Theorem). A set R of left-linear rule schemata is
locally confluent if all of its symbolic critical pairs are strongly joinable.

Remark 9 (Auxiliary results). The full proof of the theorem requires the construction
of the boundary/context graph of e : P → G ∈ N . This is always possible in our
setting - use the same definition as in the unlabelled case (e.g. see [EEPT06, Exam-
ple 6.2]) and omit labels as done in Figure 6.4. Other necessary results include the
Embedding and Extension Theorems, pair factorization, pushout-pullback decom-
position. These are easily obtained by inspecting the proofs in [EHPP04] which
already considers categories with a special set of vertical morphisms.

108

P

S

G

T1 T2Q1 Q2H1 H2

e

X1 X2∼=E

* *

Xλ
1 Xλ

2
∼=

* *

X′1 X′2

* *

∼=

Figure 6.3: Local Confluence diagram.

⊥B b P

⊥ ⊥C b a G

ePO

Figure 6.4: Example initial pushout in G⊥.

Proof. For a given pair of direct derivations H1 ⇐r1,m1,α G ⇒r2,m2,α H2, we have to
show the existence of derivations t′1 : H1

∗
=⇒R X and t′2 : H2

∗
=⇒R X.

If the given pair is independent, this follows from Theorem 3.1.
If the given pair is in conflict, Theorem 4.2 implies the existence of a symbolic

critical pair T1

r1,m′1,σ
W S

r2,m′2,σ
V T2 with extension diagrams as shown in the upper part

of Figure 6.3 involving an instance of the critical pair, and e : K → G ∈ N . These
diagrams are obtained from the construction in Theorem 4.2. By assumption, this
critical pair is strongly joinable. By Lemma 14, this leads to derivations t1 : Q1

∼=
Tλ

1 ⇒∗ Xλ
1 and t2 : Q2

∼= Tλ
2 ⇒∗ Xλ

2 with Xλ
1
∼= Xλ

2 , since the critical pair instance
Q1 ⇐ P⇒ Q2 is strongly joinable. Furthermore, the graphs involved in the strong
joinability of Q1 ⇐ P ⇒ Q2 are instances of the same graphs in Definition 6.4

109

according to the assignment λ.
Since squares NO1O2S and NλOλ

1 Oλ
2 P areM-pullbacks andM is stable under

M-pullbacks (Fact A.1.3), then N → O1, N → O2, Nλ → Oλ
1 , Nλ → Oλ

2 ∈ M. Since
squares (2), (3) and (4) in Definition 6.4 are commutative, and Oλ

3 → Q1, Oλ
4 →

Q2, Oλ
1 → Q1, Oλ

2 → Q2 ∈ M, then N → O3, N → O4, Nλ → Oλ
3 , Nλ → Oλ

4 ∈ M
sinceM is closed under composition and decomposition (Fact A.1.1).

Let B and C be the boundary/context graphs of e : P → G ∈ N . We have that
there exist morphisms B → Oλ

1 , C → D1 ∈ M such that B → P = B → Oλ
1 → P,

C → G = C → D1 → G (by [Dec17, Def. 3.26]),
By the closure property of the boundary/context construction ([Dec17, Fact. 3.28]),

the same graphs B and C are also boundary/context graphs of Q1 → H1 and
Q2 → H2. Similarly, there exist morphisms B → Oλ

2 , C → D2 ∈ M such that
B→ P = B→ O2 → P, C → G = C → D2 → G.

Combining with the above, this means that square BOλ
1 Oλ

2 P commutes. Due to
the uniqueness property of square NλOλ

1 Oλ
2 P (an M-pullback), we get a unique

morphism B → Nλ such that B → Oλ
1 = B → Nλ → Oλ

1 and B → Oλ
2 = B →

Nλ → Oλ
2 . We have that B→ Oλ

1 , Nλ → Oλ
1 ∈ M which means that B→ Nλ ∈ M

sinceM is closed under decomposition (Fact A.1.1).
Now we show that Q1 → H1 is consistent w.r.t. t1 : Q1 ⇒∗ Xλ

1 . Let B → Oλ
3 =

B → Nλ → Oλ
3 , which is in M since both morphisms are in M and M is closed

under composition (Fact A.1.1). Due to commutativity of (2), we get the following
equalities B → Q1 = B → Oλ

1 → Q1 = B → Nλ → Oλ
1 → Q1 = B → Nλ → Oλ

3 →
Q1. Hence the morphism B → Oλ

3 as defined shows that Q1 → H1 is consistent
w.r.t. t1 : Q1 ⇒∗ Xλ

1 . Analogously, B→ Oλ
4 = B→ Nλ → Oλ

4 shows that Q2 → H2
is consistent w.r.t. t2 : Q2 ⇒∗ Xλ

2 (using commutativity of (3)).
By Theorem 6.2, we obtain derivations t′1 : H1 ⇒∗ X′1 and t′2 : Q2 ⇒∗ X′2 as

the bottom of Figure 6.3. We just need to show that X′1 ∼= X′2. We show this
using pushout uniqueness. By Theorem 6.2, the graphs X′1 and X′2 are pushouts of
morphism spans C ← B → Oλ

3 → Xλ
1 and C ← B → Oλ

4 → Xλ
2 . We have that both

are based on B → C. We only need to show that the morphisms B → Oλ
3 → Xλ

1
and B → Oλ

4 → Xλ
2 are equal. We have that (4) is commutative: Nλ → Oλ

3 →
Xλ

1 (∼= Xλ
2) = Nλ → Oλ

4 → Xλ
2 . Combining with B → Nλ, we get B → Nλ →

Oλ
3 → Xλ

1 (
∼= Xλ

2) = B→ Nλ → Oλ
4 → Xλ

2 , as required.
This concludes the proof that the pair of derivations H1 ⇐r1,m1,α G ⇒r2,m2,α H2

is joinable.

6.4.1 Auxiliary Results

In order to talk about consistency of an extension morphism w.r.t. a derivation and
thus when is an extension of a derivation possible, first we define so-called “de-
rived spans”. A derived span allows us to precisely define when can a derivation
be extended to a ‘larger’ derivation.

110

Definition 6.5 (Extension diagram). An extension diagram between two deriva-
tions t : G ⇒∗ Gn and t′ : G′ ⇒∗ G′n with an (extension) morphism e : G → G′ ∈ N
consists of the following pushouts (right):

Gt : Gn

G′t′ : G′n

e

∗
==⇒

∗
==⇒

Lαi
irαi

i : Kαi
i Rαi

i

Gi Di Gi+1

G′i D′i G′i+1

mi

ei ei+1

NPO NPO

NPO NPO

Definition 6.6 (Derived span; Consistency). The derived span of an identity deriva-
tion G ⇒∗ G is the span (G ← G → G). The derived span of a direct derivation
G ⇒∗ H is the span (G ← D → H). For a derivation t : G ⇒∗ Gn−1 ⇒ Gn, the
derived span is der(t) = (G ← Dn → Gn) where Dn is the pullback of Dn−1 →
Gn ← Dn, and Dn−1 is defined by der(G ⇒∗ Gn−1) = (G ← Dn−1 → Gn−1).

G
Dn−1

Gn−1 Dn Gn

Dn

PB

An (extension) morphism k : G → G′ is consistent w.r.t. a derivation t : G ⇒∗
Gn with derived span der(t) = (G ← D → Gn) if there exists a morphism
B → D ∈ M between the boundary B of k and the graph G of der(t) such
that B → D → G = B → G:

B G
=

D Gn

C G′

k

Note that the derived span construction is always possible since allM-pullbacks
exist in G⊥ Fact A.1.2 (the horizontal morphisms in derivations are in M). The
construction produces a result unique up to isomorphism and does not depend on
the order of pullback constructions. Furthermore, it can be shown that consistency
is a necessary and sufficient condition for the existence of extension diagrams.

Embedding Theorem. The Embedding Theorem establishes that a derivation can
be extended to a larger one only when the extension morphism satisfies the consis-
tency condition (see above). Furthermore, it shows the final graph of the extended
derivation can be constructed as a pushout using the boundary/context graphs of
the extension morphism (see Remark 9).

111

Theorem 6.2 (Embedding Theorem). Given a derivation t : G ⇒∗ Gn and a morphism
k : G → G′ ∈ N which is consistent with respect to t, then there is an extension diagram
over t and k and morphisms bn : B→ Gn and cn : C → G′n such that the square BCGnGn

′

is a pushout.

Proof. The proof is very similar to the proof of [EEPT06, Theorem 6.14]. More
specifically, the proof can be obtained from the proof in [EEPT06] by using ini-
tial pushouts over N (i.e. initial pushouts in the category G⊥) instead of initial
pushouts in anyM,M′-adhesive category.

6.5 Confluence Analysis Algorithm

Next we give our semi-decision procedure for confluence based on symbolic criti-
cal pair analysis. The algorithm expects a finite set of left-linear rules R together
with their associated set of symbolic critical pairs, and analyses each critical pair
for strong joinability in order to output a confluence answer.

Informally, the algorithm proceeds as follows (algorithm 4). The main part of
the computation is done per critical pair T1 W S V T2: construct all symbolic
derivations from T1 and T2 that result in normal forms, store those in two sets PR1
and PR2, and for each pair of graphs in those sets try to compute an isomorphism
compatible with the node’s persistent nodes. If such an isomorphism exists, then
flag the critical pair as strongly joinable. After all critical pairs are processed, if all
are flagged as strongly joinable, then end the analysis as the input set of rules is
confluent, otherwise output ‘unknown’.

There are two main points of contention to the above description. First, when
pairs of graphs are checked for an isomorphism (that is also compatible with the
persistent set of nodes), the check may may be too conservative if the standard
graph isomorphism of Chapter 2 is used, namely that all labels should be (syntac-
tically) equal. We address this point first in subsection 6.5.1.

The second point is about the exploration of the derivation trees of T1 and T2.
Since such exploration can be expensive, we show a sufficient condition that allows
us to stop the search at so-called persistent reducts which are graphs to which the
only applicable rules would delete persistent items. In other words, if a critical
pair is strongly joinable, then necessarily there exist a pair of persistent reducts
that are isomorphic. We explore this point in subsection 6.5.2.

Proposition 2 (Soundness). The Confluence Analyis algorithm is sound in that if the
algorithm outputs ‘confluent’ for a given terminating set of left-linear rules R, then R is
confluent.

Proof. The algorithm outputs ‘confluent’ when all given critical pairs are flagged
as strongly joinable, which impliesR is locally confluent by Theorem 6.1. Together
with termination, this implies R is confluent.

112

Input : A terminating set of left-linear rules R
1 construct the symbolic critical pairs of each pair of rules in R
2 let CP be the set of all computed symbolic critical pairs
3 foreach cp = (T1 WR SVR T2) in CP do
4 for i = 1, 2 do
5 construct all derivations Ti V∗R Xi where Xi is a persistent reduct
6 {let PRi be the set of all persistent reducts Xi}
7 end
8 foreach pair of graphs (A, B) in PR1 × PR2 do
9 if there exists a strong isomorphism A→ B then

10 mark cp as strongly joinable
11 end
12 end
13 end
14 if all critical pairs in CP are strongly joinable then
15 return “confluent”
16 else
17 return “unknown”
18 end

Algorithm 4: Confluence Analysis Algorithm
Studying the complexity of the given algorithm is non-trivial, largely because

joinability analysis involves exploring the derivation trees of critical pairs, which
can be unbounded. The exploration, as specified, can be interleaved with non-
deterministically computing and comparing two persistent reducts, and continu-
ing if the isomorphism check fails. Furthermore, the computation of critical pairs
can be interleaved with joinability analysis rather than computing all critical pairs
first. Last but not least, the derivation tree exploration can be restricted to check
derivations only up to a certain length, e.g. a static bound as done in [Wel14].
Other kinds of bounding might be of use, for example a bound based on rule size
or label size. However, introducing bounds reduces the potential applicability of
the analysis.

6.5.1 Refinement 1: Graph Isomorphism

Since we consider graphs involving GP 2 label expressions, we relax the definition
of isomorphism presented in Chapter 2 by replacing label equality with equivalence.
In the following, let ≈E be the equivalence relation on GP2 expressions given by
all the equations valid in GP 2’s label algebra of integer arithmetic and list/string
concatenation. Furthermore, since graph isomorphism is central to the discussion
of joinability of critical pairs, we define how isomorphism relates to a critical pair’s
set of persistent nodes.

Definition 6.7 (E-isomorphism; (P-)strong isomorphism). Two labelled graphs
G, H are E-isomorphic (denoted by G ∼=E H) if there exists a bijective premor-
phism i : G → H such that lH(i(x)) ≈E lG(x) for all nodes and edges of G. G and

113

H are P-strongly isomorphic if G ∼=E H, P ⊆ VG,P ⊆ VH, and i(v) = v for all
v ∈ P .

Here P is the set of persistent nodes of a critical pair, and when it is obvious
from the context we drop it.

For an example of why a more general notion of isomorphism is needed, con-
sider the schemata r1: m:n m+n⇒ and r2: m:n n+m⇒ which both match a node
labelled with a list of two integers (m and n) but relabel the node to (syntactically)

different expressions. The derivations m:n m+nn+m ⇒r2⇐r1 represent a symbolic
critical pair (conflict due to relabelling). The resulting graphs are normal forms,
and isomorphic only if one considers the commutativity of addition.

Isomorphism checking is an integral part of joinability analysis. Since at the
host graph level every label is taken from the concrete GP 2 label algebra without
variables, checking for isomorphism (∼=) is decidable. However, when analysing
graphs at the symbolic level, the problem of E-isomorphism (∼=E) involves deciding
validity of equations in Peano arithmetic. To the best of our knowledge, the prob-
lem is open for pure equations (no negation). Nevertheless, decidable fragments
exist such as Presburger Arithmetic (with a double exponential lower bound on
the worst-case time complexity), whose decision procedures can be used during
the analysis of the shortest distances case study (see Chapter 7).

6.5.2 Refinement 2: Persistent Reducts

In the context of a critical pair T1 WR SVR T2 with a set of persistent nodes P , a
graph X derivable from T1 or T2 is a persistent reduct if the only rules of R that can
be applied to X would delete an item of P . Such graphs are useful when searching
for joining derivations – one need not consider graphs derivable from such reducts
because strong joinability requires the existence of all persistent items. However,
it is not enough to nondeterministically compute a pair of persistent reducts and
then compare them for strong joinability. Instead, one needs to consider all such
reducts.

Consider the terminating set of rules in Figure 6.5. This system is non-confluent

because of the derivations A
r3
W T1

r1
W S

r1
V T2

r2
VD

r4
V , which are two different

normal forms. However, a confluence checker needs to search for strong joinability
of critical pairs first. A strongly joinable critical pair T1 Wr1 SVr1 T2 is given. All
the nodes of S are persistent nodes (P = VS). The graphs T1 and T2 have multiple
persistent reducts - T1 reduces to A and B while T2 reduces to C and D. The
isomorphism A ∼= C is strong, B ∼= D violates the strictness condition, A � D
and B � C, thus a confluence checker needs to compare all persistent reducts for
possible strong isomorphism until one is found.

Next we show that it is sufficient to consider only persistent reducts when
trying to establish the strong joinability of a critical pair.

114

1 2 3

S

1 2 3

T1

1 2 3

T2

1 2 3

A

1 2 3

B

1 2 3

C

1 2 3

D

r1⇐ r1⇒

r 3
⇐

r2⇒ r 3
⇐

r2⇒

1 2 3
⇒

1 2 3
r1 :

1 2
⇒

1 2
r2 :

1 2
⇒

1 2
r3 :

1 2
⇒ ∅r4 :

Figure 6.5: Joinability analysis with persistent reducts.

Proposition 3. If a critical pair T1 WR S VR T2 with a persistent set of items P is
strongly joinable, then there exist a pair of strongly isomorphic graphs X1 and X2 such
that Xi is a persistent reduct derivable from Ti, i = 1, 2.

Proof. Let PR1 and PR2 be the sets of persistent reducts of T1 and T2, respectively.
Assume no pair of graphs in PR1 × PR1 are strongly isomorphic. Because the
critical pair is strongly joinable, according to Definition 6.4 there must be graph X
derivable from T1 and T2 such that the track morphisms of the joining derivations
are defined and equal on P . If X is already a persistent reduct, then it directly
contradicts the assumption, and if X is derivable from a persistent reduct, then
it contradicts the fact that all persistent items P exist in X. Therefore, it must be
the case that X is reducible to a persistent reduct X′ (R is terminating). Then X′

would be in both PR1 and PR2 - a contradiction.

6.5.3 The issue with non-confluence

In the current formalization, the confluence algorithm does not determine non-
confluence. This is due to the limitations of symbolic rewriting: not every host
graph derivation can be represented by a symbolic derivation, as previously shown
in Figure 6.1b. This limitation means that normal forms at symbolic level need not
be instantiated to normal forms at the host graph level.

However, in certain restricted cases the algorithm would be able to report non-
confluence: it shows non-confluence when the compared graphs are normal forms
(rather than persistent reducts) that are variable-free. This result is of limited ap-
plicability since the algorithm prioritises establishing confluence, and thus only ex-
plores derivation trees up to persistent reducts. A more elaborate algorithm would
go for a second phase trying to establish non-confluence by non-deterministically
computing pairs of normal forms and checking whether they are non-isomorphic.

Proposition 4. Given a symbolic critical pair T1 WR S VR T2 and a pair of non-

115

isomorphic variable-free normal forms A and B such that AW∗R T1 WR SVR T2 V∗R B,
the set of rules R is not confluent.

Proof. Since A is a normal form w.r.t. VR and variable-free, that means it must
also be a normal form w.r.t ⇒R, and the same holds for B. Since A � B, then
every instance of the given critical pair A W∗R Tλ

1 WR Sλ VR Tλ
2 V

∗
R B is a

counterexample to confluence.

6.6 Related Work

In this section, we look at relevant literature, regarding both the theoretical as-
pects of confluence analysis and the practical considerations involving specifying
a confluence algorithm.

Symbolic Graphs. SyGrAV [Dec17, DKL+16, KDL+15] is a tool prototype aimed
at formal verification of symbolic graph transformations. The critical pair com-
ponent performs construction of critical pairs for symbolic rules and also sub-
commutativity analysis (0-1 step joinability). The tool supports attributes that are
integers, reals, bitvectors (with finite domains) by means of the SMT-solver Z3
[dMB08], but without support for strings in labels nor (non-nested) application
conditions nor control constructs. It sets itself apart from other tools like AGG
[RET11] because (1) symbolic graphs are more general than attributed graphs (a
single symbolic graph represents a set of attributed graphs); (2) it performs 0-
1-step joinability analysis of critical pairs rather than stopping after critical pair
construction; (3) it uses the powerful SMT solver Z3 to handle a large variety of
attributes/formulas. Furthermore, the framework avoids the need for unification
during critical pair analysis, but instead records the systems of label equations as
part of the logic formulas attached to symbolic graphs.

Comparing with the approach presented with this thesis, we can see several
differences. First, we allow arbitrary step joinability by exploring the derivation
trees of computed critical pairs. To help with the inherent complexity, we showed
one need only consider persistent reducts, which cuts off part of the relevant com-
putation. Second, although symbolic graph transformation is more general than
GP 2 rewriting and supports more data types of attributes/labels, we explicitly fix
our label algebra of heterogeneous lists of strings and integers, which already has a
non-trivial matching problem. However, we also use the solver Z3, specifically for
our case studies (see Chapter 7). Last but not least, we do not defer dealing with
overlapping labels. In our setting, if the system of equations for a given overlap
has no unifier then no critical pairs induced by the given overlap are constructed.

Confluence Algorithms. Similar to the confluence algorithm presented in Sec-
tion 6.5 was given in [Plu94]. The paper gives a decision procedure for confluence
of term graph rewriting, a form of term rewriting where terms are represented
as directed acyclic graphs. In that setting, confluence is a decidable property, so

116

it is safe for an algorithm to perform joinability analysis by nondeterministically
computing normal forms and checking for a strong isomorphism. That algorithm
is an extension of the classical confluence decision procedure for term rewriting of
Knuth and Bendix, which is justified by the Critical Pair Lemma of Huet [Hue80].

The situation with (hyper)graph rewriting is more complicated as confluence
is undecidable in general [Plu93]: it is not necessary, given a confluent graph
rewriting system, for all critical pairs to be strongly joinable. The issue is that if
all critical pairs are joinable but only some are strongly joinable, then confluence
cannot be decided; making the strong joinability check sufficient but not necessary.
(The graph-specific result was given in [Plu05]). When graph transformation is
extended with so called covers then confluence becomes decidable as shown in
[Plu10]; that paper also specifies a confluence algorithm based on nondeterministic
reduction to normal forms. A similar notion of coverability is that of using graph
transformation with interfaces, where confluence is also decidable.

6.7 Summary

In this chapter, we have:

• developed the notion of symbolic rewriting for graphs labelled with GP 2 ex-
pressions, to facilitate the joinability analysis for critical pairs;

• defined and studied strong joinability as a condition that is sufficient for estab-
lishing the confluence of a set of terminating left-linear GP 2 rule schemata;

• proven the Local Confluence Theorem based on the strong joinability of all
critical pairs;

• defined and studied an analysis algorithm focusing on establishing conflu-
ence;

• presented two improvements to the algorithm that increasing efficiency (us-
ing persistent reducts) and improve accuracy (relaxing isomorphism requir-
ing label equivalence rather than equality).

117

Chapter 7

Confluence Case Studies

In the previous chapters, we have described (1) how to construct critical pairs for
pairs of schemata; and (2) how to analyse critical pairs for strong joinability in
the context of a confluence checker. Up to this point, we have demonstrated the
concepts, definitions and theoretical results on small and partial examples. This
is fine for the purpose of understanding the particular technical details. But what
we have not yet shown is how our ideas can be put together to check interesting
existing graph programs for confluence.

In this chapter we revisit the graph programs of Chapter 2, and apply our
previously developed ideas to check whether they are confluent or not. We focus
on using our notions of critical pairs and joinability, but later consider how the
results of the analysis can be used to inform a programmer who is interested to
modify their program to achieve confluence without compromising semantics.

For each case study, we use the following general structure. We revisit the
problem and its GP program in sufficient detail, then list all critical pairs, grouping
them by rules involved and by conflict type. Afterwards we perform joinability
analysis on each critical pair. Finally, based on the joinability results, we attempt
to give a confluence answer for the original GP program. If the program is not
confluent, we give a specific counter example, and discuss how the program can
be ‘repaired’ to obtain a confluent version.

The chosen examples are existing GP programs: Series-parallel Recognition
(Section 7.1), concerned with a specific class of graphs; Shortest Distances (Sec-
tion 7.2), which computes the shortest path in a graph from a given source node
to all other reachable nodes; Computing 2-colouring (Section 7.3), concerned with
computing the 2-colouring of a graph (if it exists). All of these programs (or parts
of them) are meant to be confluent, so it is important to try and prove and re-
fute whether they are so. Furthemore, the Vertex Colouring (Section 7.4) case
study shows the program for computing any colouring of a graph rather than a
2-colouring, and it is a highly non-deterministic program which we can prove to
be non-confluent.

The Shortest Distances case study was presented in [HP17a], and its joinability
analysis discussion appeared in the long version only.

118

x

1

y z

2

a b

series(a,b,x,y,z:list)

1 2
⇒

Reduce = {series, parallel}
Main = Reduce!; delete; if nonempty then fail

x

1

y

2

a

b

parallel(a,b,x,y:list)

1 2
⇒

x ya

delete(a,x,y:list)

∅⇒ x

1

nonempty(x:list)

x

1
⇒

Figure 7.1: A program that checks whether a graph is series-parallel or not, re-
peated from Subsection 2.2.3.1,.

7.1 Series-Parallel Graphs

First, we return to the recognition of series-parallel graphs introduced in Subsec-
tion 2.2.3.1, and use our critical pair analysis techniques to check whether it is
confluent or not. The result of the analysis is that the program as originally given
in [Plu16] is not confluent due to edge labels, and give a confluent version of the
program that deals with this problem.

The program implementing the recognition of series-parallel graphs is given
in Figure 7.1. Given an (input) host graph G, the program first applies the set
of reduction rules as long as possible, resulting in some graph H. To determine
whether H has the correct shape, the program first deletes the predefined shape

, then checks whether the result is the empty graph. If either the deletion
or the non-empty checks fail, then the program fails. In this context, termination
of the program with a proper graph means the input graph G is series-parallel,
and failure means G is not series-parallel.

Termination. The program always terminations due to the following reasons.
The first part of the program applies size-reducing rules as long as possible: series
reduces the number of nodes, and parallel reduces the number of edges. The
delete rule is applied (at most) once so it also terminates. The final check ap-

119

x
1

y
2

z
3

w
4

a b c

S1

1 3

w
4

c

T1

x
1 3 4

a

T2

series
W

series
VSP1

x
1

y
2

z
3

a b

c

S2

1 3

c

T3

1 2
a

T4

series
W

series
V

SP2

x
1

y
2

z
3

w
4

u
5

a b c d

S3

1 3

w
4

u
5

c d

T5

x
1

y
3 4 5

a b

T6

series
W

series
V

SP3

x
1

y
2

z
3

w
4

a b c

d

S4

1 3

w
4

c

d

T7

1

y
2 3

a b

T8

series
W

series
VSP4

x
1

y
2

z
3

w
4

a b c

d

S5

x
1 2 4

a

d

T9

2

z
3 4

b c

T10

series
W

series
VSP5

Figure 7.2: Series-parallel critical pairs involving series with itself.

plies the nonempty rule at most once so it also terminates. Since the sequence of
terminating programs terminates, the overall program also terminates.

Symbolic critical pairs. In figures Figure 7.2, Figure 7.3 and Figure 7.4, we list
all symbolic critical pairs of Reduce = {series, parallel}. Grouping is done by
rules involved.

120

x
1

y
2

z
3

w
4

a b
c

d

S6

1 3

w
4

c

d

T11

x
1

y
2 3 4

a b

T12

series
W

parallel

VSP6

x
1

y
2

z
3

w
4

c d
a

b

S6

x
1 2 4

a

b

c

T13

1 2

z
3

w
4

c d

T14

series
W

parallel

V
SP7

x
1

y
2

z
3

a b

c

d

S8

1 3

c

d

T15

1

y
2 3

a b

T16

series
W

parallel

V
SP8

x
1

y
2

z
3

a b

d

c

S9

1 3d

c

T17

1

y
2 3

a b

T18

series
W

parallel

V
SP9

Figure 7.3: Series-parallel critical pairs involving both rules series and parallel.

121

x
1

y
2

b
a

c

S10

1 2c

T19

1 2

a

T20

parallel

W
parallel

VSP10

x
1

y
2

b

a

c

d

S11

1 2
c

d

T21

1 2

b

a

T22

parallel

W
parallel

V
SP11

x
1

y
2

b

a

c

d

S12

1 2

b

a

T23

1 2
c

d

T24

parallel

W
parallel

V
SP12

Figure 7.4: Series-parallel critical pairs involving parallel with itself.

122

Joinability Analysis. Next, we give the joinability analysis of each critical pair.
As done previously, we group the critical pairs depending on which rules are
involved. All critical pairs are strongly joinable, except critical pair SP2. This
critical pair is not joinable and we are able to instantiate it to a confluence counter
example.

series× series

SP1 strongly joinable - both result graphs reduce to

SP2 not joinable - the result graphs are normal forms, there are 2 bijective premor-
phisms iso1 : T1 → T2 = {1→ 1, 3→ 2} and iso2 : T1 → T2 = {1→ 2, 3→ 1}
which induce the systems of label equations {a = empty, c = empty} and
{a = c, empty = empty} that are universally quantified. (Here empty stands
for the empty list). If either are true, then iso1 or iso2 is an isomorphism and
the critical pair is joinable. However, neither conjectures are true. Finding
values for the variables such that a 6= c produces a concrete counter example
to confluence, e.g. a = 1, c = 3 (see Subsection 7.1).

SP3 strongly joinable - both result graphs reduce to . The joining deriva-
tions delete one of the protected nodes (3). However, when we look at the
full derivation tress, both reduce to the graph which contains
all persistent nodes. Therefore the pair is strongly joinable.

SP4/5 strongly joinable - both result graphs reduce to

series× parallel

SP6/7 strongly joinable - graphs reduce to . Note that this graph is a
persistent normal form, similar to the critical pair SP3 above.

SP8 strongly joinable - graphs reduce to

SP9 strongly joinable - graphs reduce to

parallel× parallel

SP10 strongly joinable - graphs reduce to . Note the graphs of the critical
pair are isomorphic (T19

∼= T20) only up to the label equality {a = c}, which
is satisfiable but not valid.

SP11 strongly joinable - same as above.

SP12 strongly joinable - graphs reduce to

123

x
1

y
2

z
3

a b

c

S2

1 3

c

T3

1 2
a

T4

series
W

series
VSP2

3
1

3
2

3
3

3 4

5

Sα
2

1 3

5

Tα
3

1 2
3

Tα
4

series
W

series
V

SP2 instance

Figure 7.5: Confluence counter example: an instance of SP2.

Confluence Result. Since our analysis found a symbolic critical pair that is not
joinable (SP2), then one would imagine it would be possible to construct a concrete
counter example to confluence. Concrete in this setting means the graphs involved
are labelled over concrete data, i.e. GP 2 host graphs.

Indeed it is possible to instantiate the critical pair as in Figure 7.5 with two
normal forms that are not isomorphic. The instantiation is by the assignment
α = {x 7→ 3, y 7→ 3, z 7→ 3, a 7→ 3, b 7→ 4, c 7→ 5}, where we have made sure that
α(a) 6= α(c).

Therefore, Reduce is not confluent. The problem is that the program only handles
edge labels which are matched explicitly by Reduce.

Confluence repair. There are several ways to repair the program w.r.t. conflu-
ence. One option is to have a preprocessing stage before Reduce that removes all
edge labels. This does not affect the original algorithm since the series-parallel
property of a graph is not concerned with labels. Such removal can be done by the
unlabel schema introduced in Chapter 4. (Note the schema marks matched edges
as dashed to avoid non-termination.) The Reduce rules can then be simplified to
not contain variables, together with final step of the algorithm which checks that,
after applying Reduce as long as possible, the resulting graph is isomorphic to

.
Another option is to examine the non-joinable critical pair and introduce new

rules to Reduce that make it joinable. In this case it would be a rule that takes
a 2-cycle graph and removes its labels. However, adding more rules may intro-
duce extra critical pairs. This idea is known as Knuth-Bendix completion in term
rewriting. See e.g. [Hue80, Hue81] or the textbook [BN98].

This idea is realised in Figure 7.6 where we use the rule unlabel applied as
long as possible before the start of the algorithm. This changes the analysis as
the rules of Reduce are schemata without variables. The critical pairs of Reduce

are as before except all the variables are replaced with empty lists, making the
confluence counter example disappear since it relies on instantiating variables in

124

a particular way. As extra work, we need to consider the critical pairs of unlabel
and only of that schema with itself, which were given in Figure 4.5. These extra
critical pairs are strongly joinable also since the rule can be applied to each pair of
result graphs. Therefore, the repaired Series-Parallel program is confluent as it is a
composition of confluent sub-programs. Note however our analysis does not cover
the last step of the program, the if subprogram, as it would require confluence
reasoning beyond critical pairs.

Main = unlabel!; Reduce!; delete; if nonempty then fail

Reduce = {series, parallel}

1 2
⇒x

1

y

2

a

unlabel(a,x,y:list) delete

⇒ ∅

1 2
⇒

1 2

series

1 2

parallel

⇒
1 2

⇒x
1

x
1

nonempty(x:list)

Figure 7.6: Confluent version of Series-Parallel program.

Case Study Summary. After performing our analysis for the Series-Parallel GP 2
program, we learned the following:

• confluence analysis can be effectively done by means of symbolic critical pair
construction and joinability analysis;

• even when a given program is not confluent, a counter example can be con-
structed by instantiating a chosen (non-joinable) critical pair;

• it is non-trivial to repair programs as it may introduce new rules and thus
new critical pairs.

125

Figure 7.7: Shortest Distances program, repeated from Subsection 2.2.3.2.

7.2 Shortest Distances

The next case study is our program for computing shortest distances, given in
Subsection 2.2.3.2. The shortest distances problem is about calculating the paths
between a given node (the source node) and all other nodes in a graph such that
the sum of the edge weights on each path is minimized. An assumption made is
that there is no negative cycle (a cycle whose edge weights sum to a negative value)
that is reachable from the source, in which case there is no shortest path.

A GP 2 program that implements the Bellman–Ford algorithm is shown in Fig-
ure 7.7. Distances from the source node are recorded by appending the distance
value to each node’s label. Nodes marks are used: the source node is red, visited
nodes are gray, and unvisited nodes are unmarked. Given an input graph G with
a unique source node and no negative cycle, the program initializes the distance of
the source node to 0. The add rule explores the unvisited neighbours of any visited
nodes, assigns them a tentative distance and marks them as visited to avoid non-
termination. The reduce rule finds occurrences of visited nodes whose current
distance is higher than alternative distances, i.e. only when the application condi-
tion (m+ n < p) is satisfied by the schema instantiation. The program terminates
when neither add or reduce rules can be further applied.

However, since rule application is non-deterministic, different graphs may re-
sult from a program execution. The above algorithm is correct only if the loop

126

{add,reduce}! is confluent. In the absence of a full program verification, a pro-
grammer may want to check that this loop indeed returns unique results.

The program uses several of GP’s features. List expressions, e.g. x : m, are
used to append the node’s distance during computation. (Due to list expressions,
other approaches to critical pairs will not attempt to analyse these rules.) Marks
are used to record visited and unvisited nodes. Since marks are separate to the
list expression of a label, we consider them as constants when computing critical
pairs. Last but not least, the application condition of reduce plays a vital role in
the program’s correctness. Although our analysis does not deal with application
conditions in general, we can give specific intuition of how to include these specific
conditions in the analysis. We can do so since the application condition of reduce
involves integer expressions and comparison, and hence falls in the scope of the
SMT-solver Z3.

Termination. The program starts with the single application of init which is
executed at most once, and the program fails if it fails. Otherwise, it proceeds with
application add and reduce as long as possible. To see this terminations, consider
the opposite: that there is an infinite derivation sequence involving both rules.
Such a sequence cannot contain an infinite number of add applications as the rule
reduces the number of unmarked nodes in the graph and the other rules do not
increse the number of such nodes. Hence, at some point there are no more matches
for that rule, from which point there must only be (an infinite number of) matches
for reduce. But the reduce rule, when applied as long as possible on its own,
terminates under the assumption of no negative cycles. This is a contradiction and
therefore the program must terminate.

Symbolic Critical Pairs. The symbolic critical pairs of the above program are
given in Figure 7.8 and Figure 7.9. There are 7 critical pairs in total: two be-
tween add and itself (SD1/2), one between add and reduce (SD3), and four be-
tween reduce and itself (SD4-7). All of the conflicts are due to relabelling of a
common node. Note that due to the semantics of GP 2 marks (marked cannot
match unmarked), other conflicts are not possible. Variables have been renamed
where necessary.

The critical pairs SD1/2 are between the rule add with itself where an unvisited
node can get initialized with different distance values, either from 2 neighbouring
nodes or from the same node but different (parallel) edges. In SD3 the distance
of a node in a path is used in different ways: either to initialize the distance of a
neighbouring node (using add), or to have its own distance updated (using reduce).
Application conditions is recorded as part of the critical pair. The critical pairs
SD4/5 represent a conflict of reduce with itself where a node may get different
updated distance values depending on which path is chosen, similar to SD1/2.
SD6 involves a 2-cycle where either node gets its distance updated by reduce. SD7
involves a sequence of three nodes, similar to SD3.

127

x:m 1 x′ : m′2

y3
n n′

S1

x:m 1 x′ : m′2

y:m+n3
n n′

T1

x:m 1 x′ : m′2

y:m′+n′3
n n′

T2

add
W

add
VSD1

x:m1

y2

n n′

S2

x:m1

y:m+n2

n n′

T3

x:m1

y:m+n′2

n
n′

T4

add
W

add
V

SD2

x:m
1

y:p
2

y′

3

n n′

S3

where m+ n < p

x:m
1

y:m+n
2

y′

3

n n′

T5

x:m
1

y:p
2

y′:p+n′

3

n n′

T6

reduce
W

add
V

SD3

Figure 7.8: Shortest Distances critical pairs involving add.

Joinability Analysis. In the following, we give the strong joinability analysis for
each critical pair of Figure 7.8 and Figure 7.9. The result of the analysis is that all
critical pairs are strongly joinable except the 2-cycle critical pair SD6 whose label
condition is unsatisfiable assuming non-negative cycles and the semantic argument
that both schemata do not modify edge labels. (Without using this information,
the critical pair is not joinable.) Hence the loop {add, reduce}! is confluent.

An interesting practical aspect of joinability is that it involves, in most cases,
checking label equivalences for validity. (We check for validity rather than satis-
fiability since we need that all instances of a strongly joinable critical pair to be
strongly joinable rather than at least one.) For this purpose, we use the SMT solver
Z3 [dMB08]. It provides support for (linear) integer arithmetic, arrays, bit vectors,
quantifiers, implications, etc.

For the critical pair SD1, the result graphs T1 and T2 are isomorphic only
if the label equivalence m + n = m′ + n′ is valid, which it is not (encoded as
a forall expression in Figure 7.10a where variables have been renamed). The
analysis proceeds by applying reduce to both T1 and T2, and the semantics of
the reduce condition (containing comparison of integer expressions) guarantees
a strong isomorphism between the results. Note that reduce is necessary for the
joining derivations, meaning the rule add is not confluent on its own. The analysis
of SD2 proceeds in a similar way as SD1 with the same conclusion.

For SD3, one needs to check implications between conditions to ensure strong
joinability between a pair of derivable graphs. An implication that shows up dur-
ing the analysis is shown in Figure 7.10b which Z3 reports to be valid. Therefore
the critical pair is strongly joinable. For the critical pairs SD4/5, their result graphs
are exactly the result graphs of SD1/2, which greatly simplifies the analysis. The

128

x:m 1 x′ : m′2

y:p3
n

n′

S4

where m+ n < p and m′ + n′ < p

x:m 1 x′ : m′2

y:m+n3
n

n′

T7

x:m 1 x′ : m′2

y:m′+n′3
n

n′

T8

reduce
W

reduce
VSD4

x:m1

y:p2

n n′

S5

where m+ n < p and m+ n′ < p

x:m1

y:m+n2

n n′

T9

x:m1

y:m+n′2

n
n′

T10

reduce
W

reduce
V

SD5

x:m1

y:p2

n n′

S6

where m+ n < p and p+ n′ < m

x:m1

y:m+n2

n n′

T11

x:p+n′1

y:p2

n n′

T12

reduce
W

reduce
V

SD6

x:m
1

y:p
2

y′:p′

3

n n′

S7

where m+ n < p and p+ n′ < p′

x:m
1

y:m+n
2

y′:p′

3

n n′

T13

x:m
1

y:p
2

y′:p+n′

3

n n′

T14

reduce

W
reduce

V

SD7

Figure 7.9: Shortest Distances critical pairs involving only reduce.

joint label condition concerns the integer variable p which disappears during rule
application, effectively having no effect on the analysis.

The critical pair SD6 is different. Its label condition is satisfiable only when the
sum of the edge labels is negative (n+ n′ < 0), which is not possible under the
assumption of no negative cycles and the observation that no rules modify edge
labels. Without this semantic information, it is possible to instantiate the critical
pair to a concrete graph with non-isomorphic normal forms, and thus obtain an
example of non-confluence.

Joinability of SD1, SD2, SD4 and SD5 (strongly joinable). Consider the graphs
T1 and T2 of SD1 (top of Figure 7.11): the identity mapping is bijective premor-
phism that commutes on the persistent nodes of the critical pair (which are all of
the nodes 1,2 and 3). However, it is not label preserving under equivalence, mean-
ing that the following conjecture is not valid: ∀y, m, m′, n, n′ • y : (m+ n) = y : (m′ + n′).
Its invalidity can be checked by Z3 as explained above.

Next, we explore the derivation trees of T1 and T2. We apply reduce to T1 to

129

1 (define−fun T1 T2 () Bool
2 (f o r a l l ((m1 Int) (m2 Int)
3 (n1 Int) (n2 Int))
4 (= (+ m1 n1) (+ m2 n2))))
5 (a s s e r t T1 T2)

(a) Label equivalence example for SD1.

1 (define−fun T77 T888 () Bool
2 (f o r a l l ((m Int) (p Int)
3 (n1 Int) (n2 Int))
4 (=> (< (+ m n1) p)
5 (< (+ m n1 n2) (+ p n2)))))
6 (a s s e r t T77 T888)

(b) Implication checking for SD3.

Figure 7.10: Z3 code for label equivalence analysis of shortest distances.

obtain graph T′1. (The rule add is not applicable to either graph due to matching
restrictions of marks.) This application has the effect of relabelling node 3 (the
common node) to having distance m′ + n′. The application condition of the rule is
m′+ n′ < m+ n. Again we want to look for an E-isomorphism T′1 → T2, and in this
case the identity premorphism preserves labels — all graph labels are syntactically
equal. However, the isomorphism is conditional on the existence of T′1. Indeed, if
one instantiates the critical pair to a concrete conflict that doesn’t satisfy reduce’s
application condition, then the symbolic joining derivations cannot be instantiated
to concrete ones. Therefore, T′1 ∼=E T2 only when m′ + n′ < m + n.

Exploring the derivation tree of T2 yields similar results. We can summarize
the situation as follows:

• T1
∼=E T2 only when m + n = m′ + n′

• T′1 ∼=E T2 only when m + n < m′ + n′

• T1
∼=E T′2 only when m + n > m′ + n′

• T′1 ∼=E T′2 only when m + n > m′ + n′ and m + n < m′ + n′

The symbolic critical pair is strongly joinable under certain label conditions, and
the strong joinability witnesses are different depending on which condition is sat-
isfied. At a first glance, it may be possible that none of the above conditions is
satisfied by an instantiation of the critical pair. Only when we go into the seman-
tics of comparison can it be deduced that there is no such situation. This can
proven by Z3 for this specific system of conditions, so we can be sure at least one
pair of graphs is strongly isomorphic. As a result, the critical pair SD1 is strongly
joinable.

130

x:m 1 x′ : m′2

y3

n n′

S1

x:m 1 x′ : m′2

y:m+n3

n n′

T1

x:m 1 x′ : m′2

y:m′+n′3

n n′

T2

x:m 1 x′ : m′2

y:m′+n′3

n n′

T′1

x:m 1 x′ : m′2

y:m+n3

n n′

T′2

add
W

add
V

W reduce

V

reduce

SD1

x:m
1

y:p
2

y′

3

n n′

S7

where m+ n < p

x:m
1

y:m+n
2

y′

3

n n′

T13

x:m
1

y:p
2

y′:p+n′

3

n n′

T14

reduce
W

add
VSD7

x:m
1

y:m+n
2

y′:m+n+n′

3

n n′

T′13

W add

x:m
1

y:m+n
2

y′:p+n′

3

n n′

T′14

V

reduce

x:m
1

y:m+n
2

y′:m+n+n′

3

n n′

T′′14

V

reduce

Figure 7.11: Joinability for Shortest Distances program.

The analysis for the critical pair SD2 proceeds in exactly the same way - there is
one less node to consider (meaning less variables), and exactly the same conclusion
is reached as SD1. For SD4, it is a conflict between two reduce applications.It turns
out that the two result graphs are exactly the result graphs of SD1, i.e. T7

∼= T1
and T8

∼= T2, which greatly simplifies analysis. Note that the joint label condition
concerns variable p which disappears in T7 and T8, effectively having no effect on
the joinability analysis. For SD5, its result graphs are exactly the result graphs of
SD2, and thus again the analysis is exactly the same.

Joinability of SD3 and SD7 (strongly joinable). Consider the derivation trees of
T5 and T6, shown in Figure 7.11. We can summarize the analysis as follows:

• T′5 ∼= T6 only when m + n = p and m + n + n′ = p + n′

• T′5 ∼= T′6 only when m + n + n′ = p + n′ and m + n < p

131

• T′5 ∼= T′′6 only when m + n + n′ < p + n′

The first and second conditions are invalid in the context of critical pair condition
m + n < p. In the last case, the graphs T′5 and T′′6 have syntactically the same
labels, and the given condition ensures T6′′ exists. It can be shown that the critical
pair condition on S4 implies that condition of T′5 ∼=E T′′6 . We encode this situation
as Figure 7.10b which Z3 reports to be valid. In other words, every critical pair
instance can be joined by instantiating the derivations T5 V T′5 ∼=E T′′6 W T′6 W T6.
Therefore, SD4 is strongly joinable.

For SD7, we can apply T13
reduce
V T5, and also we have T14

∼= T6, meaning the
analysis of SD3 is repeated (under the extra condition on the variable p′ which
disappears in T5 and T6), and thus again obtaining strong joinability.

Case Study Summary In summary, we have learned the following:

• sometimes it is useful for a programmer to intervene during confluence anal-
ysis in the form of an oracle that discharges critical pairs with unsatisfiable
label conditions;

• joinability analysis needs to consider there may be several different witnesses
depending on specific labels and/or existence conditions;

• an SMT solver such as Z3 can be used to check equalities of labels, to instan-
tiate variables with concrete values to obtain confluence counter examples,
and to prove implications between label conditions.

132

Example program: 2-colouring

Main = try (mark!; init; colour!; if illegal then fail)

mark(x : list) init(x : list)

1

x ⇒

1

x

1

x ⇒

1

x:1

colour(a, x, y : list; i : int)

x:i y

1 2

a
⇒ x:i y:1−i

1 2

a

illegal(a, x, y : list; i : int)

x:i y:i

1 2

a
⇒ x:i y:i

1 2

a

Assumption: input graph is connected

Figure 7.12: 2-colouring program, repeated from Subsection 2.2.3.3.

7.3 2-colouring

This example is concerned with computing a vertex 2-colouring of an input graph
if such a colouring is possible. To colour the nodes of a graph means to as-
sign colours (as labels) to each node such that no two adjacent nodes have the
same colour. We introduced the program for computing a 2-colouring in Subsec-
tion 2.2.3.3, repeated in Figure 7.12. The program assumes the input is a connected
unmarked graph, and terminates with a valid 2-colouring if possible. If no such
colouring exists, the program returns the original input graph.

As a brief summary, the program marks all nodes as unvisited (grey mark),
then non-deterministically initializes a node with the colour 1 and marking it as
visited (by removing its grey mark). The program then explores the neighbours of
visited nodes by assigning them opposing colours. Specifically to this program, to
avoid complications with the bidirectional edge of colour we assumed it is a set of
two rules where the edge is in the forward (rule colour1) or backward direction
(rule colour2).

Termination. The program terminates due to the following reasons. The mark

rule reduces the number of unmarked nodes, so applying it as long as possible ter-
minates. The init and illegal rules are applied at most once, so they will always
terminate. The colour rule set reduces the number of marked nodes, and since
there are no infinite number of marked nodes given the assumption of unmarked
input and the property of mark to shade all the nodes of the input graph exactly
once, it follows that the colour! sub-program also terminates. The sequencing of
terminating sub-programs also terminates, and wrapping a terminating program
in a try block does not affect termination, it follows that the program terminates.

133

x:i 1 x′ : i′2

y3

a a′

S1

x:i 1 x′ : i′2

y:1-i3

a a′

T1

x:i 1 x′ : i′2

y:1-i′3

a a′

T2

colour1
W

colour1
V2C1

x:i1

y2

a a′

S2

x:i1

y:1-i2

a a′

T3

x:i1

y:1-i2

a a′

T4

colour1
W

colour1
V

2C2

Figure 7.13: 2-colouring critical pairs involving colour1 only.

x:i 1 x′ : i′2

y3

a a′

S3

x:i 1 x′ : i′2

y:1-i3

a a′

T5

x:i 1 x′ : i′2

y:1-i′3

a a′

T6

colour2
W

colour2
V2C3

x:i1

y2

a a′

S4

x:i1

y:1-i2

a a′

T7

x:i1

y:1-i2

a a′

T8

colour2
W

colour2
V

2C4

Figure 7.14: 2-colouring critical pairs involving colour2 only.

134

x:i 1 x′ : i′2

y3

a a′

S3

x:i 1 x′ : i′2

y:1-i3

a a′

T9

x:i 1 x′ : i′2

y:1-i′3

a a′

T10

colour1
W

colour2
V2C5

x:i1

y2

a a′

S6

x:i1

y:1-i2

a a′

T12

x:i1

y:1-i2

a a′

T12

colour1
W

colour2
V

2C6

Figure 7.15: 2-colouring critical pairs involving both colour1 and colour2.

Symbolic Critical Pairs. The critical pairs of colour1 and colour2 are given in
Figure 7.13 (colour1 and itself), Figure 7.14 (colour2 and itself) an finally Fig-
ure 7.15 (involving both rules). The mark rule has no critical pairs as any overlap
of the rule and itself would produce isomorphic results, i.e. the loop mark! is
confluent.

The small number of critical pairs is due to the structure of the colour1/2 rules.
The rules only modify a single node - the marked (grey) node 2, by attaching a
distance to its label and unmarking it. The semantics of matching GP 2 marks en-
sures marked nodes cannot match unmarked ones, making the rule set terminate,
and in particular making the result graphs of the critical pairs (persistent) normal
forms. Furthermore, in order to construct a valid conflict, the marked node of
one rule instance can only overlap with a marked node of another rule instance,
further reducing the number of critical overlaps.

Joinability Analysis. Exploring the derivation trees of the critical pairs is not nec-
essary since all result graphs involved are (persistent) normal forms w.r.t. colour:
there are no grey nodes for either rule to be applied any further. Therefore, join-
ability of any of the critical pairs relies entirely on whether the result graphs are
E-isomorphic.

The critical pairs 2C2, 2C4 and 2C6 are strongly joinable because they pro-
duce isomorphic graphs with syntactically equal labels. This is no surprise from
the view of the 2-colouring problem as parallel edges make no difference to the
computation of such a colouring.

However, when we look at e.g. critical pair 2C1, it is not joinable because the
induced label equality i = i′ is satisfiable but invalid. This also holds for the
critical pairs 2C3 and 2C5.

Confluence of colour! and 2-colouring. We give a counterexample to conflu-
ence of the {colour1,colour2}! sub-program by instantiating the critical pair 2C1

135

x:i 1 x′ : i′2

y3

a a′

S1

x:i 1 x′ : i′2

y:1-i3

a a′

T1

x:i 1 x′ : i′2

y:1-i′3

a a′

T2

colour1
W

colour1
V2C1

3:1 1 3:02

33
3 3

Sα
1

3:1 1 3:02

3:03
3 3

Tα
1

3:1 1 3:02

3:13
3 3

Tα
2

colour1
W

colour1
V

2C1 instance

Figure 7.16: 2-colouring confluence counterexample - an instance of 2C1.

(Figure 7.16) with different colours for nodes 1 and 2, i.e. such that i 6= i′ to ob-
tain non-isomorphic normal forms. The remaining variables are instantiated to the
integer 3 for simplicity. Therefore {colour1,colour2}! is not confluent.

An interesting issue is raised when one looks at the sub-program after colour:
the code (if illegal then fail) checks for an illegal 2-colouring and fails if one
exists. This essentially means that the above normal forms would both produce
the fail result, but it is still an open question how fail factors into confluence
analysis. The difficulty lies with the fact that fail is a configuration rather than a
special kind of graph, so the notion of joinability would have to account for this
special situation.

Suppose we are able to analyse the sub-program (if illegal then fail) for
confluence: the rule illegal (a predicate rule) is either applicable or not1, and the
special fail command fails on any graph as input, i.e. the sub-program is con-
fluent. Regardless, the 2-colouring program non-deterministically picks an initial
node to visit and assign colour using the init rule. The problem now is that init is
applied exactly once, and even though it has no critical pairs (any possible overlap
violates the same-rule-different-match requirement), it introduces non-confluent
behaviour: a graph 2-colouring (if it exists) is unique up to swapping of colours. In
other words, our analysis cannot capture this more flexible notion of confluence
even if it can deal with explicit failure and predicate rules in if-then-else.

Case Study Summary. Analysing this program, we have learned that:

• the sub-program computing a graph 2-colouring is not confluent by instanti-
ating a non-joinable critical pair;

• GP 2 syntactic sugar constructs (e.g. bidirectional edges) inflate the num-
ber of rules to consider for confluence analysis, which in turn increases the
number of critical pairs;

1The compiler exhaustively searches for a match, and does not backtrack if it finds several.

136

• considering failure explicitly is complicated as it is a program configuration
rather than a graph;

• confluence up to swapping of colours of the 2-colouring program cannot be
captured by the analysis, even if the above point is dealt with.

137

Example program: 2-colouring

Main = try (mark!; init; colour!; if illegal then fail)

mark(x : list) init(x : list)

1

x ⇒

1

x

1

x ⇒

1

x:1

colour(a, x, y : list; i : int)

x:i y

1 2

a
⇒ x:i y:1−i

1 2

a

illegal(a, x, y : list; i : int)

x:i y:i

1 2

a
⇒ x:i y:i

1 2

a

Assumption: input graph is connectedFigure 7.17: 2-colouring program, repeated from Subsection 2.2.3.4.

7.4 Vertex Colouring

The vertex colouring program computes some valid vertex colouring for a given
graph [Plu16, Section 4], and was discussed in Subsection 2.2.3.4. Its program text
is

Main = mark!; init!; inc!

where the rules are as the 2-colouring program (repeated in Figure 7.17) together
with the inc rule:

x:i

1

y:i

2

a

inc(a,x,y:list, i:int)

⇒ x:i

1

y:i+1

2

a

Briefly, the program consists of two phases: first, assign an initial colour (the
integer 1) to each node, and then increment colours of nodes with current colour
equal to an adjacent node’s colour. The first part of the computation is the sequen-
tial composition of (mark!; init!) and has a quadratic run time complexity (in
the number of nodes). The second part is the as-long-as-possible application of the
inc rule.

138

This second pass is highly non-deterministic and is guaranteed to terminate
with quadratic run time complexity (for proof see [Plu16, Proposition 4]). What
is special about this program is that there exists a symbolic critical pair which is
non-joinable at the symbolic level, i.e. all of its instances are confluence counter
examples. Therefore, a confluence algorithm can report ‘non-confluence’ safely in
this specific case.

i
1

i
2

i
3

a a′

S

i
1

i+1
2

i
3

a a′

T1

i
1

i
2

i+1
3

a a′

T2

inc
W

inc
V

i
1

i+1
2

i+1
3

a a′

T3

V

inc

i
1

i+1
2

i+2
3

a a′

T4

V

inc

Figure 7.18: Critical pair of inc with itself.

Non-joinability. The mentioned critical pair is given in Figure 7.18. It is a se-
quence of three nodes where the middle node gets relabelled causing a conflict.
The right result graph (T2) is further modified by the sequence of symbolic deriva-
tions T2 V T3 V T4. Now we will prove two important facts: that the graphs T1
and T4 represent normal forms, and that they are non-isomorphic.

Proposition 5. All host graph instances of T1 W SV T2 V T3 V T4 are normal forms.
Furthermore, for all instances Tα

1 and Tα
4 we have that Tα

1 � Tα
4 .

Proof. Suppose α is any valid GP 2 assignment for the integer variable i that is
common to all the graphs of the critical pair. Then the rule inc cannot be applied
to:

• T1 - the symbolic application requires solving the unsatisfiable matching
problem {i′ = i, i′ = i + 1} where we have renamed the matched variable of
inc to avoid confusion; unsatisfiability can be checked by Z3

• T4 - same as above, with systems of equations {i′ = i, i′ = i + 1} and {i′ =
i + 1, i′ = i + 2}, again both of which are unsatisfiable and can be checked
by Z3

139

Therefore, for any assignment, the graphs Tα
1 and Tα

4 are normal forms.
The given graphs are non-isomorphic for all instantiations because the (unique)

bijective mapping T1 → T4 induces a system of label equations

{i = i, i = i+ 2, i+ 1 = i+ 1}

that has no unifiers. Therefore, for any assignment Tα
1 � Tα

4 .

7.5 Chapter Summary

In conclusion, we have learned the following:

• full confluence analysis can be performed on existing GP programs that solve
interesting graph problems;

• even when a given program is not confluent, a counter example can be con-
structed using the results of the analysis;

• several GP-specific features can be integrated into the analysis, e.g. list ex-
pressions, marks, (a fragment of) application conditions;

• an SMT solver can be used to solve several types of problems arising dur-
ing the analysis such as label equalities, construction of confluence counter
examples, and implications between application conditions;

• joinability analysis w.r.t. application conditions is difficult in that a specific
critical pair can be strongly joinable given that a certain condition is true;

• some GP features appear harder to integrate into confluence analysis: we
haven’t considered programs that have so-called roots (a boolean flag attached
to nodes, allows for constant-time matching), or programs that result in ex-
plicit failure.

140

Chapter 8

Conclusions and Future Work

In this chapter we draw the thesis to a close, first with some conclusions, and then
with some suggestions for interesting future work.

8.1 Conclusions

In Section 1.2 we proposed a research hypothesis:

The language GP 2 can be effectively equipped with a confluence analysis system,
facilitating proofs about confluence of many interesting graph programs

We also identifid criteria for the acceptability of such a system:

• sound: every confluence result must be valid with respect to the semantics of
the language;

• realistic: in that it does not require impractical assumptions or restrictions on
programs;

• automatable: all components of the system must be fully specified or imple-
mented

We believe that the contributions of this thesis satisfy these criteria, and hence
support the hypothesis. We began by introducing the notions of independence
and conflict for rule schemata, central to the study of confluence. We lifted the no-
tions of independence and conflict to rule schemata (Section 3.2), and proved the
Local Church-Rosser Theorem (Theorem 3.1) which establishes that independent
derivations are commutative and thus lead to the same result regardless of appli-
cation order. This line of work is important not only because it is a paving stone
for defining critical pairs, but also because without proving the commutativity of
independent derivations, the confluence analysis based on critical pairs would be
unsound.

Next, we developed critical pair analysis for sets of rule schemata by introduc-
ing symbolic critical pairs (Section 4.2), which are pairs of derivations at the level

141

of schemata, i.e. labelled with expressions, that are minimal and in conflict. We
defined our critical pairs at the level of graphs labelled with expressions to avoid
an infinite number of such pairs. Then we gave an algorithm for their construc-
tion (algorithm 2 of Section 4.3), and showed the set of critical pairs is complete
(Theorem 4.2) and finite (Corollary 1) under suitable but realistic restrictions. The
construction algorithm is based on computing graph overlaps, and unifying over-
lapped labels using our rule-based unification algorithm for solving systems of
label equations (Chapter 5). We showed that the unification algorithm terminates,
is sound and also complete meaning that every unifier of the input system of equa-
tions is an instance of some unifier in the computed set of solutions (Theorem 5.4).

We continued by introducing our notion of strong joinability of critical pairs,
based on rewriting of graphs labelled with expressions (Section 6.2). This is nec-
essary as graphs in critical pairs are, in general, labelled with expressions rather
than concrete values. Then, we established the Local Confluence Theorem for
GP 2 schema rewriting (Theorem 6.1), which in effect allows for the specification
of a sound confluence analysis algorithm based on critical pairs (algorithm 4 of Sec-
tion 6.5). We discussed the practical aspects of the algorithm by looking at two
refinements that reduce its search space and improve its accuracy.

Of course, we are not claiming to have equipped the language with the most
effective confluence analysis system based on critical pair analysis. Indeed, much
work remains to be done in addressing the deficiencies, amongst which the lack
of means to detect non-confluence at the symbolic/expression level, and a formal
treatment of (label) conditions present in conditional rule schemata, stand out as
two of the most pressing — we go into more detail in the following section. But we
are hopeful this thesis presents a step in the right direction, and has widened the
class of graph programs whose (non-)confluent behaviour can be reasoned about.

8.2 Future Work

Here, we discuss some potential future work, including incorporating other GP 2
features into the analysis like application conditions, roots, the ‘any’ mark, formal-
izing our work in a confluence assistant, and more case studies. Topics we do not
otherwise cover but are also important are the handling of control structures in a
confluence calculus and possible external uses of the information obtained during
confluence analysis.

Conditions. Currently, our analysis does not deal with GP 2 conditions as pre-
sented in Chapter 2. As presented, the theory only considers unconditional rule
schemata. One of the issues is that considering only overlaps of left-hand graphs
of schemata is insufficient for constructing a complete set of critical pairs. This is
due to the more involved nature of conflicts: one rule can create items which are
forbidden by another, and thus derivations which are not in delete-use conflicts
can be in conflict. The way to deal with this problem is to consider extra overlaps
that are constructed as follows: overlap the graph forbidden by one rule with the

142

right-hand side of the other rule, and apply the inverse rule to reach the com-
mon graph of the critical pair. However, this works only for application conditions
when expressed as morphisms rather than being textual as in the setting of GP 2.

The other issue with conditions is that extra results are necessary about how
conditions behave in the various proofs of the classical results. Typically, one has
to define how conditions are shifted over morphisms and over rules, and this is
non-trivial to define and use in proofs.

Hopefully, it is not too difficult to solve the above problems. We have already
presented a way to deal with textual conditions in schemata when they only re-
strict the values of label variables, as shown in the Shortest Distances case study
(Chapter 7). Specifically, we record application conditions as assumptions that are
to be resolved later by the SMT solver Z3, checked both for satisfiability and for
implying label equivalences between symbolic graphs. Although it does not seem
difficult to define shifting of conditions over morphisms, i.e. by applying the com-
puted unifier to the condition text, this is a technical aspect that is crucial to the
process of handling conditions. Last but not least, it would be useful to specify a
fragment of conditions for which the relevant problems of isomorphism checking
and implication checking are decidable, such as no arithmetic multiplication and
no edge predicates.

A possible parallel to an existing implementation is the work of [Dec17] where
handling of label conditions is delegated by Z3. What is more, the formal treat-
ment of label conditions as part of the graphs is also covered by [Dec17]. (Note
that application conditions are not part of the implementation nor the critical pair
analysis framework.)

Future topics of work, among others, are the more advanced E-conditions and
MSO-conditions of [PP14]. More specifically, the filtering of critical pairs based on
a consistency check, although a sound idea, has to be done manually in Section 7.2
and it is not clear whether a condition such as ’there is no negative-weight cycle’
can be even expressed, let alone automatically checked, in those existing more
sophisticated frameworks.

Rooted Graph Transformation. Rooted graph transformation [BP12] is a formal-
ism that employs specific nodes, called roots, that can be matched in constant time,
and thus benefit from the high-level specification power of graph transformation
while avoiding costs of matching. It is part of the compiler implementation of
GP 2 [Bak16], and some compiled rooted graph programs are comparable in per-
formance to purpose-built C implementations of graph algorithms [BP16]. Rooted
graph programming is more difficult to get right, and would benefit from static
confluence analysis as a form of correctness check.

There are some interesting issues with the framework. First, this kind of rewrit-
ing does not fall within the theory of M,N -adhesiveness unlike rules with rela-
belling on which the rest of the language is based. The problem is that rules can
create roots, which are treated as a separate boolean flag on nodes rather than part
of its label. This becomes a problem as the second square in a double-pushout
diagram is not natural. This complication of the underlying principles would im-

143

ply heavy changes to accompanying confluence analysis results. A possible way
to offset this challenge is the use of projective graph transformation [Dec17] that
allows for the right morphism in rules to be from a special class of morphisms.

Syntactic sugar. Several of GP 2’s features are useful when writing programs but
can be considered syntactic sugar - the ‘any’ mark in rules allows matching any
marked node; the bidirectional flag on edges matches host graph edges in either
direction. These can be useful as they reduce the number of rules an end-user
needs to write. However, our analysis does not handle them: we had to normalise
the bidirectional edge in the 2-colouring program (Chapter 7), and did not look at
a variation of the Shortest distances program that uses the any mark.

Dealing with these features as part of the analysis is not critical, as we showed
they can be normalised away at the cost of having a larger number of rules to
consider. This cost increases as programs become more complicated due to larger
rules utilising these features. The difficulty with incorporating them into the anal-
ysis is specifying how the labels of overlaps are computed. For example, what
happens when a node marked as ‘any’ is overlapped with a node marked as ‘blue’
or with a node that is unmarked? The solution is to substitute the any mark in the
first instance, and forbid the overlap in the second. The situation with bidirectional
edges is similar.

Implementation. Automatically checking whether a (sub-)program is confluent
can be implemented with a lot of hard work. We gave a number of algorithms
that are specified but are not implemented in code: (1) a unification algorithm for
GP 2 lists that is rule-based and non-deterministic (algorithm 3 in Section 5.3); (2) a
critical pair construction algorithm that relies on computing graph overlaps and
unifying the induced systems of equations (algorithm 2 in Section 4.3); (3) a con-
fluence analysis algorithm relying on a symbolic matcher for labels (algorithm 4
in Section 6.5). A number of tools already rely on implementing graph overlaps,
e.g. [RET11], as that process is well-understood in mathematics (it is essentially
set partitioning) and is inherent in computing critical pairs. Implementing conflu-
ence analysis is very useful as constructing critical pairs by hand is tedious and
error-prone, often resulting in incorrect analysis due to a missed critical pair or in-
correct strong joinability observations. An interactive confluence checker can use
user input to guide joinability analysis, e.g. by specifying which rule to apply and
where as given by the user.

Implementing the unification algorithm is non-trivial. However, the unification
rules resemble Haskell’s pattern matching very closely, and hence the relation-
ship could be exploited to get a quick implementation. Furthermore, this line of
work is supported by the fact our unification algorithm is modular: the rest of the
framework only depends on what its inputs and outputs are, but not at exactly
how it performs the computation, as long as the computation has the necessary
properties of Termination, Soundness and Completeness (presented in Section 5.4
and Section 5.5).

144

A symbolic matcher is also non-trivial to implement, but the current GP 2
implementation could be used to this end. For a given host graph and schema,
it computes a valid assignment during computing a valid match. This can be
altered to try build substitutions instead, given that the input graph is labelled
with expressions. This is interesting as it implies a connection between the host
graph matcher and the symbolic matcher.

145

Appendix A

Basic Properties of G⊥

In this appendix we recall several properties of the category of partially labelled
graphs G⊥. These properties, together with proofs and explicit constructions, can
be found in [HP12] and [HP02].

LetM be the class of injective label preserving morphisms and N be the class
of injective label and undefinedness preserving morphisms, the horizontal and
vertical morphisms in double pushouts respectively. (Note that N ⊆ M.) The
paper [HP12] shows that the category of partially labelled graphs G⊥ is a so-called
M,N -adhesive category and the following properties.

Fact A.1 (G⊥ is an M,N -adhesive category). The category G⊥ has the properties
ofM,N -adhesive categories:

1. M and N contain all isomorphisms and are closed under composition and
decomposition. Moreover, N is closed underM-decomposition, that is, A→
B→ C ∈ N and B→ C ∈ M implies A→ B ∈ N .

2. G⊥ hasM,N -pushouts and pullbacks alongM-morphisms.

3. M and N are stable underM,N -pushouts andM-pullbacks.

Remark 10. A morphism class X is closed under composition and decomposition if
A→ B, B→ C ∈ X implies A→ B→ C ∈ X, and A→ B→ C, B→ C ∈ X implies
A→ B ∈ X.

A pushout along an M,N -morphism span, or M,N -pushout, is a pushout
where one of the given morphisms is in M and the other is in N . A pullback
along an M-morphism, or M-pullback, is a pullback where at least one of the
given morphisms is inM.

A class of morphisms X is stable under M,N -pushouts if, given the M,N -
pushout (1) in Figure A.1a, m ∈ X implies n ∈ X . Similarly, a class of morphisms
X is stable under M-pullbacks if, given the M-pullback (1) in Figure A.1a, n ∈ X
implies m ∈ X.

Fact A.2 (G⊥ has HLR-properties). The category G⊥ has the following HLR-properties:

1. M,N -pushouts are pullbacks.

146

A C

B D

m

n

(1)

(a) Commutative square.

A

B

C

D

E F

(1)

(2)

(b) Commutative diagram.

Figure A.1: Commutative diagrams in G⊥.

2. M,N -pushout-pullback decomposition: If (1+2) in the commutative dia-
gram of Figure A.1b is a pushout, (2) is a pullback, A → C ∈ M and
A → B, D → F ∈ N , then the squares (1) and (2) are pushouts and pull-
backs.

3. Uniqueness ofM,N -pushout complements: Given morphisms A→ B ∈ M
and B → D ∈ N (Figure A.1a), there is, up to isomorphism, at most one
object C with morphisms such that the square (1) is a pushout.

Fact A.3 (G⊥ has HLR+-properties). Let E be the class of surjective, undefinedness
preserving morphisms and E ′ be the class of pairs of jointly surjective morphisms.
The category G⊥ has the so-called HLR+-properties:

1. G⊥ has binary coproducts: Given two graphs A and B, the binary coproduct
is the disjoint union A + B together with morphisms (iA : A → A + B, iB :
B → A + B) such that the following universal property holds: for all objects
X with morphisms f : A → X and g : B → X, there is a morphism [f , g] :
A + B→ X such that [f , g] ◦ iA = f and [f , g] ◦ iB = g.

2. G⊥ has E -N pair factorization: for each morphism f : A → C, there exist an
object K and morphisms A → K ∈ E and K → C ∈ N such that A → C =
A→ K → C

3. G⊥ has E ′-N pair factorization: for each pair of morphism (m1 : A→ C, m2 :
B → C), there exist an object K and unique morphisms A → K, B → K, K →
C such that A→ C = A→ K → C, B→ C = B→ K → C with (A→ K, B→
K) ∈ E ′ and K → C ∈ N

Remark 11. Binary coproducts can be seen as a generalization of the disjoin union
of sets and graphs to a categorical framework. Property 3 is a direct corollary of
properties 1,2 and Remark 5.26 of [EEPT06].

147

Appendix B

The SELECT Algorithm

Input: Unification problem 〈s =? t〉 and a unifier δ
Output: A sequence of unification rules, associated with a branch of the unification
tree

s, t← Preprocess s, t according to δ
initialize the position pointers: m = 1, n = 1
initialize the sequence of rules: B = ””
if m > length(s) and n > length(t) then stop
Case analysis on L(s, m) and L(t, n):

Case 1. L(s, m) < L(t, n)
Since L(t, n) > 0, tn must be a list variable
Do subcase analysis on type of sm and look ahead information:

Case 1.1. Type(sm) = ListVar /* x : L = y : M */
It cannot be the case that the AtEnd(sm) returns f alse (i.e. L 6= empty) as tn is

not of type EmptyListVar (L(tn) > 0)
select Decomp2’ /* x : L = y : M with L 6= empty */
m = m + 1 + L(sm), n = n + 1 + L(sm) /* move head to end of shorter

substring */
Case 1.2. Type(sm) = AtomVar

problem is of the form a : L = y : M
select Orient3, swap input tapes and pointers

Case 1.3. Type(sm) = AtomExpr
problem is of the form a : L = y : M
select Orient1, swap input tapes and pointers

Case 1.4. Type(sm) = EmptyListVar
problem is of the form xe : L = y : M
It cannot be the case that the AtEnd(sm) returns f alse (i.e. L 6= empty) as tn is

not of type EmptyListVar (L(tn) > 0)
select Subst2, m++, no change for n

Case 1.5. Type(sm) = empty
This cannot happen, as tn is not of type EmptyListVar (L(tn) > 0) and δ is a

unifier

148

Case 2. L(s, m) > L(t, n)
Since L(s, m) > 0, sm must be a list variable

if AtEnd(sm) = f alse
then (Case 2.1)

select Subst1 /* x = y : M */
move head to end of both strings: m = m + 1 + L(sm), n = length(t) + 1

else /* L 6= empty */

Case 2.2. Type(tn) = ListVar
x : L = y : M with L 6= M and x should start with y

select Decomp2
move head to end of shorter substring: m = m + 1 + L(tn), n = n + 1 +

L(tn)

Case 2.3. Type(tn) = AtomVar or AtomExpr
x : L = a : M with L 6= M and x should start with a

select Subst3
m++, n++

Case 2.4. Type(tn) = EmptyListVar
x : L = ye : M with L 6= M and x should start with y

select Decomp2
m++, n++

Case 2.5. Type(tn) = empty
This cannot happen, same reason as Case 1.5

Case 3. L(s, m) = L(t, n)

Case 3.1. L(s, m) = L(t, n) > 0
Both sm and tn must be list variables

if AtEnd(sm) = f alse then
problem has the shape x = y : M
select Subst1
move head to end of both strings: m = m + 1 + L(sm), n = length(t) + 1

else
we know L 6= empty, and the problem has the shape x : L = y : M
select Decomp1
move head to next pair of unrelated symbols: m = m + 1 + L(sm),

n = n + 1 + L(sm)
end

Case 3.2. L(s, m) = L(t, n) = 0
This is the largest subcase because sm and tn can be of any of the possible types.
Do subcase analysis on Type(sm) and Type(tn):

3.2.1. (ListVar, ListVar) – same as 3.1

3.2.2. (ListVar, AtomVar) – same as 3.1

149

3.2.3. (ListVar, AtomExpr) – same as 3.1
3.2.4. (ListVar, EmptyListVar) – same as 2.4
3.2.5. (ListVar, empty) – cannot happen as δ is a unifier
3.2.6. (AtomVar, ListVar) – Orient3 (like 1.2)
3.2.7. (AtomVar, AtomVar) or (AtomVar, AtomExpr)

if AtEnd(sm) = f alse then
if AtEnd(tn) = f alse then

problem has the shape a = b

select Subst1
m++, n++

else
problem has the shape a = b : y with δ(y) = empty

select Decomp4
move head to next pair of unrelated symbols: m++, n++

end
else

we know L 6= empty, and the problem has the shape a : L = b : M
select Decomp1’
move head to next pair of unrelated symbols: m++, n++

end

3.2.8. (AtomVar, EmptyListVar) – same as 1.2
3.2.9. (AtomVar, empty) – cannot happen due to failure lemmata
3.2.10. (AtomExpr, ListVar) – same as 1.3
3.2.11. (AtomExpr, AtomVar) – same as 1.3
3.2.12. (AtomExpr, AtomExpr) –

/* must be the same expression due to not considering the subunification algo-
rithm for String-Char */

select Decomp3, m++, n++
3.2.13. (AtomExpr, EmptyListVar) – same as 1.3
3.2.14. (AtomExpr, empty) – cannot happen due to failure lemmata
3.2.15. (EmptyListVar, ListVar) or (EmptyListVar, AtomVar) or (EmptyListVar, AtomExpr)

It must be the case that there is something following sm for δ to be a unifier.
Proceed like case 1.4

select Subst2, m++
3.2.16. (EmptyListVar, EmptyListVar) – same as 3.1
3.2.17. (EmptyListVar, empty) – select Subst1, m++, n = length(tn) + 1
3.2.18. (empty, ListVar) – cannot happen as δ is a unifier
3.2.19. (empty, AtomVar) or (empty, AtomExpr) – cannot happen due to failure
lemmata
3.2.20. (empty, EmptyListVar) – select Orient4, swap tapes and pointers
3.2.21. (empty, empty) – select Remove

150

Appendix C

Proofs

This appendix contains some additional technical proofs that are either too lengthy
or too technical to be contained in the main text.

C.1 Proof of the SELECT Lemma

Lemma 15 (SELECT Lemma). There exists an algorithm SELECT(〈s =? t〉, δ) that
takes a unification problem 〈s =? t〉 and a unifier δ as input and produces a branch of its
unification tree represented as a sequence of rule selections B = (b1, . . . , bk) such that:

1. UNIFY(〈s =? t〉) has a branch specified by B.

2. For the sequence of rules b ∈ B:

(a) the symbols examined by UNIFY at node b are parent symbols of the symbols
SELECT sees at head position (m, n) for node b

(b) if σ is the substitution corresponding to b, then there exists an instantiation λ
such that σ ◦ λ ≤ δ .

Proof. By induction on the number of the rule selections (b1, b2, . . .) of B:

Base Case The initial rule selection b1 of SELECT is based on the first symbols
of s and t as this is the initial head position (m and n are initialized to 1). The
rules of UNIFY also examine the head of the initial problem. Also, SELECT does
not throw away list variables that should be removed due to Subst2, so condition
2.a is trivially satisfied. For 2.b, σ1 = id by definition of initial unification problem,
and let λ1 = id. Therefore σ1 ◦ λ1 = id ≤ δ by the properties of the identity
substitution, as required.

Hypothesis Assume the statements of the theorem are true for selection bk with
a corresponding node in the unification tree 〈Pk, σk〉 and let (m, n) be the head
position of SELECT before outputting selection bk+1.

151

2.a the symbols at the head of the problem Pk (x and y) are parent symbols of
sm, tn

2.b exists substitution λk such that σk ◦ λk ≤ δ

Inductive case There are several possible cases for the selection bk+1. We have to
show that from bn,

1. UNIFY can apply the rule bk+1, and

2. The symbols at the head of the next unification problem Pk+1 (where Pk ⇒
Pk+1 using the rule bk+1) are parent symbols of the new current symbols smnew

and tnnew

3. exists instantiation λk+1 such that σk+1 ◦ λk+1 ≤ δ

For all Orient rules, we can notice that:

• they do not change the head of the unification problem nor they generate a
supplementary substitution σk+1, so conditions 2 and 3 trivially hold

• they always swap left-hand side with right-hand side; so does SELECT for
each Orient selection

• Therefore, we only need to prove condition 1 for each Orient selection.

We now have to consider all the cases for Pk ⇒ Pk+1 in SELECT using rule bk+1.
Case 1. L(s, m) < L(t, n)

It must be the case that tn is a list variable because L(t, n) > 0 only for list
variables.

Call x and y the parent symbols of sm and tn in s and t.
Case 1.1. Type(sm) = ListVar

By hypothesis, it follows that x and y are also list variables.
Suppose nothing follows x (i.e. LookAhead(sm) = f alse). Then the unification

problem at node bk must be of the form x = y : M. However, we have that
L(s, m) < L(t, n) which contradicts that δ is a unifier.

Therefore, there must be something following x. Then the current unification
problem must be of the form x : L = y : M. Then rule Decomp2’ is applicable
(condition 1 satisfied). Because x has the shorter expansion by δ, tn+L(sm)+1 is a
child variable of y and condition 2 holds.

For 3, let λ′k = (sn . . . sm+L(sm) 7→ T) where T = δ(sm . . . sm+L(sm)). For δ to be a
unifier, it must contain term(s) (tn . . . tn+L(sm) 7→ T):

δ ≥ σk ◦ λk ∪ (tn . . . tn+L(sm) 7→ T)
= σk ◦ λk ∪ ((tn . . . tn+L(sm) 7→ sm . . . sm+L(sm)) ◦ λ′k) (same as saying y starts with x)
= σk ◦ λk ∪ ((y 7→ x : y′) ◦ λ′k)
= σk ◦ (y 7→ x : y′) ◦ λk ◦ λ′k (since no repeated list variables)
= σk+1 ◦ λk+1 as required (set λk+1 = λk ◦ λ′k)

152

Case 1.2. Type(sm) = AtomVar
It holds by hypothesis that x and y are atom and list variables so rule Orient3 is

applicable.
Case 1.3. Type(sm) = AtomExpr

The argument is the same as above except that x is an atom expression and
Orient1 becomes applicable.
Case 1.4. Type(sm) = EmptyListVar

Because L(tn) > L(sm) = 0, there must be something after sm+L(sm) (i.e.
LookAhead(sm) = true) for δ to be a unifier. Also, by hypothesis x must be a list
variable since xδ = empty. Therefore rule Subst2 is applicable (condition 1 holds).
The resulting unification problem is ({L = M}{x 7→ empty}; σk ◦ {x 7→ empty}).
SELECT moves the position m by 1 and keeps n, therefore condition 2 also holds.

For condition 3:
δ ≥ σk ◦ λk ∪ (x 7→ empty)

= σk ◦ (x 7→ empty) ◦ λk (since no repeated list variables)
= σk+1 ◦ λk+1 as required (set λk+1 = λk)

Case 1.5. Type(sm) = empty

As explained, this subcase cannot occur if δ is a unifier.
Case 2. L(s, m) > L(t, n)

As in the previous case, it follows that sm is a list variable with |δ(x)| > 0 for
its parent symbol x. By hypothesis, x is also a list variable.
Case 2.1. Let LookAhead(sm) = f alse, i.e. nothing follows x

The unification problem must be of the form x = L so rule Subst1 is applicable
(condition 1 satisfied). Since the resulting unification problem is 〈∅, σk ◦ {x 7→ L}〉
and SELECT moves the pointers to the end of the tapes, condition 2 is satisfied.

For 3, let λ′k = (L 7→ T) where T = δ(L). For δ to be a unifier, it must contain
term(s) (x 7→ T)

δ ≥ σk ◦ λk ∪ (x 7→ T)
= σk ◦ λk ∪ ((x 7→ L) ◦ λ′k)
= σk ◦ (x 7→ L) ◦ λk ◦ λ′k (since no repeated list variables)
= σk+1 ◦ λk+1 as required (set λk+1 = λk ◦ λ′k)

For the rest of the cases, let LookAhead(sm) = true and the problem is of the form
x : L = M with L 6= empty.
Case 2.2. Type(tn) = ListVar

By hypothesis, y must be a list variable. The problem is of the form x : L =
y : M. Then rule Decomp2 is applicable (condition 1 satisfied). Because y has the
shorter expansion by δ, sm+L(tn)+1 is a child variable of x and condition 2 holds.

For 3, let λ′k = (sn . . . sm+L(tn)
7→ T) where T = δ(sm . . . sm+L(tn)

), and the
argument becomes identical to Case 1.1 (x starts with y, so σk+1 = σk ◦ {x 7→ y : x′})
Case 2.3. Type(tn) = AtomVar or Type(tn) = AtomExpr

By hypothesis, y is an atom variable or atom expression. Then the problem is
of the form x : L = a : M with L 6= empty. So rule Subst3 is applicable (condition 1

153

satisfied). Positions are incremented by 1, so condition 2 holds as sm+1 and x′ (in
Orient3) must have the same parent symbol.

For 3, let λ′k = (tn 7→ T) where T = δ(tn). It follows that δ must contain term
(sm 7→ T) to be a unifier.

δ ≥ σk ◦ λk ∪ (sm 7→ T)
= σk ◦ λk ∪ ((sm 7→ tn) ◦ λ′k)
= σk ◦ λk ∪ ((x 7→ a : x′) ◦ λ′k)
= σk ◦ (x 7→ a : x′) ◦ λk ◦ λ′k (since no repeated list variables)
= σk+1 ◦ λk+1 as required (set λk+1 = λk ◦ λ′k)

Case 2.4. Type(tn) = EmptyListVar
We have that tn is of the form ye where y is a list variable with δ(y) = empty.

The unification problem is then of the form x : L = y : M. Rule Decomp2 becomes
applicable

Let λ′k = (y 7→ empty)
δ ≥ σk ◦ λk ∪ (y 7→ empty)

= σk ◦ λk ∪ ((x 7→ y : x′) ◦ λ′k)
= σk ◦ (x 7→ y : x′) ◦ λk ◦ λ′k (because no repeated list variables)
= σk+1 ◦ λk+1 as required (set λk+1 = λk ◦ λ′k)

Case 3. L(s, m) = L(t, n)
Case 3.1. L(s, m) = L(t, n) > 0

It must be the case that sm and tn are list variables because L(sm) > 0 and
L(t, n) > 0 only for list variables.

By hypothesis, it follows that x and y are also list variables.
If there is nothing after the x (i.e. LookAhead(sm) = f alse). Then Subst1 is

applicable and the argument is the same as Case 2.1.
Otherwise, it must be that L 6= empty so rule Decomp1 is applicable. Here

the problem is of the form x : L = y : M and the generated substitution is σk+1 =
σk ◦ (x 7→ y).

For 2, the argument is similar to Case 2.2 except that now both sm+L(sm)+1 and
L, and tn+L(sm)+1 and M must have the same pairs of parent symbols.

Let λ′k = (y 7→ δ(y)). It must be the case that δ also contains term (x 7→ δ(y))
to be a unifier.

δ ≥ σk ◦ λk ∪ (x 7→ δ(y))
= σk ◦ λk ∪ ((x 7→ y) ◦ λ′k)
= σk ◦ (x 7→ y) ◦ λk ◦ λ′k (because no repeated list variables)
= σk+1 ◦ λk+1 as required (set λk+1 = λk ◦ λ′k)

Case 3.2. L(s, m) = L(t, n) = 0
This is the largest subcase because sm and tn can be of any of the possible types.
3.2.1-3 (ListVar, ListVar) or (ListVar, AtomVar) or (ListVar, AtomExpr)–
Same as 3.1 because the parent symbol of tn can be matched by s in Decomp1.
3.2.4. (ListVar, EmptyListVar) – same as Case 2.4
3.2.5. (ListVar, empty) – cannot happen as δ is a unifier

3.2.6. (AtomVar, ListVar) – same as Case 1.2

154

3.2.7. (AtomVar, AtomVar) or (AtomVar, AtomExpr)

• LookAhead(sm) = true, i.e. L 6= empty - then the problem is of the form
a : L = b : M (a and b are also atom variables by hypothesis) and rule
Decomp1’ is applicable. UNIFY generates σk+1 = σk ◦ {a 7→ b}.
Let λ′k = (sm 7→ δ(sm)) = (a 7→ ¡(a)). Then δ must also contain term (tn 7→
δ(sm)) to be a unifier:

δ ≥ σk ◦ λk ∪ (tn 7→ δ(sm))
= σk ◦ λk ∪ ((tn 7→ sm) ◦ λ′k)
= σk ◦ λk ∪ ((a 7→ b) ◦ λ′k)
= σk ◦ (a 7→ b) ◦ λk ◦ λ′k
= σk+1 ◦ λk+1 as required (set λk+1 = λk ◦ λ′k)

• LookAhead(sm) = f alse, i.e. the problem is a = b : M.

– If LookAhead(tn) = true, then M can only be a single list variable for δ
to be a unifier with δ(y) = empty. This makes rule Decomp4 applicable.
For 3, the argument is the same as in the previous item (with σk+1 =
σk ◦ {a 7→ b}).

– If LookAhead(tn) = f alse, then the problem is of the form a = b, which
makes Subst1 is applicable and the argument is the same as Case 2.1

3.2.9. (AtomVar, EmptyListVar) – same as Case 1.2
3.2.10. (AtomVar, empty) – cannot happen due to failure lemmata
3.2.11. (AtomExpr, ListVar) – same as Case 1.3
3.2.12. (AtomExpr, AtomVar) – same as Case 1.3
3.2.13. (AtomExpr, AtomExpr) – Both symbols must be the same atom expres-

sion due to not considering the subunification algorithm for String-Char. So rule
Decomp3 is applicable. Conditions 2 and 3 hold trivially.

3.2.14. (AtomExpr, EmptyListVar) – same as 1.3
3.2.16-18. (EmptyListVar, ListVar) or (EmptyListVar, AtomVar)

or (EmptyListVar, AtomExpr)
It must be the case that there is something following sm for δ to be a unifier.

Proceed proof like Case 1.4
3.2.19. (EmptyListVar, EmptyListVar) – same as 3.1
3.2.20. (EmptyListVar, empty)
It follows that x (the parent of sm) is a list variable with δ(x) = empty. Also,

since there are no repeated list variables, for δ to be a unifier there must be nothing
following x. So the problem is of the form x = empty and rule Subst1 is applicable.

For condition 3, proceed as Case 1.4
3.2.21. (empty, ListVar) – cannot happen because δ is a unifier
3.2.22 & 3.2.23 (empty, AtomVar) or (empty, AtomExpr) – cannot happen due

to failure lemmata
3.2.24. (empty, EmptyListVar)

155

It follows that y (the parent of tn) is a list variable with δ(y) = empty. So the
problem has the form empty = x : L and rule Orient4 is applicable.

3.2.25. (empty, empty)
It follows that rule Remove is applicable. Conditions 2 and 3 hold trivially.

C.2 Equivalence between Joinability Definitions

In this section, we explore the different definitions of strong joinability appearing
in literature, more specifically the track formulation of [Plu05] and the commutative-
squares formulation of [EEPT06], an earlier version of which appeared in [EHPP04].
We have used the commutative-squares definition in Section 6.3 and mainly in the
proof of the Local Confluence Theorem for rule schemata (Theorem 6.1).

Definition C.1 (Track morphism, Persist graph [Plu05]). Given a direction deriva-
tion G ⇒ H with span G ←c D →c′ H, the track morphism trackG⇒H : G → H is
the graph morphism between a subgraph of G and H defined as

trackG⇒H = c′(c−1(x) unless x /∈ c(D)

The track morphism of a derivation t : G0 ⇒∗ Gn is defined inductively as trackt =
idG0 if n = 0, and trackt = trackG1⇒∗Gn ◦ trackG0⇒G1 otherwise.

The graph Persist is the domain of trackG⇒∗H.

A graph morphism between a subgraph of G and H is called a partial graph
morphism.

Definition C.2 (Strong Joinability [Plu05]). Let cp : T1 ⇐ S ⇒ T2 be a critical pair
and define Persistcp be the intersection of graphs PersistS⇒T1 ∩ PersistS⇒T2 . Then
the critical pair is stronly joinable if it is joinable, i.e. exist derivations T1 ⇒∗ X1
and T2 ⇒∗ X2 together with an isomorphism f : X1 → X2 such that for each item
x ∈ Persistcp:

1. trackS⇒T1⇒∗X1(x) and trackS⇒T1⇒∗X2(x) are defined;

2. f (trackS⇒T1⇒∗X1(x)) = trackS⇒T1⇒∗X2(x)

The definition communicates the idea that each item that is preserved by both
derivations of the critical pair must be preserved by the joining derivations, and
its descendants in X1 and X2 have to be related by the isomorphism f : X1 → X2.
Note we have used the formulation of [Plu05] with the modification of using graph
items rather than only nodes.

We now give a commutative version of the track formulation.

Definition C.3 (Commutative formulation of single-step track). Given a direction
derivation G ⇒ H with span G ←c D →c′ H, computing its track function
amounts to constructing the diagram in Figure C.2 as follows:

156

G D H

c(D)

(1) (2)

c c′

i i−1

Figure C.1: Commutative-squares formulation of a track morphism for direct
derivations.

G0 D0 G1

c0(D0)

c0 c′0

⊇
PersistG1⇒∗Gn

Gn

⊇

PersistG0⇒∗Gn

⊇

PB

Figure C.2: Commutative-squares formulation of a track morphism for multi-step
derivations.

• c(D) is the subgraph of G, constructed as the image of D under morphism c

• morphism i : D → c(D) has the same node/edge mappings as c

• morphism c(D)→ G is an inclusion

• i−1 is a premoprhism that is the inverse of i – it is injective, surjective and
total because i is, but it is not label-preserving as c(D) is totally labelled
whereas D may be partially labelled.

• the premorphism c(D) → H is the composition c(D) → H = c(D) →i−1

D →c′ H

We have the triangles (1) and (2) commute, the track morphism is the arrow
c(D)→ H, and the graph c(D) is the graph PersistG⇒H of Definition C.1.

Definition C.4 (Commutative formulation of multi-step track). Given a zero-length
derivation G ⇒ G with span G ←c G →c′ G of zero length, then its track is the

157

identity idG (as in Definition C.1). Given an derivation G ⇒∗ H with span G ←c

D →c′ H of at least length 2, computing its track function (as a diagram) amounts
to constructing the diagram in Figure C.2 as the combination of the commutative
diagram of trackG0⇒G1 and the track diagram of of G1 ⇒∗ Gn:

• the pullback of c(D) → G1 ← PersistG1⇒∗Gn leads to a pair of morphisms
c(D) ← PersistG0⇒∗Gn → PersistG1⇒∗Gn , and this construction is always pos-
sible (Fact A.1.2) since the morphism PersistG1⇒∗Gn → G1 is an inclusion and
hence inM, similar to the fact that c0(D0)→ G0 is an inclusion.

• the arrows G0 ← PersistG0⇒∗Gn → Gn are defined as

PersistG0⇒∗Gn → G0 = PersistG0⇒∗Gn → c0(D0)→ G0

PersistG0⇒∗Gn → Gn = PersistG0⇒∗Gn → PersistG1⇒∗Gn → Gn

Lemma 16. If a critical pair cp : T1 ⇐ S ⇒ T2 is strongly joinable according to Defini-
tion C.2, then it is strongly joinable according Definition 6.4.

Proof. Let N be the pullback of O1 → S← O2 as in Definition 6.4. Let P1 and P2
be the graphs PersistS⇒T1 and PersistS⇒T2 of the critical pair’s derivations. By the
commutative formulation of track Definition C.3, we have that P1 ⊆ S and P2 ⊆ S
are inclusions. Next, define morphisms

N → P1 = N → O1 → P1

N → P2 = N → O2 → P2

Due to the definition of Persistcp for a critical pair as an intersection (Defini-
tion C.2), we have inclusions Persistcp ⊆ P1 and Persistcp ⊆ P2 such that Persistcp →
P1→ S = Persistcp → P2→ S.

Now, we get that

N → P1 → S = N → O1 → P1 → S (definition of N → P1)

= N → O1 → S (commutativity of O1P1S)
= N → O2 → S (commutativity of pullbackN)

= N → O1 → P2 → S (commutativity of O1P2S)
= N → P2 → S (definition of N → P2)

Now, since Persistcp is intersection over inclusions, it must also be a pullback.
Hence we get a unique morphism N → Persistcp such that :

N → P1 = N → Persistcp → P1 (C.1)
N → P2 = N → Persistcp → P2 (C.2)

Let P′1 be the graph PersistT1⇒∗X1 of the joining derivation, and P′2 defined
analogously. By the commutative definition of track Definition C.4, PersistS⇒∗X1 is
the pullback of P1 → T1 and PersistS⇒∗X1 → S = PersistS⇒∗X1 → P1 → S.

158

S O1 T1

P1

P′1

X1⇒∗

PersistS⇒∗X1

PB

Persistcp N

Next, define morphisms

N → P′1 = N → PersistS⇒∗X1 → P1

N → PersistS⇒∗X1 = N → Persistcp → PersistS⇒∗X1

where we get the inclusion Persistcp → PersistS⇒∗X1 by the requirement of Defini-
tion C.2 that all items of Persistcp are defined in trackS⇒∗X1 . We get the same for
N → PersistS⇒∗X2 .

Next, we get the equalities

N → P1 → T1 = N → Persistcp → P1 → T1 Equation C.1
= N → Persistcp → PersistS⇒∗X1 → P1 → T1 (PersistS⇒∗X1uniqueness)

= N → Persistcp → PersistS⇒∗X1 → P′1 → T1 (comm of PersistS⇒∗X1)

= N → Persistcp → P′1 → T1 (def of Persistcp → P′1)

Define the morphisms

N → P′1 = N → Persistcp → P′1
N → P′2 = N → Persistcp → P′2

We get that N → O1 → T1 = N → PersistS⇒∗X1 → P1 → T1 = N → PersistS⇒∗X1 →
P′1 → T1 = N → P′1 → T1. Since we are ignoring labels, P1’ can be considered as
the derived span of T1 ⇒∗ X1. Therefore, the square NO1O3T1 of Definition 6.4
commutes. Analogously for the square NO2O4T2.

Finally, we show the commutativity of N → O3 → X1 → X2 = N → O4 → X2.
Given that all tracks are equal on all items of Persistcp (Definition C.2), we have
that Persistcp → PersistS⇒∗X1 → X1 → X2 = Persistcp → PersistS⇒∗X2 → X2.
Define the morphisms

N → O3 = N → Persistcp → O3

N → O4 = N → Persistcp → O4

159

Note N → O4 → X2 = N → Persistcp → O4 → X2 = N → Persistcp → P′2 → X2
Now, for the final step:

N → O3 → X1 → X2 = N → Persistcp → O3 → X1 → X2 (def of N → O3)

= N → Persistcp → P′1 → X1 → X2 (O3 as Persist graph)
= N → Persistcp → PersistS⇒∗X1 → X1 → X2 (PB uniqueness)
= N → Persistcp → PersistS⇒∗X2 → X2 (tracks are equal)

= N → Persistcp → P′2 → X2 (PB uniqueness)
= N → O4 → X2

which completes the point that all squares commute.
The final consideration are the labels: this follows directly from the require-

ment that X1 → X2 is an isomorphism and hence is label- and undefinedness-
preserving. This completes the proof of equivalence.

160

List of References

[ABJ+10] Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause,
and Gabriele Taentzer. Henshin: Advanced concepts and tools for
in-place EMF model transformations. In Dorina C. Petriu, Nicolas
Rouquette, and Øystein Haugen, editors, Proc. International Conference
on Model Driven Engineering Languages and Systems (MODELS 2010),
Part I, volume 6394 of Lecture Notes in Computer Science, pages 121–
135. Springer, 2010. doi:10.1007/978-3-642-16145-2 9.

[ACPS93] Stefan Arnborg, Bruno Courcelle, Andrzej Proskurowski, and Detlef
Seese. An algebraic theory of graph reduction. Journal of the ACM,
40(5):1134–1164, 1993. doi:10.1145/174147.169807.

[AGG] AGG: The attributed graph grammar system. http://user.cs.

tu-berlin.de/~gragra/agg/.

[Aßm96] Uwe Aßmann. How to uniformly specify program analysis and trans-
formation with graph rewrite systems. In Proc. International Conference
on Compiler Construction (CC ’96), pages 121–135, 1996. doi:10.1007/3-
540-61053-7 57.

[BAHT15] Kristopher Born, Thorsten Arendt, Florian Heß, and Gabriele
Taentzer. Analyzing conflicts and dependencies of rule-based trans-
formations in Henshin. In Alexander Egyed and Ina Schaefer, edi-
tors, Proc. Fundamental Approaches to Software Engineering (FASE 2015),
Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2015, volume 9033 of Lecture Notes in Computer Science, pages
165–168. Springer, 2015. doi:10.1007/978-3-662-46675-9 11.

[Bak16] Christopher Bak. GP 2: Efficient Implementation of a Graph Programming
Language. PhD thesis, The University of York, 2016. http://etheses.
whiterose.ac.uk/id/eprint/12586.

[BG02] Jørgen Bang-Jensen and Gregory Gutin. Digraphs - theory, algorithms
and applications. Springer, 2002.

[BGK+17] Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Pawel Sobocinski,
and Fabio Zanasi. Confluence of graph rewriting with interfaces.
In Hongseok Yang, editor, Proc. European Symposium on Programming
Languages and Systems (ESOP 2017), part of ETAPS, volume 10201
of Lecture Notes in Computer Science, pages 141–169. Springer, 2017.
doi:10.1007/978-3-662-54434-1 6.

[BN98] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cam-
bridge University Press, 1998.

161

http://dx.doi.org/10.1007/978-3-642-16145-2_9
http://dx.doi.org/10.1145/174147.169807
http://user.cs.tu-berlin.de/~gragra/agg/
http://user.cs.tu-berlin.de/~gragra/agg/
http://dx.doi.org/10.1007/3-540-61053-7_57
http://dx.doi.org/10.1007/3-540-61053-7_57
http://dx.doi.org/10.1007/978-3-662-46675-9_11
http://etheses.whiterose.ac.uk/id/eprint/12586
http://etheses.whiterose.ac.uk/id/eprint/12586
http://dx.doi.org/10.1007/978-3-662-54434-1_6

[BP12] Christopher Bak and Detlef Plump. Rooted graph programs. In Proc.
International Workshop on Graph Based Tools (GraBaTs 2012), volume 54
of Electronic Communications of the EASST, 2012.

[BP16] Christopher Bak and Detlef Plump. Compiling graph programs to c.
In Proc. International Conference on Graph Transformation (ICGT 2016),
volume 9761 of Lecture Notes in Computer Science, pages 102–117.
Springer, 2016. doi:10.1007/978-3-319-40530-8 7.

[BPR04] Adam Bakewell, Detlef Plump, and Colin Runciman. Specifying
pointer structures by graph reduction. In Int. Workshop Applications of
Graph Transformations With Industrial Relevance (AGTIVE 2003), Revised
Selected and Invited Papers, volume 3062 of Lecture Notes in Computer
Science, pages 30–44. Springer-Verlag, 2004.

[BS94] Franz Baader and Jörg H. Siekmann. Unification theory. In Dov M.
Gabbay, Christopher J. Hogger, J. A. Robinson, and Jörg H. Siekmann,
editors, Handbook of Logic in Artificial Intelligence and Logic Programming,
Deduction Methodologies, volume 2, pages 41–126. Oxford University
Press, 1994.

[BS01] Franz Baader and Wayne Snyder. Unification theory. In John Alan
Robinson and Andrei Voronkov, editors, Handbook of Automated Rea-
soning, pages 445–532. Elsevier and MIT Press, 2001. http://www.cs.
bu.edu/~snyder/publications/UnifChapter.pdf.

[BTS00] Paolo Bottoni, Gabriele Taentzer, and Andy Schürr. Efficient parsing of
visual languages based on critical pair analysis and contextual layered
graph transformation. In Proc. IEEE International Symposium on Visual
Languages (VL 2000), pages 59–60, 2000.

[Cor16] Andrea Corradini. On the definition of parallel independence in
the algebraic approaches to graph transformation. In Milazzo et al.
[MVW16], pages 101–111. doi:10.1007/978-3-319-50230-4 8.

[CR36] Alonzo Church and J Barkley Rosser. Some properties of conversion.
Transactions of the American Mathematical Society, 39(3):472–482, 1936.
doi:10.1090/S0002-9947-1936-1501858-0.

[Dec17] Frederik Deckwerth. Static Verification Techniques for Attributed Graph
Transformations. PhD thesis, Technische Universität Darmstadt, May
2017. http://tuprints.ulb.tu-darmstadt.de/6150.

[DKL+16] Frederik Deckwerth, Géza Kulcsár, Malte Lochau, Gergely Varró, and
Andy Schürr. Conflict detection for edits on extended feature mod-
els using symbolic graph transformation. In Julia Rubin and Thomas

162

http://dx.doi.org/10.1007/978-3-319-40530-8_7
http://www.cs.bu.edu/~snyder/publications/UnifChapter.pdf
http://www.cs.bu.edu/~snyder/publications/UnifChapter.pdf
http://dx.doi.org/10.1007/978-3-319-50230-4_8
http://dx.doi.org/10.1090/S0002-9947-1936-1501858-0
http://tuprints.ulb.tu-darmstadt.de/6150

Thüm, editors, Proc. International Workshop on Formal Methods and Anal-
ysis in Software Product Line Engineering (FMSPLE@ETAPS 2016), vol-
ume 206 of Electronic Proceedings in Theoretical Computer Science, pages
17–31, 2016. doi:10.4204/EPTCS.206.3.

[dMB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient
SMT solver. In Proc. International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS ’08), part of European
Conferences on Theory and Practice of Software (ETAPS ’08), pages 337–
340, 2008. doi:10.1007/978-3-540-78800-3 24.

[Duf65] Richard J Duffin. Topology of series-parallel networks. Jour-
nal of Mathematical Analysis and Applications, 10(2):303–318, 1965.
doi:10.1016/0022-247X(65)90125-3.

[EE08] Hartmut Ehrig and Claudia Ermel. Semantical correctness and com-
pleteness of model transformations using graph and rule transfor-
mation. In Proc. 4th International Conference on Graph Transformation
(ICGT 2008), Lecture Notes in Computer Science, pages 194–210, 2008.
doi:10.1007/978-3-540-87405-8 14.

[EEdL+05] Hartmut Ehrig, Karsten Ehrig, Juan de Lara, Gabriele Taentzer, Dániel
Varró, and Szilvia Varró-Gyapay. Termination criteria for model trans-
formation. In Proc. Fundamental Approaches to Software Engineering
(FASE 2005), pages 49–63, 2005. doi:10.1007/978-3-540-31984-9 5.

[EEGH15] Hartmut Ehrig, Claudia Ermel, Ulrike Golas, and Frank Hermann.
Graph and Model Transformation - General Framework and Applications.
Monographs in Theoretical Computer Science. An EATCS Series.
Springer, 2015. doi:10.1007/978-3-662-47980-3.

[EEHP09] Hartmut Ehrig, Claudia Ermel, Frank Hermann, and Ulrike Prange.
On-the-fly construction, correctness and completeness of model trans-
formations based on triple graph grammars. In Proc. 12th International
Conference on Model Driven Engineering Languages and Systems (MOD-
ELS 2009), pages 241–255, 2009. doi:10.1007/978-3-642-04425-0 18.

[EEKR99] Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz
Rozenberg, editors. Handbook of Graph Grammars and Computing by
Graph Transformations - Volume 2: Applications, Languages and Tools.
World Scientific, 1999. doi:10.1142/9789812815149.

[EEPR04] Hartmut Ehrig, Gregor Engels, Francesco Parisi-Presicce, and Grze-
gorz Rozenberg, editors. Proc. International Conference on Graph Trans-
formation (ICGT 2004), volume 3256 of Lecture Notes in Computer Sci-
ence. Springer, 2004.

163

http://dx.doi.org/10.4204/EPTCS.206.3
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1016/0022-247X(65)90125-3
http://dx.doi.org/10.1007/978-3-540-87405-8_14
http://dx.doi.org/10.1007/978-3-540-31984-9_5
http://dx.doi.org/10.1007/978-3-662-47980-3
http://dx.doi.org/10.1007/978-3-642-04425-0_18
http://dx.doi.org/10.1142/9789812815149

[EEPT06] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer.
Fundamentals of Algebraic Graph Transformation. Monographs in Theo-
retical Computer Science. Springer, 2006. doi:10.1007/3-540-31188-2.

[EET11] Hartmut Ehrig, Claudia Ermel, and Gabriele Taentzer. A formal res-
olution strategy for operation-based conflicts in model versioning us-
ing graph modifications. In Dimitra Giannakopoulou and Fernando
Orejas, editors, Proc. International Conference on Fundamental Approaches
to Software Engineering (FASE 2011), part of ETAPS 2011, volume 6603
of Lecture Notes in Computer Science, pages 202–216. Springer, 2011.
doi:10.1007/978-3-642-19811-3 15.

[EGH+12] Hartmut Ehrig, Ulrike Golas, Annegret Habel, Leen Lambers, and Fer-
nando Orejas. M-adhesive transformation systems with nested appli-
cation conditions: Part 2: Embedding, Critical Pairs and Local Con-
fluence. Fundamenta Informaticae, 118(1-2):35–63, 2012. doi:10.3233/FI-
2012-705.

[EH86] Hartmut Ehrig and Annagret Habel. Graph grammars with applica-
tion conditions. In The Book of L, pages 87–100. Springer Berlin Hei-
delberg, 1986. doi:10.1007/978-3-642-95486-3 7.

[EHK+97] Hartmut Ehrig, Reiko Heckel, Martin Korff, Michael Löwe, Leila
Ribeiro, Annika Wagner, and Andrea Corradini. Algebraic approaches
to graph transformation - part II: single pushout approach and com-
parison with double pushout approach. In Handbook of Graph Gram-
mars and Computing by Graph Transformations - Volume 1: Foundations,
pages 247–312, 1997.

[EHKP91] Hartmut Ehrig, Annegret Habel, Hans-Jörg Kreowski, and Francesco
Parisi-Presicce. Parallelism and concurrency in high-level replace-
ment systems. Mathematical Structures in Computer Science, 1(3):361–
404, 1991. doi:10.1017/S0960129500001353.

[EHL+10] Hartmut Ehrig, Annegret Habel, Leen Lambers, Fernando Orejas, and
Ulrike Golas. Local confluence for rules with nested application con-
ditions. In Hartmut Ehrig, Arend Rensink, Grzegorz Rozenberg, and
Andy Schürr, editors, Proc. International Conference on Graph Transfor-
mation (ICGT 2010), volume 6372 of Lecture Notes in Computer Science,
pages 330–345. Springer, 2010. doi:10.1007/978-3-642-15928-2 22.

[EHPP04] Hartmut Ehrig, Annegret Habel, Julia Padberg, and Ulrike Prange.
Adhesive high-level replacement categories and systems. In Ehrig
et al. [EEPR04], pages 144–160. doi:10.1007/978-3-540-30203-2 12.

[EK76] Hartmut Ehrig and Hans-Jörg Kreowski. Parallelism of manipu-
lations in multidimensional information structures. In Antoni W.

164

http://dx.doi.org/10.1007/3-540-31188-2
http://dx.doi.org/10.1007/978-3-642-19811-3_15
http://dx.doi.org/10.3233/FI-2012-705
http://dx.doi.org/10.3233/FI-2012-705
http://dx.doi.org/10.1007/978-3-642-95486-3_7
http://dx.doi.org/10.1017/S0960129500001353
http://dx.doi.org/10.1007/978-3-642-15928-2_22
http://dx.doi.org/10.1007/978-3-540-30203-2_12

Mazurkiewicz, editor, Proc. Mathematical Foundations of Computer Sci-
ence (MFCS 76), volume 45 of Lecture Notes in Computer Science, pages
284–293. Springer, 1976. doi:10.1007/3-540-07854-1 188.

[EPS73] Hartmut Ehrig, Michael Pfender, and Hans Jürgen Schneider. Graph-
grammars: An algebraic approach. In Proc. Symposium on Switching
and Automata Theory (SWAT ’08), pages 167–180. IEEE Computer Soci-
ety, 1973. doi:10.1109/SWAT.1973.11.

[EPT04] Hartmut Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamen-
tal theory for typed attributed graph transformation. In Ehrig et al.
[EEPR04], pages 161–177. doi:10.1007/978-3-540-30203-2 13.

[GLEO12] Ulrike Golas, Leen Lambers, Hartmut Ehrig, and Fernando Orejas. At-
tributed graph transformation with inheritance: Efficient conflict de-
tection and local confluence analysis using abstract critical pairs. The-
oretical Computer Science, 424:46–68, 2012. doi:10.1016/j.tcs.2012.01.032.

[GPdBG94] Marc Gyssens, Jan Paredaens, Jan Van den Bussche, and Dirk Van
Gucht. A graph-oriented object database model. IEEE Trans-
actions on Knowledge and Data Engineering, 6(4):572–586, 1994.
doi:10.1109/69.298174.

[HHT96] Annegret Habel, Reiko Heckel, and Gabriele Taentzer. Graph gram-
mars with negative application conditions. Fundamenta Informaticae,
26(3/4):287–313, 1996. doi:10.3233/FI-1996-263404.

[HHT02] Jan Hendrik Hausmann, Reiko Heckel, and Gabriele Taentzer. De-
tection of conflicting functional requirements in a use case-driven ap-
proach: A static analysis technique based on graph transformation. In
Proc. International Conference on Software Engineering (ICSE 2002), pages
105–115, 2002.

[HKT02] Reiko Heckel, Jochen Malte Küster, and Gabriele Taentzer. Confluence
of typed attributed graph transformation systems. In Proc. Interna-
tional Conference on Graph Transformation (ICGT 2002), pages 161–176,
2002. doi:10.1007/3-540-45832-8 14.

[HP01] Annegret Habel and Detlef Plump. Computational completeness of
programming languages based on graph transformation. In Proc.
Foundations of Software Science and Computation Structures (FOSSACS
2001), volume 2030 of Lecture Notes in Computer Science, pages 230–
245. Springer-Verlag, 2001.

[HP02] Annegret Habel and Detlef Plump. Relabelling in graph trans-
formation. In Proc. International Conference on Graph Transformation
(ICGT 2002), volume 2505 of Lecture Notes in Computer Science, pages
135–147. Springer-Verlag, 2002.

165

http://dx.doi.org/10.1007/3-540-07854-1_188
http://dx.doi.org/10.1109/SWAT.1973.11
http://dx.doi.org/10.1007/978-3-540-30203-2_13
http://dx.doi.org/10.1016/j.tcs.2012.01.032
http://dx.doi.org/10.1109/69.298174
http://dx.doi.org/10.3233/FI-1996-263404
http://dx.doi.org/10.1007/3-540-45832-8_14

[HP09] Annegret Habel and Karl-Heinz Pennemann. Correctness of
high-level transformation systems relative to nested conditions.
Mathematical Structures in Computer Science, 19(2):245–296, 2009.
doi:10.1017/S0960129508007202.

[HP12] Annegret Habel and Detlef Plump. M,N -adhesive transformation
systems. In Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and
Grzegorz Rozenberg, editors, Proc. International Conference on Graph
Transformation (ICGT 2012), volume 7562 of Lecture Notes in Computer
Science, pages 218–233. Springer, 2012. doi:10.1007/978-3-642-33654-
6 15.

[HP15] Ivaylo Hristakiev and Detlef Plump. A unification algorithm for
GP 2. In Graph Computation Models (GCM 2014), Revised Selected
Papers, volume 71 of Electronic Communications of the EASST, 2015.
doi:10.14279/tuj.eceasst.71.1002, long version available at: https://

arxiv.org/abs/1705.02171.

[HP16a] Ivaylo Hristakiev and Detlef Plump. Attributed graph transforma-
tion via rule schemata: Church-Rosser theorem. In Milazzo et al.
[MVW16], pages 145–160. doi:10.1007/978-3-319-50230-4 11, long ver-
sion available at: http://www.cs.york.ac.uk/plasma/publications/
pdf/HristakievPlump16.Full.pdf.

[HP16b] Ivaylo Hristakiev and Detlef Plump. Towards critical pair anal-
ysis for the graph programming language GP 2. In Phillip
James and Markus Roggenbach, editors, Recent Trends in Al-
gebraic Development Techniques (WADT 2016), Revised Selected Pa-
pers, volume 10644 of Lecture Notes in Computer Science, pages
153–169. Springer, 2016. doi:10.1007/978-3-319-72044-9 11, on-
line version available at: http://www.cs.york.ac.uk/plasma/

publications/pdf/HristakievPlump.WADT16.pdf, long version avail-
able at: https://www.cs.york.ac.uk/plasma/publications/pdf/

HristakievPlump.WADT16.Long.pdf.

[HP17a] Ivaylo Hristakiev and Detlef Plump. Checking graph programs for
confluence. In Martina Seidl and Steffen Zschaler, editors, Software
Technologies: Applications and Foundations — STAF 2017 Collocated Work-
shops, Revised Selected Papers, volume 10748 of Lecture Notes in Computer
Science, pages 92–108. Springer, 2017. doi:10.1007/978-3-319-74730-
9 8, online version available at: http://www.cs.york.ac.uk/plasma/

publications/pdf/HristakievPlump.GCM17.pdf, long version avail-
able at: https://www.cs.york.ac.uk/plasma/publications/pdf/

HristakievPlump.GCM17.Long.pdf.

166

http://dx.doi.org/10.1017/S0960129508007202
http://dx.doi.org/10.1007/978-3-642-33654-6_15
http://dx.doi.org/10.1007/978-3-642-33654-6_15
http://dx.doi.org/10.14279/tuj.eceasst.71.1002
https://arxiv.org/abs/1705.02171
https://arxiv.org/abs/1705.02171
http://dx.doi.org/10.1007/978-3-319-50230-4_11
http://www.cs.york.ac.uk/plasma/publications/pdf/HristakievPlump16.Full.pdf
http://www.cs.york.ac.uk/plasma/publications/pdf/HristakievPlump16.Full.pdf
http://dx.doi.org/10.1007/978-3-319-72044-9_11
http://www.cs.york.ac.uk/plasma/publications/pdf/HristakievPlump.WADT16.pdf
http://www.cs.york.ac.uk/plasma/publications/pdf/HristakievPlump.WADT16.pdf
https://www.cs.york.ac.uk/plasma/publications/pdf/HristakievPlump.WADT16.Long.pdf
https://www.cs.york.ac.uk/plasma/publications/pdf/HristakievPlump.WADT16.Long.pdf
http://dx.doi.org/10.1007/978-3-319-74730-9_8
http://dx.doi.org/10.1007/978-3-319-74730-9_8
http://www.cs.york.ac.uk/plasma/publications/pdf/HristakievPlump.GCM17.pdf
http://www.cs.york.ac.uk/plasma/publications/pdf/HristakievPlump.GCM17.pdf
https://www.cs.york.ac.uk/plasma/publications/pdf/HristakievPlump.GCM17.Long.pdf
https://www.cs.york.ac.uk/plasma/publications/pdf/HristakievPlump.GCM17.Long.pdf

[HP17b] Ivaylo Hristakiev and Detlef Plump. A unification algorithm for
GP 2 (Long Version). ArXiv e-prints, arXiv:1705.02171, 2017. https:

//arxiv.org/abs/1705.02171.

[HT06] Brent Hailpern and Peri L. Tarr. Model-driven development: The
good, the bad, and the ugly. IBM Systems Journal, 45(3):451–462, 2006.
doi:10.1147/sj.453.0451.

[Hue80] Gérard P. Huet. Confluent reductions: Abstract properties and appli-
cations to term rewriting systems. Journal of the ACM, 27(4):797–821,
1980.

[Hue81] Gérard P. Huet. A complete proof of correctness of the Knuth-
Bendix completion algorithm. Journal of Computer and System Sciences,
23(1):11–21, 1981.

[HW95] Reiko Heckel and Annika Wagner. Ensuring consistency of condi-
tional graph rewriting — a constructive approach. Electronic Notes
in Theoretical Computer Science, 2:118–126, 1995. doi:10.1016/S1571-
0661(05)80188-4.

[Jaf90] Joxan Jaffar. Minimal and complete word unification. Journal of the
ACM, 37(1):47–85, 1990.

[KB70] Donald E. Knuth and Peter Bendix. Simple word problems in uni-
versal algebras. In John Leech, editor, Proc. Computational Problems in
Abstract Algebra, pages 263–297. Pergamon Press, Oxford, 1970.

[KB83] Donald E. Knuth and Peter Bendix. Simple word problems in uni-
versal algebras. In Automation of Reasoning: 2: Classical Papers on
Computational Logic 1967–1970, Symbolic Computation, pages 342–376.
Springer Berlin Heidelberg, 1983.

[KDL+15] Géza Kulcsár, Frederik Deckwerth, Malte Lochau, Gergely Varró, and
Andy Schürr. Improved conflict detection for graph transformation
with attributes. In Proc. Graphs as Models (GaM 2015), pages 97–112,
2015. doi:10.4204/EPTCS.181.7.

[KMP05] Manuel Koch, Luigi V. Mancini, and Francesco Parisi-Presicce. Graph-
based specification of access control policies. JCSS, 71(1):1–33, 2005.
doi:10.1016/j.jcss.2004.11.002.

[Lam09] Leen Lambers. Certifying Rule-based Models using Graph Transformation.
PhD thesis, Berlin Institute of Technology, 2009.

[LE06] Leen Lambers and Hartmut Ehrig. Efficient detection of conflicts in
graph-based model transformation. Electronic Notes in Theoretical Com-
puter Science, 152:97–109, 2006. doi:10.1016/j.entcs.2006.01.017.

167

https://arxiv.org/abs/1705.02171
https://arxiv.org/abs/1705.02171
http://dx.doi.org/10.1147/sj.453.0451
http://dx.doi.org/10.1016/S1571-0661(05)80188-4
http://dx.doi.org/10.1016/S1571-0661(05)80188-4
http://dx.doi.org/10.4204/EPTCS.181.7
http://dx.doi.org/10.1016/j.jcss.2004.11.002
http://dx.doi.org/10.1016/j.entcs.2006.01.017

[LEO06] Leen Lambers, Hartmut Ehrig, and Fernando Orejas. Conflict detec-
tion for graph transformation with negative application conditions. In
Andrea Corradini, Hartmut Ehrig, Ugo Montanari, Leila Ribeiro, and
Grzegorz Rozenberg, editors, Proc. International Conference on Graph
Transformation (ICGT 2006), volume 4178 of Lecture Notes in Computer
Science, pages 61–76. Springer, 2006. doi:10.1007/11841883 6.

[LEO08] Leen Lambers, Hartmut Ehrig, and Fernando Orejas. Efficient con-
flict detection in graph transformation systems by essential critical
pairs. Electronic Notes in Theoretical Computer Science, 211:17–26, 2008.
doi:10.1016/j.entcs.2008.04.026.

[LS05] Stephen Lack and Pawel Sobocinski. Adhesive and quasiadhesive
categories. Informatique Théorique et Applications, 39(3):511–545, 2005.
doi:10.1051/ita:2005028.

[Mak77] G.S. Makanin. The problem of solvability of equations in a free semi-
group. Matematiceskiı̆ Sbornik, 103:147–236, 1977. In Russian. English
translation in Math. USSR Sbornik, 32:129–198, 1977.

[Men05] Tom Mens. On the use of graph transformations for model refactoring.
In Generative and Transformational Techniques in Software Engineering, In-
ternational Summer School, GTTSE 2005, Braga, Portugal, July 4-8, 2005.
Revised Papers, pages 219–257, 2005. doi:10.1007/11877028 7.

[MT04] Tom Mens and Tom Tourwé. A survey of software refactor-
ing. IEEE Transactions on Software Engineering, 30(2):126–139, 2004.
doi:10.1109/TSE.2004.1265817.

[MTR07] Tom Mens, Gabriele Taentzer, and Olga Runge. Analysing refactoring
dependencies using graph transformation. Software and System Model-
ing, 6(3):269–285, 2007. doi:10.1007/s10270-006-0044-6.

[MVW16] Paolo Milazzo, Dániel Varró, and Manuel Wimmer, editors. Revised Se-
lected Papers of Software Technologies: Applications and Foundations (STAF
2016) Collocated Workshops, volume 9946 of Lecture Notes in Computer
Science. Springer, 2016. doi:10.1007/978-3-319-50230-4.

[OL12] Fernando Orejas and Leen Lambers. Lazy graph transformation. Fun-
damenta Informaticae, 118(1-2):65–96, 2012. doi:10.3233/FI-2012-706.

[Pla99] Wojciech Plandowski. Satisfiability of word equations with constants
is in PSPACE. In Symposium on Foundations of Computer Science (FOCS
1999), pages 495–500. IEEE Computer Society, 1999.

[Plo72] Gordon Plotkin. Building-in equational theories. Machine intelligence,
7(4):73–90, 1972.

168

http://dx.doi.org/10.1007/11841883_6
http://dx.doi.org/10.1016/j.entcs.2008.04.026
http://dx.doi.org/10.1051/ita:2005028
http://dx.doi.org/10.1007/11877028_7
http://dx.doi.org/10.1109/TSE.2004.1265817
http://dx.doi.org/10.1007/s10270-006-0044-6
http://dx.doi.org/10.1007/978-3-319-50230-4
http://dx.doi.org/10.3233/FI-2012-706

[Plo04] Gordon D. Plotkin. The origins of structural operational seman-
tics. The Journal of Logic and Algebraic Programming, 60:3–15, 2004.
doi:10.1016/j.jlap.2004.03.009.

[Plu93] Detlef Plump. Hypergraph rewriting: Critical pairs and undecidabil-
ity of confluence. In Ronan Sleep, Rinus Plasmeijer, and Marko van
Eekelen, editors, Term Graph Rewriting: Theory and Practice, chapter 15,
pages 201–213. John Wiley, 1993.

[Plu94] Detlef Plump. Critical pairs in term graph rewriting. In Proc. Mathe-
matical Foundations of Computer Science (MFCS’94), volume 841 of Lec-
ture Notes in Computer Science, pages 556–566. Springer-Verlag, 1994.
doi:10.1007/3-540-58338-6 102.

[Plu98] Detlef Plump. Termination of graph rewriting is undecidable. Funda-
menta Informaticae, 33(2):201–209, 1998. doi:10.3233/FI-1998-33204.

[Plu05] Detlef Plump. Confluence of graph transformation revisited. In Aart
Middeldorp, Vincent van Oostrom, Femke van Raamsdonk, and Roel
de Vrijer, editors, Processes, Terms and Cycles: Steps on the Road to In-
finity: Essays Dedicated to Jan Willem Klop on the Occasion of His 60th
Birthday, volume 3838 of Lecture Notes in Computer Science, pages 280–
308. Springer-Verlag, 2005. doi:10.1007/11601548 16.

[Plu09] Detlef Plump. The graph programming language GP. In Proc. Inter-
national Conference on Algebraic Informatics (CAI 2009), volume 5725 of
Lecture Notes in Computer Science, pages 99–122. Springer-Verlag, 2009.
doi:10.1007/978-3-642-03564-7 6.

[Plu10] Detlef Plump. Checking graph-transformation systems for confluence.
In Manipulation of Graphs, Algebras and Pictures: Essays Dedicated to
Hans-Jörg Kreowski on the Occasion of His 60th Birthday, volume 26 of
Electronic Communications of the EASST, 2010.

[Plu12] Detlef Plump. The design of GP 2. In Proc. International Workshop
on Reduction Strategies in Rewriting and Programming (WRS 2011), vol-
ume 82 of Electronic Proceedings in Theoretical Computer Science, pages
1–16, 2012. doi:10.4204/EPTCS.82.1.

[Plu16] Detlef Plump. Reasoning about graph programs. In Proc. International
Workshop on Computing with Terms and Graphs (TERMGRAPH 2016),
Electronic Proceedings in Theoretical Computer Science, pages 35–44,
2016. doi:10.4204/EPTCS.225.6.

[PP14] Christopher M. Poskitt and Detlef Plump. Verifying monadic second-
order properties of graph programs. In Proc. International Conference
on Graph Transformation (ICGT 2014), volume 8571 of Lecture Notes in
Computer Science, pages 33–48. Springer-Verlag, 2014. doi:10.1007/978-
3-319-09108-2 3.

169

http://dx.doi.org/10.1016/j.jlap.2004.03.009
http://dx.doi.org/10.1007/3-540-58338-6_102
http://dx.doi.org/10.3233/FI-1998-33204
http://dx.doi.org/10.1007/11601548_16
http://dx.doi.org/10.1007/978-3-642-03564-7_6
http://dx.doi.org/10.4204/EPTCS.82.1
http://dx.doi.org/10.4204/EPTCS.225.6
http://dx.doi.org/10.1007/978-3-319-09108-2_3
http://dx.doi.org/10.1007/978-3-319-09108-2_3

[PS04] Detlef Plump and Sandra Steinert. Towards graph programs for graph
algorithms. In Proc. International Conference on Graph Transformation
(ICGT 2004), volume 3256 of Lecture Notes in Computer Science, pages
128–143. Springer-Verlag, 2004. doi:10.1007/978-3-540-30203-2 11.

[RET11] Olga Runge, Claudia Ermel, and Gabriele Taentzer. AGG 2.0 - new
features for specifying and analyzing algebraic graph transformations.
In Andy Schürr, Dániel Varró, and Gergely Varró, editors, Interna-
tional Symposium on Applications of Graph Transformations with Industrial
Relevance (AGTIVE 2011), Revised Selected and Invited Papers, volume
7233 of Lecture Notes in Computer Science, pages 81–88. Springer, 2011.
doi:10.1007/978-3-642-34176-2 8.

[RLP+14] Shekoufeh Kolahdouz Rahimi, Kevin Lano, Suresh Pillay, Javier Troya,
and Pieter Van Gorp. Evaluation of model transformation approaches
for model refactoring. Science of Computer Programming, 85:5–40, 2014.
doi:10.1016/j.scico.2013.07.013.

[Rob65] J.A. Robinson. A machine-oriented logic based on the resolution prin-
ciple. Journal of the ACM, 12:23–41, 1965.

[Roz97] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Comput-
ing by Graph Transformations - Volume 1: Foundations. World Scientific,
1997.

[SBG+17] Daniel Strüber, Kristopher Born, Kanwal Daud Gill, Raffaela Groner,
Timo Kehrer, Manuel Ohrndorf, and Matthias Tichy. Henshin: A
usability-focused framework for EMF model transformation devel-
opment. In Juan de Lara and Detlef Plump, editors, Proc. Interna-
tional Conference on Graph Transformation (ICGT 2017), volume 10373
of Lecture Notes in Computer Science, pages 196–208. Springer, 2017.
doi:10.1007/978-3-319-61470-0 12.

[Sch92] Klaus U. Schulz. Makanin’s algorithm for word equations: Two im-
provements and a generalization. In Proc. Word Equations and Related
Topics (IWWERT ’90), volume 572 of Lecture Notes in Computer Science,
pages 85–150. Springer-Verlag, 1992.

[Sie78] Jörg Siekmann. Unification and Matching Problems. PhD thesis, Univer-
sity of Essex, 1978.

[TGM98] Gabriele Taentzer, Michael Goedicke, and Torsten Meyer. Dynamic
change management by distributed graph transformation: Towards
configurable distributed systems. In Proc. International Workshop on
Theory and Application of Graph Transformations (TAGT ’98), Selected Pa-
pers, pages 179–193, 1998. doi:10.1007/978-3-540-46464-8 13.

170

http://dx.doi.org/10.1007/978-3-540-30203-2_11
http://dx.doi.org/10.1007/978-3-642-34176-2_8
http://dx.doi.org/10.1016/j.scico.2013.07.013
http://dx.doi.org/10.1007/978-3-319-61470-0_12
http://dx.doi.org/10.1007/978-3-540-46464-8_13

[Wel14] Ruud Welling. Conflict Detection and Analysis for Single-Pushout High-
Level Replacement. Master thesis, University of Twente, 2014.

171

	Abstract
	Contents
	List of Figures
	Acknowledgements
	Declaration
	Introduction
	Motivation
	Research Hypothesis and Contributions
	Thesis Structure
	Publication History

	Graph Transformation, Graph Programming and Confluence
	Fundamentals of Graph Transformation
	Graphs and Morphisms
	Rules, Matches and Direct Derivations
	Pushouts and Relabelling

	Graph programming with GP
	Graphs and Rule Schemata
	Graph Programs
	Example Programs
	Operational Semantics

	Confluence
	Structural Confluence
	Independence and Conflicts
	Critical Pairs
	Critical Pair Construction Algorithm
	Confluence Extensions
	Confluence Applications

	Summary

	Independence of GP 2 Rule Schemata
	Reasoning about conflicts
	Lifting Independence to Rule Schema Derivations
	Local Church-Rosser Theorem
	Generalized rule schemata
	Related work
	Summary

	Symbolic Critical Pairs for GP 2
	Confluence Analysis with Critical Pairs
	Symbolic Critical Pairs
	Construction and Finiteness
	Completeness of Symbolic Critical Pairs
	Related Work
	Summary

	Unification of GP 2 labels
	Solving Label Equations with Unification
	Preliminaries
	Unification Algorithm
	Termination and Soundness
	Completeness
	Proving Completeness: The SELECT Algorithm
	SELECT Examples
	Putting it all together: Proving The SELECT Lemma

	From Single Equations to Systems of Equations
	Related Work
	Summary

	Joinability and Local Confluence Analysis
	Confluence Analysis with Critical Pairs
	Symbolic Rewriting
	Joinability
	Local Confluence Theorem
	Auxiliary Results

	Confluence Analysis Algorithm
	Refinement 1: Graph Isomorphism
	Refinement 2: Persistent Reducts
	The issue with non-confluence

	Related Work
	Summary

	Confluence Case Studies
	Series-Parallel Graphs
	Shortest Distances
	2-colouring
	Vertex Colouring
	Chapter Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	Basic Properties of PLGraph
	The SELECT Algorithm
	Proofs
	Proof of the SELECT Lemma
	Equivalence between Joinability Definitions

	References

