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A molecular field theory and coarse grained computer simulations with dissipative particle dy-
namics have been used to study the spontaneous orientational ordering of anisotropic nanoparticles
in the lamellae and hexagonal phases of diblock copolymers and the effect of nanoparticles on the
phase behaviour of these systems. Both a molecular theory and computer simulations indicate that
strongly anisotropic nanoparticles are ordered orientationally mainly in the boundary region be-
tween the domains, and the nematic order parameter possesses opposite signs in adjacent domains.
The orientational order is induced by the boundary and by the interaction between nanoparticles
and the monomer units in different domains. In simulations, sufficiently long and strongly selec-
tive nanoparticles order also inside the domains. Nematic order parameter and local concentration
profiles of nanoparticles have been calculated numerically using the model of a nanoparticle with
two interaction centres and also determined using the results of computer simulations. A number
of phase diagrams have been obtained which illustrate the effect of nanoparticle selectivity and
molar fraction of the stability ranges of various phases. Different morphologies have been identified
by analysing the static structure factor and a phase diagram has been constructed in coordinates
nanoparticle concentration - copolymer composition. Orientational ordering of even a small frac-
tion of nanoparticles may result in a significant increase of the dielectric anisotropy of a polymer
nanocomposite which is important for various applications.

I. INTRODUCTION

Various soft matter nanocomposites based on
anisotropic fluids and doped by metal, dielectric and
semiconductor nanoparticles (NPs) are considered to
be very promising materials which attract significant
attention at present. To a large extent this interest is
determined by a possibility to modify thermodynamic,
optical and dielectric properties of such systems by
adding a small fraction of NPs [1]. For example, switch-
ing voltages and times of nematic liquid crystal cells can
be reduced by adding only a few volume percent of metal
NPs (see, for example, Refs. [2–6]). Doping of nematics
with strongly polar ferroelectric NPs also leads to an
increase of their dielectric constant and enhances the
electro-optic response [7–11]. In nanocomposites based
on side-chain liquid crystal polymers, the semiconductor
quantum dots may positionally order in self-assembled
periodic structures [12, 13].

Anisotropic NPs acquire orientational order from var-
ious liquid crystal host phases and, in turn, affect the
thermodynamic stability of these phases. Indeed, the
nematic–isotropic (N-I) phase transition temperature is
decreased when the nematic liquid crystal is doped with
isotropic silver [14], gold [15] or aerosil [16, 17] NPs .
At the same time, doping with strongly anisotropic NPs
leads to an increase of the N-I transition temperature,
which has been observed using nanotubes [18], magnetic
nanorods (NRs) [19], and ferroelectric NPs [7, 8]. Re-
cently, the effect of NPs on the N-I phase transition and

on the dielectric properties of nematic nano-composites
has been described in terms of molecular statistical the-
ory [20–24].

Introduction of NPs can also improve mechanical, ther-
mal, and dielectric properties of composite polymer nano-
materials based on block copolymers [25–31]. Microphase
separation in block copolymers can stabilize spatially in-
homogeneous NP distribution which paves the way for
the design of materials to be used as smart membranes
and in nanophotonics. The self-assembling of such nanos-
tructures will be of advantage compared to the produc-
tion by lithographic techniques. From the liquid crystal
science viewpoint, interesting effects are related to the
orientational ordering of small anisotropic NPs in vari-
ous phases of block copolymers. Hexagonal and lamellae
phases of block copolymers are macroscopically uniaxial,
and this structural anisotropy can, in principle, induce
some orientational order of sufficiently anisotropic NRs.
On the other hand, the macroscopic anisotropy of di-
block copolymers is expected to be rather weak because
the bulk of each block is isotropic and the anisotropy is
only determined by the block boundaries. As a result,
NRs can order orientationally only in the interfacial re-
gions between adjacent blocks, where they interact with
the monomers of both blocks. The orientational ordering
of NRs in diblock copolymers has been indeed observed
experimentally. In particular, poly(ethylene glycol) func-
tionalized gold NRs have been aligned parallel to the
domain boundary in the lamellae phase [32], while the
polystyrene functionalized NRs have been aligned per-
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pendicular to the cylindrical domain boundary in the
hexagonal phase of the same block copolymer [33]. At
the same time, the alkyl phosphonic acid capped semi-
conductor NPs have been ordered parallel to the cylin-
drical boundary in a different block copolymer [34, 35].

In general, the effect of NPs on the structure and prop-
erties of block copolymers can be rather complicated. On
the one hand, anisotropic NPs may spontaneously or-
der both spatially and orientationally in the anisotropic
lamellae and hexagonal phases. On the other hand, they
may also affect the thermodynamic stability of these
phases and shift the corresponding transition points. The
distribution of anisotropic NPs in block copolymers has
recently been studied theoretically by the authors [36, 37]
assuming fixed phase-separated structures of the lamel-
lae and hexagonal phases. Similarly to the molecular
theory of nematic liquid crystals in the external field,
the orientational order of NPs in this case is induced by
the anisotropic mean-field created by the interaction be-
tween the NPs and the monomers of the two different
blocks. In the simplest model, a NP was assumed to be
of spherical shape but its interaction with a monomer
was a sum of the isotropic and anisotropic parts. The
anisotropic part of the model potential was determined
by the effective particle anisotropy due to, for example,
the polarizability anisotropy or the quadrupole moment.
Numerical calculations have been employed to show that
anisotropic NPs are orientationally ordered in the inter-
facial regions [36] and that the NPs are aligned parallel
and perpendicular to the domain wall on different sides
of the boundary.

Coarse-grained simulations with dissipative particle
dynamics (DPD) [37] allowed us to explicitly consider
anisometric NPs (and NRs) and to study the effect of
their concentration, length, stiffness, and selectivity of
their interactions with the copolymer blocks on the ori-
entational order of NPs and phase stability of the whole
composite. In our recent theoretical paper [38], a dumb-
bell NP has been considered, which is composed of two
equal spheres separated by a certain distance and inter-
acting individually with the monomers. Such a model
NP possesses an anisotropic shape and is rather similar
to the model NR, composed of several rigidly connected
spheres, which was employed in the computer simulations
[37]. It has been shown that in the context of this model,
the orientational order parameter of the NPs appears to
be significantly higher than in the previous model [36]
and the NPs are orientationally ordered in a broader in-
terfacial region which is closer to the results of computer
simulations.

In this paper, we use both analytical theory and com-
puter simulations to focus on the effect of the NRs on the
relative stability of the lamellae and hexagonal phases
with respect to each other and to the isotropic phase.
We combine the expansion of the free energy of the
pure block copolymer in terms of the order parameters
of the monomer distribution with a molecular-field the-
ory which describes the interaction of the NRs with the

monomers and their ordering in block copolymers. In
parallel, we carry out extensive DPD simulations to con-
struct partial phase diagrams of the composite in the
coordinates NR molar fraction polymer composition at
a fixed strong immiscibility of the copolymer blocks. Dif-
ferent morphologies are identified by analysing the static
structure factor and visually from the system snapshots.
Orientational and positional order of the NRs are evalu-
ated in lamellar and hexagonal phases. The paper ends
with a discussion section bridging the model theoretical
and simulation results.

II. MOLECULAR FIELD THEORY OF

POLYMER NANOCOMPOSITES

In the context of the existing molecular statistical the-
ory of block copolymers, the polymer nanocomposites
with anisotropic NPs can be described combining field-
theoretical approaches, including the self-consistent field
theory [39], with an explicit treatment of NPs using the
density functional theory [40]. In principle, such an ap-
proach can be used to consider NPs of arbitrary shape
and size, but the number of publications in this field is
very limited [41] which is related to inherent problems
associated with high computational cost and with the
difficulties in combining numerical computer simulations
with the solutions of complex partial differential equa-
tions with both translational and orientational degrees
of freedom. On the other hand, at relatively weak segre-
gation between different monomers the block copolymer
matrix can be described qualitatively by using the Lan-
dau expansion of the free energy of the chains in terms
of the translational order parameters of the monomers in
the lamellae and hexagonal phases as first proposed by
Leibler [42]. Although more sophisticated mean-field the-
ories encompassing block copolymers with stronger seg-
regation have been also developed [43, 44], we choose
here to take the advantage of the simplicity and clarity
of Leibler’s approach and combine the free energy expan-
sion in terms of the translational order parameter with
the NP-monomer interaction accounted in the molecular
field approximation.
Assuming that the molar fraction of NPs is sufficiently

small, one can neglect the interaction of NPs and write
the free energy density of a block copolymer doped with
NPs with three terms:

F = Fp + VNP − TSNP , (1)

Here the free energy of pure host copolymer consists
of the contribution from the entropy of non-interacting
chains and of the repulsive interaction of monomers A
and B:

Fp = −kBT lnZ0 + kBT

∫

χ0〈ρA(r)〉〈ρB(r)〉dr, (2)

where Z0 is the chain partition function and χ0 > 0 is
the effective monomer repulsion parameter. The energy
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of the NP interaction with the monomers A and B reads
as:

VNP =

∫

〈ρA(r1)〉VA(r12,a2)ρNP (r2,a2)dr1dr2da2

+

∫

〈ρB(r1)〉VB(r12,a2)ρNP (r2,a2)dr1dr2da2, (3)

while the last term in Eq. (1) corresponds to the contri-
bution of the orientational and translational entropy of
anisotropic NPs:

SNP = kB

∫

ρNP (r,a) ln [ρNP (r,a)] drda. (4)

We denote as ρA(r) and ρB(r) the density profiles of
monomers of types A and B respectively, while ρNP (r,a)
is the one-particle density describing the positional and
orientational distribution of the NPs normalized by their
number: NNP =

∫

ρNP (r,a)drda. The potentials
VA(r12,a2) and VB(r12,a2) describe the interaction be-
tween an anisotropic NP and the monomers A and B,
respectively, and they are assumed to depend on the dis-
tance r12 = r1 − r2 and the NP orientation specified by
the unit vector a in the direction of the NP main axis.

A. Free energy expansion of the pure host phase

In the limit of zero polymer compressibility, ρA(r) +
ρB(r) = ρm, where ρm is the average monomer number
density. Then the order parameter of the microphase
separated structure in a diblock copolymer can be intro-
duced as:

ψ(r) =
1

ρm
〈δρA〉 =

1

ρm
〈ρA〉 − f = 1− f − 1

ρm
〈ρB〉, (5)

where f is the relative composition ratio of the diblock
copolymer chain. This order parameter can be sought
in the form of the following general expression valid for
different phases [42]:

ψ(r) = n−1/2ψn

n
∑

j=1

[exp(iQj · r+ ϕn) + c.c.], (6)

where ψn is the amplitude and ϕn is the phase and the
density distribution is characterized by a set of n wave
vectors Qj , j = 1, ..., n . In the lamellae phase, there
is only one wave vector, i.e., n = 1 and |Q1| = q∗.
In the hexagonal phase, n = 3 and all three wave
vectors Q1,2,3 are expressed in terms of the same q∗

as Q1 = q∗(1, 0, 0),Q2 = q∗/2(−1,
√
3, 0) and Q3 =

q∗/2(−1,−
√
3, 0)

Now the free energy Fp per chain of the pure copoly-
mer host phase can be expanded in terms of the order
parameter as originally proposed by Leibler [42]:

Fp

kBTNch
= 2N(χs − χ)ψ2

n − αnψ
3
n + βnψ

4
n, (7)

where χ = ρmχ0, N is the number of monomers in a poly-
mer chain, so that the total number of polymer chains
reads as Nch = Nm/N , where Nm = ρmV is the total
monomer number. The coefficients of the expansion de-
pend on the fraction f of the monomers A and on the
product qR of the wave number q and the gyration ra-
dius R = s

√

N/6 of the polymer chain where s is the
monomer length (the Kuhn segment length). Explicit ex-
pressions for the coefficients χs, αn and βn are presented
in [42]. In particular, the quadratic term in this expan-
sion has the same mathematical form for both phases and
the coefficient χs can be written in the form:

Nχs =
1
2g1(1, x)/ {g1(f, x)g1(1− f, x)−

1
4 [g1(1, x)− g1(f, x)− g1(1− f, x)]2

}

, (8)

where g1(f, x) = 2 [fx+ exp(−fx)− 1] /x2 is the De-
bye function which depends on the wavenumber q of the
phase separated structure via the nondimensional param-
eter x = q2R2. The equilibrium wavenumber q∗ at the
transition into the disordered phase can be obtained by
minimizing Eq. (8) with respect to x, and the higher or-
der coefficients α1, α3 and β1, β3 are calculated using this
equilibrium value q∗. One notes that it follows from the
symmetry of the lamellae phase that α1 = 0 .

The higher order coefficients in the free energy expan-
sion have been explicitly expressed in [42]. In particular,
in the lamellae phase

β1 = NΓ4(0, 0)/4, (9)

and in the hexagonal phase

α3 = − 2

3
√
3
NΓ3, (10)

and

β3 = N [Γ4(0, 0) + 4Γ4(0, 1)]/12. (11)

The particular values of the parameters Γ3, Γ4(0, 0) and
Γ4(0, 1) used below are extracted from Ref. [42], where
they have been evaluated for various copolymer configu-
rations.

B. NP contribution to the free energy of the

composite

The NP distribution function ρNP (r,a) can be ob-
tained by minimizing the total free energy (1). Express-
ing the average monomer density in terms of the order
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parameter (5) and using Eq. (6), one obtains:

ρNP (r2,a2) =
1

Z
exp{− ρm

kBT

∫

ψ(r1)×

[VA(r12,a2)− VB(r12,a2)] dr1} =

=
1

Z
exp{− ρm

kBT
n−1/2ψn×

n
∑

j=1

[exp(iQj · r2)δV (Qj ,a2) + c.c.]} (12)

where δV (Qi,a2) =
∫

[VA(r12,a2)− VB(r12,a2)] exp(iQi·
r12)dr12
Substituting this expression into the free energy (1)

one obtains the following contribution of NPs to the total
free energy:

FNP

V kBT
= −ρNP lnZ =

= −ρNP ln

∫

exp{− ρm
kBT

n−1/2ψn×
n
∑

i=1

[exp(iQi · r)δV (Qi,a) + c.c.]}drda, (13)

where ρNP is the average number density of NPs, and V
is the system volume.
The free energy contribution determined by NPs can

now be expanded in powers of ψn using the equations for
the order parameter ψ(r) for the lamellae and hexagonal
phases:

FNP

V kBT
= −ρNP

∑

k

ρkm
k!(kBT )k

n−k/2Gkψ
k
n, (14)

where

G1 = I1, G2 = I2 − I21 , G3 = I3 − 3I1I2 + 2I31 ,

G4 = I4 − 4I1I3 − 3I22 + 12I21I2 − 6I41 , (15)

and where

Ik =
1

4πV
×

∫





n
∑

j=1

[exp(iQj · r)δV (Qj ,a) + c.c.]





k

dr da. (16)

One notes that in this expression only the exponential
functions exp(iQj · r) are to be integrated over r which
makes the integration rather straightforward.
For example, in the lamellae phase, n = 1 and there

is a single nonzero wave number |Q1| = q∗. In this case,
the quantities Ii and Gi are given by the following ex-
pressions:

I
(l)
1,3 = 0, I

(l)
2 =

1

2π

∫

δV (Q1,a)δV (−Q1,a)da, (17)

I
(l)
4 =

3

2π

∫

[δV (Q1,a)δV (−Q1,a)]
2da, (18)

and, accordingly, G
(l)
1,3 = 0, G

(l)
2 = I

(l)
2 , G

(l)
4 = I

(l)
4 −

3I
(l)
2

2
.

In the hexagonal phase, n = 3 and there are three wave
vectors which have the same absolute value |Q1,2,3| = q∗

and Q1 + Q2 + Q3 = 0. In this case, one also obtains

I
(h)
1 = 0 and the even-order integrals are very similar
to those obtained in the case of the lamellae phase. At

the same time, the third-order integral I
(h)
3 is nonzero

as the product of the three exponential functions does
not vanish upon integration over r if it involves all three
different wave vectors. As a result, one obtains:

I
(h)
2 =

1

2π

3
∑

m=1

∫

δV (Qm,a)δV (−Qm,a)da, (19)

I
(h)
3 =

3

2π

∫

[δV (Q1,a)δV (Q2,a)δV (Q3,a) + c.c.]da

(20)

I
(h)
4 =

3

2π

3
∑

m=1

∫

[δV (Qm,a)δV (−Qm,a)]
2
da, (21)

where the expressions for I
(h)
2 and I

(h)
4 are composed of

three equal contributions, and I
(h)
2 = 3I

(l)
2 , I

(h)
4 = 3I

(l)
4 .

The free energy expansion coefficients in the hexagonal

phase are G
(h)
1 = 0, G

(h)
2 = 3I

(l)
2 , G

(h)
3 = I

(h)
3 , G

(h)
4 =

3I
(l)
4 − 27I

(l)
2

2
.

Therefore, in both phases, the free energy expansion
coefficients are expressed in terms of the three integrals

of the Fourier transforms of the potential: I
(l)
2 , I

(l)
4 , and

I
(h)
3 . More detailed expressions can be obtained using
a particular model of the interaction potential. In this
paper we use the dumbbell model of the nanoparticle
which is composed of the two spheres with their cen-
tres separated by a distance l. The spheres interact
isotropically with monomers via the exponential poten-
tial Vα(r) = Jα exp(−r2/r20) where r is the distance be-
tween the centre of the sphere and the monomer of the
type α = A,B. In this case, the energy of interaction
of a NP composed of two spheres with a monomer is ex-
pressed as

Vα(r12,a) = Jα exp(−r2+/r20) + Jα exp(−r2
−
/r20), (22)

where r+ = r12 + la/2, r− = r12 − la/2. Here the unit
vector a is parallel to the NP axis.
The Fourier transform of this potential can be evalu-

ated in an explicit form:

V +
α (Q,a) =

∫

Jα exp(−r2+/r20) exp(iQ · r12)dr12 =

= exp(−iQ · al/2)
∫

Jα exp(−r2+/r20) exp(iQ · r+)dr+ =

= π3/2 r30Jα exp(−iQ · al/2) exp(−Q2r20/4), (23)
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and hence

δV (Q,a) = 2π3/2 r30(JA − JB)×
cos(Q · a l/2) exp(−Q2r20/4). (24)

Then the quantities relevant for the free energy coef-
ficients in the lamellae and hexagonal phases take the
form:

I
(l)
2 = 4π3 r60(JA − JB)

2 exp(−q∗2r20/2)
(

1 +
sin q∗l

q∗l

)

,

(25)

I
(l)
4 = 6π6 r120 (JA − JB)

4 exp(−q∗2r20)×
(

6 +
8 sin q∗l + sin 2q∗l

q∗l

)

, (26)

I
(h)
3 = 96π9/2 r90(JA − JB)

3 exp(−3q∗2r20/4). (27)

Note that the latter integral is independent of the NP
anisotropy.

III. PHASE TRANSITIONS OF THE

COMPOSITE

The total free energy of the copolymer-NP composite
is given by the sum of the polymer chains free energy (7)
and the NP contribution (14), F = Fp + FNP . The free
energy per chain for the lamellae phase can be written in
the form of the following expansion:

F (l)

kBTNch
= aψ2

1 + c(l)ψ4
1 . (28)

The free energy expansion in the hexagonal phase can be
expressed as:

F (h)

kBTNch
= aψ2

3 − bψ3
3 + c(h)ψ4

3 , (29)

where the quadratic term

a = 2N(χs − χ)− NρNP ρm
2(kBT )2

I
(l)
2 (30)

is the same for both phases. The third order coefficient
is nonzero only in the hexagonal phase:

b = α3 −
NρNP ρ

2
m

18
√
3(kBT )3

I
(h)
3 (31)

The fourth order coefficients are different in different
phases:

c(l) = β1 −
NρNP ρ

3
m

24(kBT )4

(

I
(l)
4 − 3I

(l)
2

2)

, (32)

c(h) = β3 −
NρNP ρ

3
m

72(kBT )4

(

I
(l)
4 − 9I

(l)
2

2)

, (33)

and should stay positive to ensure the system stability.
Equations (28) and (29) can now be used to evaluate

the free energies of different phases. At the first stage,
the coefficient a is minimized to obtain the equilibrium
microphase separation wavenumber q∗. This wavenum-
ber is then substituted into other coefficients and finally
the free energies are to be minimized with respect to the
corresponding order parameters.
The lamellae phase is thermodynamically profitable

compared to the disordered phase as long as

a < 0. (34)

Indeed, then the equilibrium order parameter ψ̃1 =
√

−a/2c(l) minimizes the corresponding free energy and
the latter being expressed as

F
(l)
eq

kBT
= − a2

4c(l)
, (35)

is always lower than the free energy of the disordered
phase F = 0.
The hexagonal phase corresponds to a local free energy

minimum with nonzero ψ3 when a < 9/8 b2/4c(h). How-
ever, it is favourable compared to the disordered state
only when

a <
b2

4c(h)
. (36)

The equilibrium order parameter of the hexagonal phase
corresponding to the global minimum of the free energy
(29) and can be obtained by direct minimization:

ψ̃3 =
3b

8c(h)

(

1 +

√

1− 32ac(h)

9b2

)

(37)

The equilibrium free energy of the hexagonal phase can
be expressed as

F
(h)
eq

kBT
= −1

3
ψ̃2
3

(

c(h)ψ̃2
3 − a

)

. (38)

Accordingly, the hexagonal phase has the lower free en-
ergy compared to the lamellae phase when

3a2

4c(l)
< ψ̃2

3

(

c(h)ψ̃2
3 − a

)

. (39)

Thus the phase boundaries are determined by the lines
defined by Eqs. (34), (36), and (39) which generally are
to be resolved numerically. At the same time, the above
relations can be used to derive some qualitative conclu-
sions. In particular, one can readily see from Eq. (30)
that the NPs destabilize the isotropic phase due to the
last term, which is proportional to the NP number den-
sity, and is negative if I2 > 0. The physical meaning of
this contribution is related to the effective interaction be-
tween two monomers via a NP which increases the effec-
tive monomer interaction constant χ∗ = χ+ NρNP ρm

2(kBT )2 I
(l)
2 .
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FIG. 1. Phase diagrams in terms of the monomer-monomer
discrimination coupling constant Nχ and the NP-monomer
discrimination interaction constant (JA−JB)/kBT for differ-
ent composition ratios: f = 0.5 (a), f = 0.3 (b), and f = 0.15
(c). The other model parameters are: ρNP /ρm = 10−3,
N = 100, r0 = 0.1R, l = 0.3R, s = 0.1R, ρmr30 = 1.

A. Model phase behaviour

There are several length scales in the present model
which have different orders of magnitude. Firstly, there

0

10

20

30

Hexagonal

Lamellae 

 N
�  

 

Disordered

0.00 0.05 0.10 0.15 0.20
0

10

20

30

40

50

 N
�

Hexagonal

 N�
NP

 / �
m

 

 

Disordered

0

10

20

30

 N
�

Hexagonal

Lamellae 

 

 

Disordered

a)

b)

c)

FIG. 2. Phase diagrams in terms of the monomer-monomer
discrimination coupling constant Nχ and the reduced NP
number density ρNP /ρm for different composition ratios: f =
0.5 (a), f = 0.3 (b), and f = 0.15 (c). The other model pa-
rameters are: N = 100, r0 = 0.1R, l = 0.3R, s = 0.1R,
ρmr30 = 1 , JA − JB = kBT .

are two polymer scales: the polymer segment length s
and the chain gyration radius R = s

√

N/6, which is con-
siderably larger than s. The microphase separated phases
are characterized by the wavenumber q∗ ≈

√
3.6/R and
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hence the periodicity in the lamellae phase, for example,
is about ∼ 3R, which means that R is a good estimate for
the microdomain size. The dumbbell model of a NP, con-
sidered above, is characterized by the length l + 2r0 and
thickness 2r0. We assume that the NP length is smaller
than the domain size, i.e. l+2r0 < R, while the NP thick-
ness is of the order of the monomer size, r0 ∼ s << R.
Estimating the monomer density as ρm ∼ s−3, we can
set the product ρmr

3
0 ∼ 1 which enters the coefficients

(30)–(33).

Phase diagrams of the nanocomposite in the coordi-
nates (Nχ, (JA−JB)/kT ) and (Nχ,NρNP /ρm) are pre-
sented in Figs. 1 and 2 for different values of f with
the corresponding values of NΓ3 and NΓ4 taken from
Leibler’s plots [42]. One can readily see from Fig. 1
that NPs generally increase the stability of the hexag-
onal phase and decrease that of the disordered phase. In
particular, in a symmetric block copolymer with f = 0.5
(see Fig. 1a) the stability range of the hexagonal phase
is rapidly increasing with the increasing discrimination
interaction constant (JA − JB) between the monomers
and NPs regardless of its sign. Indeed, in this case, the
profiles of the number densities of the monomers A and B
are identical, and it plays no role which of them interact
stronger with the NPs. In contrast, in a very asymmet-
ric composite with f = 0.15 (see Fig. 1c) ) the stability
range of the hexagonal phase is increasing for positive
(JA − JB) and decreasing for negative (JA − JB). This
is related to the fact that the monomers A dominate in
such composite and hence the stability range is increased
only if the energy of interaction between the monomers
A and the NPs is lower than that between the NPs and
monomers B, i.e., if (JA − JB) > 0. In the intermediate
case with f = 0.3 presented in Fig. 1b), the phase dia-
gram is more complicated as there are several competing
contributions to the coefficients of the free energy expan-
sion of the pure block copolymer which strongly depend
on f .

Numerical results presented in Fig. 2 also indicate
that generally the stability range of the hexagonal phase
is increasing with the increasing concentration of NPs.
A more complicated behaviour is again presented in
Fig. 2b) for f = 0.3. In this case, the stability range is
decreasing at small number density of NPs and increasing
at larger values of ρNP .

A typical dependence of the translational order param-
eters on the parameterNχ in the lamellae phase (Ψ1) and
in the hexagonal phase (Ψ3) is presented in Fig. 3. It is
interesting to note, that the order parameter Ψ3 is posi-
tive for (JA − JB) < 0 and negative for (JA − JB) > 0,
which is determined by the sign reversal of the coefficient
b in Eq. (37). The NP-related contribution to b is a cubic
function of (JA − JB) according to Eqs. (31) and (27).
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FIG. 3. Translational order parameters of the nano-composite
for negative (JA −JB) = −kBT (a) and positive (JA −JB) =
kBT (b) values of the discrimination interaction constant and
for ρNP = 10−3ρm NPs. The other model parameters are:
N = 100, r0 = 0.1R, l = 0.3R, s = 0.1R, ρm = s−3.

B. Orientational and translational distribution of

NPs

Spatial distribution of anisotropic NPs and their orien-
tational order is described by the one-particle distribu-
tion function (12) where the discrimination interaction
potential δV (Q,a) is given by Eq. (24). In the lamellae
phase, the density distribution of NPs is given by the fol-
lowing distribution function normalized over the period
Λ1 = 2π/q∗ of the lamellae structure:

f(x) =

∫

da ρNP (x,a)
∫ Λ1

0
dx
∫

da ρNP (x,a)
, (40)

where the x -axis is parallel to the wave vector of the
periodic structure, Q1 = q∗(1, 0, 0).
The local orientational order parameter of NPs in the

lamellae phase is expressed as:

S(x) =

∫

da P2 (a · x) ρNP (x,a)
∫

da ρNP (x,a)
. (41)
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FIG. 4. Density (a, c) and orientational order parameter pro-
files (b, d) of the anisotropic NPs in the hexagonal (a, b) and
the lamellae (c, d) phases evaluated at the points marked in
Figure 3a) for negative (JA − JB) = −kBT and for N = 100,
r0 = 0.1R, l = 0.3R, s = 0.1R, ρm = s−3.

The spatial and orientational distribution of NPs is illus-
trated in Figs. 4b) and 5b), where the density and the
order parameter profiles along the x-axis are presented.

The hexagonal phase is characterized by a trian-
gular 2D density distribution of both monomers and
NPs specified by the wave vectors Q1 = q∗(1, 0, 0),

Q2,3 = q∗(−1,±
√
3, 0)/2 and the spatial periodicity

Λ3 = 4π/
√
3q∗ where the z-axis is parallel to the symme-

try axes of the whole structure. The distribution of NPs
in the hexagonal phase is illustrated in Figs. 4a) and 5a)
where the density and the order parameter profiles along
the axis y (at x = 0) are presented. These profiles are
determined by the following equations:

f(y) =

∫

da ρNP (x = 0, y, a)
∫ Λ3

0
dy
∫

da ρNP (x = 0, y, a)
, (42)

S(y) =

∫

da P2 (a · y) ρNP (x = 0, y, a)
∫

da ρNP (x = 0, y,a)
. (43)

One can readily see in Figs. 4 and 5 that the orienta-
tional order parameter of NPs possesses opposite signs in
different domains of the copolymer in both the lamellae
and the hexagonal phases. Similar behaviour has also
been predicted in our previous paper [36] using a simple
model where the distribution of monomers has been fixed.
One notes that for a given set of parameters the NPs
are predominantly located in one of the domains where
they stronger interact with the corresponding monomers.
Thus the majority of NPs in the composite are aligned
along the same direction which should result in a suf-
ficiently large dielectric and optical anisotropy of the
nanocomposite.
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FIG. 5. Density (a, c) and orientational order parameter pro-
files (b, d) of the anisotropic NPs in the hexagonal (a, b) and
the lamellae (c, d) phases evaluated at the points marked in
Figure 3b) for positive (JA − JB) = kBT and for N = 100,
r0 = 0.1R, l = 0.3R, s = 0.1R, ρm = s−3.

IV. COMPUTER SIMULATIONS

Since its inception, the DPD method has become very
popular in soft matter simulations, in particular, as a
powerful tool to search for the microstructures in var-
ious block copolymer systems (see Ref. [45] and refer-
ences therein). When it comes to composites, computa-
tional advantages of DPD only increase [50]. In the re-
cent paper [37] we have used DPD simulations to study
spatial and orientational ordering of NRs in the lamellar
phase formed by a diblock copolymer AB of symmetric
composition. Here we use the same method to encom-
pass host matrices formed by asymmetric copolymers. It
will enable us to describe the behaviour of anisotropic
NPs in other phases, such as hexagonal and spherical
ones. Aside from studying the arrangement of NRs in
copolymer domains, we will demonstrate that in some
cases their addition can qualitatively change the copoly-
mer morphology itself.

A. The model and the simulation method

We consider the same coarse-grained model of a melted
diblock copolymer doped with NRs as in Ref. [37]. A fully
periodic simulation box of the size lx× ly× lz = 24×24×
24r3c is filled with a total of 41472 DPD particles of three
kinds, A,B, and R to attain the average particle density
ρ0 = 3r−3

c where rc is the unit length. The particles
are soft and interact via conservative, dissipative, and
random forces which are pairwise additive. The net force
Fi =

∑

j

(

FC
ij + FD

ij + FR
ij

)

acting on a given particle i is
calculated as a sum over the forces from all other particles
within the cut-off radius rc. In what follows, we use
dimensionless variables by setting rc, the particle mass
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m, and kBT as the unit distance, mass, and thermal
energy, respectively. This also defines the unit time as
τ0 = rc(m/kBT )

1/2 .
Copolymer is modeled as a chain of 20 particles

grouped into two blocks, A and B, and connected via
Hookean springs. Thus A10B10 is a symmetric copolymer
with equal blocksNA = NB = 10, whereas A5B15 has the
shorter A-block withNA = 5 and the longer B-block with
NB = 15. All NRs are composed of NR = 5 particles con-
nected by rigid bonds of the constant length bR = 0.7rc.
As found in Ref. [37], shorter NRs do not exhibit sub-
stantial ordering, whereas longer ones (even at NR = 7)
demonstrate a tendency to macrophase separation. The
equations of particle motion, dri/dt = vi, dvi/dt = Fi

are solved numerically using a free source code lammps

[51] that implements the modified velocity-Verlet algo-
rithm (DPD-VV integration scheme) [52] with a time
step δt = 0.02.
For the copolymer, the conservative force represents

the excluded volume interactions and elastic interactions
of particles i and j in the dimensionless form FC

ij =
aij(1 − rij)r̂ij − ksrij where rij = rirj , rij = |rij |, r̂ij =
rij/rij , aij is a maximum repulsion between the par-
ticles located at ri = rj and ks is a spring constant
which is taken to be ks = 4 for particles linked in a
polymer chain and which is equal to zero for non-bonded
particles. The dissipative and random forces, FD

ij =

−γω(rij)2(r̂ij ·vij)r̂ij and FR
ij = σω(rij)ξ(δt)

−1/2r̂ij , re-
spectively, constitute the Groot-Warren thermostat [53],
where γ is a friction coefficient related to a thermal
noise amplitude σ via the fluctuation-dissipation theo-
rem, γ2 = 2σ, ω(r) is a weight function, ξ is a nor-
mally distributed random variable with zero mean and
unit variance, which is uncorrelated for different particle
pairs, δt is the time step of an integration scheme, and
rij = ri − rj is the relative velocity of particles i and j.
Following Ref. [53], we choose σ = 3 and ω(r) = 1− r.
NRs are simulated as rigid bodies in the NV E ensem-

ble using an algorithm of Miller et al. [54]. Their correct
temperature is maintained via the interactions with the
surrounding thermostat composed of the polymeric DPD
liquid. For comparison, we perform some simulations by
replacing NRs with flexible chains consisting of NR = 5
particles of the R-type.
Miscibilities of the system components, i.e., the

monomer A units, monomer B units and the R NRs
is determined by the differences δaαβ = aαβ − aαα
(α, β = A,B,R) of the coefficients which describe the ex-
cluded volume interactions between DPD particles of the
corresponding types. As shown in Ref. [37], a standard
choice of aαα = 25 [53] in insufficient to induce orienta-
tional ordering of NRs that are shorter than the copoly-
mer domain width. Therefore we have taken aαα = 50
and continue to use it in the present study.
We describe the interaction of the NR R-particles with

the polymer A and B particles by the selectivity param-
eter σ = (aRB − aRA)/(aAB − aRA), which vanishes in
the non-selective case (aRB = aRA = 50 in this study)
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FIG. 6. Effect of the copolymer composition f and the content
of the particles φR on the morphology of the mixture with
N = 20, NR = 5, σ = 0.2, and aAB = 70.

FIG. 7. Effect of the NR concentration φR on the mi-
crodomain structure at f = 0.25, σ = 0.2, N = 20, NR = 5.

and increases to unity for the highest selectivity when A
and R particles are identical and aRB = aAB . The over-
all volume fraction of NRs, φR, takes small values from
0 to 0.1 to keep the copolymer matrix intact, while the
average volume fractions of A and B units are equal to
φA = φB = (1− φR)/2.
Microphase separation in the pure diblock copolymer

AB and its composites with NRs is simulated by anneal-
ing the initially disordered structures upon a gradual,
incremental (by 0.1 in the transition vicinity and by 1.0
in the strong segregation regime) increase in the repul-
sion parameter aAB between the particles A and B. An
order-disorder transition has been identified by a drop
in the potential energy of the ordered system, appear-
ance of a secondary peak in the static structure factor
(the primary peak was shifted to q 6= 0 even in the dis-
ordered phase due to the composition fluctuations) and
also visually from the structure snapshots (see Ref. [45]
for details).
By resolving the equations describing the dynamics of

the DPD liquid one can describe the stationary states
of the composite in terms of the local volume frac-
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tions φA, φB and φR of the monomer units A and B
and the NRs, respectively. If the NRs are distributed
within anisotropic microstructures formed by the diblock
copolymer (namely, in lamellae and cylinders), one can
also evaluate the degree of their orientational order in
terms of the local nematic order parameter S(r) identi-
cal to that defined by Eqs. (41) and (43):

S(r) =

〈

3

2
[a(r) · k]2 − 1

2

〉

, (44)

where a is a unit vector along the NR axis, k is the
unit normal to the lamellar plane or to the cylindrical
surface pointing in the direction of the NR center, and the
angular brackets denote the averaging over a local subset
of NRs. Zero value of the order parameter corresponds to
the orientationally disordered NRs, whereas S > 0 (S <
0) indicates their tendency to perpendicular (parallel)
orientation with respect to the block boundary.
When a lamellar or cylindrical microstructure is

formed, we are interested in the spatial profiles of all
local variables along the normal to the layers or cylin-
ders. However, in a fully-periodic simulation box it is
impossible to predict the orientation of an emerging mi-
crostructure. In order to extract the information on the
local distribution of the components from the simula-
tion data, we apply the following procedure. We de-
fine the vectors pi connecting the mass centres of A and
B blocks in an i-th copolymer chain. For the lamellar
case, such vectors are plotted for all copolymers in the
system, then normalized to the unit length and trans-
lated to a common origin so that their ends form a cloud
of n ∼ 105 points non-uniformly distributed over the
surface of a unit sphere. The gyration tensor of this
cloud, Jαβ = (1/n)

∑n
i=1 piαpiβ is diagonalized to find

three eigenvalues and eigenvectors. The eigenvector cor-
responding to the largest eigenvalue is the vector h, which
is normal to the lamellar planes. In the case of cylinders,
we consider a cloud of qi = pj × pk vectors and find the
eigenvector corresponding to the largest eigenvalue of a
tensor Jαβ = (1/n)

∑n
i=1 qiαqiβ . This eigenvector is par-

allel to the axis of the cylinder and is perpendicular to
the unit vector h which originates from the centre of a
chosen NR. Below we select the z-axis in the direction of
the vector h. All local variables describing the compos-
ite structure are expressed as the functions of z: φA(z),
φB(z), φA(z), S(z), while the centre of a lamella or a
cylinder is chosen as the origin (z = 0).

B. Possible morphologies of the copolymer

composite

The variety of possible morphologies which have been
found in the composite AB diblock copolymer (N = 20)
doped with NRs (NR = 5) is presented in Fig. 6 for
various copolymer compositions f and small (φR < 0.1)
NR volume fractions. NRs are taken to be weakly se-
lective toward shorter copolymer blocks (φ = 0.2), in

which case the most pronounced effect is expected ac-
cording to the preliminary studies. Another reason is
that at φ = 0.2 the difference between alignment of NRs
at the domain boundaries (parallel to the boundary) and
in the domain bulk (perpendicular to the boundaries) is
maximum for the symmetric copolymer [37]. In the ab-
sence of NRs (φR = 0) a strongly-segregated AB diblock
copolymer exhibits lamellae, perforated lamellae, a bi-
continuous structure, cylindrical and spherical micellar
structure depending on its composition [45]. One can see
that the addition of NRs shifts the transitions between
all ordered phases to more asymmetric compositions. As
a result, spherical and cylindrical morphologies can be
found only at a very small fraction of NRs (φR < 0.05).
The morphology of the copolymer with fixed composition
f may spontaneously change with the increasing NR con-
centration. This is shown in Fig. 7, where hexagonally
packed cylinders in the pure diblock copolymer are re-
placed with the bicontinuous structure at φR = 0.05 and
then with a lamellar structure at φR = 0.1 as predicted
by the morphology diagram in Fig. 6.
It should be noted that a rather wide domain of hexag-

onally perforated lamellar (a combination of 2D minor
and 3D major component morphologies) and bicontinu-
ous (3D/3D) microstructures shown in Fig. 6 can rep-
resent non-equilibrium states. Although in pure diblock
copolymers, self-consistent field theory [46] permits dou-
ble gyroid and bicontinuous orthorhombic structures to
be the only stable phases, yet the perforated lamellae
phase has only slightly higher energy. Accordingly, the
latter is often observed in laboratory experiments [47]
and computer simulations, either by DPD [45] or Monte
Carlo [48] methods, but is usually considered as a long-
living metastable state. An example of such structure
can be seen in the middle image in Fig. 7. However, it
does not transform into a periodic gyroid phase in nu-
merical simulations as this requires the DPD simulation
cell size to be commensurate with the period of sponta-
neously forming microstructure [49].

C. Positional and orientational ordering of

nanorods in the composite

The profiles of the local concentration and the ori-
entational order parameter of the NRs in the lamellar
phase are presented in Figs. 8 and 9. It follows from
Fig. 8 that highly selective NRs (σ = 1) are mainly lo-
cated within the minor A domains and are preferentially
aligned along the lamellae planes independently of their
position in the domain. This is consistent with the pre-
dictions of the molecular theory presented above. Indeed,
when a sufficiently long NR is inclined, it has a higher
probability to cross the domain boundary, which is en-
ergetically unfavourable. In contrast, in the major B
domains NRs are aligned perpendicular to the lamellae,
which also confirms the predictions of the theory, but
their concentration is very low. With a decrease in their
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FIG. 8. Local fraction of the NRs φR(z) (a) and their ori-
entational order parameter S(z) (b) in the lamellar phase for
different values of the NR interaction selectivity σ (specified)
for f = 0.35, φR = 0.1, and NR = 5.

interaction selectivity, NRs accumulate near the domain
boundaries which results in an increase of their orienta-
tional ordering. At the same time, in the bulk of the
domains both the volume fraction and nematic order pa-
rameter are close to zero. One notes that the variation in
the copolymer composition strongly affects the NR con-
centration profiles (see Fig. 9). In asymmetric copoly-
mers, NRs are almost uniformly distributed within the
minor phase while in the symmetric case they are mainly
located at the domain boundaries. Penetration of the
NRs effectively increases the volume fraction of the mi-
nor phase and makes the system more symmetric. The
concentration and order parameter profiles of the NRs in
the hexagonal phase are presented in Fig. 10. One can
readily see that although the orientational order parame-
ter is relatively low, it still possesses opposite signs in the
domains A and B. Moreover, the concentration of NRs in
domain A is comparable with that in domain B although
in the lamellae phase the NRs of the same selectivity
are predominantly located in domains A. One notes also
that a small decrease of the domain A size results in a
dramatic decrease of NR concentration in that domain
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FIG. 9. Local fraction of the NRs φR(z) (a) and their ori-
entational order parameter S(z) (b) in the lamellar phase for
different values of the copolymer composition f (specified) for
σ = 0.25, φR = 0.1, and NR = 5.

despite the strong selectivity of the NRs. This can be
explained by a significant decrease of the orientational
entropy of long NRs located in a narrow domain which
may overcome the decrease of the total interaction en-
ergy. The oscillations in the curves in Fig. 10 are related
to the fact that the averaging has been undertaken over
a single cylinder as different cylinders are not perfectly
parallel in the simulations.

V. DISCUSSION

In this paper we have studied the properties of diblock
copolymers doped with anisotropic NPs using a molec-
ular mean-field theory and DPD computer simulations.
The theory is based on the Landau expansion of the to-
tal free energy of the polymer nanocomposite in terms of
the positional order parameter which describes the spa-
tial distribution of monomers in the lamellae and the
hexagonal phase. The coefficients of this expansion have
been calculated using then mean-field theory taking into
account the anisotropic interaction between NPs and the
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cal phase for different values of the copolymer composition f
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monomers of both types. The anisotropic NP is modelled
by a rigid system of two spheres separated by a certain
distance, which interact isotropically with the monomers
of the types A and B and the effective interaction poten-
tial between such a NP and the monomers is anisotropic,
i.e., it depends on the angle between the intermolecu-
lar vector and the long NP axis. One notes that such
an approach is generally valid only if the order param-
eter is relatively low and hence the theory can mainly
be applied in the case of weak segregation. In contrast,
the computer simulations are more effective in the case of
strong segregation when the separation between different
domains is more pronounced.

The effect of anisotropic NPs on the block copolymer
composite is twofold. Firstly, the NPs are orientation-
ally ordered (see Figs. 4, 5, 8, 9, and 10) in the bound-
ary region between the blocks both in the lamellae and
in the hexagonal phases and the corresponding orienta-
tional order parameter possesses opposite signs in ad-
jacent blocks. This can be explicitly explained in the
strongly segregated system, assuming, for instance, that

the interaction of NPs with the monomers of the type
A is stronger than the interaction with the monomers
of the type B. Then, if the centre of a NP is located in
the block A close to the boundary with the block B, the
NP has a tendency to align parallel to the boundary in
order to maximise its interaction with monomers A and
to avoid contact with monomers B. In contrast, if such a
NP is located in the block B close to its boundary, the
total interaction energy is minimised when the NP is per-
pendicular to the boundary because in this case one of
the interaction spheres is located in the block A which
reduces the total interaction energy. In the case of weak
segregation, the NPs are aligned by the gradients of the
monomer concentration.

These qualitative results are supported by our com-
puter simulations which employ the method of DPD and
use the model of a NP composed of several interaction
sites. One notes, however, that the theoretical values
of the nematic order parameter appear to be rather low
while the computer simulations predict values of about
0.5–0.6 which are comparable with those typical for ne-
matic liquid crystals. This is partially explained by the
effects of strong segregation. Large values of the nematic
order parameter have also been obtained theoretically in
our previous paper in the limit of infinitely strong segre-
gation. Computer simulations also indicate that in the
case of highly selective NPs they are aligned along the
boundary independently of their location within the do-
main. This is related to the large length of NPs, used in
the simulations, which is comparable to the domain size.
In this case, the NP feels the boundary even when its cen-
tre is located in the bulk of a domain. The variation in
the copolymer composition strongly affects the NP con-
centration profiles. In strongly asymmetric copolymers,
the distribution of NPs within the minor phase is nearly
homogeneous while in symmetric copolymers the NPs are
mainly located at the domain boundaries.

In summary, both the molecular theory and computer
simulations predict that anisotropic NPs are orientation-
ally ordered in the lamellae as well as in the hexagonal
phase and the corresponding orientational order param-
eter possess opposite signs in adjacent domains. As dis-
cussed in the Introduction, the two types of NP align-
ment have also been observed experimentally. At the
same time, highly selective NPs are predominantly lo-
cated in one of the domains and hence the majority of
NPs in the composite are aligned along the same direc-
tion. This results in a sufficiently large dielectric and
optical anisotropy of the nanocomposite if the NPs are
polar and are characterised by a strong polarizability
anisotropy. In principle, the regular microphase separa-
tion induces certain anisotropy of the macroscopic prop-
erties already in a pure block copolymer host. For ex-
ample, it gives rise to the anisotropy of the chain statis-
tics described by a specific tensor order parameter which
can be also incorporated into the free energy expansion
(7) following the guidelines of Ref. 55. However, the re-
sulting anisotropy of the macroscopic properties is rather
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weak, as in the bulk of any domain the medium retains
the local isotropy. In this context, adding even a small
concentration of anisotropic NPs may result in a signifi-
cant increase of the macroscopic dielectric anisotropy of
the system due to the spontaneous orientational order-
ing of NPs. This effect opens the possibility to align such
polymer nanocomposites by external fields which is very
important for applications.

Secondly, NPs affect the stability ranges of the hexago-
nal, lamellae and disordered phases of block copolymers.
As shown in Section III, the interaction between NPs
and monomers renormalizes the quadratic term in the
free energy expansion which results in the increase of
the effective Flory discrimination parameter χ. Thus
the NPs generally stabilise the segregated phases. Pa-
rameters of the NPs also contribute to the higher order
expansion coefficients and hence the effect of NPs can
be rather complicated. In the case of weak segregation,
NPs generally stabilise the hexagonal phase although at
intermediate values of the polymer composition f the
range of the hexagonal phase expands only for sufficiently
large selectivity and NP concentration. Computer simu-
lations indicate that strongly-segregated diblock copoly-
mers of different composition exhibit lamellae, perforated
lamellae, bicontinuous, cylindrical and spherical micellar
structures [45]. Addition of NPs shifts all phase tran-
sitions in the direction of lamellae or perforated lamel-
lae phase. Moreover, the nanocomposite may undergo
a transition between different phases with the increas-

ing concentration of NPS φR. For example, the compos-
ite diblock copolymer (N = 20) undergoes a transition
from the hexagonal phase into the bicontinuous phase at
φR = 0.05 and then into the lamellae phase at φR = 0.1
(see Fig. 7).
In general, block copolymer composites with

anisotropic NPs can be considered as unconventional
liquid crystal systems because they are characterised by
the spontaneous orientational order of NPs. On the other
hand, in contrast to nematic liquid crystals, this order is
not determined by the anisotropic interaction between
NPs themselves but is induced by the anisotropy of the
block copolymer matrix (i.e. by the boundaries between
the blocks). At higher concentration, the interaction
between anisotropic NPs may become significant and
then one may expect the emergence of the true liquid
crystal order and the appearance of new macroscopic
structures.
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