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Gian-Luca Oppo4, Stéphane Coen1, Stuart G. Murdoch1, and Miro Erkintalo1†

1The Dodd-Walls Centre for Photonic and Quantum Technologies,
Department of Physics, The University of Auckland, Auckland 1142, New Zealand

2College of Meteorology and Oceanology, National University of Defense Technology, Changsha 410073, China
3Departament de F́ısica, Universitat de les Illes Balears,

C/Valldemossa km 7.5, 07122 Mallorca, Spain and
4SUPA and Department of Physics, University of Strathclyde, Glasgow G4 0NG, Scotland, EU

We report on a systematic study of temporal Kerr cavity soliton dynamics in the presence of
pulsed or amplitude modulated driving fields. In stark contrast to the more extensively studied
case of phase modulations, we find that Kerr cavity solitons are not always attracted to maxima or
minima of driving field amplitude inhomogeneities. Instead, we find that the solitons are attracted
to temporal positions associated with specific driving field values that depend only on the cavity
detuning. We describe our findings in light of a spontaneous symmetry breaking instability that
physically ensues from a competition between coherent driving and nonlinear propagation effects.
In addition to identifying a new type of Kerr cavity soliton behaviour, our results provide valuable
insights to practical cavity configurations employing pulsed or amplitude modulated driving fields.

Temporal Kerr cavity solitons (CSs) are pulses of light
that can recirculate indefinitely in coherently-driven, dis-
persive, Kerr nonlinear resonators [1]. They were first
observed in 2010 [2], and have attracted considerable at-
tention ever since. Initial studies focused on macroscopic
fiber ring resonators [2–8], and were motivated by the
prospect of using CSs as bits in all-optical buffers [9]. In
2014, temporal CSs were also observed in high-Q nonli-
near microresonators [10], and they are now recognized
to underlie the coherent and broadband “Kerr” optical
frequency combs generated in such devices [11–24].

Temporal CSs are phenomenologically akin to spatial
localized structures [25] that have been extensively stu-
died in diffractive resonators [26]. In particular, similarly
to their spatial counterparts, temporal CSs exhibit a pro-
perty known as “plasticity” [27]: inhomogeneities in the
quasi-continuous background on top of which the CSs sit
can cause motion along the dimension of localization. In
the presence of perturbations that excite narrowband re-
sonances in the soliton spectrum, such inhomogeneities
can be generated by the solitons themselves, which can
result in the formation of robustly bound soliton states
and soliton crystals [28–30]. Inhomogeneities can also be
externally induced by shaping the quasi-continuous wave
laser driving the cavity [31, 32]. In particular, phase mo-
dulation of the cavity driving field has been shown to
cause solitons to drift with a rate proportional to the
local phase gradient [31], permitting robust trapping of
CSs at the phase maxima [6, 33–35].

The physics of (temporal) Kerr CSs in the presence of
driving field phase inhomogeneities has been thoroughly
studied and is well understood. Although numerous stu-
dies have also investigated the behaviour of Kerr cavities
in the presence of pulsed or amplitude modulated dri-

ving fields [23, 36–45], the dynamics of CSs and their
trapping in such configurations has not yet been exten-
sively examined. Early theoretical studies [32], based on
the celebrated Lugiato-Lefever equation (LLE) [46], have
predicted dynamics similar to phase modulation, i.e., CSs
moving along amplitude gradients towards maxima of the
driving field. Yet, recent studies have shown anecdotal
evidence of altogether different behaviours. Anderson et
al. have found that a CS sitting atop an amplitude modu-
lated background can be trapped at the edge of the mo-
dulation [47]. Similarly, Obrzud et al. have found, when
simulating the generation of soliton frequency combs in
microresonators driven with optical pulses, that the in-
tracavity CSs can be temporally offset from the driving
pulse center [48].

On the one hand, the findings cited above [47, 48] are
somewhat surprising in light of the systems’ parity sym-
metry. Indeed, localized structures are intuitively ex-
pected to be attracted towards non-zero parameter gra-
dients only in systems with broken parity symmetry (e.g.
in the presence of convection) [42, 49, 50]. On the other
hand, Kerr cavities are well-known to exhibit spontane-
ous symmetry breaking [38–41, 51–53], which could ex-
plain the emergence of asymmetric states consisting of
CSs trapped at edges of amplitude modulations. As a
matter of fact, it has been explicitly noted that the profi-
les emerging from such symmetry breaking can bear some
resemblance to CSs [40]. Moreover, prior studies have
shown that localized structures of parity symmetric non-
linear systems (other than the LLE) can be attracted to
positions offset from the perturbation extrema [54, 55].
For example, Scroggie et al. have shown this type of
behaviour to arise almost universally when the pertur-
bation varies rapidly (or comparably) compared to the
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width of the localized structure [54]. For the more speci-
fic case of slowly-varying amplitude modulations studied
in this work, solitons drifting away from the modulation
maximum has been noted in the context of the Swift-
Hohenberg equation [54] as well as in the context of qua-
dratically nonlinear optical resonators [55]. However, for
Kerr CSs, similar behaviours have not yet been fully des-
cribed or studied. Because of the growing interest in Kerr
cavity configurations employing pulsed or amplitude mo-
dulated driving fields [48, 56], there is a need to gain
better understanding of the behaviour of CSs in such sy-
stems.
In this Article, we report on a numerical study of Kerr

CS dynamics in the presence of driving fields with inho-
mogeneous amplitude profiles. We find that, similarly to
the case of quadratically nonlinear resonators [55], CSs
in Kerr resonators are not in general attracted to ampli-
tude maxima or minima of the driving field. Instead, we
find that the solitons are attracted to positions associ-
ated with a specific driving field amplitude whose value
depends on the cavity detuning but is independent of
the local gradient. By identifying this new type of Kerr
CS behaviour, our results could have impact on practi-
cal systems relying on pulsed or amplitude modulated
driving fields, such as synchronously-driven microresona-
tors [48, 56] and fiber ring resonators [8, 47].
We consider a dispersive, Kerr-nonlinear ring reso-

nator that is driven with a train of pulses or an am-
plitude modulated continuous wave field. We assume
that the periodicity of the driving field is synchroni-
zed with the cavity round trip time, and that the re-
sonator exhibits anomalous dispersion. The evolution
of the slowly-varying intracavity field envelope E(t, τ) is
then described by the following dimensionless mean-field
LLE [11, 12, 40, 42, 57]:

∂E(t, τ)

∂t
=

[

−1 + i(|E|2 −∆) + i
∂2

∂τ2

]

E + S(τ). (1)

Here, t is a slow time variable that describes the evolution
of the slowly-varying intracavity field envelope E(t, τ) at
the scale of the cavity photon lifetime, while τ is a cor-
responding fast time that describes the envelope’s tem-
poral profile over a single round trip. The terms on the
right-hand side of Eq. (1) describe, respectively, the ca-
vity losses, the Kerr nonlinearity, the cavity phase detu-
ning, the group-velocity dispersion, and the (fast) time
dependent coherent driving. Our normalization is the
same as in ref. [2]: t → αt/tR, τ → τ [2α/(|β2|L)]1/2, and
E → E[γL/α]1/2. Here tR is the cavity roundtrip time, α
is equal to half the fraction of power lost per round trip, L
is the resonator length, β2 < 0 is the group-velocity dis-
persion coefficient, and γ is the Kerr nonlinearity coeffi-
cient. The normalized cavity detuning ∆ = δ0/α, where
δ0 is the phase detuning of the pump from the closest
cavity resonance. Finally, the normalized driving field
amplitude S(τ) = Ein(τ)[γLθ/α

3]1/2, where Ein(τ) is

the amplitude of the electric field injected into the re-
sonator with units of

√
W , and θ is the input coupler

power transmission coefficient. We note that, because
we are assuming the driving field to be synchronous with
the cavity round trip time, S(τ) does not depend on the
slow time t and Eq. (1) does not contain any convective
drift terms [42, 49, 58].
In all the calculations that will follow, we assume the

driving field amplitude S(τ) to vary slowly in comparison
to the CS duration. In this case, the solitons experience
a quasi-homogeneous driving (and hence can exist) but
are perturbed by the underlying (quasi-linear) amplitude
gradient [32]. Dynamics in the presence of more rapidly-
varying driving fields, which have been shown to give
rise to “reversible” soliton motion in other nonlinear sy-
stems [54], is beyond the scope of our present work.
We begin by considering a situation where a Kerr re-

sonator is driven by a train of Gaussian pulses separated
by the cavity round trip time. In this case, the driving
field assumes the form

S(τ) = S0 exp

(

− τ2

2τ2
G

)

, (2)

where the duration τG = 20 is chosen to be much larger
than the characteristic CS width (τCS < 1). To study the
CS dynamics, we numerically integrate Eq. (1) with an
initial condition that comprises of a short perturbation
approximating a CS [1, 59] that is offset from the driving
field maximum: E(0, τ) =

√
2∆ sech[

√
∆(τ − τ0)]. This

perturbation reshapes into a CS which may (or may not)
drift due to the amplitude gradient of the driving field.
We run the simulation until steady-state – where the CS
no longer drifts – is reached.
Figures 1(a) and (b) show steady-state field profiles

obtained for a constant detuning ∆ = 4 but for two dif-
ferent driving field amplitudes S0 = 1.9 and S0 = 2.3,
respectively. Corresponding dynamical evolutions of the
intracavity fields are shown as the false colour plots in
Figs 1(c) and (d). As can be seen, for S0 = 1.9 the CS
is attracted to the peak of the driving field amplitude at
τ = 0. In contrast, for S0 = 2.3, the CS drifts down
along the driving pulse profile, eventually stabilizing at
τCS ≈ 11.0 where S(τCS) ≈ 1.98. Additional simulations
(not shown here) reveal that, if the CS is initially excited
slightly below the observed trapping point (τ0 > τCS),
it will move up along the driving pulse profile until it
again stabilizes at τCS ≈ 11.0. Moreover, if the soliton
is initially excited at τ0 < 0, it will be attracted towards
τCS ≈ −11.0 where S(τCS) ≈ 1.98. This clearly shows
that, as expected based on symmetry considerations, the
sign of the intensity gradient of the driving field plays no
role in determining the CS’s equilibrium position.
To gain more insights, we repeated the simulations

above for a range of driving pulse amplitudes S0. For
each simulation, we extracted the final position τCS of the
CS relative to the peak of the driving pulse (at τ = 0),
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as well as the corresponding value of the driving field at
this point, i.e., St = S(τCS). In Fig. 2, we plot St as a
function of the peak driving amplitude S0. For small S0,
we find St = S0: the CS is attracted and trapped to the
peak of the driving field. However, when the peak driving
amplitude increases beyond a critical value Sc ≈ 1.98,
the soliton is always found to drift to a position with
that driving field value. This behaviour is illustrated in
Figs 2(b)–(d), where we plot the steady-state field profiles
corresponding to three different driving peak amplitudes
(see caption). In Fig. 2(b), the peak driving amplitude
S0 < Sc, and so the CS is attracted to the maximum
of the driving profile. In contrast, in Figs. 2(c) and (d),
the driving field encompasses the critical value Sc, cau-
sing the CS to be trapped at one of the positions where
S(τCS) = Sc. We again emphasize that, depending on
the initial condition, the CS can be trapped on either
side of the Gaussian where S(τ) = Sc.

The results above suggest that Kerr CSs are attracted
to positions where the driving field attains the critical
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Figure 1. (a,b) Steady-state intracavity field solutions (red
curves) for peak driving amplitudes (a) S0 = 1.9 and (b)
S0 = 2.3. Gray dashed curves show the corresponding Gaus-
sian driving field profiles. (c,d) Dynamical intracavity field
evolutions corresponding to (a) and (b), respectively. The
initial soliton position τ0 = 5. Dashed vertical magenta line
highlights the position of the maximum driving field ampli-
tude (τ = 0). Note the different x-axes in (c) and (d).

value Sc. It is only when the maximum driving ampli-
tude is less than that critical value [as in Fig. 2(b)] that
the soliton stabilizes at a maximum of the driving field.
(Conversely, if the minimum of the driving amplitude is
larger than the critical value, the soliton will be trapped
at the minimum of the driving field.) Similar behaviour
has previously been attributed to CSs of quadratically
nonlinear resonators [55]. Through extensive simulati-
ons, we have found that the critical trapping level Sc does
not depend on the driving field profile or on the ampli-
tude gradient at the trapping point. To illustrate this,
we consider a sinusoidally amplitude modulated driving
field of the form

S(τ) =
S0

2
[1 + cos(ωτ)] . (3)

Figures 3(a)–(c) show steady-state profiles for three dif-
ferent modulation frequencies ω (see caption) with the
peak driving amplitude and detuning held constant [at
S0 = 2.3 and ∆ = 4 as in Fig. 1(b)]. Here, to illustrate
how the solitons can be trapped both at the rising or the
falling edge of the driving field, different initial positi-
ons τ0 were used [see caption]. Despite the differences
in driving field gradients (S′(τCS) ∝ ω), in each case the
CS is found to trap at a position where S(τCS) ≈ 1.98,
which coincides with the value found for pulsed driving
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Figure 2. (a) Driving field amplitude at the steady-state
CS position [St = S(τCS)] as a function of the peak dri-
ving amplitude S0. (b)–(d) Red curves show steady-state
intracavity field profiles for three different driving amplitu-
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profiles S(τ). Dash-dotted horizontal blue line indicates the
critical driving value Sc = 1.98. A detuning ∆ = 4 was used
in all calculations.
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in Fig. 1(b).

Whilst the critical driving amplitude Sc does not de-
pend on the overall driving field profile, it does de-
pend on the cavity detuning ∆. We repeated the si-
mulations above for a range of detunings, and extrac-
ted the driving field value towards which the CSs are
attracted to. To ensure that the peak driving ampli-
tude S0 is sufficiently large to capture the critical va-
lue Sc, we used a Gaussian driving profile with ampli-
tude S0 = S↑ = [2/27(∆3 + 9∆ +

√
∆2 − 3)]1/2. (This

amplitude corresponds to the upper limit of the homo-
geneous bistability cycle of Eq. (1), and hence the ab-
solute upper limit of CS existence [2].) In Fig. 4, we
plot the critical driving value Sc obtained from our si-
mulations as a function of the cavity detuning ∆. Also
shown are the maximum (S↑, dashed line) and minimum
(Smin = (8∆/π2)1/2, solid line) driving field amplitudes
between which CSs can exist [3, 10, 60]. Two different
regimes showing qualitatively different behaviour can be
identified. For small ∆ . 2.9, we find Sc ≈ S↑: in this
regime, a CS will always be attracted towards the local
maximum of the driving field (S0). In contrast, for lar-
ger ∆, the trapping level Sc approaches the minimum
driving field amplitude Smin. In this regime, the CS can
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sinusoidal driving field with different modulation frequencies
as indicated. The CSs were initially excited at (a) τ0 = −1,
(b) τ0 = 1, and (c) τ0 = −1. Gray dashed curves show
the corresponding driving field profiles, while the dash-dotted
horizontal blue curve highlights Sc ≈ 1.98. All calculations
use S0 = 2.3 and ∆ = 4. Note the different fast time axes in
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CSs can exist between the dashed and solid curves.

be trapped at the edge of the driving field profile, and
in the limit of ∆ ≫ 1, drift to the lowest possible value
of S for which it can still exist. This latter behaviour is
similar to the dynamics observed in quadratically non-
linear systems [55], where soliton motion was explained
by their tendency to approach conditions of nonlinear
resonance. Indeed, we find that, for a given detuning
∆, our Kerr CSs reach their maximum amplitude and
they are precisely in-phase with the driving field when
S ≈ (8∆/π2)1/2 ≈ Smin, thus evidencing the realization
of resonance conditions.

The observation that, for ∆ & 2.9, Kerr CSs can be
trapped at the edge of the driving field profile is amena-
ble to an interpretation in terms of a spontaneous sym-
metry breaking instability [40]. This can be readily seen
by plotting the possible steady-state CS positions, τCS,
as a function of the peak driving strength S0. An ex-
ample of such a bifurcation curve is shown in Fig. 5; the
steady-state field profiles were obtained using a Newton-
Raphson continuation algorithm with a Gaussian driving
field and ∆ = 4. For small S0, the CSs sit stably atop
the driving field maximum [c.f. Fig. 2(b)], and there is
accordingly only a single steady-state configuration (with
τCS = 0, blue curves). However, as S0 increases past the
critical level Sc, a clear pitchfork bifurcation can be ob-
served [61]: the symmetric state with a CS at τCS = 0
becomes unstable, and a pair of new asymmetric stable
states emerge that consist of a CS sitting on either side of
the driving field maximum [red curves; see also Figs 2(c)
and (d)].

It is somewhat surprising that Kerr CSs can be trapped
at a position where the driving field amplitude gradient
is non-zero. Indeed, to first order, the CS’s drift velocity
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can be shown to be directly proportional to that gradient
[32, 49]:

v =
dτCS

dt
= a

dS

dτ

∣

∣

∣

∣

τ=τCS

, (4)

where the proportionality coefficient a describes the pro-
jection of the CS’s neutral (or Goldstone) mode along a
linear fast time variation. Note that amplitude modu-
lations correspond to purely real perturbations and only
couple to the real part of the neutral mode, in stark con-
trast to phase modulations. Accordingly, while Eq. (4)
holds true also for the case of phase modulated driving
fields, the coefficient a differs between the two forms of
perturbations [32].
The apparent discrepancy between our findings and

Eq. (4) is explained by the fact that the CS’s neutral
mode changes with the driving strength (and detuning).
As a consequence (and similarly to quadratically non-
linear systems [55]), the proportionality coefficient a in
Eq. (4) also depends on the driving strength (and detu-
ning), i.e., a = a(SH,∆), where SH = S(τCS). This is
illustrated in Fig. 6, where we explicitly show a(SH,∆)
computed for a range of cavity driving strengths and de-
tunings [32]. These results were obtained by first finding
the steady-state CS solutions of Eq. (1) for a homogene-
ous driving field with strength SH and detuning ∆, and
then projecting the real part of the solitons’ neutral mode
(technically the odd components of the left eigenvector
with zero eigenvalue of the system’s Jacobian) along a
linear fast time variation [32].
As can be seen, the coefficient a decreases with in-

creasing driving strength, and for ∆ & 2.9, crosses zero
within the region of CS existence. Moreover, we see that
the curve a(SH,∆) = 0 matches exactly with the cri-
tical driving field values found through direct split-step
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obtained from direct numerical simulations of the LLE with
a Gaussian driving field [same data is shown in Fig. 4]. Inset
shows the curve a(SH,∆ = 4).

simulations of Eq. (1) with an inhomogeneous driving
field [c.f. Fig. 4]. These findings fully corroborate our
observations of CS behaviour in the presence of driving
field amplitude inhomogeneities. Specifically, when a CS
drifts along an amplitude gradient, the coefficient a it
experiences changes continuously. At the critical level
Sc, the coefficient passes through zero and changes sign,
thus enabling robust trapping at that level. On the other
hand, whilst the maximum (or minimum) of the driving
field (with dS/dτ = 0) always corresponds to an equili-
brium position, that equilibrium position is unstable [c.f.
Fig. 5] if the maximum (minimum) is larger (smaller)
than the critical driving value Sc. There is therefore no
contradiction between our findings and Eq. (4): the soli-
ton velocity is “locally” proportional to the driving field
gradient [as described by Eq. (4)], but because the pro-
portionality coefficient changes as the soliton drifts, the
overall relationship is more complex. (Rigorously spea-
king, the soliton velocity is proportional to the driving
field gradient only over short slow time intervals during
which the “local” driving strength — and hence the coef-
ficient a(SH,∆) — experienced by the soliton remains
approximately constant.) It is also worth highlighting
that, because the drift coefficient a(SH,∆) only depends
on the local value of the driving field (SH) and the detu-
ning, the analysis above readily explains why the critical
trapping level Sc does not depend on the precise profile
of the driving field (provided that the driving field varies
slowly compared to the CS duration).

To better understand the physics that underpins the
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Kerr CS behaviour identified above, we next present re-
sults from simulations of an Ikeda-like map [62]. Unlike
the mean-field approximation of Eq. (1), this approach
allows us to isolate effects due to (i) propagation through
the Kerr medium over a single cavity round trip and (ii)
the coherent injection of the driving field into the cavity.
We write the map equations in dimensionless form with
units that allow immediate comparison with results from
Eq. (1):

∂Em(ξ, τ)

∂ξ
= i

∂2Em

∂τ2
+ i|Em|2Em, (5)

Em+1(ξ = 0, τ) =
√
1− 2αEm(ξ = α, τ)e−iδ0 + αS(τ).

(6)

Here, Eq. (5) is the well-known nonlinear Schrödinger
equation (NLSE) that describes the evolution of the in-
tracavity field over one cavity round trip, with ξ = αz/L
a dimensionless propagation coordinate (z is the cor-
responding dimensional variable), while Eq. (6) is the
boundary condition that describes the addition of the co-
herent driving field to the intracavity light field at ξ = 0.
For high-finesse cavities, α ≪ 1, and the above map equa-
tions can be averaged to the LLE given by Eq. (1). To
better capture the evolution of the soliton over one cavity
round trip, we have used a comparatively large value of
α = 0.15 in the simulations that will follow.
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Figure 7. Simulation results from an Ikeda-like cavity map.
(a) Steady-state intracavity field profile (red curve) for a
Gaussian driving field (gray dashed curve). (b) Evolution
of the CS’s center of mass over four cavity transits.

Figure 7(a) shows a steady-state intracavity field obtai-
ned from the Ikeda map with ∆ = 4 and a Gaussian
driving field profile with S0 = S↑ ≈ 2.77 and τG = 20.

One first notes that the Ikeda map reproduces the salient
result of the LLE simulation, i.e., the CS trapping at a
position where the driving field gradient is non-zero. The
precise trapping value Sc ≈ 2.27 is somewhat larger than
the value found in corresponding mean-field simulations,
which we attribute to the comparatively large value of
α. Indeed, we have carefully verified that the Ikeda map
reproduces the LLE result in the limit of very small α.
To gain insights on the interplay between propagation

over one round trip [described by Eq. (5)] and addition of
the coherent driving [Eq. (6)], Fig. 7(b) shows the evolu-
tion of the CS’s centre of mass in the fast time dimension
(calculated over the soliton’s half-maximum points) over
four consecutive round trips after steady-state is reached.
As can be seen, the CS drifts gently downwards away
from the driving field maximum during propagation, but
is pulled back to its original position at the boundary.
This competition between propagation and coherent dri-
ving underpins the behaviour of CSs in the presence of
pulsed or amplitude modulated driving fields. Specifi-
cally, if the propagation effect is stronger (weaker) than
the driving effect, the coefficient a in Eq. (4) is negative
(positive), such that the CS will drift away from (to-
wards) the maximum. In contrast, at the critical driving
strength Sc, the two effects are precisely balanced.
The physics behind the two competing effects identified

above can be qualitatively explained as follows. First,
the addition of the driving field can be intuitively un-
derstood to shift the CS towards its maximum because
the two are almost in-phase. In contrast, the soliton’s
drift away from the maximum during propagation is due
to the phase shift between the soliton and the intraca-
vity background field. Considering a superposition field
E(ξ, τ) = Es(ξ, τ) + δE(ξ, τ) that consists of an NLSE
soliton (Es) perturbed by a small amplitude background
field (δE), it is well known that the perturbation can
cause the soliton to drift, with the rate of drift given by
the inverse group velocity [63]

∆τS
∆ξ

= − 1

A
Im

∫

∂E∗
s

∂τ
δE dt, (7)

where ∆τS and A represent the soliton’s temporal posi-
tion and amplitude, respectively. Straightforward analy-
sis of Eq. (7) confirms that, when ∆φ = φS − φδ ∈ [0, π],
where φS and φδ denote respectively the phases of the
soliton and the background, the soliton will drift away
from the perturbation maximum while the opposite is
true for ∆φ > π. (We have also confirmed these pre-
dictions by means of direct numerical simulations of the
NLSE Eq. (5).) For Kerr CSs, the two phases are ap-
proximately (in the mean-field limit) given by [1, 10]

φS ≈ cos−1

(√
8∆

πS

)

, (8)

φδ ≈ − tan−1 (∆) . (9)
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As CSs exist only for ∆ > 0, one always finds ∆φ ∈ [0, π],
explaining the soliton’s downward motion over a single
cavity round trip. It is worth noting that, if the so-
liton sits at an extremum of the driving field (where
∂E∗

s /∂τ = 0), this motion vanishes [see Eq. 7]. Because
the addition of a parity symmetric driving field will li-
kewise induce no shifts in this situation, we can see how
the driving field extrema indeed correspond to equilibria,
whose stability is governed by the relative strengths of
the two competing effects.

To conclude, we have investigated the dynamics of Kerr
CSs in the presence of driving fields with inhomogene-
ous amplitude profiles. In stark contrast to the case of
phase inhomogeneities, we have shown that the CSs are
not in general attracted to maxima (or minima) of an
amplitude modulated driving field. Instead, the solitons
are attracted to — and trap to — positions associated
with particular values of the driving field. We have des-
cribed the underlying physics in terms of a spontaneous
symmetry breaking instability that arises from a compe-
tition between the coherent addition of the driving field
and propagation in the Kerr medium.

Our work complements previous studies of symmetry
breaking in Kerr cavities [38–41, 51–53], and raises se-
veral interesting questions for follow-up research: how
do CSs behave in presence of amplitude and phase in-
homogeneities; does the universality of the general beha-
vior evoked by amplitude inhomogeneities extend beyond
Kerr cavities and the quadratically nonlinear systems
studied in [55]? Of course, experimentally verifying the
predictions outlined in our current work also represents
a significant future contribution. While some of us have
already observed experimental evidence of CS trapping
to the edge of a nanosecond pump pulse [64], the results
obtained do not allow unequivocal discrimination bet-
ween effects arising from intrinsic cavity dynamics and
non-ideal driving conditions (e.g. synchronization mis-
match or residual pump phase modulation). On the ot-
her hand, clean experimental evidence of symmetry bre-
aking has previously been observed in a fiber ring reso-
nator driven with pulses from a mode-locked laser [40].
Although that study did not explore the connection be-
tween symmetry breaking and CS trapping, we believe
that the experimental configuration used could allow for
the controlled examination of the behaviours identified
in our current work.
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