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Abstract 

This paper presents the INCASS (Inspection Capabilities for 

Enhanced Ship Safety) project which brings innovative solu-

tions to the ship inspection regime by integrating robotic-auto-

mated platforms for on-line or on-demand ship inspection ac-

tivities and selecting the software and hardware tools that can 

implement or facilitate specific inspection tasks, to provide in-

put to the Decision Support System (DSS). Enhanced inspection 

of ships includes ship structures and machinery monitoring 

with real time information using ‘intelligent’ sensors and incor-
porating structural and machinery risk analysis, using in-house 

structural/hydrodynamics and machinery computational tools. 

Condition based inspection tools and methodologies, reliability 

and criticality based maintenance are introduced. An enhanced 

central database handles ship structures and machinery data. 

The development and implementation of the INCASS system is 

shown in the case of ship machinery systems. In this way the 

validation and testing of the INCASS framework will be 

achieved in realistic operational conditions. 
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real-time data; decision making. 

Introduction 

Recent research shows that competition in maritime mar-

ket develops more compound and pretentious structure 

affected by parameters as time, economical restraints, 

technology and innovation, quality, reliability and infor-

mation management. In relation to successful business 

competence, strategic planning should be enhanced con-

sidering assets availability, involving maintenance and 

reliability operational aspects. The latest technology con-

trolling these parameters is focused on monitoring the 

condition of main and auxiliary machinery. 

The INCASS (Inspection Capabilities for Enhanced Ship 

Safety) FP7 EU funded research project aims to tackle 

the issue of ship inspection, identification of high-risk 

ships, providing access to information related to ship sur-

veys and incorporate enhanced and harmonized coopera-

tion of maritime stakeholders in order to avoid ship acci-

dents, promote maritime safety and protect the environ-

ment. 

This paper aims to present the development of a Machin-

ery Risk and Reliability Assessment (MRA) methodol-

ogy for ship machinery and equipment as well as the 

MRA Decision Support System (DSS). The innovation 

of MRA methodology is oriented towards the compo-

nents’ failure and state interdependencies providing a ho-

listic view of systems’ reliability performance. Further-
more, MRA takes into account the system’s dynamic 
state change, involving failure rate variation within time. 

In order to approach and simulate realistically this dy-

namic condition monitoring control, a dynamic monitor-

ing model is introduced. The presented methodology in-

volves the generation of Markov Chain arrangement in-

tegrated with the advantages of Bayesian Belief Net-

works (BBNs). 

All progress and methodology development takes place 

using Object Oriented Programming (OOP) environment 

in Java language. Additionally, the MRA DSS tool is de-

veloped and introduced. This tool utilizes the MRA re-

sults by integrating historical data and expert judgment in 

order to assist the ship machinery inspection and mainte-

nance. Moreover, user-friendly Graphical User Interface 

(GUI) is developed by involving useful DSS aspects for 

onboard risk and reliability control. Lastly, INCASS pro-

ject developed a measurement campaign, where real time 

sensor data is recorded onboard a tanker, bulk carrier and 

container ship. The gathered data will be utilized for 

MRA DSS tool validation. The entire MRA DSS tool is 

demonstrated in this paper through a case study by em-

ploying currently simulated input data. 

Hence, this paper is structured in 4 sections. First of all, 

Section 1 introduces the paper’s scope and motivation of 
research. Section 2 refers to the research background 

which involves the exploration of Condition Based 

Maintenance (CBM) methodology and well known Con-

dition Monitoring (CM) technologies and tools. In Sec-

tion 3 the suggested Machinery Risk Assessment (MRA) 

methodology is presented by demonstrating a case study, 

the performed results, the MRA DSS and. Section 4 con-

cludes with the discussions and future work for the MRA 

development. 



Literature Review 

This section demonstrates the latest research back-

ground with regards to maintenance control and human 

error and Condition Based Maintenance (CBM) method-

ology. Moreover, this section presents the latest Condi-

tion Monitoring (CM) technologies and the tools. 

Human Error and Maintenance Control 

Automated inspection and maintenance methodologies 

are developed aiming to achieve higher level of availa-

bility and reliability by reducing operational costs and 

risk of damage due to human error. A literature review 

by Dhillon and Liu (2006) focusing on human error im-

pact on applications of maintenance highlights that a 

large amount of human errors take place during inspec-

tion and maintenance operations. In shipping industry, 

maintenance structure is transformed from budget gain 

perspective to investment for continuous and reliable as-

set service. However, from operational viewpoint, 

maintenance is restructured from reactive to proactive ac-

tions, involving more control and information of the con-

sidered machinery or system (Dikis et al., 2015b). 

In this respect, an integrated systemic model incorporat-

ing human reliability model with CBM optimization is 

presented by Asadzadeh and Azadeh (2014). On the other 

hand, Noroozi et al. (2013) demonstrate the key role of 

human error in risk analysis by developing an application 

to pre-and post-pump maintenance operations. The most 

recent research presents the tendency to control human 

error in inspection and maintenance procedures. Moreo-

ver, considering human error scenarios for specific occa-

sions develops Probabilistic Risk Assessment (PRA) 

models. Thus, the need for computerized CM methodol-

ogies appears, which will tend to minimize unnecessary 

human’s involvement during acceptable operational ma-
chinery conditions. 

Condition Based Maintenance (CBM) 

Maintenance methodologies can be identified as mainte-

nance policies indicating the entire business’s profile. 
These methodologies set the corporate orientation with 

respect to the applied maintenance strategy and opera-

tions. Different methodologies are introduced in the liter-

ature (Mobley et al., 2008). Research presents integration 

of methodologies and policies, allowing the utilization of 

flexible frameworks. CBM is the latest and under contin-

uous development methodology. The scope of CBM is to 

detect the upcoming failures before even taking place, 

aiming to enhance machine’s availability, reliability, ef-

ficiency and safety, by reducing maintenance costs 

through controlled spare part inventories (Mechefske, 

2005). On the industrial aspect, SKF (2012) states that 

CBM aims at understanding of risks and predetermina-

tion of strategic actions, leading to reliability and opera-

tional cost reduction. 

On the other hand, Lazakis et al. (2010) present a predic-

tive maintenance strategy utilizing Failure Modes, Ef-

fects and Criticality Analysis (FMECA) and Fault Tree 

Analysis (FTA). The model upgrades the existing ship 

maintenance regime to an overall strategy including tech-

nological advances and Decision Support System (DSS) 

by combining existing ship operational and maintenance 

tasks with the advances stemming from new applied tech-

niques. On the other hand, Lazakis and Olcer (2015) in-

troduce a novel Reliability and Criticality Based Mainte-

nance (RCBM) strategy by utilizing a fuzzy multiple at-

tributive group decision-making technique, which is fur-

ther enhanced with the employment of Analytical Hier-

archy Process (AHP). The outcome of this study indi-

cates that preventive maintenance is still the preferred 

maintenance approach by ship operators, closely fol-

lowed by predictive maintenance; hence, avoiding the 

ship corrective maintenance framework and increasing 

overall ship reliability and availability. In order to layout 

CBM and the processes that consists of; Tsang et al. 

(2006) suggest a data structure leading to decision analy-

sis according to machinery’s condition, proposing a 
method for data-driven CBM. 

Condition Monitoring (CM) Technologies 

CM technology is applied through various tools. These 

tools record and evaluate measurable parameters such as 

vibration monitoring, acoustic and ultrasonic monitoring, 

thermography and oil analysis. CM is identified in phases 

between data acquisition, signal preprocessing and fea-

ture extraction, signal analysis and fault detection, lead-

ing to decision-making and failure prognostics 

(Delvecchio, 2012). This section is focused on the first 

phase of data acquisition. This phase involves the input 

data record such as displacement, velocity, acceleration, 

temperature, sound signal and oil analysis parameters. 

Vibration monitoring is the most known technique. It of-

fers early indication of machinery malfunctions by in-

volving rotational speed, loading frequency, environ-

mental conditions and material state parameters. These 

parameters are measured by employing different types of 

sensors such as; non-contact displacement transducers; 

velocity transducers and accelerometers (Dikis et al., 

2015a). On the other hand, thermography is a tool, which 

is applicable to both electrical and mechanical equip-

ment, and is deployed to identify hot and cold spots 

providing early signs of equipment failure. As claimed by 

Bagavathiappan et al. (2013), Infrared Thermography 

(IRT) is one of the most accepted CM tools. Due to the 

non-contact function is suitable for detecting structural, 

machinery, electrical and material malfunctions. Ther-

mography requires thermal cameras and thermocouples 

for recording temperature of machinery, electrical and 

electronic installations. 

Risk and Reliability Analysis Methods 

Risk and reliability analysis methods assess various fail-

ure case scenarios of deteriorating systems and their con-

tributing subsystems and components. Literature pre-

sents various failure and risk analysis methods, where the 

majority of approaches visualize failure occurrence as in-

dependent event for each considered component of a sys-

tem. The analysis tools examine risk of failure by taking 

into account quantitative and qualitative aspects. These 

tools can be summarized as Event Tree Analysis (ETA), 

Fault Tree Analysis (FTA), Dynamic FTA (DFTA) tak-

ing into account time dependence, Failure Mode and Ef-



fect Analysis (FMEA) and Failure Mode Effect and Crit-

icality Analysis (FMECA), Markov Analysis (MA) and 

Bayes’ Theorem presenting the Bayesian Belief Net-
works (BBNs). The latter one examines the reliability 

performance on system, subsystem and components lev-

els by considering functional interdependencies among 

them. This key feature of BBN is significant and innova-

tive, compared to the remaining methods, as it allows the 

simulation of functions and operations on actual model-

ling environment. The BBN is defined as probabilistic 

graphical model involving conditional dependencies ar-

ranged into Directed Acyclic Graphs (DAG) and it is ex-

pressed as presented in Equation 1 (Dikis et al., 2014). 

鶏岫畦】稽岻 噺 鶏岫稽】畦岻 茅 鶏岫畦岻鶏岫稽岻  (1) 

Where P(A) and P(B) are the probabilities of events A 

and B, while A given B and B given A are conditional 

probabilities (* stands for multiplication). Furthermore, 

innovative features of BBNs involve the utilization of de-

cision making and cost functions. 

Suggested MRA Methodology 

In this section, the MRA methodology is demonstrated 

targeting to be applied on critical ship machinery and 

equipment of three different ship types such as tanker, 

bulk carrier and container ship (INCASS, 2014a). Hence, 

the MRA methodology is flexible in order to fulfil all re-

quirements and specifications for each of these three ship 

types (INCASS, 2014b). Motivation is based on the fact 

that researchers’ and market’s tendency involves the ho-
listic consideration of operational and failure interde-

pendencies among multiple components within the same 

or different system. The MRA input data flow consists of 

three stages, the data acquisition and processing, the reli-

ability model and the Decision Support System (DSS). 

 

Fig. 1: Machinery Risk Analysis (MRA) Process Flow 

All processing, MRA functions and DSS features are de-

veloped in Java Object Oriented Programming (OOP) 

language. Java is chosen as it is cross platform and allows 

ease of use and compatibility among different Operating 

Systems (OS) such as Windows, Macintosh or Linux dis-

tributors. Fig. 1 demonstrates the Machinery Risk/Relia-

bility Assessment (MRA) methodology with respect to 

the process flow. On the first stage, the data acquisition 

and processing is considered by involving the raw data 

collection, mining and the safety thresholds. The input 

data is classified into the database on system, subsystem 

and component levels. The input data types are consid-

ered as historical, expert and real time monitoring data 

(sensor raw input). Historical input data involves past 

failures and records. On the other hand, expert in-

put/judgement takes into account comments, reports and 

knowledge from ship crew. Real time sensor input con-

sists of raw (unprocessed) physical measurements such 

as temperature, pressure and vibration recorded by utiliz-

ing various measurements from the control room of the 

Engine Room (E/R) and multiple data acquisition tools. 

All gained information is stored in a database and trans-

mitted in the various methodology stages utilizing ‘text’ 
(.txt) files. This format file is selected as files are small 

in size and can be easily and inexpensively transferred 

from the onboard to the onshore environment (INCASS, 

2015). 

The following phase involves the real monitoring 

data/signal processing (i.e. recorded raw data mining). 

This is a critical and innovative phase, where real time 

input data such as physical measurements are trans-

formed to reliability input. This input data type transfor-

mation from physical measurements to probabilistic indi-

ces is achieved by employing data clustering analysis and 

approaches such as k-means, c-means and hierarchical 

clustering (Jain and Dubes, 1988), (Jain et al., 1999), 

(Hand et al., 2001). On the other hand, literature demon-

strates alternative probabilistic model approaches by uti-

lizing mixture models such as Gaussian Mixture Model 

(GMM) (Theodoridis, 2015). The selection of data clus-

tering analysis and mixture model is identified with the 

respect to the features and form of the collected datasets. 

The following process of the MRA methodology em-

ploys the physical measurements’ thresholds. In other 
words, the safety indices are considered by setting the ac-

ceptable operational levels. These safety levels identify 

the acceptable and warning limits of the physical meas-

urements that the system should function. The safety in-

dices are classified according to manufacturers’ manuals, 
Classification Societies’ standards or ship owners’ and 
operators’ requirements. Furthermore, the integration of 

the data clustering analysis with the identification of the 

safety thresholds introduces the probability of occurrence 

the observed (recorded) input data to perform within the 

acceptable functional levels. This probabilistic measure 

in percentage generates the input for the following risk 

and reliability tool. 

The data clustering approach of k-means aims to partition 

the n observations into k(≤n) sets S =  {S1, S2, …, Sk} so as 

to minimize the Within-Cluster Sum of Squares (WCSS) 

(sum of distance functions of each point in the cluster to 

the K center). A recorded dataset (raw data collection) 

(x1, x2, …, xn) is observed, where each observation is a d-

dimensional real vector. Hence, k-means data clustering 

model scope is to find (Theodoridis, 2015): 

argmin繰 布 布押捲 伐 航梯押態掴敵聴日
賃

沈退怠  (2) 

where たi is the mean of points in Si (Equation 2). 

K-means data clustering approach is selected as it is suit-

able for large number of variables. K-means is one of the 



simplest algorithms which uses unsupervised learning 

method to solve known clustering issues. Moreover, k-

means can be computationally faster than hierarchical 

clustering methods. On the other hand, k-means can pro-

duce tighter clusters than hierarchical clustering. Addi-

tionally, k-means enables high flexibility in data analysis 

as it becomes a great solution for pre-clustering, reducing 

the space of each cluster and allowing the integration 

with other algorithms for further processing. 

In the second stage ‘Reliability Model’, the processed re-
liability input data is introduced. The risk and reliability 

model employs a network arrangement similar to the 

Bayesian Belief Networks (BBNs). This selection allows 

the probabilistic modelling by considering functional re-

lations and system, subsystem and component interde-

pendencies. In the case of dynamic modelling, the time 

dependencies and state division of the reliability input are 

developed in parallel with the network model. The MRA 

application employs the mathematical tool of Markov 

Chains (MC) (Fort et al., 2015). MC is mathematical sys-

tem that undergoes transitions from one state to another 

on a state space. 

Furthermore, MC is selected as it is flexible to set up by 

allowing different levels of state sequence complexity. In 

order to understand the dynamic probabilistic modelling, 

a schematic diagram is presented in Fig. 2. The presented 

subsystem sample includes in total three states within the 

timeline. Firstly, historical processed data from the pre-

vious time slice are provided shown as t-1. The current 

state (t) is calculated, whereas the predictive state is 

shown as future state t+1. As can be seen in Fig. 2 each 

time slice (t-1, t, t+1) is based on the previous state. This 

single state transition from past to present and then to 

forecasted future is known as Markov Chain (MC). The 

generic probabilistic expression is shown in Equation 3. 

On the other hand, Equation 4 presents the PoW per ex-

pressed component/subsystem in the future t+1 time 

slice. Where, P(wt+1) denotes the PoW in future state 

(t+1) by taking into account previous working and failing 

states P(wt) and P(ft) respectively. 

 

Fig. 2: Dynamic Probabilistic Network Arrangement 鶏諜岫津貸怠岻┸諜岫津岻 噺 鶏岶隙痛韮 噺 隙津】隙痛韮貼迭 噺 隙津貸怠岼 (3) 岫拳痛袋怠岻 噺 鶏岫拳】拳痛岻鶏岫拳痛岻 髪 鶏岫拳】血痛岻鶏岫血痛) (4) 

While, each component of a sub-system is linked with a 

certain number of failure modes that varies between com-

ponents, a generic form expressing the failure case sce-

narios is presented in Equation 7. In this expression, P 

denotes the Probability of Survival (PoS) for different 

failure scenarios, where w shows the PoW state while f 

shows the PoF. The relation of w and f is shown in in 

Equation 8. Whereas, ftfn indicates the failure mode (i.e. 

noise, vibration, overheating etc.). 

Specifically, P1 denotes the PoW and PoF states while 

one failure mode takes place (ftf1) (Equation 4). Accord-

ingly, P2 denotes the PoW state for a different failure 

mode (ftf2) (Equation 5). Whereas, P3 represents the PoW 

and PoF states while ftf1 and ftf2 take place at the same 

time (Equation 6). 鶏怠 噺 犯拳┺ などど 伐 血建捗怠血┺                血建捗怠┹ (5) 

鶏態 噺 犯拳┺ などど 伐 血建捗態血┺                血建捗態┹ (6) 

鶏戴 噺 犯拳┺ などど 伐 岫血建捗怠 茅  血建捗態岻血┺               岫血建捗怠 茅  血建捗態岻┹ (7) 

鶏陳 噺 岫血建捗怠 茅  血建捗態 茅  血建捗戴 茅 ┼ 茅 血建捗賃岻 (8) 血 噺 などど 伐 拳 (9) 

Equation 10 presents the generic expression of the overall 

PoS per component, including the summation of all pos-

sible break down scenarios (m: total amount of failure 

scenarios) and the summation of all considered failure 

types (k: total amount of failure types). In addition the 

relation of m and k is presented in Equation 11. 

鶏岫潔剣兼喧岻 噺 布岫布 鶏岫血建捗岫沈岻 ┸ 血建捗岫珍岻岻岻賃
沈退怠

陳
珍退怠  

(10) 

兼 噺 に賃 (11) 

The third stage of the MRA tool implements the Decision 

Support System (DSS) aspects. The MRA DSS method-

ology is divided into two sections. The first one utilizes 

local (onboard) and short term decision making sugges-

tions, whereas the second one is used onshore (global) for 

longer term predictions and decision features. The MRA 

DSS demonstrates the considered systems, subsystems 

and components into a tree structure form. The operator 

has the option of choosing each of these and getting in-

formation related to past, current and predicted reliability 

performance. This research paper is focused on the Ma-

chinery Risk and Reliability Assessment (MRA) tool. 

Hence, the introduced application, in the following sec-

tion, performs utilizing the MRA methods and the risk 

and reliability aspects. 

MRA Case Study 

In this section, a Machinery Risk/Reliability Analysis 

(MRA) case study is presented by involving the ship 

Main Engine (M/E), three subsystems and multiple com-

ponents. The case study assesses the working state relia-

bility performance on subsystem and component levels 

by analyzing various probable failure case scenarios. The 

case study employs simulated input data that are gener-

ated utilizing normal distribution (Gaussian). The safety 

thresholds (i.e. safety indices) are identified through the 

engine’s manufacturer’s manual and the engine’s sea tri-
als. These safety indices are selected as they fulfil the 

manufacturer’s requirements and sea trials provide the 



ideal available reference point for further comparison. 

The model’s arrangement considers the ship Main En-
gine (M/E), the valve train, fuel and subsystems. In the 

case of the first subsystem two components are involved 

such as the exhaust valve and the suction valve. In the 

case of the fuel subsystem the fuel pumps and the fuel 

valves are taken into account. On the other hand, the 

drive train consists of the camshaft, crankpin, main en-

gine and thrust bearings. Most of these components 

(where applicable) are analyzed with respect to 6 items 

per component as the engine’s manual used is from a six-

cylinder marine diesel engine. Error! Reference source 

not found. demonstrates the raw input data requirements 

that MRA methodology is tested. 

Table 1: Raw Input Data Requirements 

Subsystem Component Measurement Unit 

Valve train Exhaust valve Pressure bar 

 Suction valve Temperature °C 

Fuel Fuel pump Pressure bar 

 Fuel valve Pressure bar 

Drive train 
Camshaft 

bearing 
Temperature °C 

 
Crankpin 

bearing 
Temperature °C 

 M/E bearing Temperature °C 

 Thrust bearing Temperature °C 

Fig. 3 demonstrates the Main Engine (M/E) MRA 

network case study. This network consists of exhaust 

valves, suction valves, fuel pumps and valves, camshaft, 

crankpin, main engine bearing (one per cylinder) and a 

thrust bearing. There are two modelling approaches to 

structure this network. The first approach links the in-

volved components directly to the subsystems (i.e. valve 

train, fuel system and drive train) and the subsystem to 

the main system. The second approach as shown in Fig. 

3 takes into account an intermediate level of nodes (i.e. 

ExhastVlvs, SuctionVlvs, FuelPumps, FuelVlvs, Cam-

shaftBearings, CrankpinBearings, and MEBearings) that 

sums up the predictions of the working state reliability 

performance per group of identical components. 

 

Fig. 3: Main Engine (M/E) MRA Network Case Study 

Due to Equation 11, the first approach will involve mul-

tiple failure case scenarios, leading to a complex proba-

bilistic model considering 532,488 failure scenarios. This 

network arrangement will cause further programming ef-

fort as well as increased calculation and processing time. 

On the other hand, the demonstrated network arrange-

ment involves 484 relations of failure case scenarios. The 

proposed network structure advances to high calculation 

performance and simpler code development. On the re-

sults’ perspective, the first network modeling approach 
(without intermediate node level) is more analytical by 

assessing more failure case scenarios. These scenarios as-

sess the failure of cross-head bearings at the same time 

with the piston lube oil, the piston liners and the valves 

(as Equations 5-9 show). The combination of multiple 

failures creates impractical low predicted working state 

reliability performance. On the other hand, these analyti-

cal scenarios demonstrate the sequential failure of com-

ponents (interconnections). This sequential failure as-

sessment can be introduced in the simpler and faster pro-

posed network arrangement by introducing the functional 

component interdependencies. Hence, programming and 

calculation effort can be gained without involving unnec-

essary scenarios that their results do not demonstrate the 

practical functionality of the system. 

MRA Case Study Results 

This section presents the results of the MRA Main En-

gine (M/E) case study. The outcomes are demonstrated 

on component and subsystem level. The raw input obser-

vations involve simulated datasets, 48 measurements per 

day and 2 days total data of historical/existing infor-

mation. First of all this case study proves the ability of 

predicting the working state reliability performance on 

subsystem and component levels. This methodology in-

troduces the requirement relation of forecasting double 

period of time of the provided recorded historical input. 

In other words, two days of existing input predicts the 

working state reliability performance of the following 

four days. 

 

Fig. 4: Reliability Performance of M/E Bearings 

The figure above demonstrates the predicted working 

state reliability performance of the six main engine bear-

ings. The uniformity of the predicted results among the 

bearings is expected due to the utilization of simulated 

input datasets. Furthermore, simulating real system func-

tioning, each component performs on different reliability 

levels as various parameters affect each bearing. The 

overall reliability performance of the bearings confirms 

acceptable forecasted working levels. On the other hand, 

negligible reliability performance loss is forecasted per 

bearing. This minor reliability difference is expected as 

the employed input datasets figure only two days of per-

formance. Hence, the upcoming forecasts perform low 



reliability loss for the following four predicted days. The 

overall reliability demonstrates performance from 98.8% 

to 98.55% and almost stable temperature between 59 and 

61 °C. The marine engine’s manufacturer’s manual iden-
tifies normal operational temperature levels from 50-70 

°C and warning alarm level at 75 °C. Hence, there is no 

indication of upcoming failure or abnormal component 

functioning. 

 

Fig. 5: Reliability Performance of Fuel Pumps 

Similarly, the six fuel pumps’ forecasted working state 

reliability performance are considered (Fig. 5). Similar 

prediction behavior is shown as in the main engine bear-

ings’ case. The uniform results are expected as well for 

the same reasoning as above. The overall working state 

reliability performance shows almost stable predictions 

at 96.1-96.5% (reliability) and 2.2-2.4 bars. The results 

are acceptable as the engine manufacturer sets the safety 

threshold at 0.5 bar (not lower). The reliability perfor-

mance of the camshaft bearings, crankpin bearings and 

thrust bearing shows stable progress through time at 

higher than 95% and operational temperature at 59-60 

°C. In this respect, the acceptable functional level is set 

within the range of 50-70 °C and the warning is specified 

at not higher than 75 °C. In other words, the current reli-

ability performance of all involved components is ac-

ceptable and there is no need for maintenance actions. As 

the scope of this study is to identify and examine the 

working state reliability performance, it is essential to 

highlight that the stable performance so far sets the 

ground for further functioning of all components. 

 

Fig. 6: Overall Reliability Performance 

Similarly, Fig. 6 demonstrates the reliability performance 

at subsystem and system levels for the drive train, fuel 

and valve train subsystem as well as the main engine. The 

reliability levels progress stably through time higher than 

96.6%. Due to the fact, all the subsystems perform stable 

reliability, hence the system does. In the case of the sub-

system reliability assessment, there is no actual measure 

to classify and identify a specific threshold. However, ex-

pert judgment can provide a valid indication on which 

level the warning should be shown and further analysis 

on component level can be triggered. The overall subsys-

tem reliability performance is expected to be increased 

once inspection and maintenance actions are taken on 

component level. 

MRA DSS Case Study Results 

This section aims to present the Machinery Risk/Relia-

bility Assessment Decision Support System (MRA DSS) 

tool and its features. Entire development of MRA and 

MRA DSS is taken place utilizing Java Object Oriented 

Programming language. Fig. 7 presents the MRA DSS 

analysis of failure predictions through a user-friendly 

Graphical User Inter-face (GUI). The user has available 

information related to cost analysis, maintenance actions, 

reliability performance predictions and symptoms due to 

reliability loss. In Fig. 7 is shown the current system, sub-

system and component reliability performance and the 

associated warning and failures. 

 

Fig. 7: MRA DSS Analysis of Failure Predictions 

On the other hand, Fig. 8 demonstrates the symptoms tab 

in a graphical format and five days prediction in advance 

from the current moment. The graphs are presented in 

days for this occasion and with the grid marking four-

hour intervals on the time axis. This is to coincide with 

the regular four-hourly visits the engineers onboard the 

ship performs. 

 

Fig. 8: MRA DSS Plotting of Results 

MRA DSS plotting of results incorporates past, current 

and forecasted working state reliability performance (%). 

Furthermore, the performance within the involved time-

line is demonstrated in both percentage as well as the 

physical unit/measure (i.e. °C, bar etc.). Lastly, actions 

tab includes inspection and maintenance suggestions ac-

cording to the predicted working state reliability perfor-

mance. Hence, as shown in Fig. 9, camshaft bearing 1 

shows reliability degradation due to overheating and a 

probable reasoning can be overloading. This, multiple in-

spection actions are suggested including checks due to 



material fatigue, excessive wear or corrosion. 

 

 

Fig. 9: MRA DSS Inspection & Maintenance Actions 

Conclusions 

This paper demonstrates the development of the Machin-

ery Risk/Reliability Analysis (MRA) tool. MRA is prob-

abilistic risk/ reliability analysis model established 

through the work performed in INCASS project. The in-

vestigation of literature takes into account the human er-

ror issues and maintenance operation control that moti-

vated this research study. Moreover, the literature review 

presented in this paper consists of the latest Condition 

Based Maintenance (CBM) methodology, the most ap-

plied and developed Condition Monitoring (CM) tech-

nologies and tools. The research is introduced by as-

sessing the state-of-the-art of risk and reliability analysis 

methods. 

The suggested MRA methodology is proposed as well as 

the MRA reliability modelling approach. The MRA 

methodology consists of three processing and assessment 

stages. The first stage involves the input data require-

ments, collection and processing, where-as the second 

stage takes into account the risk and reliability tool de-

velopment. Furthermore, the third assessment stage con-

sists of the MRA Decision Support System (DSS) and the 

utilization of historical, expert and predicted reliability 

results to assist the inspection and maintenance planning. 

The developed MRA methodology is focused on the risk 

and reliability assessment by employing various input da-

ta types such as historical, expert and real time sensor 

data. The methodology consists of multiple processing 

and assessment methods. 

Firstly, the gathered datasets are analyzed by employing 

raw data mining process of k-means. This assessment 

identifies the tendency of the recorded input to down-

grade and lead to safety threshold before it exceeds the 

warning level. The safety thresholds can be specified ac-

cording to the identified requirements. In this case, en-

gine manufacturer’s manual is utilized providing accu-

rate and tested reference points (i.e. sea trials) for setting 

the safety indices. The dynamic probabilistic network ar-

rangement is proposed by considering flexible Markov 

Chains (MC) and the reliability tool based on Bayesian 

Belief Networks (BBNs). The proposed methodology is 

applied on a case study utilizing a six cylinder marine 

diesel engine, the valve train, fuel and drive train subsys-

tem. Furthermore, multiple components are considered 

such as the exhaust and suction valves, fuel pump and 

valves, and various bearings include camshaft, crankpin, 

main engine and thrust bearings. The developed MRA 

tool predicts the working state reliability performance on 

system, subsystem and component levels. 

On the current research development, the dynamic risk 

and reliability tool is validated by ship owners, operators 

and service providers. According to their expert judg-

ment, the assessed subsystem and components perform 

within acceptable reliability levels of ship owners’, oper-
ators’, service providers’ and Classification Societies’ re-
quirements. On the other hand, the accuracy of the relia-

bility tool’s fore-casted results is verified by employing 

commercial software such as Genie 2.0, Hugin 7.8 and 

the Markov Chain (MC) modelling using Reliability 

Work-bench. 
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