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A high-speed, high-sensitivity and compact two dimensional infrared (2D-IR) spectrometer 

based on 100 kHz Yb:KGW regenerative amplifier technology is described and demonstrated. 

The setup is three colour, using an independent pump OPA and two separately tuneable probe 

OPAs. The spectrometer uses 100 kHz acousto-optic pulse shaping on the pump beam for rapid 

2D-IR acquisitions.  The shot-to-shot stability of the laser system yields excellent signal-to-

noise figures (~10 µOD noise on 5000 laser shots). We show that the reduced bandwidth of the 

Yb:KGW amplifiers in comparison with conventional Ti:Sapphire systems does not 

compromise the ability of the setup to generate high quality 2D-IR data. Instrument responses 

of < 300 fs are demonstrated and 2D-IR data presented for several systems of interest to 

physical chemists, showing spectral diffusion in NaSCN, amide I and II bands of a beta sheet 

protein and DNA base-pair � backbone couplings. Overall, the increased data acquisition 

speed, intrinsic stability and robustness of the Yb:KGW lasers are a significant step forward for 

2D-IR spectroscopy. 

 

Introduction 

 

Infrared (IR) spectroscopy in its many forms is established as a useful tool across the physical and life 

sciences.  Ultrafast Two Dimensional Infrared (2D-IR) spectroscopy is a significant enhancement of 

conventional IR absorption spectroscopy, as it reveals equilibrium structural dynamics, vibrational mode 

coupling and energy transfer. 2D-IR spectroscopy employs IR laser pulses that are of a shorter / similar 

duration to the vibrational dephasing and population relaxation times of the system of interest. In various 

arrangements of excitation and probing pulses,1 2D-IR spectroscopy provides a unique means to understand 

the fundamental properties that relate structure and molecular interactions and how these influence the 

chemistry underpinning biological processes, offering a new window into hydrogen bond dynamics,2 proton 

dynamics,3 chemical exchange processes,4,5 fibril formation,6 protein secondary structure determination7 

and enzyme active site dynamics8,9 to name a few.  

       

For 2D-IR spectroscopy to reach its full potential, the operation of 2D-IR spectrometers needs to improve on 

many fronts. In particular, signal-to-noise, data acquisition speed, tunability of the IR laser beams, ease / 
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robustness of operation, the complexity of the setup and the cost of ownership are all areas that make 2D-IR 

spectroscopy to-date a relatively niche method. Since the first measurements of ultrafast 2D-IR spectra,10 

many technical developments in spectrometer design have become available to improve on the speed, 

sensitivity and reliability of acquisition of 2D-IR data.11-20 The other significant area where improvement is 

required is in the laser sources used. So far, most published 2D-IR setups have used IR light generated 

through nonlinear processes driven by commercial Ti:Sapphire amplifiers. Whilst a mature technology, the 

drawbacks of Ti:Sapphire amplifiers are their large footprint multiple-unit lasers with a high degree of user 

competence required to maintain consistent output over the laser�s lifespan. Meanwhile the scalability of 

Ti:Sapphire amplifiers in terms of power and/or repetition rate is limited.  

        

To-date, Ti:Sapphire based 2D-IR setups reported in the literature typically operate at 1-10 kHz repetition 

rates. Amplifier systems operating at 100 kHz have been in existence for several decades, and although 

useful for transient visible spectroscopy,21 they do not develop enough power to be converted to infrared 

light of sufficient intensity for practical spectroscopy. In an earlier work,22 we demonstrated a customized, 

commercially available, Yb:KGW regenerative amplifier system for time-resolved infrared (TR-IR) 

spectroscopy via 100 kHz IR probing and adjustable 1 Hz � 50 kHz repetition rate pumping. The diode-

pumped solid-state design of this Yb:KGW amplifier technology provides efficiency and robust performance 

at this high repetition rate, with a small size, high stability, high reliability and low maintenance overheads. 

Similar Yb:KGW laser technology has been used advantageously elsewhere with non-collinear OPAs for 

broadband impulsive Raman spectroscopy,23 and recently for 2D electronic spectroscopy,24 which can be 

usefully compared with recent lower repetition rate developments.25  In this paper, we demonstrate how 

Yb:KGW regenerative amplifiers can be used for 2D-IR spectroscopy at 100 kHz repetition rate. Yb:KGW 

lasers generate 2-3x longer pulses than Ti:Sapphire systems, raising the practical question of whether this is 

enough bandwidth/time resolution to be useful. We address these issues in this paper by showing that the 

bandwidth is sufficient to cover a large number of bands of interest in DNA and proteins and that the time 

resolution is sufficient for capturing the spectral diffusion on sub-picosecond timescales, illustrated via 

centre-line-slope (CLS) 2D-IR measurements of SCN- in H2O.  

 

2D-IR spectroscopy was recently demonstrated at 100 kHz using a home-built, 220 fs pulse duration IR 

Optical Parametric Chirped Pulse Amplification (OPCPA) system.26,27 To date however there is little data on 

signal-to-noise, detection limits and IR tunability to compare OPCPA 2D-IR setups with the OPA 2D-IR data 

presented in the current paper. Nevertheless, OPCPA is a highly promising technology that has recently 

become available commercially, with mid-IR signal/idler beams of energies of tens of µJ/pulse at hundreds 

of kHz, and <100 fs pulse durations typical.28 At the time of writing, OPCPA systems are less well developed 

than the Yb:KGW / OPA technology used here, but will undoubtedly produce tunable light with greater 

bandwidth and temporal flexibility� perhaps at the expense of extra operational complexity. Yb:KGW 

regenerative amplifier and OPA technology is also still developing in terms of performance offered. We thus 

believe that commercial Yb:KGW / OPA systems such as the one described in this paper currently offers a 

simple, robust route to 100 kHz 2D-IR spectroscopy, especially to the spectroscopist who does not always 

wish to concern themselves with the practicalities of  correctly generating and characterising the IR light 

required for experiments.     

    

For a given pulse energy, 100 kHz repetition rate 2D-IR spectroscopy will obviously give an improvement of 

between 3.3 to 10 times in signal-to-noise over typical 1-10 kHz sources. It is also worth noting that when 

signal-to-noise is not a concern (i.e. when samples of interest give strong signals), a 100 kHz source will 

straightforwardly accumulate data 10-100x faster � a highly relevant increase when acquisitions at lower 

repetition rates typically take minutes or tens of minutes. Noise in a Fourier transform measurement is also 
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typically not distributed equally at all frequencies and it is well known that over the same time frame, 

multiple faster acquisitions achieve higher signal-to-noise than a single, slower acquisition.12,29 To achieve 

this advantage fully for 2D-IR measurements at 100 kHz, a pulse shaper-based 2D-IR spectrometer11 is 

currently the only means of modulating the spectral amplitude and phase to generate on a shot by shot basis 

controllable delay phase cycled pulse pairs at 100 kHz for the resolution of the pump axis. Other 2D-IR 

methods require slower mechanical motion to change the delays and phases of the beams. We note that 

Yb:KGW regenerative amplifiers also allow access to high average power at high repetition rates - up to MHz. 

 

 
Fig. 1.  Layout of the 100 kHz laser system and 2D-IR spectrometer 

 

 

Methods 
 

The 100 kHz 2D-IR spectrometer described in this paper, depicted in Figure 1 and is built around a 

customized dual Yb:KGW 1032 nm amplifier system (6 W Pharos-SP and 15 W Pharos, Light Conversion). 

For optical synchronization, a single oscillator in the 6 W Pharos unit seeds both regenerative amplifiers. The 

6 W amplifier operates with a pulse duration of 180 fs and drives two optical parametric amplifiers (OPAs) 

that are used to generate separately wavelength tunable probe pulses. The 15 W amplifier system has a 

pulse duration of 260 fs and drives a single OPA that generates the wavelength tunable pump pulses. A more 

compact and economical 2D-IR setup could comprise a single regenerative amplifier driving one or two 

OPAs. The choice of customized dual amplifier � triple OPA configuration is based on the design aim of high 

pump energy for highest 2D-IR signal-to-noise, high probing bandwidth and the in-tandem use of the system 

to perform transient UV/Vis - IR spectroscopy with fs to µs pump-probe delays, and multiple probe pulses 

between each pump pulse � allowing for longer time kinetics.22  

 

The OPAs in Figure 1 are configured as follows: The 6 W amplifier output is 50/50 split to pump two OPAs 

(Light Conversion Orpheus-One) that generate two probe beams. These OPAs are white light continuum 

(WLC) seeded, with a 515 nm pumped BBO pre-amplification, 1032 nm pumped KTA main amplification 

stages and final signal and idler DFG (Difference Frequency Generation) in gallium selenide (GaSe). This DFG 

output is tunable from 4.5 - 15 µm with typical pulse energies 0.2 to 0.3 µJ. The 15 W amplifier pumps a 

single OPA (Orpheus-HP) similar to above, but with an additional 515 nm pumped BBO amplification stage. 

Pulse energies in the λ = 4.5 to 10 µm part of the spectrum from this higher energy pump OPA are between 

1.7 to 0.7 µJ. For both types of OPAs, at below 4.5 µm, the KTA generated idler can be used directly, and pulse 

energies increase by x3-4 compared with the peak values obtained by GaSe DFG.  

 

It is worth noting that the 1032 nm pumped final OPA stages used here generate signal and idler at longer 

wavelengths than those from a Ti:Sapphire 800 nm pumped OPA. This longer wavelength can be 

advantageous in terms of reduced optical damage and thermal lensing effects in typical mid-IR generating 
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DFG materials such as GaSe and AgGaS2. To minimize these, it is important to avoid the 2-photon absorption 

edges in such materials, typically in the visible/NIR part of the spectrum. Therefore, higher power mid-IR 

outputs are more accessible at the Yb:KGW 1032 nm pump wavelength relative to that of Ti:Sapphire (800 

nm). Despite considerable thermal loading in the OPAs (e.g. tightly focused, 2-3 W signal + idler), the beam 

quality is excellent and after heavy use, the GaSe crystals show no sign of damage. 

 

After exiting the OPA units, the two probe IR outputs are collimated to a waist of ~ 5 to 7 mm and delivered 

along matched path-lengths to opposite edges of an off-axis parabolic mirror (EFL 7.5 cm), giving focused 

spot sizes at the sample position of 50 to 75 µm full width half-maximum (FWHM). The probe beams are 

then recollimated with a second off-axis parabolic mirror and sent to two simple home-built imaging 

spectrographs, each comprising a grating, a 15 cm EFL curved mirror and a 128 element HgCdTe (MCT) 

array (IR Associates). The spectra acquired by each MCT detector are digitized at 100 kHz by an FPAS 

system (Infrared Systems Development Corporation). Originally specified for < 10 kHz operation, 

optimization of the acquisition subroutines allowed a single PC to acquire 100 kHz realtime spectra from 4 

parallel detection systems between 80 and 144 elements.22 The availability of two separate probe MCT 

array detectors also permits the simultaneous measurement of <xxxx> and <yyxx> 2D-IR signals. This is 

achieved by using a single probe beam polarized with a wire grid polarizer at 45 degrees relative to the 

pump beam. The probe light can then be split into parallel and perpendicular components, which are then 

routed to the separate detectors.  

 

The pump OPA output is collimated to a waist of 4 mm and passes through a commercial 100 kHz acousto-

optic pulse shaper based on a zero-dispersion 4f stretcher-compressor geometry (Phasetech Spectroscopy). 

Depending on wavelength and alignment, the shaper was measured to be 30-60% efficient (diffracted 

power out vs input power, gratings 150 lines/mm � Richardson 33009FL01-880R). The shaped output then 

passes over a computer-controlled delay stage for population time scanning. An extra fixed 2.5 m path-

length over multiple mirrors was required to synchronize the pump with the probe beams. In future this 

delay could instead be added to the oscillator beam seeding the 15 W regenerative amplifier, reducing the IR 

losses over multiple mirrors and increasing the pump pulse energy (and therefore the 2D-IR signal) at the 

sample by 30%. Typically, at a 6 µm pump wavelength, with 1 µJ pulse exiting the OPA, a pulse energy of 0.2 

µJ was incident on a sample (full diffracted output of shaper). Astigmatism introduced by the pulse shaper 

gave the focused pump beam a larger waist compared with the probe beams, pinhole transmission 

measurements indicating a spot size of ~ 100 µm FWHM. All samples were contained in commercial IR cells 

(Harrick) using 2mm thick CaF2 windows and 50 µm pathlengths. 

 

2D-IR spectroscopy was implemented in the pump-probe geometry, with pump pulse-pair coherence time 

scans carried out using acousto-optic pulse shaping.30 Shaper waveforms were updated at 100 kHz, with 

each sequence of digitized IR probe measurements tagged by an accompanying synchronization pulse to 

identify the first pump waveform of the sequence. Phase cycling (typically four phases1) was used for 

lossless signal recovery and scatter suppression. In order to express the Fourier transformed 2D-IR signal 

amplitude in units that can be usefully compared between different instruments, different sample types and 

different measurement parameters (e.g. chopping, 2-4 frame phase cycling and different spectral 

resolutions), we do the following: the 2D-IR signal amplitude is normalized by the ratio of the amplitude of 

the pump-probe spectrum calculated by projection of the 2D-IR spectrum along the pump axis, to the 

amplitude of the pump-probe spectrum measured at zero coherence time by chopping or phase cycling 

(from the data prior to Fourier transforming). This gives a robust measure of 2D-IR signal size when 

collected in the pump-probe geometry. To make explicit this correction, we use the unit definition �mOD 

norm�.   
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Results 
 

Laser stability, bandwidths and instrument response. A critical part of any 2D-IR or TR-IR experiment is 

the accuracy in which probe spectral intensity differences can be measured. This accuracy depends on both 

the stability of the light source, the specific detectivity of the light sensing elements and the noise added 

upon signal integration and digitization. We describe in greater detail the characteristics of the 100 kHz 

detector electronics, data acquisition system and noise in reference 22. In brief we find that using the 

Yb:KGW driven OPAs as IR light sources, signal fidelity in the setup is limited by detector noise, not laser 

noise, and referencing by detecting an additional replica of the probe is therefore not necessary. Over 1s, 

(105 laser shots), the r.m.s noise in the measured mid-IR intensity is c. 0.15%. The standard deviation caused 

by noise on the difference of successive pairs of shots is, in absorbance units (i.e. log (In/In+1)), observed to be 

around 0.5 mOD. For an averaged number of measurements N, this noise scales as 1/ξN. In accordance, a 

peak-to-peak, a noise of ~10 µOD is typically observed in the probe spectrum after an average of 5000 laser 

shots (50 ms). This is comparable in performance to well optimized 1-10 kHz Ti:Sapphire based setups,12 

but in one tenth to one hundredth of the acquisition time. To achieve this same level of signal-to-noise with 

Ti:Sapphire based setups, referencing1 and careful OPA alignment31 is often necessary. The 100 kHz Yb:KGW 

� OPA systems achieve their level of performance with less complexity and a much higher degree of long 

term stability. 

 

Having established that the Yb:KGW based IR source presented here is, on a shot-to-shot basis, typically 

more stable than Ti:Sapphire-based IR sources, the remaining issue for Yb:KGW amplifier-based 2D-IR 

spectroscopy is whether the reduced bandwidth / increased pulse duration is practical to use for a sufficient 

number of chemical systems of interest. Figure 2(a) shows the pump and probe spectral intensities centered 

at 1650 cm-1 measured by the MCT array spectrometers of Figure 1. The FWHM probe bandwidth is 160 cm-

1 and the pump bandwidth 80 cm-1. These values are greater than those of the 1032 nm pump lasers, which 

are 127 and 67 cm-1 respectively. This increase in bandwidth is thought to occur via both the amplification of 

the white light to generate the signal seed (which for the probe OPA is non-collinear), and via the wide gain 

bandwidth of the KTA OPA and GaSe DFG processes. 

 

 
Fig. 2.  (a) Dispersed spectral intensity of pump (red) and probe (black) measured on 128 pixel MCT arrays. 

(b) Non-resonant pump-probe Kerr response (CaF2 windows) as a function of wavelength (MCT pixel).  
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Instrument response, important to 2D-IR spectroscopy measurements, can be conveniently observed in a 

pump-probe geometry via the dispersed, non-resonant Kerr response of the sample cell windows, or for the 

present laser system, also via the pump-probe response of a process faster than the pulse durations used, 

such as vibrational relaxation of H2O. Figure 2(b) shows an example single-colour response measurement of 

the 2D-IR setup from a 2 mm thick piece of CaF2. Although Kerr responses changes sign as a function of 

wavelength and waiting time, we find that integrating the absolute value of the response across the probe 

axis gives as a function of waiting time approximately Gaussian profiles which are then readily fit to provide 

a useful instrument response metric. The metric combines the slope of the response (showing the probe 

chirp) and the vertical width of the response (showing the pump chirp) � both of which should be 

minimised. This is achieved by systematically varying the group velocity dispersion (GVD) and third order 

dispersion (TOD) added to the pump beam by the pulse shaper mask and to the probe by addition or 

exchange of IR transmissive glasses.32 Using the metric defined above, we observe 2D-IR instrument 

responses of 250-300 fs FWHM (tested across a 3-10 µm spectral range). This is reasonable given the 

spectral bandwidths of the pump and probe, which suggest transform-limited pulse durations of 180 and 90 

fs, permitting an instrument response of not better than 200 fs. The lack of slope in Figure 2(b) indicates that 

the response is limited by the pump beam and could perhaps be improved using additional algorithms in the 

pulse shaping for correction of Bragg angle variation.33 Identical FWHM values for response duration were 

determined separately by nonlinear autocorrelations of the shaped pump pulse and cross-correlations of 

the pump and probe by second harmonic generation (SHG) in AgGaS2. We note that due to differences in 
GVD/TOD, for CaF2 sample cells, the optimum pulse shaper dispersion corrections for best instrument response 

differ compared with that required for SHG in AgGaS2.  

 

2D-IR spectra I. Signal size, FFCF analysis and kinetics. N-methyl acetamide (NMA) is a model amide 

system that is useful as a standard for checking 2D-IR signal size during instrument setup. Figure 3 (a) and 

3(b) show 2D-IR spectra of 100 mM NMA dissolved in D2O for different two population times. Each 

spectrum was acquired in 1 second. The shape of early time spectra is visually identical to data published 

eslewhere.34 The peak-to-peak amplitude of the chopped pump-probe signal from the 100 mM NMA-d was 

20-30 mOD (50 µm pathlength, population time T2=0.2 ps). This amplitude is comparable, if not slightly 

larger than that observed with 50 fs, 10 kHz35 and 100 fs, 1 kHz36 Ti:Sapphire based pump-probe setups. In 

both cases, these examples use 1.5 - 2  µJ of 6 µm mid-IR light generated from OPAs pumped with 500 µJ / 

pulse of 800 nm light. Although in principle, higher pulse energies are possible at this wavelength, in practice 

it is hard to achieve > 4-5 µJ without distortion from thermal lensing and accumulation of damage in the 

AgGaS2 crystals used. The pulse energy at 6 µm from the Yb:KGW pumped OPA via KTA/GaSe was 1 µJ, 

which is 1.5-2x lower than the Ti:Sapphire sources compared here. In addition to pulse energy, the other 

factors to take into account regarding 2D-IR signal size are the significant dependence on pump-probe 

focusing/overlap, which we assume are similar in the cases compared here, and on the efficiency by which 

light can be delivered to the sample, which could be between 30 and 60% depending on the setup, purge 

conditions etc. Therefore, despite the 20% efficiency in delivering light to the sample for the Yb:KGW system, 

and lower overall source pulse energy, the fact that the pump-probe signal sizes from the NMA standard 

sample are comparable between the different setups indicates that the signal is increased by the narrower 

bandwidth and therefore higher spectral brightness of the Yb:KGW OPA pump pulses. 

 

A common application of 2D-IR spectroscopy is to relate the slope, or ellipticity of a diagonal band 2D-IR 

spectrum as a function of population time to the frequency-frequency correlation function (FFCF).1 As this 

involves the measurement of multiple 2D-IR spectra, there are significant benefits in conducting these 

measurements at the higher speed afforded by a 100 kHz 2D-IR setup, for example if multiple temperatures 

are required for Arrhenius analysis, or if very small differences in slope decay and offset are to be 
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distinguished. We note that when using a pulse shaper for FFCF measurements, it is especially important to 

ensure that the diffracted power out of the shaper is linear with drive amplitude. The drive amplitude at 

which the diffracted output begins to saturate varies with wavelength and with shaper alignment. A 

consequence of shaper output nonlinearity is the appearance of near-diagonal distortions in the 2D-IR 

spectra at early times that vary as a function of waiting time, making FFCF analysis difficult. 

 

Figure 3(c) and 3(d) shows an early and a late-time 2D-IR spectrum of room temperature NaSCN dissolved 

in H2O. The centre-line slope derived FFCC is shown in Figure 3(e) and comprises 23 2D-IR spectra, each 

averaged for 10 s, though the earlier times could have easily been acquired in < 1s. The slope exponential 

decay is 0.8 ps and in excellent agreement with earlier studies.37 Likewise, at higher temperatures, we see 

the observed CLS decay time constant decrease, following Arrhenius-like behavior.  We did not explore the 

limit at which the CLS decay becomes obscured by the instrument response, however at 365 K, CLS 

exponential decay fits with a decay time of 0.4 ps were reliably returned, still closely following Arrhenius 

kinetics. This provides a firm lower limit on the timescales observable with the Yb:KGW-pumped OPAs. 

Figure 3(e) also shows the decay of the bleach / excited state of the same 2D-IR spectra used for the CLS 

analysis as a function of waiting time. The smoothness of the decays clearly demonstrate the high degree of 

stability in the pump beam.  

 

 
Fig. 3. Diagonal 2D-IR spectra. (a) and (b) The Amide I� band of NMA in dissolved in D2O at 100 mM 

concentration, 0 and 2 ps waiting times respectively, 1s signal averaging time. (c) and (d) nitrile stretch 

NaSCN (100 mM) in H2O, 0 and 6 ps waiting times respectively. (e) Centre-line slope fits to a waiting time 

series of nitrile stretch 2D-IR spectra. The inset shows the decay of the bleach and excited state absorption 

intensity for the data. The 2D-IR spectra scale bars are in units of  mOD norm, as defined in the text. 

 

2D-IR spectra II. Dual OPA probing. To demonstrate the utility of two independently tunable probe 

beams, and to further illustrate that the 80 cm-1 pump bandwidth is adequate for practical 2D-IR 

spectroscopy, spectra of a sequence of DNA (10 mM, Adenine : Thymine, (AT)n ) and of Green Fluorescent 

Protein (GFP, ~15 mg/ml, chosen as the amide I band is characteristic of the protein�s predominantly β-

sheet composition). Both samples were dissolved in D2O. Examples of their dual-probe 2D-IR spectra are 

shown in Figure 4. A full discussion of the interpretation of the DNA data can be found elsewhere.38,39 For 

both the DNA and GFP, the pump is centered around 1650 cm-1. In the case of DNA the pump excites base-

pair carbonyl and ring modes. Probe 1 has been centred at 1060 cm-1 to monitor the backbone modes 

(Figure 4(a)) and probe 2 has been set on-diagonal at 1650 cm-1 to simultaneously monitor the base-pair 
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carbonyl and ring modes (Figure 4(b)). Four base-pair modes (two ring and two carbonyl) and their cross 

peaks are all clearly observed along the pump axis (Figure 4(b)) across a range of 100 cm-1. Figure 4(a) 

shows the simultaneous measurement of the couplings of these modes to the DNA backbone modes. The 

GFP data shows simultaneous monitoring of the Amide I� diagonal and Amide I�-Amide II� cross peaks. An 

important property of the diagonal spectrum of the GFP is that the characteristic features of a β-sheet 

protein are clear in the shape of the spectrum,40 again an indication that the bandwidth of the pump laser is 

sufficient for protein Amide I analysis � an important application of  2D-IR spectroscopy, where the 

bandshapes have been previously demonstrated as a good measure of protein secondary structure 

content.7,41 Simultaneous monitoring of the Amide II� region holds promise as an enhanced form of 

secondary structure determination. 

 

 
 

Fig. 4.  Dual probe 2D-IR spectra of DNA ((AT)n n= 15, (a) and (b), see reference 38) and GFP ((c) and (d)). 

The population time for both samples was 250 fs. (a) and (b) were recorded simultaneously with 1000s 

signal average. (c) and (d) were recorded simultaneously with a 10s signal average. The 2D-IR spectra scale 

bars are in units of  mOD norm, as defined in the text. 

 

2D-IR spectroscopy III. Sensitivity for weak signal acquisitions. The main motivation for using a 100 

kHz system is to achieve a higher signal-to-noise. Such gains can be used to perform measurements faster, or 

to measure weak 2D-IR signals. For the former, we note that excellent quality NMA-d data such as that in 

Figure 3 was collected in 1 second. For strong carbonyl systems in general, 100 shots per coherence time 

point is often adequate for the strong signals observed. A pulse shaper acquisition of several-hundred 

waveforms would therefore take several milliseconds, which opens up very interesting possibilities for the 

sub-second 2D-IR monitoring of non-equilibrium chemical reactions. For the measurement of weak 2D-IR 

signals, Figure 5 shows an Amide I� 2D-IR spectrum of a ~300 nM solution of Myoglobin in D2O, which for 

154 residues corresponds to an equivalent concentration of ~50 µM Amide I groups in total. The acquisition 

time was 1000s, with a signal-to-noise of ~35 across the center (Figure 5 (b), the ratio of the peak-peak 

signal to the peak-peak noise). 
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Fig. 5.  (a) Amide I 2D-IR spectrum from 333 nM Myoglobin, 1000s average (b) a cut through the 2D-IR 

spectrum at ~1650 cm-1 illustrating signal-to-noise. The 2D-IR spectra scale bar are is in units of mOD norm, 

as defined in the text. 

 

High average powers. Sample heating considerations. Although vibrational excitation of samples in 2D-

IR experiments typically dissipates on sub-nanosecond timescales, a practical limit can be reached in high 

average power experiments due to equilibrium sample heating. In addition to average incident laser power, 

temperature rises depend on the optical density of the sample at the laser wavelengths and on the thickness, 

thermal conductivity and heat capacity of the solvent and windows. Heating effects are best quantified in a 

2D-IR setup by measuring the differential absorbance of the (in this case weak) probe beam through the 

sample in the steady state with and without the pump beam present. This can then be compared with an 

infrared absorption spectrum of the same sample measured in a benchtop Fourier transform instrument 

using a temperature calibrated and heated sample cell. An example of such a measurement is shown in 

Figure 6 using 100 mM NaSCN dissolved in ethyl ammonium nitrate, an ionic liquid with 4x poorer thermal 

conductivity than water. The cell is 50 µm in pathlength and uses 2 mm CaF2 windows. The pump is centred 

on the NaSCN band at 2050 cm-1 and roughly 50% of the shaped pump light was absorbed by the sample. 

The pulse shaper was operating using a 732-waveform pulse-pair phase and time scan (coherence time 

scanned to 4 ps in 22 fs steps), giving a pump power of 12 mW incident on the sample and a consequent 

increase in temperature of a few degrees, as evidenced by comparing the magnitude of the NaSCN bleaches 

at 2050 cm-1 in Figure 6. For H2O / D2O dissolved samples in the 50 µm pathlength CaF2 cells commonly 

used, with 10-20 mW of shaped light incident on the sample we observe negligible heating, an important 

factor in work conducted with the 100 kHz instrument observing the melting of DNA as a function of 

temperature.38  For volatile organic solvents with low thermal conductivity and low heat capacity, such as 

dichloromethane, 20-30 mW of focussed pump light is enough to cause thermal lensing, induce convection 

(causing instabilities in probe light transmission) and boiling. Under these conditions, rastering the sample 

over a 5 mm2 area at 5-10 Hz can remove these effects.  

 

1500 1550 1600 1650 1700 1750
-0.010

-0.005

0.000

0.005

0.010

1550 1600 1650 1700 1750

1550

1600

1650

1700

1750

Probe 2 / cm-1

P
u

m
p

/ 
cm

-1

m
O

D
n

o
rm

Probe 2 / cm-1

(a) (b)
0.00

-7.5x10-3

7.5x10-3



10 

 

 
Fig. 6.  An example measurement of the characterization of a sample�s steady state temperature rise in the 

focus of the pulse-shaped 100 kHz pump beam via probe light transmission. The sample is 100 mM NaSCN 

dissolved in ethyl ammonium nitrate. (a) shows the absorbance change of the probe light when pumped. (b) 

shows an example baseline measurement (no pump light). 1 minute acquisition times were used for the 

measurements and we note that the offset of both (a) and (b) varied by +- 2 mOD due to laser intensity 

fluctuations between measurements. (c) shows the FT-IR measured absorbance change of the sample 

bought about by heating by 9 C above room temperature.   

 

 

Conclusions  
 

In conclusion, we have described and demonstrated a 100 kHz pulse shaping 2D-IR spectrometer based on 

Yb:KGW amplifiers. The speed at which data can be acquired, the flexibility of the three IR sources 

generating pump and two probe beams, the stability of the lasers and the compactness of the entire setup 

are a major step forward for 2D-IR spectroscopy. We observe an instrument response of 250 - 300 fs and by 

examining NaSCN in H2O demonstrate that it is possible to accurately measure spectral diffusion close to 

these timescales timescales. By examining several other well-studied samples; NMA-d, DNA and a typical β-

sheet protein, we have demonstrated that the narrower bandwidth of the Yb:KGW system does not limit its 

applicability in 2D-IR spectroscopy. In fact there are significant signal intensity advantages with narrower 

bandwidths if >100 cm-1 bandwidth pumping and < 300 fs dynamics can be sacrificed.  
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