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Abstract 

The density matrix in the Lindblad form is used to describe the behavior of the Free-Electron Laser 

(FEL) operating in a quantum regime. The detrimental effects of the spontaneous emission on 

coherent FEL operation are taken into account. It is shown that the density matrix formalism 

provides a simple method to describe the dynamics of electrons and radiation field in the 

quantum FEL process. In this work, further insights on the key dynamic parameters (e.g., electron 

populations, bunching factor, radiation power) are presented. We also derive a simple differential 

equation that describes the evolution of the radiated power in the linear regime. It is confirmed 

that the essential results of this work agree with those predicted by a discrete Wigner approach at 

practical conditions for efficient operation of quantum FELs.  

 

1. Introduction  

The FreeെElectron Laser (FEL) operating in a quantum regime, the so-called quantum FEL 

(QFEL), has been proposed as a potential compact, tunable, near monochromatic, hard xെray 

source [1,2]. The characteristics of a QFEL are crucial for many demanding applications, such as 

medical, commercial, and academic research applications. The quantum regime of FEL is realized 

when the induced momentum spread of the electron ݌ߜ௭ ൌ  ிா௅ is smaller than the photonߩߛܿ݉

momentum ԰݇ where ߩிா௅ is the FEL parameter and ߛ is the electron energy [3,4]. Then, in order 

to identify the regime of FEL operation, i.e., whether it is classical or quantum, a dimensionless 

parameter ߩҧ ൌ  ௭Ȁ԰݇ has been introduced [3,4]. It has been noted that the quantum regime݌ߜ

(i.e., when ߩҧ ൏ ͳ) is more easily realizable at higher photon energies [1,2]. In the quantum 

regime, an electron can be represented as a twoെlevel system, and each electron emits at most 

one photon when the saturation takes place. The fundamental characteristic of the QFEL is an 

extremely narrow spectrum due to the discreteness of momentum exchange. On the other hand, 

in the classical regime of FEL (i.e., when ߩҧ ب ͳ ), numerous transitions between several 

momentum states occur and then Ă ŵƵůƚŝоĨƌĞƋƵĞŶĐǇ ƐƉĞĐƚƌƵŵ ŝƐ observed [5].  

In the FEL operating in the quantum regime, the spontaneous emission represents a loss 

mechanism and can significantly hinder the coherent FEL emission. The frequency of the 



2 

 

spontaneously radiated photon depends on the angle of the emitted photon with respect to the 

electron beam direction. Therefore, the spontaneous emission is characterized by a broadband 

spectral range. In Refs. [6,7], a quantumെmechanical model based on a continuous Wigner 

function has been developed for describing the QFEL operation including spontaneous emission. 

In Ref. [7], the authors determine the condition at which the effect of spontaneous emission is 

negligible. It has also been demonstrated that the inclusion of the broadband frequency of the 

spontaneous emission is insignificant. Then, the spontaneous emission can be assumed 

monochromatic whereas it is almost emitted in the forward direction of the electron beam. In 

Ref. [8], a model based on discrete Wigner function has been developed for describing the 

coherent radiation of QFEL, and recently extended in Ref. [9] to include the spontaneous emission 

effect. In this model, the electron momentum is assumed to be a discrete variable consistent with 

the quantum nature of the emitted radiation. Then, the approach of the discrete Wigner function 

used in Ref. [9] is more exact than that based on the continuous Wigner function used in Ref. [7]. 

It is noticed that in the discrete Wigner model [9], the spontaneous emission is also described as 

monochromatic photons emitted randomly by electrons as assumed in Ref. [7].  

In this paper, a simplified model based on the density matrix formalism is presented for 

describing the QFEL interaction. In this model, the dynamics of electrons undergoing spontaneous 

emission are described using the Lindblad master equation for the density matrix [10,11]. We 

confirm the validity of the density matrix model in the practical regime of QFEL operation at low 

or even moderate spontaneous emission rates. Approximately, the moderate spontaneous 

emission rate refers to that which reduces the coherent intensity to about half of its maximum 

value. Although the regime of high spontaneous emission rate is impractical, we report on the 

invalidation of the density matrix approach in this regime. A quantitative criterion for applying the 

density matrix treatment is presented. In this work, we show that the density matrix model 

presents effective tools for further understanding of the dynamics of electron and radiation fields 

in the QFEL.  

This paper is organized as follows. In section 2, the discrete Wigner model of QFEL shown 

in [9], as a benchmark model, is reviewed. In section 3, we present a model based on the density 

matrix formalism for the QFEL. Similar to the Wigner model, a system of coupled equations for 

describing the evolution of the QFEL process including the spontaneous emission is derived. 

Expressions for the density matrix elements that describe the dynamics of electrons are obtained 

using a master equation in the Lindblad form. In section 4, numerical examples are given 

providing a further understanding of the dynamics of electrons in the QFEL under the influence of 

the spontaneous emission. By comparing the results of the density matrix and the discrete Wigner 

approaches, we address the question of the validity of the density matrix model introduced in this 

work. Section 5 is devoted to conclusions.  
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2. Discrete Wigner model 

In this section, we review the basic results of the discrete Wigner function approach 

proposed for QFEL involving the spontaneous emission, as described in Ref. [9]. Then, a 

comparison with the results of a density matrixെbased model, newly introduced in this work, can 

be made. 

In the quantum theory of FELs [8], the ponderomotive electron phase ߠ ൌ ሺ݇ ൅ ݇௪ሻݖ െ݇ܿݐ is assumed to be a periodic variable in ሺͲǡʹߨሿ where ݇ and ݇௪ are the wave number of 

radiation and wiggler, respectively. This hypothesis assures that the conjugate momentum 

variable ݌ is discrete. A scaled momentum representing the relative electron momentum in unites 

of ԰݇ is ݌ ൌ ݉ܿ ሺߛ െ ଴ሻߛ ԰݇Τ  where ߛ and ߛ଴ are the instantaneous and initial electron energies 

in units of ݉ܿଶ, respectively. Accordingly, a ߠ െperiodic electron state ȁȲሺݖҧǡ  ሻۧ is expanded inߠ

terms of momentum eigenstates ȁ݊ۧ as [8] 

ȁȲሺݖҧǡ ሻۧߠ ൌ ͳξʹߨ ෍ ܿ௡ሺݖҧሻ௡ୀஶ
௡ୀିஶ ȁ݊ۧǡ    ߠۦȁ݊ۧ ൌ ݁௜௡ఏǤ                                       ሺͳሻ 

In Eq. (1), ݖҧ ൌ ݖ ௚Τܮ  is a normalized distance where ܮ௚ ൌ ௪ߣ Ͷߩߨிா௅Τ  is the gain length and ߣ௪ is 

the wiggler period. ȁܿ௡ȁଶ is the probability of finding an electron in a momentum state ݊. The 

eigenstates ȁ݊ۧ satisfy the eigenvalue equation ݌Ƹȁ݊ۧ ൌ ݊ȁ݊ۧǡ         ݌Ƹ ൌ െ݅ ߠ߲߲ Ǥ                                                   ሺʹሻ 
The operators ߠ෠ ؠ ෡ ߠൣ Ƹ satisfy the commutation relation݌ and ߠ ǡ Ƹ൧݌ ൌ ݅. 

The electron dynamics is described by a Schrodingerെlike equation [8]   ݅ ߲ȁȲሺݖҧǡ ҧݖሻ߲ۧߠ ൌ ҧǡݖ෡ȁȲሺܪ  ሻۧǡ                                                          ሺ͵ሻߠ
where ܪ෡ is the singleെelectron Hamiltonian and is given as  ܪ෡ ൌ ෡଴ܪ ൅ܪ෡୧୬୲ ൌ ҧߩʹƸଶ݌ െ ௜ఏ݁ܣҧ൫ߩ݅ െ ܿǤ ܿǤ ൯Ǥ                                          ሺͶሻ 
In Eq. (4), ܪ෡଴ ൌ ҧߩʹƸଶȀ݌  is the unperturbed Hamiltonian and ܪ෡୧୬୲ ൌ െ݅ߩҧ൫݁ܣ௜ఏ െ ܿǤ ܿǤ ൯  is the 

interaction Hamiltonian.  

On the basis of the above discussion, an approach based on a Wigner distribution 

function with periodic boundaries in ߠ has been developed to formulate the quantum theory for 

FELs [9]. In this approach, the system of coupled equations that describes the FEL including 

spontaneous emission is written as [9] ߲ݓ௦ሺݖҧǡ ҧݖሻ߲ߠ ൅ ҧߩݏ ҧǡݖ௦ሺݓ߲ ߠሻ߲ߠ   ൌ ௜ఏ݁ܣҧ൫ߩ ൅ ܿǤ ܿǤ ൯൛ݓ௦ାଵ ଶΤ ሺݖҧǡ ሻߠ െ ௦ିଵݓ ଶΤ ሺݖҧǡ ሻൟߠ ൅ ҧߩߚ ሼݓ௦ାଵሺݖҧǡ ሻߠ െ ҧǡݖ௦ሺݓ ሻሽǡߠ ሺͷሻ ݀ݖ݀ܣҧ ൌ ෍ න ௠ାଵݓ ଶΤ ሺݖҧǡ గߠሻ݁ି௜ఏ݀ߠ
ିగ

ஶ
௠ୀିஶ ൅  Ǥ                                         ሺ͸ሻܣߜ݅
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In Eq. (5), ݓ௦ሺݖҧǡ ݏ ሻ represents two types of Wigner functions whereߠ ൌ ݉ or ݏ ൌ ݉ ൅ ͳ ʹΤ ߚ . ൌ ௥Ȁ͸԰݇ߛ௪ଶ݉ܿܽߙ  is the scaled spontaneous emission rate where ߙ  is the fine structure 

constant and ܽ௪ ൌ  is a scaled complex amplitude of the ܣ .௪Ȁ݇௪݉ܿ is the wiggler parameterܤ݁

radiation field whereas the photon number emitted by each electron is ߩҧȁܣȁଶ [3]. In Eq. (6), ߜ ൌ ሺߛ௥ െ ଴ሻߛ ଴Τߛிா௅ߩ  is the detuning parameter and ߛ௥  is the resonant energy. 

              Since ݓ௦ሺݖҧǡ   it can be represented as a Fourier series in the form of [8,9] ,ߠ ሻ is periodic inߠ

ҧǡݖ௦ሺݓ ሻߠ ൌ ͳʹߨ ෍ ҧሻ݁௜௡ఏஶݖ௦௡ሺݓ
௡ୀିஶ Ǥ                                                       ሺ͹ሻ 

The Fourier components ݓ௦௡ሺݖҧሻ  are associated to ܿ௠ሺݖҧሻ  of the wave function Ȳ  where ݓ௠ଶ௡ ൌ ܿ௠ା௡כ ܿ௠ି௡ and ݓ௠ାଵ ଶΤଶ௡ାଵ ൌ ܿ௠ା௡ାଵכ ܿ௠ି௡ [8]. Then, ݓ௠଴ ൌ ȁܿ௠ȁଶ is the population of the ݉െth momentum state and ݓ௠ାଵ ଶΤଵ ൌ ܿ௠ାଵכ ܿ௠ is the ݉െth bunching component.  

In the quantum regime, ߩҧ ا ͳǡ a two level system is considered where the electron 

transition occurs between two adjacent momentum states, ݉ ൌ Ͳ and ݉ ൌ െͳ.  

            Substituting Eq. (7) in Eq. (5), considering the terms with ݏ ൌ Ͳ, ݏ ൌ െͳ, and ݏ ൌ െͳȀʹ, 

neglecting the higher components ݓ଴ଶ and ିݓଵଶ , and defining the populations parameters ଴ܲ ൌ  ଴଴ݓ

and ܲି ଵ ൌ ଵ଴ିݓ  and the bunching parameter ܤ ൌ ଵȀଶଵିݓ  (i.e., כܤ ൌ ଵȀଶିଵିݓ ), we finally can write 

the coupled equations for the QFEL as [9] ݀ ଴ܲ݀ݖƴ ൌ െ൫ܣሖܤሖ כ ൅ ܿǤ ܿǤ ൯ െ ܦ ଴ܲǡ                                                        ሺͺሻ ݀ܲି ଵ݀ݖƴ ൌ ൫ܣሖܤሖ כ ൅ ܿǤ ܿǤ ൯ ൅ ሺܦ ଴ܲ െ ܲି ଵሻǡ                                         ሺͻሻ ݀ܤሖ݀ݖƴ ൌ െ൫݅ߜሖ ൅ ሖܤ൯ܦ ൅ ሖሺܣ ଴ܲ െ ܲି ଵሻǡ                                            ሺͳͲሻ ݀ܣሖ݀ݖƴ ൌ ሖܤ Ǥ                                                                                             ሺͳͳሻ 
In Eqs. (8)െ(11), we define the new variables ݖƴ ൌ ඥߩҧݖҧ ሖܣ , ൌ ඥߩҧି݁ܣ௜ఋ௭ҧ ሖܤ , ൌ ௜ఋ௭ҧି݁ܤ ሖߜ , ൌሾߜ െ ሺͳ ҧΤߩʹ ሻሿ ඥߩҧΤ , and ܦ ൌ ߚ ҧଷȀଶΤߩ .  

         In Ref. [9], by solving Eqs. (8)െ(11) numerically, many simulations have been carried out to 

investigate the detrimental effect of spontaneous emission on the FEL operating in the quantum 

regime. It has been shown that the effect of spontaneous emission is negligible when ܦ د ͲǤͲ͹ in 

agreement with the results of Ref. [7].  

3. Density matrix model 

In this section, using the density matrix formulation, coupled differential equations for 

describing the behavior of QFELs are presented. Here, the dynamics of the electrons is described 

by the master equation in the Lindblad form [10,11]. From the master equation, expressions for 

the elements of the density matrix operator ߩ are obtained. It is instructive to recall that the 

diagonal elements ߩ௡ǡ௡ represent the probability of finding an electron in a particular ݊ െth state, 
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while the off diagonal terms ߩ௡ǡ௠  represent the degree of coherence. In this work, for 

convenience, the density matrix ߩ is designated by a subscript ݊ǡ݉ (not ݊݉). For a twoെlevel 

system, one can realize the correspondences between the density matrix elements and Wigner 

function components where ߩ଴ǡ଴ ؠ ଴ܲ (i.e., ିߩଵǡିଵ ؠ ܲି ଵ) and ߩ଴ǡିଵ ؠ  These correspondences .ܤ

allow a direct comparison between the results of the density matrix and the discrete Wigner 

models.   

For a twoെlevel system, the elements of the density matrix ߩ are obtained from the 

Lindblad master equation that takes the form [10]  ݀ߩሺݖҧሻ݀ݖҧ ൌ െ݅ൣܪ෡ǡ ൧ߩ െ ҧߩߚʹ ሺߪିߪାߩ ൅ ାߪିߪߩ െ  ሻǡ                           ሺͳʹሻିߪߩାߪʹ
where ߪା and ିߪ are the emission and absorption operators, respectively. In the master equation, 

the spontaneous emission is expressed by the second term on the rightെhand side, termed the 

dissipative term. Notice that the rate of spontaneous emission ߚ ҧΤߩ  shown in the dissipative term 

is implied considering the correspondence between ݓ௦ in Eq. (5) and ߩ in Eq. (12). 

                In a 2െdimentional Hilbert space, the momentum states ȁͲۧ and ȁെͳۧ can be written as ȁͲۧ ൌ ቀͳͲቁ ǡ   ȁെͳۧ ൌ ቀͲͳቁǤ                                                         ሺͳ͵ሻ 
Then, ߪା and ିߪ become ߪା  ൌ ቀͲ Ͳͳ Ͳቁ ǡ ିߪ  ൌ ቀͲ ͳͲ Ͳቁǡ                                                    ሺͳͶሻ 
where the relations ߪାȁͲۧ  ൌ ȁെͳۧ and ିߪȁെͳۧ  ൌ ȁͲۧ are satisfied. Using Eq. (14), the dissipative 

term in Eq. (12) is ʹߩߚҧ ሺߪିߪାߩ ൅ ାߪିߪߩ െ ሻିߪߩାߪʹ ൌ ҧߩߚ ൬ ଴ǡ଴ߩ ʹଵǡ଴Ȁିߩʹ଴ǡିଵȀߩ െߩ଴ǡ଴ ൰Ǥ                        ሺͳͷሻ 
   Now, we treat the term െ݅ൣܪ෡ǡ  ൧ in Eq. (12). To simplify our notations, we will first carryߩ

out our analysis for unknown momentum states, ݊ and ݉. In a later step, we will replace ݊ and ݉ 

by Ͳ and െͳ, respectively.  

   Since ܪ෡ ൌ ෡଴ܪ ൅ܪ෡୧୬୲, the term െ݅ൣܪ෡ǡ ෡ǡܪ൧ can be rewritten as  െ݅ൣߩ ൧ߩ ൌ െ݅൛൫ܪ෡଴ߩ െ ෡଴൯ܪߩ ൅ ൫ܪ෡୧୬୲ߩ െ  ෡୧୬୲൯ൟǤ                             ሺͳ͸ሻܪߩ
In Eq. (16), the interchange term of the principal Hamiltonian ܪ෡଴ ൌ ߩ଴ܪȁሺ݊ۦҧ is െ݅ߩʹƸଶȀ݌ െ ଴ሻȁ݉ۧܪߩ ൌ ҧߩʹ݅ ሺ݉ଶ െ ݊ଶሻ ߩ௡ǡ௠ǡ                                  ሺͳ͹ሻ 
while the interchange term of the interaction Hamiltonian is  െ݅ൻ݊ห൫ܪ෡୧୬୲ߩ െ ෡୧୬୲൯ห݉ൿܪߩ ൌ െ݅൛ൻ݊หܪ෡୧୬୲ߩห݉ൿ െ ൻ݊หܪߩ෡୧୬୲ห݉ൿൟǡ                                             ൌ െ݅෍൛ൻ݊หܪ෡୧୬୲หκൿۦκȁߩȁ݉ۧ െ ෡୧୬୲ห݉ൿൟǤκܪȁκۧൻκหߩȁ݊ۦ       ሺͳͺሻ 
Using the relation of ܪ෡୧୬୲ ൌ െ݅ߩҧ൫݁ܣ௜ఏ ൅ ܿǤ ܿǤ ൯, one can write ൻ݊หܪ෡୧୬୲ห݉ൿ ൌ ൻ݊หെ݅ߩҧ൫݁ܣ௜ఏ ൅ ܿǤ ܿǤ ൯ห݉ൿ ൌ െ݅ߩҧሺܣ௡௠ ൅ כ௡௠ܣ ሻǤ                  ሺͳͻሻ 
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where ܣ௡௠ ൌ ൻ݊ห݁ܣ௜ఏห݉ൿ  and its complex conjugate is ܣ௡௠כ ൌ ൻ݊หି݁כܣ௜ఏห݉ൿ ௡௠ܣ .  is an 

offെdiagonal element that represents the coupling efficiency between the radiation mode and 

the electron wave. We can assume that the amplitude of the field ܣ is almost constant over one 

ponderomotive period of an electron wave (i.e., equivalently, over one radiation wavelength 

when ߠ א ሺͲǡʹߨሿ ). Hence, ܣ௡௠ ൌ ሃ݁௜ఏሃ݉ۧ݊ۦܣ ൌ ௡ǡ௠ାଵߜܣ  and ܣ௡௠כ ൌ ൻ݊ห݁ି௜ఏห݉ൿכܣ ൌߜכܣ௡ǡ௠ିଵ.  

Using Eqs. (16)െ(19), we get  െ݅ൻ݊หൣܪ෡ǡ ൧ห݉ൿߩ ൌ ݅ ሺ݉ଶ െ ݊ଶሻʹߩҧ ௡ǡ௠ߩ ൅ ௡ǡ௠ାଵߩ൫ܣҧൣߩ െ ௡ିଵǡ௠൯ߩ ൅ ௡ାଵǡ௠ߩ൫כܣ െ  ௡ǡ௠ିଵ൯൧        ሺʹͲሻߩ
Using Eqs. (15) and (20) with Eq. (12) and assuming the initial state is ݊ ൌ Ͳ and the final 

state is ݉ ൌ െͳ, we get  ݀ߩ଴ǡ଴݀ݖҧ ൌ െߩҧ൫ߩכܣ଴ǡିଵ ൅ כ଴ǡିଵߩܣ ൯ െ ҧߩߚ ҧݖଵǡିଵ݀ିߩ݀ ଴ǡ଴ǡ                                                   ሺʹͳሻߩ ൌ ଴ǡିଵߩכܣҧ൫ߩ ൅ כ଴ǡିଵߩܣ ൯ ൅ ҧߩߚ ҧݖҧሻ݀ݖ଴ǡିଵሺߩ݀ ଴ǡ଴ǡ                                                  ሺʹʹሻߩ ൌ ൬ ҧߩʹ݅ െ ҧ൰ߩߚʹ ҧሻݖ଴ǡିଵሺߩ ൅ ҧሻݖ଴ǡ଴ሺߩҧൣߩ െ  Ǥ             ሺʹ͵ሻܣҧሻ൧ݖଵǡିଵሺିߩ
Using the density matrix formulations, the expectation value of an arbitrary operator ࣬ is   ۄ࣬ۃ ൌ   ሼ࣬ߩሽ ൌ෍݊ۦȁ࣬ߩȁ݊ۧ௡                                        

ൌ෍෍݊ۦȁߩȁ݉ۧ݉ۦȁ࣬ȁ݊ۧ௠௡ Ǥ                                                  ሺʹͶሻ 
The normalized radiation amplitude ܣ is classically determined by the bunching parameter ܾ ൌ ሺͳ ܰΤ ሻσ ݁ି௜ఏೕே௝ୀଵ [12] where ݀ܣ ҧΤݖ݀ ൌ ܾ ൅ ܣߜ݅ . Then, according to Eq. (24), ܣ  is given 

quantum mechanically by ݀ܣሺݖҧሻ݀ݖҧ ൌ ۄ௜ఏି݁ۃ ൅ ௡ǡ௡ିଵ௡ߩൌ෍ ܣߜ݅ ൅  Ǥ                                          ሺʹͷሻܣߜ݅
For a twoെlevel system with two momentum states ȁͲۧ and ȁെͳۧ, Eq. (25) is reduced to ݀ܣሺݖҧሻ݀ݖҧ ൌ ଴ǡିଵߩ ൅  Ǥ                                                                ሺʹ͸ሻܣߜ݅

Redefining the offെdiagonal element of density matrix as ߩƴ଴ǡିଵ ൌ ଴ǡିଵ݁ି௜ఋ௭ҧߩ ؠ ሖܤ  and 

using the relations ߩ଴ǡ଴ ؠ ଴ܲ and ିߩଵǡିଵ ؠ ܲି ଵ, Eqs. (21)-(23) and Eq. (26) are respectively  ݀ ଴ܲ݀ݖƴ ൌ െ൫ܣሖܤሖ כ ൅ ܿǤ ܿǤ ൯ െ ܦ ଴ܲǡ                                                       ሺʹ͹ሻ ݀ܲି ଵ݀ݖƴ ൌ ൫ܣሖܤሖ כ ൅ ܿǤ ܿǤ ൯ ൅ ܦ ଴ܲǡ                                                        ሺʹͺሻ ݀ܤሖ݀ݖƴ ൌ െ൬݅ߜሖ ൅ ሖܤ൰ܦʹ ൅ ሖሺܣ ଴ܲ െ ܲି ଵሻǡ                                           ሺʹͻሻ ݀ܣሖ݀ݖƴ ൌ ሖܤ Ǥ                                                                                              ሺ͵Ͳሻ 
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In deriving Eqs. (27) െ (30), we again use the variables ݖƴ ൌ ඥߩҧݖҧ ሖܣ , ൌ ඥߩҧି݁ܣ௜ఋ௭ҧ ሖߜ , ൌ ሾߜ െ ሺͳ ҧΤߩʹ ሻሿ ඥߩҧΤ , and ܦ ൌ ߚ ҧଷȀଶΤߩ . It is obvious that Eqs. (27)െ(30) obtained on the basis of 

the density matrix approach are similar to Eqs. (8)െ(11) based on the discrete Wigner model.  

The difference between the both models is mainly due to the fact that the Lindblad form 

of the master equation fulfills the traceെpreserving property of the density matrix. On the other 

hand, the trace of the corresponding components of Wigner function to the diagonal elements of 

density matrix, ݓ଴଴ and ିݓଵ଴ , is not conserved. In the density matrix model, from the second term 

of Eq. (28) representing the inclusion of the spontaneous emission, the rate of the final state 

population ݀ܲି ଵ ƴΤݖ݀  are only determined by the variation in the initial state population ଴ܲ, and 

vice versa as indicated by Eq. (27). In this case, the population can only be exchanged between 

two momentum eigenstates and no other transitions are allowed. Eqs. (27) and (28) satisfy the 

trace-preserving condition (i.e., ଴ܲሺݖҧሻ ൅ ଵܲሺݖҧሻ ൌ ͳ ) as will be demonstrated by numerical 

examples in the next section. Note that the first terms of Eqs. (27) and (28) correspond to the 

population change due to the stimulated emission. The opposite sign of these terms ensures the 

conservation of probabilities due to the stimulated emission.   

In the Wigner model, due to the spontaneous emission, ݀ܲି ଵ ƴΤݖ݀  is proportional to 

଴ܲ െ ܲି ଵ as expressed by the second term on the right-hand side of Eq. (9). In this case, the 

probability of occupying the final state increases by spontaneous emission from electrons 

occupying the initial state but decreases by spontaneous emission from electrons occupying the 

final state. Then, the Wigner model is more exact than the density matrix because the 

spontaneous emission from the final state is also taken into account. The drawback associated to 

the traceെpreserving property assumed in the density matrix treatment becomes pronounced as 

the rate of the spontaneous emission increases. As will be shown in the next section, in the 

practical regime of QFEL operation ሺܦ ൏ ͲǤͲ͹ሻ, the density matrix model is quite applicable 

where a very good agreement with the discrete Wigner model is observed. It is also noticed that, 

by comparing Eq. (10) and Eq. (29), the lifetime of coherence in the Wigner model is ͳ Τܦ , twice as 

large as that appeared in the density matrix model. In fact, this does not cause a significant 

difference between both models since the spontaneous emission rate ܦ ا ͳ ൫ʹߩҧଷȀଶ൯Τ  in the 

quantum regime where ߩҧ ൏ ͲǤͶ.  

 

4. Numerical results and discussion 

In this section, using the density matrix approach, we firstly show the fundamental 

properties of coherent QFEL emission when the spontaneous emission is negligible (i.e., ܦ ا ͳ). 

Next, considering the spontaneous emission, we compare the dynamics of electrons and radiation 

field predicted by the density matrix and Wigner models using Eqs. (28)െ(31) and Eqs. (8)െ(11), 

respectively. The condition for which both models are equivalent is given.    
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4.1. Negligible spontaneous emission regime 

Here, we not only address the validity of the density matrix treatment when ܦ ൌ Ͳ, but 

present insights on the electron dynamics described by the density matrix elements.      

Assuming ܦ ൌ Ͳ, from Eqs. (27) and (28), we get the population difference  

଴ܲሺݖƴሻ െ ܲି ଵሺݖƴሻ ൌ ͳ െ ʹหܣሖหଶǤ                                                      ሺ͵ͳሻ 
Then, using Eq. (31) with Eqs. (29) and (30), the evolution of radiation field is described by solving ݀ଶܣሖሺݖƴሻ݀ݖƴଶ ൅ ሖߜ݅ ƴݖƴሻ݀ݖሖሺܣ݀ െ ቂͳ െ ʹหܣሖหଶቃ ሖܣ ൌ ͲǤ                                          ሺ͵ʹሻ 
In Eq. (32), the term ʹหܣሖหଶ is responsible for the nonlinear characteristics of QFEL radiation. The 

linear regime is dominant if ʹหܣሖหଶ ا ͳ where ଴ܲሺݖƴሻ െ ܲି ଵሺݖƴሻ ൌ ͳ. In the linear regime, assuming หܣሖห  has a solution in the form of หܣሖห ן ݁௜ ఒሖ ௭ƴ  in Eq. (32) and using the relation ߜሖ ൌ ሾߜ െ ሺͳ ҧΤߩʹ ሻሿ ඥߩҧΤ , we get  ߣሖଶ ൅ ͳඥߩҧ ሾߜ െ ሺͳ ҧΤߩʹ ሻሿ ߣሖ ൅ ͳ ൌ ͲǤ                                                ሺ͵͵ሻ 
In Fig. (1), using Eq. (33), we plot ห  ሺߣሖሻห vs. ߜ Ăƚ ĚŝĨĨĞƌĞŶƚ ǀĂůƵĞƐ ŽĨ ߩҧ in the quantum regime (i.e., ߩҧ ൌ ͲǤͳǡ ͲǤʹǡ ͲǤ͵ǡ  and ͲǤͶ ). Fig. (1) illustrates the fundamental characteristics of the QFEL 

operating in the linear regime [3] which are (i) the resonance of the gain occurs at ߜ ൌ ͳȀʹߩҧ, (ii) 
the full width of the gain curve is Ͷߩҧ, and (iii) the peak of the gain is ඥߩҧ.  

 

Fig. 1. In the linear regime and when ܦ ൌ Ͳ, imaginary part of the complex root of the quadratic 

equation Eq. (33) vs. ߜ for different values of ߩҧ in the quantum regime (ߩҧ= 0.1, 0.2, 0.3, and 0.4).  

 

Using Eq. (33), we show in Fig. 2(a) the evolution of the number of photons per electron หܣሖหଶ with ݖƴ  in the linear and nonlinear regimes. In these examples, it is assumed that ߩҧ ൌ ͲǤ͵ǡ ߜ ൌ ͳȀʹߩҧ, and ܤሖ ሺͲሻ ൌ ͲǤͲͳ. In Fig. 2(a), one can realize that the deviation in the results of the 

linear and nonlinear regimes is small until the first peak͘ IŶ FŝŐ͘ Ϯ;ĂͿ͕ ƚŚĞ ƉŽƐŝƚŝŽŶ ŽĨ ƚŚĞ ĨŝƌƐƚ ƉĞĂŬ 

ŝƐ ݖƴȁ୮ୣୟ୩ ൎ ͸ǤͲ ǁŚŝĐŚ ĂŐƌĞĞƐ ǁŝƚŚ ƚŚĞ ƉƌĞĚŝĐƚĞĚ ǀĂůƵĞ ĨƌŽŵ ƚŚĞ ƌĞůĂƚŝŽŶ ݖƴȁ୮ୣୟ୩ ൌ െlnൣܤሖ ሺͲሻȀͶ൧ 
ƌĞƉŽƌƚĞĚ ŝŶ RĞĨ͘  ΀ϴ΁͘ AůƐŽ͕ ŝŶ ĂŐƌĞĞŵĞŶƚ ǁŝƚŚ ƚŚĞ ƌĞƐƵůƚƐ ŽĨ RĞĨ͘  ΀ϴ΁͕ Fig. 2(a) ƐŚŽǁƐ ƚŚĂƚ ƚŚĞ 
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ŵĂǆŝŵƵŵ ďƵŶĐŚŝŶŐ ŽĐĐƵƌƐ Ăƚ ݖƴ ൌ ƴȁ୮ୣୟ୩ݖ േ ͲǤͺͺ͘ In Fig. 2(a), ŝƚ ŝƐ ƐĞĞŶ ƚŚĂƚ ƚŚĞ ŵĂǆŝŵƵŵ ŶƵŵďĞƌ 

ŽĨ ƉŚŽƚŽŶƐ ŝƐ ϭ ŝŶ ƚŚĞ ŶŽŶůŝŶĞĂƌ ƌĞŐŝŵĞ.  

In Fig. 2(b), we plot หܣሖหଶ, หܤሖ ห, and ଴ܲ െ ܲି ଵ vs. ݖƴ͘ FƌŽŵ FŝŐ͘ ;ϮďͿ͕ ŝƚ ŝƐ ƐŚŽǁŶ ƚŚĂƚ ĂƐ หܣሖหଶ 

varies periodically from 0 to 1, ଴ܲ െ ܲି ଵ varies from 1 to -1. This behavior can be predicted from 

Eq. (31). The maximum and minimum values of the population difference, 1 and -1, correspond to 

the maximum probability of finding an electron in the initial state ݊ ൌ Ͳ and the final state ݉ ൌ െͳ, respectively. Consequently, it is expected that the maximum of the bunching factor หܤሖ ห 
is 0.5 as shown in Fig. 2(b).   

 

 

 

 

 

 

 

 

Fig. 2. (a) หܣሖหଶ vs. ݖƴ ŝŶ ƚŚĞ ůŝŶĞĂƌ ĂŶĚ ŶŽŶůŝŶĞĂƌ ƌĞŐŝŵĞƐ͘ ;ďͿ หܣሖหଶ, หܤሖ ห, and ଴ܲ െ ܲି ଵ vs. ݖƴ͘ 
 

4.2. Non-negligible spontaneous emission regime 

                In this section, the QFEL operation is investigated taking into account the inclusion of the 

spontaneous emission. We present comparisons between the results of the density matrix and 

those of discrete Wigner model. For this purpose, we solve numerically the set of equations for 

both models, Eqs. (27)െ(30) and Eqs. (8)െ(11), respectively.  

A comparison between the average number of photons emitted per electron, หܣሖหଶ, vs. ݖƴ 
for different values of the spontaneous emission rate ܦ is shown in Figs. 3. In these numerical 

examples, we assume ߩҧ ൌ ͲǤʹ, ܣሖሺͲሻ ൌ Ͳ, ܤሖ ሺͲሻ ൌ ͲǤͲͳ, ଴ܲሺͲሻ ൌ ͳ, and ܲି ଵሺͲሻ ൌ Ͳ. In Fig. 3(a), 

identical results for the density matrix and discrete Wigner models are seen when the 

spontaneous emission is negligible, ܦ ൌ Ͳ. In Fig. 3(b), for a moderate spontaneous emission rate ܦ ൌ ͲǤͲͷ, the difference between the results of the both models till the first peak of หܣሖหଶ is very 

small. From Fig. 3(c), for a large unfavorable spontaneous emission rate ܦ ൌ ͲǤͳ, the results of 

density matrix deviate significantly from those of the Wigner model. In this regime, the density 

matrix fails to predict an accurate behavior for the QFEL operation. As discussed above, this is 

because the trace of the density matrix is conserved by the Lindblad form master equation 

(Tr(ߩ)=1). Then, the population can only be exchanged between two momentum eigenstates. On 

the other hand, in the Wigner model, the fact that the electron can emit spontaneously after its 
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first spontaneous transition is taken into account. Therefore, the population inversion in the 

density matrix model evolves faster than that in the Wigner model. Consequently, the density 

matrix model predicts stronger effects of spontaneous emission leading to smaller intensity of 

coherent radiation than that predicted by the Wigner model. To illustrate the latter behavior, in 

Fig. (4), we plot the trace of probabilities ଴ܲ ൅ ܲି ଵ, the population difference ଴ܲ െ ܲି ଵ, and the 

bunching ܤሖ  vs. ݖƴ for ܦ ൌ ͲǤͲͷ. In Fig. (4), we assume all parameters as those used in Fig. (3). Fig. 

4(a) shows the traceെpreserving property is satisfied in the density matrix model, while it is not 

satisfied in the Wigner model. As seen in Fig. 4(b), in the density matrix model, due to the 

spontaneous emission of electron, a larger population difference ȁ ଴ܲ െ ܲି ଵȁ at shorter interaction 

distance is observed. Then, the contribution of the coherent emission of electron in the density 

matrix model is suppressed in a greater way, as shown in Fig. 3(b). Fig. 4(c) shows the bunching 

factor in the density matrix model is smaller than that in the Wigner model.   

In Fig. 5, we plot the first maximum of หܣሖหଶ as a function of ܦ. It can be seen that, in the 

practical regime when ܦ د ͲǤͲ͹, the results of the density matrix approach are in well agreement 

with those of the discrete Wigner model. When ܦ ൐ ͲǤͲ͹ where the spontaneous emission 

strongly quenches the coherent lasing process, the density matrix is no longer valid to describe 

the QFEL interaction. We finally stress on that the regime at which ܦ ൐ ͲǤͲ͹ is not a useful 

operating regime where the coherent radiation is greatly diminished by the spontaneous 

emission. Therefore, we safely can confirm the density matrix approach is applicable in the 

practical regime of QFEL operation.  

 

5. Conclusion 

The density matrix of the Lindblad-type master equation is a powerful tool to describe the 

quantum FEL interaction. In the quantum regime of the FEL, the diagonal elements of the density 

matrix fulfill the trace-preserving property where the electron is considered as a two-level system. 

Then, the exchange of electron populations due to the spontaneous emission occurs only 

between the initial and final momentum states. The density matrix model is compared with the 

exact model of the discrete Wigner function in which the electron transition from the final state 

to a lower momentum state is also considered. We have shown that the results of the density 

matrix model are in excellent agreement with those of the discrete Wigner model when the rate 

of the spontaneous emission ensures efficient operation of quantum FELs (when ܦ د ͲǤͲ͹). Then, 

the approximate model of the density matrix is proved to be rigorous in the practical operating 

regime of the quantum FEL. It has been shown that the density matrix formalism provides 

straightforward physical insights into the dynamics of the quantum FEL. However, as the rate of 

the spontaneous emission increases to a level at which the FEL coherent emission is significantly 

reduced (ܦ ൐ ͲǤͲ͹), the density matrix model becomes invalid.    
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Fig. 3. For the density matrix (DM) and Wigner models, scaled intensity หܣሖหଶ is plotted as a 

function of ݖƴ in the quantum regime for different values of the spontaneous emission rate (a) ܦ ൌ ͲǤͲ (b) ܦ ൌ ͲǤͲͷ (c) ܦ ൌ ͲǤͳ. 

 

 

Fig. 4. For the density matrix (DM) and Wigner models when ܦ ൌ ͲǤͲͷ, (a) The trace of 

probabilities ଴ܲ ൅ ܲି ଵ vs. ݖƴ. (b) The population difference ଴ܲ െ ܲି ଵ vs. ݖƴ. (c) The bunching factor ܤሖ  vs. ݖƴ.  
 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Comparison between the maximum peak หܣሖหଶ as predicted by the density matrix (DM) and 

Wigner models where หܣሖหଶ is plotted against ܦ. 
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