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Abstract 

The density matrix in the Lindblad form is used to describe the behavior of the Free-Electron Laser 

(FEL) operating in a quantum regime. The detrimental effects of the spontaneous emission on 

coherent FEL operation are taken into account. It is shown that the density matrix formalism 

provides a simple method to describe the dynamics of electrons and radiation field in the 

quantum FEL process. In this work, further insights on the key dynamic parameters (e.g., electron 

populations, bunching factor, radiation power) are presented. We also derive a simple differential 

equation that describes the evolution of the radiated power in the linear regime. It is confirmed 

that the essential results of this work agree with those predicted by a discrete Wigner approach at 

practical conditions for efficient operation of quantum FELs.  

 

1. Introduction  

The Free伐Electron Laser (FEL) operating in a quantum regime, the so-called quantum FEL 

(QFEL), has been proposed as a potential compact, tunable, near monochromatic, hard x伐ray 

source [1,2]. The characteristics of a QFEL are crucial for many demanding applications, such as 

medical, commercial, and academic research applications. The quantum regime of FEL is realized 

when the induced momentum spread of the electron 絞喧佃 噺 兼潔紘貢庁帳挑 is smaller than the photon 

momentum 屋倦 where 貢庁帳挑 is the FEL parameter and 紘 is the electron energy [3,4]. Then, in order 

to identify the regime of FEL operation, i.e., whether it is classical or quantum, a dimensionless 

parameter 貢違 噺 絞喧佃【屋倦 has been introduced [3,4]. It has been noted that the quantum regime 

(i.e., when 貢違 隼 な) is more easily realizable at higher photon energies [1,2]. In the quantum 

regime, an electron can be represented as a two伐level system, and each electron emits at most 

one photon when the saturation takes place. The fundamental characteristic of the QFEL is an 

extremely narrow spectrum due to the discreteness of momentum exchange. On the other hand, 

in the classical regime of FEL (i.e., when 貢違 伎 な ), numerous transitions between several 

momentum states occur and then ; ﾏ┌ﾉデｷЪaヴWケ┌WﾐI┞ ゲヮWIデヴ┌ﾏ ｷゲ observed [5].  

In the FEL operating in the quantum regime, the spontaneous emission represents a loss 

mechanism and can significantly hinder the coherent FEL emission. The frequency of the 
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spontaneously radiated photon depends on the angle of the emitted photon with respect to the 

electron beam direction. Therefore, the spontaneous emission is characterized by a broadband 

spectral range. In Refs. [6,7], a quantum伐mechanical model based on a continuous Wigner 

function has been developed for describing the QFEL operation including spontaneous emission. 

In Ref. [7], the authors determine the condition at which the effect of spontaneous emission is 

negligible. It has also been demonstrated that the inclusion of the broadband frequency of the 

spontaneous emission is insignificant. Then, the spontaneous emission can be assumed 

monochromatic whereas it is almost emitted in the forward direction of the electron beam. In 

Ref. [8], a model based on discrete Wigner function has been developed for describing the 

coherent radiation of QFEL, and recently extended in Ref. [9] to include the spontaneous emission 

effect. In this model, the electron momentum is assumed to be a discrete variable consistent with 

the quantum nature of the emitted radiation. Then, the approach of the discrete Wigner function 

used in Ref. [9] is more exact than that based on the continuous Wigner function used in Ref. [7]. 

It is noticed that in the discrete Wigner model [9], the spontaneous emission is also described as 

monochromatic photons emitted randomly by electrons as assumed in Ref. [7].  

In this paper, a simplified model based on the density matrix formalism is presented for 

describing the QFEL interaction. In this model, the dynamics of electrons undergoing spontaneous 

emission are described using the Lindblad master equation for the density matrix [10,11]. We 

confirm the validity of the density matrix model in the practical regime of QFEL operation at low 

or even moderate spontaneous emission rates. Approximately, the moderate spontaneous 

emission rate refers to that which reduces the coherent intensity to about half of its maximum 

value. Although the regime of high spontaneous emission rate is impractical, we report on the 

invalidation of the density matrix approach in this regime. A quantitative criterion for applying the 

density matrix treatment is presented. In this work, we show that the density matrix model 

presents effective tools for further understanding of the dynamics of electron and radiation fields 

in the QFEL.  

This paper is organized as follows. In section 2, the discrete Wigner model of QFEL shown 

in [9], as a benchmark model, is reviewed. In section 3, we present a model based on the density 

matrix formalism for the QFEL. Similar to the Wigner model, a system of coupled equations for 

describing the evolution of the QFEL process including the spontaneous emission is derived. 

Expressions for the density matrix elements that describe the dynamics of electrons are obtained 

using a master equation in the Lindblad form. In section 4, numerical examples are given 

providing a further understanding of the dynamics of electrons in the QFEL under the influence of 

the spontaneous emission. By comparing the results of the density matrix and the discrete Wigner 

approaches, we address the question of the validity of the density matrix model introduced in this 

work. Section 5 is devoted to conclusions.  
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2. Discrete Wigner model 

In this section, we review the basic results of the discrete Wigner function approach 

proposed for QFEL involving the spontaneous emission, as described in Ref. [9]. Then, a 

comparison with the results of a density matrix伐based model, newly introduced in this work, can 

be made. 

In the quantum theory of FELs [8], the ponderomotive electron phase 肯 噺 岫倦 髪 倦栂岻権 伐倦潔建 is assumed to be a periodic variable in 岫ど┸に講峅 where 倦 and 倦栂 are the wave number of 

radiation and wiggler, respectively. This hypothesis assures that the conjugate momentum 

variable 喧 is discrete. A scaled momentum representing the relative electron momentum in unites 

of 屋倦 is 喧 噺 兼潔 岫紘 伐 紘待岻 屋倦エ  where 紘 and 紘待 are the instantaneous and initial electron energies 

in units of 兼潔態, respectively. Accordingly, a 肯 伐periodic electron state 】ゆ岫権違┸ 肯岻駈 is expanded in 

terms of momentum eigenstates 】券駈 as [8] 

】ゆ岫権違┸ 肯岻駈 噺 なヂに講 布 潔津岫権違岻津退著
津退貸著 】券駈┸    駆肯】券駈 噺 結沈津提┻                                       岫な岻 

In Eq. (1), 権違 噺 権 詣直エ  is a normalized distance where 詣直 噺 膏栂 ね講貢庁帳挑エ  is the gain length and 膏栂 is 

the wiggler period. 】潔津】態 is the probability of finding an electron in a momentum state 券. The 

eigenstates 】券駈 satisfy the eigenvalue equation 喧┏】券駈 噺 券】券駈┸         喧┏ 噺 伐件 項項肯┻                                                   岫に岻 
The operators 肯侮 岩 肯 and 喧┏ satisfy the commutation relation 範肯 撫 ┸ 喧┏飯 噺 件. 

The electron dynamics is described by a Schrodinger伐like equation [8]   件 項】ゆ岫権違┸ 肯岻駈項権違 噺 茎撫】ゆ岫権違┸ 肯岻駈┸                                                          岫ぬ岻 
where 茎撫 is the single伐electron Hamiltonian and is given as  茎撫 噺 茎撫待 髪茎撫辿樽担 噺 喧┏態に貢違 伐 件貢違盤畦結沈提 伐 潔┻ 潔┻ 匪┻                                          岫ね岻 
In Eq. (4), 茎撫待 噺 喧┏態【に貢違  is the unperturbed Hamiltonian and 茎撫辿樽担 噺 伐件貢違盤畦結沈提 伐 潔┻ 潔┻ 匪  is the 

interaction Hamiltonian.  

On the basis of the above discussion, an approach based on a Wigner distribution 

function with periodic boundaries in 肯 has been developed to formulate the quantum theory for 

FELs [9]. In this approach, the system of coupled equations that describes the FEL including 

spontaneous emission is written as [9] 項拳鎚岫権違┸ 肯岻項権違 髪 嫌貢違 項拳鎚岫権違┸ 肯岻項肯   噺 貢違盤畦結沈提 髪 潔┻ 潔┻ 匪版拳鎚袋怠 態エ 岫権違┸ 肯岻 伐 拳鎚貸怠 態エ 岫権違┸ 肯岻繁 髪 紅貢違 岶拳鎚袋怠岫権違┸ 肯岻 伐 拳鎚岫権違┸ 肯岻岼┸ 岫の岻 穴畦穴権違 噺 布 豹 拳陳袋怠 態エ 岫権違┸ 肯岻結貸沈提穴肯訂
貸訂

著
陳退貸著 髪 件絞畦┻                                         岫は岻 
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In Eq. (5), 拳鎚岫権違┸ 肯岻 represents two types of Wigner functions where 嫌 噺 兼 or 嫌 噺 兼 髪 な にエ . 紅 噺 糠欠栂態兼潔紘追【は屋倦  is the scaled spontaneous emission rate where 糠  is the fine structure 

constant and 欠栂 噺 結稽栂【倦栂兼潔 is the wiggler parameter. 畦 is a scaled complex amplitude of the 

radiation field whereas the photon number emitted by each electron is 貢違】畦】態 [3]. In Eq. (6), 絞 噺 岫紘追 伐 紘待岻 貢庁帳挑紘待エ  is the detuning parameter and 紘追  is the resonant energy. 

              Since 拳鎚岫権違┸ 肯岻 is periodic in 肯, it can be represented as a Fourier series in the form of [8,9]  

拳鎚岫権違┸ 肯岻 噺 なに講 布 拳鎚津岫権違岻結沈津提著
津退貸著 ┻                                                       岫ば岻 

The Fourier components 拳鎚津岫権違岻  are associated to 潔陳岫権違岻  of the wave function ゆ  where 拳陳態津 噺 潔陳袋津茅 潔陳貸津 and 拳陳袋怠 態エ態津袋怠 噺 潔陳袋津袋怠茅 潔陳貸津 [8]. Then, 拳陳待 噺 】潔陳】態 is the population of the 兼伐th momentum state and 拳陳袋怠 態エ怠 噺 潔陳袋怠茅 潔陳 is the 兼伐th bunching component.  

In the quantum regime, 貢違 企 な┸ a two level system is considered where the electron 

transition occurs between two adjacent momentum states, 兼 噺 ど and 兼 噺 伐な.  

            Substituting Eq. (7) in Eq. (5), considering the terms with 嫌 噺 ど, 嫌 噺 伐な, and 嫌 噺 伐な【に, 

neglecting the higher components 拳待態 and 拳貸怠態 , and defining the populations parameters 鶏待 噺 拳待待 

and 鶏貸怠 噺 拳貸怠待  and the bunching parameter 稽 噺 拳貸怠【態怠  (i.e., 稽茅 噺 拳貸怠【態貸怠 ), we finally can write 

the coupled equations for the QFEL as [9] 穴鶏待穴権┋ 噺 伐盤畦寐稽寐 茅 髪 潔┻ 潔┻ 匪 伐 経鶏待┸                                                        岫ぱ岻 穴鶏貸怠穴権┋ 噺 盤畦寐稽寐 茅 髪 潔┻ 潔┻ 匪 髪 経岫鶏待 伐 鶏貸怠岻┸                                         岫ひ岻 穴稽寐穴権┋ 噺 伐盤件絞寐 髪 経匪稽寐 髪 畦寐岫鶏待 伐 鶏貸怠岻┸                                            岫など岻 穴畦寐穴権┋ 噺 稽寐 ┻                                                                                             岫なな岻 
In Eqs. (8)伐(11), we define the new variables 権┋ 噺 紐貢違権違 , 畦寐 噺 紐貢違畦結貸沈弟佃違 , 稽寐 噺 稽結貸沈弟佃違 , 絞寐 噺岷絞 伐 岫な に貢違エ 岻峅 紐貢違エ , and 経 噺 紅 貢違戴【態エ .  

         In Ref. [9], by solving Eqs. (8)伐(11) numerically, many simulations have been carried out to 

investigate the detrimental effect of spontaneous emission on the FEL operating in the quantum 

regime. It has been shown that the effect of spontaneous emission is negligible when 経 寄 ど┻どば in 

agreement with the results of Ref. [7].  

3. Density matrix model 

In this section, using the density matrix formulation, coupled differential equations for 

describing the behavior of QFELs are presented. Here, the dynamics of the electrons is described 

by the master equation in the Lindblad form [10,11]. From the master equation, expressions for 

the elements of the density matrix operator 貢 are obtained. It is instructive to recall that the 

diagonal elements 貢津┸津 represent the probability of finding an electron in a particular 券 伐th state, 
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while the off diagonal terms 貢津┸陳  represent the degree of coherence. In this work, for 

convenience, the density matrix 貢 is designated by a subscript 券┸兼 (not 券兼). For a two伐level 

system, one can realize the correspondences between the density matrix elements and Wigner 

function components where 貢待┸待 岩 鶏待 (i.e., 貢貸怠┸貸怠 岩 鶏貸怠) and 貢待┸貸怠 岩 稽. These correspondences 

allow a direct comparison between the results of the density matrix and the discrete Wigner 

models.   

For a two伐level system, the elements of the density matrix 貢 are obtained from the 

Lindblad master equation that takes the form [10]  穴貢岫権違岻穴権違 噺 伐件範茎撫┸ 貢飯 伐 紅に貢違 岫購貸購袋貢 髪 貢購貸購袋 伐 に購袋貢購貸岻┸                           岫なに岻 
where 購袋 and 購貸 are the emission and absorption operators, respectively. In the master equation, 

the spontaneous emission is expressed by the second term on the right伐hand side, termed the 

dissipative term. Notice that the rate of spontaneous emission 紅 貢違エ  shown in the dissipative term 

is implied considering the correspondence between 拳鎚 in Eq. (5) and 貢 in Eq. (12). 

                In a 2伐dimentional Hilbert space, the momentum states 】ど駈 and 】伐な駈 can be written as 】ど駈 噺 岾など峇 ┸   】伐な駈 噺 岾どな峇┻                                                         岫なぬ岻 
Then, 購袋 and 購貸 become 購袋  噺 岾ど どな ど峇 ┸ 購貸  噺 岾ど など ど峇┸                                                    岫なね岻 
where the relations 購袋】ど駈  噺 】伐な駈 and 購貸】伐な駈  噺 】ど駈 are satisfied. Using Eq. (14), the dissipative 

term in Eq. (12) is 紅に貢違 岫購貸購袋貢 髪 貢購貸購袋 伐 に購袋貢購貸岻 噺 紅貢違 磐 貢待┸待 貢待┸貸怠【に貢貸怠┸待【に 伐貢待┸待 卑┻                        岫なの岻 
   Now, we treat the term 伐件範茎撫┸ 貢飯 in Eq. (12). To simplify our notations, we will first carry 

out our analysis for unknown momentum states, 券 and 兼. In a later step, we will replace 券 and 兼 

by ど and 伐な, respectively.  

   Since 茎撫 噺 茎撫待 髪茎撫辿樽担, the term 伐件範茎撫┸ 貢飯 can be rewritten as  伐件範茎撫┸ 貢飯 噺 伐件版盤茎撫待貢 伐 貢茎撫待匪 髪 盤茎撫辿樽担貢 伐 貢茎撫辿樽担匪繁┻                             岫なは岻 
In Eq. (16), the interchange term of the principal Hamiltonian 茎撫待 噺 喧┏態【に貢違 is 伐件駆券】岫茎待貢 伐 貢茎待岻】兼駈 噺 件に貢違 岫兼態 伐 券態岻 貢津┸陳┸                                  岫なば岻 
while the interchange term of the interaction Hamiltonian is  伐件泌券弁盤茎撫辿樽担貢 伐 貢茎撫辿樽担匪弁兼秘 噺 伐件版泌券弁茎撫辿樽担貢弁兼秘 伐 泌券弁貢茎撫辿樽担弁兼秘繁┸                                             噺 伐件布版泌券弁茎撫辿樽担弁ゾ秘駆ゾ】貢】兼駈 伐 駆券】貢】ゾ駈泌ゾ弁茎撫辿樽担弁兼秘繁┻ゾ       岫なぱ岻 
Using the relation of 茎撫辿樽担 噺 伐件貢違盤畦結沈提 髪 潔┻ 潔┻ 匪, one can write 泌券弁茎撫辿樽担弁兼秘 噺 泌券弁伐件貢違盤畦結沈提 髪 潔┻ 潔┻ 匪弁兼秘 噺 伐件貢違岫畦津陳 髪 畦津陳茅 岻┻                  岫なひ岻 
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where 畦津陳 噺 泌券弁畦結沈提弁兼秘  and its complex conjugate is 畦津陳茅 噺 泌券弁畦茅結貸沈提弁兼秘 . 畦津陳  is an 

off伐diagonal element that represents the coupling efficiency between the radiation mode and 

the electron wave. We can assume that the amplitude of the field 畦 is almost constant over one 

ponderomotive period of an electron wave (i.e., equivalently, over one radiation wavelength 

when 肯 樺 岫ど┸に講峅 ). Hence, 畦津陳 噺 畦駆券孕結沈提孕兼駈 噺 畦絞津┸陳袋怠  and 畦津陳茅 噺 畦茅泌券弁結貸沈提弁兼秘 噺畦茅絞津┸陳貸怠.  

Using Eqs. (16)伐(19), we get  伐件泌券弁範茎撫┸ 貢飯弁兼秘 噺 件 岫兼態 伐 券態岻に貢違 貢津┸陳 髪 貢違範畦盤貢津┸陳袋怠 伐 貢津貸怠┸陳匪 髪 畦茅盤貢津袋怠┸陳 伐 貢津┸陳貸怠匪飯        岫にど岻 
Using Eqs. (15) and (20) with Eq. (12) and assuming the initial state is 券 噺 ど and the final 

state is 兼 噺 伐な, we get  穴貢待┸待穴権違 噺 伐貢違盤畦茅貢待┸貸怠 髪 畦貢待┸貸怠茅 匪 伐 紅貢違 貢待┸待┸                                                   岫にな岻 穴貢貸怠┸貸怠穴権違 噺 貢違盤畦茅貢待┸貸怠 髪 畦貢待┸貸怠茅 匪 髪 紅貢違 貢待┸待┸                                                  岫にに岻 穴貢待┸貸怠岫権違岻穴権違 噺 磐 件に貢違 伐 紅に貢違卑 貢待┸貸怠岫権違岻 髪 貢違範貢待┸待岫権違岻 伐 貢貸怠┸貸怠岫権違岻飯畦┻             岫にぬ岻 
Using the density matrix formulations, the expectation value of an arbitrary operator 疾 is   極疾玉 噺   岶貢疾岼 噺布駆券】貢疾】券駈津                                        

噺布布駆券】貢】兼駈駆兼】疾】券駈陳津 ┻                                                  岫にね岻 
The normalized radiation amplitude 畦 is classically determined by the bunching parameter 決 噺 岫な 軽エ 岻デ 結貸沈提乳朝珍退怠 [12] where 穴畦 穴権違エ 噺 決 髪 件絞畦 . Then, according to Eq. (24), 畦  is given 

quantum mechanically by 穴畦岫権違岻穴権違 噺 極結貸沈提玉 髪 件絞畦 噺布貢津┸津貸怠津 髪 件絞畦┻                                          岫にの岻 
For a two伐level system with two momentum states 】ど駈 and 】伐な駈, Eq. (25) is reduced to 穴畦岫権違岻穴権違 噺 貢待┸貸怠 髪 件絞畦┻                                                                岫には岻 

Redefining the off伐diagonal element of density matrix as 貢┋待┸貸怠 噺 貢待┸貸怠結貸沈弟佃違 岩 稽寐  and 

using the relations 貢待┸待 岩 鶏待 and 貢貸怠┸貸怠 岩 鶏貸怠, Eqs. (21)-(23) and Eq. (26) are respectively  穴鶏待穴権┋ 噺 伐盤畦寐稽寐 茅 髪 潔┻ 潔┻ 匪 伐 経鶏待┸                                                       岫にば岻 穴鶏貸怠穴権┋ 噺 盤畦寐稽寐 茅 髪 潔┻ 潔┻ 匪 髪 経鶏待┸                                                        岫にぱ岻 穴稽寐穴権┋ 噺 伐磐件絞寐 髪 経に卑稽寐 髪 畦寐岫鶏待 伐 鶏貸怠岻┸                                           岫にひ岻 穴畦寐穴権┋ 噺 稽寐 ┻                                                                                              岫ぬど岻 
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In deriving Eqs. (27) 伐 (30), we again use the variables 権┋ 噺 紐貢違権違 , 畦寐 噺 紐貢違畦結貸沈弟佃違 , 絞寐 噺 岷絞 伐 岫な に貢違エ 岻峅 紐貢違エ , and 経 噺 紅 貢違戴【態エ . It is obvious that Eqs. (27)伐(30) obtained on the basis of 

the density matrix approach are similar to Eqs. (8)伐(11) based on the discrete Wigner model.  

The difference between the both models is mainly due to the fact that the Lindblad form 

of the master equation fulfills the trace伐preserving property of the density matrix. On the other 

hand, the trace of the corresponding components of Wigner function to the diagonal elements of 

density matrix, 拳待待 and 拳貸怠待 , is not conserved. In the density matrix model, from the second term 

of Eq. (28) representing the inclusion of the spontaneous emission, the rate of the final state 

population 穴鶏貸怠 穴権┋エ  are only determined by the variation in the initial state population 鶏待, and 

vice versa as indicated by Eq. (27). In this case, the population can only be exchanged between 

two momentum eigenstates and no other transitions are allowed. Eqs. (27) and (28) satisfy the 

trace-preserving condition (i.e., 鶏待岫権違岻 髪 鶏怠岫権違岻 噺 な ) as will be demonstrated by numerical 

examples in the next section. Note that the first terms of Eqs. (27) and (28) correspond to the 

population change due to the stimulated emission. The opposite sign of these terms ensures the 

conservation of probabilities due to the stimulated emission.   

In the Wigner model, due to the spontaneous emission, 穴鶏貸怠 穴権┋エ  is proportional to 鶏待 伐 鶏貸怠 as expressed by the second term on the right-hand side of Eq. (9). In this case, the 

probability of occupying the final state increases by spontaneous emission from electrons 

occupying the initial state but decreases by spontaneous emission from electrons occupying the 

final state. Then, the Wigner model is more exact than the density matrix because the 

spontaneous emission from the final state is also taken into account. The drawback associated to 

the trace伐preserving property assumed in the density matrix treatment becomes pronounced as 

the rate of the spontaneous emission increases. As will be shown in the next section, in the 

practical regime of QFEL operation 岫経 隼 ど┻どば岻, the density matrix model is quite applicable 

where a very good agreement with the discrete Wigner model is observed. It is also noticed that, 

by comparing Eq. (10) and Eq. (29), the lifetime of coherence in the Wigner model is な 経エ , twice as 

large as that appeared in the density matrix model. In fact, this does not cause a significant 

difference between both models since the spontaneous emission rate 経 企 な 盤に貢違戴【態匪エ  in the 

quantum regime where 貢違 隼 ど┻ね.  

 

4. Numerical results and discussion 

In this section, using the density matrix approach, we firstly show the fundamental 

properties of coherent QFEL emission when the spontaneous emission is negligible (i.e., 経 企 な). 

Next, considering the spontaneous emission, we compare the dynamics of electrons and radiation 

field predicted by the density matrix and Wigner models using Eqs. (28)伐(31) and Eqs. (8)伐(11), 

respectively. The condition for which both models are equivalent is given.    
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4.1. Negligible spontaneous emission regime 

Here, we not only address the validity of the density matrix treatment when 経 噺 ど, but 

present insights on the electron dynamics described by the density matrix elements.      

Assuming 経 噺 ど, from Eqs. (27) and (28), we get the population difference  鶏待岫権┋岻 伐 鶏貸怠岫権┋岻 噺 な 伐 に弁畦寐弁態┻                                                      岫ぬな岻 
Then, using Eq. (31) with Eqs. (29) and (30), the evolution of radiation field is described by solving 穴態畦寐岫権┋岻穴権┋態 髪 件絞寐 穴畦寐岫権┋岻穴権┋ 伐 峙な 伐 に弁畦寐弁態峩 畦寐 噺 ど┻                                          岫ぬに岻 
In Eq. (32), the term に弁畦寐弁態 is responsible for the nonlinear characteristics of QFEL radiation. The 

linear regime is dominant if に弁畦寐弁態 企 な where 鶏待岫権┋岻 伐 鶏貸怠岫権┋岻 噺 な. In the linear regime, assuming 弁畦寐弁  has a solution in the form of 弁畦寐弁 苅 結沈 碇寐 佃┋  in Eq. (32) and using the relation 絞寐 噺 岷絞 伐 岫な に貢違エ 岻峅 紐貢違エ , we get  膏寐態 髪 な紐貢違 岷絞 伐 岫な に貢違エ 岻峅 膏寐 髪 な 噺 ど┻                                                岫ぬぬ岻 
In Fig. (1), using Eq. (33), we plot 弁  岫膏寐岻弁 vs. 絞 ;デ SｷaaWヴWﾐデ ┗;ﾉ┌Wゲ ﾗa 貢違 in the quantum regime (i.e., 貢違 噺 ど┻な┸ ど┻に┸ ど┻ぬ┸  and ど┻ね ). Fig. (1) illustrates the fundamental characteristics of the QFEL 

operating in the linear regime [3] which are (i) the resonance of the gain occurs at 絞 噺 な【に貢違, (ii) 
the full width of the gain curve is ね貢違, and (iii) the peak of the gain is 紐貢違.  

 

Fig. 1. In the linear regime and when 経 噺 ど, imaginary part of the complex root of the quadratic 

equation Eq. (33) vs. 絞 for different values of 貢違 in the quantum regime (貢違= 0.1, 0.2, 0.3, and 0.4).  

 

Using Eq. (33), we show in Fig. 2(a) the evolution of the number of photons per electron 弁畦寐弁態 with 権┋  in the linear and nonlinear regimes. In these examples, it is assumed that 貢違 噺 ど┻ぬ┸ 絞 噺 な【に貢違, and 稽寐 岫ど岻 噺 ど┻どな. In Fig. 2(a), one can realize that the deviation in the results of the 

linear and nonlinear regimes is small until the first peakく Iﾐ Fｷｪく ヲふ;ぶが デｴW ヮﾗゲｷデｷﾗﾐ ﾗa デｴW aｷヴゲデ ヮW;ﾆ 

ｷゲ 権┋】丹奪叩谷 蛤 は┻ど ┘ｴｷIｴ ;ｪヴWWゲ ┘ｷデｴ デｴW ヮヴWSｷIデWS ┗;ﾉ┌W aヴﾗﾏ デｴW ヴWﾉ;デｷﾗﾐ 権┋】丹奪叩谷 噺 伐ln範稽寐 岫ど岻【ね飯 
ヴWヮﾗヴデWS ｷﾐ RWaく ぷΒへく Aﾉゲﾗが ｷﾐ ;ｪヴWWﾏWﾐデ ┘ｷデｴ デｴW ヴWゲ┌ﾉデゲ ﾗa RWaく ぷΒへが Fig. 2(a) ゲｴﾗ┘ゲ デｴ;デ デｴW 
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ﾏ;┝ｷﾏ┌ﾏ H┌ﾐIｴｷﾐｪ ﾗII┌ヴゲ ;デ 権┋ 噺 権┋】丹奪叩谷 罰 ど┻ぱぱく In Fig. 2(a), ｷデ ｷゲ ゲWWﾐ デｴ;デ デｴW ﾏ;┝ｷﾏ┌ﾏ ﾐ┌ﾏHWヴ 

ﾗa ヮｴﾗデﾗﾐゲ ｷゲ ヱ ｷﾐ デｴW ﾐﾗﾐﾉｷﾐW;ヴ ヴWｪｷﾏW.  

In Fig. 2(b), we plot 弁畦寐弁態, 弁稽寐 弁, and 鶏待 伐 鶏貸怠 vs. 権┋く Fヴﾗﾏ Fｷｪく ふヲHぶが ｷデ ｷゲ ゲｴﾗ┘ﾐ デｴ;デ ;ゲ 弁畦寐弁態 

varies periodically from 0 to 1, 鶏待 伐 鶏貸怠 varies from 1 to -1. This behavior can be predicted from 

Eq. (31). The maximum and minimum values of the population difference, 1 and -1, correspond to 

the maximum probability of finding an electron in the initial state 券 噺 ど and the final state 兼 噺 伐な, respectively. Consequently, it is expected that the maximum of the bunching factor 弁稽寐 弁 
is 0.5 as shown in Fig. 2(b).   

 

 

 

 

 

 

 

 

Fig. 2. (a) 弁畦寐弁態 vs. 権┋ ｷﾐ デｴW ﾉｷﾐW;ヴ ;ﾐS ﾐﾗﾐﾉｷﾐW;ヴ ヴWｪｷﾏWゲく ふHぶ 弁畦寐弁態, 弁稽寐 弁, and 鶏待 伐 鶏貸怠 vs. 権┋く 
 

4.2. Non-negligible spontaneous emission regime 

                In this section, the QFEL operation is investigated taking into account the inclusion of the 

spontaneous emission. We present comparisons between the results of the density matrix and 

those of discrete Wigner model. For this purpose, we solve numerically the set of equations for 

both models, Eqs. (27)伐(30) and Eqs. (8)伐(11), respectively.  

A comparison between the average number of photons emitted per electron, 弁畦寐弁態, vs. 権┋ 
for different values of the spontaneous emission rate 経 is shown in Figs. 3. In these numerical 

examples, we assume 貢違 噺 ど┻に, 畦寐岫ど岻 噺 ど, 稽寐 岫ど岻 噺 ど┻どな, 鶏待岫ど岻 噺 な, and 鶏貸怠岫ど岻 噺 ど. In Fig. 3(a), 

identical results for the density matrix and discrete Wigner models are seen when the 

spontaneous emission is negligible, 経 噺 ど. In Fig. 3(b), for a moderate spontaneous emission rate 経 噺 ど┻どの, the difference between the results of the both models till the first peak of 弁畦寐弁態 is very 

small. From Fig. 3(c), for a large unfavorable spontaneous emission rate 経 噺 ど┻な, the results of 

density matrix deviate significantly from those of the Wigner model. In this regime, the density 

matrix fails to predict an accurate behavior for the QFEL operation. As discussed above, this is 

because the trace of the density matrix is conserved by the Lindblad form master equation 

(Tr(貢)=1). Then, the population can only be exchanged between two momentum eigenstates. On 

the other hand, in the Wigner model, the fact that the electron can emit spontaneously after its 



10 

 

first spontaneous transition is taken into account. Therefore, the population inversion in the 

density matrix model evolves faster than that in the Wigner model. Consequently, the density 

matrix model predicts stronger effects of spontaneous emission leading to smaller intensity of 

coherent radiation than that predicted by the Wigner model. To illustrate the latter behavior, in 

Fig. (4), we plot the trace of probabilities 鶏待 髪 鶏貸怠, the population difference 鶏待 伐 鶏貸怠, and the 

bunching 稽寐  vs. 権┋ for 経 噺 ど┻どの. In Fig. (4), we assume all parameters as those used in Fig. (3). Fig. 

4(a) shows the trace伐preserving property is satisfied in the density matrix model, while it is not 

satisfied in the Wigner model. As seen in Fig. 4(b), in the density matrix model, due to the 

spontaneous emission of electron, a larger population difference 】鶏待 伐 鶏貸怠】 at shorter interaction 

distance is observed. Then, the contribution of the coherent emission of electron in the density 

matrix model is suppressed in a greater way, as shown in Fig. 3(b). Fig. 4(c) shows the bunching 

factor in the density matrix model is smaller than that in the Wigner model.   

In Fig. 5, we plot the first maximum of 弁畦寐弁態 as a function of 経. It can be seen that, in the 

practical regime when 経 寄 ど┻どば, the results of the density matrix approach are in well agreement 

with those of the discrete Wigner model. When 経 伴 ど┻どば where the spontaneous emission 

strongly quenches the coherent lasing process, the density matrix is no longer valid to describe 

the QFEL interaction. We finally stress on that the regime at which 経 伴 ど┻どば is not a useful 

operating regime where the coherent radiation is greatly diminished by the spontaneous 

emission. Therefore, we safely can confirm the density matrix approach is applicable in the 

practical regime of QFEL operation.  

 

5. Conclusion 

The density matrix of the Lindblad-type master equation is a powerful tool to describe the 

quantum FEL interaction. In the quantum regime of the FEL, the diagonal elements of the density 

matrix fulfill the trace-preserving property where the electron is considered as a two-level system. 

Then, the exchange of electron populations due to the spontaneous emission occurs only 

between the initial and final momentum states. The density matrix model is compared with the 

exact model of the discrete Wigner function in which the electron transition from the final state 

to a lower momentum state is also considered. We have shown that the results of the density 

matrix model are in excellent agreement with those of the discrete Wigner model when the rate 

of the spontaneous emission ensures efficient operation of quantum FELs (when 経 寄 ど┻どば). Then, 

the approximate model of the density matrix is proved to be rigorous in the practical operating 

regime of the quantum FEL. It has been shown that the density matrix formalism provides 

straightforward physical insights into the dynamics of the quantum FEL. However, as the rate of 

the spontaneous emission increases to a level at which the FEL coherent emission is significantly 

reduced (経 伴 ど┻どば), the density matrix model becomes invalid.    
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Fig. 3. For the density matrix (DM) and Wigner models, scaled intensity 弁畦寐弁態 is plotted as a 

function of 権┋ in the quantum regime for different values of the spontaneous emission rate (a) 経 噺 ど┻ど (b) 経 噺 ど┻どの (c) 経 噺 ど┻な. 

 

 

Fig. 4. For the density matrix (DM) and Wigner models when 経 噺 ど┻どの, (a) The trace of 

probabilities 鶏待 髪 鶏貸怠 vs. 権┋. (b) The population difference 鶏待 伐 鶏貸怠 vs. 権┋. (c) The bunching factor 稽寐  vs. 権┋.  
 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Comparison between the maximum peak 弁畦寐弁態 as predicted by the density matrix (DM) and 

Wigner models where 弁畦寐弁態 is plotted against 経. 
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