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Abstract

We introduce open games as a compositional foundation of eco-

nomic game theory. A compositional approach potentially allows

methods of game theory and theoretical computer science to be

applied to large-scale economic models for which standard eco-

nomic tools are not practical. An open game represents a game

played relative to an arbitrary environment and to this end we

introduce the concept of coutility, which is the utility generated by

an open game and returned to its environment. Open games are the

morphisms of a symmetric monoidal category and can therefore be

composed by categorical composition into sequential move games

and by monoidal products into simultaneous move games. Open

games can be represented by string diagrams which provide an

intuitive but formal visualisation of the information lows. We show

that a variety of games can be faithfully represented as open games

in the sense of having the same Nash equilibria and of-equilibrium

best responses.
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1 Introduction

The concept of compositionality is well-known and almost com-

monplace in computer science, where it is what ultimately allows

programmers to scale software to large systems. However, in many

other ields compositionality is essentially unknown and hence its

beneits are not available. In this paper we introduce composition-

ality into a ield where one might not believe it to be possible: the

study of strategic games and Nash equilibria. They are of interest

in economics and computer science where optimal decisions are

taken by interacting agents with conlicting goals.

In contrast to classical game theory, where games are studied

monolithically as one global object, compositional game theory

works bottom-up by building large and complex games from smaller

components. Such an approach is inherently diicult since the

interaction between games has to be considered. Moreover, in the
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compositional approach, the equilibria of larger games should be

deined from the equilibria of the component games - but a priori,

there is no reason why this should be possible.

For example, in the prisoner's dilemma game, each player's best

option is to defect, although, if they acted as a single agent, they

would cooperate. Moreover, if the one-shot prisoner's dilemma

game is repeated, then cooperative equilibria become achievable.

More generally, the equilibria of a composite game are not neces-

sarily made up from those of the component games, and locally

optimal moves are not guaranteed to be globally optimal. In essence,

game theory contains emergent efects whereby a composite system

exhibits behaviours that are not (simple) functions of the behaviours

of the components. Accordingly, emergent efects make composi-

tionality very hard to achieve and the existence of a compositional

model of game theory is somewhat surprising. In order to arrive

at this goal we had to radically reformulate classical game theory

from irst principles and rebuild it on open games.

Open games represent the relationship between diferent inter-

actions in two dimensions: in sequence if an interaction follows

another interaction, and in parallel if interactions take place simulta-

neously. As such, we follow a path taken in the ield of open systems

[22], and in particular categorical open systems [6] where composi-

tional approaches to general systems are studied. Here, systems are

modelled as morphisms f : X → Y in a symmetric monoidal cate-

gory, where the objectsX andY describe the boundaries of the open

system, where it interacts with its environment. This means that

systems f : X → Y and f ′ : X ′ → Y ′ can be composed in parallel

using the monoidal product to yield f ⊗ f ′ : X ⊗X ′ → Y ⊗Y ′, and

two systems f : X → Y and д : Y → Z sharing a common bound-

ary can be composed sequentially by glueing along this boundary

to yield д ◦ f : X → Z . Ordinary, closed systems are recovered

as scalars [1], i.e. endomorphisms f : I → I of the monoidal unit,

which represents a trivial boundary. Open games are accordingly

the morphisms of a symmetric monoidal category.

A compositional model of game theory does not only have to

model a game but also the interactions of the game with all other

games and environments. This can be seen as a form of continuation

passing style. This would still be hardly tractable if the environ-

ment of an open game included arbitrary other open games. The

crucial technical feature underlying our approach is to describe the

behaviour of an open game relative to a simpliied notion of an en-

vironment which we call a context, in which the future is abstracted

into a single utility function. In this way, we reduce an arbitrarily

complex game to a set of individual decisions. The circularity of a

Nash equilibrium, where all players play mutually best replies, is

inally handled by the composition operators.
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The theory of open games is based on two main predecessors.

Firstly, in [18] games are deined as processes and in [2] the dynam-

ics but not the equilibria are treated compositionally. The second

predecessor is the theory of higher order games and selection func-

tions, for example in [4] and [13], which give a theory of equilibria

relative to an environment but are not strongly compositional. (Se-

lection functions can however be used to model goals of agents

compositionally [12].) Combining features of these approaches into

a single theory required the innovations mentioned above and led

us to discover the idea of an open game. After we developed open

games, connections to lenses and the geometry of interaction were

noticed respectively by Jeremy Gibbons and Tom Hirschowitz.

Although compositional game theory is partly inspired by game

semantics, there is little technical overlap beyond monoidal cate-

gories. Game semantics avoids several diicult deining features of

game theory by restricting to the 2-player zero-sum setting, which

leads to more richly structured (typically ∗-autonomous) categories.

In [11] morphisms between open games are deined to capture rela-

tive Nash equilibria, directly inspired by relative winning strategies

in game semantics, and this leads to deeper connections between

open games and game semantics than are apparent from this paper.

We omit proofs in this paper, which can be found in [9] and

[11]. We also work over the category of sets to keep notation and

overheads to a minimum ś for a more categorical account, see once

more [9]. The rest of this paper is structured as follows: The next

section introduces selection functions as a key ingredient of open

games. Section 3 introduces the deinition of an open game and

discusses its elements, followed by some examples in Section 4. The

monoidal category of open games is introduced in Section 5 and the

string diagrams attached to this category in Section 6. We inally

turn to examples built compositionally: in Section 7 we discuss

simultaneous move games and in Section 8 sequential move games.

Section 9 concludes the paper with an outlook on further work.

2 Selection functions and higher order games

For reasons of space, we assume the reader knows some basic

game theory, such as the deinitions of normal-form and extensive-

form games and Nash equilibrium. These basic concepts can be

found for example in [14] or many online lecture notes. Neverthless,

in this section we introduce enough game theory via selection

functions [4, 13] to make the paper self contained.

Deinition 2.1. An n-player higher order simultaneous move game

is deined by the following data:

• For each player 1 ≤ i ≤ n, a set Xi of choices

• A set R of outcomes

• An outcome function q :
∏n

i=1 Xi → R

• For each player 1 ≤ i ≤ n, a multi-valued selection function

δi : (Xi → R) → P (Xi )

In this game, each player simultaneously makes a choice of move

xi : Xi . We deine a (pure) strategy for player i to be just a choice

in Xi , and a (pure) strategy proile to be a tuple of strategies in

Σ :=
∏n

i=1 Xi . When all choices are made, the rules of the game

determine an outcome q(x1, . . . ,xn ) : R. The selection function

δi : (Xi → R) → P (Xi ) deines the set of moves δi (k ) that are

considered optimal in a context k : Xi → R, which describes the

individual decision faced by player i . A context for player i is ob-

tained from the outcome function by ixing strategies for all other

players and is thus the utility function associating, to each poten-

tial unilateral deviation xi of player i , the utility arising from that

deviation.

Given a higher order simultaneous move game, we deine its

best response relation B ⊆ Σ × Σ by (σ ,σ ′) ∈ B if for all players

1 ≤ i ≤ n, we have σ ′i ∈ δi (λ(xi : Xi ).q(σ [i 7→ xi ])), where

σ [i 7→ xi ] is the strategy proile σ apart from the ith player who

chooses xi or, more formally,

(σ [i 7→ xi ])j =

xi if i = j

σj otherwise

(In game theory this is usually written (σ ′i ,σ−i ), but we prefer the

more precise notation of computer science.) A selection equilibrium

is a pure strategy proile σ with (σ ,σ ) ∈ B.

The classical deinition of an n-player simultaneous move game

in normal form results from this deinition as the special case in

which the set of outcomes is Rn and the ith player's selection

function is

δi (k ) = argmax(πi ◦ k )

= {x : Xi | (k (x ))i ≥ (k (x ′))i for all x
′ : Xi }

In this case the selection equilibria agree with the usual deinition

of pure strategy Nash equilibrium, and moreover the best response

relation is the same. There are many well-known examples of 2-

player simultaneous move games with 2 moves each, such as the

prisoner's dilemma, matching pennies, battle of the sexes, chicken,

etc., deined by diferent outcome functions q : {C,D}2 → R2. The

prisoner's dilemma, for example, is given by the outcome function

q(C,C ) = (2, 2) q(C,D) = (0, 3)

q(D,C ) = (3, 0) q(D,D) = (1, 1)

and yields the constant best response relation with (σ , (D,D)) ∈ B

for all strategy proiles σ . This happens because D is a dominant

strategy for both players in the prisoner's dilemma. An extended

example can be found in [13] of a higher order simultaneous move

game whose selection functions are not of this form, which we will

discuss in section 7.

Deinition 2.2. Ann-player higher order sequential game is deined

by the same data as a simultaneous move game: sets X1, . . . ,Xn of

choices, a set R of outcomes, an outcome function q :
∏n

i=1 Xi → R,

and selection functions δi : (Xi → R) → P (Xi ). A strategy for

player i is a function

σi :

i−1∏

j=1

X j → Xi

that chooses a move contingent on the previous moves by other

players, and the set of strategy proiles is the set

Σ =

n∏

i=1

*.
,

i−1∏

j=1

X j → Xi
+/
-

of tuples consisting of a strategy for each player. There is an ob-

vious play function P : Σ →
∏n

i=1 Xi producing the sequence of

moves resulting from a strategy proile, deined by course-of-values

recursion, which in the base case uses
∏0

j=1 X j → X1 � X1. Given

a strategy proile σ , we call P(σ ) the strategic play of σ .
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The best response relation B ⊆ Σ×Σ of a higher order sequential

game is deined by (σ ,σ ′) ∈ B if

(P(σ [i 7→ σ ′i ]))i ∈ δi (λ(xi : Xi ).q(Ui (xi ,σ )))

where the unilateral deviation operator Ui is the evident function

Ui : Xi ×Σ→
∏n

j=1 X j deined by course-of-values recursion, with

(Ui (xi ,σ ))i = xi . Strategy proiles σ with (σ ,σ ) ∈ B are called

selection equilibria of the sequential game.

In the case where the selection functions are argmax as deined

above, this agrees with the standard deinitions of best responses

and Nash equilibria. Note that this is a strictly weaker deinition

than that of optimal strategies from [4], which specialises to subgame

perfect equilibrium (a strengthening of Nash equilibrium) when the

selection functions are argmax [5].

3 Open games

The primary objects of study in compositional game theory are

called open games. We start by giving the deinition, and in the

remainder of this section we discuss its interpretation.

Deinition 3.1. Let X , S,Y ,R be sets. An open game G : (X , S ) →

(Y ,R) is deined to be a 4-tuple G = (ΣG , PG ,CG ,BG ), where

• ΣG is a set, called the set of strategy proiles of G

• PG : ΣG × X → Y is called the play function of G

• CG : ΣG × X × R → S is called the coplay function of G

• BG : X × (Y → R) → Rel(ΣG ) is called the best response

function of G

Rel(ΣG ) is the meet-semilattice of all endo-relations R ⊆ ΣG ×

ΣG . In general, we impose no conditions whatsoever on these

components. In practice, however, we are most interested in those

open games which are generated by certain constructions, some of

which are deined in this paper. There are class-many open games of

a ixed type (which causes the category of open games to be locally

large), but only set-many after restricting to those generated by a

set of constructions. (We could also simply bound the cardinality

of ΣG .) We will represent a general open game G : (X , S ) → (Y ,R)

in diagrammatic form (where time lows from left to right) as

X Y

RS

G

In Section 5 we will build on this and discuss the graphical syntax

of open games.

We interpretX as the type of observations that can be made by G

that inform the choice of a strategy and hence action, and Y as the

type of moves or choices. By that a game G is a process that maps

observations X to choices Y . The types R and S , on the other hand,

are ‘dual' or ‘contravariant' types and this is indicated above by

the arrows lowing in the reverse direction. We think of R as the

type of utility (type of values about which the players in G have

preferences) that actions might generate. Thus utility functions

that arise in standard game theory are simply functions Y → R.

The type S is dually called the coutility since it represents values

that are returned to the calling environment by the game so that

they can become utility for other processes. This is seen clearly and

formally within the deinition of composition of open games where

the utility of one game (acting as the environment for the other) is

computed via the coplay function of the other game. We point this

out explicitly when discussing the composition of games.

The most straightforward parts of the deinition of open games

are the irst two components. It is intuitive that a game has a set of

strategy proiles and that, given a strategy proile and an observa-

tion, we can run the strategy proile on the observation to obtain a

choice. To give a simple concrete example, suppose Y = A × B, and

deine

Σ = (X → A) × (X ×A→ B)

and P((σ1,σ2),x ) = (σ1 (x ),σ2 (x ,σ1 (x ))). This represents a two-

player game of perfect information: the value x is the input which

the irst player observes and then chooses a using the strategy σ1.

The second player observes both x and a and chooses b using σ2.

The pair (a,b) is taken to be the output.

To gain an intuition for coplay, let us irst consider a very simple

situation. You receive your monthly income and upon observing

your bonus (your X ), you decide to buy a bottle of champagne. You

go to a wine shop and for the given price, you buy a bottle (your

Y ), which gives you a certain utility (your R). Here, the connection

between choice and reaction, between what you do and what comes

back to you, is rather immediate. Deciding is simple.

Open games model situations where the connection between

your action and what comes back to you is left open - in the same

way as with selection functions: by allowing for all possible con-

texts. The only prerequisite for contexts is being well-typed. Com-

ing back to the example, suppose, instead of buying the bottle

yourself, you give an amount of money to your friend, a cham-

pagne aicionado, with the request to buy a bottle for you. So, your

action gives her some money, and you expect a bottle of champagne

and by that some utility back from her. She observes your bonus

and the amount of money given to her (your Y , her X ), and will

take some action (her Y ) that will bring back a bottle of champagne

from a yet unspeciied environment (her R). Ultimately, she will

hand back a bottle of champagne (her S , your R) which will create

utility for you. This handing back of utility is computed through

her coplay function which computes the coutility to hand back.

Note, in the example we used the concept of utility, which by

deinition is the real number maximised by classical game-theoretic

agents. There is no requirement in the deinition of an open game

that outcomes are either real numbers, or a linear resource such as

money nor that some utility is maximised at all. Indeed, slightly

changing the example, we could have deined coutility as belonging

to a certain set of possible types of wine. This lexibility (which is

inherited from the theory of selection functions) may be seen as a

necessary side-efect of obtaining compositionality, but can itself

be useful in modelling [12, 13].

Possibly the most important part of the deinition is the best

response relation, which is deined relative to an arbitrary context ś

as in the case of games modelled via selection functions. Hence, an

open game also has Nash equilibria relative to an arbitrary context.

A context consists of a state, which says what happened in the past,

and a utility function, expressed as a continuation, which says what

will happen in the future. Compositional game theory relies on

the observation that such relative best response relations provide a

strategic representation of games that can be composed.

Relationship with Lenses: Pairs of functions X → Y and X × R →

S are equivalent to polymorphic lenses (X , S ) → (Y ,R) [10, 19].
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Moreover, all open games can be built from lenses in a way we now

describe. Observe that

• An element x : X is given by a lens (1, 1) → (X , S ), where

1 = {∗}. Call such lenses states St(X , S )

• A function Y → R is a lens (Y ,R) → (1, 1). Call such lenses

costates CoSt(Y ,R)

Lemma 3.2. An open game G : (X , S ) → (Y ,R) is exactly

• A family of lenses, that is a set ΣG and, for each σ : ΣG , a

lens Gσ : (X , S ) → (Y ,R).

• BG : St(X , S ) × CoSt(Y ,R) → Rel(ΣG )

In such a situation, we often save notational overhead by writing

the lens Gσ as σ , as in (X , S )
σ
−→ (Y ,R).

Lenses play a key role in the development of open games as they

hide many details which otherwise severely pollute the presenta-

tion. More concretely, they encapsulate the purely algebraic parts

of open games, leaving us to focus on the strategic behaviour of the

best-response function. They also ensure all reasoning about open

games can take place diagrammatically in the category of lenses.

As a result, more recent work on open games has heavily exploited

this connection [11].

Relationship with Geometry of Interaction: It has been pointed out

to us that there is a connection between the geometry of interaction

(GoI) and open games. A central construction within GoI, the Int-

construction, takes a traced monoidal category C and constructs

another category I (C) whose objects are pairs of objects of C, and

whose morphisms (X , S ) → (Y ,R) are maps X ⊗ R → Y ⊗ S . If C

is cartesian, this is equivalent to two functions X × R → Y and

X × R → S . If the former function does not use the input R, we get

precisely a lens. This restriction means that open games are not

completely symmetric and this explains why a trace operator is

not needed to deine composition Ð one can simply calculate the

forwards/covariant part of the composition and use that to calculate

the backwards/contravariant part.

When the base category is traced cartesian monoidal, both lenses

and the Int-construction are deined, and the two composition

operators agree. This means that there is an identity-on-objects

functor from the category of lenses to I (C), and this suggests it

will be possible to build a more symmetrical theory of open games

with computable strategies.

4 Examples of open games

An open game G : (1, 1) → (1, 1), where 1 = {∗}, consists (up to

isomorphism of sets) of a set ΣG of strategy proiles and a best

response relation BG ⊆ ΣG × ΣG . Since (1, 1) will turn out to be

the monoidal unit of the monoidal category of open games, we call

G a scalar open game, following the terminology of [1].

Any existing notion of ‘game' from which we can deine a best

response function can be encoded as a scalar open game. For ex-

ample, consider the prisoner's dilemma from Section 2. This can

be represented as a scalar open game G : (1, 1) → (1, 1) with

ΣG = {C,D}
2 with the constant best response relation BG deined

by (σ ,σ ′) ∈ BG if σ ′ = (D,D). (The question of how much infor-

mation about a normal-form or extensive-form game is preserved

by the representation as a scalar open game is a subtle one, which

we can unfortunately not discuss here for space reasons.)

In this paper we will show that open games can be used to build

such scalars compositionally. In the remainder of this section we

will deine families of open games that we consider atomic, in the

sense that they are not built compositionally from smaller games.

These families are decisions, functions, and counits.

A decision is an open game that represents a single choice made

by an agent.

Deinition 4.1. LetX andY be sets. A (utility-maximising) decision

D : (X , 1) → (Y ,R) is an open game deined by the following data:

• ΣD = X → Y

• PD (σ ,x ) = σ (x )

• CD (σ ,x , r ) = ∗

• (σ ,σ ′) ∈ BD (x ,k ) if σ ′(x ) ∈ argmaxk

A (pure) strategy for a single decision is a function that maps

possible observations that can be made by the agent, to possible

choices. Such a strategy is considered optimal in the context (x ,k )

if it maps the current state x to a maximising point of the current

continuation k .

The reason that the pre-deviation strategy σ plays no role in

(σ ,σ ′) ∈ BD (x ,k ) is that σ is considered the strategy played by all

other players besides the one currently under consideration, and

so it plays no role in a 1-player open game such as D. Put it in

another way: in a one-player game there is nothing for σ ′ to be a

best response to.

The deinition of a decision assumes an agent who maximises

real-valued utility. However, there is nothing inherent in the def-

inition of an open game that says this must be the case. Indeed,

one can argue that the additional generality is necessary to be com-

positional: An aggregate of two maximising agents, if modelled

as a selection function-like object, is not necessarily maximising.

The prisoner's dilemma is a standard example of an aggregate with

behaviour that is not (globally) maximising, that is to say, if the two

players were modelled as a single entity, they would choose (C,C ).

This is the sense in which selection functions are a theoretical

precursor to open games.

Deinition 4.2. Let X , Y and R be sets, and let δ : (Y → R) →

P (Y ) be a multi-valued selection function. We deine an open game

Dδ : (X , 1) → (Y ,R) by the following data:

• ΣDδ
= X → Y

• PDδ
(σ ,x ) = σ (x )

• CDδ
(σ ,x , r ) = ∗

• (σ ,σ ′) ∈ BDδ
(x ,k ) if σ ′(x ) ∈ δ (k )

We will give an example of an open game with non-utility-

maximising decisions in Section 7.

Decisions are the only atomic open games that play a role in

strategic reasoning. We formalise this with the following deinition.

Deinition 4.3. Let G : (X , S ) → (Y ,R) be an open game. We call

G strategically trivial if it satisies the following two conditions:

• |ΣG | = 1 (say, ΣG = {∗})

• (∗, ∗) ∈ BG (x ,k ) for all contexts (x ,k )

The irst condition says that there is exactly one strategy, and

so there is no choice to be made. The second condition says that

this trivial strategy can never fail to be in equilibrium. The idea

behind this is that if a strategy proile fails to be an equilibrium, it

should always be because some player has an incentive to deviate.

Strategically trivial open games could also be called zero-player

open games.
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Deinition 4.4. Let f : X → Y and д : R → S be functions. We

deine a strategically trivial open game ( f ,д) : (X , S ) → (Y ,R) with

play function P(f ,д) (x ) = f (x ) and coplay functionC(f ,д) (∗,x , r ) =

д(r ).

As a special case of this, a function f : X → Y can be ‘lifted' to

an open game in two ways: covariantly as ( f , id1) : (X , 1) → (Y , 1),

or contravariantly as (id1, f ) : (1,Y ) → (1,X ).

The inal class of atomic open games are the counits.

Deinition 4.5. Let X be a set. We deine a strategically trivial

open game εX : (X ,X ) → (1, 1) called a counit, with play function

PεX (∗,x ) = ∗ and coplay function CεX (∗,x , ∗) = x .

Recall that backward-lowing values are ‘teleological', that is,

they are future values about which agents are reasoning. The role

of counits is to identify an ordinary forward-lowing value as the

value about which some past agent is reasoning. This plays an

important role in the diagrammatic language of open games in the

next section. Note there is no dual unit of type (1, 1) → (X ,X )

(the reader might like to try to deine one) which is a relection

of the fact that game theory is not symmetric in its forward and

backward looking facets. Mathematically, open games will not form

a compact closed category.

5 The monoidal category of open games

In this section we will deine a pair of operators for composing

open games, categorical composition and monoidal product, which

correspond to sequential play and simultaneous play. These two

operators make open games into the morphisms of a symmetric

monoidal category (after quotienting by isomorphisms of strategy

sets). As morphisms of a monoidal category open games can also

be denoted by string diagrams, and we introduce this diagrammatic

language in the next section. While these two operators form the

core, we do not claim that they are a complete basis of operators

for building open games in any formal or informal sense. Indeed,

other operators are discussed in [8].

First we give the deinition of categorical composition. This is a

form of sequential composition in which the choice made by the

irst component is hidden, visible only to the second component

but not to the outside. Sequential play is more intuitive when the

choices made by both components are visible; this will be recovered

as a derived operator in Section 8.

Deinition 5.1. Given a pair of open games G : (X , S ) → (Y ,R)

and H : (Y ,R) → (Z ,Q ), we deine their composition H ◦ G :

(X , S ) → (Z ,Q ) as follows. The set of strategy proiles is the carte-

sian product ΣH◦G = ΣG × ΣH . The play function composes

simply by composition of functions:

PH◦G ((σ ,τ ),x ) = PH (τ , PG (σ ,x ))

The coplay function composes as follows:

CH◦G ((σ ,τ ),x ,q) = CG (σ ,x ,CH (τ , PG (σ ,x ),q))

The best response relation ((σ ,τ ), (σ ′,τ ′)) ∈ BH◦G (x ,k ) holds if

(σ ,σ ′) ∈ BG (x ,k
′) and (τ ,τ ′) ∈ BH (PG (σ ,x ),k ), where k

′ : Y →

R is deined by k ′(y) = CH (τ ,y,k (PH (τ ,y))).

Since the set of strategy proiles is usually a tuple consisting

of a strategy for each decision, the condition ΣH◦G = ΣG × ΣH
corresponds roughly to saying that the set of decisions inH ◦ G is

the disjoint union of the decisions in G andH . The play function

says that to play the sequential compositionH ◦ G in state x with

strategy proile (σ ,τ ), we irst play G with σ in state x , obtaining

a state y forH , which we then play with τ .

The formula for composing coplay functions is hard to under-

stand intuitively, but successfully captures the informal intuition

given for coplay in section 3. Alternatively, it can be seen as com-

position of lenses [10].

Finally, we give the conditions for a strategy proile (σ ′,τ ′) to be

a best response to (σ ,τ ) in a context (x ,k ). This means that for each

player in G, σ ′ must be rational assuming that all other players in

G play σ and all players inH play τ , and also that for each player in

H , τ ′ must be rational assuming that all players in G play σ and all

other players inH play τ . (This is Nash equilibrium-like reasoning.)

We can apply the compositionally-known best response relations

for G andH , after using these assumptions to appropriately modify

the context. ForH the continuation remains k , and the state x is

modiied to PG (σ ,x ) using the assumption that players in G play

σ . For G the state remains x , and the continuation is modiied to k ′,

using the interpretation of the coplay function CH as the utility

passed backward fromH to G, with the assumption that players

inH play τ .

Open games trivially cannot form a category, because this com-

position operator is not associative on the nose: the strategy proiles

are

ΣI◦(H◦G) = (ΣG × ΣH ) × ΣI

, ΣG × (ΣH × ΣI ) = Σ(I◦H )◦G

There are three approaches to this problem. The irst, which is

perfectly successful in practice, is to simply ignore it and informally

work up to isomorphic strategy sets. The second, which is attractive

from a theoretical point of view, is to deine a bicategory of open

games in which the 2-cells are functions between strategy sets

that suitably commute with the remaining structure. The reason

we do not take this approach is that monoidal bicategories are

notoriously complicated, and generalising to a monoidal double

category (whose axioms are typically much easier to verify [21])

would take us too far aield. (This is carried out in [11].) Therefore

in this paper we take the third approach, which is to deine a

suitable equivalence relation on open games and then a category

whose morphisms are equivalence classes. This is equivalent to

irst deining a bicategory, and then obtaining a 1-category by

quotienting by invertible 2-cells.

Deinition 5.2. Let G1,G2 : (X , S ) → (Y ,R) be open games. We

write G1 ∼ G2 if there is a bijection i : ΣG1 → ΣG2 such that

• PG1 (σ ,x ) = PG2 (i (σ ),x ) for all x : X and σ : ΣG1
• CG1 (σ ,x , r ) = CG2 (i (σ ),x , r ) for all x : X , r : R and σ : ΣG1
• (σ ,σ ′) ∈ BG1 (x ,k ) if (i (σ ), i (σ ′)) ∈ BG2 (x ,k ) for all x : X ,

k : Y → R and σ ,σ ′ : ΣG1

Proposition 5.3. For each type (X , S ) → (Y ,R), ∼ is an equivalence

relation on the class of open games of that type.

The quotient under ∼ identiies open games with isomorphic

strategy proiles and best responses. This is close in spirit to the

concept of best response equivalence of games in classical game

theory [16, p. 52f], but has some strange consequences. For example,

let G be the scalar open game representing the prisoner's dilemma

from the previous section, with ΣG = {C,D}
2 and (σ ,σ ′) ∈ BG

if σ ′ = (D,D). Now consider a 1-player game with 4 choices
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A = {1, 2, 3, 4} and utility function k : A → R given by k (x ) = x .

Encoding this as a scalar open gameH yields ΣH = A and (σ ,σ ′) ∈

BH if x ′ = 4, since 4 is again a dominant strategy for the player.

Then G ∼ H , and so in the quotient they will be equal elements of

the monoid of scalars, despite the fact that they represent games

with diferent numbers of players. However, this is a technical

consequence of working with an equivalence relation, and does not

happen if we instead use a bicategory or double category of open

games.

Proposition 5.4. ◦ is well-deined on equivalence classes, that is to

say, if G ∼ G′ andH ∼ H ′ thenH ◦ G ∼ H ′ ◦ G′.

Deinition 5.5. For each object (X , S ), the identity open game

id(X ,S ) : (X , S ) → (X , S ) is the function (idX , idS ), that is, the

strategically trivial open gamewith Pid(X ,S )
(∗,x ) = x andCid(X ,S )

(∗,x , s ) =

s .

Proposition 5.6. There is a category Game whose objects are pairs

of sets and whose morphisms are equivalence classes of open games.

The composition is ◦ and the identity on (X , S ) is the equivalence

class of id(X ,S ) .

In the previous section we deined a strategically trivial open

game ( f ,д) : (X , S ) → (Y ,R) given functions f : X → Y and

д : R → S . This deines a functor (−,−) : Set × Setop → Game.

Next we deine the monoidal product of open games, which

corresponds to simultaneous play.

Deinition 5.7. Let G1 : (X1, S1) → (Y1,R1) and G2 : (X2, S2) →

(Y2,R2) be open games. We deine an open game G1 ⊗ G2 : (X1 ×

X2, S1 × S2) → (Y1 × Y2,R1 × R2) as follows:

• The set of strategy proiles is ΣG1⊗G2 = ΣG1 × ΣG2
• The play function is

PG1⊗G2 ((σ1,σ2), (x1,x2)) = (PG1 (σ1,x1), PG2 (σ2,x2))

• The coplay function is

CG1⊗G2 ((σ1,σ2), (x1,x2), (r1, r2))

= (CG1 (σ1,x1, r1),CG2 (σ2,x2, r2))

• The relation

((σ1,σ2), (σ
′
1,σ
′
2)) ∈ BG1⊗G2 ((x1,x2),k )

holds if the relations (σ1,σ
′
1) ∈ BG1 (x1,k1) and (σ2,σ

′
2) ∈

BG2 (x2,k2) both hold, where k1 : Y1 → R1 and k2 : Y2 → R2
are deined by

k1 (y1) = π1 (k (y1, PG2 (σ2,x2)))

k2 (y2) = π2 (k (PG1 (σ1,x1),y2))

Lemma 5.8. ⊗ is well-deined on equivalence classes.

Lemma 5.9. ⊗ deines a bifunctor Game × Game→ Game.

Theorem 5.10. Game is a monoidal category in which the monoidal

product on objects is (X1, S1) ⊗ (X2, S2) = (X1×X2, S1×S2) and that

on morphisms is previously deined. The monoidal unit is the object

I = (1, 1).

The structure morphisms of the monoidal category are inherited

from themonoidal category Set×Setop via the functor (−,−), where

Set is cartesian monoidal. Game is moreover symmetric monoidal,

with the symmetry inherited from Set × Setop.

A Lens-theoretic View: A cleaner approach arises if one factors

the deinition of parallel and sequential composition via the use

of lenses. First note that the above deinitions restrict to lenses

meaning that the category of lenses is symmetric monoidal. Just

as open games can be deined in terms of lenses, the categorical

structure of open games can similarly be deined in terms of the

simpler categorical structure of lenses.

Lemma 5.11. Let G : (X , S ) → (Y ,R) andH : (Y ,R) → (Z ,T ) be

open games. Then the compositeH ◦G is the family of lenses indexed

by ΣG × ΣH with the pair (σ ,τ ) indexing the lens

(X , S )
σ
−→ (Y ,R)

τ
−→ (Z ,Q )

Given a state h : (1, 1) → (X , S ) and a costate k : (Z ,Q ) → (1, 1),

then ((σ ,τ ), (σ ′,τ ′)) ∈ BH◦G (x ,k ) holds if (σ ,σ ′) ∈ BG (h,k ◦ τ )

and (τ ,τ ′) ∈ BH (σ ◦ h,k ).

Notice how lens composition hides all the details of how play and

coplay functions knit together in the composite game. In particular,

in the deinition of composition, the function

k ′(y) = CH (τ ,y,k (PH (τ ,y)))

is merely the lens composite k ◦ τ . A similarly simpliied construc-

tion of the monoidal product of open games via the monoidal prod-

uct of lenses can also be given. Observing this vastly simpliies

the proof that open games form a symmetric monoidal category;

compare the direct proof in [9] and the proof using lenses in [11].

6 String diagrams

We will now informally present the string diagram language for

open games. A formal presentation can be found in [10], which

proves a coherence theorem by which we can deine an open game

by its string diagram, given interpretations of the atomic open

games. We refer the reader to [20] for a summary of graphical

languages of this sort. The language of open games is an extension

of those of symmetric monoidal categories, and similar to (but not

exactly) a fragment of compact closed categories.

The key idea of the string diagram language is to treat the object

(X , S ) as a formal tensor product X ⊗ S∗, where −∗ is a duality that

is deined on objects but not on arbitrary open games. Diagrammat-

ically we represent this duality by an orientation on strings, and

thus a general open game G : (X , S ) → (Y ,R) is denoted by

X Y

RS

G

More formally, we allow individual strings to represent covariant

objects of the form (X , 1), and contravariant objects of the form

(1, S ). Then, up to isomorphism, a general object can be written

as a tensor product (X , S ) � (X , 1) ⊗ (1, S ) of a covariant and a

contravariant object. If we deine a duality operation on arbitrary

objects by (X , S )∗ = (S,X ), then (X , S ) � (X , 1) ⊗ (S, 1)∗. This

justiies the informal statement (X , S ) = X ⊗ S∗, because we can

identify Set with a symmetric monoidal subcategory Set →֒ Game

by identifying X with (X , 1) and f with ( f , id1).

Notice that since we also have (X , S ) � (S, 1)∗ ⊗ (X , 1), the open

game G can equally be denoted
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X Y

RS
G

That is, the relative ordering of covariant and contravariant parts

of an object does not matter. More formally, the objects X ⊗ S∗ and

S∗ ⊗ X are equal in the strictiication of Game, and the symmetry

sX ,S∗ is an identity.

Corresponding to each atomic open game we have a correspond-

ing ‘atomic' string diagram, which we compose by the usual opera-

tions of end-to-end and side-by-side juxtaposition. For example, a

utility-maximising decision D : (X , 1) → (Y ,R) corresponds to a

node

X

Y

R

D

If X is a 1-element set, we further restrict this to

Y

R

D

with the usual (purely syntactic) convention of using a triangle for

morphisms into or out of the monoidal unit.

Given a function f : X → Y , its covariant lifting ( f , id1) :

(X , 1) → (Y , 1) and its contravariant lifting (id1, f ) : (1,Y ) →

(1,X ) are respectively denoted

X Yf XY f

This is analogous to the use of rotation for the transpose of a linear

map used by Bob Coecke and others, for example in [3]. While

transposition in a compact closed category is tensor-reversing, i.e.

(X ⊗Y )∗ � Y ∗⊗X ∗, for us it is more convenient (ultimately because

our objects are pairs of sets) to have (X ⊗ Y )∗ = X ∗ ⊗ Y ∗, leading

to a notation with relection rather than rotation.

The deleting function X → 1 and diagonal function X → X 2

lift to give a cocommutative comonoid on every covariant object,

and a commutative monoid on every contravariant object. We give

these the special syntax

X X

X

X

X

X

X

X

The inal atomic open games that we must give representations

to are the counits εX : (X ,X ) → I . This is denoted by a bending

wire

X

X

Since there is no natural strategically trivial open game I → (X ,X ),

we do not allow wires to bend in the opposite direction in our string

diagrams.

Covariant functions, contravariant functions and counits are

related by the counit law, stating that the string diagrams

X

Y

f

=

X

Y f

denote equal open games. That is to say, the diagram of open games

(X ,Y ) (Y ,Y )

(X ,X ) (1, 1)

( f , id1) ⊗ id(1,Y )

id(X ,1) ⊗ (id1, f ) εY

εX

commutes (where the monoidal structure morphisms are implicit).

Given a diagram built from the pieces we have described, which

does not contain any wire bending in the illegal direction, we can

compositionally build an open game where

• Decision and function nodes are interpreted as the corre-

sponding atomic open game

• Side-by-side and end-to-end composition of diagrams is in-

terpreted as monoidal product and categorical composition

of open games

• A backwards-bending wire is interpreted as the correspond-

ing counit

The coherence theorem for teleological categories [10] states that

the resulting open game is invariant under topological manipula-

tions of the diagram, including rotating function nodes around a

bend using the counit law, provided that the new diagram does not

contain a wire bending in the illegal direction. Several examples

of interpreting a diagram as an open game can be seen in the next

two sections.

7 Simultaneous move games

In this section and the next we will apply the theory of the previ-

ous sections to demonstrate that various classes of games can be

represented as open games and can be built compositionally.

We begin with simultaneous move games. The decision D1,Xi
:

I → (Xi ,R) represents an agent who makes a choice from a set Xi
in order to maximise a real number.

Theorem 7.1. Let

G :=

n⊗

i=1

D1,Xi
: I → *

,

n∏

i=1

Xi ,R
n+
-

be a monoidal product of decisions. Then the set of strategy proiles

of G is equal to the set of pure strategy proiles of a simultaneous

move game with sets of choices Xi , namely ΣG =
∏n

i=1 Xi and, for

any function q :
∏n

i=1 Xi → R
n , the relation BG (∗,q) ⊆ ΣG × ΣG

is precisely the best response relation for the simultaneous move game
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D1,X1

D1,X2

q

X1

X2

R

R

R

R

Figure 1. String diagram for simultaneous move game

with outcome function q (and, hence, the ixpoints of BG (∗,q) are the

pure strategy Nash equilibria).

In particular, by the associativity of the monoidal product, the

monoidal product of anm-player and an n-player open game is an

m + n-player open game.

Given a particular utility function q :
∏n

i=1 Xi → R
n , consider

the covariant function

(q, 1) : *
,

n∏

i=1

Xi , 1+
-
→ (Rn , 1)

We take the monoidal product of this with an identity morphism

and then post-compose with a counit, to yield the strategically

trivial open game

*
,

n∏

i=1

Xi ,R
n+
-

(q,1)⊗id(1,Rn )

−−−−−−−−−−−−→ (Rn ,Rn )
εRn
−−−→ (1, 1)

By the counit law, this can be equivalently written as

ε∏n
i=1 Xi

◦ (id(
∏n
i=1 Xi ,1) ⊗ (1,q))

Now consider the scalar open game

(1, 1)

⊗n
i=1 D1,Xi

−−−−−−−−−−→ *
,

n∏

i=1

Xi ,R
n+
-

(q,1)⊗id(1,Rn )

−−−−−−−−−−−−→ (Rn ,Rn )
εRn
−−−→ (1, 1)

This scalar open game has the property that its best response re-

lation B(∗, ∗), for the unique context (∗, ∗), is precisely the best

response function for the simultaneous move game with outcome

function q.

For small values of n, we can visualise this scalar open game

as a string diagram. For example, when n = 2 the corresponding

string diagram is depicted in Figure 1. Here, for the irst time we

can see how the information low in a game is visualised with a

string diagram: the utility generated by the utility function is ‘fed

back' to each agent via a counit.

The previous results can be strengthened to an arbitrary higher

order game (introduced in Section 2) using the open games Dδ

associated to a selection function from Section 4, in which case

the ixpoints of the best response relation are selection equilibria.

An interesting special case of this is depicted in Figure 2, in which

D1

D2

X

X

X

X

Figure 2. Simultaneous move game with non-utility-maximising

players

the outcome that is ‘optimised' by each player is nothing but the

choice of the other player. (Ignoring the types, this string diagram

arises from Figure 1 by replacing q with a symmetry, i.e. crossing

wires; this provides a nontrivial example of reasoning about the

equivalence of games from topological manipulations of string

diagrams.) Without imposing an order relation on the set of choices,

it is not possible to interpret D1 and D2 as utility-maximising

decisions. Instead, by interpreting D1 and D2 in suitable ways we

can obtain directly analogous results to the Keynes beauty contest

example in [13].

We will consider three diferent ways of interpretingD1 andD2,

which result in three diferent games. If D1 = D2 are both Dix,

where ix : (X → X ) → P (X ) is the selection function ix(k ) =

{x : X | x = k (x )}, the resulting scalar open game is a coordination

game. In particular, if X = {A,B} then the best response relation is

the same as Meeting in New York, the 2-player simultaneous move

game with utility maximising players and outcome function

q(x ,y) =

(1, 1) if x = y

(0, 0) if x , y

In particular, the pure Nash equilibria and the ixpoints of BG (∗, ∗)

are (A,A) and (B,B).

Next, we interpret bothD1 andD2 as the open game lifted from

the anti-ixpoint selection function anti-ix(k ) = {x | x , k (x )}. If

we do this, then the resulting scalar open game G has the same

best response relation as a simultaneous move game with 2 utility

maximising players and outcome function

q(x ,y) =

(0, 0) if x = y

(1, 1) if x , y

This is an anti-coordination game. If X = {A,B} then the pure Nash

equilibria and ixpoints of BG (∗, ∗) are (A,B) and (B,A).

Finally, we interpret D1 = Dix and D2 = Danti-ix. This is a

game in which the irst player would like to coordinate with the

second, and the second would like to diferentiate from the irst.

This has the same best response relation as matching pennies, the

game with outcome function

q(x ,y) =

(1, 0) if x = y

(0, 1) if x , y

This game has no Nash equilibria in pure strategies.
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X
Y

R

X

DX ,Y

Figure 3. Deinition of D∆
X ,Y

8 Sequential games

In the previous section we showed that a simultaneous move game

can be represented as an open game using monoidal products of

decisions. In this section we will represent sequential games, in

which players can observe previous actions of other players before

making their choice.

We focus on the sub-class of inite sequential games from [4]

introduced in Section 2, which are the inite extensive-form games

of perfect information in which at each stage a diferent player

chooses, and the player choosing and the set of possible choices are

determined only by the stage number and not the previous moves.

That is to say, distinct players 1, . . . ,n sequentially make choices

from sets X1, . . . ,Xn , with each player observing every previous

move. Relaxing each of these restrictions is possible but requires

more work (generally, deining additional composition operators on

open games, such as those in [8]), and so we focus on this sub-class

for simplicity.

Recall from Deinition 4.1 that the choice of an element of Y

after observing an element of X by a utility-maximising agent is

modelled by the open game DX ,Y : (X , 1) → (Y ,R) deined by

• ΣDX ,Y
= X → Y

• PDX ,Y
(σ ,x ) = σ (x )

• CDX ,Y
(σ ,x , r ) = ∗

• (σ ,σ ′) ∈ BDX ,Y
(x ,k ) if σ ′(x ) ∈ argmaxk

The basic element of a sequential game is the open game D∆
X ,Y

:

(X , 1) → (X × Y ,R) denoted by the string diagram in igure 3.

Algebraically, this is (id(X ,1) ⊗ DX ,Y ) ◦ (∆X , 1), where (∆X , 1) :

(X , 1) → (X ×X , 1) is the lifting of the copying functionX → X ×X .

By applying the deinitions of the composition operators ◦ and ⊗,

the reader can verify that D∆
X ,Y

is concretely given as follows, up

to natural isomorphism:

• ΣD∆
X ,Y
= X → Y

• PD∆
X ,Y

(σ ,x ) = (x ,σ (x ))

• CD∆
X ,Y

(σ ,x , r ) = ∗

• (σ ,σ ′) ∈ BD∆
X ,Y

(x ,k ), where k : X × Y → R, if σ ′(x ) ∈

argmaxy :Y k (x ,y)

Deinition 8.1. Let X1, . . . ,Xn be a sequence of sets. We recur-

sively deine a sequence of open games

Gi : (1, 1) →
*.
,

i∏

j=1

X j ,R
i+/
-

as follows. The base case is G0 = id(1,1) : (1, 1) → (1, 1). In the

recursive step, Gi+1 is deined in terms of Gi and D∏i
j=1 X j ,Xi+1

by

the string diagram in Figure 4.

Gi D∏i
j=1 X j ,Xi+1

∏i
j=1 X j

Xi+1

R
i

R

∏i
j=1 X j

R
i

Figure 4. Recursive step of deinition 8.1

D1,X DX ,Y

q
X

X

X

Y

R

R

R

R

Figure 5. Example sequential open game with 2 players

Theorem8.2. LetX1, . . . ,Xn be a sequence of sets andq :
∏n

i=1 Xi →

R
n . Let Gn be deined as in Deinition 8.1. Then

ΣGn =

n∏

i=1

*.
,

i−1∏

j=1

X j → Xi
+/
-

is the set of strategy proiles of the n-player sequential game with

outcome function q, and BGn (∗,q) is its best response relation.

For example, a 2-player sequential game with outcome function

q : X ×Y → R2 corresponds to the open game depicted in Figure 5.

This game has a set of strategy proiles Σ = X × (X → Y ), and the

best response relation B ⊆ Σ × Σ is deined by (σ ,σ ′) ∈ B if σ ′1 ∈

argmaxx :X (q(x ,σ2 (x )))1 and σ
′
2 (σ1) ∈ argmaxy :Y (q(σ1,y))2.

We close this section by combining simultaneous and sequential

elements. Consider the open game in Figure 6. The game depicts a

situation where a player irst makes a decision (D1,X ). This deci-

sion is observed by two players who move simultaneously (DX ,Y1
and DX ,Y2 ). As they move simultaneously they cannot observe

each others' moves; they do observe the irst player's move though.

A possible economic story is: two companies use the same input

produced by a monopolist, the irst player, who sets a price for the

input. For example the latter players could be rival car manufac-

turers, and the irst player a monopolist who produces tyres. Upon

observing the price, both competitors decide how much to produce.

Proits result accordingly.

The example illustrates how compositionality can be applied

to economic strategic situations. Modelling economic interactions

compositionally is very natural because the object itself is a com-

position of elements: A market is composed of competitors, buyers,

upstream input providers etc. A situation such as this hybrid simul-

taneous/sequential game is typically modelled as an extensive form

game of imperfect information. We suggest that the representation
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Figure 6. Hybrid sequential-simultaneous move game

as an open game, as well as being modular, is a more appropriate

representation of the underlying economic situation.

9 Conclusions and future work

The broader goal of the compositional theory of games started in

this paper is to bring the full force of compositionality to economic

modelling. In this paper, we have made an important initial step by

showing that a compositional theory is possible. We have focused

only on simultaneous and sequential games, on Nash equilibria as

the solution concept, and have considered only pure strategies. Of

course, there are many more interesting questions to pursue.

First, an important class of games are repeated games, where

players engage in an interaction more than once, and especially

ininitely repeated games. See [8] for initial results including the

construction of inal coalgebras of certain functors on open games

which can be used to model ininitely repeated games and thereby

bring the powerful concept of bisimulation to bear on ininite

games.

Secondly, the solution concept of Nash is built into the deini-

tion of an open game. It is important to consider alternatives. One

categorically attractive point of view is pursued in [11] where open

games are taken as objects of a category and morphisms between

them are studied. This is particularly important if we want to deine

open games, or operators on open games, by universal properties.

Thirdly, applications of game theory very commonly use mixed

(probabilistic) strategies, since there are games, such as matching

pennies, without a Nash equilibrium in pure strategies. Thus, it

is important to consider open games with mixed strategies. This

is possible but surprisingly diicult, and requires some heavier

category-theoretic tools, and is work in progress. A related ex-

tension concerns games of incomplete information where some

players do not have access to all relevant informations, for instance

other players' utilities. Coalgebras are a natural way to study this

extension [15].

Fourthly, an important practical question is how open games can

be implemented and solved. Various hardness results in algorithmic

game theory [17] state that approximating solutions of arbitrary

games is computationally hard but this is usually given for classical

and ‘monolithic' games such as normal-form games, without ex-

ploiting a formally deined composed structure. On the other hand,

solution algorithms for economic models usually combine various

numerical and statistical methods like function approximation, root

inding, integration and Monte Carlo methods, see for example [23].

One area where compositional game theory might have a signii-

cant impact is in systematically (functorially) combining numerical

methods in order to exploit the compositional structure of the game

to solve it.

Finally, comparison with the recent paper [7] suggests a deep and

unexpected connection between game theory and deep learning.

The category of open learners from that paper embeds into the

category of open games, a fact that has several potential applications

such as to strategy learning and generative adversarial networks.
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