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Abstract 

Slug flow is one of the main flow regimes encountered in multiphase flow systems especially 

in oil and gas production systems. In the present study, the rise of single Taylor bubble through 

vertical stagnant Newtonian liquid is investigated by performing complete dimensionless 

treatment followed by an order of magnitude analysis of the terms of equations of motion. 

Based on this analysis, it is concluded that Froude, Eötvös and Reynolds numbers are the sole 

physical parameters influencing the dimensionless slug flow equations. Using the guidelines 

of the order of magnitude analysis, computational fluid dynamics simulation is carried out to 

investigate the dynamics of Taylor bubbles in vertical pipe using the volume-of-fluid (VOF) 

method. Good agreement with previous experimental data and models available in the literature 

is established confirming that the density ratio, viscosity ratio and the initial ratio of bubble 

size to pipe diameter (𝐿𝑇𝐵/𝐷)  have minimal effect on the main hydrodynamic features of slug 

flow. Based on the developed results, correlations for the terminal velocity of the Taylor bubble 

and the dimensionless wall shear stress are proposed showing the significance of these main 

dimensionless parameters and support other important theoretical and experimental work 

available in the literature. 
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Nomenclature 

D Pipe diameter (m) 

g Acceleration due to gravity (m s−2) 

𝑔𝑟 Acceleration due to gravity in radial direction (m s−2) 

𝑔𝑟
∗ Dimensionless acceleration due to gravity in radial direction (-) 

𝑔𝑧 Acceleration due to gravity in axial direction (m s−2) 

𝑔𝑧
∗ Dimensionless acceleration due to gravity in axial direction (-) 

L Pipe length (m) 

𝐿𝑇𝐵 Length of the Taylor bubble (m) 

𝐿𝑊 Length of the wake (m) 

𝑝 Pressure (Pa) 

𝑝∗ Dimensionless pressure (-) 

𝑟 Radial direction (m) 

𝑟∗ Dimensionless radial direction (-) 

𝑟1 and 𝑟2  Local principal radii of curvature at the bubble surface as indicated by 

Mao and Dukler (1990) (m) 

R Pipe radius (m) 

𝑅𝑇𝐵 Taylor bubble radius (m) 

𝑡 Time (s) 

𝑡∗ Dimensionless time (-) 

u Velocity (m s−1) 

𝑈∞ Velocity of a Taylor bubble rising through stagnant liquid (m s−1) 

𝑈𝐿 Mean liquid velocity (m s−1) 

𝑈𝐿𝐹 Velocity in the annular liquid film (m s−1) 

𝑈𝑇𝐵 Taylor bubble velocity (m s−1) 

𝑣𝑟 Velocity component in radial direction (m s−1) 

𝑣𝑟
∗ Dimensionless velocity component in radial direction (-) 

𝑣𝑧 Velocity component in axial direction (m s−1) 

𝑣𝑧
∗ Dimensionless velocity component in axial direction (-) 

𝑣𝜃 Velocity component in tangential direction (m s−1) 

𝑉𝐿  Relative liquid velocity to the bubble in moving reference frame (MRF) 

(m s−1) 

𝑉𝑊 Volume of the wake (m3) 

x or z  Axial coordinate in 2D coordinate system (m) 
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y  or r  Radial coordinate in 2D coordinate system (m) 

𝑧∗ Dimensionless axial coordinate (-) 

Greek Letters  

𝜇 Dynamic viscosity (Pa s) 

𝜌 Density (kg m-3) 

𝜎 Surface tension (N m−1) 

𝜎𝑟 Surface tension in radial direction (N m−1) 

𝜎𝑟
∗ Dimensionless surface tension in radial direction (-) 

𝜎𝑧 Surface tension in axial direction (N m−1) 

𝜎𝑧
∗ Dimensionless surface tension in axial direction (-) 

𝜎𝜃 Surface tension in tangential direction (N m−1) 

𝜎𝜃
∗ Dimensionless surface tension in tangential direction (-) 

𝛿𝐿𝐹 Liquid film thickness (m) 

𝜏 Shear stress (Pa) 

𝜏𝑊 Wall shear stress (Pa) 

𝜈 Kinematic viscosity (m2 s−1) 

 𝛤𝜌 Density ratio, 𝛤𝜌 = 
𝜌𝐿

𝜌𝐺
 

𝛤𝜇 Viscosity ratio, 𝛤𝜇 =
𝜇𝐿

𝜇𝐺
 

Dimensionless groups 

𝐴𝑟 Archimedes number, 𝐴𝑟 = 𝜌𝐿
2𝑔𝐷3/𝜇𝐿

2 

𝐸𝑜 Eötvös number, 𝐸𝑜 =
𝑔𝜌𝐿𝐷

2

𝜎
 

𝐹𝑟𝑈𝑇𝐵 Froude number, 𝐹𝑟𝑈𝑇𝐵 =
𝑈𝑇𝐵

√𝑔𝐷
 

𝑀 Morton number, 𝑀 =
𝛥𝜌𝑔𝜇𝐿

4

𝜌𝐿
2𝜎3

 

𝑁𝑓 Inverse viscosity number,  𝑁𝑓 = 𝜌𝐿(𝑔𝐷
3)0.5 𝜇𝐿⁄  

𝑅𝑒𝑈𝑇𝐵 or 𝑅𝑒𝑈∞ 
Reynolds number based on the velocity of the Taylor bubble, 𝑅𝑒𝑈𝑇𝐵 =
𝜌𝐿𝑈𝑇𝐵𝐷

𝜇𝐿
  

𝑅𝑒𝑈𝐿𝐹 Reynolds number based on the velocity of the annular liquid film,  
𝑅𝑒𝑈𝐿𝐹 = 𝜌𝐿𝑈𝐿𝐹 𝛿𝐿𝐹 𝜇𝐿⁄  

𝑅𝑒𝑉𝐿 
Reynolds number based on the mean velocity of the liquid,  
𝑅𝑒𝑉𝐿 = 𝜌𝐿𝑉𝐿𝐷 𝜇𝐿⁄  
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List of acronyms 

CFD Computational fluid dynamics 

FRF Fixed frame of reference 

MRF Moving frame of reference 

VOF Volume-of-fluid 

 

1. Introduction 

Multiphase flows occur in a wide range of applications including natural processes, chemical 

processes, nuclear systems and petroleum industries. The petroleum industry is considered one 

of the most important applications of multiphase flow, as it could be encountered in different 

processes/stages such as: oil processing, oil and gas transport in pipelines, and sloshing in 

offshore separator devices. 

For two-phase gas-liquid flow in pipes, different flow patterns can occur known as "flow 

pattern/ flow regime". These patterns depend on the flow rates, the geometry of the system, 

and inclination of the pipe (Morgado et al., 2016). Multiphase flow is classified according to 

the distribution of different phases building up the flow field, known as "flow regime/pattern". 

Multiphase flow can be encountered in various flow patterns such as bubbly, slug, plug, annular 

and dispersed flow. Fluid flow investigation includes an important aspect which is the 

identification of the encountered flow pattern. For gas-liquid flow in pipes, one of the common 

and complex patterns encountered is known as "slug flow". Slug flow is an intermitted flow 

between stratified and annular flow.  

Flow intermittence is the main remarkable hydrodynamic characteristic causing the complex 

structure of slug flow which is composed of Taylor elongated bubble that occupies almost the 

whole cross-section of the pipe, and annular falling liquid film that might entrain many small 

bubbles, known as a "liquid slug". Flooding of downstream processing facilities, severe pipe 

corrosion, structural instability of pipeline, and further induction of the reservoir flow 

oscillations, and a poor reservoir management are examples of the problems encountered as 

result of slugging in offshore oil and gas systems.  

The prediction of the appropriate flow pattern regimes, the governing correlations, and the 

hydrodynamic characteristics of slug flow are essential for successful operation, simulation 

and optimization of any industrial applications encountering slug flow (Santos, 2007). 
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According to the following authors, Computational fluid dynamics (CFD) has been proven to 

be a powerful, practical tool for the analysis and simulation of the hydrodynamic characteristics 

of slug flow in pipes. The main complex feature of gas-liquid slug flow is the deformable 

interface (Zheng and Che, 2007). The volume-of-fluid (VOF) method originally developed by 

Hirt and Nichols (1981) is often used to simulate complex multiphase flows including slug 

flow, and is powerful in tracking the interface between fluids (Fabre and Liné (1992); Razavi 

and Namin (2011); Rahimi et al. (2013); Desamala et al. (2013) and Desamala et al. (2014)). 

The hydrodynamic characteristics of gas-liquid vertical slug flow include the final shape of the 

Taylor bubble, Taylor bubble rises velocity, liquid film thickness, liquid film velocity, wall 

shear stress distribution and wake shape. Despite the conduction of extensive work in the 

modelling process of gas-liquid slug flow, a need for correlations based on experimental data 

is still required. These correlations include slug characteristics such as: Taylor bubble velocity, 

slug frequency, slug length, slug liquid hold up, and slug unit velocity.  

In literature, since the 1940s, a significant amount of research has been done to understand the 

complex principles of slug flow. Starting with Dumitrescu (1943) who investigates the rise of 

single Taylor bubble in the stagnant liquid by applying potential flow theory and concludes 

that the Taylor bubble rise velocity could be given by: 

Other analytical and/or experimental approaches are made later to modify the above correlation 

as discussed by Kang et al. (2010). A good review on the most commonly used correlations to 

estimate the Taylor bubble velocity is given by Morgado et al. (2016). 

One of the main complex hydrodynamic features of slug flow is the wake flow pattern. Campos 

and De Carvalho (1988) performs an important photographic study to investigate the wake 

structure of Taylor bubbles rising in stagnant liquid using different pipe diameters and liquid 

viscosities. They conclude that the inverse viscosity number mainly influences the wake 

structure and they categorise the wake flow pattern into three main groups as follows: 

 Type 1: Closed axisymmetric laminar wake for:𝑁𝑓 < 500. 

 Type 2: Closed asymmetric transitional wake for: 500 < 𝑁𝑓 < 1500. 

 Type 3: Opened turbulent wake with the recirculatory flow:  𝑁𝑓 > 1500. 

𝑈𝑇𝐵 = 0.351√𝑔𝐷 (1) 
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Araújo et al. (2012) discuss the importance of other experimental studies that investigate the 

main complex hydrodynamic nature of slug flow. They reach number of remarkable 

conclusions that helped in further understanding of the problem (Polonsky et al. (1999); Van 

Hout et al. (2002); Clanet et al. (2004); Liberzon et al. (2006); Sousa et al. (2006), Direito et 

al. (2017)). Despite the significant effort done in most of the experimental approaches, the need 

for computation is essential in understanding the complex nature of slug flow problem that 

eliminates the experimental limitation and the difficulties while providing robust analysis and 

accurate results. According to the viewed literature, Computational fluid dynamics (CFD) has 

been proven to be a powerful, practical tool for the analysis and simulation of the hydrodynamic 

characteristics of slug flow in pipes. 

Early attempts to numerical study of slug flow problem are made by Kawaji et al. (1997) that 

use the volume-of-fluid (VOF) method to numerically investigate the hydrodynamic 

characteristics of a Taylor bubble rising through the stagnant liquid in a vertical pipe and 

conclude that the bubble length does not affect the bubble terminal velocity. Based on an 

iterative scheme that solved the velocity and shape of Taylor bubble in a vertical tube, a 

different methodology is developed by Clarke and Issa (1997). They introduce a model that 

assume homogenous flow in the liquid slug region and thus account for the dispersed bubble 

in that region (Araújo et al., 2012).  Against their assumption, the model shows inadequate 

results that they suggest that future models should use the two-fluid model for proper 

simulation of the dispersed gas bubbles in the liquid slug region (Ndinisa et al., 2005). Later, 

Bugg et al. (1998) perform a detailed study on the motion of Taylor bubbles in vertical pipes 

and prove that the VOF method is capable of determining the main hydrodynamic features of 

slug flow including the bubble shape, bubble rising velocity, liquid film thickness and average 

velocity in the liquid film. The results are then compared with experimental data in the literature 

and show good agreement. Another different approach, based on developing a new algorithm 

for solving the gas-liquid interface equation, is developed by Issa and Ubbink (1999).  

Other significant numerical studies using the VOF method are worth to mention as those done 

by Ndinisa et al. (2005); Taha and Cui (2006) and Zheng and Che (2007). Lately, Lu and 

Prosperetti (2008) who numerically study Taylor bubble rising in the stagnant liquid by 

neglecting the flow in the gas using front tracking method that deals with two-phase liquids 

and evades the uncertain gas-liquid interface reconstruction in VOF method. They apply a 

procedure based on B-splines to build smooth functions best-fitting the field variables 

(velocities in the gas phase) over a strip straddling the gas-liquid interface along with its whole 
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perimeter. This method show powerful tracking of the exact position and curvature of the 

interface that help in calculating the surface tension.  

Recently, Kang et al. (2010) use a front tracking methodology to simulate the dynamics of gas 

slugs rising through stagnant liquids, where the finite difference method is used to discretize 

the governing equations. The study conclude that the density and viscosity ratios have minimal 

effect on the dynamics of Taylor bubbles rising in stagnant liquids, while both Eötvös number 

and Archimedes number have an important impact. They develop correlations for the 

dimensionless liquid film thickness and the dimensionless wall shear stress as a function of 

only Archimedes number. They also conclude that wake length and volume depend mainly on 

Archimedes number. Later, Araújo et al. (2013b) perform a detailed study of the dynamics of 

Taylor bubble rising in stagnant liquid and include a wide range of Eötvös and Morton number. 

They show that Kang et al. (2010) correlations are inadequate by proving that both 

dimensionless liquid film thickness and the dimensionless wall shear stress are function of 

Eötvös and Morton numbers. They also show that the wake structure is greatly influenced by 

both Eötvös, and Morton numbers, and not only Archimedes number as concluded by Kang et 

al. (2010). They are also capable of developing correlations for the wake length and volume 

that show good agreement with well-known experiment correlations of Campos and De 

Carvalho (1988). 

More recently, Yan and Che (2011) investigate the hydrodynamic characteristics of single 

Taylor bubble rising in stagnant liquid with further consideration of the small dispersed bubbles 

in the liquid slug region. Their study account for the effect of small dispersed gas bubbles in 

liquid slug region on the flow hydrodynamics features and CO2 corrosion rate. It is concluded 

that the small dispersed gas bubbles result in higher fluctuations in the liquid slug region, which 

subsequently increase the mass transfer and wall shear stress. Lastly, Araújo et al. (2013a) 

investigate the rising of two consecutive Taylor bubbles through vertical stagnant Newtonian 

liquids under laminar regime using the volume-of-fluid (VOF) method. The results account for 

bubble-bubble interaction and show the dependency of the wake on the separation distance 

between the bubbles. A good review on slug flow is presented by Morgado et al. (2016) that 

summarises all of the important correlations used in defining the problem and show the missing 

data that need to be further investigated. 

Despite the significant numerical and theoretical data published on the rise of Taylor bubble 

through vertical stagnant liquid, to the authors’ knowledge there is not yet a study investigating 
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the problem using order of magnitude analysis of equations of motions. Hence, the scope of 

this study can be divided into two main folds:  

1. Performing complete dimensionless analysis of the problem using both the Buckingham-

Pi theorem and a dimensionless treatment followed by an order of magnitude analysis to 

the governing equations of motion in order to show the sole dimensionless parameters: 

𝑅𝑒𝑈𝑇𝐵, 𝐹𝑟𝑈𝑇𝐵, and 𝐸𝑜 numbers and their relative merits or order of magnitudes. Based on 

this analysis, the main hydrodynamic features of rising of individual Taylor bubbles 

through stagnant Newtonian liquids are investigated by applying computational fluid 

dynamics (CFD) simulation using the volume-of-fluid (VOF) methodology implemented 

in the commercial software ANSYS Fluent. 

2.  Developing a correlation between 𝑅𝑒𝑈𝑇𝐵 ,  𝐹𝑟𝑈𝑇𝐵 , and  𝐸𝑜  numbers based on the 

developed numerical results and on the guide lines of the order of magnitude analysis to 

predict Taylor bubble rise velocity (𝑈𝑇𝐵). This correlation enabled the present study to 

support other important theoretical and experimental work available in the literature. 

2. Dimensionless equations of motion  

The hydrodynamic characteristics of gas-liquid slug flow are governed by viscous, inertial, 

gravitational, and interfacial forces. In literature, the problem is mostly analysed into the 

dimensionless form using Buckingham-Pi theorem.  

Morgado et al. (2016) neglect the effect of the expansion of gas during its rise and show that 

the dimensionless analysis of the problem results in the following form: 

where the LHS of relation (2) represents the ratio between the inertia and gravitational forces 

and known by Froude number (𝐹𝑟
𝑈𝑇𝐵
). Relation (2) can be modified by introducing Reynolds 

number based on bubble velocity (𝑅𝑒𝑈𝑇𝐵) which is the ratio between the inertial forces and 

viscous forces. Eötvös number (𝐸𝑜)  is the ratio between gravitational forces, and surface 

tension forces, and Morton number (𝑀) is known by property group as it only contains the 

properties of the fluid (Araújo et al., 2012).  

It can be shown in this respect that Morton number (𝑀) does not represent any peculiar 

physical quantity as it can be written as:  

𝑈𝑇𝐵
2𝜌𝐿

𝑔𝐷𝛥𝜌
= 𝑓 [𝐸𝑜 =

𝑔𝜌𝐿𝐷
2

𝜎
 ,  𝑀 =

𝛥𝜌𝑔𝜇𝐿
4

𝜌𝐿
2𝜎3

 ,   𝛤𝜇 =
𝜇𝐿
𝜇𝐺
,  𝛤𝜌 = 

𝜌𝐿
𝜌𝐺
,  
𝐿𝑇𝐵
𝐷

 ] (2) 
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where the inverse viscosity number (𝑁𝑓) is defined as: 

In fact, the inverse viscosity number (𝑁𝑓) can be interpreted physically as the ratio between 

gravity force and the viscous force. It is worth noting in this respect that 𝑁𝑓  and 𝑀 cannot 

generally replace 𝑅𝑒𝑈𝑇𝐵 to judge whether the flow is in its laminar or turbulent regime.  

It can be easily shown here that using the Buckingham-Pi theorem can lead to the same form 

of the dimensionless groups with Morton number replaced by Reynolds number that is given 

by: 

The main governing equations of the problem are the continuity and momentum equations. 

Dimensionless analysis of these equations followed by the order of magnitude analysis in all 

directions and on the boundaries is given in details in Appendix 1. The main results are: the 

radial velocity component (𝑣𝑟
∗)  should be of order (

𝐷

𝐿𝑇𝐵
)  in order to keep the continuity 

equation intact without any approximation; the pressure gradient in the radial direction should 

be of order (
𝐷

𝐿𝑇𝐵
)
2

; for all terms in the momentum equations and on the boundaries to remain 

of  the same order of magnitude, 𝐹𝑟𝑈𝑇𝐵 should be of order (1), 𝑅𝑒𝑈𝑇𝐵 and 𝐸𝑜 both should be 

of order (
𝐿𝑇𝐵

𝐷
). Added to this, referring to Appendix 1, it has been shown that the inverse 

viscosity number is in fact a modified Reynolds number provided that the characteristic 

velocity for stagnant fluid given by: 𝑉𝑠 = (𝑔𝐷)
1/2.  

In conclusion, the dimensionless analysis show that any analysis of the problem should include 

the dimensionless groups: 𝐹𝑟𝑈𝑇𝐵, 𝐸𝑜, and 𝑅𝑒𝑈𝑇𝐵or 𝑁f. In addition, it is worth to mention that 

there is no need to using a dimensionless number like Morton number which does not seem to 

have a direct physical meaning.  

 𝑀 = (
𝐹𝑟𝑈𝑇𝐵
𝑅𝑒𝑈𝑇𝐵

)

4

𝐸𝑜3 =
𝐸𝑜3

𝑁𝑓4
 (3) 

𝑁𝑓 =
𝑅𝑒𝑈𝑇𝐵
𝐹𝑟𝑈𝑇𝐵

=
𝜌𝐿(𝑔𝐷

3)0.5

𝜇𝐿
 (4) 

𝐹𝑟𝑈𝑇𝐵 =
𝑈𝑇𝐵

√𝑔𝐷
= 𝑓 [𝐸𝑜 =

𝑔𝜌𝐿𝐷
2

𝜎
 , 𝑅𝑒𝑈𝑇𝐵 =

𝜌𝐿𝑈𝑇𝐵𝐷

𝜇𝐿
 , 𝛤𝜇 =

𝜇𝐿
𝜇𝐺
, 𝛤𝜌 = 

𝜌𝐿
𝜌𝐺
,
𝐿𝑇𝐵
𝐷

 ] (5) 
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Thus, the problem in the present study is analysed in terms of six main dimensionless groups, 

namely: Eötvös number(𝐸𝑜), Froude number (𝐹𝑟𝑈𝑇𝐵), Reynolds number based on bubble 

velocity (𝑅𝑒𝑈𝑇𝐵), density ratio (𝛤𝜌),viscosity ratio (𝛤𝜇) and the initial ratio of bubble size to 

pipe diameter (𝐿𝑇𝐵/𝐷).  The present study examines the effects of density ratio (𝛤𝜌), viscosity 

ratio (𝛤𝜇) and the initial ratio of bubble size to pipe diameter (𝐿𝑇𝐵/𝐷) for the sake of supporting 

other previous experimental and numerical works in the literature. This is to allow dealing 

carefully with the main influencing parameters: Eötvös number (𝐸𝑜) and Reynolds number 

(𝑅𝑒𝑈𝑇𝐵). 

3. CFD Model development 

The flow domain is constructed and solved using the volume-of-fluid (VOF) methodology 

implemented in the computational fluid dynamics software package, ANSYS Fluent (Release 

15.0).  In all simulated cases, a uniform grid of quadrilateral control elements is applied. 

Different grids depending on domain dimensions have been tested to check solution 

convergence. The present simulation has been performed for unsteady flow with constant fluid 

properties. The two phases are assumed as incompressible, viscous, immiscible, and not 

penetrating each other. The flow regime could be laminar which means the transition or the 

turbulent is depending on the value of Reynolds number in different flow regions of the slug 

flow domain. 

Figure 1 shows that the flow regions in vertical slug flow that can be divided into three main 

regions according to the definition of Reynolds number, into flow in main liquid region (liquid 

slug), 𝑅𝑒𝑈∞ or 𝑅𝑒𝑈𝑇𝐵, flow in liquid film (annular film), 𝑅𝑒𝑈𝐿𝐹, and flow near bubble wake, 

𝑅𝑒𝑉𝐿. The definition of Reynolds number according to each region is given by: 

where: 𝑈𝑇𝐵 is the velocity of Taylor bubble rising through stagnant liquid according to the 

definition of (Nicklin et al., 1962), 𝑈𝐿𝐹 is the absolute velocity of the liquid in the stabilized 

liquid film of thickness 𝛿𝐿𝐹 , and 𝑉𝐿  is the relative liquid velocity to the bubble in moving 

reference frame (MRF). 

𝑅𝑒𝑈𝑇𝐵 = 𝜌𝐿𝑈𝑇𝐵𝐷 𝜇𝐿⁄  (6) 

𝑅𝑒𝑈𝐿𝐹 = 𝜌𝐿𝑈𝐿𝐹 𝛿𝐿𝐹 𝜇𝐿⁄  (7) 

𝑅𝑒𝑉𝐿 = 𝜌𝐿𝑉𝐿𝐷 𝜇𝐿⁄  (8) 
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For the case of Taylor bubble rising in stagnant liquid only two parameters, namely:  𝑅𝑒𝑈∞, 

and 𝑅𝑒𝑈𝐿𝐹, are used to characterize flow type into: laminar, transient, or turbulent flow regime. 

Various experimental work is done to investigate the characteristic Reynolds number for the 

onset of transition in the flow regime in each region discussed above. For instance, to ensure 

laminar flow regime in the main liquid region, 𝑅𝑒𝑈𝑇𝐵  should be less than 2100 as reported by 

(Fulford, 1964, Fréchou, 1986, Mayor et al., 2007) 

Also, the range of Reynolds numbers for the transitional region in the liquid film region is 

[250: 400] < 𝑅𝑒𝑈𝐿𝐹 < 800 as indicated by Fulford (1964). It should be pointed out that the 

transition criterion from laminar into turbulent flow is not clear enough and need to be further 

investigated. For instance, the wake pattern is identified into laminar or turbulent flow 

according to the value of inverse viscosity number (𝑁𝑓) . Nevertheless, according to the 

problem definition it should be mainly, in terms of Reynolds number. However according to 

data in literature, to ensure laminar flow regime in the main liquid region for the present study, 

𝑅𝑒𝑈𝑇𝐵 ought to be less than 200. Regarding the flow in the liquid film, 𝑅𝑒𝑈𝐿𝐹 never exceeded 

30 which ensures that the developed liquid films are entirely under laminar regime. 

In the present model, the fluids share a well-defined interface, and hence the volume-of-fluid 

(VOF) method for two-phase flow has been selected in CFD software ANSYS Fluent (Release 

15.0).  The VOF model developed by Hirt and Nichols (1981) is a surface-tracking technique 

applied to a fixed Eulerian mesh. This model is designed for two or more immiscible fluids to 

track the interface between them. This model solves a single set of momentum equation that is 

shared by the two fluids, and the volume fraction of each of the fluids in each computational 

cell is followed throughout the domain. The finite volume method is used to discretize the 

governing equations. Details of the governing equations and the treatment of the interface can 

be obtained from Fluent (2015). The continuum surface force (CSF) of Brackbill et al. (1992) 

is used to account for the surface tension effects.  

3.1 Model geometry and boundary conditions  

The solution domain is a vertical pipe with diameter (𝐷) and length (𝐿) with symmetry along 

the centreline of the pipe. In order to minimise computational time and effort, all the 

simulations were performed in axisymmetric flow situation, assuming symmetry about the 

centerline of the pipe. This assumption is adequate and based on the laminar state of flow. In 

all simulation cases, the length of domain is eleven times larger than pipe diameter to avoid 
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disturbance of the continuous phase (liquid phase) at the entrance and the exit regions, and to 

ensure that a uniform velocity profile is restored.  Figure 1 shows a schematic representation 

of the computational domain for the present problem. The initial bubble shape is a cylinder 

connected to a hemisphere with the same radius giving an overall bullet shape of Taylor bubble. 

The length and radius of the Taylor bubble are given by: 𝐿𝑇𝐵, and 𝑅𝑇𝐵 respectively. The initial 

ratio of Taylor bubble length to pipe diameter (𝐿𝑇𝐵/𝐷)𝑖 is an input parameter prior to 

simulation and it is fixed to value of 3 in most of the investigated cases except cases 7, 9, and 

10 in Table 1. This initial shape is simulated until a steady bubble shape is reached.  Different 

bubble shapes are tested and final steady shape of bubble is found to be similar but this only 

affects the solution convergence. 

The simulation is performed by attaching a reference frame to the rising Taylor bubble. 

Enabling moving reference frame (MRF) in the simulation, causes the rising Taylor bubble to 

be stationary and the pipe wall moves downwards with a velocity equal to that of the bubble 

(Mao and Dukler, 1990). The transformation of the boundary conditions using MRF is given 

in Figure 1. The initial guess of Taylor bubble velocity (𝑈𝑇𝐵) is estimated according to the 

general correlation of  Wallis (1969), which is given by:  

Once the Taylor bubble ceases moving up or down in the axial direction, and hence the pseudo-

steady solution is reached, the velocity is then adjusted and set to be the terminal velocity. The 

initial guess of the liquid film thickness(𝛿𝐿𝐹) is estimated using Brown (1965) equation, which 

is given by: 

Referring to Figure 1, using MRF the inlet flow boundary condition is applied with liquid 

entering at average uniform velocity equal to velocity of Taylor bubble, 𝑈𝑖𝑛 = 𝑈𝑇𝐵,  𝑉𝑖𝑛 = 0. 

At the bottom of the domain, the outflow boundary condition is applied as the liquid phase is 

𝐹𝑟 =
𝑈𝑇𝐵

√𝑔𝐷
= 0.345 (1 − 𝑒

−0.01𝑁𝑓
0.345 ) (1 − 𝑒

3.37−𝐸𝑜
𝑚 ) 

where: 

𝑚 = {

25,                                         𝑁𝑓 < 18

69𝑁𝑓
−0.35,                18 < 𝑁𝑓 < 250

10                                      𝑁𝑓 > 250

 

(9) 

𝛿𝐿𝐹 = [
3𝜈

2𝑔(𝑅 − 𝛿𝐿𝐹)
𝑈𝑇𝐵(𝑅 − 𝛿𝐿𝐹) 

2
]
1/3

 (10) 
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the only phase available. The symmetry boundary condition is applied at the pipe 

centreline:  𝜕𝑈/𝜕𝑦 = 0 ,  𝑉𝑜𝑢𝑡 = 0 . At the wall, the no-slip condition is applied with wall 

moving downwards with the following velocities:  𝑈𝑤𝑎𝑙𝑙 = 𝑈𝑇𝐵,   𝑉𝑤𝑎𝑙𝑙 = 0. The gas phase 

usually has lower density and viscosity than the liquid phase, thus, full slip can be assumed at 

the gas-liquid interface. The internal circulatory flow within Taylor bubbles has almost 

negligible effect on the outer surrounding liquid leading to zero interfacial shear stress at the 

interface. Thus, the pressure variation within Taylor bubble is small and constant pressure is 

assumed at the interior of the Taylor bubble (Akagawa and Sakaguchi (1966); Mao and Dukler, 

1990; Zheng et al., 2007 and Morgado et al. (2016)). Thus, the kinematic condition, 𝑢. 𝑛 = 0, 

assuming full slip at the gas-liquid interface is applied. The dynamic boundary condition can 

be divided into two separate boundary conditions: the tangential stress balance assuming zero 

interfacial shear stress along the interface: (𝜏. 𝑛̂). 𝑠̂ = 0, and the normal stress balance: 𝜌𝑖𝐿 +

𝜎𝐾 = constant. According to Mao and Dukler (1990), the curvature of the interface (𝐾) is 

expressed in terms of radii of the curvature of the bubble surface, as follows: 

where: 𝑟1 and 𝑟2 are the local principal radii of curvature at the bubble surface as indicated by 

Mao and Dukler (1990). 

3.2 Solution strategy and convergence criterion 

A time-dependent simulation is carried out in the present case to investigate the unsteady 

behaviour of two-phase slug flow. The simulation is carried out using the explicit VOF model. 

The PISO pressure-velocity is selected. The spatial discretization scheme used is as follows: 

Green-Gauss Node Based for the gradient, PRESTO for pressure, Geo-reconstruct for volume 

fraction, a Quick scheme for momentum, and first-order implicit for unsteady formulation. The 

scaled absolute values of the residual of the calculated values of mass, velocity in x, and y 

directions are monitored, and convergence criterion of 10-4 is set for each time step, with a 

maximum number of iterations of 1000. The variable time step is applied to the governing 

equations with global Courant number fixed to 0.25. 

4. Results and discussions 

In this section, a mesh dependence study is firstly introduced, which is then followed by 

validation study of single Taylor bubble rising through aqueous glycerol solution and finally 

𝐾 = [
1

𝑟1
+
1

𝑟2
] (11) 
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the main results. The present study aims at investigating the main hydrodynamic features of 

the rise of single Taylor bubble through stagnant Newtonian fluid including Taylor bubble 

shape, Taylor bubble rise velocity (𝑈𝑇𝐵), liquid film thickness (𝛿𝐿𝐹),  maximum liquid film 

velocity (𝑈𝐿𝐹), wall shear stress (𝜏𝑊), and wake length  (𝐿𝑤), and wake volume (𝑉𝑤) (as 

shown in Figure 1) with particular focus on the governing dimensionless numbers: Eötvös 

number and Reynolds number. The results are then divided into four sections: Taylor bubble 

shape, Taylor bubble rise velocity, flow in the liquid film region, and flow in the wake region. 

In addition, correlations for the terminal velocity of the Taylor bubble, and for the 

dimensionless wall shear stress are proposed showing the significance of these main 

dimensionless parameters. 

Table 1 lists the simulation cases and their corresponding results. The ranges of 𝐸𝑜 , 

𝑅𝑒𝑈𝑇𝐵, 𝐹𝑟𝑈𝑇𝐵, 𝛤𝜌, 𝛤𝜇, (𝐿𝑇𝐵/𝐷)𝑖 are 6–700, 2.6-165, 0.031-0.330, 60-200, 66.7-6674, and 2–10, 

respectively. The input parameters prior simulation are: 𝐸𝑜 , 𝛤𝜌 ,  𝛤𝜇 ,  (𝐿𝑇𝐵/𝐷)𝑖 , while the 

predicted values from the simulation are: 𝑅𝑒𝑈𝑇𝐵 ,  𝐹𝑟𝑈𝑇𝐵 ,  (𝐿𝑇𝐵/𝐷)𝑝  (𝛿𝐿𝐹/𝐷) , 𝑈𝐿𝐹𝑚𝑎𝑥 ,  

(
𝜏𝑊

𝜌𝐿𝑔𝐷
)
𝑚𝑎𝑥

, 𝐿𝑊/𝐷, and 𝑉𝑊/𝐷
3.  The initial ratio of bubble size to pipe diameter is given by 

(𝐿𝑇𝐵/𝐷)𝑖 and the average predicted of bubble size to pipe diameter is given by (𝐿𝑇𝐵/𝐷)𝑝. 

4.1 Mesh dependence study 

A uniform grid of quadrilateral control elements is used in the present CFD simulation. A mesh 

dependence test is done to ensure grid independence results. Three different grid densities are 

used to simulate a selective experimental case of Campos and De Carvalho (1988) air and 

aqueous glycerol solution as working fluids in 19mm inner diameter vertical pipe. The relevant 

dimensionless numbers of the selected case are: 𝐸𝑜=64, 𝑅𝑒𝑈𝑇𝐵=60, 𝐹𝑟𝑈𝑇𝐵=0.3409.  

Table 2 shows the mesh characteristics, the relevant selected hydrodynamic characteristics to 

be examined and the corresponding deviations (𝐸𝑜=64, 𝑅𝑒𝑈𝑇𝐵 =60, 𝐹𝑟𝑈𝑇𝐵 =0.3409). The 

reference mesh for the deviation calculation is the denser mesh (104×1120 elements). It can 

be assumed that the results are completely independent particularly when using mesh 2 and 

mesh 3. Subsequently, based on the results shown in Table 1, the current simulations are 

conducted using either Mesh 2 or Mesh 3 depending on pipe geometry. 
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4.2 Validation of the computational code 

In this section, a primary validation of the current numerical code based on the experimental 

work of Nogueira at al. (2006a&b) on a single Taylor bubble rising through stagnant viscous 

liquid under laminar flow regime is presented. The experimental condition corresponds to 

𝐸𝑜=186, 𝑅𝑒𝑈𝑇𝐵=37.083, 𝐹𝑟𝑈𝑇𝐵=0.3355.  Figure 2 shows the numerical results for the flow field 

including the streamlines and velocity vectors for the selected experimental case using moving 

reference frame (MRF). From this figure, the flow can be divided into three regions: a, b and c 

namely: Taylor bubble nose region, falling liquid film region and Taylor bubble wake region 

(liquid slug zone). In the Taylor bubble nose region, the Taylor bubble moves up with velocity 

(𝑈𝑇𝐵) due to buoyancy, pushing the liquid sideways where liquid film zone starts to develop. 

In the falling liquid film region, the liquid moves downwards with velocity (𝑈𝐿𝐹) , and 

decreasing liquid film thickness (𝛿𝐿𝐹). Once a balance between the gravitational and the 

friction forces is reached, a constant terminal liquid film velocity and thickness is developed. 

In the Taylor bubble wake region, the falling liquid film starts to plugs into the liquid slug 

ending with highly mixing zone in the wake structure of the bubble.  

Moreover, Figure 3 gives further validation to the numerical code by showing a comparison 

between the numerical and experimental of Taylor bubble shape in the nose region, which is 

an essential feature as discussed by Araújo et al. (2013b).  It can be seen that the simulation 

predicts well the experimental data. 

Inaddition, Figure 4 shows a direct comparison for the resulting numerical velocity field in 

three different regions: Taylor bubble nose region, liquid film region, and wake region with the 

experimental work of Nogueira at al. (2006a&b) in fixed reference frame (FRF). The axial 

velocity is plotted in dimensionless form (𝑢/𝑈𝑇𝐵) and (𝑥/𝐷) refers to point placed in different 

axial iso-surfaces according to the region examined. The simulation results showed accepted 

matching with the experimental results in the different regions examined. Adding to this, the 

numerical axial velocity profile in the liquid film region shows good matching with both the 

experimental results and the theoretical velocity profile given by Brown (1965) (equation (12)). 

Furthermore, Table 3 shows the numerical, experimental, and theoretical values for some of 

the main hydrodynamic characteristics of the experimental validation case and their respective 

𝑢𝑧 =
𝑔

𝜈
[
𝑅2 − 𝑟2

4
−
(𝑅 − 𝑟)2

2
ln
𝑅

𝑟
] (12) 
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deviations. The value of 𝐹𝑟𝑈𝑇𝐵  shows deviation of 7.80% compared to experimental value 

measured by Nogueira et al. (2006a) . It also shows good agreement when compared with 

experimental and theoretical correlations of Wallis (1969) (equation (9)), and Viana et al. (2003) 

whose theoretical correlation is given by: 

For the flow in liquid film region, three important parameters are discussed: liquid film 

thickness (𝛿𝐿𝐹), wall shear stress (𝜏𝑊), and maximum liquid film velocity(𝑈𝐿𝐹). Firstly, the 

values of  𝛿𝐿𝐹, and 𝜏𝑊 shows good matching with both the experimental data of Nogueira et al. 

(2006a) and the theoretical predictions of Brown (1965). Brown (1965) equation for 𝛿𝐿𝐹 

prediction is given by equation (10), while the prediction for 𝜏𝑊 is given by: 

Secondly, the value of the third parameter (𝑈𝐿𝐹) is as well close to experimental value. 

Furthermore, for the flow in the wake region, two main parameters namely: 𝐿𝑤/𝐷, and 𝑉𝑤/𝐷
3 

are used to characterise the wake structure. The deviation with experimental values is quite 

large between 42% and 48% which is clarified by Araújo et al. (2013b) by the fact that the 

experimental technique did not account for the wake in the concave bottom at the rear of Taylor 

bubble. However, smaller deviations are established when comparing with the experimental 

correlations developed by Campos and De Carvalho (1988), which is given by:  

The present study investigates the effects of density ratio (𝛤𝜌), viscosity ratio (𝛤𝜇), and the 

bubble size to the pipe diameter (𝐿𝑇𝐵/𝐷) on the hydrodynamic characteristics of the rise of 

single Taylor bubble in stagnant liquid t support previous numerical work and experimental 

𝐹𝑟 =
0.34/ (1 +

3805
𝐸𝑜30.6

)
0.58

(

 1 + ((
𝑅𝐺
31.08

) (1 +
778.76
𝐸𝑜1.96

)
−0.49

)

−1.45(1+
7.22∗1013

𝐸𝑜9.93
)
0.094

)

 

0.74(1+
7.22∗1013

𝐸𝑜9.93
)
−0.094 

where 𝑅𝐺 = √𝐷3𝑔(𝜌𝐿 − 𝜌𝐺)𝜌𝐿/𝜇𝐿 

(13) 

𝜏𝑊 = 𝜌𝐿𝑔 [
𝑅

2
−
(𝑅 − 𝛿𝐿𝐹)

2

2𝑅
] (14) 

𝐿𝑤
𝐷
= 0.30 + 1.22 × 10−3𝑁𝑓  𝑓𝑜𝑟 100 < 𝑁𝑓 < 500 

𝑉𝑤
𝐷3
= 7.5 × 10−4𝑁𝑓 𝑓𝑜𝑟 100 < 𝑁𝑓 < 500 

(15) 
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work in literature. Cases 1 to 3 in Table 1 clearly emphasises that the density ratio has almost 

no effect on the dynamics of Taylor bubbles. The density ratio has minimal effect on liquid 

film thickness, maximum the velocity of liquid film, maximum wall shear stress, wake length 

and wake volume. The simulation results as well agree with the numerical result of Kang et al. 

(2010). For the viscosity ratio effect, three cases denoted by cases 3, 4, and 5 are simulated 

with viscosity ratios of 66.7, 667, and 6674, respectively. Referring to Table 1, it is also 

concluded that the viscosity ratio (𝛤𝜇) has minimal effect on the dynamics of Taylor bubbles 

including as well the liquid film thickness, maximum velocity of liquid film, maximum wall 

shear stress, wake length and wake volume. In conclusion, the simulated cases 1 to 6 have 

almost the same values of 𝑅𝑒𝑈𝑇𝐵 , and 𝐸𝑜, which is 24.34, and 66, respectively. Thus, the 

simulation results further assist the conclusion made by Lu and Prosperetti (2008) and Kang et 

al. (2010) that the both density ratio (𝛤𝜌), and viscosity ratio (𝛤𝜇) have a negligible effect on 

the dynamics of Taylor bubbles. Lastly, to explore the effect of 𝐿𝑇𝐵/𝐷, four cases are simulated 

denoted by cases 7 to 10 in Table 1 corresponding to 𝐿𝑇𝐵/𝐷 of 2, 3, 4, and 10, respectively. It 

can be also concluded that 𝐿𝑇𝐵/𝐷 as well has minimal effect on the dynamics of Taylor bubbles. 

Table 1 shows that these four cases has almost the same value of 𝐹𝑟𝑈𝑇𝐵 which agrees well with 

the conclusion of Kawaji et al. (1997) that the bubble length has no effect on the bubble 

terminal speed and subsequently no effect on Froude number (𝐹𝑟𝑈𝑇𝐵).  

Further conclusion indicates that the validation results, in addition to the validation given by 

Massoud et al. (2016), where four cases based on the experimental work of Campos and De 

Carvalho (1988) are simulated and show good agreement when compared with both 

experimental and numerical data, illustrate that the numerical code is capable of simulation of 

Taylor bubble rising through stagnant liquid with high satisfaction degree of results. The 

problem can now be treated in terms of three main dimensionless groups, given by: 

In the following section, the effect of these core dimensionless groups that govern the present 

problem with the guidelines of the order of magnitude analysis are examined on the developed 

Taylor bubble shape, Taylor bubble rises velocity, flow in the liquid film and flow into the 

wake region. 

𝐹𝑟𝑈𝑇𝐵 =
𝑈𝑇𝐵

√𝑔𝐷
= 𝑓 [𝐸𝑜 =

𝑔𝜌𝐿𝐷
2

𝜎
 , 𝑅𝑒𝑈𝑇𝐵 =

𝜌𝐿𝑈𝑇𝐵𝐷

𝜇𝐿
  ] (16) 
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4.3 Taylor bubble shape 

In this section, the effect of the main dimensionless groups that govern the present problem 

given by relation (16) is discussed. This includes representing the final shape of the developed 

Taylor bubble, the flow field around it (streamlines), and the Taylor bubble shape profile for 

each of the dimensionless groups examined.  

4.3.1 Effect of Reynolds number 

In literature, most of the studies done on dynamics of Taylor bubble rising through stagnant 

liquid highlight the major effect of inverse viscosity number or Archimedes number without 

considering the significant effect of Reynolds number. In this section ten cases namely: cases 

11 to 20 in Table 1 are simulated to investigate the significant effect of 𝑅𝑒𝑈𝑇𝐵on the dynamics 

of Taylor bubble. Figure 5 demonstrates the effect of 𝑅𝑒𝑈𝑇𝐵number on the final shape of the 

developed Taylor bubble and the flow field for cases 11, 13, 15, and 18 with 𝑅𝑒𝑈𝑇𝐵 values 

corresponding to 12, 46, 80, and 131, respectively. It can be shown that 𝑅𝑒𝑈𝑇𝐵 has prodigious 

effect on the final shape of bubble, as indicated in Figure 5. Particularly, for low values of 

𝑅𝑒𝑈𝑇𝐵, the viscous forces of liquid phase surrounding the bubbles are high enough to encumber 

the rise of the Taylor bubble, and hence the terminal bubble velocity will be at its lowest values 

(lowest 𝐹𝑟𝑈𝑇𝐵), as indicated in Table 1. The increase in 𝑅𝑒𝑈𝑇𝐵 increases the velocity of Taylor 

bubble. It can be concluded from Table 1 that for 𝑅𝑒𝑈𝑇𝐵 values approximately above 80, 𝐹𝑟𝑈𝑇𝐵 

is almost the same which is in agreement with the experimental conclusions of Wallis (1969).  

It can also be concluded from Figure 5, that the high viscous forces enhance the elongation of 

the terminal developed Taylor bubble. The gradual increase in 𝑅𝑒𝑈𝑇𝐵 increases the concavity 

of the rear of Taylor bubble which is in good agreement with the experimental observation of 

Goldsmith and Mason (1962) that the rear of Taylor bubbles is characterized by being flat or 

concave when the flow is not viscosity dominated, and oblate spheroid when it is viscosity 

dominated. The shape of the rear of Taylor bubble and its transition critical criteria is discussed 

in details in section 4.6. 

It is also concluded from Figure 5, that 𝑅𝑒𝑈𝑇𝐵 has significant effect on wake development. For 

low values of 𝑅𝑒𝑈𝑇𝐵, the liquid from the liquid film region expands directly and smoothly over 

the Taylor bubble bottom which is noticed by parallel streamlines in the wake region. 

Increasing the values of 𝑅𝑒𝑈𝑇𝐵, the Taylor bubble becomes wider in size squeezing the liquid 
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film region that subsequently increases the velocity of the trailing liquid plugging in to the 

Taylor bubble bottom. This leads to the development of circulatory rear of vortices as liquid 

plugs into the Taylor bubble bottom. The scale and intensity of the vortex increases with higher 

values of 𝑅𝑒𝑈𝑇𝐵. In addition, Figure 6 shows the effect of 𝑅𝑒𝑈𝑇𝐵 on the bubble shape profile 

where it is clearly seen that the increase in 𝑅𝑒𝑈𝑇𝐵  causes the bubble nose to becomes less 

slender, and reduces the thickness of the developed liquid film. 

4.3.2 Effect of Eötvös number 

Eötvös number (𝐸𝑜) represents the effect of buoyancy and surface tension forces which are 

two of the significant forces acting on Taylor bubbles. In order to investigate the effect of 𝐸𝑜 

number on the dynamics of Taylors bubble rising through stagnant liquids, 21 cases namely 

case 21 to case 42 in Table 1 are simulated. This covers wide range of 𝐸𝑜 varying from 6-700.  

Figure 7 shows the effect of 𝐸𝑜 on the final shape of the developed Taylor bubble and the flow 

field for cases 22, 25, 28 and 32 with 𝐸𝑜  values corresponding to 10, 66, 100 and 160, 

respectively.  At low values of 𝐸𝑜, the surface tension forces are high enough to maintain any 

distortion at the gas-liquid interface. The bubble is noticed to have prolate spheroidal nose and 

oblate spheroid bottom. The increment in the surface tension increases the curvature of the 

bubble nose, and subsequently increases the liquid film thickness. Hence, the velocity of fully 

developed falling liquid film decreases. 

Regarding the rear of the bubble, the increase in 𝐸𝑜 leads to increase in inertial forces which 

is seen as values of 𝐹𝑟𝑈𝑇𝐵  increases. The increase in 𝐸𝑜 also significantly affects the rear of 

bubble by gradually turning the bottom shape from convex or flat into concave structure, as 

indicated in Figure 7. This causes wakes to be developed at the rear of the bubble, and hence 

wake length and volume increases with the increase in 𝐸𝑜 values, as indicated in Table 1. This 

has similar trend as that shown in Figure 5 exploring the effect of 𝑅𝑒𝑈𝑇𝐵. At certain critical 

value of 𝐸𝑜, the further increase in 𝐸𝑜 with its corresponding deficiency of surface tension 

results in deformation at gas-liquid interface. The shape of the bubble’s rear turns from concave 

into wave and subsequently into breaking up. The breaking up concept is characterized by very 

unstable phenomena that occurs at the rear of the bubble and is noticed by the small bubbles 

shedding off from Taylor bubble into the wake region. Higher values of 𝐸𝑜, cause the gas-

liquid interface to lose its structure and strong breaking up concept is noticed (Morgado et al., 

2016). A phase diagram map is discussed later in section 4.6 that describes the interesting 
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phenomena that occur at the rear of Taylor bubbles which is strongly affected by surface 

tension, and inertia forces. 

Furthermore, Figure 8 shows the effect of 𝐸𝑜 on the bubble shape profile for different selected 

cases from Table 1. The increase in 𝐸𝑜 increases the bluntness of the nose of the bubble, 

decreases the flatness of the bubble tail, and increment the liquid film thickness. This 

conclusion refutes that of  Kang et al. (2010) that 𝐸𝑜 has no effect on the dynamics at bubble 

nose, and liquid film thickness, but agrees with the conclusion of  Taha and Cui (2006) and 

Zheng et al. (2007) which entails that 𝐸𝑜 increases the degree of prolateness of the Taylor 

bubble nose.  

In conclusion, 𝐸𝑜, and 𝑅𝑒𝑈𝑇𝐵 significantly control the developed shape of Taylor bubble. The 

results shows that the surface tension forces are significant with low values of  𝐸𝑜, while the 

large contribution of 𝑅𝑒𝑈𝑇𝐵 on dynamics of Taylor bubble is noticed with higher values of 

𝑅𝑒𝑈𝑇𝐵. These conclusions agree well with the results of order of magnitude analysis discussed 

earlier in section 2. In the following section, the role of these dimensionless groups on the 

Taylor bubble rise velocity is introduced. 

4.4 Taylor bubble rise velocity 

The Taylor bubble rise velocity (𝑈𝑇𝐵)is one of the main hydrodynamic features used for the 

description of two phase slug flow. In this section, a detailed discussion on Taylor bubble 

terminal velocity is introduced. Based on the discussion given in section 2, it can be concluded 

that the terminal bubble velocity (𝑈𝑇𝐵)  is mainly governed by viscosity, surface tension, 

buoyancy and inertia forces.  In literature, various studies either theoretical and/or experimental 

are done to account for the terminal bubble velocity. A good review for the main correlations 

for 𝐹𝑟𝑈𝑇𝐵, to account for bubble terminal velocity, starting from the theoretical investigation 

of Dumitrescu (1943) and ending with the resent study of Kurimoto et al. (2013) and is given 

by Morgado et al. (2016).  

Based on relation (16), and on the cases simulated in Table 1, a proposed correlation to 

estimate 𝐹𝑟𝑈𝑇𝐵 that depends mainly on 𝐸𝑜 and 𝑅𝑒𝑈𝑇𝐵 is developed, given by: 
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Additionally, Figure 9 shows that the values obtained from the proposed correlation fit quite 

well with the behaviour of other well-known correlations from literature for different domains. 

Values predicted from Viana et al. (2003) correlations, and values from the recent correlation 

of  Kurimoto et al. (2013) are added to Figure 9 for comparison purposes. It can be seen that 

the proposed correlation agrees well with a wide range of correlations with a maximum 

deviation of ±10%. In general, there is a proper matching between the data, especially in surface 

tension dominant domain. However, in inertia dominant domains with high values of  𝐸𝑜, the 

proposed correlation predicts the correlation of Viana et al. (2003).  The only explanation is 

most probable to be a numerical problem for situations of high inertial forces as pointed out by 

Araújo et al. (2012).  In brief, the proposed correlation shows an accepted behavior with other 

correlations with maximum deviation ±10%. 

4.5 Flow in liquid film 

The flow in the liquid film is investigated by characteristics associated with three key features: 

the dimensionless developed liquid film thickness (𝛿𝐿𝐹/𝐷), the dimensionless velocity of the 

liquid film (𝑈𝐿𝐹/𝑈𝑇𝐵) and the dimensionless wall shear stress (
𝜏𝑊

𝜌𝐿𝑔𝐷
)
𝑚𝑎𝑥

. This section will 

discuss the effect of the main dimensionless parameters, given in section 2, on these three key 

features characterizing the flow in the liquid film. 

4.5.1 Liquid film velocity and thickness 

Figure 9 represents the effect of 𝑅𝑒𝑈𝑇𝐵  on the dimensionless normalized thicknesses and 

velocity of falling liquid film along the Taylor bubble length. At low values of 𝑅𝑒𝑈𝑇𝐵, the liquid 

film thickness (𝛿𝐿𝐹/𝐷) decreases with the increase in the dimensionless distance measure from 

bubble nose (𝑥/𝐷) until it reaches a constant thickness at around 𝑥/𝐷=1. At that point, a 

balance between the gravitational and friction forces is reached, and hence a constant liquid 

film thickness and velocity is established. However, the dimensionless velocity of the liquid 

film (𝑈𝐿𝐹/𝑈𝑇𝐵) changes contrarily. The increase in 𝑅𝑒𝑈𝑇𝐵 diminishes the long slender shape 

of Taylor bubble and turns it into shorter and flatter bubbles which in turns reduces (𝛿𝐿𝐹/𝐷) 

𝐹𝑟 =
𝑈𝑇𝐵

√𝑔𝐷
 

= 0.0359 − 0.3596𝐸𝑜 − 0.7067𝑅𝑒𝑈𝑇𝐵 + 0.5801𝐸𝑜
2 − 1.014𝐸𝑜𝑅𝑒𝑈𝑇𝐵 + 0.3447𝐸𝑜

3

+ 1.594𝐸𝑜2𝑅𝑒𝑈𝑇𝐵 − 0.1931𝐸𝑜
4 + 0.9647𝐸𝑜3𝑅𝑒𝑈𝑇𝐵 − 0.001814𝐸𝑜

5

− 0.5481𝐸𝑜4𝑅𝑒𝑈𝑇𝐵  

(17) 
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(Kang et al., 2010). In addition, the higher viscosity of the surrounding liquid at low values of 

𝑅𝑒𝑈𝑇𝐵 increment the shear stress in the liquid, thus, the momentum diffusion opposes the liquid 

flowing from the liquid film into the bubble wake region (Zheng et al., 2007). Therefore, the 

increase in 𝑅𝑒𝑈𝑇𝐵 increases the dimensionless velocity of the liquid film (𝑈𝐿𝐹/𝑈𝑇𝐵). 

Finally, the effect of 𝐸𝑜 on the dimensionless normalized thicknesses and velocity of falling 

liquid film along the Taylor bubble length is given in Figure 11. As discussed earlier, the 

increase 𝐸𝑜  affects the curvature of the bubble nose, thus increases (𝛿𝐿𝐹/𝐷) , increases 

stabilization length (distance needed for formation of fully developed falling liquid film), and 

finally increases 𝑈𝐿𝐹 . However, the dimensionless velocity of the liquid film (𝑈𝐿𝐹/𝑈𝑇𝐵) 

decreases with the increment in 𝐸𝑜 due to the fact that the inertia forces are increased leading 

to increment in 𝑈𝑇𝐵 values. It is concluded from Figure 11 that (𝛿𝐿𝐹/𝐷) and(𝑈𝐿𝐹/𝑈𝑇𝐵) are 

affected with the increase in 𝐸𝑜 till 𝐸𝑜 ≤ 66, where further increase in 𝐸𝑜 shows almost no 

effect on the flow in the liquid film.   

In conclusion, it should be pointed out that both of (𝛿𝐿𝐹/𝐷), and (𝑈𝐿𝐹/𝑈𝑇𝐵) are strongly 

dependent on 𝐸𝑜, and 𝑅𝑒𝑈𝑇𝐵. This conclusion contradicts those made by: Kang et al. (2010): 

the liquid film thickness is only dependent on Archimedes number (𝐴𝑟 = 𝑁𝑓
2), and that of 

Araújo et al. (2012): the liquid film thickness is function of 𝑁𝑓, and 𝑀. 

4.5.2 Wall shear stress distribution  

If the two-phase slug flow problem is involved in heat or mass transfer, then the wall shear 

stress becomes a primary significant hydrodynamic parameter.  This process is often referred 

to as slug flow-induced corrosion (Zheng and Che (2006); Zheng and Che (2007); Zheng et al. 

(2007) and Araújo et al. (2012)). The main problems result from slug flow corrosion are: 

pipeline damage, decrease pipe lifetime and may lead to the shutdown of the pipeline. 

Figure 12 shows the wall shear stress distribution along the Taylor bubble length for 

different 𝑅𝑒𝑈𝑇𝐵 . For low values of 𝑅𝑒𝑈𝑇𝐵 , the wall shear stress distribution starts with an 

increase in the wall shear stress near the bubble nose then it reaches a maximum positive value 

with the formation of a constant liquid film characteristics (thickness and velocity). The wall 

shear stress then starts to decrease till it reaches zero value in the bubble tail or wake region.  

The increase in 𝑅𝑒𝑈𝑇𝐵, results in less the viscous liquid surrounding the Taylor bubble, that 

subscribes to decrement in wall shear stress. This conclusion agrees well with that made by 
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Taha and Cui (2006).  On the one hand, the dimensionless wall shear stress in the nose region 

is not affected by the increase in 𝑅𝑒𝑈𝑇𝐵 , on the other hand, the plateau behaviour at the 

developed liquid film is shortened with the increase in 𝑅𝑒𝑈𝑇𝐵. This occurs as a result of the 

shape in Taylor bubble shape which is characterized by being a long slender that turns into 

shorter and flatter bubbles with the increase in 𝑅𝑒𝑈𝑇𝐵. Additionally, it should be pointed out 

that the effect of increase in 𝑅𝑒𝑈𝑇𝐵 on the bubble wake region is seen as jump in dimensionless 

wall shear values that increases with higher values of  𝑅𝑒𝑈𝑇𝐵; this further assists the conclusion 

made by Kang et al. (2010). A further validation for the flow in liquid film region is given in 

Figure 13, where a comparison takes place between the numerical results for dimensionless 

wall shear stress, and 𝛿𝐿𝐹/𝐷, and the theoretical values by Brown (1965). It is clear that the 

numerical results strongly correspond with the theoretical data.  

Finally, the effect of 𝐸𝑜 on the distribution of the dimensionless wall shear stress along the 

Taylor bubble is given in Figure 14. Generally, for most values of 𝐸𝑜, the distribution is almost 

the same, which starts with increase in wall shear stress near the bubble nose, then a constant 

value is reached at the developed liquid film, followed by reduction in dimensionless wall shear 

stress near the bubble tail. As indicated in Figure 14, lower values of 𝐸𝑜 possess different 

distribution with noticeable peak value in dimensionless shear stress right before the Taylor 

bubble rear. This is due to the sharp flat and convex shape of the bubble attained at lower values 

of 𝐸𝑜 as discussed in section 4.3.2, which coincides with Araújo et al. (2012). 

In conclusion, the numerical results show that the dimensionless wall shear stress is dependent 

on both 𝐸𝑜, and 𝑅𝑒𝑈𝑇𝐵 which again contradicts the conclusion  made by Kang et al. (2010) that 

the wall shear stress is only function of 𝐴𝑟, and supports Araújo et al. (2012) conclusion in 

different scenario.  Subsequently, a correlation based on the numerical results for all simulated 

cases in Table 1 for dimensionless maximum wall shear stress is suggested, given by: 

Figure 15 illustrates the present numerical results, and values obtained from proposed 

correlation given in equation (18) for the maximum dimensionless wall shear stress along the 

Taylor bubble length for different values of 𝐸𝑜 (cases 21 to 42 in Table 1). It is obvious that 

(
𝜏𝑊
𝜌𝐿𝑔𝐷

)
𝑚𝑎𝑥

 

= 0.242 + 0.238𝐸𝑜 + 0.5544𝑅𝑒𝑈𝑇𝐵 − 0.1196𝐸𝑜
2 + 1.037𝐸𝑜𝑅𝑒𝑈𝑇𝐵 + 0.5294𝑅𝑒𝑈𝑇𝐵

2

− 2.818𝑒−05𝐸𝑜3 − 0.3202𝐸𝑜2𝑅𝑒𝑈𝑇𝐵 + 1.083𝐸𝑜𝑅𝑒𝑈𝑇𝐵
2

− 0.0008579𝑅𝑒𝑈𝑇𝐵
3  

(18) 
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the correlation matches the simulation data to a considerable extent. For comparison issues, the 

theoretical prediction given by Brown (1965) (equation (14)), and predictions using  Kang et 

al. (2010) correlation (equation (19)) are added to Figure 15. 

It can be seen from Figure 15, that the suggested correlation matches well with the theoretical 

predictions calculated by Brown (1965) with very small deviations. However, there is an 

exception for that proper matching for small values of 𝐸𝑜. Generally, these cases with low 

values of 𝐸𝑜 (especially around 6) possess low values of 𝑈TB with almost non-moving bubbles. 

These cases are more sensitive to numerical errors as clarified by (Araújo et al., 2012, Zheng 

et al., 2007) 

 It should be pointed out that 𝑅𝑒𝑈𝑇𝐵 is not constant for these selected cases, and its values are 

indicated in Table 1. Similarly, as discussed before for the liquid film thickness, the 

dimensionless wall shear stress is function of both 𝐸𝑜, and 𝑅𝑒𝑈𝑇𝐵, and not only function of 𝐴𝑟 

as concluded by Kang et al. (2010). This conclusion completely agrees with Araújo et al. (2012) 

that dimensionless wall shear stress depends on 𝐸𝑜, and 𝑀, but with different scenario as 

discussed in section 2. 

In conclusion, the flow in the liquid film is considerably affected by 𝐸𝑜, and 𝑅𝑒𝑈𝑇𝐵. It should 

be pointed out that both 𝐸𝑜, and 𝑅𝑒𝑈𝑇𝐵 significantly control the wall shear stress distribution 

which in turns control the corrosion process related to two-phase flow which is known as slug 

flow induced corrosion. In the next section, the contribution of these dimensionless groups on 

the flow in the wake region is discussed. 

4.6 Flow in wake region 

The wake structure is one of the vital hydrodynamic characteristics of slug flow systems, 

especially in describing the interaction and coalescences between successive Taylor bubbles 

and in modelling process (Araújo et al., 2012). Understanding the mechanism by which the 

wake region is developed is essential prior to introducing the simulation results for flow in 

wake region. The annular falling film from the liquid film region plugs into the rear of the 

Taylor bubble and creates mixing and recirculation zone which is known by bubble wake. The 

intensity and size of the recirculation vortices in the wake region depend on the properties of 

(
𝜏𝑊
𝜌𝐿𝑔𝐷

)
𝑚𝑎𝑥

= −0.02𝑙𝑜𝑔10𝐴𝑟 + 0.2 (19) 
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the surrounding liquid, especially its viscosity as indicated by the experimental work of 

Campos and De Carvalho (1988). As discussed previously in section 2, Campos and De 

Carvalho (1988) conclude three flow patterns for the wake depending on the inverse viscosity 

number, 𝑁𝑓. In the present study, most of the cases bump into closed axisymmetric laminar 

wake.  

Stimulated by the work of Morgado et al. (2016), and based on the simulated cases given in 

Table 1, phase diagram of the presence and nature of wake, and of the shape of the rear Taylor 

bubble are presented in Figure 16, and Figure 17, respectively. The diagrams are given in terms 

of 𝐸𝑜, and 𝑅𝑒𝑈𝑇𝐵, based on the problem formulation given in section 1. Throughout the present 

study, only two kinds of wake are observed: either closed axisymmetric wake or no wake. For 

the shape of rear of Taylor bubble, as discussed earlier in section 4.3.2, when the surface tension 

is significantly reduced, the gas-liquid interface is easily deformed and the shape of Taylor 

bubble rear becomes unstable. Stable bubble shape is classified in to concave, convex, or flat 

bubbles. However, unstable bubble wakes are either wavy or breaking up bubbles. Figure 17 

showed the type of bubble rear shape for all data simulated which strongly corresponds with 

Kang et al. (2010) and Morgado et al. (2016) which conclude that the sudden elongation in the 

bubble tail, based on investigating the effect of 𝐸𝑜 on the dynamics of Taylor bubbles, is 

around unity which corresponds to 𝐸𝑜 > 250 . Referring to cases 21 to 42 in Table 1, it is 

observed that the gas-liquid interface starts to become unstable approximately at 𝐸𝑜 > 200. 

Numerical solutions with either wavy or breaking up bubble wakes and cases with small bubble 

detachment required extremely refined meshes to be accurate. Figure 18 illustrates an example 

for this unstable nature of gas-liquid interface for case 36 in Table 1. 

The wake region is investigated by two main parameters, namely dimensionless wake length 

(𝐿𝑊/𝐷), and dimensionless wake volume (𝑉𝑤/𝐷
3). One of the main correlations used to 

predict these parameter is that of Campos and De Carvalho (1988) which is given by equation 

(15).  Recently, Araújo et al. (2012) suggested equation for the dimensionless wake length, 

𝐿𝑊/𝐷, and dimensionless wake volume (𝑉𝑤/𝐷
3) function in  𝐸𝑜, and 𝑀, given by:  

𝐿𝑊
𝐷
=
1

4
× [0.555 − 7.793 × 103ln (𝑀)] × 𝑙𝑛 (

𝐸𝑜3

𝑀
)− 2.133 + 8.046

× 10−2ln (𝑀) (20) 

𝑉𝑊
𝐷3
= 1.365 × 10−1 (

𝐿𝑊
𝐷
)
2

+ 2.176 × 10−1 (
𝐿𝑊
𝐷
) − 2.91910−2 
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Following the same procedure of Araújo et al. (2012) for measuring 𝐿𝑊/𝐷, and 𝑉𝑊/𝐷
3, Table 

1 gives the simulation results for these two parameters for all cases under investigation.  

As discussed earlier, the effect of 𝑅𝑒𝑈𝑇𝐵 on the flow in the wake region is noticed by the change 

in the shape of rear of the Taylor bubble from flat into convex. In addition, the increase in 

𝑅𝑒𝑈𝑇𝐵 decreases the liquid film thickness thus squeezing liquid in narrower region. As a result, 

the intensity and size of the wake increases, which is noticed by the increment of 𝐿𝑊/𝐷 and  

𝑉𝑊/𝐷
3 as indicated in Figure 19.  Furthermore, A similar scenario is noticed for the increase 

in 𝐸𝑜, for cases 21 to 42 in Table 1, that results in increase in 𝐿𝑊/𝐷, and  𝑉𝑊/𝐷
3 values. It 

should be pointed out that for cases 36 to 42 in Table 1, 𝐿𝑊/𝐷 and  𝑉𝑊/𝐷
3 are calculated as 

average values once the solution is converged and most of the hydrodynamics characteristics 

investigated are developed. This is because the developed bubble shape is unstable which is 

either wavy or breaking up. A good matching between simulation results for 𝐿𝑊/𝐷 , and  

𝑉𝑊/𝐷
3, and the experimental correlation given by Campos and De Carvalho (1988) is shown 

in Figure 19. 

Also, Table 4 gives a comparison of the simulation results, experimental data, and correlations 

from literature for 𝐿𝑊/𝐷, and  𝑉𝑊/𝐷
3 for validation of the present code regarding flow in wake 

region. Two simulation cases based on the experimental work of Campos and De Carvalho 

(1988) with 𝐸𝑜  in range of 64, and 𝑅𝑒𝑈𝑇𝐵  in range of 56-107, are simulated.  It can be 

concluded from Table 4, that numerical results show good matching with other correlations in 

literature, experimental correlation of Campos and De Carvalho (1988) and numerical 

correlation of Araújo et al. (2012). 

In conclusion, the flow in the wake region is significantly affected by both 𝐸𝑜, and 𝑅𝑒𝑈𝑇𝐵 

which can be clarified by the change in corresponding dimensionless wake length and volume. 

Additionally, the results revealed that both 𝐿𝑊/𝐷 and  𝑉𝑊/𝐷
3 are mainly dependent on 𝐸𝑜, 

and 𝑅𝑒𝑈𝑇𝐵, which again agrees with the predictions of Kang et al. (2010), and  contradicts 

Araújo et al. (2012) conclusion with different point of view based on the significance of 

Reynolds number (𝑅𝑒𝑈𝑇𝐵) rather than Morton number (𝑀). 

5. Conclusions 

In this paper, a complete dimensionless analysis of single Taylor bubble rising through a 

vertical stagnant Newtonian liquid problem is performed followed by the order of magnitude 

analysis of the equations of motion. The main conclusion is that Froude number (𝐹𝑟𝑈𝑇𝐵), is 
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function of Eötvös number (𝐸𝑜), Reynolds number (𝑅𝑒𝑈𝑇𝐵), density ratio (𝛤𝜌), viscosity ratio 

(𝛤𝜇) and 𝐿𝑇𝐵/𝐷. The effect of density ratio (𝛤𝜌), viscosity ratio (𝛤𝜇) and the bubble size to the 

pipe diameter (𝐿𝑇𝐵/𝐷) are examined for the sake of supporting other previous experimental 

and numerical works in the literature.  

Based on the dimensionless analysis, the hydrodynamic characteristics of single Taylor bubble 

rising through vertical stagnant Newtonian liquid is investigated using the volume-of-fluid 

(VOF) methodology implemented in the computational fluid dynamics software package, 

ANSYS Fluent (Release 15.0), with particular focus on the sole dimensionless parameters: 

Froude number (𝐹𝑟𝑈𝑇𝐵), Reynolds number (𝑅𝑒𝑈𝑇𝐵) and Eötvös number (𝐸𝑜). The results are 

divided into four sections: Taylor bubble shape, Taylor bubble rise velocity, flow in the liquid 

film region and flow in the wake region. The numerical results predicted the problem 

effectively as they were validated by testing some of the selective cases against both theoretical 

and experimental data in the literature.    

Based on the numerical results and using guidelines from order of magnitude analysis, 

correlation to estimate Taylor bubble rise velocity (𝑈𝑇𝐵) as a function in only 𝐸𝑜, and 𝑅𝑒𝑈𝑇𝐵 

is proposed and shows good prediction when compared with other well-known correlations in 

literature, especially with Viana et al. (2003) correlation.  

Detailed Hydrodynamics: 

𝐸𝑜 showed significant effect on all hydrodynamic features of Taylor bubbles. The increment 

in surface tension increases the curvature of the bubble nose, increases the liquid film thickness, 

decreases the dimensionless velocity of fully developed falling liquid film, and finally increases 

wake intensity and size. For the flow in the liquid film, the numerical results are compared with 

the theoretical predictions given by Brown (1965) and establishing a strong correspondence.  

𝑅𝑒𝑈𝑇𝐵 shows contribution similar to 𝐸𝑜 number. The developed Taylor bubble shape changes 

from long slender shape into shorter and flatter bubbles with the increase in 𝑅𝑒𝑈𝑇𝐵; this results 

in reduction in liquid film thickness.  

Additionally, the wall shear stress was examined under the effect of both 𝐸𝑜 and 𝑅𝑒𝑈𝑇𝐵. The 

increase in 𝑅𝑒𝑈𝑇𝐵 results in less viscous effect in the liquid surrounding the Taylor bubble that 

subscribes to decrement in wall shear stress. The wall shear stress increases with 𝐸𝑜, however 

it should be pointed out that lower values of 𝐸𝑜 possesses different distribution for the wall 

shear stress with noticeable peak value right before the Taylor bubble rear due to the sharp flat 
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and convex shape of the bubble attained at lower values of 𝐸𝑜. Based on the numerical results 

for wall shear stress, a proposed correlation for maximum wall shear stress is developed and 

predicts results favourably matching with the theoretical predictions of  Brown (1965).  

Furthermore, for the wake region, a phase diagram showing the presence and nature of wake, 

and of the shape of the rear Taylor bubble is illustrated. Unstable bubbles are developed at 𝐸𝑜 

above 200 which are characterized by presence of small bubbles shedding off from main Taylor 

bubble into wake region.  

Finally, it can be concluded that the developed numerical results agree well with the order of 

magnitude analysis. For instance, the order of magnitude analysis has shown that, in order for 

Reynolds number for the major viscous terms to remain intact, it should be of order (
LTB

D
), 

which means relatively large values. The numerical result agrees well with that showing the 

significance of the larger values of Reynolds number on the dynamics of Taylor bubble 

including bubble shape, terminal velocity, flow in the liquid film and flow in the wake region.  
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Table 1- Simulation cases and their corresponding results. 

Input Parameters Predicted Values 

Case 

No. 

 
𝑬𝒐 

 𝜞𝝆 =
𝝆𝑳
𝝆𝑮

  𝜞𝝁 =
𝝁𝑳
𝝁𝑮

 (
𝑳𝑻𝑩
𝑫
)
𝒊
 

 

𝑭𝒓𝑼𝑻𝑩 

 

𝑹𝒆𝑼𝑻𝑩 
(
𝑳𝑻𝑩
𝑫
)
𝒑
 

Flow in liquid film region Flow in wake region 

𝜹𝑳𝑭
𝑫

 𝑼𝑳𝑭𝒎𝒂𝒙 (
𝝉𝑾
𝝆𝑳𝒈𝑫

)
𝒎𝒂𝒙

 𝑳𝒘/𝑫 𝑽𝒘/𝑫
𝟑 

Effect of density ratio (Γρ)  

1 66 6E+01 6.67E+03 3 0.290 24.3 3.1 0.1250 0.1870 0.1074 0 0 

2 66 9.98E+02 6.67E+03 3 0.290 24.3 3.1 0.1243 0.1086 0.109 0 0 

3 66 2E+02 6.67E+03 3 0.287 24.1 3.1 0.1246 0.1873 0.1084 0 0 

Effect of density ratio ( 𝚪𝛍)  

4 66 9.98E+02 6.67E+01 3 0.288 24.2 3.12 0.1251 0.1848 0.1071 0 0 

5 66 9.98E+02 6.67E+02 3 0.289 24.3 3.1 0.1244 0.1863 0.1085 0 0 

6 66 9.98E+02 6.67E+03 3 0.290 24.3 3.1 0.1243 0.1086 0.109 0 0 

Effect of LTB/D  

7 66 9.98E+02 6.67E+03 2 0.2898 24.3 2.14 0.1246 0.1083 0.1083 0 0 

8 66 9.98E+02 6.67E+03 3 0.2898 24.3 3.1 0.1243 0.1086 0.109 0 0 

9 66 9.98E+02 6.67E+03 4 0.2898 24.3 4.1 0.1244 0.1087 0.1087 0 0 

10 66 9.98E+02 6.67E+03 10 0.2847 23.9 9.9 0.1232 0.1084 0.1084 0 0 

Effect of Reynolds number (ReUTB) 

11 66 9.98E+02 6.67E+03 3 0.246 12 3.04 0.138 0.1437 0.1188 0 0 

12 66 9.98E+02 6.67E+03 3 0.292 29 3.09 0.1183 0.1993 0.2350 0 0 

13 66 9.98E+02 6.67E+03 3 0.307 46 3.08 0.1063 0.1041 0.0948 0.3775 0.06779 

14 66 9.98E+02 6.67E+03 3 0.315 63 3.11 0.0982 0.2596 0.0882 0.5717 0.1305 

15 66 9.98E+02 6.67E+03 3 0.320 80 3.1 0.0922 0.2815 0.0831 0.6542 0.1786 

16 66 9.98E+02 6.67E+03 3 0.324 97 3.12 0.0875 0.2995 0.0791 0.7341 0.2212 

17 66 9.98E+02 6.67E+03 3 0.325 114 3.14 0.0822 0.3185 0.0788 0.8087 0.2571 

18 66 9.98E+02 6.67E+03 3 0.328 131 3.23 0.0799 0.3281 0.0728 0.8824 0.2870 

19 66 9.98E+02 6.67E+03 3 0.329 148 3.21 0.0779 0.3413 0.0708 0.9023 0.3048 

20 66 9.98E+02 6.67E+03 3 0.330 165 3.27 0.0746 0.3914 0.0689 0.9331 0.32780 

Effect of Eötvös number (Eo)  

21 6 9.98E+02 6.67E+03 3 0.031 2.6 3.06 0.0440 0.0540 0.1290 0 0 

22 10 9.98E+02 6.67E+03 3 0.118 9.9 3.14 0.0765 0.1179 0.1510 0 0 

23 20 9.98E+02 6.67E+03 3 0.216 18.2 3.1 0.1033 0.1631 0.1360 0 0 

24 40 9.98E+02 6.67E+03 3 0.272 22.9 3.06 0.1221 0.1797 0.1069 0 0 

25 66 9.98E+02 6.67E+03 3 0.290 24.3 3.1 0.1243 0.1864 0.1086 0 0 

26 70 9.98E+02 6.67E+03 3 0.290 24.4 3.1 0.1245 0.1873 0.1087 0 0 

27 80 9.98E+02 6.67E+03 3 0.292 24.5 3.1 0.1247 0.1884 0.1089 0 0 

28 100 9.98E+02 6.67E+03 3 0.295 24.8 3.12 0.1251 0.1907 0.1092 0.5511 0.00561 

29 120 9.98E+02 6.67E+03 3 0.296 24.9 3.12 0.1253 0.1916 0.1093 0.1796 0.01633 

30 140 9.98E+02 6.67E+03 3 0.297 25.0 3.14 0.1253 0.1921 0.1094 0.2323 0.01947 

31 150 9.98E+02 6.67E+03 3 0.298 25.0 3.14 0.1254 0.1924 0.1095 0.2227 0.02507 

32 160 9.98E+02 6.67E+03 3 0.298 25.1 3.14 0.1254 0.1931 0.1097 0.2290 0.02702 

33 170 9.98E+02 6.67E+03 3 0.298 25.1 3.14 0.1255 0.1930 0.1096 0.2552 0.0246 

34 180 9.98E+02 6.67E+03 3 0.298 25.1 3.14 0.1251 0.1940 0.1102 0.2556 0.0318 

35 200 9.98E+02 6.67E+03 3 0.299 25.1 3.16 0.1251 0.1941 0.1101 0.2730 0.03241 

36 250 9.98E+02 6.67E+03 3 0.301 25.3 2.98 0.1249 0.1951 0.1109 0.3734 0.10823 

37 300 9.98E+02 6.67E+03 3 0.301 25.3 3 0.1250 0.1955 0.1110 0.4246 0.08719 

38 350 9.98E+02 6.67E+03 3 0.299 25.1 2.9 0.1247 0.1944 0.1107 0.4875 0.17962 

39 400 9.98E+02 6.67E+03 3 0.299 25.2 2.89 0.1248 0.1926 0.1096 0.5867 0.13278 

40 500 9.98E+02 6.67E+03 3 0.301 25.3 3.04 0.1253 0.1918 0.1094 0.5921 0.11758 

41 600 9.98E+02 6.67E+03 3 0.297 24.9 2.86 0.1248 0.1953 0.1109 0.3346 0.07387 

42 700 9.98E+02 6.67E+03 3 0.297 24.9 2.88 0.1247 0.1945 0.1107 0.4989 0.09641 
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Table 2- Mesh dependence test results, 𝐸𝑜=64, 𝑅𝑒𝑈𝑇𝐵=60, 𝐹𝑟𝑈𝑇𝐵=0.3409. 

Mesh 
𝑼𝑻𝑩 

(m/s) 

Error

𝑼𝑻𝑩 

(%) 

𝜹𝑳𝑭 

(m) 

Error

𝜹𝑳𝑭 

(%) 

𝝉𝑾 

(Pa) 

Error- 
𝝉𝑾  

(%) 

𝑳𝒘/𝑫 

Error 
𝑳𝒘/𝑫 

(%) 

𝑽𝒘/𝑫
𝟑 

Error 
𝑽𝒘/𝑫

𝟑 

(%) 

26*280 0.1431 5.03 0.001972 1.72 20.74 1.06 0.5080 8.35 0.781 -5.38 

52*560 0.1373 1.02 0.001947 0.46 20.58 0.29 0.480 3.04 0.805 -2.24 

104*1120 0.1359 -- 0.001938 -- 20.52 -- 0.4654 -- 0.823 -- 

 

 

Table 3- Numerical, experimental, and theoretical values for some of the main hydrodynamic characteristics of 

experimental case based on work of  Nogueira et al. (2006a&b) with 𝐸𝑜=186, 𝑅𝑒𝑈𝑇𝐵= 37.083, 𝐹𝑟𝑈𝑇𝐵= 0.3355, 

and their respective deviations. 

1. Taylor bubble rise velocity-Froude number 

Simulation Experimental Theoretical 

(-) 0.3094 0.3355a 0.3055b 0.3309c 

Error    (%)  7.80 -1.26 6.50 

2. Flow in the liquid film region 

Simulation Experimental Theoretical 

(m) 0.0037 0.00384 a 0.00382d 

Error    (%)  2.73 2.37 

(Pa) 39.83 39.6 a 40.75d 

Error    (%)  -0.59 2.22 

(m/s) 0.279 0.253 a -- 

Error    (%)  -10.02 -- 

3. Flow in the wake region 

Simulation Experimental Theoretical 

(-) 0.371 0.19 a 0.4347e -- 

Error    (%)  48.78 -17.19 -- 

(-) 0.069 0.04 a 0.0828e -- 

Error    (%)  42.67 -18.49 -- 
a Nogueira et al. (2006a&b) 

b Viana et al. (2003) 
c Wallis (1969)  

d Brown (1965)  

e Campos and De Carvalho (1988) 

 

 

 

 

 

𝛿𝐿𝐹 

𝜏𝑊 

𝑈𝐿𝐹 

𝐹𝑟𝑈𝑇𝐵  

𝐿𝑤/𝐷 

𝑉𝑤/𝐷
3 
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Table 4- Numerical and experimental values of  𝐿𝑊/𝐷, and  𝑉𝑊/𝐷
3, and their respective deviations with respect 

to experimental data 

1. Experimental data a 

  𝐿𝑤/𝐷 (-) Error    (%) 𝑉𝑤/𝐷
3 (-) Error    (%) 

Case 1 0.5145 -- 0.1319 -- 

Case 2 0.544 -- 0.147 -- 

2. Current simulation 
 

𝐿𝑤/𝐷 (-) Error    (%) 𝑉𝑤/𝐷
3 (-) Error    (%) 

Case 1 0.487 5.34 0.1094 17.06 

Case 2 0.5567 -2.33 0.1394 5.17 

3. Experimental correlation a 
 

𝐿𝑤/𝐷 (-) Error    (%) 𝑉𝑤/𝐷
3 (-) Error    (%) 

Case 1 0.5145 -- 0.0973 26.23 

Case 2 0.5498 -1.07 0.1227 16.53 

4. Numerical correlation b 
 

𝐿𝑤/𝐷 (-) Error    (%) 𝑉𝑤/𝐷
3 (-) Error    (%) 

Case 1 0.40616 21.06 0.0817 38.06 

Case 2 0.4754 12.61 0.1051 28.50 

a Campos and De Carvalho (1988) 

b Araújo et al. (2012) 
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Figure 1. Schematic representation of the computational domain and the main hydrodynamic features of a single 

Taylor bubble rising through stagnant liquid showing the different flow regions based on the definition of 

Reynolds number (Mayor et al., 2007), the initial and boundary conditions, the change from a fixed reference 

frame system (a) to a moving reference frame system (b). 
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Figure 2. Numerical results of the Streamlines (left) and Velocity fields (right) of a rising Taylor bubble through 

stagnant liquid vertical pipe, 𝑬𝒐=186, 𝑹𝒆𝑼𝑻𝑩=37.083, 𝑭𝒓𝑼𝑻𝑩=0.3355 using moving reference frame (MRF). 

 

Figure 3.  The experimental and numerical shape of Taylor bubble in nose region- x is the axial distance from 

bubble nose. 
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Figure 4. Numerical, experimental, and theoretical dimensionless axial velocity profile for three different regions: 

Taylor bubble nose region, liquid film region, and wake region in a fixed reference frame. 𝑬𝒐 =186, 

𝑹𝒆𝑼𝑻𝑩=37.083, 𝑭𝒓𝑼𝑻𝑩=0.3355. 
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Figure 5. Effect of 𝑅𝑒𝑈𝑇𝐵  on the terminal shape of Taylor bubble, and streamlines representing the flow field. (a) 

Case (11) 𝑅𝑒𝑈𝑇𝐵  =12, (b) Case (13) 𝑅𝑒𝑈𝑇𝐵  =46, (c) Case (15) 𝑅𝑒𝑈𝑇𝐵  =80, and (d) Case (18) 𝑅𝑒𝑈𝑇𝐵  =131. 

 

 

Figure 6. Effect of 𝑅𝑒𝑈𝑇𝐵  on bubble shape profile- x is the axial distance from bubble nose. 
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Figure 7. Effect of 𝐸𝑜 on the terminal shape of Taylor bubble, and streamlines representing the flow field. (a) 

Case (22) 𝐸𝑜 =10, (b) Case (25) 𝐸𝑜 =66, (c) Case (28) 𝐸𝑜 =100, and (d) Case (32) 𝐸𝑜 =160. 

 

 

Figure 8. Effect of 𝐸𝑜 on bubble shape profile - x is the axial distance from bubble nose. 
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Figure 9. Numerical results of 𝑈𝑇𝐵  expressed in terms of 𝐹𝑟𝑈𝑇𝐵  for a several 𝐸𝑜  with corresponding values 

obtained from proposed correlation given in equation (17), and different correlations from literature for 

comparison.  𝑅𝑒𝑈𝑇𝐵 varies from 2.6 to 25.3.  

 

 

Figure 10. The effect of 𝑅𝑒𝑈𝑇𝐵  on the dimensionless normalized thicknesses (𝛿𝐿𝐹/𝐷) and dimensionless velocity 

of falling liquid film (𝑈𝐿𝐹/𝑈𝑇𝐵) along the Taylor bubble length- x is axial distance from bubble nose. 
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Figure 11. The effect of 𝐸𝑜 on the dimensionless normalized thicknesses (𝛿𝐿𝐹/𝐷) and dimensionless velocity of 

falling liquid film (𝑈𝐿𝐹/𝑈𝑇𝐵) along the Taylor bubble length- x is axial distance from bubble nose.  

 

Figure 12.  Effect of 𝑅𝑒𝑈𝑇𝐵  on the wall shear stress distribution (𝜏𝑊 𝜌𝐿𝑔 𝐷)⁄  along Taylor bubble length - x is 

axial distance from bubble nose.  
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Figure 13.  Variation of the dimensionless normalised thickness (𝛿𝐿𝐹/𝐷) and dimensionless maximum wall shear 

stress (𝜏𝑊 𝜌𝐿𝑔 𝐷)⁄
𝑚𝑎𝑥

 distribution along Taylor bubble length with 𝑅𝑒𝑈𝑇𝐵  plotted with the theoretical prediction 

of  Brown (1965) (equations (10), and equation (14)). 

 

Figure 14.  Effect of 𝐸𝑜 on the wall shear stress distribution along Taylor bubble length - x is axial distance from 

bubble nose, 𝑅𝑒𝑈𝑇𝐵  varies from 2.6 to 25.  
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Figure 15. Numerical results of (
𝜏𝑊

𝜌𝐿𝑔𝐷
)
𝑚𝑎𝑥

for a several 𝐸𝑜 with corresponding values obtained from proposed 

correlation given in equation (18), theoretical prediction given by Brown (1965) (equation (14)), and predictions 

using  Kang et al. (2010) correlation (equation (19)), for cases 21 to 42 in Table 1. 

 

Figure 16.  Phase diagram of the presence and kind of wake of Taylor bubbles rising through vertical columns of 

stagnant liquid. 
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Figure 17.   Phase diagram of the rear of Taylor bubble shape, expressed in terms of  𝑬𝒐, and 𝑹𝒆𝑼𝑻𝑩, of a Taylor 

bubbles rising through vertical columns of stagnant liquid. 

 

Figure 18.   Development of wake flow pattern of Taylor bubble rising vertical columns of stagnant liquid for 

case (36) with a time interval of 0.5s: 𝐸𝑜 = 250, 𝑅𝑒𝑈𝑇𝐵 = 25.26, and 𝐹𝑟𝑈𝑇𝐵 = 0.3. 
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Figure 19.   Numerical results of dimensionless wake length (𝐿𝑊/𝐷), and dimensionless wake volume (𝑉𝑊/𝐷
3) 

 for cases 13 to 19 in Table 1. 

Appendix 1- Order of magnitude analysis for the equation of motion 

The Navier-stokes equations in poolar coordinates assuming axismmetric flow are: 

And the continuity equation is: 

Introducing the following dimensionless variables:  
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𝜕 𝑡

+ 𝑣𝑟
𝜕𝑣𝑟
𝜕𝑟
+ 𝑣𝑧

𝜕𝑣𝑟
𝜕𝑧
) = 𝜌𝐿𝑔𝑟 −

𝜕𝑝

𝜕𝑟
+ 𝜇 [

𝜕2𝑣𝑟
𝜕 𝑟2

+
1

𝑟

𝜕𝑣𝑟
𝜕𝑟
+
𝜕2𝑣𝑟
𝜕 𝑧2

−
𝑣𝑟
𝑟2
] (1-1) 

𝜌𝐿 (
𝜕𝑣𝑧
𝜕𝑡
+ 𝑣𝑟

𝜕𝑣𝑧
𝜕𝑟
+ 𝑣𝑧

𝜕𝑣𝑧
𝜕𝑧
) = 𝜌𝐿𝑔𝑧 −

𝜕𝑝

𝜕𝑧
+ 𝜇 [4

𝜕2𝑣𝑧
𝜕𝑟2

+
1

𝑟

𝜕𝑣𝑧
𝜕𝑟
+
𝜕2𝑣𝑧
𝜕𝑧2

] (1-2) 

0 = −
1

𝑟

𝜕𝑝

𝜕𝜃
                (𝑣𝜃 = 0) (1-3) 

𝜕𝑣𝑟
𝜕 𝑟

+
𝑣𝑟
𝑟
+
𝜕𝑣𝑧
𝜕 𝑧

= 0 (1-4) 

𝑣𝑟
∗ =

𝑣𝑟
𝑈𝑇𝐵

, 𝑣𝑧
∗ =

𝑣𝑧
𝑈𝑇𝐵

, 𝑡∗ = 𝑡 (
𝑈𝑇𝐵
𝐿𝑇𝐵

) , 𝑟∗ =
𝑟

(𝐷 2⁄ )
, 𝑧∗ =

𝑧

𝐿𝑇𝐵
, 𝑝∗ =

𝑝
1
2
𝜌𝐿𝑈𝑇𝐵

2
 , 

(1-5) 
𝑔𝑟
∗ =

𝑔𝑟
𝑔
 , 𝑔𝑧

∗ =
𝑔𝑧
𝑔
, 𝜎𝑟

∗ =
𝜎𝑟
𝜎
, 𝜎𝑧
∗ =

𝜎𝑧
𝜎
, 𝜎𝜃
∗ =

𝜎𝜃
𝜎
, 𝑘∗ =

𝑘

(1 𝐷2⁄ )
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The Navier-stokes equations and continuity equations in dimensionless form can be 

summerized as follows: 

where   FrUTB =
UTB

√gD
 , ReUTB =

ρLUTBD

μL
 

On the gas-liquid interface, the following conditions are applied: 

where Eo =
gρLD

2

σ
 

 

Performing similar analysis with respect to gas and liquid sides would show the additional 

dimensionless groups: density ratio (𝛤𝜌), viscosity ratio (𝛤𝜇). 

(
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𝐿𝑇𝐵
)
𝜕𝑣𝑟
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𝜕𝑣𝑟

∗
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=
1

𝐹𝑟𝑈𝑇𝐵
2 𝑔𝑟

∗ −
𝜕𝑝∗

𝜕𝑟∗

+
1

𝑅𝑒𝑈𝑇𝐵
[4
𝜕2𝑣𝑟

∗

𝜕 𝑟∗2
+
4

𝑟∗
𝜕𝑣𝑟

∗

𝜕𝑟∗
+ (

𝐷

𝐿𝑇𝐵
)
2 𝜕2𝑣𝑟

∗

𝜕𝑧∗2
−
4𝑣𝑟

∗

𝑟∗2
] 

(1-6) 

(
𝐷

𝐿𝑇𝐵
)
𝜕𝑣𝑧

∗

𝜕𝑡∗
+ 2 𝑣𝑟

∗
𝜕𝑣𝑧

∗

𝜕𝑟∗
+ (

𝐷

𝐿𝑇𝐵
) 𝑣𝑧

∗
𝜕𝑣𝑧

∗

𝜕𝑧∗
 

=
1

𝐹𝑟𝑈𝑇𝐵
2 𝑔𝑧

∗ − (
𝐷

𝐿𝑇𝐵
)
𝜕𝑝∗

𝜕𝑧∗
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𝜕𝑟∗2
+
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(1-7) 

0 =
𝜕𝑝∗

𝜕𝜃∗
  (1-8) 

2 (
𝜕𝑣𝑟

∗

𝜕 𝑟∗
+
𝑣𝑟
∗

𝑟∗
) + (

𝐷

𝐿𝑇𝐵
)
𝜕𝑣𝑧

∗

𝜕 𝑧∗
= 0 (1-9) 

[−
𝜕𝑝∗

𝜕𝑟∗
+

1

𝐹𝑟𝑈𝑇𝐵
2 𝐸𝑜

𝑘∗𝜎𝑟
∗]
𝑆

+
4

𝑅𝑒𝑈𝑇𝐵
[
𝜕2𝑣𝑟

∗

𝜕𝑟∗2
+
1

 𝑟∗
𝜕𝑣𝑟

∗

𝜕𝑟∗
]
𝑆

= 0 (1-10) 

[(
𝐷

𝐿𝑇𝐵
)
𝜕𝑣𝑧

∗

𝜕𝑡∗
+ (

𝐷

𝐿𝑇𝐵
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𝜕𝑣𝑧

∗

𝜕𝑟∗
+ (

𝐷

𝐿𝑇𝐵
) 𝑣𝑧
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𝜕𝑣𝑧

∗

𝜕𝑧∗
]
𝑆

 

(1-11) = [−(
𝐷

𝐿𝑇𝐵
)
𝜕𝑝∗

𝜕𝑧∗
]
𝑆

+
1

𝑅𝑒𝑈𝑇𝐵
[4
𝜕2𝑣𝑧

∗

𝜕𝑟∗2
+
4

𝑟∗
𝜕𝑣𝑧

∗

𝜕𝑟∗
+ (

𝐷

𝐿𝑇𝐵
)
2 𝜕2𝑣𝑧

∗

𝜕𝑧∗2
]
𝑆

 

                        +
1

𝐹𝑟𝑈𝑇𝐵
2 [𝑔𝑧

∗ +
1

𝐸𝑜
𝑘∗𝜎𝑧

∗]
𝑆

 

0 = [−
1

𝑟∗
𝜕𝑝∗

𝜕𝜃∗
]
𝑆
+

1

𝐹𝑟𝑈𝑇𝐵
2 𝐸𝑜

[𝑘∗𝜎𝜃
∗]𝑆 (1-12) 
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In order to perform order of magnitude analysis to the continuity equation, the following orders 

are introduced to equation (1-9): 

It can be concluded from equations (1-9) and (1-13), inorder to keep the continuity equation 

intact 𝑣𝑟
∗ should be of order 

𝐷

𝐿𝑇𝐵
, that is 𝑣𝑟

∗ = 𝑜 (
𝐷

𝐿𝑇𝐵
). 

Applying the same analysis to momentum equation in the 𝑧∗ direction (equation (1-7)), will 

give the following: 

Applying the same analysis to the momentum equation in 𝑟∗ direction (equation (1-6)) and 

using the conclusion given in equation (1-14), will give the following: 

Finally, applying the same analysis to the gas-liquid interface (equation (1-11)), gives the 

following: 

It is worth noting that, if the characteristic velocity 𝑈𝑇𝐵  is placed by a new characteristic 

velocity 𝑉𝑠 = (𝑔𝐷)
1/2, the dimensionless variables given in equation (1-5) will be modified as 

follows; 

Thus for instance, the dimensionless momentum equation in the radial direction (equation (1-

6)) will be as follows: 

𝑟∗ = 𝑜(1), 𝑧∗ = 𝑜(1), 𝑣𝑧
∗ = 𝑜(1), 𝑘∗ = 𝑜(1), 𝜎𝑧

∗ = 𝑜(1), 𝑔𝑧
∗ = 𝑜 (

𝐷

𝐿𝑇𝐵
)  

(1-13) 

𝑔𝑟
∗ = 𝑜 (

𝐷

𝐿𝑇𝐵
)
2

𝑎𝑛𝑑  𝑡∗ = 𝑜(1) 

   𝐹𝑟𝑈𝑇𝐵 = 𝑜(1) ,  𝑅𝑒𝑈𝑇𝐵 = 𝑜 (
𝐿𝑇𝐵
𝐷
) (1-14) 

𝜕𝑝∗

𝜕𝑟∗
= 𝑜 (

𝐷

𝐿𝑇𝐵
)
2

, 𝑝∗ = (
𝐷

𝐿𝑇𝐵
)
2

, ∴
𝜕𝑝∗

𝜕𝑧∗
= 𝑜 (

𝐷

𝐿𝑇𝐵
)
2

− 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑣𝑒𝑟𝑦 𝑠𝑚𝑎𝑙𝑙  (1-15) 

𝐸𝑜 = 𝑜 (
𝐿𝑇𝐵
𝐷
)    (1-16) 

𝑣𝑟̂ =
𝑣𝑟
𝑉𝑠
, 𝑣𝑧̂ =

𝑣𝑧
𝑉𝑠
, 𝑡̂ = 𝑡 (

𝑉𝑠
𝐿𝑇𝐵

) , 𝑝̂ =
𝑝

1
2
𝜌𝐿𝑉𝑠

2
 , (1-17) 
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where  𝑅𝑒𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 is the modified Reynolds number which is defined as follows: 

It can be concluded from equation (1-18) that Froude number disappeared from the 

dimensionless governing equation as being of order unity as shown in equation (1-14). Hence, 

in this frame with the new definition of the characteristic velocity (𝑉𝑠), the inverse viscosity 

number (𝑁𝑓) can represent the ratio of inertia force to viscous force and Froude number is no 

longer a dimensionless parameter.  

(
𝐷

𝐿𝑇𝐵
)
𝜕𝑣𝑟̂
𝜕 𝑡̂

+ 2 𝑣𝑟̂
𝜕𝑣𝑟̂
𝜕 𝑟∗

+ (
𝐷

𝐿𝑇𝐵
) 𝑣𝑧̂

𝜕𝑣𝑟̂
𝜕 𝑧∗

= 𝑔𝑟
∗ −

𝜕𝑝̂

𝜕𝑟∗
+

1

𝑅𝑒𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑
[4
𝜕2𝑣𝑟̂

𝜕 𝑟∗2
+
4

𝑟∗
𝜕𝑣𝑟̂
𝜕𝑟∗

+ (
𝐷

𝐿𝑇𝐵
)
2 𝜕2𝑣𝑟̂

𝜕𝑧∗2
−
4𝑣𝑟̂

𝑟∗2
] 

(1-18) 

   𝑅𝑒𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 =
𝑉𝑠𝐷

𝜈
=
(𝑔𝐷)1/2𝐷

𝜈
=
(𝑔𝐷3)1/2

𝜈
= 𝑁𝑓 (1-19) 


