

Svitsiankou, I. E. and Pavlovskii, V. N. and Lutsenko, E. V. and Yablonskii, G. P. and Mudryi, A. V. and Borodavchenko, O. M. and Zhivulko, V. D. and Yakushev, M. V. and Martin, R. (2018) Stimulated emission and optical properties of solid solutions of Cu(In,Ga)Se2 direct band gap semiconductors. Journal of Applied Spectroscopy, 85 (2). pp. 267-273. ISSN 0021-9037 , http://dx.doi.org/10.1007/s10812-018-0643-3

This version is available at https://strathprints.strath.ac.uk/64210/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (<u>https://strathprints.strath.ac.uk/</u>) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output. T. 85, № 2

V. 85. N 2

MARCH — APRIL 2018

СТИМУЛИРОВАННОЕ ИЗЛУЧЕНИЕ И ОПТИЧЕСКИЕ СВОЙСТВА ТВЕРДЫХ РАСТВОРОВ ПРЯМОЗОННЫХ ПОЛУПРОВОЛНИКОВ Cu(In.Ga)Se2

И. Е. Свитенков¹, В. Н. Павловский^{1*}, Е. В. Луценко¹, Г. П. Яблонский¹, А. В. Мудрый², О. М. Бородавченко², В. Д. Живулько², М. В. Якушев^{3,4,5,6}, Р. Мартин⁶

УДК 535.37;539.216.2

¹Институт физики НАН Беларуси,

220072, Минск, просп. Независимости, 68-2, Беларусь; e-mail: v.pavlovskii@ifanbel.bas-net.by

, Научно-практический центр НАН Беларуси по материаловедению, Минск, Беларусь

³ Институт физики металлов им. М. Н. Михеева Уральского отделения РАН, Екатеринбург, Россия

⁴Уральский федеральный университет, Екатеринбург, Россия

5 Институт химии твердого тела Уральского отделения РАН, Екатеринбург, Россия

⁶Стратклайдский университет, Глазго, Великобритания

(Поступила 10 ноября 2017)

Изучены стимулированное излучение, оптические свойства и структурные характеристики необлученных и облученных протонами тонких пленок Cu(In,Ga)Se2, напыленных на натрийсодержа-щие стеклянные подложки соиспарением элементов в многостадийном процессе. Исследования пле-нок проведены с использованием рентгеноструктурного анализа, сканирующей электронной микро-скопии, рентгеноспектрального анализа с энергетической дисперсией, низкотемпературной фотолюминесценции, оптического пропускания и отражения. В необлученных и облученных протонами тонких пленках Cu(In,Ga)Se2 обнаружено стимулированное излучение при низких температурах (~20 K) при возбуждении импульсами лазерного излучения наносекундной длительности с пороговой плотно-стью мощности ~20 кВт/см². Показано, что появление и параметры стимулированного излучения сильно зависят от концентрации ионно-индуцированных дефектов в тонких пленках Cu(In,Ga)Se2.

Ключевые слова: Cu(In,Ga)Se2, тонкая пленка, протон, дефект, стимулированное излучение.

Stimulated emission, optical properties, and structural characteristics of non-irradiated and protonirradiated Cu(In,Ga)Se₂ thin films deposited on soda lime glass substrates using co-evaporation of elements in a multistage process were investigated. X-ray diffraction analysis, scanning electron microscopy, X-ray spectral analysis with energy dispersion, low-temperature photoluminescence, optical transmittance and reflectance were used to study the films. Stimulated emission at low temperatures of ~ 20 K was found in non-irradiated and proton-irradiated Cu(In,Ga)Se₂ thin films upon excitation by laser pulses of nanosecond du-ration with a threshold power density of $\sim 20 \text{ kW/cm}^2$. It was shown that the appearance and parameters of the stimulated emission depend strongly on the concentration of ion-induced defects in Cu(In,Ga)Se₂ thin films.

Keywords: Cu(In,Ga)Se₂, thin film, proton, defect, stimulated emission.

STIMULATED EMISSION AND OPTICAL PROPERTIES OF SOLID SOLUTIONS OF

Cu(In,Ga)Se2 DIRECT BAND GAP SEMICONDUCTORS I. E. Svitsiankou¹, V. N. Pavlovskii^{1*}, E. V. Lutsenko¹, G. P. Yablonskii¹, A. V. Mudryi², O. M. Borodavchenko², V. D. Zhivulko², M. V. Yakushev^{3,4,5,6}, R. Martin⁶ (¹ B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus, 68-2 Nezavisimosti Prosp., Minsk, 220072, Belaof Physics of the National Academy of Sciences of Belarus, 68-2 Nezavisimosti Prosp., Minsk, 220072, Bela-rus; e-mail: v.pavlovskii@ifanbel.bas-net.by; ² Scientific-Practical Materials Research Centre of the Na-tional Academy of Sciences of Belarus, Minsk, Belarus; ³ Institute of Metal Physics, Ural Branch of the Rus-sian Academy of Sciences, Ekaterinburg, Russia; ⁴ Ural Federal University, Ekaterinburg, Russia; ⁵ Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia;

⁶Strathclyde University, Glasgow, United Kingdom)

Введение. На современном этапе развития полупроводниковой фотовольтаики твердые растворы Cu(In,Ga)Se2 (CIGSe) — одни из наиболее востребованных материалов для создания высокоэффек-тивных солнечных элементов [1—3]. Коэффициент полезного действия (к.п.д.) солнечных элементов, созданных на основе тонких пленок CIGSe, достиг ~22.6 %, что сопоставимо с к.п.д. ~26 % для фото-преобразователей солнечной энергии на объемном монокристаллическом кремнии [1, 4—6]. Более простая тонкопленочная технология для солнечных элементов на основе CIGSe, формируемых на дешевых подложках из стекла или полиимида, дает потенциальные преимущества по сравнению

с технологией на моно- и поликристаллическом кремнии [2—4]. Дальнейшее повышение к.п.д. фотопреобразователей солнечной энергии можно обеспечить совершенствованием технологии получения более качественных пленок твердых растворов CIGSe и разработкой новых методологических подходов к изучению физических свойств этих базовых поглощающих слоев. Многочисленные исследования показали [7—10], что фотолюминесценция (ФЛ) как бесконтактный и неразрушающий метод характеризации дефектов, примесей, состава твердых растворов и кристаллической структуры может быть применена для оптимизации технологии формирования солнечных элементов на основе тонких пленок прямозонных полупроводников CIGSe. В большинстве случаев при регистрации спектров ФЛ твердых растворов CIGSe использовались лазеры, обеспечивающие низкий уровень оптического возбуждения до ~10 Bt/cm² [7, 8, 10—13]. Недавно было продемонстрировано [14, 15], что исследование ФЛ при высоком уровне возбуждения до ~100 кBt/cm² дает дополнительные возможности контроля электронных свойств и структурного совершенства тонких пленок CIGSe.

В настоящей работе приведены результаты исследования взаимосвязи структурных характеристик и стимулированного излучения (T = 20 K) при высокой плотности мощности импульсного лазерного возбуждения пленок твердых растворов CIGSe, облученных низкоэнергетическими протонами с целью создания дефектов и изменения электронной структуры прямозонных полупроводников со структурой халькопирита. Продемонстрирована возможность использования параметров стимулированного излучения для оценки структурного совершенства тонких пленок CIGSe, применяемых для создания фотопреобразователей солнечной энергии.

Эксперимент. Исследования проводились на пленках CIGSe, осажденных на натрийсодержащие стеклянные подложки толщиной 2 мм методом одновременного соиспарения элементов Cu, In, Ga и Se в многостадийном процессе по известной технологии [16, 17]. Пленки CIGSe толщиной 1.4 мкм облучались протонами с энергиями 2.5, 5 и 10 кэВ дозой 3 · 10¹⁵ см⁻². Элементный состав и морфоло-гия поверхности тонких пленок определялись методом локального рентгеноспектрального анализа с помощью сканирующего электронного микроскопа Tescan Mira 3GMU (Брно, Чехия), оснащенного рентгеноспектральным микроанализатором с энергетической дисперсией на основе кремниевого детектора SDD X-max (Oxford Instruments, Абингдон, Великобритания), Фазовый состав и параметры элементарной ячейки определялись методом рентгеноструктурного анализа с использованием рентгеновского дифрактометра ДРОН-3М в СиК -излучении. Возбуждение ФЛ в тонких пленках при низком уровне возбуждения ~3 Bt/cm² осуществлялось излучением непрерывного твердотельного лазера с длиной волны = 532 нм, а при высоком уровне возбуждения — импульсным излучением азотного лазера ЛГИ-505 (НИИ "Плазма", Рязань, Россия) с ~ 337.1 нм, $E_{имп}$ ~ 30 мкДж, $\tau_{имп}$ ~ 8 нс, частотой повторения импульсов f = 525 Гц. Для лазеров обоих типов площадь возбуждающего светового пятна на поверхности образцов ~1 мм². Для ослабления лазерного излучения использовался круговой градиентный ослабитель. Для измерения спектров ФЛ при низких температурах (~20 К) образ-цы крепились к медному хладопроводу оптического гелиевого рефрижератора замкнутого цикла CCS-150 (Janis Research Co., США). Регистрация спектров ФЛ в области 0.9—1.7 мкм осуществлялась монохроматором с дифракционной решеткой 600 штр/мм (обратная линейная дисперсия 26 Å/мм) с установленным на его выходе детектором ИК излучения на основе InGaAs-линейки типа G9212-5128 (Hamamatsu, Япония). Спектры оптического пропускания и отражения при температуре 4.2 К изме-рялись на монохроматоре МДР-23У с последующей обработкой в соответствии с методиками [8, 9].

Результаты и их обсуждение. На рис. 1 представлена дифрактограмма тонкой пленки CIGSe, демонстрирующая наличие дифракционных рефлексов отражения 112, 220/204, 312/116, 008/400 и 316/332, относящихся к фазе халькопирита. Дифрактограмма зарегистрирована в интервале углов дифракции $2\Theta \sim 15$ —90° в режиме сканирования с шагом 0.02° и временем накопления сигнала 3 с. Высокая интенсивность и малая полуширина рефлексов, а также отсутствие на дифрактограмме до-

полнительных рефлексов от посторонних фаз указывают на однородность состава твердых растворов CIGSe и высокое качество структуры осажденной поликристаллической пленки.

Определение параметров элементарной ячейки для твердых растворов CIGSe проводилось аппроксимацией контуров рефлексов на дифрактограмме псевдофойгтовыми кривыми с использованием полнопрофильной процедуры подгонки экспериментальных данных по программе FullProf. На рис. 1, *а* видно, что разностная кривая дает удовлетворительное соответствие эксперимента и расчета. Параметры элементарной ячейки CIGSe оказались *a* ~ 5.727 Å и *c* ~ 11.44 Å. Близкие значения *a* и *c* также получены на основании расчетов с использованием известного соотношения Вульфа— Брэгга для тетрагональной решетки CIGSe [9]. Сравнение полученных параметров *a* и *c* с известными аналогичными данными для пленок твердых растворов CuIn_{1-x}Ga_xSe₂ в диапазоне составов 0 ≤ *x* ≤ 1 указывает на то, что исследуемые пленки имеют состав *x* = Ga/(Ga+In) ~ 0.25—0.28 [18, 19]. Для наглядности на рис. 1, *б* дифрактограмма приведена в полулогарифмическом масштабе. Как видно, соотношение интенсивностей основного рефлекса 112 и рефлексов 220/204 аномально высокое

*I*112/*I*220/204 ~ 150. Это указывает на практически полную ориентацию отдельных зерен в тонких поликристаллических пленках по направлению <112>, т. е. плоскости (112) для большинства зерен расположены практически параллельно стеклянной подложке. Анализ морфологии поверхности тонкой пленки CIGSe на сканирующем электронном микроскопе показывает, что она имеет плотно упакованную однородную структуру зерен с четкими границами и доминирующими размерами ~0.5—1.5 мкм. Исследование морфологии поверхности на различных участках тонкой пленки на площади 2 3 см² подтвердило параллельную ориентацию плоскостей (112) для большинства зерен по отношению к стеклянной подложке. При этом для поликристаллических пленок CIGSe характерны малая пористость и хорошая адгезия зерен к стеклянной подложке.

Рис. 1. Дифрактограмма тонкой пленки твердого раствора CIGSe на стекле в линейном (*a*) и полулогарифмическом (б) масштабах: 1, 2 — эксперимент, 3 — теоретическая подгонка, 4 — разностная кривая

Рентгеноспектральный анализ поверхности пленки с использованием сканирующей электронной микроскопии и приставки Oxford Instruments с энергетической дисперсией позволил определить усредненный элементный состав (ат.%) твердых растворов CIGSe по 20 различным точкам: Cu ~ 24.6, In ~ 21.8, Ga ~ 5.8 и Se ~ 47.8, с соотношением элементов x = Ga/(Ga+In) ~ 0.21, что несколько ниже значения x ~ 0.25—0.28, оцененного по данным сравнительного рентгеноструктурного анализа [18, 19]. Такое различие в определении состава может быть связано с неоднородным распределением элемен-тов по толщине пленки, что характерно для твердых растворов CIGSe [20, 21]. Кроме того, при рентгенодифракционных измерениях проникновение рентгеновского CuK -излучения с ~ 1.5406 Å про-исходит на полную толщину пленки, а в случае рентгеноспектрального локального микроанализа при невысоких ускоряющих напряжениях электронного зонда ~4—5 кэВ определение состава проводи-лось только в приповерхностной области толщиной ~200—300 нм. Этими физическими факторами можно объяснить различие в оценке состава при использовании двух методик.

На рис. 2, *а* приведен спектр оптического пропускания необлученной пленки CIGSe, зарегистрированный при температуре 4.2 К со спектральным разрешением 0.5 мэВ. Видно, что пленка толщиной 1.4 мкм в длинноволновой области ~0.8 эВ имеет относительно высокое пропускание ~50 % и слабо выраженную интерференционную структуру в области энергий <0.9 эВ. В области высоких энергий (1.15—1.25 эВ) отчетливо проявляется резкий край фундаментального оптического поглощения. Эти экспериментальные данные указывают на высокое качество твердых растворов CIGSe, выращенных на стеклянной подложке. В области 1.0—1.4 эВ измеренный коэффициент оптического отражения тонких пленок $R \sim 0.15$. Коэффициент поглощения рассчитан по формуле [22]:

$$\frac{1}{d} \ln \frac{\sqrt{1 R^4 4T^2 R^2 1 R^2}}{2T^2} , \qquad (1)$$

где *d* — толщина пленки; *T* и *R* — коэффициенты оптического пропускания и отражения. Для полупроводников с разрешенными прямыми переходами электронов из валентной зоны в зону проводимости спектральная зависимость коэффициента поглощения определяется соотношением [23]:

$$(h) = A(h - E_g)^{1/2}, (2)$$

где A — константа; E_g — ширина запрещенной зоны. На рис. 2, δ представлены экспериментальные данные по обработке спектров оптического пропускания и отражения на основании формул (1) и (2). Ширина запрещенной зоны E_g для пленки определена экстраполяцией линейной части зависимости параметра (hv)² к оси энергии фотонов и для твердых растворов CIGSe $E_g \sim 1.19$ эВ. Аналогичные оптические измерения по определению ширины запрещенной зоны E_g проведены на пленках CIGSe, облученных ионами водорода с энергиями 2.5, 5 и 10 кэВ дозой 3 · 10¹⁵ см⁻². Эксперименты показывают, что значение E_g для облученных пленок не изменяется. Это обусловлено тем, что пробеги ионов Н⁺ с энергиями 2.5, 5 и 10 кэВ составляют ~70, 120 и 200 нм в соответствии с расчетами по программе TRIM [24] и ионно-индуцированные дефекты образуются только в приповерхностной области, соответствующей глубине пробега ионов водорода. Основная объемная часть пленки при ее толщине 1.4 мкм остается неповрежденной, и поглощение света определяется всей толщиной пленки. Необходимо отметить , что найденное значение $E_g \sim 1.19$ эВ для твердых растворов CIGSe удовлетво-рительно согласуется с экспериментальными данными оптических измерений, полученными ранее для тонких пленок состава $x \sim 0.25$ —0.28 [25—27].

Рис. 2. Спектры оптического пропускания при температуре 4.2 К (*a*) и зависимость параметра (hv)² от энергии фотонов (δ) для тонких пленок твердых растворов CIGSe

На рис. З показаны спектры ФЛ необлученной и облученных пленок CIGSe, зарегистрированные при 20 К и низком уровне возбуждения ~3 Вт/см² излучением лазера с = 532 нм. Как видно, в спектре ФЛ необлученной пленки присутствует широкая полоса с максимумом при 1.14 эВ полушириной ~60 мэВ. Эта полоса смещена в сторону меньших энергий на 55 мэВ от края фундаментального поглощения твердых растворов CIGSe и соответствует так называемой "близкраевой" излучательной рекомбинации [28]. Предполагаем, что полоса связана с электронными переходами из зоны проводи-

мости в хвосты акцепторных состояний вблизи валентной зоны [29]. Этот механизм излучательной рекомбинации возникает в тонких пленках CIGSe p -типа проводимости при относительно высоком уровне легирования (~10¹⁷—10¹⁸ см⁻³) и обусловлен наличием собственных дефектов структуры, образующихся из-за отклонения состава от идеальной стехиометрии при выращивании твердых раство-ров. Как видно из рис. 3, для пленок, облученных протонами с энергией 2.5 кэВ дозой 3 · 10¹⁵ см⁻². интенсивность полосы возрастает почти в четыре раза, она смещается в область высоких энергий и ее полуширина значительно уменьшается до ~43 мэВ. Дальнейшее повышение энергии протонов при-водит к снижению интенсивности полос, их смещению в область низких энергий ~1.14 эВ и увеличе-нию полуширины до 49 мэВ для 5 кэВ и ~1.13 эВ и ~53 мэВ для 10 кэВ. При этом интенсивность близкраевой полосы в облученных пленках остается всегда больше, а ее полуширина меньше по сравнению с необлученной пленкой CIGSe (рис. 3). Увеличение интенсивности, изменение энергети-ческого положения и полуширин полос близкраевой люминесценции после облучения связаны с про-явлением эффекта пассивации внедренными ионами водорода поверхностных энергетических со-стояний, границ поликристаллических зерен и дефектов структуры тонких пленок. Наибольший эф-фект характерен для ионов водорода с энергией 2.5 кэВ. Можно утверждать, что облучение твердых растворов CIGSe ионами водорода приводит к образованию радиационных дефектов в кристалличе-ской решетке и пассивации существующих ростовых дефектов. При этом из-за эффекта пассивации заряженных дефектов при имплантации водорода в кристаллической решетке твердых растворов уменьшаются амплитуды флуктуаций потенциала и подавляются каналы безызлучательной рекомби-нации неравновесных носителей заряда, что приводит к увеличению интенсивности и уменьшению полуширины полосы близкраевой ФЛ. Однако при повышении энергии протонов образуются новые безызлучательные радиационные дефекты и интенсивность $\Phi \Pi$ падает (кривые 3, 4).

Рис. 3. Спектры фотолюминесценции при 20 К необлученной (1) и облученных протонами с энергией 2.5 (2), 5 (3) и 10 кэВ (4) тонких пленок CIGSe при возбуждении непрерывным лазерным излучением на длине волны 532 нм

Новые эффекты обнаружены в тонких пленках CIGSe при создании неравновесных носителей заряда импульсным излучением азотного лазера с = 337.1 нм при разных плотностях мощности в диапазоне 5—100 кВт/см². На рис. 4 представлены спектры ФЛ необлученной и облученных протонами тонких пленок CIGSe, зарегистрированные при 20 К при высоком уровне лазерного импульсного излучения. При малых уровнях возбуждения ~5 кВт/см² в спектрах ФЛ необлученной пленки присутствует широкая полоса с максимумом ~1.17 эВ полушириной ~60 мэВ (рис. 4, *a*). Обращает на себя внимание сильное (на 34 мэВ) смещение этой близкраевой полосы ФЛ в высокоэнергетическую область по сравнению с ее положением ~1.14 эВ при низком уровне возбуждения ~3 Вт/см² непрерывным лазерным излучением (рис. 3). С ростом уровня возбуждения от 5 кВт/см² максимум интенсивности ФЛ смещается в высокоэнергетическую область и на фоне полосы ФЛ начинает проявляться узкая полоса, соответствующая стимулированному излучению (СИ) с максимумом вблизи ~1.18 эВ при 20 кВт/см², которая в дальнейшем сужается до ~7 мэВ и незначительно (на 3 мэВ) смещается в низкоэнергетическую область при 100 кВт/см². Необходимо отметить факты нелинейного

уменьшения полуширины полосы $\Phi Л$ от 60 до 7 мэВ и ее нелинейного смещения в высокоэнергетическую область с достижением максимума в области энергий ~1.18 эВ при 20 кВт/см², а также нелинейного увеличения интенсивности более чем на три порядка в диапазоне плотностей мощности 5—100 кВт/см².

Как видно на рис. 4, *б*, полоса СИ наблюдается также в спектрах ФЛ пленок CIGSe, облученных протонами с энергией ~2.5 кэВ, однако ее интенсивность в 4 раза меньше, а полуширина в 1.5 раза больше при плотности мощности возбуждения ~100 кВт/см², чем для необлученной пленки при таком же уровне возбуждения. При этом полуширина полосы ФЛ в диапазоне уровней возбуждения 5—100 кВт/см² уменьшается с 64 до 11 мэВ. Эксперименты показывают, что максимум полосы СИ находится при ~1.18 эВ в облученной пленке и достигается при уровне возбуждения ~20 кВт/см², что соответствует данным для необлученной пленки. Изменение характеристик полосы СИ после протонного облучения обусловлено образованием ионно-индуцированных дефектов, понижением качества структуры пленок и появлением дополнительных каналов безызлучательной рекомбинации.

азотного лазера с плотностью мощности 5—100 кВт/см²

Наиболее отчетливо увеличение концентрации ионно -индуцированных дефектов проявляется в спектрах ФЛ пленок, облученных протонами с энергией 5 и 10 кэВ (рис. 4, *в* и *г*). В этом случае СИ не удалось обнаружить. Как видно из рис. 4, *в* и *г*, в спектрах ФЛ при плотности мощности возбуж-дения ~100 кВт/см² наблюдаются только широкие полосы полушириной ~49 и 59 мэВ с максимумами вблизи ~1.18 и 1.77 эВ для пленок CIGSe, облученных протонами с энергией 5 и 10 кэВ. Очевидно, что повышение энергии протонов приводит к существенному росту концентрации радиационных де-фектов и усилению влияния флуктуаций потенциала и, как следствие, к значительному увеличению полуширин полос близкраевой люминесценции и их низкоэнергетическому смещению для уровня возбуждения ~100 кВт/см². В дополнение к этому интенсивность полос ФЛ уменьшается в ~120

и 2000 раз для пленок CIGSe, облученных протонами с энергией 5 и 10 кэВ, по сравнению с необлученной пленкой. Совокупность этих фактов указывает на определяющую роль дефектов структуры в подавлении СИ в твердых pactворах CIGSe. Важным экспериментальным результатом является

обнаружение широкой полосы ФЛ с максимумом ~1.18 эВ в высокоэнергетической области спектра при высокой плотности мощности возбуждения (рис. 4). По нашему мнению, наиболее логично ее отнесение к прямой межзонной излучательной рекомбинации, поскольку ее энергетическое положение соответствует ширине запрещенной зоны $E_g \sim 1.19$ эВ, определенной по данным измерений оптического поглощения и пропускания. Отличие положения максимума ФЛ от значения Eg, составляющее ~10 мэВ, обусловлено тем, что в неоднородной пленке излучательная рекомбинация происходит после локализации неравновесных носителей заряда в наиболее узкозонных областях CIGSe, тогда как величина Ес является усредненной по объему пленки. При высоком уровне возбуждения концентрация созданных неравновесных носителей заряда значительно выше, чем концентрация дефектов и других структурных нарушений. Поэтому в прямозонных твердых растворах происходит насыщение ионно-индуцированных дефектов неравновесными носителями заряда. При уровнях возбуждения >20 кВт/см² наиболее вероятна реализация механизма рекомбинации в электронно-дырочной плазме. В этом случае, как известно, должно наблюдаться снижение энергии полосы СИ, что отчетливо видно из спектров ФЛ для плотности мощности возбуждения 33 кВт/см², в качестве подтверждения существования механизма рекомбинации в электронно-дырочной плазме в твердых растворах CIGSe.

Ворих стобе. Заключение. Исследованы стимулированное излучение, оптические свойства и структурные характеристики необлученной и облученных протонами с энергиями 2.5, 5 и 10 кэВ дозой $3 \cdot 10^{15}$ см⁻² тонких пленок твердых растворов CuIn_{1-x}Ga_xSe₂ ($x \sim 0.25$ —0.28, $E_g \sim 1.19$ эВ, постоянные решетки $a \sim 5.727$ Å и $c \sim 11.44$ Å) при возбуждении непрерывным ($I_{BO36} \sim 3$ BT/cm²) и импульсным ($_{имп} = 8$ нс, $I_{BO36} \sim 5$ —100 кBT/cm²) лазерным излучением. Обнаружены значительный высокоэнергетический сдвиг спектра излучения, обусловленный заполнением неравновесными носителями заряда локализованных энергетических состояний с малой плотностью, а также резкое возрастание интенсивности и сужение спектра излучения при увеличении уровня импульсного возбуждения, что свидетельствует о появлении стимулированного излучения в необлученной и облученной протонами с энергией 2.5 кэВ пленках при уровнях возбуждения >20 кВт/см², обусловленного рекомбинацией неравновес-ных носителей заряда в электронно-дырочной плазме. Показано, что проявление стимулированного излучения сильно зависит от степени дефектности тонких пленок.

Сравнительный анализ экспериментальных данных по фотолюминесценции при непрерывном низком ~3 Вт/см² и высоком импульсном уровне возбуждения ~5—100 кВт/см² позволяет сделать заключение о предпочтительном использовании импульсного возбуждения для оценки качества структуры и электронных свойств тонких пленок твердых растворов CIGSe. Появление стимулированного излучения обусловлено достижением высокой плотности неравновесных носителей заряда и образованием электронно-дырочной плазмы. Проведенные эксперименты демонстрируют высокую чувствительность стимулированного излучения к содержанию дефектов структуры в тонких пленках CIGSe. Поэтому наличие стимулированного излучения, его высокая интенсивность и малая полуширина полосы излучения могут служить критерием структурного совершенства твердых растворов CIGSe и использоваться при отборе наиболее качественных тонких пленок для фотовольтаических применений.

Работа выполнена по заданиям ГПНИ "Фотоника, опто- и микроэлектроника 2.1.01", "Наноматериалы и нанотехнологии 2.56" и Российского научного фонда (грант № 17-12-01500).

[1] M. A. Green, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, A. W. Y. Ho-Baillie. Prog. Photovolt. Res. Appl., 25, N 7 (2017) 668–676

[2] T. Feurer, P. Reinhard, E. Avancini, B. Bissing, J. Lockinger, P. Fuchs, R. Carron, T. P. Weiss, J. Perrenond, S. Stutterheim, S. Buecheler, A. N. Tiwari. Prog. Photovolt. Res. Appl., 25, N 7 (2017) 645–667

[3] A. Polman, M. Knight, E. C. Garnett, B. Ehrler, W. C. Sinke. Science, 352, N 6283 (2016) aad4424
[4] P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla. Phys. Status Solidi (Rapid Res. Lett.), 10, N 8 (2016) 583—586

[5] K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, K. Yamamoto. Nature Energy, **2**, N 5 (2016) 17032

[6] C. Battagliam, A. Cuevas, S. D. Wolf. Energy Environ. Sci., 9, N 5 (2016) 1552-1576

[7] S. Shirakata. Phys. Status Solidi B, 252, N 6 (2015) 1211-1218

[8] А. В. Короткий, А. В. Мудрый, М. В. Якушев, Ф. Луккерт, Р. Мартин. Журн. прикл. спектр., 77, № 5 (2010) 725—731 [A. V. Karotki, A. V. Mudryi, M. V. Yakushev, F. Luckert, R. Martin. J. Appl. Spectr., 77, N 5 (2010) 668—674]

[9] Н. Рефахати, А. В. Мудрый, В. Д. Живулько, М. В. Якушев, Р. Мартин. Журн. прикл. спектр., 81, № 3 (2014) 378—385 [N. Refahati, A. V. Mudryi, V. D. Zhivulko, M. V. Yakushev, R. Martin. J. Appl. Spectr., 81, N 3 (2014) 404—410]

[10] J. Mattheis, U. Rau, J. H. Werner. J. Appl. Phys., 101, N 11 (2007) 113519

[11] L. Gutay, G. H. Bauer. Thin Solid Films, 487, N 1-2 (2005) 8-13

[12] H. Zachmann, S. Puttnins, M. V. Yakushev, F. Luckert, R. W. Martin, A. V. Karotki, V. F. Gremenok, A. V. Mudryi. Thin Solid Films, 519, N 21 (2011) 7264–7267

[13] D. Shin, J. Kim, T. Gershon, R. Mankad, M. Hopstaken, S. Guha, B. T. Ahn, B. Shin. Sol. Energy. Mater. Sol. Cells, 157 (2016) 695–702

[14] I. E. Svitsiankou, V. N. Pavlovskii, E. V. Lutsenko, G. P. Yablonskii, A. V. Mudryi, V. D.

Zhivulko, M. V. Yakushev, R. W. Martin. J. P. Phys. D: Appl. Phys., 49, N 9 (2016) 095106

[15] M. Moret, O. Briot, B. Gil, T. Lepetit, L. Arzel, N. Barreau. Proc. SPIE, 9358 (2015) 93581A1

[16] A. Jasenek, U. Rau. J. Appl. Phys., 90, N 2 (2001) 650–658

[17] B. Dimmler, M. Powalla, H. W. Schock. Prog. Photovolt. Res. Appl., 10, N 2 (2002) 149–157

[18] T. Tinoco, C. Rincon, M. Quintero, G. Sanchez Perez. Phys. Status Solidi (a), 124, N 2 (1991) 427-434

[19] E. J. Friedrich, R. Fernandez-Ruiz, J. M. Merino, M. Leon. Powder Diffraction, 25, N 3 (2010) 253—257

[20] M. Contreras, J. Tuttle, D. Du, Y. Qi, A. Swartzlander, A. Tennant, R. Noufi. Appl. Phys. Lett., 63, N 13 (1993) 1824—1826

[21] E. Avancini, R. Carron, B. Bessig, P. Reinhard, R. Menozzi, G. Sozzi, S. Di Napoli, T. Feurer, S. Nishiwaki, S. Buecheler, A. N. Tiwari. Prog. Photovolt., 25, N 3 (2017) 233—241

[22] H. Neumann, W. Horig, P. A. Jones, G. Lippold, H. Sobotta, R. D. Tomlinson, M. Y. Yakushev. Cryst. Res. Technol., 29, N 5 (1994) 719–726

[23] J. I. Pankove. Optical Processes in Semiconductors, New Jersy, Englewood Cliffs (1971)

[24] J. P. Biersack, L. G. Haggmark. Nucl. Instr. Meth., 174 (1980) 257-269

[25] А. В. Мудрый, В. Ф. Гременок, А. В. Короткий, В. Б. Залесский, М. В. Якушев, Ф. Луккерт, Р. Мартин. Журн. прикл. спектр., 77, № 3 (2010) 400—406 [А. V. Mudryi, V. F. Gremenok, A. V. Karotki, V. B. Zalesski, M. V. Yakushev, F. Luckert, R. Martin. J. Appl. Spectr., 77 (2010) 371—377]

[26] G. W. El Haj Moussa, M. Ajaka, M. El. Tahchi, E. Eid, C. Linares. Phys. Status Solidi (a), 202, N 3 (2005) 469–475

[27] S. Theodoropoulou, D. Papadimitriou, N. Rega, S. Siebentritt, M. Ch. Lux-Steiner. Thin Solid Films, 511-512 (2005) 690—694

[28] J. Krustok, H. Collan, M. Yakushev, K. Hjelt. Phys. Scripta, 79 (1999) 179-182

[29] M. V. Yakushev, R. W. Martin, J. Krustok, A. V. Mudryi, D. Holman, H. W. Schock, R. D. Pilkington, A. E. Hill, R. D. Tomlinson. Thin Solid Films, **387** (2001) 201–204