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Simulation as a preoperative planning 
approach in advanced heart failure patients. 
A retrospective clinical analysis

Massimo Capoccia1,2, Silvia Marconi3, Sanjeet Avtaar Singh4, Domenico M. Pisanelli5 

and Claudio De Lazzari3,6* 

Background

Physiological luid low modelling using computational luid dynamics (CFD) has 

increased our understanding of complex system interactions with particular reference 

to problem solving in a clinical environment [1–6]. Functional analysis and assessment 

of the cardiovascular system through computational modelling based on imaging tech-

niques has certainly received great attention in relation to its diagnostic value and plan-

ning approach [7–11].

Mathematical modelling and simulation may become clinically applicable tools for 

detailed evaluation of the cardiovascular system and clinical decision-making to guide 
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therapeutic intervention [12]. Models based on pressure–volume relationship and 

lumped-parameter representation of the cardiovascular system may be a suitable choice 

given their simplicity and versatility [13–19]. Although they provide less detailed pre-

dictions of pressure and low waveforms, these models have shown great lexibility in 

simulating the haemodynamics of diferent cardiovascular conditions and therapeu-

tic interventions with the potential to be run in real time on desktop, laptop or mobile 

devices [12]. he successful clinical application of this approach requires further haemo-

dynamics teaching to the medical community although its importance is still far from 

being fully appreciated [19–21].

his approach has great potential for application in heart failure where the impact of 

left ventricular assist devices (LVADs) has played a signiicant role as a bridge to trans-

plant and more recently as a long-term solution for non eligible candidates. Continuous 

low rotary blood pumps are currently the most popular devices because of their smaller 

size, increased reliability and higher durability compared to pulsatile-low devices. he 

trend towards their use is increasing. Mathematical modelling and computer simulation 

are invaluable tools to investigate the interactions between LVADs and the cardiovascu-

lar system [22–24]. CFD simulations for continuous low LVADs are usually performed 

under steady low conditions where the inlet boundary is set to a speciic steady veloc-

ity proile while the outlet boundary is ixed at a steady pressure. he actual unsteady 

boundary conditions will be dependent on the low from the heart and the aortic pres-

sure, which are the result of the interactions between the device and the cardiovascular 

system [25]. he study of the interaction between LVADs and the whole cardiovascular 

system with a 3-D CFD model is highly demanding although speciic parts of the assisted 

circulation have been developed with this method [26] but their practical application 

may be limited at present. A more simpliied approach is based on one-dimensional 

(1-D) or lumped parameter (0-D) models where space dependence is either conined to 

the axial coordinate (1-D) or addressed by splitting the cardiovascular system in com-

partments (0-D) [27].

he native ventricular behaviour can be modelled according to the time-varying 

elastance theory [28–30], which remains a landmark despite its limitations [31] and 

previous criticism when applied to a mechanically supported left ventricle [32]. Signii-

cant elastance changes are observed during circulatory support with a blood displace-

ment pump because of extreme and fast changing loading conditions. herefore, the 

relationship between elastance and contractility may be no longer applicable when a 

second pump is connected to the systemic circulation [32]. Elastance changes are also 

observed with continuous low pumps where an increasing pump low is related to a 

constant end-systolic volume, a decrease in end-diastolic volume and a maximum left 

ventricular pressure increase with a gradual increase in the slope (Ees) of the end-sys-

tolic pressure–volume relationship (ESPVR) to justify dissociation between contractil-

ity and elastance [32]. Although a linear model has been proven suiciently accurate 

[33–35] and adequate for realistic simulations of the instantaneous pressure–volume 

relation [36], recent multi-scale modelling of the cardiovascular system [37] based on 

previously developed approaches [38–40] has successfully addressed the limitations 

of the time-varying elastance theory with particular reference to load-dependence of 

ESPVR. Further modelling techniques can describe a failing cardiovascular system [41] 
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and ventricular interactions [42–44]. To address the shortcomings of the original time-

varying elastance theory, a nonlinear time-varying lumped parameter model of the car-

diovascular system [45] can be modiied to include the inter-ventricular septum and a 

rotor-dynamic, continuous low LVAD [46]. his is a more accurate heart failure model 

where the ESPVR is a unimodal function that takes into account the descending limb 

of the Frank–Starling curve, making it particularly suitable to study ventricular interac-

tions and the leftward septal shift secondary to left ventricular decompression following 

LVAD insertion. Outlet tube pump modelling with a linearly low-dependent resistance 

is also used to study pulsatile and continuous low LVADs. he resistance consists of 

low-proportional and constant components in the context of a steady state environ-

ment but dynamic modelling with a time-varying resistance has been considered more 

recently [47, 48]. A Lagrange multiplier coupling approach [49] can be applied to LVAD 

modelling [50] using ictitious domain methods [51, 52] to address the interactions 

between the LVAD cannula and the ventricle at the expense of signiicant increase in 

computational time and instability in speciic regions of interface between the luid and 

solid meshes. To overcome these limitations, a luid–solid left ventricular model cou-

pled with a 0-D Windkessel model [53, 54] already successfully applied to diferent types 

of LVAD [55–57] can be used where optimization with high order interpolation at the 

luid–solid boundary allows simulations of luid–solid interaction over a complete car-

diac cycle during LVAD support [58].

Following these considerations, we sought to investigate the value of simulation in the 

context of three heart failure patients previously discussed at a multidisciplinary meet-

ing with a view to predict or guide further management. he aim was to compare the 

outcome of the simulations with the previously made clinical decision in order to ind 

out any relationship that may be applicable on a routine basis in future patient assess-

ment. he key elements would be:

  • A more targeted approach for diferent group of patients;

  • More quantitative evaluation in the clinical decision process;

  • he predictive value of simulation;

  • Preoperative planning and treatment optimisation.

Methods

We retrospectively analysed the haemodynamic data of three heart failure patients pre-

viously discussed at a multidisciplinary meeting and subsequently treated accordingly. 

Given the retrospective nature of this study, informed consent was waived [59]. he 

aim was to reproduce the preoperative haemodynamic status of these patients and then 

carry out simulations in the presence of a ventricular assist device in order to evaluate 

their suitability for prolonged mechanical support or other intervention.

he study was carried out using  CARDIOSIM©, which is a software package devel-

oped by the Cardiovascular Numerical Modelling LAB linked to the Institute of Clinical 

Physiology, CNR, Rome, Italy [60]. his is a numerical simulator of the cardiovascular 

system based on lumped parameter models, modiied time-varying elastance and pres-

sure–volume analysis of ventricular function. he software is interactive and capable 

of reproducing physiological and pathological conditions for clinical decision-making 
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in a controlled environment [14, 15]. he main feature is a modular approach with an 

updatable library of numerical models of diferent sections of the cardiovascular system, 

which can be assembled according to the need of the simulation. he software is particu-

larly suitable to study the interactions with pulsatile or continuous low ventricular assist 

devices [15, 22–24], intra-aortic balloon pump, artiicial lung, biventricular assist device 

and biventricular pacing [15, 18, 61–63].

When the native atrial and ventricular behaviour are modelled, the numerical simula-

tor allows choosing between two diferent modules [16–19] based on the time-varying 

elastance theory. For the purpose of our simulations, we have considered the module 

where left and right ventricular elastances elv(t) and erv(t) are described as a function of 

the characteristic elastance in systole ( Elv,s and Erv,s ) and in diastole ( Elv,d and Erv,d ), and 

an activation function ( elv(t) and erv(t) ) as follows [54]:

where

T  is the duration of the ECG signal (heart period), TTE is the end of ventricular systole 

and TT is the T-wave peak time [15, 19].

Instantaneous left and right ventricular pressures Plv(t) and Prv(t) are obtained from 

the instantaneous ventricular free wall volumes and elastances as follows [54]:

where V ∗

lv
(t) and V ∗

rv(t) are the instantaneous left and right ventricular free wall volumes; 

Vlv,0 and Vrv,0 are the resting left and right ventricular volumes; Plv,0 and Prv,0 are the 

resting left and right ventricular pressures.

he same approach is applicable to the atrial chambers, the interventricular (IVS) and 

interatrial (IAS) septum [15]. he IVS is the key factor where the properties of one ven-

tricle are a function of the contra-lateral one [64]. When the time-varying elastance the-

ory is applied, from Eq. (1) we obtain [15, 19]:
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where eVsp(t) is the septal ventricular elastance described in [15, 19]. Vlv(t) and Vrv(t) 

represent the instantaneous left and right ventricular volume respectively.

Equation  (2) are essential for the model to simulate ventricular interactions with or 

without mechanical circulatory support.

Similarly, the following equations were used to reproduce the atrial behaviour [15, 

19]:

where eAsp(t) is the septal atrial elastance described in [15, 19]; ela(t) and era(t) are the 

left and right atrial elastances; Pla(t) [ Vla(t) ] and Pra(t) [ Vra(t) ] are the instantaneous 

left and right atrial pressures [volumes]; Vla,0 and Vra,0 are the resting left and right atrial 

volumes.

Equation (3) are essential for the model to simulate atrial interactions with or with-

out mechanical circulatory support.

he systemic arterial section consists of the aortic, thoracic and abdominal com-

partment and is modelled as described in [14, 65] with RLC circuits (Fig.  1). he 

whole venous system is modelled with only one RC circuit. he inertial forces have 

been neglected. he pulmonary arterial section consists of the main pulmonary artery 

and the intra-pulmonary vascular bed, each modelled with a RLC lumped element. 

he pulmonary arteriole compartment consists of a single resistance in view of their 

relative stifness and the fact that inertial forces are negligible. he pulmonary capil-

lary section is also modelled with a single resistance as previously reported [18]. Cou-

pling between the ventricles and the circulation is obtained by using ideal valves [17, 

22]. he potential for research, clinical application and training is signiicant and well 

documented [14, 15, 21, 66].

Figure 2 shows the electric analogue of the LVAD model (Berlin Heart INCOR Pump) 

[55] integrated in the software and used for our simulations. he inlet and outlet cannu-

lae are modelled with RLC elements Rvpi, Lvpi,Cvpi and Rvpo, Lvpo,Cvpo.

(2)
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he inlet and outlet cannulae lows Qvpi and Qvpo are calculated as follows:

{

(Plv + Pt) − Pvpi = Qvpi · Rvpi + Lvpi
dQvpi

dt

Qvpi = Qvad + Cvpi
dPvpi
dt

{

Pvpo − (Pas + Pt) = Qvpo · Rvpo + Lvpo
dQvpo

dt

Qvpo = Qvad − Cvpo
dPvpo
dt

Fig. 1 Electrical analogue model of the cardiovascular system. The systemic arterial section consists of three 

RLC elements representing the aortic  (RAT,  LAT and  CAT), thoracic  (RTT,  LTT and  CTT) and abdominal  (RABT,  LABT 

and  CABT) tract respectively. Ras is the variable systemic peripheral resistance. The systemic venous section 

consists of two variable resistances (Rvs1 and Rvs2) and a compliance (Cvs). The main (small) pulmonary 

section is reproduced by a RLC element: Rpam, Lpam and Cpam (Rpas, Lpas and Cpas). The arteriole 

(capillary) bed behaviour is reproduced by a single resistance Rpar (Rpc). The pulmonary venous section 

consists of a compliance (Cvp) and a resistance (Rvp). Pt is the mean intrathoracic pressure

Fig. 2 Electrical analogue model of the Berlin Heart INCOR pump. Plv ad Pas are the left ventricular and 

systemic arterial pressures respectively. Input (output) pump cannula is modelled with a resistance Rvpi 

(Rvpo), a compliance Cvpi (Cvpo) and an inertance Lvpi (Lvpo). Qvad is the pump low and Qvpi (Qvpo) is the 

input (output) cannula low
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where Pt is the mean intrathoracic pressure, Pas is the systemic atrial pressure, Pvpi and 

Pvpo are the inlet and outlet cannulae pressures.

he LVAD low Qvad is described by:

where

A0 is the component of the LVAD speed; Ap is the amplitude of the pulsation compo-

nent; ε0 is the phase diference between the LVAD pulsation component and the native 

cardiac timing. he setting parameters are listed in Table 1.

he irst order ordinary diferential equations of the cardiovascular model were ini-

tially solved using both Euler’s and fourth order Runge–Kutta’s methods. he two 

numerical methods gave the same results under steady state conditions. he Euler’s 

method with a time step of 1 ms was preferred because of its lower computational cost 

compared to the Runge–Kutta’s method. he simulation software was written using Vis-

ual Basic language. Statistical analysis was carried out using the unpaired “t” test and 

correlation coeicients were calculated.

he retrospective analysis was performed on the haemodynamic data of the following 

patients:

Patient 1

A 34-year-old patient who sustained an extensive anterior wall myocardial infarction, 

which was initially treated with a percutaneous interventional procedure and the inser-

tion of a drug eluting stent to the left anterior descending coronary artery. Subsequently, 

stent occlusion and residual severe left ventricular systolic dysfunction with an ejection 

fraction of 27% required full anti-failure treatment. Further deterioration required dobu-

tamine infusion and close monitoring. he presence of co-morbidities, particularly high 

Qvad = Kvad,0 + ω · Kvad,1 + Kvad,2 ·
(

Pvpo − Pvpi
)

+ Kvad,3 · ω ·
(

Pvpo − Pvpi
)

+ Kvad,4 · ω
2
·
(

Pvpo − Pvpi
)

+ Kvad,5 · ω ·
(

Pvpo − Pvpi
)2

+ Kvad,6 · ω
2
·
(

Pvpo − Pvpi
)2

ω(t) = A0 + Ap · sin

(

2π t

T
+ ε0

)

Table 1 Setting parameters of the LVAD used for the simulations

Parameter Value Unit

Inlet and outlet cannulae parameters

 Cvpi [ Cvpo] 0.1 [0.1] mmHg−1 ml

 Rvpi [ Rvpo] 0.01 [0.01] mmHg s/ml

 Lvpi [ Lvpo] 1.2 × 10−4 [1.2 × 10−4] mmHg s2/ml

LVAD parameter

 Kvad,1 − 3.0361 × 10−3 l/min/rpm

 Kvad,2 − 1.23045 l/min/mmHg

 Kvad,3 5.78974 × 10−4 l/min/rpm/mmHg

 Kvad,4 − 5.8777 × 10−8 l/min/rpm2/mmHg

 Kvad,5 − 1.27359 × 10−6 l/min/rpm/mmHg2

 Kvad,6 2.04834 × 10−10 l/min/rpm2/mmHg2
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body mass index (BMI), made this patient unsuitable for transplant while the insertion of 

a left ventricular assist device remained debatable and unlikely to be beneicial. Haemo-

dynamic data from repeated right heart catheter showed persistent elevated pulmonary 

artery pressures and resistance with signiicantly reduced right ventricular stroke work 

index, which increased the need for right ventricular support following LVAD insertion 

with potential for prolonged intensive care need and increased risk and complications. 

he inal decision following a multidisciplinary team (MDT) meeting was to continue 

with medical management and palliative treatment. Table 2 shows measured haemody-

namic data following right heart catheterisation (RHC) on admission and 4 days later. 

End-diastolic ventricular volume [EDV = (CO/HR)/EF], end-systolic ventricular volume 

[ESV = EDV − (CO/HR)] and the slope (Ea) of arterial elastance (Ea ≈ BPmean/SV) [65], 

where SV is the stroke volume, were estimated from the measured parameters.

Patient 2

A 55-year-old patient with hypertrophic cardiomyopathy (NYH7 mutation), who pre-

viously underwent aortic valve replacement with a mechanical prosthesis and sub-

sequently percutaneous intervention to the left anterior descending coronary artery. 

Left ventricular ejection fraction  EFLeft was 45% in the context of chronic atrial ibrilla-

tion, previous ventricular arrhythmias and renal impairment. Symptoms deterioration 

required multiple hospital admissions with readjustment of anti-failure treatment and 

inally commenced on Milrinone (PDE3 inhibitor) infusion. A MDT meeting considered 

a LVAD not a suitable option and therefore this patient was placed on the transplant 

Table 2 Measurements following right heart catheterisation on admission (RHC 1) 

and after 4 days (RHC 2)

BP blood pressure, RA right atrial pressure, RV right ventricular pressure, PA pulmonary arterial pressure, PCWP pulmonary 

capillary wedge pressure, TPG trans-pulmonary pressure gradient, CO cardiac output, CI cardiac index, PVR pulmonary 

vascular resistance, RVSWI right ventricular stroke work index, HR heart rate, BSA body surface area, EFLeft left ventricular 

ejection fraction, EDV end-diastolic volume, ESV end-systolic volume, Ea arterial elastance

Patient #1 RHC 1 (admission) RHC 2 (after 4 days)

Max Min Mean Max Min Mean

BP (mmHg) 85–90 59 69.3 85–90 60 70

RA (mmHg) 35 17 29 38 22 32

RV (mmHg) 61 14 38 71 11 44

PA (mmHg) 62 30 42 70 38 50

PCWP (mmHg) 36 31 32 35 25 34

TPG (mmHg) 10 16

CO (l/min) 2.7 2.8

CI (l/min/m2) 1.36 1.4

PVR (wood unit) 3.7 5.7

RVSWI (g/m2/beat) 2.4 2.4

HR (bpm) 100 95

BSA  (m2) 1.98 1.98

EFLeft (%) 27 27

Estimated values

EDV (ml) ~ 100 ~ 109

ESV (ml) ~ 73 ~ 80

Ea (mmHg/ml) ~ 3.0 ~ 2.8
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Table 3 Measurements following right heart catheterisation on admission (RHC 1), 

after 1 month (RHC 2) and after 2 months (RHC 3)

BP blood pressure, RA right atrial pressure, RV right ventricular pressure, PA pulmonary arterial pressure, PCWP pulmonary 

capillary wedge pressure, TPG trans-pulmonary pressure gradient, CO cardiac output, CI cardiac index, PVR pulmonary 

vascular resistance, RVSWI right ventricular stroke work index, HR heart rate, BSA body surface area, EFLeft left ventricular 

ejection fraction, EDV end-diastolic volume, ESV end-systolic volume, Ea arterial elastance

Patient #2 RHC 1 (admission) RHC 2 (after 1 month) RHC 3 (after 2 months)

Max Min Mean Max Min Mean Max Min Mean

BP (mmHg) 95–100 58 72 – – – – – –

RA (mmHg) 14 2 9 10 4 6 11 1 7

RV (mmHg) 39 2 17 37 1 15 32 -2 14

PA (mmHg) 40 17 27 34 15 26 31 14 22

PCWP (mmHg) 28 7 18 26 8 15 26 11 15

TPG (mmHg) 9 11 7

CO (l/min) 5.3 7.1 5.6

CI (l/min/m2) 2.26 3.02 2.4

PVR (wood unit) 1.7 1.55 1.25

RVSWI (g/m2/beat) 8.5 9.35 6.2

HR (bpm) 65 88 78

BSA  (m2) 2.35 2.35 2.35

EFLeft (%) 45 – –

Estimated values

EDV (ml) ~ 181 – –

ESV (ml) ~ 99 – –

Ea (mmHg/ml) ~ 1.1 – –

Table 4 Measurements following right heart catheterisation on admission (RHC 1), 

after 15 days (RHC 2) and after 22 days (RHC 3)

BP blood pressure, RA right atrial pressure, RV right ventricular pressure, PA pulmonary arterial pressure, PCWP pulmonary 

capillary wedge pressure, TPG trans-pulmonary pressure gradient, CO cardiac output, CI cardiac index, PVR pulmonary 

vascular resistance, RVSWI right ventricular stroke work index, HR heart rate, BSA body surface area, EFLeft left ventricular 

ejection fraction, EDV end-diastolic volume, ESV end-systolic volume, Ea arterial elastance

Patient #3 RHC 1 (admission) RHC 2 (after 15 days) RHC 3 (after 22 days)

Max Min Mean Max Min Mean Max Min Mean

BP (mmHg) 100 60 73.3 – – – – – –

RA (mmHg) 14 12 9 18 11 15 14 6 10

RV (mmHg) 53 5 – 60 4 28 67 -3 28

PA (mmHg) 58 27 37 75 33 44 75 36 48

PCWP (mmHg) 39 29 31 48 26 35 47 26 33

TPG (mmHg) 6 9 15

CO (l/min) 4.2 4.5 2.6

CI (l/min/m2) 1.94 2.1 1.2

PVR (wood unit) 1.4 2 6.8

RVSWI (g/m2/beat) 9.87 11.4 9.15

HR (bpm) 75 72 68

BSA  (m2) 2.16 2.16 2.16

EFLeft (%) 15 – –

Estimated values

EDV (ml) ~ 373 – –

ESV (ml) ~ 317 – –

Ea (mmHg/ml) ~ 1.6 – –
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list. Table  3 shows measured and estimated haemodynamic data on admission, 1 and 

2 months later.

Patient 3

A 52-year-old patient who previously sustained a myocardial infarction requiring cor-

onary artery bypass grafting and subsequently implantable cardioverter deibrillator 

(ICD) insertion because of ventricular arrhythmias. Signiicant deterioration of the clini-

cal picture had already required multiple hospital admission in a background of dilated 

left ventricle (left ventricular end-diastolic diameter 8.1  cm) with severe systolic (left 

ventricular ejection fraction 15%) and diastolic dysfunction (E/A ratio 3.4) and severe 

pulmonary hypertension. Finally, Milrinone and diuretic infusion were commenced and 

an intra-aortic balloon pump was inserted. Following a MDT meeting, this patient was 

listed for transplant with a view to LVAD insertion if further deterioration occurred. 

Table  4 shows measured and estimated haemodynamic data on admission, 15 and 

22 days later.

Table 5 Comparison between measured and simulated parameters for patient 1 

on admission

BP blood pressure, RA right atrial pressure, RV right ventricular pressure, PA pulmonary arterial pressure, PCWP pulmonary 

capillary wedge pressure, TPG trans-pulmonary pressure gradient, CO cardiac output, CI cardiac index, PVR pulmonary 

vascular resistance, RVSWI right ventricular stroke work index, HR heart rate, BSA body surface area, EFLeft left ventricular 

ejection fraction, EDV end-diastolic volume, ESV end-systolic volume, Ea arterial elastance, Ees slope of end-systolic 

pressure–volume relationship (ESPVR)

Patient #1 Measured (RHC 1) Simulation (RHC 1) LVAD (simulation)

Max Min Mean Max Min Mean Max Min Mean

BP (mmHg) 85–90 59 69.3 87.2 60.7 69.3 75.2 62.9 68.2

RA (mmHg) 35 17 29 10.5 3.5 6.5 10.3 3.5 6.5

RV (mmHg) 61 14 38 44.2 8.0 20.4 43.5 8.0 20.1

PA (mmHg) 62.0 30.0 42.0 44.0 39.7 42.0 43.3 38.7 40.9

PCWP (mmHg) 36.0 21.0 32.0 31 18.7 25.0 29.6 16.8 23.1

HR (bpm) 100 100 100

EFLeft (%) 27 26.9 31.4

BSA  (m2) 1.98 1.98 1.98

CO (l/min) 2.7 2.7 COVENTR 0.67

QVAD 2.15

TOT 2.82

CI (l/min/m2) 1.36 1.36 0.34

TPG (mmHg) 10 17 18

PVR (wood unit) 3.7 6.3 26.87 (18.0/0.67)

6.38 (18.0/2.15)

RVSWI (g/m2/beat) 2.4 6.53 6.86

Estimated Simulated Simulated

EDV (ml) ~ 100 100.4 89.76

ESV (ml) ~ 73 73.4 61.57

Ea (mmHg/ml) ~ 3.0 3.2 2.6

Ees (mmHg/ml) – 0.88 0.88

Ea/Ees – 3.64 2.95
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he diseased status for each patient was reproduced starting from the measured 

parameters. Subsequently, LVAD support without and with drug administration (Mil-

rinone) was applied to each patient. he efects induced by Milrinone administration 

were simulated with the aim to increase heart contractility by 10% and reduce pulmo-

nary and systemic resistances by 10%.

Results

Table 5 shows (for the irst patient) the comparison between measured (second column) 

and simulated parameters (third column) for “Admission” conditions. In simulated con-

ditions, the simulator calculates the slope Ees of the end-systolic pressure–volume rela-

tionships (ESPVR) and the ratio Ea/Ees. In normal conditions, Ea/Ees ratio represents a 

reliable index of ventricular–arterial coupling. he estimated and simulated Ea are simi-

lar. he last column of the table shows simulated values during LVAD assistance. EDV, 

ESV and SV decreased with a leftward shift of the left ventricular loop (in the pressure–

volume plane) during LVAD support. Moreover, Ea decreased from 3.2 (mmHg/ml) to 

2.6 (mmHg/ml) and the Ea/Ees ratio decreased from 3.64 to 2.95 during assistance. Two 

diferent values for PVR are reported in Table 5: the irst one is calculated as the ratio 

between TPG and left ventricular output low  (COVENTR), the second one is calculated as 

the ratio between TPG and LVAD low  (QVAD).

Table 6 shows (for the second patient) the comparison between measured (second col-

umn) and simulated parameter (third column) for “Admission” conditions. he third and 

fourth columns represent two diferent simulated assisted conditions. he irst one is 

obtained applying LVAD support, the second is obtained applying LVAD support and 

considering the efects induced by Milrinone. Figure 3 shows a screen output produced 

by our simulator when LVAD support was applied on the simulated “Admission” condi-

tion. In the left ventricular pressure–volume plane, the upper window shows the ven-

tricular loop in “Admission” conditions (loop A) and the ventricular loop obtained when 

LVAD support was applied (loop B). In addition, Fig. 3 shows that the arterial elastance 

changes as reported in Table 6 where the Ea/Ees ratio decreases from 1.62 to 1.32 when 

LVAD support is applied. When the efects induced by the simultaneous presence of 

LVAD and pharmacological treatment are simulated, left ventricular ejection fraction 

 EFLeft increases from 45.1% (“Admission” conditions) to 55.9% and the Ea/Ees ratio 

decreases from 1.62 (“Admission” conditions) to 1.20. LVAD assistance and Milrinone 

administration reduce EDV and ESV (Table  6). EDV and ESV reduction induced by 

LVAD support only is shown in Fig. 3 where a leftward shift of the left ventricular loop is 

observed.

Finally, Table  7 shows the simulation results of the third patient. Again, the Ea/Ees 

ratio decreased when LVAD support and Milrinone administration were simultaneously 

applied. Table 7 shows that LVAD support produces a leftward shift of the left ventricu-

lar loop in the pressure–volume plane reducing EDV and ESV.
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Discussion

Cardiovascular modelling has been very successful in increasing our knowledge of physi-

ological mechanisms where simpliied representations of complex biological systems can 

be used to study their behaviour at diferent levels [67]. he Cardiac Physiome project 

is currently the most ambitious and successful application of mathematical and compu-

tational modelling aimed to advance our understanding of physiology using a quantita-

tive multi-scale approach [67, 68]. Cardiovascular modelling has now reached the stage 

where clinical application in the form of patient-speciic modelling may become a daily 

routine in a non distant future. For this approach to become reality, a model must be 

reliable, reproducible and reduce uncertainty [67, 68]. While efective in the laboratory, 

almost all the decision support tools have failed when applied to clinical practice [69]. 

herefore, it is essential to overcome skepticism by developing a strong, realistic model 

that can fulil the expectations. Our approach is focused on modelling and simulation 

not as a substitute for clinical experience but as an additional tool to guide therapeu-

tic intervention or predict clinical outcome: the clinician will be the ultimate decision 

maker. he development of a comprehensive, integrated model of the cardiovascular 

Fig. 3 Screen output obtained using our simulator. The irst step consists of simulating the “Admission” 

conditions of the second patient. Subsequently, LVAD assistance is applied. The upper window shows the 

simulated starting ventricular loop (A) and the ventricular loop obtained during LVAD assistance (B) in the left 

ventricular pressure–volume plane. The mean values (calculated during the cardiac cycle in the presence of 

LVAD assistance) of pressure, low and HR are reported in the right column. Mean systolic and diastolic values 

are reported for the systemic arterial pressure (Pas ≡ BP). Pla is the mean left atrial pressure (Pla ≡ PCWP). Pra is 

the mean right atrial pressure. Mean pulmonary arterial pressure (Ppam ≡ PA), systemic venous pressure (Pvs) 

and pulmonary venous pressure (Pvp) are also shown. In the bottom column, mean left/right atrial input 

low (Qlia/Qria), left/right ventricular input low (Qli/Qri) and right ventricular output low (Qro) assume the 

same value. The sum of the mean left ventricular output low (Qlo) and the Qvad (LVAD low) equals the low 

into the circulatory network (Qlo + Qvad = Qlia = Qria = Qro = Qri = Qli). Finally, the left lower box reports 

the end-systolic volume (Ves ≡ ESV), the end-diastolic volume (Ved ≡ EDV), the stroke volume (SV) and the 

ejection fraction (EF) for both ventricles
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system based on lumped-parameter models, modiied time-varying elastance and pres-

sure–volume analysis of ventricular function is an attractive prospect with a view to 

clinical application. he diferential equations describing such a model can be solved 

relatively easy and yield answers in terms of pressure–volume loops and time-depend-

ent tracings of pressure, low and volume that may well help the decision process and 

management in the clinical setting.  CARDIOSIM© fulils these requirements although 

we acknowledge that other software such as CircAdapt Simulator, HemoLab and Harvi 

may be potentially suitable for clinical application. he CircAdapt Simulator is based on 

the CircAdapt model [70–72], which has been designed to simulate the dynamics of the 

heart and the circulation with the inclusion of a realistic relationship between pressure–

volume load and tissue mechanics where the geometry of the components is obtained 

by adaptation to mechanical load. he implementation of the TriSeg model [73] ena-

bles realistic simulation of ventricular mechanics including interactions between left and 

right ventricle, dynamics of septal geometry and myoibre mechanics in the three ven-

tricular walls. he interesting feature of the CircAdapt model is its combined adaptation 

of heart and vessels over a relatively long period of time resulting in self-structuring of 

the circulation as a system where a steady-state solution is obtained [74, 75]. his feature 

makes the model a potential tool for clinical application with the aim of predicting the 

evolution of a diseased status and the efects of an interventional procedure [67, 71, 72, 

76, 77] but there is a lack of suitable models for VADs support. Despite its limitations, 

the CircAdapt model is considered easy to use, requires relatively low computational 

time and allows realistic simulations of the circulation with boundary conditions suit-

able for more complicated models based on inite element analysis. HeMoLab (Haemo-

dynamics Modelling Laboratory) is an integrated computational environment for the 

modelling of the cardiovascular system. It is an efective research tool and a virtual sim-

ulation laboratory [78–80]. HeMoLab consists of a combination of models, which can 

be coupled locally and globally in order to obtain the systemic response of the cardio-

vascular system: the so called 3-D, 1-D and 0-D models. he propagation of the arte-

rial pulse is represented with a 1-D and 0-D model, which describes the behaviour of 

the low rate, mean pressure and cross-sectional area as a function of time. HeMoLab 

is a suitable environment for the simulation of the efects of aging, vasodilatation, vaso-

constriction, rest and exercise and calculation of characteristic impedance of the arterial 

network. Although attractive, the software remains conined to a research environment 

at present. Harvi is an interactive simulation textbook of cardiovascular physiology and 

haemodynamics based on a previously described electrical circuit [81–83] where ven-

tricular and atrial contraction are represented by a modiied time-varying elastance 

approach [12].

A simulation-based approach as a potential preoperative strategy in the context of 

patient-speciic modelling in advanced heart failure may be an additional tool to obtain 

accurate predictions of device performance in a clinical setting with treatment opti-

misation of this complex and challenging group of patients [21]. Patients in advanced 

heart failure are critical and their management can be very demanding with emotion 

running high when dealing with younger patients. Patient 1 is a typical example of dif-

icult case experienced by one of the authors (MC). Co-morbidities do play a role and 

must be taken into account during the multidisciplinary team meeting. he clinical cases 
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considered are typical heart failure patients referred for assessment for transplant or 

LVAD insertion. he outcome of the simulations is quite stimulating and open to debate.

he simulation outcome for patient 1 does show a leftward shift of the pressure–vol-

ume loops for the left and right ventricles with adequate ventricular volumes, although 

the gain in ejection fraction may be initially limited. On the contrary, it is true that 

further improvement is observed over a period of time [84] making LVAD insertion a 

suitable option for this patient. Because of the potential complications related to the 

associated co-morbidities, the unanimous clinical decision to decline any further inter-

vention but continue with medical treatment and eventually palliation may have been 

the way forward although further argument in favour of LVAD insertion would be the 

recent evidence supporting the “obesity paradox” in cardiac surgery [85], which is cur-

rently the subject of a hot debate.

Simulation of the baseline haemodynamic status for patient 2 shows comparable mean 

values with those measured during right heart catheter. VAD support shows improved 

left ventricular ejection fraction with some reduction in pulmonary artery pressures. 

he outcome for patient 3 is most beneicial with signiicant reduction of pulmonary 

artery pressures conirming the primary indication for VAD support to achieve pulmo-

nary haemodynamics compatible with transplantation.

In view of its features,  CARDIOSIM© may be a more suitable choice with particular 

reference to the efects of mechanical circulatory support on the cardiovascular system. 

Lumped-parameter models assume a uniform distribution of pressure, volume and low 

within any speciic compartment at any instant in time while higher dimensional models 

recognise the variation in space of these parameters. Lumped-parameter models con-

sist of simultaneous ordinary diferential equations complemented by an algebraic bal-

ance equation and are suitable for examination of global distribution of pressure, low 

and volume over a range of physiological conditions with inclusion of the interaction 

between modelled components. Higher dimensional models consist of partial diferen-

tial equations complemented by balance equations. 1-D models represent wave trans-

mission efects within the vascular system but 3-D numerical solutions are required for 

complex low patterns with analytical solutions obtained only for the simplest geometry 

[86]. A single-branch multiple compartment model of the vascular system is suitable for 

the evaluation of short-term VAD support compared to an overly detailed vessel branch 

model where parameter setting becomes quite diicult. Higher level lumped-parameter 

modelling is required to address the interaction between the circulation and other sys-

tems but a compromise between complexity and ability to set the required parameters is 

needed to personalise an integrated lumped model for a patient-speciic approach.

CARDIOSIM© does address the systems interaction with its modular approach and 

assembly of models with varying degree of complexity although 0-D and 1-D coupling 

may be required for the evaluation of long-term VAD support.

During our simulations, we have also considered the efect on ventricular–arterial 

coupling following LVAD support. Age-related vascular stifening and the concomitant 

changes in left ventricular diastolic compliance are frequently observed in heart failure 

with preserved ejection fraction and in aortic valve stenosis [87]. Ventricular–arterial cou-

pling is strictly related to cardiovascular performance and can be accurately quantiied in 

terms of pressure and volume. he left ventricle and the arterial system are considered 
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elastic chambers with known volume elastances where left ventricular performance is 

measured by Ees, which is the slope of the ESPVR while the arterial system is measured 

by its elastance Ea, which is the slope of the arterial end-systolic pressure–stroke volume–

efective arterial elastance relationship [65, 87]. he Ea/Ees ratio may be considered as a 

reliable performance index for ventricular–arterial coupling. An Ea/Ees ratio close to 1 

relates to appropriate coupling between the left ventricle and the arterial system. Impaired 

coupling occurs in heart failure where Ees decreases following left ventricular systolic dys-

function and Ea is increased because of elevated impedance and reduced compliance [87]. 

Our simulations show that LVAD assistance can achieve appropriate ventricular–arterial 

coupling with an Ea/Ees ratio close to 1. he potential of this parameter may well justify 

further study for its routine clinical application in heart failure patients.

In summary, a simulation setting may well add a more quantitative approach to help 

the whole process, generate more critical thinking and perhaps give reassurance. he 

clinical scenarios discussed in this article are only an example of how the subject can be 

further developed and used as part of a preoperative planning strategy. Further work is 

currently being undertaken by our group and the outcome is awaited.

Conclusion

Although previous experience, co-morbidities and the risk of potentially fatal complica-

tions play a role in the clinical decision process, a simulation setting may well add a more 

quantitative approach and perhaps reassurance even if the clinician remains the ultimate 

decision-maker. Interactive software like  CARDIOSIM© can reproduce physiological 

and pathological conditions for clinical decision-making in a controlled environment. 

Its modular approach and versatility combined with the high availability of physiologi-

cal and pathological set up make it suitable for clinical application with particular refer-

ence to the evaluation of the efects of interventional procedures on the cardiovascular 

system such as the interactions with pulsatile and continuous low VADs and the intra-

aortic balloon pump (IABP).

he development of an integrated model of the cardiovascular system based on 

lumped-parameter representation, modiied time-varying elastance and pressure–vol-

ume analysis of ventricular function seems a feasible and suitable approach yielding a 

suiciently accurate quantitative analysis in real time. he challenge remains the ability 

to predict outcome over a longer period of time.

Patient-speciic modelling may become a daily approach for clinical management and 

optimisation of device treatment. Willingness to adopt such an integrated approach may 

be the key to further progress.
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ε0: phase diference between the lvad pulsation component and the native cardiac timing; A0: component of the 

LVAD speed; Ap: amplitude of the pulsation component of the LVAD; BMI: body mass index (kg/m2); BP: blood pressure 

(mmHg); BSA: body surface area  (m2); CFD: computational luid dynamics; CAT : aortic tract compliance (ml/mmHg); 

CABT : abdominal tract compliance (ml/mmHg); CI: cardiac index (l/min/m2); CO: cardiac output (l/min); COVENTR: left 

ventricular output low (l/min); Cpam: main pulmonary section compliance (ml/mmHg); Cpas: small pulmonary section 

compliance (ml/mmHg); CTT : thoracic tract compliance (ml/mmHg); Cvp: pulmonary venous compliance (ml/mmHg); 

Cvpi: inlet pump cannula compliance (ml/mmHg); Cvpo: outlet pump cannula compliance (ml/mmHg); Cvs: venous 

section compliance (ml/mmHg); E/A wave ratio: the ratio of peak velocity low in early diastole (the E wave) to peak 

velocity low in late diastole caused by atrial contraction (the A wave); Ea: arterial elastance (mmHg/ml); eAsp: septal 

atrial elastance (mmHg/ml); ECG: electrocardiogram; EDV: end-diastolic volume (ml); Ees: end-systolic elastance (mmHg/

ml); EF: ejection fraction; EFLeft: left ventricular ejection fraction; ela: left atrial elastance (mmHg/ml); elv: left ventriclular 
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elastance (mmHg/ml); elv: left ventricular activation function; Elv,d: diastolic left ventricular elastance (mmHg/ml); Elv,s
: systolic left ventricular elastance (mmHg/ml); era: right atrial elastance (mmHg/ml); erv: right ventricular elastance 

(mmHg/ml); erv: right ventricular activation function; Erv,d: diastolic right ventricular elastance (mmHg/ml); Erv,s
: systolic right ventricular elastance (mmHg/ml); ESV: end-systolic volume (ml); eVsp(t): septal ventricular elastance 

(mmHg/ml); ESPVR: end-systolic pressure–volume relationship; HR: heart rate (bpm); IABP: intra-aortic balloon pump; IAS: 

interatrial septum; ICD: implantable cardioverter deibrillator; IVS: interventricular septum; Kvad,i (i = 1, 2, . . . , 6)
: Qvad parameters; LAT : aortic tract inertance (mmHg s2/ml); LABT : abdominal tract inertance (mmHg s2/ml); Lpam
: main pulmonary section inertance (mmHg s2/ml); Lpas: small pulmonary section inertance (mmHg s2/ml); LTT : tho-

racic tract inertance (mmHg s2/ml); LVAD: left ventricular assist device; Lvpi: inlet pump cannula inertance (mmHg s2/

ml); Lvpo: outlet pump cannula inertance (mmHg s2/ml); MDT: multidisciplinary team; PA: pulmonary arterial pressure 

(mmHg); Pas: systemic arterial pressure (mmHg); PasABT : abdominal tract systemic arterial pressure (mmHg); PasTT
: thoracic tract systemic arterial pressure (mmHg); PCWP: pulmonary capillary wedge pressure (mmHg); Pla: left atrial 

pressure (mmHg); Plv: left ventricular pressure (mmHg); Plv,0: resting left ventricular pressure (mmHg); Ppam: mean 

pulmonary arterial pressure (mmHg); Pra: right atrial pressure (mmHg); Prv: right ventricular pressure (mmHg); Prv,0
: resting right ventricular pressure (mmHg); Pt: mean intrathoracic pressure (mmHg); Pvpi: inlet cannula pressure 

(mmHg); Pvpo: outlet cannula pressure (mmHg); Pvs: systemic venous pressure (mmHg); PVR: pulmonary vascular 

resistance (mmHg s/ml); Qas: systemic arterial low (l/min); QAT : aortic tract low (l/min); QABT : abdominal tract low 

(l/min); Qli: mean left ventricular input low (l/min); Qlia: mean left atrial input low (l/min); Qlo: mean left ventricular 

output low (l/min); Qri: mean right ventricular input low (l/min); Qria: mean right atrial input low (l/min); Qro: mean 

right ventricular output low (l/min); QTT : thoracic tract low (l/min); Qvad: LVAD low (l/min); Qvpi: inlet LVAD can-

nula low (l/min); Qvpo: outlet LVAD cannula low (l/min); RA: right atrial pressure (mmHg); RAT : aortic tract resistance 

(mmHg s/ml); RABT : abdominal tract (mmHg s/ml); Ras: systemic peripheral resistance (mmHg s/ml); RHC: right 

heart catheterisation; RLC: resistor, inductor, capacitor; Rpam: main pulmonary section resistance (mmHg s/ml); Rpar
: arteriole resistance (mmHg s/ml); Rpas: small pulmonary section resistance (mmHg s/ml); Rpc: capillary resistance 

(mmHg s/ml); RTT : thoracic tract resistance (mmHg s/ml); RV: right ventricle pressure (mmHg); Rvp: pulmonary venous 

resistance (mmHg s/ml); Rvpi: inlet pump cannula resistance (mmHg s/ml); Rvpo: outlet pump cannula resistance 

(mmHg s/ml); Rvs1: venous system resistance (mmHg s/ml); Rvs2: venous system resistance (mmHg s/ml); RVSWI: right 

ventricular stroke work index (g/m2/beat); SV: stroke volume (ml); T : duration of the ECG signal (s); TPG: trans-pulmonary 

pressure gradient (mmHg); TTE: end of ventricular systole in the ECG signal (s); TT : t-wave peak time in the ECG signal 

(s); VAD: ventricular assist device; Ved: end-diastolic volume (ml); Ves: end-systolic volume (ml); Vla(t): left atrial volume 

(ml); Vla,0: resting left atrial volume (ml); Vlv(t): left ventricular volume (ml); Vlv,0: resting left ventricular volume (ml); 

V
∗

lv
(t): left ventricular free wall volume (ml); Vra(t): right atrial volume (ml); Vra,0: resting right atrial volume (ml); 

Vrv(t): right ventricular volume (ml); Vrv,0: resting right ventricular volume (ml); V
∗

rv(t): right ventricular free wall 

volume (ml).
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