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Abstract

We analyze, through numerical simulations, the Ilshpipase liquid flow and associated passive scalar
mixing in a tubular reactor that is agitated bytat shaking which induces the motion of a soliding
element inside the reactor. The Reynolds numbercagsd to the shaking motion is in the range 1,200
5,600. Dependent on its specific value we perfonractl or large-eddy simulations. A fixed-grid lat
Boltzmann method is used for solving the fluid floltlhe moving boundary condition at the surfacehef t
mixing element is dealt with by means of an immeénseundary method. To quantify mixing, a transport

equation for a passive scalar is solved in conjanatith the flow dynamics.
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1 Introduction

A novel type of continuous mixing system is showrFigure 1. It consists of an outer tube with dacu
cross section that undergoes a sinusoidal motiothenlateral horizontal direction. This — in turn —
induces the lateral motion and rotation of a saliggrnal mixing element (called “the internal” ihet
remainder of this paper) that has the form of indotube with holes, as depicted in the figure.sThi
through-flow mixing system can be used as a reaetdilender, as well as a system to promote solid
particle suspension and agitation. In this papeowlg consider its single-phase operation. The wagrk
fluid is a liquid of constant density and viscosity

The research described in this paper is purely nigaieand of an exploratory nature. The aim is to
show the feasibility, as well as the limitationsf our numerical approach to solve fluid flow arclar
transport in this geometrically and kinematicallgnplex flow system under transitional and mildly
turbulent conditionsSuch simulations then will allow us — in future Wer to make predictions of the
performance of this mixing device under specifiogess conditions that can be compared with
experimental data as well as with the performariagher continuous flow mixing devices at compaeabl
conditions.

As can be judged from Figure 1, the dimensionaiftthe parameter space of this mixing device is
extensive and contains the frequency and amplivfidee shaking motion, liquid properties, the thgbu
flow rate, gravitational acceleration and the dgnef the internal, as well as geometrical (i.epeag)
ratios. Numerical simulations are an effective w@gxplore — for process design purposes — largs pa
of the parameter space and we plan to do so imgfusearch. Future research also should invoke th
assessment of numericgfects— most importantly establishing grid independenes well as validation
by means of experimental data.

This brief paper is organized in the following mannWe will start by defining the flow system
and characterizing it in terms of a set of dimenkgss numbers. Then we make a number of simplifying

assumptions. Subsequently turbulence treatment ramaderical methods are briefly discussed, with



referencing to the literature for further details.the Results section the first part describew ffeld
results, the second part passive scalar transpbé.paper is closed with a Summary & Conclusions

section.

2 Flow system
The geometrical layout of the agitated tubular t@adcs given in Figure 1. The main geometrical
parameters arthe inner diameter of the outer tu{i2) and its length., as wellas the diameter of the

internal (D, ). Mixing is enhanced by holes in the cylindricakimal. The placement and diameters of the

holes along with further details are provided igUfe 1 that also defines the coordinate system.

Figure 1. Flow geometry. An internal mixing element (in gnieean move inside a tube of diameier
that is shaken in thedirection. The internal feels a net gravity fothat acts in the negatiedirection.
The overall flow is in they-direction; the simulations assume periodic condgi iny-direction. The
dimensions as given in the drawing relative to tobbe diameter areD, =0.62D, L=1.28D,
d,=0.25D, t, =0.013. The origin of the coordinate system is at theteeaf the outer tube and at its

front.



The internal has three degrees of freedom, asfsaean Figure 2. These are the lateral horizontal

location of its centerx , its vertical locationz and its rotation angley, along they-axis. The internal

does not touch the outer tube with its surfacdialk spacers that keep a minimum distance equal to
between the inner surfaces of the outer tube amdothier surface of internal. The working fluid is

Newtonian with kinematic viscosity and densityp. The solid material the internal is made of has
density p, = 8.0p, except for one simulation that has a densityrati4.0. The internal feels a net gravity

force in the negative-direction.

«Q

Figure 2. Schematic of the degrees of freedom of the inte(xalz and anglea), the associated
velocities {,,v,,2) and the minimum distance between internal and tube= 0.038.
The entire system is agitated by shaking it innrasbidal way in the-direction: the displacement

has amplitud& and frequency:. Asin(27rft). This shaking induces motion of the internal whichurn

induces mixing. When in operation, the mixer hasoatinuous through flow in thg-direction with

A

volumetric flow rateg, giving rise to a superficial velocity &f = D
T

The above set of process parameters has been amhtbia set of non-dimensional numbers where
the length scale is mostly taken as the outer tiameterD. Other dimensions of the system can be

derived from the aspect ratios as given in Figdresd 2. The through-flow Reynolds number is define



as Re, EQ; the shaking motion is characterized by a Reynaolgisiber Re, = 27 TAD, , a Strouhal

v 14

number Strz%, and the amplitude over diameter ra#hgD . The ratio of shaking inertia and net

A(2rt)

gravity of the internal is expressed s P

. Finally we have the density ratjg/p .
g(ps—p)

The simulations are performed in a reference fraha¢ moves with the shaking motion. This
implies that an inertial body force is applied he fiquid: f = —pA(2r f )2 sin( 2r ft)e, . Furthermore we

apply periodic conditions in thgdirection. This means that the geometry as showigure 1 can be
seen as a section taken from a much longer mixiates1. A major simplification in the current stugdy

that we set the volumetric flow ratg, = 0. In this case, the mixing is only due to the shgknotion.lt
also implies thatRe, = 0 and that the Strouhal number becomes infinite anthis situation, is not a

meaningful dimensionless parameter

When the distance between the outer surface ahtbeal and the inner surface of the tube equals
e, the internal collides. In the simulations we happlied two collision models. In the hard model a
fully elastic collision is performed and the vekycof the internal changes instantaneously. Ingbi

model, once the distanceis reached, an elastic spring is activated thptiepa normal repulsive force

on the internal proportional to the overIaES':k(g—s), with k the spring constant and<e the

distance between internal and outer tube. The &srdell as the soft model assume frictionless siohis

so that the angular velocity of the internal does not change upon collision.

3 Numerics
The lattice-Boltzmann method has been applied ieshe fluid flow. The specific numerical scherse i
due to Somers [1]. The scheme applies a uniforrhicc(edge lengtid) grid with the flow variables

defined in the cube centers. Off-grid boundary amas, such as the no-slip conditions on the tube



surface and on the internal, are enforced throughmanersed boundary method [2]. These surfaces are
represented by a set of closely spaced points €seaeighbor spacing typicall§y.7A); for the internal

this set of points is shown in Figure 3. At thesents we force the fluid to have the same veloagythe
local velocity of the solid surface. The immersexuidary method used is based on interpolation of
velocities and extrapolation of forces [2]. Veloest at the immersed boundary points are estimayed b
interpolation of the surrounding grid velocitiebgtforces acting on the fluid at the immersed bamnd
points are extrapolated to the surrounding gridesodhtegration of the immersed boundary forces ove
the surface of the internal gives the total hydrayic forceF and torqueT on the internal. Th& andz
component ofF as well as thg component ofT are taken into account when solving the equatidns o

motion of the internal.

Figure 3. Representation of the internal mixing element lpjosely spaced set of points on its surface.
The total number of points is approximately 270,000

In this study, the cubic grid has a resolution sticht the tube diametdd spans 156 lattice
spacings. This leads to an overall grid node cofirgpproximately 5 million. The number of immersed
boundary points on the internal is 270,000; onainer tube it is 140,000. At this stage of the aesle we

have not yet considered grid effects and thus ateable to show grid convergence. Time stepping in



lattice-Boltzmann methods is largely dictated bysteaints on the Mach number [3]. In the simuladion
presented here, it takes 10,000 time steps to aimphe shaking cycle, i.d At =1.10".

The three equations of motion of the internal @famonal inx andz direction, rotational along the
y-axis) are solved with a split-derivative method. [#he forces on the internal are gravity and
hydrodynamic forceF, as well as the collision force if a soft collisionodel is applied. The
hydrodynamic torqud on the internal is included in the rotational eguraof motion.

In addition to solving the flovand the dynamics of the interpste have solved the transport of a
passive scalar according to a convection-diffugignation:

%jtu-Vc:PVzc (1)

with c the scalar concentration, the velocity field that is the result of the la&iBoltzmann flow solver,
and I' the diffusion coefficient. Equation 1 is discretizaccording to a finite volume method on the
same (uniform, cubic) grid as applied by the latidnltzmann scheme, and explicitly updated in time
with the same time step as used in the latticezZBmihn method. We apply flux limiters [5] to suppres
false diffusion. In the present work we dét= 0 so that the (limited) levels of diffusion obseniadhe
simulations are due to the finite resolution of ¢nel and — still - some numerical diffusion. Prdgees
similar to the ones proposed in [6] were used fetirsy non-penetration boundary conditions at the
moving solid surfaces of the internal, as well @sassigning scalar concentrations to grid nodasake

uncovered due to the motion of the internal.

In this work, the Reynolds numbers associatedacstiaking motionRe,) were in the range 1,200

— 5,600. By default it was attempted to solve tbesfwithout the use of a turbulence model. Unphgisic

instabilities occurred wherRe, exceeded approximately 3,000. In such situatioasswitch to large-

eddy simulations (LES) and apply a standard Smagkyi subgrid scale model [7] with Smagorinsky

constantCg = 0.1. In the LES cases, the scalar diffusion coefficiEns kept at zero level, i.e. we do not

apply a finite level turbulent Schmidt number.



4 Results
4.1 Fluid flow

A base case has been defined with the followingediionless parameterfe,=5,600, A/D =1.13,
p./p=8.0, andfd = 0.37 and the geometry as defined in Figures 1 and . ddse applies hard collisions
between internal and outer tube, and a large-egghyoach for turbulence modelling. In Figure 4
impressions of the flow field in ®-cross section passing through four holes in thermal (y=L/4).

The shaking motion is started with the internatha centre of the outer tube & z = 0) and fluid at
rest =0 everywhere). The velocity magnitude contour plotsFigure 4 illustrate how the flow
develops from this initial condition. These — ardsabsequent — images are in the reference frame
moving with the shaking motion. Initiallyt & 0.25 f ) the internal moves down due to net gravity and to

the right since the shaking motion starts to tffiie le the subsequent frames we see an overakase in
the velocity magnitude. The velocity vector plobgls an instantaneous flow field after the systes ha

fully developed. It also gives an impression of lneel of resolution of the simulations.
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Figure 4. Left: instantaneous velocity vectors inancross section of the flow at=L/4 after the flow
is fully developed. Right: impressions of how thaf starts in terms of velocity magnitude contoinrs
the samez-plane. From top to bottontf =0.25, 0.5,1.0, 2.. Base-case conditions.

Under base-case conditions, the motion of the maleqjuickly settles in a periodic state, as can be
judged from the time series of the vertical (centecation of the internal in Figure 5. For an etfee
operation of this mixing device, inertia of theantal appears important. If we change the denaiip r

from p,/p=8.0 (base-case) to 4.0 and keep all other parasnitie same, the internal gets hardly agitated

(see the ?'time series in Figure 5) which has detrimentae@f on the mixing performance.
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Figure 5. Time series of the verticat)(coordinate of the center location of the interi@d curve: base-
case (which has a density rafig/ p=8.0); blue curve: same as base-case excepptliat4.0.

At Re,=2,300 we are able to get stable results withoatube of a subgrid-scale model. If we

compare these “direct” simulation results with onbtained with a Smagorinsky subgrid-scale model at
the same Reynolds number we see hardly any ditferém the flow field as well as in the levels of
agitation of the internal. As an illustration weosh in Figure 6, very close agreement of the tirmges
of the vertical position of the internal as obtaingith LES and DNS. These results imply that our
procedure is able to represent in a smooth wayrémsition from laminar to turbulent flow.

Modelling the collisions of the internal is an inmamt aspect of the simulations. In the hard
collision model the velocity of the internal chasgestantaneously at the moment of the collisione®
the slightly compressible nature of the latticetBalann scheme [3] this generates waves in the.fluid
These waves are unphysical if the intention isitoutate an incompressible flow. The waves can be
avoided by making the collisions “soft” and usingeastic spring that generates a repulsive forcthe
internal to push it away from the outer wall. Thwice of collision model has some impact on theiomot
of the internal as can be seen in Figure 7. Thermoflel leads to some vibrations of the internai. O
average, however, the soft and hard model resultemny similar motion of the internal. Without any

benchmark or experimental data it is hard to juddech collision model gives more reliable results.
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the remainder of this paper — when discussing staasport — results have been generated by uiseng

hard model.
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Figure 6. Time series of the verticak)( coordinate of the center location of the interr@mparison
between LES and DNS &e,=2,300. The rest of the conditions are the sanferahe base-case.

9 —hard — soft
die |

0 £t 5
Figure 7. Time series reflecting the differences as a restiltollision modelling; hard versus soft

collisions. The parametet is the distance of the internal from the wall Batta collision takes place if
d/e =1. Base-case conditions except tira, =2,300. DNS flow simulations.

4.2 Passive scalar transport

In order to directly test the mixing performancettod agitated tubular reactor, the transport eqoaif a
passive scalar concentratien(Egq. 1) was solved in conjunction with the flowndynics. The initial
condition for the simulations involving scalar tsport is a fully developed flow field and a segteda

scalar concentration field. The latter means thmtetc =1 for z> 0, andc=0 for z<O.
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Figure 8. Scalar mixing in the form of concentration contoimsthe xz-plane aty=L/4. Top row:
Re,=5,600 (LES); bottom rowRe,=1,200 (DNS). From left to rightf =0.02, 0.2, 0.4,0.8,1 with at
t =0 a fully developed flow and a segregated scal#d.fie

In Figure 8 impressions of the mixing process &@\s for two different Reynolds numbeRs; .

We see the formation of scalar concentration gtnatand — in the course of time — a homogenization

the concentration field with faster mixing for theggher Reynolds number. To quantify mixing we defin
the scalar variance as, = <cz>—<c>2/<c> with ( ) denoting spatial averaging over instantaneous
realizations of the concentration field, so thatis a function of time. In Figure 9 we show an epérof

a o, time series where the spatial average is taken tbeecenter verticalyg) plane. Given that at time
zero the scalar is segregated, the starting vélue as approximately%\/i. We see the decay of scalar
variance and it being faster for the higher Reysatdmber.lf o, =0.02 is set as the level for a
practically homogeneous systethen for Re,=5,600 homogenization is achieved after less than 1

shaking periods; forRe,=1,200 it takes at least 15 periods. The periotlictéiations are due to the

periodic motion of the internal.

12
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Figure 9. Time series of scalar varianeg = 1/<c2>—<c>2/<c> in theyz-plane withx=0 as a function of
time for Re,=5,600 (blue curve) anRe,=1,200 (red curve).

5 Summary & conclusions
In this paper we have shown the feasibility of perfing single-phase flow and mixing simulationsaof
novel agitated tubular reactor. Simulations sohfave been on a systems operating in the transitiona
early turbulent regime. It was shown that we calkeareasmooth transition from direct (i.e. no turingle
model) to large-eddy simulations. The simulatioogedure is able to apply a hard as well as a softein
for the collisions of the internal mixing elemenittwthe outer tube wall. It was highlighted thae th
internal mixing element needs sufficient inertiae.(imass) to be sufficiently agitated by the shgkin
motion of the outer tube. Including passive scatarance calculations allow for directly quantifgithe
mixing process, for instance in terms of the deigag of scalar variance.

This paper describes a feasibility study so thathmmore work needs to be done before applying
the simulations for reactor design. The next stepsverification (e.g. establishing grid converggrand

validation (e.g. comparison with experimental dafd)en we will be including through-flow so that we

13



will see mixing not only due to the motion of timarnal but also due to an average axial velottityill
be interesting to quantify the relative importarméehese two contributions to mixing as a functimin

operational conditions.
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