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Abstract
EasyPBC is an ABAQUS CAE plugin developed to estimate the homogenised effective elastic properties of user created 
periodic representative volume element (RVE), all within ABAQUS without the need to use third-party software. The 
plugin automatically applies the concepts of the periodic RVE homogenisation method in the software’s user interface by 
categorising, creating, and linking sets necessary for achieving deformable periodic boundary surfaces, which can distort 
and no longer remain plane. Additionally, it allows the user to benefit from finite element analysis data within ABAQUS 
CAE interface after calculating homogenised properties. In this article, the algorithm of the plugin based on periodic RVE 
homogenisation method is explained, which could be developed for other commercial FE software packages. Furthermore, 
examples of its implementation and verification are illustrated.
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1  Introduction

For many materials, such as metals, design strength and 
stiffness characteristics are usually met by providing excess 
unnecessary strength in unloaded directions leading to 
weight and cost increase. The alternative is composite mate-
rials, which can be designed with customisable properties to 
support the applied loads, leading to a significant decrease 
in weight, and potentially creating parts with specific capa-
bilities. These properties are the result of using materials 
differing in composition, where the individual constituents 
retain their separate identities [1], and act together to give 
the necessary mechanical strength and stiffness to the com-
posite part [2]. However, engineering with composites is 
more challenging than metals, because their properties are 
inherited from constituent materials and depend on manu-
facturing process, material properties, geometrical configu-
rations, etc., which leads to uncertainties at different scales. 

Nevertheless, much research has been conducted to address 
these design issues [3]. A common approach to designing 
parts with composite materials is to homogenise the elastic 
stiffness properties between scales, which provides an esti-
mate for the effective elastic properties. Several theoreti-
cal homogenisation methods are available, such as Chamis’ 
micromechanical model equations [4], and the asymptotic 
mean-field homogenisation approach by Mori–Tanaka [5]. 
However, these methods are incapable of accommodating 
the effect of geometrical variations of constituent materi-
als at the microscale. Thus, using a finite element-based 
numerical approach such as the representative volume 
element (RVE) homogenisation method is more accurate, 
widely recommended to predict the effective elastic prop-
erties of composites [6], and it is becoming the standard 
approach for composite materials [7]. The same concept can 
be applied for other hybrid materials such as solids with 
voids inclusion.

The RVE term was first used by Hill [8] and it can be 
defined as the smallest material volume element for which 
the macroscopic constitutive representation is a sufficiently 
accurate model to represent mean constitutive response [9]. 
Therefore, the RVE shall be selected/modelled such that 
duplicating it provides sufficient accuracy of representing 
the material’s larger scales (see Fig. 1). When it comes to 
the RVE homogenisation method, it requires imposition of 
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uniform strains on a microscale RVE to compute the effec-
tive elastic properties. Periodic boundary conditions (PBCs) 
are also required to simulate the deformation of the material 
surrounding the RVE. In other words, PBCs will ensure that 
the RVE-deformed external surfaces remain periodic (see 
Fig. 2).

The implementation of these PBCs is achievable using 
commercial finite element software, such as ABAQUS 
[10]. Some benefits of using commercial software are the 
complete control over the RVE geometry, and access to a 
wide range of analysis data, i.e., stresses, strains, reaction 
forces and energy values. Nevertheless, there are no built-
in tools that can automatically impose these PBCs. There-
fore, complex and time-consuming user inputs and/or using 
other software is required. EasyPBC (for easy generation of 
PBCs) is developed to automatically find and generate the 
required boundary node sets, constraint equations, displace-
ment boundary conditions, and post-processing calculations 
to find the effective elastic properties, all within a graphical 
user interface (GUI) running under the ABAQUS CAE, as 
shown in Fig. 3. This interface is presented in the simplest 
possible way, allowing the user to select the required homog-
enised elastic property(ies), and set the mesh mapping accu-
racy limit if required, making it less complicated and more 

user-friendly by eliminating viewport selection operations. 
At the same time, embedded step-by-step checks are run to 
ensure that the homogenisation computation is running with-
out errors, otherwise, it notifies the user of their occurrence.

This article briefly explains the periodic RVE homog-
enisation method, then thoroughly illustrates the two-stage 
methodology of EasyPBC. This is followed by applications 
of analysing RVEs with geometrical variations, and com-
parisons with other tools. Moreover, as part of explaining 
the plugin’s algorithm in this article, it addresses the lit-
eratures’ lack of information surrounding the implementa-
tion of periodic RVE homogenisation in commercial FE 
software.

2 � Periodic RVE homogenisation

The concept of RVE homogenisation is to numerically 
impose uniform strains to compute the effective elastic 
properties of a composite model, as can be seen in Fig. 4. 
Generally, these strains are applied in several independ-
ent sets, with each set calculating specific elastic material 
properties, as detailed in Sect. 3.2. The RVE is assumed to 
be a part of a periodic material, therefore, it is important to 

Fig. 1   Representation of two-
phase composite component 
build-up from duplicated RVEs

Fig. 2   Illustration of periodical 
RVEs build-up before and after 
loading
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simulate the periodicity of the RVE with the surrounding 
material before and after being strained in FE software. 
Earlier homogenisation studies achieved periodicity by 
imposing boundary conditions that ensure RVE’s plane 
boundary surfaces remain plane after deformation [11, 12]. 
This is only correct for a transversely isotropic RVE under 
longitudinal and transverse strains. However, that is not 
the case for orthotropic representation and shear modulus 
estimation, since it will over-constrain the RVE, leading to 
overestimating the composite elastic properties [13]. Thus, 

it is necessary to apply node-to-node periodic conditions, 
at which deformed boundary surfaces can distort and no 
longer remain plane [14, 15]. Achieving these periodic-
ity conditions requires linking nodal degrees of freedom 
(DoF) in commercial FE software, based on concepts of 
unified periodic RVE homogenisation [13] as illustrated 
in Eq. 1–9.

Fig. 3   EasyPBC main window

Fig. 4   Schematic representa-
tion of displacement boundary 
conditions required to estimate 
the effective elastic properties
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For elastic modulus E11:

For shear modulus G12:

 where X, Y, and Z are displacement components along X, 
Y, and Z direction, respectively. Assigned value is the pre-
scribed displacement value. Refer to Fig. 6 to identify Front-
Back, Left-Right, and Top-Bottom surface alignment with 
X, Y, and Z direction.

3 � Software methodology

EasyPBC is written in the Python programming language 
utilising ABAQUS commands. To make the plugin avail-
able in ABAQUS CAE interface, the code is simply placed 
in abaqus_plugin directory before start-up. The plugin runs 
two main phases to estimate the homogenised elastic prop-
erties by implementing concepts of unified periodic RVE 
homogenisation method, these are the pre-processing and 
post-processing phases. The first phase determines RVE’s 
geometrical dimensions, identifies boundary surfaces, cre-
ates nodal sets, creates node-to-node constraint equations, 
and applies the required displacement boundary conditions. 
Whereas the post-processing phase handles stress–strain 
calculations, and other operations related to estimating 

(1)XFront − XBack = Assigned value

(2)XTop,Left − XBottom,Right = 0

(3)YTop,Front,Left − YBottom,Back, Right = 0

(4)ZFront,Top,Left − YBack,Bottom,Right = 0

(5)XFront,Left − XBack,Right = 0

(6)YFront − YBack = Assigned value

(7)XTop − XBottom = Assigned value

(8)YTop,Left − YBottom,Right = 0

(9)ZFront,Top,Left − YBack,Bottom,Right = 0

the elastic properties. These main operations are shown in 
EasyPBC flowchart (Fig. 5), and explained thoroughly next.

3.1 � Pre‑processing phase

The input for EasyPBC to start the pre-processing phase is the 
user’s created RVE model, including definition of constituent 
materials’ properties and meshing. This allows the user to have 
full control of geometry creation and meshing options. Once 
done, the software imports the above information and work 
specifically on the selected model and instance (see Fig. 3), 
using nodal coordinates as input data to find maximum and 
minimum points in all three directions of the RVE (Max. and 
Min. of X, Y and Z directions). These values are the foundation 
for calculating the RVE’s boundary dimensions and finding its 
corners, edges, and surfaces, as shown in Fig. 6. To categorise 
nodes into these sets, each node must meet specific coordinate 
conditions, similar to the four examples illustrated in Fig. 7. 
Once a node meets the condition(s) of a specific node set (cor-
ner, edge or surface), it is inserted into an array that contains 
the label(s) of that set. To decrease processing time, the code 
avoids checking any node embedded within the RVE between 
boundary surfaces, which are nodes with none of its coordi-
nates equal to any maximum or minimum values.

Fig. 5   EasyPBC processing flowchart
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The generated node sets now require sorting to facilitate 
the linking of nodal degrees of freedom to implement PBCs. 
To achieve this, for each node in associated sets/pairs (as 

illustrated in Table 1), the code identifies its correspond-
ing node in the opposite set when the coordinate difference 
between the two nodes is smaller than a specified mapping 

Fig. 6   Sets required to perform 
EasyPBC homogenisation

Fig. 7   Examples of node set categorisation conditions
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Table 1   EasyPBC liner constraints equations and displacement boundary conditions

Young’s moduli (E11, E22, and E33) liner constraints equations and load boundary conditions*

Constraint equations: A × UDoF
set1

 + B × UDoF
set2

 + C × UDoF
RP(i)

 = 0

Set 1 Set 2 DoF A B C RP(i)

TopS BotS 1, 2, 3 1 − 1 − 1 N/A,5, N/A
FrontS BackS 1, 2, 3 1 − 1 − 1, 0, 0 4, N/A, N/A
LeftS RightS 1, 2, 3 1 − 1 0, 0, − 1 N/A, N/A, 6
F.T.edge B.T.edge 1, 2, 3 1 − 1 − 1, 0, 0 4, N/A, N/A
B.T.edge B.B.edge 1, 2, 3 1 − 1 0, − 1, 0 N/A, 5, N/A
B.B.edge F.B.edge 1, 2, 3 1 − 1 1, 0, 0 4, N/A, N/A
F.L.edge B.L.edge 1, 2, 3 1 − 1 − 1, 0, 0 4, N/A, N/A
B.L.edge B.R.edge 1, 2, 3 1 − 1 0, 0, − 1 N/A, N/A, 6
B.R.edge F.R.edge 1, 2, 3 1 − 1 1, 0, 0 4, N/A, N/A
L.T.edge L.B.edge 1, 2, 3 1 − 1 0, − 1, 0 N/A, 5, N/A
L.B.edge R.B.edge 1, 2, 3 1 − 1 0, 0, − 1 N/A, N/A, 6
R.B.edge R.T.edge 1, 2, 3 1 − 1 0, 1, 0 N/A, 5, N/A
C6 C2 1, 2, 3 1 − 1 0, 1, 0 5
C2 C3 1, 2, 3 1 − 1 0, 0, − 1 6
C3 C4 1, 2, 3 1 − 1 1, 0, 0 4
C4 C8 1, 2, 3 1 − 1 0, − 1, 0 5
C8 C5 1, 2, 3 1 − 1 0, 0, 1 6
C5 C1 1, 2, 3 1 − 1 0, 1, 0 5
C1 C7 1, 2, 3 1 − 1 − 1 4, 5, 6

Displacement boundary conditions

Elastic moduli Set Boundary condition value of

Displacement DoF1 Displacement DoF2 Displacement DoF3 Rotation DoF1 Rotation DoF2 Rotation DoF3

E11 RP4 Assigned value Unset Unset Unset Unset Unset
E22 RP5 Unset Assigned value Unset Unset Unset Unset
E33 RP6 Unset Unset Assigned value Unset Unset Unset

Shear moduli (G12, G13, and G23) liner constraint equations and boundary conditions *

Constraint equations: A × UDoF
set1

 + B × UDoF
set2

 + C × UDoF
RP(i)

 + D × UDoF
RP(j)

+ E × U
DoF
RP(k)

 = 0

Set 1 Set 2 DoF A B C RP(i) D RP(j) E RP(k)

TopB.C BotB.C 1, 2, 3 1 − 1 − 1 4, 1, 6 0 N/A 0 N/A
LeftB.C RightB.C 1, 2, 3 1 − 1 − 1 5, 6, 2 0 N/A 0 N/A
FrontB.C BackB.C 1, 2, 3 1 − 1 − 1 3, 4, 5 0 N/A 0 N/A
F.T.edge B.T.edge 1, 2, 3 1 − 1 − 1 3, 4, 5 0 N/A 0 N/A
B.T.edge B.B.edge 1, 2, 3 1 − 1 − 1 4, 1, 6 0 N/A 0 N/A
B.B.edge F.B.edge 1, 2, 3 1 − 1 1 3, 4, 5 0 N/A 0 N/A
F.L.edge B.L.edge 1, 2, 3 1 − 1 − 1 3, 4, 5 0 N/A 0 N/A
B.L.edge B.R.edge 1, 2, 3 1 − 1 − 1 5, 6, 2 0 N/A 0 N/A
B.R.edge F.R.edge 1, 2, 3 1 − 1 1 3, 4, 5 0 N/A 0 N/A
L.T.edge L.B.edge 1, 2, 3 1 − 1 − 1 3, 1, 6 0 N/A 0 N/A
L.B.edge R.B.edge 1, 2, 3 1 − 1 − 1 5, 6, 2 0 N/A 0 N/A
R.B.edge R.T.edge 1, 2, 3 1 − 1 1 4, 1, 6 0 N/A 0 N/A
C6 C2 1, 2, 3 1 − 1 1 4, 1, 6 0 N/A 0 N/A
C2 C3 1, 2, 3 1 − 1 − 1 5, 6, 2 0 N/A 0 N/A
C3 C4 1, 2, 3 1 − 1 1 3, 4, 5 0 N/A 0 N/A
C4 C8 1, 2, 3 1 − 1 − 1 4, 1, 6 0 N/A 0 N/A
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accuracy. The default value of mapping accuracy is 1E-7 as 
shown in Fig. 1, which assumes the mesh structure is nearly 
identical on opposite sides of the RVE, this value is adjust-
able based on users mapping accuracy. Once a pair of nodes 

is found, both are appended in the same order in their sets as 
illustrated in Fig. 8.

With the generation of the required 32 node sets, the 
code completes the set generation phase. The occurrence 

Fig. 8   Algorithm for appending 
nodes within associated sets

Table 1   (continued)

Shear moduli (G12, G13, and G23) liner constraint equations and boundary conditions *

Constraint equations: A × UDoF
set1

 + B × UDoF
set2

 + C × UDoF
RP(i)

 + D × UDoF
RP(j)

+ E × U
DoF
RP(k)

 = 0

Set 1 Set 2 DoF A B C RP(i) D RP(j) E RP(k)

C8 C5 1, 2, 3 1 − 1 1 5, 6, 2 0 N/A 0 N/A
C5 C1 1, 2, 3 1 − 1 1 4, 1, 6 0 N/A 0 N/A
C1 C7 1, 2, 3 1 − 1 − 1 3, 1, 2 -1 4, 4, 5 -1 5, 6, 6

Displacement boundary conditions

Shear moduli Set Boundary condition value of

Displacement 
DoF1

Displacement 
DoF2

Displacement 
DoF3

Rotation DoF 1 Rotation DoF 2 Rotation DoF 3

G12 RP4 Assigned value unset unset unset unset unset
RP5, RP6 0 0 0 unset unset unset

G13 RP5 unset Assigned value unset unset unset unset
RP4, RP6 0 0 0 unset unset unset

G23 RP6 unset unset Assigned value unset unset unset
RP4, RP5 0 0 0 unset unset unset

* For Elastic moduli, RP4,5,6 are used to account for both rigid body motion and assign displacements. Whereas in Shear moduli, RP4,5,6 are only 
used to assign displacements, while rigid body motion is considered using RP1,2,3
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of any error stops further operations (beyond creating 
sets) and the user is provided with an error message. If 
the error is a result of mismatch mesh mapping, the code 
will create a set of the nodes that are causing that error, 
helping the user to rectify model meshing and/or adjust 
the EasyPBC mapping accuracy value. For example, ana-
lysing the Model shown in Fig. 9 using the default map-
ping accuracy value 1E-7 will trigger mapping mismatch 
error indicating mesh mapping differences. The solution 
is either improved re-meshing and/or increasing mapping 
accuracy value. In this example, the use of 1E-5 was suf-
ficient to avoid mesh mapping error. It is important to note 
that if the selected mapping accuracy value is large, there 
will be possibilities of linking more than two nodes in each 
constraints equation, yet, EasyPBC will detect that through 
size checks for opposite sets to ensure that each node in a 
set is linked to a single node in the opposite/associated set 
and inform the user. In case of no errors, the next step is to 
link nodal degrees of freedom for opposite/associated sets.

Estimating each elastic property requires a different com-
bination of PBCs and displacement boundary conditions, 
which involves different ABAQUS analysis jobs. Yet, Pois-
son’s ratios for the two transverse directions can be calcu-
lated using data from the Young’s moduli jobs (see Fig. 3). 
PBCs are implemented using linear constraint equations to 
link nodal degrees of freedom. The process starts by con-
verting boundary sets to single-node sets, because the linear 
constraint equation function in the ABAQUS CAE interface 
is operationally limited to sets containing a single node [10]. 
Hence, the sorting process explained earlier becomes useful, 
because these single-node sets can be created with matching 
node labels and locations for associated sets to ease linking 
every pair using a linear constraint equation. These con-
straint equations take coefficients, i.e., degrees of freedom 
and reference points. The use of reference points is neces-
sary to impose boundary displacements, and accommodate 
rigid body motion. These constraint equations associated 

with elastic and shear moduli are detailed in Table 1 and 
will be applied by the code as part of this phase.

PBC constraint equations are mainly divided into two 
sets: Young’s moduli (and Poisson’s ratios), and shear 
moduli. The code creates these two sets of constraint equa-
tions based on required homogenised properties, where the 
different moduli are implemented by changing applied dis-
placements on specific reference points through boundary 
conditions. For example, if the user requests E11, E22 and G12 
homogenised properties, the code will create a single set of 
PBC constraint equations that will be applied for both E11 
and E22, after completion, the code will delete the previous 
set, and create shear set of PBC constraint equations for G12. 
See Eq. 1–9 and Table 1.

3.2 � Post‑processing phase

During pre-processing, essential data are collected and stored 
such as RVE dimensions, corner coordinates, user input 
requests, etc., however, key data are established once job sub-
mission is completed, marking the start of the post-processing 
phase. Post-processing for estimating the Young’s moduli and 
Poisson’s ratios is different than shear moduli, therefore, each 
is explained individually in the following sections.

3.2.1 � Post‑processing for Young’s modulus and Poisson’s 
ratio

Applied displacements on the RVE surface are resisted 
internally, creating boundary nodal forces at the displaced 
boundary surfaces. Default settings of ABAQUS does not 
output reaction force data. Therefore, as stated earlier, these 
are requested for the reference point assigned to apply the 
displacement on a specific surface based on required elastic 
modulus. The value of the reaction force at a reference point 
is the sum of relevant direction principle boundary nodal 
forces generated at the effected boundary nodes. This value 

Fig. 9   Illustration of mesh map-
ping error set
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is divided by the area of that effected surface to provide 
the stress value that corresponds to the prescribed strain 
(prescribed displacement divided by RVE length along the 
main effected axis). The stress value is then used to estimate 
Young’s modulus by dividing it by the known strain as illus-
trated in Eq. 10 and Fig. 10.

Aforementioned, the data output generated in the same job 
for calculating Young’s modulus is also used to estimate Pois-
son’s ratios (for two transverse directions) using transverse 
strain data. This is achieved by calculating the transverse 
strain and dividing it by the applied axial strain, as illustrated 
in Eq. 11 and Fig. 10.

3.2.2 � Post‑processing for Shear modulus

Shear moduli are estimated by dividing the shear stress value 
by the shear strain of both corresponding direction, i.e., for 
G12. The shear stress value is calculated by extracting the sum 
of relevant direction principle boundary nodal forces from the 
assigned reference point reaction forces of either strained sur-
face (see Fig. 4; Table 1), divided by the effected surface area, 
as shown in Eq. 12 and Fig. 10.

(10)

E =
Stress

Axial strain
, E11 =

∑

Front surface nodal forces in 1-Direction

Front surface area(H×W)

ΔL

L

(11)v =
−Transvers strain

Axial strain
, v12 =

ΔH

H

ΔL

L

, v13 =

ΔW

W

ΔL

L

(12)

G =
Shear stress

Tensors of shear strain
,G12 =

∑

Top surface nodal forces in 1-Direction

Top surface area (L×W)

Δ1

H
+

Δ2

L

4 � Application

Chamis micromechanical model equations [4] are being 
used widely to estimate matrix–fibre composite elastic 
properties, it assumes that both matrix and fibres are lin-
early elastic and fibres are spaced periodically in square-
packed or hexagonal-packed arrays [16]. Thus, this model 
only takes into consideration constituent material proper-
ties and their volume ratio. Consequently, it is not possi-
ble to account for other geometrical configurations. Such 
geometric variations exist in composites and their effect is 
explored in many studies [11, 17, 18]. Therefore, using the 
periodic RVE homogenisation approach is essential, as it 
can analyse general geometries [19]. Moreover, using FE 
allows collecting analysis data for further investigations. 
This is possible using EasyPBC as it allows the user to 
request additional outputs if needed, and allow access to 
ABAQUS job output data.

To demonstrate the use of EasyPBC and the capability 
of capturing geometric variations, the elastic properties 
are determined for an RVE with identical fibres, arranged 
hexagonally and spaced equally with properties given in 
Table 2. This is compared with the properties of three 
more RVEs modelled with: off-centre fibre shift, ellipti-
cal cross-sectional fibre and change in fibre diameter, as 
detailed in Fig. 11. It can be seen that EasyPBC is capable 

Fig. 10   Model subjected displacements to estimate Young’s modulus, Poisson’s ratios and shear modulus

Table 2   Material properties of boron–aluminium composite [14]

Constituents Elastic property

Elastic modulus E 
(GPa)

Poisson’s 
ratiov

Modelled 
volume 
ratio

Fibre 379.3 0.1 ≅0.56
Matrix 68.3 0.3 ≅0.44



576	 Engineering with Computers (2019) 35:567–577

1 3

of capturing these variations even though all RVEs have 
the exact same fibre volume ratio Vf , see Table 3.

On the other hand, to verify the above result, good 
agreement is observed between the properties estimated 
using EasyPBC and the FE tool available in Digimat soft-
ware [20] as can be seen in Table 3 for both the deter-
ministic and the off-centre fibre shifting RVEs. The other 
two RVEs (cross-sectional shape, and change in fibre 
diameter) are not analysed with Digimat FE due to soft-
ware’s modelling options limitation. This highlights the 
modelling flexibility that EasyPBC provides within the 
ABAQUS software. Results obtained are for RVEs mod-
elled in ABAQUS, and analysed using approximately 
36,000 wedge elements. Whereas, approximately 74,000 

tetrahedral elements are used in the model generated and 
analysed by Digimat FE.

In addition to the above composite RVE applications, 
and because EasyPBC allows the user to create models 
within ABAQUS, it can analyse models constructed with 
multiple phase, phases with different shapes within the 
model, any material property orientations and inclusion of 
voids, etc. However, it is important to note that the current 
version of the plugin can only analyse cuboid models, with 
external faces parallel to the global ABAQUS coordinate 
system. The user supplied model must also contain at least 
eight nodes (i.e., the corners).

Fig. 11   Fibre–matrix composite 
RVEs modelled with geometri-
cal variations and constant Vf 
ratio

Table 3   Effective elastic 
properties estimated using 
EasyPBC and Digimat

Elastic 
property

Unit Homogenised by Digimat Homogenised by EasyPBC

Determin-
istic RVE

Off-centre 
fibre shifting

Determin-
istic RVE

Off-centre 
fibre shifting

Elliptical 
fibre shape

Fibre diam-
eter variation

E11 GPa 245.0 245.0 244.5 244.5 244.5 244.5
E22 143.2 146.4 143.5 146.7 143.4 145.1
E33 143.3 144.0 143.5 144.5 143.9 145.1
G12 GPa 64.8 66.3 64.8 66.3 64.3 64.5
G13 64.8 64.4 64.8 64.4 65.3 64.5
G23 69.6 68.9 69.8 69.1 69.7 68.6
v12 ratio 0.175 0.173 0.175 0.173 0.176 0.175
v21 0.103 0.104 0.103 0.104 0.103 0.104
v23 0.346 0.342 0.345 0.340 0.345 0.337
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5 � Conclusions

Estimating the effective elastic properties is an important 
step in designing and analysing composite materials. There-
fore, several methods have been developed to estimate these 
properties such as the theoretical Chamis equations that are 
based on rule of mixture, and the more accurate numeri-
cal periodic RVE homogenisation. Nevertheless, in case of 
the latter method, there are no clear instructions and built-
in tools that allow the user to calculate elastic properties 
of a desired model within a commercial FE software in an 
efficient and accurate manner. As a solution, the EasyPBC 
plugin is created to work with ABAQUS CAE without the 
need to use a third-party software. The mechanical concept 
of the plugin is imposing uniform strains on the RVE to 
compute the effective elastic properties. Meanwhile, main-
taining RVE’s unified periodicity by automatically applying 
the required constraint equations and displacement boundary 
conditions. The plugin makes all of this possible within the 
user interface without the need for further calculations, cod-
ing, or using other software, which contributes to improv-
ing the efficiency by reducing error possibilities, saving the 
user’s effort and time. Moreover, EasyPBC is capable of 
analysing a user’s fully customised models, whereas other 
software are limited by specific geometry creation options. 
This make EasyPBC an effective open-source tool for stud-
ies of various backgrounds requiring periodic RVE homog-
enising, with the ability to use analysis data for further 
examinations. It is also thought that the approach detailed 
in this paper could be developed for other commercial FE 
software packages.
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mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.
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