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Abstract: Olive groves are undergoing a marked change in the way that 

inter-row land is managed. The current regulation and recommendation 

encourages the implementation of plant cover, mainly to improve soil 

fertility and reduce erosion. However, there is no quantitative 

information on the dynamics and pools of soil organic carbon (SOC) 

fractions of different protection levels of the plant-residue-derived 

organic carbon (OC). This study was conducted to provide a range of 

annual OC inputs in commercial olive oil groves under natural plant 

cover, to assess the influence of the annual application of aboveground 

plant cover residues on unprotected and physically, chemically and 

biochemically protected SOC. In addition, we tested the carbon saturation 

hypothesis under plant cover. Ten olive oil orchards under plant cover 

management (PC), together with five comparable bare soil olive oil 

orchards (NPC) were selected and annual aboveground natural plant 

residues and SOC pools were sampled and quantified. Annual aboveground 

plant cover biomass and OC production in PC olive orchards averaged 1.48 

t dry-weight (DW) ha-1 and 0.56 t C DW ha-1, respectively with a great 

variability among sites (coefficient of variation of about 100 %). SOC 

concentration in PC orchards was, on average, 2.8 (0 - 5 cm soil) and 2.0 

(5 - 15 cm) times higher than in bare soils of NPC, and the pool of 

protected SOC in the top 15 cm was 2.1 times higher in the PC (17.9 mg C 

g- ndard deviation) compared to NPC (8.5 mg C g-

olive orchards. Linear or saturation type relationships between each SOC 

fraction and total SOC content for the range of SOC of the commercial 

olive oil orchards were statistically indistinguishable, and thus linear 

models to predict SOC accumulation due to plant cover in olive orchards 

are suitable, at least for the studied range of SOC. Overall, at regional 

scale where olive oil groves represent a very high proportion of the 

agricultural land, the use of plant cover appears to be a promising 

practice that promotes protection of the SOC, thus improving SOC 

sequestration. 



 

 

 

 



Dear Editor, Dr.Surinder Saggar, 

 

We appreciate the time and constructive comments that the editor and reviewers 

dedicated to our manuscript.  

Attached to this cover letter, we have provided our responses to the comments of the 

reviewers and given a detailed description of the changes carried out during revision. 

Briefly, we have accepted most of the reviewers’ suggestions, and we have made 

clearer in the text a number of issues raised by the reviewers.  

In addition, we have modified the Introduction to include specific hypotheses. To 

address the reviewers’ comments, we have fully revised the Discussion in order to 

make it clearer and shorter. Furthermore, in order to increase the robustness of our 

results and explanations, some new references have been included in the manuscript.  

The final version of the manuscript has been reviewed by a native English speaker 

(co-author: Pete Smith) for linguistic / grammatical correctness.  

The changes we have made have improved the quality of the manuscript, and we hope 

that it now suitable for publication in Agriculture, Ecosystems and Environment. 

Please do not hesitate to contact us in case of further queries. 

 

Looking forward to your response,  

Yours truly, 

 

J.L Vicente-Vicente & Roberto García-Ruiz, corresponding authors, on behalf of the 

authors.  

 

Cover Letter



Responses to reviewer’s comments 

 

REVIEWER 1 

Mayor comments 

“The title does not sound and need more specific regarding the research theme”. 

We do not fully agree with reviewer comment at this respect. We believe title describes 

the research topic well. We investigated soil organic carbon fractions under plant cover 

in Mediterranean rainfed olive oil orchards, which is precisely the description in the 

title. 

However, being aware of the reviewer’s concern regarding the title, we have changed 

the title as follows: “Carbon saturation and assessment of soil organic carbon 

fractions in Mediterranean rainfed olive orchards under plant cover 

management”. 

 

For the introduction, I suggest that after literature review, a specific hypothesis 

should be put forwarded to test in the present study. 

The hypotheses of the study have been included in the last paragraph before explaining 

the aim of the study in the Introduction section (L. 117-120).  

 

In the Material and Methods section, the authors defined too much "carbon" 

term, such as carbon (C), organic carbon (OC), soil organic carbon (SOC), total 

carbon (TC), Total soil organic carbon (TOC), which may easily confuse the 

readers. 

We appreciate this comment and we agree with the reviewer’s concern. Total soil 

organic carbon (TOC) has been substituted by “total SOC”. And TC has been 

eliminated. We hope that after this change, the manuscript is clearer.  

 

Revision Notes



Also, some definitions are not clear. For example, L173-174, the authors should tell 

the readers the differences between organic matter and SOC. I understanding that 

the organic matter was estimated by the SOC multiplying the factor of 1.724 in 

most case. 

Soil organic matter was quantified directly and was not an estimation based on SOC. 

This was explained in section 2.3 of the submitted manuscript“…organic matter content 

was estimated according to Nelson and Sommers (1982) by weight loss after ignition”. 

On the other hand, SOC was also determined directly (L. 179-180) “….after digesting 

the soil samples with dichromate and sulphuric acid following the method proposed by 

Anderson and Ingram (1993)”. 

 

For the L212, I wander what the differences between the TOC and SOC 

We agree with this and other reviewer comments on some confusion among C, OC, TC, 

TOC and SOC. We have reworded those sentences in which some of these terms appear 

to make the abbreviations consistent. We now use only SOC. 

 

For the discussion section, much work still needs to improve the quality of 

manuscript. For example, L284, this subsection seems a little redundant and the 

authors should further squeeze the contents by focusing on the theme 

According to the suggestion of the reviewer, we have reworded this and other 

subsections of the discussion section to reduce and/or remove redundancy and to 

provide a better focus. 

 

L 317-318, this relationship may be very weak but I suggest that the authors 

should provide some specific data (r =?, p = ?, n=?).  

Data has been included (r = 0.41, p= 0.24, n = 10) 

Also, in many places, some statements should be support by citing some literature 

work (e.g., L327-L328; L353-356; L419-423; L449-451). 



After  careful reading, we agree with the reviewer comment and have added references 

as detailed below. 

L 327-328. We appreciate this comment. However, we have already included some 

references such as Castro et al. (2008), and Guzmán and Foraster (2011) (L. 323-324). 

Therefore, we do not believe that additional references are required here.  

L. 353-356. The reference is given a few lines after this sentence. “The presence of 

many different wild plant species in the plant cover communities also introduces a 

greater diversity of carbon compounds into the soil, some of which may be more 

resistant to decomposition (Tiemann et al., 2015)”. Furthermore, in this context, we 

remark that “the formation of microaggregates within macroaggregates is increased 

after the incorporation of plant cover residues (Six et al., 2000). The release of biogenic 

products and other binding agents, such as polysaccharides and root exudates (Puget 

and Drinkwater, 2001), during the incorporation and relatively-rapid decomposition of 

the residues of the plant cover may have promoted the solid-phase reaction between 

organic matter and clay and silt particles, leading to the formation of stable 

microaggregates (Golchin et al., 1994). 

Therefore, we believe that the idea of the formation of microaggregates after plant 

residues incorporation is well explained through the references included in the 

manuscript. 

L. 419-423. We really appreciate the suggestion of the reviewer, and in this line an 

important review carried out by Barré et al. (2014) has been added. 

Barré, P., Fernandez-Ugalde, O., Virto, I., Velde, B., Chenu, C., 2014. Impact of 

phyllosilicate mineralogy on organic carbon stabilization in soils: incomplete 

knowledge and exciting prospects. Geoderma, 235–236:382–395. 

L. 449-451 We agree with the reviewer, and we have included the reference of Six et al. 

(2002). 

L427, in this subsection, the authors cited too much work by Stewart et al. (2007), 

but in fact the data of present study seemed to not be line with the C saturation 

type proposed by Stewart et al. (2007). Thus, more explanations are needed. I 

wander whether it is necessary to cite too much work by Stewart et al. (2007). 



Unfortunately, we did not find other studies assessing C saturation using the SOC 

fractionation of Six et al. (2002). In this sense, the study of Stewart et al. (2007) was the 

best to be compared our results. 

We agree with the reviewer that results of our study do not show saturation behaviour 

for the different SOC fractions, whereas the study of Stewart et al. (2007) did it for 

some of the SOC fractions. However, we believe that in the discussion it is clearly 

explained “The fact that in our study the physically and chemically protected SOC did 

not showed saturation could be likely due to the relatively low range of total SOC of our 

study compared to that of  Stewart et al. (2007) (i.e., 5.1 to 96.1 mg C g-1). Indeed, in 

the long-term agroecosystem experiments of Stewart et al. (2007), the number of 

fractions fitting the C saturation model within each site was directly related to 

maximum SOC content. Thus, SOC saturation in these fractions might does occur but 

that it is not always seen in agricultural field experiments since the range of OC input 

levels use to be too small for the saturation tendency to be showed”. 

Nevertheless, and according to the reviewer comment, we have deleted some of the 

references to the Stewart et al. (2007) study.  

 

TABLES AND FIGURES 

For the fig.1, I suggest that the Frequency distributions of aboveground biomass 

and organic carbon should be fitted with the Gaussian function to check whether 

these data are normally distributed or not. 

Figure 1 shows the actual frequency distribution of annual production of aboveground 

biomass of olive oil groves under a natural plant cover. We did not analyse for 

normality (Gaussian function) as we only use in the manuscript the mean value and an 

indicator of the dispersion of the data around the mean of the annual production of 

aboveground biomass. 

 

For the figures 2 and 3, the average values with the same letters indicates no 

significantly differences between SOC fractions rather than management types 

within same soil layers. Please, check. 



The reviewer is correct. We apologize for these mistakes. In fact, the statistical analysis 

has been done between depths instead of between managements. Therefore, in the figure 

captions the words “between managements” have been substituted by “between depths” 

in the figure 2 and 3.  

 

For the figures 5 and 6, the comparison between the management types for the 

given SOC fraction is done by the T test if the data are normally distributed. The 

authors should clearly state the results of normality test and then the method used 

for the comparison. 

For all the comparisons and statistics, were checked previously for homocedasticity and 

normality. This was shown in the submitted version in M&M 2.5 section.  

“The effects of the presence of plant cover on total and SOC fractions for the two 

different depths were assessed using two-way ANOVA (management and depth as 

factors). Previously, tests of homoscedasticity and normality were carried out. These 

analyses were done using the IBM SPSS Statistics 20 software”. 

 

Fig. 7, I suggest that some lines for the best-fit linear or saturation model for each 

fraction should be added in the plot 

We agree with the reviewer and results for both models, linear and saturation, have been 

included for each soil organic carbon fractions in the Figure 7.  

 

 

REVIEWER 2 

No measurements were made of soil bulk density (BD) and hence the C 

sequestration results cannot be presented on an equivalent mass basis. Differences 

in the depth of any cultivation under the two systems compared may have lead to 

differences in soil BD thereby slightly distorting comparisons of C sequestration 

based on a common sampling depth (0 – 15 cm). For example, the lack of 



correlation between C inputs and SOM cited in lines 236-238 may, to some exteng, 

be due to some of the additional C inputs on PC farms being incorporated below 

de sampling depth. 

In the revised version of the manuscript the soil bulk density has been included and 

shown in table 1. On the other hand, we agree with the reviewer’s concern that 

differences in bulk density might explain differences in SOC stocks estimated from 

SOC concentrations. Nevertheless, after considering bulk density, differences in SOC 

between covered and uncovered olive oil orchards remain. We also agree with the 

reviewer comment on the possible contribution of some organic carbon in PC plots 

moving below the sampling depth. We have added a sentence to make this clearer. 

This dilution may mean that SOC throughout the soil profile was even greater in 

the PC soils, compared with the NPC, than suggested by sampling to only 15 cm 

(e.g. lines 265-266). I do not think this is a major issue as the object of the paper is 

to report C additions and hence the potential for C sequestration. Therefore, the 

authors can address this issue by referencing likely differences in soil BD under the 

two systems and hence the difference between potential and actual C sequestration 

per unit of soil mass.  

We agree with the reviewer’s concern. We have addressed this issue by taking into 

account bulk density. 

 

BULLET POINTS 

Do the models referred to estimate SOC accumulation to depth taking account of 

equivalent mass? 

We are not sure of the reviewer point. We tried to assess to what extent C saturation 

hypothesis is verified under plant cover management in commercial olive oil groves. If 

concentration of a given protected organic carbon pool (mg C g-1 of specific fraction) 

shows saturation behaviour at high SOC, means that soil have a maximum capacity to 

protect SOC in this fraction. If it is not the case and concentration of a give protected 

organic carbon fraction (mg C g-1 of specific fraction) shows linearly with SOC, then 

the saturation hypothesis should be rejected at least for the range of SOC assayed. 



 

Linear or saturation model refers to linear or saturation curves between soil organic 

carbon concentration (mg C g-1 fraction) in a specific soil organic carbon fraction and 

soil organic carbon content (mg C g-1 soil) 

 

MODERATE POINTS 

Please, indicate the species that comprised the plant cover and whether there were 

any differences in the species among the orchards. 

Unfortunately, we did not analyse for species composition of the communities of natural 

plant cover in olive oil orchards. This was not our objective. In addition, species 

composition of the communities of the inter-row area of olive groves shows very high 

spatial and intra and inter-annual variability, mainly due to intra and inter annual pattern 

of precipitation and other landscape features (Laila, 2015). After a visual appreciation of 

the plots while sampling, most abundant species belong to Graminaceae (mainlyLolium 

sp. Hordeum sp., and Avenafatua or Avena sativa), Brassicaceae (Brassica sp., 

Lobularia sp., and Aurinium sp.), Asteracea, such as Chrysanthemum sp., and some 

legumes such as Medicago sp. and Vicia sp. 

Nevertheless, carbon and nitrogen contents and C-to-N ratio of the natural plant cover 

residues were relatively homogeneous.  In the case of the organic C content of the 

biomass residues the mean value was 37.4% (±2.1) (Coefficient of variation = 5.6 %), 

whereas for the nitrogen content it was 2.3% (±0.46) (Coefficient of variation = 20.1). 

Therefore, despite the suspected differences in species composition of the natural plant 

cover of the PC plots, they were relatively homogeneous in terms of plant residue 

quality. 

Laila, 2015. PhD entitled “Agroecological transition of the olive oil groves: a study 

case” (https://dialnet.unirioja.es/servlet/tesis?codigo=20760). 

Can the large differences in crop residues be attributed to any differences in the 

plant cover species? 



We believe that main differences in the annual production of biomass of the natural 

plant cover are attributable to differences in landscape features (e.g. north versus south 

facing), soil fertility and variability in the microclimatic conditions among sites.  

 

Was there any association between tree density and SOC content? 

The tree density was very similar in the 10 sites (between 95 to 120 trees ha
-1

). 

Therefore, we believe that differences in tree density do not play a major role in the 

differences in SOC, at least for the range of tree density sampled. 

 

Line 75, please indicate the approximate size of this proportion 

We have reworded the sentence. Therefore, “Significant proportion of total agricultural 

production” has been substituted with “about 60% of the total olive orchards surface”. 

Lines 140, 249, you mean “comprised”, not “compromised”. 

We appreciate this comment and the words have been corrected with the suggestion of 

the reviewer. 

MINOR POINTS 

All these mistakes have been corrected:  

Line 135, replace “were” with “was” 

Line 138, replace “lower” with “less” 

Line 208, replace “site” with “sites” 

Lines 273 and 380, replace “managements” with “management” 

Line 278, replace “models” with “model” 

Line 291, “throughout” I suggest you mean “through” 

Line 380, it is either “plant residues serve” or “plant residue serves” 

Line 443, delete “a” before “saturation” 



Line 447, replace “finding” with “findings” 

Line 456, replace “showed” with “show” 

 

 

REVIEWER 3 

The introduction is a bit wordy and it could be shortened. 

According to the reviewer comment we have shortened the introduction section by 

removing some non-essential sentences. 

The discussion section is rather long and some reduction may improve the 

readability of the ms and highlight the author’s results. To this regard, especially 

in the section 4.1 and 4.2, the authors should do a greater effort to discuss and 

interpret their results beside those of the wide literature reported. 

According to the suggestion of the reviewer, we have reworded these subsections of the 

discussion section to reduced or removed redundancy to better focus on the topic. 

 

SPECIFIC COMMENTS 

Line 95….Recently found that…. 

We have corrected the mistake. Effectively, “than” must be substituted with “that” 

L.136-137. Please, indicate the region or province and the location of the sites. 

The provinces of the location of the different sites have been included, and also the 

region (Andalusia). In L. 192 we have remarked that the sites were located in the 

provinces of Granada and Jaén. 

We did not include the location of each of the 10 sites (for instance in a map), since we 

consider that this information is not relevant for the analysis of the results. Table 1 

already shows the main characteristics of the soils of the 10 different sites, and we 

believe there are already many tables and figures. Nevertheless, if reviewer and editor 



think that manuscript would benefit of the location of olive farms in a map (new figure), 

we have no problem showing it. 

L.138. On what series did you calculate MAP? Please, add this information to the 

text. 

This value corresponds to the average precipitation (last 15 years) of different 

meteorological stations of Granada and Jaén provinces close to the olive oil farms 

location. This information has been added in the revised version of the manuscript. 

L. 140 Change “compromised” with “occupied” 

Done. 

L.141 Were the soils different among the ten sites? Please, add info on soil types 

and parent material from which soils developed in the different sites. 

The main characteristics of the soils are shown in the Table 1. We appreciate the 

comment of the reviewer, but we consider that we include enough information about 

soil features in Table 1. However, in order to better clarify the soil features of the ten 

different sites we have specified in the M&M section that soils in these ten sites are 

placed under similar parent material features (marls).  

L. 143. In terms of climate, … 

The mistake has been corrected. 

L.180. dispersion in water? 

The dispersion and the fractionation were carried out under wet conditions. It has been 

clarified in the text.  

L.186. What was the Nacl concentration and the density of the solution used for 

the density flotation? 

The density of the NaCl concentration was 1.3 g/cm
3
.  

 

Since in the tables and figures the different pools were reported as unprotected, 

chemically, physically and biochemically protected, the authors should report at 



the end of the fractionation procedure the fractions belonging to the different pools 

(although this has been reported in table 2). This helps the reader to follow the 

presented results. 

We added the information of the different SOC fractions in Table 2 only to describe the 

fractions we obtained with the fractionation method. However, according to the 

reviewer’s suggestion, we have added at the end of the fractionation procedure the 

fractions belonging to the different pools. 

 

L.202-217. Please, rewrite in a clearer way this part 

In this part, some words have been changed in order to clarify the theoretical framework 

of the methodology used, and also to include the suggestions made by other reviewers. 

We hope it is now clearer.  

 

L. 249. Change “compromised” with “represented”. 

Done 

L. 266. Please, add the units to the values. 

Units in this part have been included. 

L. 298 Each year 

We wrote “on one year” because the biomass production was recovered only in one 

year. Changes to “in one year” instead. 

L. 309 Please, add reference 

We acknowledge this suggestion and we included the reference of Baldock (2007). 

L 314 This value ……..in this case “this value” seems to be referred to 80%. 

Anyway, the experiment of Vasquez et al lasted about half time that Gómez-

Muñoz. 



We acknowledge this suggestion. We have removed the reference of Vazquez et al. 

(2003) because we consider that it does not give any additional important information. 

Therefore, the suggestion of the reviewer is not necessary in the new version of the 

manuscript.  

L 334 and tables. Please, report in all the tables the meanings of the abbreviations 

used. In the same way, this should be along the text; for example, the reader 

probably does not remember what site is CT. 

We agree with the reviewer comment regarding the need for explanation of the 

meanings of some of the abbreviations in tables and in the main body of the manuscript. 

These have been described in the text and tables 1 and 3.  

 

L 285-341. This part is, in my opinion a bit long. Further, maybe major room 

should be given to the effect of the rhizodeposition processes on soil C, since it is 

the main flow of C into the soil caused by herbaceous cover, even in the sub 

superficial horizons 

This part has been reworded according to the comments and suggestions of the other 

reviewers. 

L. 396-399. This part is not clear and a bit speculative. Please, explain why is 

increased the formation of micro aggregates within macro aggregates is increased. 

In my opinion, you can’t assume that the formation of micro within macro 

aggregates increased in PC, since the amount of the stability of the aggregate 

classes were not measured, and micro and macro aggregates were separated 

during the fractionation procedure. 

We agree with the lack of clarity of the idea that we wanted to expose with these 

sentences. SOC concentration in the < 53 mm fraction (silt+clay) which was isolated 

from the 53 – 250 mm size fraction (microaggregates) was almost 4 times higher in PC 

compared to NPC plots. This suggests that the amount of SOC chemically protected 

within microaggregates is promoted with the incorporation of plant cover residues. In 

the following sentence, we tried to discuss this result according to the most accepted 

theory: “The release of biogenic products and other binding agents, such as 



polysaccharides and root exudates (Puget and Drinkwater, 2001), during the 

incorporation and relatively-rapid decomposition of the residues of the plant cover may 

have promoted the solid-phase reaction between organic matter and clay and silt 

particles, leading to an increase in the chemically protected SOC within 

microaggregates and to the formation of stable microaggregates (Golchin et al., 1994)”. 

Next, we tried to explain how, with the support of a study, the fact that an increase in 

SOC in the silt+clay fraction isolated from the microaggregates might lead to an 

increase in the stability of microaggregates: “This result is in line with those of Garcia-

Franco et al. (2015) who found that the proportion of microaggregates, and their 

stability, within small macroaggregates increased after green manuring together with 

reduced tillage.” 

 

We made the mistake of mixing microaggregates with macroaggregates when we 

wanted to discuss the fact that in PC plots, SOC chemically protected within 

microaggregates was increased respect to NPC olive oil farms 

 

We have reworded these sentences to make it clearer. 

 

L. 417-425 This part seems to be highly speculative rather than based on the 

results of the authors, that do not present any mineralogical data. Indeed, the fact 

that clay particles are strongly negative charged is not always true, as the clay 

charge depends from the clay minerals comprising the soil colloidal fraction 

We clearly found that both organic carbon content linked to silt-clay (mg C g-1 of soil 

in the < 53 µm) and organic carbon concentration of the silt-clay fraction (mg C g-1 of 

silt-clay) were significantly higher in soil of the PC plots. We did not search for the 

intimate mechanism. With this paragraph (lines 417-425) we tried to provide the most 

accepted hypothesis which might explain the enrichment of organic carbon chemically 

protected under a natural plant cover. We agree with the reviewer comment regarding 

that clay charge depends on the composition of the tetrahedral and octahedral sheets of 

the clay, and there are some (rare) cases in which net charge of the clay particles are 

neutral. However, even neutral charge clay particles might have a net negative charge 

due to predominant pH. In our studied soils, soil pH was generally higher than 8.0 and 



thus a net negative charge of clay particles is quite likely. Nevertheless, we have 

reworded the sentence to deal with the reviewer’s concern. 

 

REVIEWER 4. 

I just have a concern with the objective three – to elucidate if the relationship 

between SOC and organic carbon fractions follow s a linear or a saturation curve 

over the range of SOC measured. I have doubts if the methodology used allowed to 

be conclusive regarding C saturation. The C input was limited – Annual 

aboveground biomass production in the plots varied from an average of 0.65 to 

2.53 t ha-1 during a maximum time of 12 years. With that, I believe that C 

saturation was not 0065pected as the results showed with linear adjustments. In 

order to reach C saturation a higher C input would be required or a longer time of 

addition. Anyway, the discussion and conclusion are right and the manuscript can 

be accepted in the present form. 

We partially agree with the reviewer’s comment in this respect. For a given annual input 

of organic carbon some time is needed to reach the new equilibrium. The time taken is 

highly dependent on climatic conditions, landscape features and management among 

others. In our study, we have assumed that SOC under a specific entry of organic carbon 

is close to steady state. The same approach was undertaken in similar studies, for 

instance, that of Stewart et al. (2008). 
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 Annual aboveground organic carbon production in olive orchards with plant 

cover averaged 0.56 t C ha
-1

. 

 The pool of protected soil organic carbon was 2.1 times higher orchards with 

plant cover compared to those with no plant cover. 

 Linear models to predict soil organic carbon accumulation due to plant cover in 

olive orchards are suitable. 
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Abstract 23 

 24 

Olive groves are undergoing a marked change in the way that inter-row land is managed. The 25 

current regulation and recommendation encourages the implementation of plant cover, mainly to 26 

improve soil fertility and reduce erosion. However, there is no quantitative information on the 27 

dynamics and pools of soil organic carbon (SOC) fractions of different protection levels of the 28 

plant-residue-derived organic carbon (OC). This study was conducted to provide a range of 29 

annual OC inputs in commercial olive oil groves under natural plant cover, to assess the 30 

influence of the annual application of aboveground plant cover residues on unprotected and 31 

physically, chemically and biochemically protected SOC. In addition, we tested the carbon 32 

saturation hypothesis under plant cover. Ten olive oil orchards under plant cover management 33 

(PC), together with five comparable bare soil olive oil orchards (NPC) were selected and annual 34 

aboveground natural plant residues and SOC pools were sampled and quantified. Annual 35 

aboveground plant cover biomass and OC production in PC olive orchards averaged 1.48 t dry-36 

weight (DW) ha
-1

 and 0.56 t C DW ha
-1

, respectively with a great variability among sites 37 

(coefficient of variation of about 100 %). SOC concentration in PC orchards was, on average, 2.8 38 

(0 – 5 cm soil) and 2.0 (5 – 15 cm) times higher than in bare soils of NPC, and the pool of 39 

protected SOC in the top 15 cm was 2.1 times higher in the PC (17.9 mg C g
-1 
 5.7) (±standard 40 

deviation) compared to NPC (8.5 mg C g
-1 
 2.9) olive orchards. Linear or saturation type 41 

relationships between each SOC fraction and total SOC content for the range of SOC of the 42 

commercial olive oil orchards were statistically indistinguishable, and thus linear models to 43 

predict SOC accumulation due to plant cover in olive orchards are suitable, at least for the 44 

studied range of SOC. Overall, at regional scale where olive oil groves represent a very high 45 

proportion of the agricultural land, the use of plant cover appears to be a promising practice that 46 

promotes protection of the SOC, thus improving SOC sequestration. 47 
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1. Introduction  50 

Soils are the largest carbon (C) reservoir of the terrestrial C budget (Lal, 2004), representing 51 

about 2500 Pg C (1500 of soil organic carbon and 950 of inorganic forms) (Lal, 2008). Therefore, 52 

even a relatively small increase or decrease in soil C content due to changes in land use or 53 

management practices may result in a significant net exchange of C between the soil reservoir 54 

and the atmosphere (Houghton, 2003). Conversion of natural ecosystems to agroecosystems 55 

causes a significant depletion of the soil organic carbon (SOC) pool (Lal, 2004), mainly because 56 

C output exceeds the input and this is exacerbated when soil degradation is severe. Therefore, 57 

agricultural soils have the potential to sequester C from the atmosphere with proper management. 58 

Thus, policy makers face the challenge of developing and implementing effective SOC accretion 59 

strategies for agriculture, which requires identification of the best management practices for each 60 

agroecosystem. A number of agricultural management strategies are known to sequester soil C 61 

by increasing C inputs to the soil and enhancing various soil processes that protect C from 62 

microbial turnover. However, uncertainties about the extent and permanence of C sequestration 63 

in these systems remain (Six et al., 2002).  64 

Most experimental studies to date have focused on the impacts of specific agricultural 65 

management practices on SOC dynamics have been performed under extensive cereal and 66 

irrigated crops in temperate (Virto et al., 2011; Dimassi et al., 2014) or Mediterranean areas 67 

(Álvaro-Fuentes et al., 2009; López-Garrido et al., 2011). However, very few studies have been 68 

carried out under rain-fed tree crops in semiarid areas, such as olive oil orchards, where these 69 

crops represent about 60% of the total olive orchard surface (e.g. Nieto et al., 2013). 70 

The incorporation of cover crops (i.e. green manure) into the soil of a given cropping system 71 



is considered a promising sustainable management practice to reduce soil erosion risk (Alliaume 72 

et al., 2014; Francia-Martínez et al., 2006; Gómez et al., 2009), while compensating soil C losses 73 

derived from land-use change and tillage in agricultural fields (Gómez-Muñoz et al., 2014; 74 

Milgroom et al., 2007; Ramos et al., 2010). This is an important issue in Southern Spain, where 75 

regional authorities introduced a policy of Good Agricultural and Environmental Practice in 76 

olive farming, which consists of linking the subsidy for cultivating the olive crop to the 77 

requirement of provide/permit additional cover plants under certain circumstances (e.g. mean 78 

slope over 7 %). 79 

Plant cover in olive oil orchards is mainly comprised of natural vegetation which is allowed to 80 

emerge spontaneously in autumn and winter along the middle of the orchard lanes, covering up 81 

to approximately one-third of the surface. The plant cover should be eliminated in late March or 82 

early April, before it starts competing for water and it is then usually disrupted, mainly by 83 

mechanical mowing and/or herbicides. Plant residues may be left on the soil surface or 84 

mechanically mixed into the top centimetres of soil by tillage. Both approaches are currently 85 

used and are realistic land management options. Most previous studies related to the 86 

effectiveness of cover plants in olive orchards have been designed to evaluate the effects of this 87 

practice in mitigating soil erosion (e.g. Gómez et al., 2004), but to a lesser extent to evaluate the 88 

dynamics of C cycling associated with it (Castro el al., 2008). Vicente-Vicente et al. (2016) 89 

recently found that plant cover in woody crops (olive and almond orchards and vineyards) 90 

significantly contributed to SOC accumulation with annual rates averaging 1.1 t C ha
-1

. 91 

The amount of plant residue and the degree of SOC decomposition are key factors in the 92 

formation and stabilization of aggregates, which in turn improve soil structure and drive SOC 93 

sequestration (Haynes and Beare, 1996). However, no studies in olive groves have been done to 94 

determine the effects of plant covers on different SOC pools and to elucidate how SOC interacts 95 

physically and chemically with aggregates, as well as with mineral particles. 96 



The physical protection of organic carbon (OC) by aggregates (Denef et al., 2001, 2007) and 97 

the physico-chemical stabilization are considered to be important mechanisms of SOC 98 

stabilization (Krull et al., 2003; Marschner et al., 2008; Garcia-Franco et al., 2014). The study of 99 

different protected SOC fractions is a key element in the reliable assessment of soil C dynamics 100 

and can be used as an ea                                                                          101 

                                                                                              102 

                                         ., 2007), helping us to select the best sustainable land 103 

management practices with regard to the enhancement of SOC sequestration in Mediterranean 104 

areas. 105 

On the other hand, according to the theory of soil C saturation proposed by Stewart et al. 106 

(2007), the potential for SOC stabilization has a limit, and as the SOC approaches its saturation 107 

level, the increase in SOC stock becomes smaller despite increasing C input rates. Stewart et al. 108 

(2007) found that SOC saturation does occur, but that it is not always seen in agricultural field 109 

experiments since the range of C input levels is often too small for saturation to be shown. 110 

Several other studies also support the theory that soils can become C saturated (Chung et al., 111 

2008; Six et al., 2002). 112 

The role of plant cover in fruit tree cropping systems on SOC sequestration at regional scale 113 

might require the use of models. The elucidation of linear or saturation relationships across a 114 

typical range of C inputs, due to the presence of plant cover and protected SOC fractions, is 115 

important to accurately predict the potential for C sequestration under this management. 116 

We hypothesized the following: (1) Spontaneous plant cover increases the total SOC content 117 

compared to the non-cover management; (2) this increase is mainly due to an increase in the 118 

most labile SOC fractions; and (3) there is a maximum capacity limit for SOC accumulation for 119 

some fractions, especially those related to the silt and clay content. 120 



The main purpose of this study was to assess the effectiveness of plant cover for enhancing 121 

soil C sequestration in semiarid rain-fed olive oil orchards, to promote changes in existing 122 

conventional agronomic practices from a climate change mitigation perspective. Specifically, the 123 

objectives were: (1) to determine the variability of annual aboveground OC input due to the 124 

presence of a plant cover; (2) to assess the effects of plant cover residue addition to the soil on 125 

SOC accretion and SOC fractions of different protective levels (unprotected and physically, 126 

chemically and biochemically protected); and (3) to elucidate if the relationship between total 127 

SOC and SOC fractions follows a linear or a saturation curve over the range of SOC measured. 128 

 129 

2. Material and methods 130 

2.1. Site description and experimental design 131 

Ten olive orchards, in which a plant cover (PC thereafter) was left to grow in the inter-row 132 

area each year during the last twelve years, were selected in different sites (CA1, CA2, CT, MO, 133 

LO, DE1, DE2, PE, JA and AL) of Jaén and Granada provinces (Andalusia, southern Spain) in 134 

soils over marls with the same parent material. Mean annual precipitation in the area was 446 135 

mm (average value from different meteorological stations in Granada and Jaén locations) about 136 

10 % less than the 25-y average. Aboveground plant cover biomass in all orchards was 137 

mechanically mowed each year during March and plant residues were left on the soil surface. 138 

Typically, plant cover comprised between 30 and 60 % of the whole olive oil farming area. Soils 139 

in these orchards differed in a range of characteristics, some of which are shown in Table 1. Five 140 

out of the ten PC olive orchards were paired with a nearby (within a distance of tens of meters) 141 

comparable olive orchard (in terms of climate, orientation, slope, soil properties and farming 142 

characteristics such as tree density and age), except for the lack of plant cover during at least the 143 

last 12 years. In these olive orchards with bare soil (NPC, thereafter), plants were controlled by 144 



mechanical mowing and/or applying pre-emergence herbicides in the autumn. Thus, differences 145 

between these five pairs of olive oil farming were attributed primarily to the presence or absence 146 

of the plant cover during autumn to the end of March and to the management related to the 147 

control of plants. All olive orchards presented a tree density of between 90 – 120 trees per 148 

hectare, aged 35 to 45 years, and trees were distributed in a regular arrangement typical of fruit 149 

trees, with a canopy cover typically of between 40 – 70 % of the orchard area.  150 

2.2. Soil and aboveground plant cover biomass sampling 151 

In each of the ten PC olive orchards, aboveground annual plant cover biomass produced in 152 

2010 was randomly determined several days before mowing (between the end of March to early 153 

April) by randomly throwing five woody frames (50 cm x 50 cm) in the inter-row area and 154 

subsequently measuring the dry weight of the aboveground plant biomass collected. 155 

Soil below the frames used to collect aboveground cover plant biomass was also sampled. At 156 

each of the sampling point, a 50 cm x 50 cm pit was opened and soil samples were taken at 157 

depths of 0 – 5 and 5 – 15 cm. In the NPC olive orchards, 0 – 5 cm and 5 – 15 cm deep soils of 158 

the inter-row area were collected in the same day and in the same way that comparable PC olive 159 

orchards. Soil samples were transported to the laboratory in air-tight containers in the same day 160 

of collection. 161 

 162 

2.3. Soil and aboveground plant cover biomass analysis 163 

Aboveground plant cover biomass was dried (60 
o
C, 5 days), weighed, ground with a ball mill 164 

and analysed for total SOC and nitrogen in a CHN auto-analyser (Carlo Erba NA200, Milan, 165 

Italy). 166 

Soil samples were air-dried and sieved through a 2 mm sieve. Particle size distribution was 167 

determined by the pipette method (Gee and Bauder 1986). Soil available potassium and soil 168 



labile phosphorus content were analysed according to Grant (1982) and Olsen and Sommers 169 

(1982), respectively. Bulk density (BD) was determined according to Blake and Hartge (1986). 170 

Soil cation exchange capacity (CEC) was analysed according to Rhoades (1982). Soil organic 171 

matter content was quantified according to Nelson and Sommers (1982) by weight loss after 172 

ignition. SOC was determined after digesting the soil samples with dichromate and sulphuric 173 

acid following the method proposed by Anderson and Ingram (1993). 174 

 175 

2.4. Soil carbon fractionation 176 

Separation of the various soil C pools was accomplished by a combination of physical and 177 

chemical fractionation techniques in a simple, three-step process modified from Stewart et al. 178 

(2009). Briefly, after a first step consisting in the partial dispersion and physical fractionation of 179 

the soil in wet conditions to obtain three size fractions (> 250 m, 53 – 250 m and < 53 m), 180 

a69 second step, which involved further fractionation of the 53-250 m fraction previously 181 

isolated, was followed. The > 250 m, 53 – 250 m and < 53 m fractions isolated after the first 182 

step corresponded to the coarse non-protected particulate organic matter (cPOM), 183 

microaggregate (agg) and easily dispersed silt and clay (dSilt+dClay) fractions, respectively. In 184 

this second step a density flotation with sodium chloride was used to isolate fine non-protected 185 

POM (LF). After removing the fine non-protected POM, the heavy fraction was dispersed 186 

overnight by shaking with 15 glass beads and passes through a 53 m sieve, separating the 187 

microaggregated-protected POM (> 53 m in size, iPOM) from the microaggregated-derived 188 

silt- plus clay-size fractions (Silt+Clay). The third step involved the acid hydrolysis of each of 189 

the isolated silt+clay-sized fractions. The silt+clay-size fraction from both the density flotation 190 

(Silt+clay) and the initial dispersion and physical fractionation (dSilt+dClay) were subjected to 191 

acid hydrolysis as described by Plante et al. (2006). Acid hydrolysis consisted of incubating the 192 



samples at 95 
o
C for 16 h in 25 ml of 6 M HCl. After hydrolysis, the suspension was filtered and 193 

washed with deionized water over a glass-fibre filter. Residues were oven-dried at 60 
o
C and 194 

weighed. These fractions represent the non-hydrolysable C fractions (NH-dSilt+dClay and NH-195 

Silt+Clay). The hydrolysable C fractions (H-dSilt+dClay, H-Silt+Clay) were determined 196 

by difference between the total organic C content of the fractions and the C contents of the non-197 

hydrolysable fractions. 198 

This three-step process isolates a total of 12 fractions and it is based on the assumed link 199 

between the isolated fractions and the protection mechanisms involved in the stabilization of 200 

organic C (Six et al., 2002). The unprotected pool includes the cPOM and LF fractions, isolated 201 

in the first and second fractionation steps, respectively. The physically protected SOC consists of 202 

the SOC measured in the microaggregates. It includes not only the iPOM but also the 203 

hydrolysable (H-µsilt+clay) and non-hydrolysable (NH-µsilt+clay) SOC of the intermediate 204 

fraction (53 – 250 µm). The chemically and biochemically protected pools correspond to that 205 

hydrolysable (H-dsilt+clay) and non-hydrolysable (NH-dsilt+clay) SOC in the fine fraction (< 53 206 

µm), respectively. For further information, Table 2 shows a description and the significance of 207 

each of the analysed fraction. 208 

Total SOC and OC of each of the soil fractions were determined after digesting the soil 209 

samples, previously grounded with a ball mill, with dichromate and sulphuric acid following the 210 

method proposed by Anderson and Ingram (1993). 211 

The SOC concentration was used as a balance between C input and decomposition, to 212 

normalize across sites, as sites differ in aboveground plant cover biomass C input, decomposition 213 

rate and field management. This approach has been demonstrated to be useful for normalising 214 

SOC fractions (Stewart et al., 2007), and it has been showed that at steady state a whole soil that 215 

shows a linear increase in C with respect to C inputs will also exhibit linearity between total 216 

SOC concentration and SOC concentrations of the C fractions. Thus, we used total SOC as a 217 



proxy for C input to determine if the different fractions of SOC were influenced by C saturation. 218 

A soil fraction exhibiting a linear relationship between total and fraction SOC is interpreted as 219 

not being influenced by C saturation, while fraction exhibiting an asymptotic relationship shows 220 

evidence for C saturation. 221 

2.5. Statistical analysis 222 

The effects of the presence of plant cover on total and SOC fractions for the two different 223 

depths were assessed using two-way ANOVA (management and depth as factors). Previously, 224 

tests of homocedasticity and normality were carried out. These analyses were done using the 225 

IBM SPSS Statistics 20 software.  226 

Pearson correlation coefficients were used to test the relationship between total SOC and 227 

aboveground plant cover productivity and C input due to plant residues. 228 

 229 

3. Results 230 

3.1. Carbon inputs due to aboveground plant cover productivity  231 

NPC orchards did not produce any plant biomass, as the surface was kept free of vegetation. 232 

Annual aboveground plant cover biomass production in the PC plots varied greatly from an 233 

average of 0.65 t dry-weight (DW) ha
-1

 found at Cortijo Tobazo (CT) site to 2.53 t DW ha
-1 

at 234 

the Jaén (JA) site, with an overall mean of 1.48 t DW ha
-1 

(Figure 1a and Table 1). OC content of 235 

the aboveground plant cover biomass on dry weight basis of the whole set of the studied 236 

orchards averaged 37.4 % (coefficient of variation of 3.6 %, data not shown). The annual input 237 

of OC due to residues of the aboveground plant cover biomass averaged 0.56 t DW ha
-1

, with a 238 

minimum and a maximum of 0.24 and 1.0 t DW ha
-1

, respectively (Figure 1b). Neither the 239 



aboveground plant cover biomass production nor OC input were significantly correlated with the 240 

top 5 cm SOM (r = -0.53 to -0.55; p >0.05) or SOC (r = -0.60 to -0.62; p > 0.05) contents. 241 

3.2. Soil organic carbon fractions of olive orchards with plant cover 242 

SOC content in the top 5 cm of the inter-row soils of PC orchards ranged from 11.5 to 44.8 243 

mg C g
-1 

and, as expected, these values were higher, about a 50 % on average, than those found 244 

in the 5 – 15 cm depth soil (Table 3 and Figure 2). Mean unprotected and physically protected 245 

SOC of the top 5 cm of soils (10.0 and 5.2 mg C g
-1

, respectively) were significantly higher than 246 

average values obtained for the 5 – 15 cm (5.3 and 3.6 mg C g
-1

, respectively). These differences 247 

were not observed for the chemically and biochemically protected SOC. However, SOC density 248 

(i.e. mg C g
-1

 fraction) of unprotected, and physically and chemically protected fractions were 249 

significantly higher in the top 5 cm (Figure 3). The biochemically protected fraction did not 250 

show differences in both concentrations per gram of soil or per gram of fraction between depths. 251 

Unprotected SOC comprised a relatively high proportion of the total SOC with values ranging 252 

from 16.6 to 57.3 % (average of 33.0 %) and from 6.8 to 56.3 % (average of 24.4 %) for 0 – 5 253 

and 5 – 15 cm soil depths, respectively (Figure 4 and Table 3). The differences between depths 254 

were significant for the percentage of the unprotected fraction (Figure 4). However, the 255 

contribution of the physically, chemically and biochemically protected SOC to the total SOC did 256 

not differ significantly with depth (Figure 4). The contribution of biochemically protected SOC 257 

was significantly and negatively correlated (r = -0.55; p < 0.05) with total SOC. 258 

 259 

3.3. Effects of the organic carbon input due to aboveground plant cover biomass on total and 260 

SOC fractions 261 

Total SOC contents in soils of the PC orchards were significantly higher than in the paired 262 

NPC orchards, and this was true for both, 0 – 5 cm (2.8 times on average) and 5 – 15 cm (2.0 263 



times on average) soil depths (Figure 5 and Table 3). A similar trend was found for the 264 

unprotected, and physically, chemically and biochemically protected pools, which were on 265 

average 4.5, 2.7, 3.2 and 1.9 times higher, respectively, in the top 5 cm and 2.7, 2.0, 3.0 and 1.8 266 

times higher, respectively, in the 5 – 15 cm layer of the soils of the PC than in the NPC olive 267 

orchards (Figure 5). Protected SOC in the top 15 cm was 2.1 times higher in soils of the olive oil 268 

orchards with plant cover (17.9 mg C g
-1

 soil  5.7) than in the comparable olive oil orchards 269 

with bare soils (8.5 mg C g
-1

 soil  2.9). 270 

The higher Total SOC in olive orchards under a plant cover treatment was mainly due to the 271 

higher OC concentration per gram of fractions, mainly for unprotected, and physically and 272 

chemically protected fractions (Figure 6). 273 

 274 

3.3. Relationship between soil organic carbon fractions and total soil organic carbon: test for 275 

soil organic carbon saturation hypothesis 276 

Relationship between total SOC (mg C g
-1

 soil) and SOC concentration (mg C g
-1

 fraction) for 277 

the different fractions was tested pooling all sites, depths and management data. The unprotected 278 

SOC was best fitted to a linear function when the 0 – 5 and 5 – 15 cm soil depth samples were 279 

pooled (r
2
 = 0.86, p < 0.05, N = 90) (Figure 7a). However, for the physically and chemically 280 

protected SOC pools, both linear and saturation functions showed similar regression coefficients 281 

(Figures 7b and 7c), and therefore they were indistinguishable. The biochemically protected 282 

SOC pool did not show significant regression either to a linear nor a saturation curve type 283 

(Figure 7d), and remained relatively similar independently on the SOC content. There were not 284 

significant differences between the predicted values of the linear and saturation curves for the 285 

range of total SOC observed in this study. 286 

 287 



4. Discussion 288 

4.1. Annual organic carbon input under plant cover and soil organic carbon stocks in olive 289 

orchards 290 

Our data of annual production of aboveground plant cover biomass are in the range of 1.0 and 291 

4.0 t DW ha
-1 

obtained by Repullo et al. (2012) in a plant-covered olive oil orchard of Córdoba 292 

(Spain) during a period of three agricultural years, but were lower than the biomass entering to 293 

the soils due to crops residues or seeded cover crops of grain crops (Allmaras et al., 1998). 294 

Relatively low annual aboveground plant cover biomass production in rain-fed olive oil orchards 295 

is not surprising since the inter-row area of the olive oil farming is neither fertilised nor irrigated. 296 

On average for the ten PC olive oil orchards, 0.56 t ha
-1 

of OC was left on the soil surface on 297 

one year. This average is within the range of 0.2 to 0.7 t C ha
-1

 yr
-1

 estimated by several 298 

researchers (Freibauer et al, 2004; Hutchinsonet al., 2007) as the potential for C sequestration 299 

under scenarios of application of crops residues. However, the extent to which the input of OC 300 

derived from plant cover increases the soil C stock in the inter-row of olive orchards will 301 

ultimately depend on decomposition rate of that OC. Decomposition rate depends on many 302 

factors including plant biomass quality (e.g. C-to-N ratio and lignin and polyphenol contents); 303 

edaphic and environmental conditions and aboveground plant residues management (e.g. 304 

biomass clearing method and residue displacement) (Kumar and Goh, 2000). A relatively high 305 

decomposition rate of the cover plant residues could be expected as plant C-to-N ratio was 306 

relatively low (average 17.1; min 14.3 and max 24.0) (Baldock, 2007). On the other hand, it 307 

should be noted that plant residue decomposition is expected to slow down when they are left on 308 

soil surface (Cooper et al., 2006), as is usually the case for olive orchards. Gómez-Muñoz et al. 309 

(2014) found that about 20 % of the added plant cover residue in an olive orchard remained in 310 

the litter bags after 343 days, indicating that the other 80 % was decomposed or entered into the 311 

soil as < 1mm (mesh size) particle fragments. 312 



We did not find a relationship between annual aboveground plant cover OC production and 313 

the 0 – 5 cm pool of SOC (r = 0.41, p = 0.24, N = 10). Many long-term agroecosystem field 314 

experiments with different levels of annual OC inputs, show that SOC stocks was linearly related 315 

or followed a saturation behaviour, with the annual amount of OC inputs (e.g. Kong et al., 2005; 316 

Paustian et al. 1997; Stewart et al., 2007). However, our results were not unexpected since plant-317 

OC production was measured in a single year and the pool of SOC is the result of the 318 

accumulated balance between OC inputs and decomposition during many years. Moreover, the 319 

relationship between levels of OC inputs and SOC stock observed by the above researchers was 320 

only clear for a large range of OC inputs (i.e. from 1 t C to more than 5 t C) and in our study the 321 

highest annual aboveground plant OC production was about 1 t C. In addition, inter-annual plant 322 

cover biomass production of olive orchards has shown between 4-fold (Guzmán and Foraster, 323 

2011) and one order (Castro et al., 2008) of variation, mainly driven by the high inter-annual 324 

variability in precipitation typical of Mediterranean regions. In addition, SOC decomposition rate 325 

might differ among sites of different pedo-climatic properties, resulting in different SOC stocks 326 

for a similar level of annual aboveground plant cover residue OC input. For instance, SOC in the 327 

Cortijo Tobazo site was the highest, but the OC input of the aboveground plant residues at this 328 

site was the lowest. Finally, the lack of relationship might also be due to the fact that C input via 329 

roots of the plant cover might represent a significant input of OC, and it cannot be ruled out that 330 

part of the input of OC has been mobilized below the sampling depth; neither mechanism was 331 

unaccounted for in this study.  332 

In any case, the effects of the presence of plant cover on SOC stocks was clear when 333 

comparing SOC in the five paired PC – NPC olive oil orchards. In four out of the five paired 334 

comparisons between 9.0 and 16.1 more t C ha
-1

 was stored in the top 15 cm of the soils of the 335 

PC, whereas at Cortijo Tobazo, the difference was of 29.3 t C ha
-1

. These values were similar to 336 



the 8.4 – 15.0 t C ha
-1

 more SOC storage in the top 15 cm of an olive oil orchard under a cover 337 

plant treatment compared to a plant cover-free plot (Castro et al., 2008). 338 

The higher SOC stock in soils under the plant cover treatment might be due, not only to the 339 

annual OC input of the plant residues, but also to a decrease in SOC losses by soil erosion 340 

(Gómez et al., 2009). In addition, the diversity of wild spontaneous plant cover might have an 341 

important impact on SOC accrual by improving the ability of soil microbial communities to 342 

rapidly process plant residues and protect them into aggregates, and by introducing greater 343 

diversity of OC compounds into the soil, some of which may be more resistant to decomposition 344 

(Tiemann et al., 2015). 345 

Assuming an annual average of plant-aboveground OC input of about 0.56 t C ha
-1

, and that 346 

20 % remains in the soil after one year, for the 1.5 million hectares of olive oil groves of 347 

Andalusia, about 168 000 t C could accumulate annually into the soils. This estimate has many 348 

uncertainties, but highlights the significance of the implementation of this technically and 349 

economically viable practice on potential for C sequestration, at least at regional scale. In 350 

addition, for the five PC – NPC comparisons soil CEC, exchangeable K, labile P and K were 351 

between 1.5 to 2.0 and 1.1 to 1.8 times higher in the 0 – 15 cm soils of PC olive oil orchards. 352 

Thus, the benefits of a plant cover in olive groves could lead not only to C sequestration, but 353 

could also to improve soil properties, resulting in better fertility. 354 

 355 

4.2 Unprotected and protected SOC fractions under natural plant cover of olive oil orchards 356 

 357 

In our study unprotected, and physically and chemically protected fractions were significantly 358 

higher in soils with plant cover (figure 6). The highest increase was achieved for the cPOM (the 359 

coarse non-protected SOC) fraction due to an increase in the SOC concentration (e.g. mg C g
-1

 360 

fraction) of this fraction (between 2.5 to 7.3 times higher than that of the uncovered plots). This 361 



was not unexpected, as recently derived, partially decomposed spontaneous plant residues 362 

together with seeds and microbial debris, such as fungal hyphae and spores that are not closely 363 

associated with soil minerals constitute the unprotected SOC pools (Six et al., 1999; Six et al., 364 

2002). As this pool is sensitive to management practices and, consequently, highly influenced by 365 

future soil management, it should not be considered as a pool of SOC sequestrated in the long 366 

term. Indeed, many early studies have found that the LF and POM are relatively easily 367 

decomposable and are greatly depleted upon cultivation (e.g. Cambardella and Elliott, 1992; 368 

Solomon et al., 2000), indicating their relatively unprotected status. 369 

Physically protected SOC was between 1.8 to 10.8 times higher in olive orchards with plant 370 

cover. The physical protection exerted by macro- and/or microaggregates on SOC is attributed to 371 

the compartmentalization of substrate and microbial biomass (Killham et al., 1993) and, the 372 

reduced diffusion of oxygen into macro and, especially, microaggregates resulting in a reduced 373 

activity within the aggregates (Sollins et al., 1996). Although the amount of soil aggregates or 374 

soil aggregate stability was not measured in our study, it is relatively well documented that plant 375 

residues serves, following the decomposition process, as a binding agent to hold soil particles 376 

together forming aggregates (Jastrow et al., 1998). Recently, Garcia-Franco et al. (2015) showed 377 

after 4 years of green manuring in an almond orchard, that the formation of micro and macro 378 

aggregates were promoted. Therefore, the presence of a plant cover and the surface displacement 379 

of the plant residues increased the amount of SOC physically protected. In addition, SOC of the 380 

silt+clay particles (< 53m) within micro aggregates (53 – 250 m) were on average 3.9 times 381 

higher in plant covered soil, suggesting that SOC chemically protected within the 382 

microaggregates, and eventually stability of the microaggregates, is increased after the 383 

incorporation of plant cover residues (Six et al., 2000). This could be explained by the fact that 384 

the release of biogenic products and other binding agents, such as polysaccharides and root 385 

exudates (Puget and Drinkwater, 2001), during the incorporation and relatively-rapid 386 



decomposition of the residues of the plant cover may have promoted the solid-phase reaction 387 

between organic matter and clay and silt particles, leading to an increase in the chemically 388 

protected SOC within a SOC fraction which is physically protected, and to the formation of 389 

stable microaggregates (Golchin et al., 1994). Our results indicate that a significant part of the 390 

SOC stabilization is due to physico-chemical protection of OC by mineral particles (Krull et al., 391 

2003; Bronick and Lal, 2005). This result is in line with those of Garcia-Franco et al. (2015) who 392 

found that the proportion of microaggregates, and its stability, within small macroaggregates 393 

increased after green manuring together with reduced tillage. The higher SOC concentration in 394 

both free and silt+clay-occluded SOC in microaggregates of PC olive orchards, relative to NPC, 395 

can be beneficial to long-term C sequestration because microaggregates have longer turnover 396 

times and higher stability than macroaggregates (Denef et al.,2007; Huang et al., 2010), 397 

indicating the potential of this management practice to promote SOC accrual and stabilization. 398 

SOC concentration of the silt+clay particles separated by wet sieving in soils covered by wild 399 

herbaceous plant community was on average 3.2 times higher than that of soils under NPC. This 400 

was not unexpected as it has been long recognised that the addition of organic matter to soils first 401 

results in the formation of SOC associations with clay and silt particles (Tisdall and Oades, 402 

1982). 403 

More recently, Stewart et al. (2009) found that chemically protected SOC comprised an 404 

average of 27% of total residue-C stabilized in the soil after addition of wheat residues during 405 

2.5 years in a lab controlled experiment. The surfaces of clay particles are usually strongly 406 

negatively charged, especially when soil pH is basic as was the case in our studied soils (Barré et 407 

al, 2014). As the microbial community processes OC molecules, some of the by-products they 408 

produce have strong positive charges. When these molecules make contact with clay particles, 409 

they can form strong bonds, effectively protecting the molecules from microbial attack. This 410 

form of chemical protection is highly effective and helps to explain why higher SOC and clay 411 



content are correlated worldwide (Jobbagy and Jackson, 2000; Six et al., 2002).  412 

 413 

4.3 Protected SOC was not saturated within the range of SOC measured 414 

In this study, it was assumed that SOC concentration is a proxy for soil C input. Stewart et al. 415 

(2008) showed mathematically the relationship between the SOC concentrations of individual 416 

soil fractions and total SOC concentration, allowing C saturation to be expressed as a function of 417 

SOC concentration rather than soil C input. Nevertheless, we acknowledge the limitations to this 418 

analysis imposed by using soils from different environments, which will vary in their 419 

approximation of steady-state conditions. 420 

Under this assumption, a linear relationship between whole SOC concentration and SOC 421 

fraction concentration indicates the lack of C saturation behaviour, whereas fractions exhibiting 422 

either an asymptotic relationship are influenced by C saturation. 423 

Across the range of whole SOC concentration that was considered in this study (5.6 to 47.7 424 

mg C g
-1

), the linear behaviour of the unprotected pool for the combined site data (r
2
 = 0.87, p < 425 

0.05, N = 90) did not support the hypothesis of C saturation of this pool. This result is in line 426 

with those of Stewart et al. (2008), who found that in all soils of eight long-term agroecosystems 427 

experiments and adjacent grassland or forest analysed, the coarse non-protected SOC (cPOM) 428 

was best fitted using a linear relationship. The relationship between total SOC and concentration 429 

of physically protected pool from microbial attack was similarly fitted to a linear and to 430 

saturation curves for the whole set of plots (r
2
 = 0.78 and 0.77, p < 0.05, N = 90 for the linear 431 

and saturation curves, respectively). In addition, regression coefficients of the linear and 432 

saturation curves fitted between the concentration of SOC in the silt+clay soil particles 433 

(chemically protected SOC) and whole SOC were indistinguishable (r
2
 = 0.63 and 0.61, p < 0.05, 434 

N = 90 for the linear and saturation curves, respectively). These results do not agree with other 435 

findings. It has been theorised that the relationship between inputs of OC and concentration of 436 



physically and chemically protected SOC should be of saturation type (Stewart et al., 2008). The 437 

content of silt+clay particles and the potential for macro and microaggregates formation in a 438 

given soil are limited and, thus, the amount of protected SOC throughout these mechanisms 439 

should be finite (Six et al, 2002). Stewart et al. (2007) found that when the protective capacity of 440 

the soil had been exceeded, further OC additions are not stabilized by these protective 441 

mechanisms. Thus, SOC accumulated in the fine and intermediate fractions and relationship 442 

between concentration of the physically and chemically protected SOC fractions and total SOC 443 

are of saturation type. The fact that in our study, the physically and chemically protected SOC 444 

did not show saturation, could be likely due to the relatively low range of total SOC of our study 445 

compared to that of Stewart et al. (2007) (i.e., 5.1 to 96.1 mg C g
-1

). Indeed, in the long-term 446 

agroecosystem experiments of these authors, the number of fractions fitting the C saturation 447 

model within each site was directly related to maximum SOC content. Thus, SOC saturation in 448 

these fractions might does occur but that it is not always seen in agricultural field experiments 449 

since the range of OC input levels use to be too small for the saturation tendency to be showed. 450 

SOC concentration of the biochemically protected fraction was not related to total SOC. This 451 

result contrasts to Stewart et al. (2007) who showed that biochemically protected SOC showed 452 

either a linear or saturation curves. Biochemical protection is acquired through condensation and 453 

complexation reactions or through the inherent complex biochemical nature of the organic 454 

material (Six et al., 2002), processes which might differ widely among other sites, explaining the 455 

lack of relationship in the present study. 456 

 457 

Conclusions 458 

Plant cover in olive orchards was a significant annual source (averaging 0.56 t C ha
-1

 yr
-1

) of 459 

OC which might substantially contribute to the transference of atmospheric C into the soil. 460 

Indeed, SOC in olive oil orchards after the implementation of plant cover doubled with respect to 461 



the usual bare soil management. Most of the SOC gain achieved under plant cover was protected 462 

(physically, chemically or biochemically) from microbial activity, and thus contributed to long 463 

term SOC sequestration. Therefore, at regional scale, where olive groves represent a very high 464 

proportion of the agricultural land, the use of plant cover is a promising practice that promotes C 465 

sequestration. 466 

For the range of annual OC inputs under a plant cover, and for the total SOC of the commercial 467 

olive grove studied, linear or saturation type relationships between total SOC and physically and 468 

chemically protected SOC were indistinguishable. While these results do not invalidate the SOC 469 

saturation hypothesis, they indicate that models designed to predict SOC sequestration by 470 

assuming linearity between annual OC inputs and SOC at steady stay can be applied in olive 471 

orchards under a plant cover management. 472 
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Table 1.Annual aboveground net production of plant cover and main soil characteristics (organic matter, cation exchange capacity, total 

nitrogen, Olsen phosphorous, available potassium, sand, silt + clay, bulk density and texture) of olive oil orchardswith plant cover (PC) and with 

no plant cover (NPC) located at Cambil (CA1 and CA2), Cortijo Tobazo (CT), Moraleda (MO), Loja (LO), Deifontes (DE1 and DE2), Pegalajar 

(PE), Jaén (JA) and Alcaudete (AL).Values show the mean ± standard deviation. Different lowercase letters indicate significant differences 

among samples into the same location at the p < 0.05 level. 

 

Sites 
Managemen

t 

Depth 

(cm) 

Aboveground 

plant cover 

productivity 

(t dry-weight 

ha
-1

) 

OM (%) 

CEC 

(cmol Kg
-

1
) 

TN (%) 
Olsen P 

(g kg
-1

) 

Available K 

(g kg
-1

) 
Sand (%) 

Silt+clay 

(%) 

BD (Mg 

m
-3

) 

Soil 

Texture 

CA1 PC 0 -5 1.10±0.37 4.30±0.5a 19.0±0.5a 0.23±0.02a 42.3±9.5a 722±67a 30.9±1.3a 69.0±0.9a 1.19±0.00d 
loam 

clay 

CA1 PC 5-15 
 

2.47±0.4b 17.8±1.5a 0.13±0.01b 15.5±3.2b 517±4b 26.1±1.7 73.8±1.2a 1.26±0.02c 
loam 

clay 

CA1 NPC 0 -5 - 1.10±0.3c 10.4±0.9b 0.06±0.01c 7.1±0.4b 220±42c 32.5  1.36±0.01b clay 

CA1 NPC 5-15 
 

1.08±0.3c 10.7±0.4b 0.06±0.02c 6.0±1.0b 254±22c -  1.41±0.06a clay 

CA2 PC 0 -5 0.89±0.44 5.35±1.98a 23.4±4.9a 0.25±0.07a 28.8±11.0a 720±339a 34.4±8.1a 65.5±8.1b 1.17±0.05c clay 

CA2 PC 5-15 
 

2.77±1.35ab 22.9±9.1a 0.14±0.05ab 7.6±2.33b 358±244a 21.2±0.0b 78.8±0.0a 1.27±0.05b clay 

CA2 NPC 0 -5 - 2.17±0.18ab 20.8±1.5a 0.13±0.01b 17.3±2.0ab 455±92a 21.5±1.4b 78.5±1.0a 1.34±0.04a clay 

CA2 NPC 5-15 
 

1.92±0.11b 20.0±2.8a 0.11±0.00b 9.9±2.3b 322±117a 21.8±0.9b 78.1±0.6a 1.35±0.02a clay 

CT PC 0 -5 0.65±0.15 6.42±0.80a 18.7±0.3a 0.30±0.01a 11.7±0.2a 580±99a 40.7±4.6a 59.2±3.2a 1.13±0.01c 
loam 

clay 

CT PC 5-15 
 

3.00±0.20b 17.3±0.3a 0.13±0.01b 4.6±0.0c 490±21a 33.7±1.7a 66.2±1.2a 1.22±0.02b clay 

CT NPC 0 -5 - 1.87±0.50bc 11.6±0.5b 0.10±0.01b 8.5±0.9b 275±13b 40.4±0.0a 59.6±0.0a 1.47±0.04a loam 

CT NPC 5-15 
 

1.33±0.10c 11.4±0.8b 0.07±0.01c 4.5±0.6c 270±21b 40.2±4.3a 59.7±3.0a 1.48±0.03a 
loam 

clay 

MO PC 0 -5 1.50±0.41 3.78±0.70a 14.1±0.2a 0.21±0.04a 30.6±1.1b 371±22a 43.9±0.8a 56.1±0.6b 1.18±0.01b loam 

MO PC 5-15 
 

1.59±0.10b 12.1±0.2b 0.10±0.01b 15.3±2.4c 305±57ab 39.8±0.7b 60.2±0.5a 1.37±0.02a loam 

Tables
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MO NPC 0 -5 - 1.14±0.18b 7.0±0.9c 0.07±0.01b 56.2±0.4a 192±47b 39.4±1.7b 60.6±1.2a 1.35±0.02a loam 

MO NPC 5-15 
 

1.05±0.08b 7.0±0.3c 0.06±0.01b 40.2±8.3b 204±37b 42.8±0.6a 57.2±0.4b 1.36±0.01a loam 

DE1 PC 0 -5 1.07±0.16 7.62±1.20a 17.3±2.6a 0.33±0.04a 26.5±3.1a 364±3a 57.2±3.5a 42.8±2.5b 1.27±0.09b 
loamy 

sand 

DE1 PC 5-15 
 

3.25±0.10b 20.1±0.1a 0.15±0.01b 7.4±0.1b 235±57a 44.1±1.7b 55.8±1.2a 1.30±0.02b loam 

DE1 NPC 0 -5 - 6.20±0.21b 19.8±0.3a 0.31±0.01a 30.5±0.8a 531±16a 43.8±1.8b 56.3±1.8a 1.36±0.01a loam 

DE1 NPC 5-15 
 

4.79±2.50b 18.6±2.0a 0.24±0.11ab 21.8±17.3ab 408±223a 46.3±1.2b 53.8±1.2a 1.36±0.01a loam 

LO PC 0 -5 1.95±0.15 1.72±0.10a 15.4±0.9a 0.10±0.01a 30.3±6.4a 355±71a 28.1±2.7a 71.9±1.9a 1.38±0.03b 
loam 

clay 

LO PC 5-15  1.29±0.07b 15.1±0.5a 0.08±0.00a 26.9±5.1a 284±30a 25.9±0.4a 74.1±0.3a 1.43±0.03a 
loam 

clay 

DE2 PC 0 -5 2.04±0.49 2.57±0.20a 16.6±0.5a 0.13±0.01a 46.4±10.5a 337±54a 40.7±2.8a 59.3±2.8a 1.17±0.01a loam 

DE2 PC 5-15 
 

2.31±0.17a 17.2±2.8a 0.14±0.03a 8.7±0.9b 103±4b 38.2±2.8a 61.8±2.8a 1.18±0.02a loam 

PE PC 0 -5 1.83±0.49 3.34±0.30a 30.8±2.5a 0.19±0.02a 26.9±1.3a 630±127a 23.7±5.3a 76.0±3.7a 1.26±0.01b clay 

PE PC 5-15 
 

2.56±0.40a 31.3±4.6a 0.14±0.01a 15.15±2.2b 398±11a 19.6±0.6a 80.0±0.4a 1.30±0.01a clay 

JA PC 0 -5 2.53±1.30 2.62±1.30a 26.0±0.8a 0.14±0.06a 16.8±2.1a 415±28a 17.5±3.5a 82.2±2.5a 1.28±0.01b clay 

JA PC 5-15 
 

1.19±0.10a 24.0±0.2a 0.08±0.00a 7.6±0.2b 378±39a 12.7±0.3a 87.3±0.2a 1.34±0.01a clay 

AL PC 0 -5 1.21±0.57 1.80±0.09a 23.7±0.6a 0.10±0.01a 12.1±0.8a 308±4a 28.7±7.0a 71.3±5.0a 1.26±0.03b clay 

AL PC 5-15 
 

1.31±0.16b 25.7±2.3a 0.08±0.01a 8.0±2.0a 283±88a 17.9±2.5a 82.0±1.7a 1.35±0.03a clay 

 

 

 

 

 

 

 

 

 

 



Table 2.Main features of the soil organic carbon fractions determined in the PC and NPC olive oil orchards. The fractionation method used was 

that of Six et al. (1998). 

 

 

Fraction 

 

 

Denomination 

 

 

Particle size 

 

 

Origin 

 

 

Type of protection 

 

 

Description 

 

cPOM Coarse non-protected 

POM  

> 250 m Physical fractionation of the first fractionation 

step procedure 

Unprotected Mainly compromised of plant 

residues. but also including seeds 

and microbial debris. such as fungal 

hyphae. Some presence of charcoal. 

A mixture of compounds caused by 

a regenerating plant residues pool 

and partial microbial 

decomposition.Typically high C/N 

ratio and lignin and with low net N 

mineralization potential. 

LF Fine non-protected 

POM  

53 – 250 m Floating supernatant of the density flotation of 

the microaggregated fraction 

Unprotected 

aggregate Microaggregate 53 – 250 m Physical fractionation of the first fractionation 

step procedure 

Physically protected Physical protection exerted by macro 

or microaggregates attributed mainly 

to (1) compartmentalization of 

substrate and microbial biomass and 

(2) reduced oxygen diffusion into 

microaggregates. 

dSilt+clay Easily dispersed silt 

plus clay 

< 53 m Physical fractionation of the first fractionation 

step procedure 

Chemically 

protected 

C associated with primary 

organomineral complexes linked to 

silt plus clay sized particles. 

iPOM Microaggregate-

protected POM 

 53 – 250 m  Heavy fraction greater than 53 m of the 53 – 

250 m fraction 

Physically protected POM within microaggregates. 

Silt+Clay Microaggregated-

derived Silt+Clay 

< 53 m Heavy fraction smaller than 53 m of the 53 – 

250 m fraction. 

Physically protected C associated with primary 

organomineral complexes linked to 

silt plus clay sized particles within 

microaggregates. 



dSilt+Clay Non-hydrolisable 

fraction of the easily 

dispersed silt plus clay 

< 53 m HCl digestion of the < 53 m fraction isolated 

during the physical fractionation of the first 

fractionation step procedure 

Biochemically 

protected 

C chemically recalcitrant in the <53 

m fraction.* 

dSilt+Clay Hydrolisable fraction 

of the easily dispersed 

silt plus clay 

< 53 m Hydrolisable fraction of the < 53 m fraction 

isolated during the physical fractionation of the 

first fractionation step procedure. determined as 

the difference between the total organic C 

content of the < 53 m fraction and the NH-

dSilt+clay fraction. 

Chemically 

protected 

C associated with primary 

organomineral complexes linked to 

silt plus clay sized particles in the 

<53m fraction. 

Silt+Clay Non-hydrolisable 

fraction of the 

microaggregate-

derived Silt+Clay 

< 53 m HCl digestion of the heavy fraction smaller 

than 53 m of the 53 – 250 m fraction. 

Physically protected C chemically recalcitrant within 

microaggregates* 

Silt+Clay Hydrolisable fraction 

of the microaggregate-

derived Silt+Clay 

< 53 m Hydrolisable fraction of the heavy fraction < 53 

m of the 53 – 250 mm fraction.  

Physically protected C associated with primary 

organomineral complexes linked to 

silt plus clay sized particles within 

microaggregates. 

* Biochemically 

protected C pool 

   Occurs due to the complex chemical 

composition of the organic matter 

which is an inherent property of the 

plant residue quality which can be 

attained during decomposition 

through the condensation and 

complexation of decomposition 

residues. Biochemical resistance to 

decomposition. 

 

 

 



Table 3. Values of total soil organic carbon (SOC) in soils and the amount of organic carbon in the unprotected, and physically, chemically and 

biochemically protected fractions (mg C g
-1

) and their contribution (%) to the whole total soil organic carbion in soils with (PC) and without 

(NPC) plant cover in Cambil (CA1 and CA2), Cortijo Tobazo (CT), Moraleda (MO), Loja (LO), Deifontes (DEI1 and DEI2), Pegalajar (PE), 

Jaén (JA) and Alcaudete (AL). Values show the mean ± standard deviation. Significant differences between treatments and depths are shown in 

figures 2. 4 and 5. 

 

 

 

Site 
Management 

 

Depth 

(cm) 

Total SOC 

(mg C g
-1

)
 

Unprotected Unprotected 
Physically 

Protected 

Physically 

Protected C 

Chemically 

Protected 

Chemically 

Protected C 

Biochemically 

Protected 

Biochemically 

Protected C 

(mg C g
-1

) (%) (mg Cg
-1

) (%) (mg Cg
-1

) (%) (mg Cg
-1

) (%) 

CA1 PC 0 -5 33.3±1.1 8.4±0.6 25.3 ±2.4 7.2±0.9 21.7 ±2.0 13.2±0.6 39.6±0.7 4.5±0.3 13.4±1.1 

CA1 PC 5-15 21.3±1.4 2.5±0.0 11.9±0.9 4.7±0.6 22.2 ±2.2 10.4±0.9 48.7±1.5 3.7±0.4 17.1±1.2 

CA1C NPC 0 -5 12.9±0.5 4.4±1.9 34.2±13.6 1.8±0.6 13.7±4.3 4.7±1.8 37.2±15.4 1.9±0.05 14.8±0.9 

CA1C NPC 5-15 10.5±3.6 2.3±1.5 20.8±7.6 1.3±0.5 14.1±7.4 5.3±2.9 49.0±9.6 1.5±0.4 16.2±8.4 

CA2 PC 0 -5 35.2±8.1 8.6±2.5 24.5±4.6 3.5±2.0 10.5±6.2 16.8±5.2 47.1±4.3 6.4±1.7 17.9±1.0 

CA2 PC 5-15 21.2±5.6 3.5±0.9 16.6±1.3 2.2±1.0 10.5±3.5 10.6±2.7 50.2±3.1 4.9±1.5 22.8±2.2 

CA2C NPC 0 -5 14.8±3.5 2.1±0.1 14.8±2.9 3.8±1.1 25.1±1.4 5.7±2.2 37.6±5.3 3.2±0.2 22.5±3.8 

CA2C NPC 5-15 13.3±1.3 1.3±0.4 9.8±2.3 3.0±0.5 23.1±5.5 5.6±1.0 41.6±4.7 3.4±0.4 25.6±1.4 

CT PC 0 -5 44.8±2.5 25.7±2.6 57.3±3.7 7.3±2.1 16.4±5.4 11.2±2.5 24.9±4.3 0.6±0.2 1.4±0.4 

CT PC 5-15 27.0±2.8 12.3±3.0 45.6±9.1 3.5±0.6 13.2±2.6 8.0±2.6 29.3±8.1 3.2±0.2 11.9±1.8 

CTC NPC 0 -5 7.2±1.4 2.3±0.7 32.6±4.9 1.3±0.5 17.3±3.9 2.0±0.6 27.5±3.9 1.5±0.3 22.7±9.5 

CTC NPC 5-15 7.0±1.3 1.8±0.5 25.7±2.8 1.5±0.6 21.6±6.9 0.6±1.0 9.9±16.8 3.0±1.5 42.8±20.0 

MO PC 0 -5 34.6±1.8 14.0±0.4 40.8±2.8 9.0±2.1 26.2±6.3 7.01±1.5 20.3±4.4 4.5±4.0 12.7±10.9 

MO PC 5-15 12.1±1.3 2.9±0.8 23.5±4.8 3.6±0.4 29.7±0.9 0.6±0.1 5.1±0.9 5.0±0.6 41.8±5.2 

MOC NPC 0 -5 13.1±0.8 3.8±0.2 29.4±3.3 4.0±1.1 30.7±9.2 2.5±0.5 19.0±5.0 2.8±0.5 21.5±2.4 

MOC NPC 5-15 12.6±0.4 3.4±0.7 27.0±6.7 2.7±0.4 21.7±3.5 2.6±0.4 20.4±2.8 3.9±0.3 30.9±1.5 

DE1 PC 0 -5 21.7±8.8 7.3±3.8 30.5±12.1 5.2±1.7 26.0±9.3 6.2±2.3 29.5±4.8 3.0±1.0 14.0±1.6 



DE1 PC 5-15 17.2±1.7 3.8±0.4 22.3±4.7 3.1±1.2 18.3±7.5 6.1±2.3 34.9±9.7 4.2±0.6 24.6±1.8 

DE1C NPC 0 -5 13.3±1.5 3.5±2.0 25.8±12.1 5.7±1.5 43.3±13.7 2.9±0.7 21.9±4.7 1.2±0.2 9.1±0.8 

DE1C NPC 5-15 7.3±0.4 1.6±0.2 22.7±2.3 1.6±0.1 22.1±0.8 2.7±0.2 33.5±0.7 1.6±0.3 21.8±3.5 

LO PC 0 -5 11.5±1.8 2.0±1.1 17.4±7.1 1.8±1.1 15.5±6.9 1.6±0.3 14.4±4.2 6.0±0.7 52.8±10.0 

LO PC 5-15 8.7±1.4 0.8±0.4 8.8±3.9 1.2±0.3 13.9±2.4 4.2±1.3 47.1±8.4 2.6±0.5 30.3±9.8 

DE2 PC 0 -5 34.5±2.6 16.1±2.5 46.4±3.6 8.5±1.8 24.8±5.1 6.5±1.3 19.1±4.3 3.3±0.3 9.8±1.2 

DE2 PC 5-15 34.3±3.7 15.8±3.7 45.9±5.9 8.6±1.9 25.3±6.3 7.3±2.7 21.2±8.2 2.6±0.5 7.6±1.8 

PE PC 0 -5 21.8±0.7 11.5±0.8 52.6±4.9 2.7±1.9 12.6±8.7 4.9±0.4 22.5±2.2 2.7±0.4 12.3±2.0 

PE PC 5-15 17.3±0.7 9.8±2.4 56.3±11.5 2.0±0.1 11.6±0.8 3.3±1.3 19.5±8.0 2.2±0.6 12.7±4.7 

JA PC 0 -5 19.5±0.5 3.2±0.2 16.6±0.6 1.7±0.7 8.7±3.5 12.6±0.9 64.6±3.4 1.9±0.4 10.1±2.4 

JA PC 5-15 14.1±0.7 1.0±0.2 6.8±1.3 1.4±0.3 10.0±2.3 10.2±0.9 72.0±4.5 1.6±0.1 11.3±0.9 

AL PC 0 -5 21.6±3.1 3.9±1.4 18.8±9.0 4.8±0.8 22.4±1.5 9.8±3.1 44.9±7.8 3.0±0.7 14.0±1.4 

AL PC 5-15 13.8±2.4 0.9±0.3 6.8±2.3 2.1±0.5 15.1±0.8 7.0±1.8 50.6±3.8 3.8±0.3 27.6±3.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4. Regression coefficients for linear and saturation curves between soil organic carbon concentration in the fractions (mg C g
-1

 fraction) 

and whole SOC (mg C g
-1

). NA stands for no significant (p < 0.05) regression coefficient. For each of the fraction there was not statistical 

differences between the values predicted by linear and saturation models. 

 

Fraction Adjustment  

Unprotected 
Linear R

2
 = 0.87 

Saturation R
2
 = 0.80 

Physically protected 
Linear R

2
 = 0.78 

Saturation R
2
 = 0.77 

Chemically protected 
Linear R

2
 = 0.63 

Saturation R
2
 = 0.61 

Biochemically protected 
Linear R

2
 = NA (R

2
 = 0.0031) 

Saturation R
2
 = NA (R

2
 = 0.0002) 
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Figure captions 
 
Figure 1. Frequency distribution of the annual production of aboveground biomass 

(a) and organic carbon (b) in the PC olive oil orchards. 

 

Figure 2. Box-plot representation of whole SOC and unprotected, and physically, 

chemically and biochemically protected organic carbon of soils of 0 – 5 and 5 – 15 

cm soils depth of PC olive oil farms. Boundaries of the boxes closest to, and furthest 

from zero indicate the 25th and 75th percentiles, respectively. The thin lines within 

the box mark the average. Bars above and below the box indicate the 90th and 10th 

percentiles, respectively. Outliers are represented as black dots. Average values with 

the same letter indicate no significant differences between depths (p < 0.05). 

 

Figure 3. Box-plot representation of soil organic carbon concentration (mg C g
-1

 

fraction) in the unprotected, and physically, chemically and biochemically protected 

organic carbon fractions of soils (0 – 5 and 5 –15 cm) of PC olive oil farms. 

Boundaries of the boxes closest to, and furthest from zero indicate the 25th and 75th 

percentiles, respectively. The thin lines within the box mark the average. Bars above 

and below the box indicate the 90th and 10th percentiles, respectively. Outliers are 

represented as black dots. Average values with the same letter indicate no significant 

differences between depths (p < 0.05). 

 

Figure 4. Percentage contribution (on average) of soil organic carbon fractions to the 

whole SOC of soils (0 – 5 and 5 –15 cm) of PC olive oil farms. Average values with 

the same letter indicate no significant differences between management types (p < 

0.05). 
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Figure 5. Box-plot representation of whole SOC and in the unprotected, and 

physically, chemically and biochemically protected organic carbon fractions of soils 0 

– 5 cm (a) and 5 – 15 cm (b) of PC and comparable NPC olive oil farms. Boundaries 

of the boxes closest to, and furthest from zero indicate the 25th and 75th percentiles, 

respectively. The thin lines within the box mark the average. Bars above and below 

the box indicate the 90th and 10th percentiles, respectively. Outliers are represented 

as black dots. Average values with the same letter indicate no significant differences 

between management types (p < 0.05). 

 

Figure 6. Box-plot representation of soil organic carbon concentration (mg C g
-1

 

fraction) in the unprotected, and physically, chemically and biochemically protected 

organic carbon fractions of soils of 0 – 5 cm (a) and 5 – 15 cm (b)of PC and 

comparable NPC olive oil farms. Boundaries of the boxes closest to, and furthest from 

zero indicate the 25th and 75th percentiles, respectively. The thin lines within the box 

mark the average. Bars above and below the box indicate the 90th and 10th 

percentiles, respectively. Outliers are represented as black dots. Average values with 

the same letter indicate no significant differences between management types (p < 

0.05). 

 

Figure 7. Relationship between whole SOC (mg C g
-1

 soil) and soil organic carbon 

concentration (mg C g
-1

 fraction) of the (a) unprotected, and (b) physically, (c) 

chemically and (d) biochemically protected organic carbon fractions of top 5 cm (full 

circle) and 5 – 15 cm (empty circle) of soils of the PC olive oil farms, and 0 – 5 and 5 

– 15 cm soils of NPC farms. Linear and saturation functions and R
2
 coefficients are 



included for each soil organic carbon fraction. All regressions are significant at p < 

0.05 except those of the biochemically protected pool. 


