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Abstract 

Background: Quattrocki and Friston (2012) argued that abnormalities in interoception–the 

process of representing one’s internal physiological states–could lie at the heart of autism, 

because of the critical role interoception plays in the ontogeny of social-affective processes. 

This proposal drew criticism from proponents of the alexithymia hypothesis, who argue that 

social-affective and underlying interoceptive impairments are not a feature of autism per se, 

but of alexithymia (a condition characterised by difficulties describing and identifying one's 

own emotions), which commonly co-occurs with autism. Despite the importance of this 

debate for our understanding of ASD, and of the role of interoceptive impairments in 

psychopathology more generally, direct empirical evidence is scarce and inconsistent. 

Methods: Experiment 1 examined in a sample of 137 neurotypical individuals the association 

among autistic traits, alexithymia, and interoceptive accuracy on a standard heartbeat tracking 

measure of interoceptive accuracy. In Experiment 2, interoceptive accuracy was assessed in 

46 adults with ASD (27 of whom had clinically-significant alexithymia) and 48 neurotypical 

adults.   

Results: Experiment 1 confirmed strong associations between autistic traits and alexithymia, 

but yielded no evidence to suggest that either was associated with interoceptive difficulties. 

Similarly, Experiment 2 provided no evidence for interoceptive impairments in autistic 

adults, irrespective of any co-occurring alexithymia. Bayesian analyses consistently 

supported the null hypothesis. 

Conclusions: The observations pose a significant challenge to notions that interoceptive 

impairments constitute a core feature of either ASD or alexithymia, at least as far as the direct 

perception of interoceptive signals is concerned.   
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General scientific summary:  This article suggests that impairments in interoception–the 

process of representing one’s internal physiological states–do not lie at the heart of either 

autism or alexithymia.    
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Introduction 

Interoception refers to the representation of one’s internal physiological states, such as 

breathing, hunger, thirst, and heart rate (Craig, 2003). Recently, studies have linked 

interoceptive accuracy (i.e., the extent to which one can detect interoceptive signals 

accurately) to a number of important psychological functions, such as emotion-processing 

(Barrett, Quigley, Bliss-Moreau, & Aronson, 2004; Shah, Catmur, & Bird, 2016; Zaki, Davis 

& Ochsner, 2012), empathy (Fukushima, Terasawa, & Umeda, 2011), theory of mind 

(Demers & Koven, 2015; Shah, Catmur, & Bird, 2017), and self-awareness (Seth, 2013). 

These associations support theories that suggest cognition is “embodied” (Gallese & 

Sinigaglia, 2011; Glenberg, 2010; Goldman & de Vignemont, 2009), and imply that 

interoception impairments might play a critical role in psychological disorders. Indeed, 

impairments in interoception have been implicated recently in increasingly prominent 

theories of one developmental disorder, in particular, namely autism spectrum disorder 

(ASD; Quattrocki & Friston, 2014).  

ASD is a neurodevelopmental disorder diagnosed on the basis of behavioural 

impairments in social-communication and behavioural flexibility (American Psychiatric 

Association (APA); 2013). At the cognitive level, difficulties with theory of mind (Yirmiya, 

Erel, Shaked, & Solomonica-Levi, 1998), emotion-processing (Gaigg, 2012), and 

psychological aspects of self-awareness (Williams, 2010) are well-established among people 

with ASD. Moreover, approximately 50% of autistic individuals have clinically significant 

levels of alexithymia (Berthoz & Hill, 2005; Hill, Berthoz, & Frith, 2004; Joukamaa et al., 

2007; Milosavljevic et al., 2016) - a condition characterised by difficulties with representing, 

understanding, and describing one’s own emotional states (Taylor, 1984). This collection of 

impairments led Quattrocki and Friston (2014) to suggest that impairments in interoception, 

due to a dysfunctional oxytocin system, may be the root cause of autism. Oxytocin is a 
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hormone and neurotransmitter that plays a significant role in regulating social-affiliative 

behaviours.  Quattrocki and Friston (2014) argue that a dysfunctional oxytocin system could 

lead to abnormalities in the production and modulation of interoceptive signals, and their 

integration with exteroceptive information about the environment. As a result, autistic 

children develop impoverished internal models of emotional states (i.e., alexithymia) and the 

self, more generally, whilst external social-emotional signals hold less salience and therefore 

lead to the specifically characteristic social-affective impairments of the disorder. A crucial 

prediction that follows from this view is that interoceptive accuracy should be associated with 

the number of ASD traits manifested by a person and also be reliably impaired among people 

with a diagnosis of ASD (Hypothesis 1). 

In contrast, others have argued that self-awareness difficulties in ASD should be 

restricted to awareness of one’s own cognitive and emotional states (i.e., the psychological 

Self), leaving basic detection of one’s own physiological states (i.e., the physical Self) 

essentially unimpaired (Lind, 2010; Uddin, 2011; Williams, 2010). This view is derived from 

observations of a preserved sense of agency (Schauder, Mash, Bryant, & Cascio, 2015; 

Cascio, et al., 2012; Paton, Hohwy, & Enticott, 2012) and preserved self-recognition 

(Dawson & McKissick, 1984; Ferrari & Matthews, 1983; Lind & Bowler, 2009) in ASD. 

This account, therefore, leads to the prediction that interoceptive accuracy should not be 

associated with ASD traits or impaired in people with a full diagnosis of ASD (Hypothesis 2).  

Distinct from the two views above is the more recent idea that many of the social-

affective difficulties experienced by people with ASD are, in fact, the result of co-occurring 

alexithymia, rather than the result of ASD itself (Bird & Cook, 2013; Cook, Brewer, Shah, & 

Bird, 2013; Bird et al., 2010; Oakley, Brewer, Bird & Catmur, 2016). According to this 

‘alexithymia hypothesis’, difficulties with emotion-processing and empathy are only apparent 

in people with ASD who also have high levels of alexithymia (or comorbid alexithymia). 
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Most important, unlike Quattrocki and Friston (2014) who view interoceptive abnormalities 

as central to the aetiology of ASD, the alexithymia hypothesis considers interoceptive 

abnormalities central to the aetiology of alexithymia (Shah, Hall, Catmur, & Bird, 2016; 

Hatfield, Brown, Giummarra & Leggenhager, 2017; Herbert, Herbert, & Pollatos, 2011; 

Brewer, Happé, Cook, & Bird, 2015). This leads to the prediction that interoceptive accuracy 

should be associated with the level of alexithymia, rather than the number of ASD traits, 

manifested by a person and that it should be significantly impaired only among people with 

ASD who manifest clinically significant levels of alexithymia (Hypothesis 3).  

Although distinguishing the three competing predictions above is of central 

importance to our understanding of the defining features of ASD, only four studies have 

assessed interoceptive accuracy in this population and the results are highly inconclusive. In 

line with Hypothesis 1, Garfinkel and colleagues (Garfinkel et al., 2016) found reduced 

accuracy among 20 adults with ASD on a classic heartbeat tracking task that required 

participants to keep count of their heartbeats without physically taking their own pulse. 

Likewise, Palser et al. (2018) found reduced interoceptive accuracy on the heartbeat tracking 

task in 30 autistic children.  In contrast, Schauder et al. (2015) observed no impairments on 

the same heartbeat tracking task in a group of 21 autistic children. In keeping with 

Hypothesis 2, this study furthermore found that heart beat tracking accuracy was correlated 

with a test of bodily awareness on which children with autism were also unimpaired, thus 

confirming a putative link between preserved interoception and a preserved awareness of the 

physical self in ASD. Finally, Gaigg, Cornell, and Bird (2016), using a physiological arousal 

tracking paradigm, and Shah et al., (2016), using the traditional heartbeat tracking task, 

obtained partial evidence for Hypothesis 3 by showing that interoceptive accuracy was 

unimpaired in adults with ASD who were matched to a comparison group on self-reported 

levels of alexithymia. This group matching ensured that levels of alexithymia were 
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experimentally controlled when examining interoceptive accuracy, leading the authors to 

suggest that interoceptive impairments would have been observed in ASD if groups had not 

been matched on alexithymia and that differences in findings across other studies (e.g., 

Garfinkel et al., 2016; Schauder et al., 2015) likely reflect differences across ASD samples in 

the prevalence of alexithymia. 

The evidence concerning interoception in ASD is not only difficult to interpret 

because of the inconsistencies across studies, but also because three of the five studies 

essentially argue for the null hypothesis (i.e., no difference between ASD and comparison 

groups) on the basis of very small samples. Moreover, in the studies of Gaigg et al. (2016) 

and Shah et al. (2016), the group matching strategy meant that the majority of individuals 

scored in the sub-clinical range for alexithymia, rendering the ASD groups non-representative 

of the wider autism spectrum where an estimated 50% of individuals manifest alexithymia 

(Berthoz & Hill, 2005). In other words, the central claim of the alexithymia hypothesis–that 

interoceptive impairments would be observed in individuals with ASD who have clinically 

significant levels of alexithymia– remains untested. To test this prediction and contrast it 

effectively with the alternative predictions outlined above, it is necessary to compare 

interoceptive accuracy among individuals with ASD who report clinically significant 

alexithymia (ASD-high alexithymia) with interoceptive accuracy among matched individuals 

with ASD who report sub-clinical levels of alexithymia (ASD-low alexithymia). If 

Hypothesis 1 is correct, regardless of alexithymia level, individuals with ASD should show 

impaired interoception relative to an NT comparison group. In contrast, if Hypothesis 2 is 

correct, individuals with ASD should show unimpaired interoception, regardless of 

alexithymia level. Finally, if Hypothesis 3 is correct, then only ASD-high alexithymia 

individuals should manifest diminished interoceptive accuracy, with the ASD-low 

alexithymia individuals demonstrating equivalent interoceptive accuracy to the NT group. In 
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Experiment 2, we tested these predictions among 46 individuals with ASD and 48 NT 

participants. First, however, Experiment 1, examined the associations predicted by 

Hypothesis 1 and 3 among interoceptive accuracy, alexithymia, ASD traits, and theory of 

mind in 137 NT individuals.   

 

Experiment 1: Method 

Participants 

One hundred and thirty-seven students (114 female) from the University of Kent took part in 

Experiment 1. The average age of participants was 19.73 years (SD = 2.98; range = 18-23 

years). No participant had a history of ASD, according to self-report. All participants gave 

informed consent and received course credit in partial fulfilment of their degree, for taking 

part in the study. The experiment was approved by the School of Psychology Research Ethics 

Committee, University of Kent (Ethics ID: 201714870662234338). 

Materials and procedures 

Interoception was measured using a standard heartbeat tracking task (Schandry, 1981). In a 

quiet room, participants were asked to close their eyes and, without taking their pulse, silently 

count their heartbeat during four different time intervals (25, 35, 45 and 100 sec), which were 

presented in a randomised order. An auditory tone signalled the beginning and end of each 

time interval. A pulse oximeter (Contec Systems CMS-50D+; Qinhuangdao, China) attached 

to participants’ index finger measured their actual heart rate. Interoceptive Accuracy (IA) was 

calculated as: 1 – (│recorded number of heartbeats – counted number of 

heartbeats│)/((recorded heartbeats + counted number of heartbeats)/2), (Garfinkel et al., 

2015). This provided a value between -1 and 1 for each time interval, with more positive 

values indicating better IA
1
. It should be noted that the heartbeat tracking task has come 
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under recent scrutiny, with some claiming that the task is not always/necessarily a valid 

measure of interoception (see Brener & Ring, 2016 for a review). We consider this concern 

further in the Discussion section, below. Here, we note only that the heartbeat tracking task is 

(for better or worse) by far the most widely used measure of interoception in the literature, in 

part because of ease of administration and in part because monitoring one’s own heartbeat is 

fundamental to emotional experience. The task has good test-retest reliability (Mussgay, 

Klinkenberg & Rüddel (1999), is sensitive to individual differences (Christensen, Gaigg & 

Calvo-Merino, 2018; Dunn et al., 2010; Garfinkel et al., 2015) and is mediated by brain 

regions that are involved in awareness of one’s physiological states (Critchley et al., 2004; 

Pollatos et al., 2007). Nevertheless, to address some of the concerns that exist in relation to 

this task, we also present some additional analyses in Supplement 1 (see point 4 of the 

supplementary material, in particular). 

The 50-item Autism-spectrum Quotient (AQ; Baron-Cohen, Wheelwright, Skinner, 

Martin, & Clubley, 2001) was administered as a self-report measure of autistic traits, and the 

20-item Toronto Alexithymia Scale (TAS-20; Bagby, Parker, & Taylor, 1994) as a self-report 

measure of alexithymia. Each questionnaire requires participants to indicate to what extent a 

series of statements applies to them (e.g., AQ: “I find social situations easy”; TAS-20: “I 

have feelings that I can’t quite identify”), with scores on the AQ ranging from 0-50 (scores > 

26 are suggestive of a possible diagnosis of autism) and scores on the TAS-20 ranging from 

20-100 (scores > 60 indicate clinically significant alexithymia). In addition, participants 

completed the Reading the Mind in the Eyes (RMIE) task (Baron-Cohen, Wheelwright, Hill, 

Raste, & Plumb, 2001). This widely recognised measure of emotional theory of mind requires 

participants to decide which of four mental state terms (mostly emotional in nature) best 

describes the feelings conveyed by the eye-region of faces as portrayed in 36 unique 

photographs. Scores range from 0-36, with higher scores indicating better emotional theory of 
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mind. We included the RMIE task specifically because it differentiates groups of ASD 

participants from groups of neurotypical participants and because it taps those emotional 

aspects of ToM that are thought to be related to alexithymia (see Oakley et al, 2016). Given 

that recent studies have shown an association between interoceptive accuracy and emotional, 

but not non-emotional, aspects of mindreading (Shah et al., 2017), we included the RMIE to 

investigate the relation between emotional ToM and interoception.   

 

Statistical power and analysis 

An a priori power calculation using G*Power3 (Faul, Erdfelder, Buchner, & Lang, 2009) 

revealed that, to detect an association between interoceptive accuracy and TAS score of r = -

.37 (as found by Herbert et al., 2011, and Shah et al., 2016) on 80% of occasions using two-

tailed tests, 55 participants are required. A larger sample was recruited here to allow for the 

cross validation of the findings, by randomly splitting the total sample into two subsamples (n 

= 68 and 69, respectively), each with sufficient power (>.90) to detect a reliable association 

between TAS-20 score and interoceptive accuracy. Bayesian analyses were also conducted 

(using JASP 0.8.1; JASP Team, 2016) to provide a more graded interpretation of the data 

than is possible using p values or effect sizes alone (e.g., Dienes, 2014; Rouder et al., 2009). 

Bayes factors (BF10) > 3 provide firm evidence for the alternative hypothesis (with values > 

10, > 30, and >100 providing strong/very strong/decisive evidence) and values under 1 

provide evidence for the null (with values < 0.33 providing firm evidence; see Jeffreys, 

1961). 

 

Experiment 1: Results 
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Among the entire sample, the 137 participants scored a mean of 25.82 (SD = 3.97) on the 

RMIE task, 16.99 (SD = 6.66) on the AQ, and 50.82 (SD = 10.29) on the TAS. The mean 

interoceptive accuracy score on the heartbeat detection task was .50 (SD = .27). Crucially, 

there was no significant association between interoceptive accuracy and TAS total score, r = 

.008, p = .92, BF10 = 0.11, or between interoceptive accuracy and any of the other variables: 

(AQ total score: r = -.11, p = .22, BF10 = 0.22; RMIE: r = .03, p = .73, BF10 = 0.11). TAS 

total score was, however, associated significantly with both AQ total score, r = .42, p <.001, 

BF10 > 100, and RMIE, r = -.24, p = .005, BF10 = 5.16, whereas AQ total score and RMIE 

were not significantly associated in the current sample, r = .11, p = .21, BF10 = 0.24 (and note 

that the association between TAS and RMIE remained significant after controlling for AQ, rp 

= -.21, p = .01).
2
 Finally, Fisher’s Z tests revealed that the interoceptive accuracy × TAS 

correlation was significantly different from that reported by Herbert et al., (2011), Z = 3.35, p 

< .001, and Shah et al., (2016), Z = 2.03, p = .04. For ease of reference, this pattern of 

correlations is set out in Table 1 along with those for experiment 2. 

 

(INSERT TABLE 1 ABOUT HERE) 

 

 Although interoceptive accuracy and TAS were not significantly associated, it may be 

that interoceptive accuracy would nonetheless be significantly impaired among individuals 

with significant levels of alexithymia. To investigate this, the current sample was divided 

according to scores on the TAS. Those with scores above the cut-off were assigned to a “high 

alexithymia” group (n = 30) and those with scores below the cut-off to a “low alexithymia” 

group (n = 107). The average interoceptive accuracy score was .49 (SD = .28) among the low 

alexithymia group and .55 (SD = .26) among the high alexithymia group, a difference that 

was small and statistically non-significant, t(135) = 1.04, p = .30, d = 0.22, BF10 = 0.35. The 
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mean interoceptive accuracy score for each time interval on the heartbeat detection task 

among each alexithymia group is presented in Table 2. A 2 (Group: high alexithymia/low 

alexithymia) × 4 (Time interval: 25s/35s/45s/100s) ANOVA was conducted on this data. 

Results revealed non-significant main effects of time interval, F(3, 405) = 1.13, p = .34, 

𝜂𝑝
2 = .008, and group, F(1, 135) = 1.08, p = .30, 𝜂𝑝

2 = .008. Moreover, the Group × Time 

interval interaction effect was also non-significant, F(3, 405) = 1.65, p = .18, 𝜂𝑝
2 = .01. Thus, 

there were no significant differences between the high and low alexithymia groups in terms 

of either overall level or patterns of interoceptive accuracy on the heartbeat tracking task.    

 

Cross-validation of results. 

 We assessed the reliability of the current findings by randomly splitting our sample 

into two groups of n = 68 and 69 participants respectively and re-analysing the data in each 

sub-sample. The results are presented in full in Supplement 1. In summary, results were 

identical in each sub-sample and replicated the results observed in the full sample of 137.   

(INSERT TABLE 2 ABOUT HERE) 

Experiment 2: Method 

Participants 

Forty-six adults with ASD and 48 neurotypical comparison adults aged between 20 and 64 

years were recruited and tested either at City, University of London, or the University of 

Kent. Verbal, performance, and full-scale IQ scores were gained for all participants using 

either the Wechsler Abbreviated Scale for Intelligence-II (Wechsler, 1999) (n = 38), or the 

Wechsler Adult Scales of Intelligence (Wechsler, 2008) (n = 56). Participants in the ASD 

group had received verified diagnoses, according to conventional criteria (American 

Psychiatric Association, 2000; World Health Organisation, 1993). In addition, participants 
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with ASD completed the Autism Diagnostic Observation Schedule (ADOS; Lord et al., 

2000), a detailed observational assessment of ASD features. Participant groups were closely 

matched for age, sex, VIQ, PIQ and FSIQ, but differed significantly in AQ, TAS, and RMIE 

scores (see Table 3). All participants in the ASD group scored above the ASD cut-off score 

of 7 on the ADOS and/or 26 on the AQ. Ten of the 46 participants with ASD scored above 

the ASD cut-off on the AQ only (with ADOS scores of 6, 6, 6, 6, 5, 5, 5, 4, 3, 3, 

respectively). Importantly, none of the results reported in Experiment 2 changed 

substantively when these 10 participants with ASD were excluded from analyses (see 

supplemental material). 

 (INSERT TABLE 3 ABOUT HERE) 

Materials and procedures 

Participants from each group completed a version of the heartbeat tracking task used in 

Experiment 1. Thirty-eight (17 ASD, 21 NT) completed the heartbeat tracking task at 

location 1 (University of Kent), using identical materials and procedures as in Experiment 1. 

The remaining 56 participants completed the heartbeat tracking task at location 2 (City, 

University of London), using almost identical materials and procedures as in Experiment 1. 

The only difference was that, rather than sitting with their eyes closed and an auditory tone 

signalling the start and stop of each interval, participants saw a start/stop signal on a screen (a 

heart appeared along with the word ‘Go’ at the start, then the heart disappeared at the end and 

was replaced by ‘Stop’) followed by a screen that asked participants to enter their count using 

the keyboard. In addition, the hardware used to record heart beats was different and consisted 

of an ADInstruments© PowerLab unit (ML845) with a bioelectrical signal amplifier 

(ML408) that recorded the ECG signal through three shielded snap-connect electrodes placed 

on the participants chest and elbow (the reference electrode). LabChart 7 software was used 

to record the raw ECG signal at 1kHz and the data were processed offline to extract the heart 
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beat frequencies. A ‘Stop’ and ‘Go’ signal was superimposed on the ECG trace through a 

hardware link with the stimulus presentation computer. Importantly, there were no systematic 

differences in results across the two locations. 

 

Statistical power and analysis 

Given ambiguities in the methods and results of previous studies, we based our sample size 

on that required to detect a small-to-moderate overall group difference in interoceptive 

accuracy, given that it is arguable that any effect smaller than this is unlikely to be clinically 

significant (even if it is statistically significant). A sample of 94 participants provides 

sufficient power to detect a between-group difference of 0.50 if it exists. Crucially, Bayesian 

analyses were used to supplement null hypothesis significance testing. 

 

Experiment 2: Results 

The average interoceptive accuracy score was .57 (SD = .27) among the ASD group and .61 

(SD = .32) among the NT group, a difference that was statistically small and non-significant, 

t(92) = 0.63, p = .53, d = 0.13, BF10 = 0.26. The mean interoceptive accuracy score for each 

time interval on the heartbeat detection task in each diagnostic group is shown in Figure 1. A 

2 (Group: ASD/NT) × 4 (Time interval: 25s/35s/45s/100s) ANOVA was conducted on this 

data. Neither the main effect of group, F(1, 92) = 0.39, p = .53, 𝜂𝑝
2 = .004, nor the Group × 

Time interval interaction effect, F(3, 405) = 1.65, p = .18, 𝜂𝑝
2 = .01, was significant. Thus, 

there were no significant differences between the ASD and comparison groups in terms of 

either overall level of interoceptive accuracy or patterns of interoceptive accuracy across the 

four time intervals.   
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Out of 46 participants with ASD, 27 (58.7%) scored over the TAS cut-off for 

alexithymia, compared to only three of 48 (6.3%) of NT participants, χ
2
 = 29.73, p < .001, φ 

= .56, which is comparable to the prevalence estimates of clinically significant alexithymia in 

ASD as estimated in the sample of (e.g., Hill et al., 2004). Although the analyses above 

indicated that the ASD group as a whole did not manifest a deficit in interoception, it is 

possible that (in accordance with the alexithymia hypothesis) interoceptive accuracy would 

be diminished among those participants with ASD who self-report clinically significant levels 

of alexithymia on the TAS. In order to investigate this, the ASD sample was divided 

according to TAS score. Those with scores above the cut-off were assigned to a “high 

alexithymia” ASD group and those with scores below the cut-off to a “low alexithymia” ASD 

group. These sub-samples were matched in terms of age, VIQ, PIQ, FSIQ, sex, ADOS total 

score, and RMIE total score, all ps >.40, all ds <0.27.  

The average interoceptive accuracy score on the heartbeat detection task was .51 (SD 

= .24) among the low alexithymia sub-sample and .61 (SD = .29) among the high alexithymia 

sub-sample, a difference that was small and statistically non-significant, t = 1.30, p = .20, d = 

0.39, BF10 = 0.58. The mean interoceptive accuracy score for each time interval on the 

heartbeat detection task among each sub-sample of ASD participants is shown in Figure 1. A 

2 (Subsample: high alexithymia/low alexithymia) × 4 (Time interval: 25s/35s/45s/100s) 

ANOVA was conducted on this data. Neither the main effect of subsample, F(1, 44) = 1.69, p 

= .20, 𝜂𝑝
2 = .04, nor the Subsample × Time interval interaction effect, F(3, 132) = 0.57, p = 

.64, 𝜂𝑝
2 = .01, was significant. Thus, there were no significant differences between the high 

and low alexithymia sub-samples of ASD participants in terms of either overall level or 

patterns of interoceptive accuracy.    

In terms of associations, interoceptive accuracy was non-significantly associated with 

TAS total score among both participants with ASD, r = .08, p = .59, BF10 = 0.21, and NT 
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participants, r = .21, p = .16, BF10 = 0.47. Likewise, interoceptive accuracy was non-

significantly associated with AQ total score among both participants with ASD, r = .03, p = 

.83, BF10 = 0.19, and NT participants, r = .21, p = .16, BF10 = 0.47.  Fisher’s Z tests revealed 

that the interoceptive accuracy × TAS total score correlation was significantly smaller in 

magnitude than those reported by Herbert et al. (2011) and Shah et al. (2011) among both 

participants with ASD (all Zs > 2.00, all ps < .04) and NT participants (all Zs > 2.00, all ps < 

.001)
3
.   

 

General Discussion 

 

The current findings appear to provide a significant challenge to recent theories of the 

mechanisms underlying the ASD phenotype in general, as well to theories of self-awareness 

in this disorder. In terms of theories of the phenotype, within a predictive coding framework, 

it has been suggested that interoceptive inference might be impaired in ASD due to a 

developmental pathophysiology related to oxytocin (Quattrocki & Friston, 2014). Yet, in our 

experiments, we found no evidence that interoception was associated with autistic traits or 

that it was impaired in adults with ASD, despite the fact that the ASD adults in Experiment 2 

displayed the characteristic impairments in attributing mental/emotional states to others (on 

the RMIE task) that are argued to be one of the consequences of interoceptive impairments 

(see Table 3). The significant between-group difference in performance on the RMIE task 

was large and associated with a Bayes factor that strongly suggested the ASD group had a 

mindreading impairment. In contrast, the group difference in accuracy on the heartbeat 

tracking task was non-significant, and associated with only a negligible effect size and a 

Bayes factor that supported the null hypothesis. Moreover, there was no significant 

association between RMIE and interoceptive accuracy in any of the samples we tested in 
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either experiment, which again counter-indicates the claim of predictive coding theories that 

interoception contributes significantly to social-cognitive abilities (in addition to 

underpinning the behavioural impairments diagnostic of ASD).   

One point to note here is that we did not collect any index of participants’ body mass 

index (BMI), or levels of mental health difficulties. High BMI values can result in attenuated 

interoceptive accuracy (e.g., Herbert et al., 2014), as can high levels of depression and 

anxiety (Garfinkel et al., 2016; but see Palser et al., 2018). The literature on BMI in adults 

with ASD is not entirely consistent, but shows a clear trend for adults with this condition to 

be overweight/obese, on average (Eaves & Ho, 2008; Jones et al., 2016; Tyler et al., 2011; 

Ogden et al., 2014). If our sample was representative, we might assume that there was a 

greater proportion of overweight individuals with ASD than overweight neurotypical 

individuals. In that case, the participants with ASD would have been at a disadvantage on the 

heartbeat detection task. Likewise, rates of depression and anxiety are significantly higher 

among people with ASD (~ 44%; Simonoff et al., 2008) than among people in the general 

population (~9%; McManus et al., 2016), so participants with ASD might have been at a 

disadvantage on the heartbeat tracking task.  It seems highly unlikely that both the ASD and 

control samples were so unrepresentative that rates of depression and anxiety were greater in 

control participants than in ASD participants.  If this was the case (and if controls had 

elevated rates of undiagnosed depression and anxiety), then several other results should have 

been apparent, but they were not. For example, there is evidence that mindreading, 

particularly for emotional states like those involved in the RMIE task, is diminished in people 

with depression/anxiety (e.g., Ferguson & Cane, 2017; Wolkenstein et al., 2011; Bourke et 

al., 2010; Wang, et al., 2008).  Likewise, depressive symptoms are associated with elevated 

rates of alexithymia (e.g., Herbert et al., 2014; Lyvers et al., 2017). If the controls in our 

Experiment 2 had unusually high rates of mood disorder and if this explained the failure to 
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find group differences in interoceptive accuracy, then we should also have failed to observe 

between-group differences in performance on the RMIE task (cf. Lee et al., 2005) or TAS.  

Yet, we observed significant (and large) between-group differences in each of these 

measures, as predicted and would be expected on the basis of the extensive literature on these 

abilities in ASD.  These findings provide reassurance that we have not committed a type II 

error in concluding that interoceptive accuracy is undiminished in ASD. Moreover, the 

sample size in our Experiment 2 (n = 94) was nearly 2.5 times that of the sample size in any 

other study of interoceptive accuracy in ASD. Thus, confidence in the reliability of the 

current findings should be relatively high. In the context of an interoceptive inference account 

of ASD, our findings would suggest that any potential dysregulation of the interoceptive 

system lies not at the level of perception, but rather interpretation and integration, and is 

unlikely to be specific to interoception alone.   

Of course, the current results should be interpreted within the context of the heartbeat 

tracking task we employed as the measure of interoception. It is possible that different results 

would be observed with a different measure of interoception, such as reporting changes in 

heart rate following administration of a beta-adrenergic agonist, which raises heart rate and 

blood pressure, allowing easier detection of heartbeats (Khalsa et al., 2009), or reporting of 

respiratory or gastric interoception (Garfinkel et al., 2018; van Dyck et al., 2016). The 

heartbeat tracking task has recently come under scrutiny over concerns that it may not 

always/necessarily provide a valid measure of interoception (e.g., Khalsa et al., 2009; see also 

Brener & Ring, 2016 for a review). While use of alternative, complementary measures will 

be important in future studies to develop a comprehensive view of the functional integrity of 

interoception in disorders such as autism and alexithymia, the predictions of the theories 

tested in the current study were nevertheless derived almost exclusively from studies of the 

heartbeat tracking task. Almost all existing studies of a) interoception in ASD and b) the 
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relation between interoception and alexithymia have employed this task as an objective 

(rather than self-report) index of interoceptive accuracy (Garfinkel et al., 2015; Herbert et al., 

2014; Shah et al., 2016, 2017; Schauder et al., 2015; but, for exceptions, see Gaigg et al., 

2017, Murphy et al, 2017). Therefore, the current findings are highly relevant in that they 

speak to, and challenge, current thinking about what role interoceptive difficulties might play 

in the aetiology of autism and alexithymia.  

In particular, the current findings challenge previous research showing an association 

between alexithymia and interoceptive accuracy. Across the two experiments reported here, 

we failed to find a significant association between heartbeat tracking accuracy and TAS score 

in any of five analyses in four entirely independent subsamples, each of which had more than 

sufficient statistical power to detect the predicted association. In every case, Bayesian 

analyses indicated that the data were in keeping with the null hypothesis. Also, in all but one 

analysis, Fisher’s Z tests indicated that the associations observed in the current study were 

significantly different (smaller/less negative) than those reported previously. Given the well-

established “file-drawer” problem and evidence that some results in psychology are difficult 

to replicate (e.g., Pashler & Wagenmakers, 2012), we suggest the current results are 

important and should contribute to theory building in this area. For instance, it is interesting 

to note that a number of studies have recently reported associations between alexithymia and 

interoception using self-report measures of interoception (Longarzo et al., 2015; Brewer et 

al., 2016; Betka et al. 2018). As Garfinkel et al., (2015) have recently pointed out, self-report 

questionnaires and objective measures of interoception such as the heartbeat tracking task, 

capture dissociable aspects of interoception. Specifically, whereas self-report questionnaires 

provide insight into people’s interoceptive sensibility (i.e., the extent to which they tend to be 

aware of interoceptive signals), heart beat tracking tasks provide insight into their 

interoceptive accuracy (i.e., the extent to which they perceive interoceptive signals 
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accurately), and both dimensions can vary independently. The findings reported in the current 

paper suggest that interoceptive accuracy is neither related to Alexithymia nor impaired in 

ASD, but do not speak to the role of other facets of interoception in the aetiology of either 

Alexithymia or ASD. 

Another implication of the current findings is that the results appear problematic for 

the ‘alexithymia hypothesis’ of autism, which argues that some of the cognitive/emotional-

processing difficulties which are common in the condition, are due to alexithymia and should 

not be characterised as central components of the ASD phenotype (Bird & Cook, 2013). The 

current results test several of the predictions arising from this theory. On the one hand, in 

Experiment 1, we found that performance on the RMIE task was associated significantly with 

performance on the TAS, but not the AQ (and that the TAS × RMIE correlation remained 

significant after controlling for AQ score). This replicates Oakley et al.’s (2016) findings and 

suggests, in accordance with the alexithymia hypothesis, that emotional aspects of 

mindreading are related to level of alexithymia rather than number of ASD traits. On the 

other hand, in Experiment 2, there were no significant differences between ASD participants 

with and without clinically significant levels of alexithymia in RMIE task performance. Thus, 

difficulties with emotional aspects of mindreading are still apparent in individuals with ASD 

who do not have alexithymia, contrary to the alexithymia hypothesis. Regardless, the 

assessment of the relation between alexithymia and mindreading was a secondary aim of the 

current study. The primary aim was to assess a different prediction stemming from the 

alexithymia hypothesis, namely that only individuals with ASD who manifest high levels of 

alexithymia should display diminished interoception, whereas interoceptive accuracy should 

be unimpaired in those with ASD who manifest low levels of self-reported alexithymia (see 

Shah et al., 2016; Gaigg et al., 2016). The current study provided a complete test of this 

hypothesis for the first time.  Previous studies aiming to test the alexithymia hypothesis have 
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matched ASD and comparison groups for (sub-clinical) levels of alexithymia, found no 

between-group differences in interoceptive accuracy, and then claimed that if the participant 

groups had not been matched for level of alexithymia then between-group differences in 

interoceptive accuracy would have been found. But to prove such a claim, the interoceptive 

accuracy of an ASD-high alexithymia group and a matched ASD-low alexithymia group 

needed to be compared directly. The fact that we observed no significant difference in 

interoceptive accuracy between these two ASD groups (in fact there was a slight, non-

significant trend for the ASD-high alexithymia group to show superior accuracy) provides a 

clear challenge to the alexithymia hypothesis of ASD, at least with regard to predictions 

about interoceptive accuracy in heart beat detection.     

Instead, the results are in keeping with theories of self-awareness in ASD that draw a 

distinction between psychological and physical aspects of self.  In the literature on the typical 

development of self-awareness, a distinction between physical and psychological aspects of 

self is frequently drawn (Gillihan & Farrah, 2005). Several researchers have applied this 

framework to ASD and suggested that people with this disorder tend to have a diminished 

awareness of the psychological self (one’s own mental states, personality traits, 

autobiographical memories etc.), leaving awareness of the physical self (e.g., awareness of 

one’s physical appearance, physiological states, motor routines etc.) relatively undiminished 

(e.g., Lind, 2010; Uddin, 2011; Williams, 2010). It is important to note that these theories do 

not predict that people with ASD necessarily interpret their physiological states accurately, 

but merely that they can detect them accurately.  Interpreting physiological states arguably 

requires the kind of metacognitive monitoring ability that is known to be impaired in people 

with this disorder (e.g., (Williams, Lind, & Happé, 2009; Grainger, Williams, & Lind, 2014; 

Williams, Bergström, & Grainger, 2016), whereas mere detection should not (Carruthers, 

2009). At the very least, the finding of unimpaired interoceptive accuracy among individuals 
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with ASD in the current study provides support for this prediction that basic representation of 

bodily states is undiminished in ASD. 
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Footnotes 

1. Shah and colleagues (2016) used a slightly different calculation to measure interoceptive 

accuracy on the heartbeat detection task: (1 – (│recorded number of heartbeats – counted 

number of heartbeats│/recorded heartbeats)) x 100. This calculation, which produces 

significantly higher mean levels of interoceptive accuracy to the calculation employed by 

Garfinkel et al. (2015), has the limitation of being open to potential positive accuracy biases 

in interoceptive accuracy when participants display high variance in their responses, 

especially in cases where participants overestimate the number of heartbeats in a given time 

interval. However, for completeness we also analysed data from experiments 1 and 2 using 

the Shah calculation. Results were substantively identical using both methods.  The 

correlation between interoceptive accuracy calculated using the Shandry equation and 

interoceptive accuracy calculated using the Garfinkel equation is almost perfect in our 

experiments 1 and 2 (rs ≥ .98, ps < .001).  All significant findings using the Garfinkel et al 

(2016) scoring were significant using the Shah et al. scoring, and all non-significant findings 

using the Garfinkel et al scoring were non-significant using the Shah et al. scoring. 

2. To confirm that there were no systematic differences between males and females in terms 

of interoceptive accuracy on the heartbeat detection task, a 2 (Sex: Male/female) × 4 (Time 

interval: 25s/35s/45s/100s) was conducted on this data.  Results revealed a non-significant 

main effect of group, F(1, 135) = 0.22, p = .64, 𝜂𝑝
2 = .002, as well as a nonsignificant Sex× 

Time interval interaction, F(3, 405) = 0.63, p = .60, 𝜂𝑝
2 = .005. Thus, there were no significant 

differences between males and females in terms of either overall level of interoceptive 

accuracy or patterns of accuracy across time intervals. Likewise, when correlation analyses 

were conducted among males and females separately, exactly the same pattern held in both 

sexes: Interoceptive accuracy was non-significantly associated with any other variables in 

either sex, all rs < .13, all ps > .25.  Likewise, AQ and RMIE were non-significantly 
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associated among both males and females, all rs < .15, all ps > .22. TAS total score was 

associated with both AQ total score and RMIE total among both males and females, all rs > 

.19, all ps < .04.   

3. To confirm that there were no systematic differences in results across locations, an extra 

Location variable was included in a second ANOVA.  Hence, a 2 (Location: Kent/City) × 2 

(Group: ASD/NT) × 4 (Time interval: 25s/35s/45s/100s) was conducted on interoceptive 

accuracy data.  Main effects and interactions involving Group and Time interval were the 

same as in the original ANOVA and, most important, none of the main effects (all ps > .18, 

all 𝜂𝑝
2 < .02) or interaction effects (all ps > .28, all 𝜂𝑝

2 < .02) involving Location were 

significant or greater than small in magnitude.  Mean interoceptive accuracy among 

participants at Kent was .66 (SD = .22) and was .69 (SD = .17) among participants at City, a 

difference that is small and non-significant, t = 0.83, p = .41, d = 0.15. Likewise, when 

correlation analyses were conducted among participants from each location separately, 

exactly the same pattern held in both: Interoceptive accuracy was non-significantly associated 

with any other variables in either location 1 or location 2, all rs < .12, all ps > .47. TAS total 

score was associated significantly with AQ total score at both locations, all rs > .68, all ps 

<.001.    
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Table 1: Correlations between Interoceptive Accuracy (IAcc), Alexithymia (TAS20), Autistic 

traits (AQ) and Theory of Mind (RMIE) for Experiment 1 and the ASD and TD participant 

groups in Experiment 2. Shown are the Pearson’s r coefficients, with significant associations 

highlighted with asterisks.  

 

Exp. 1 (n = 137) 
 

Exp. 2 ASD (n = 46) Exp. 2 TD (n = 48) 

  IAcc TAS20 AQ   IAcc TAS20 AQ IAcc TAS20 AQ 

TAS20 .008 

   

.08 

  

.21 

  AQ -.011 .42** 

  

-.03 .61** 

 

.21 .42** 

 RMIE .03 -.24* 0.11   .34 -.10 -.13 .09 -.29 -.20 

 **p<.01; *p<.05 
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Table 2: Interoceptive accuracy in Experiments 1 as a function of the interval duration over 

which participants tracked their heartbeat. Descriptive statistics are shown for overall group 

means as well as high and low alexithymia sub-groups where relevant. 

 

25 sec 
 

35 sec 
 

45 sec 
 

100 sec 
 

Overall 

  M SD   M SD   M SD   M SD   M SD 

Experiment 1 

                 High Alex (n = 30) 0.55 0.32 
 

0.54 0.32 
 

0.58 0.25 
 

0.52 0.27 
 

0.55 0.26 

   Low Alex (n = 107) 0.47 0.32 
 

0.54 0.32 
 

0.47 0.31 
 

0.48 0.33 
 

0.49 0.28 

   Overall (n =137) 0.49 0.32 
 

0.54 0.31 
 

0.5 0.3 
 

0.49 0.32 
 

0.50 0.27 

               Experiment 2 

                  NT (n = 48) 0.61 0.36 

 

0.62 0.33 

 

0.58 0.32 

 

0.61 0.32 

 

0.61 0.32 

    ASD (n = 46) 0.61 0.25 

 

0.58 0.32 

 

0.56 0.30 

 

0.52 0.34 

 

0.57 0.27 

       High Alex ASD (n = 27) 0.63 0.29 

 

0.64 0.34 

 

0.61 0.32 

 

0.57 0.34 

 

0.61 0.29 

       Low Alex ASD (n = 19) 0.58 0.19   0.51 0.27   0.50 0.27   0.45 0.34   0.51 0.24 
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Table 3:  Experiment 2 participant characteristics and matching statistics  

 ASD (n = 46) Comparison (n = 48) t p d  BF10 

Age 40.16 (11.72) 41.19 (12.57) 0.41  .68 0.09 0.23 

VIQ 109.98 (16.94) 111.17 (13.51) 0.38  .71 0.08 0.23 

PIQ 105.52 (17.46) 105.90 (12.67) 0.11  .91 0.03 0.22 

FSIQ 108.17 (16.91) 109.10 (12.18) 0.31  .76 0.06 0.23 

TAS 59.33 (14.17) 44.88 (9.79) 5.77 <.001 1.19 >100 

AQ
a
 32.56 (7.79) 16.91 (5.64) 10.99 <.001 2.31 >100 

ADOS
b
 9.40 (4.16) - - - - - 

RMIE
c
 23.33 (6.17) 26.87 (3.75) 3.28 .001 0.70 21.35 

a
 AQ data is missing for one ASD and one comparison participant; 

b
 ADOS was completed 

by 40/46 participants with ASD (six participants refused to complete the task or were unable 

to complete it during the study); 
c
 RMIE was completed by 42/46 participants with ASD and 

46/48 NT participants 
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Figure 1: Mean interoceptive accuracy across all time intervals, among the ASD group (n= 46), TD group (n= 48), ASD group with low-

alexithymia (n=19), and ASD group with high-alexithymia n= (27), reported in Experiment 2. Individual data points have been indicated using 

black markers and outliers (defined as interoceptive accuracy scores +/- 2SD above/below the group mean) are indicated using red markers. 
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