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Abstract 

Infections resulting from bacterial biofilm formation on the surface of medical devices are 

challenging to treat and can cause significant patient morbidity. Recently, it has become 

apparent that regulation of surface nanotopography can render surfaces bactericidal. In this 

study, poly(ethylene terephthalate) nanocone arrays are generated through a polystyrene 

nanosphere-mask colloidal lithographic process. It is shown that modification of the mask 

diameter leads to a direct modification of centre-to-centre spacing between nanocones. By 

altering the oxygen plasma etching time it is possible to modify the height, tip width and base 

diameter of the individual nanocone features. The bactericidal activity of the nanocone arrays 

was investigated against Escherichia coli and Klebsiella pneumoniae. It is shown that surfaces 

with the most densely populated nanocone arrays (center-to-center spacing of 200 nm), higher 

aspect ratios and (>3) tip widths <20 nm kill the highest percentage of bacteria (~30 %). 
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Introduction 

The use of implanted medical devices is an essential part of modern medicine. Upon 

implantation a “race to the surface ensues, in which eukaryotic and prokaryotic cells compete 

for surface colonisation1. If microbes are the dominant cell they will aggregate at the tissue-

implant interface, self-producing extracellular polymeric substances (EPS), which facilitates 

cell-cell and cell-surface interactions. This process is commonly referred to as biofilm 

formation. Biofilm-associated infections of implanted medical devices are difficult to treat as 

microbial cells within the interior of the biofilm are less susceptible to host defences and/or 

antibiotics2. These infections can have devastating consequences including implant failure, 

sepsis and, in extreme cases, death3. 

Considerable research efforts have been placed on designing surfaces that inhibit the 

development of biofilms. This has led to approaches using two key strategies. The first is to 

chemically modify surfaces with known biocidal substances4. These have included antibiotics5, 

6, heavy metal nanoparticles7, 8, 9, polymers10, 11, 12 and enzymes/peptides13, 14, 15, 16. However, 

chemical approaches have disadvantages as they may introduce toxic materials into the host17 

and/or lead to sub-critical concentration exposure18 which may result in the development of 

antimicrobial resistance19. 

The second approach uses purely physical cues by altering surface nanotopography. High 

aspect ratio nanofeatures are used to control microbial growth in a surface chemistry-

independent manner with a physico-mechanical mechanism20, 21. These surfaces offer a safer 

alternative for biofilm prevention by presenting unfavourable surface nanotopography that 

either kills bacteria upon contact (bactericidal) or prevents microbial attachment 

(antibiofouling). Most often, these nanostructured surfaces are modelled on the hierarchical 

formations of nanofeatures observed in nature such as insect wings (cicada22, damselfly23, 
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dragonfly24), shark skin25 and the lotus leaf26. Ivanova et al first studied the adhesive behaviour 

of Pseudomonas aeruginosa (P. aeruginosa) cells on the surface of the Psaltoda claripennis 

cicada wing22. These surfaces possess periodic spherically capped, conical, nanoscale pillars. 

The nanopillars are 200 nm in height, 100 nm in diameter at the base and 60 nm at the cap with 

inter-pillar spacing of 170 nm. P. aeruginosa cells were found to adhere in large numbers 

however, biofilm formation was prevented as the high-aspect-ratio nanopillars physically 

disrupted the bacteria cells upon attachment. Hasan et al27 furthered these studies showing that 

the nanostructure of the wing surface was able to consistently kill Gram negative bacteria, 

independent of bacterial shape. However, Gram positive cells remained resistant. Theoretical 

studies have demonstrated that bacterial cell adhesion onto the nanopillar surface acts to stretch 

the cell membrane in the regions between nanofeatures with a high dependency on the 

nanofeature spatial orientation28. Kelleher et al29 have compared the wing bactericidal 

performance of a number of cicadae species towards the Gram negative bacteria, Pseudomonas 

fluorescens (P. fluorescens). This demonstrated that bactericidal efficacy increases as the 

number of nanopillars with which the bacteria cells contact increases. This is also in agreement 

with mathematical models proposed by Xue et al30 which suggest that short-sharp nanopillars 

induce the greatest strain on bacterial membranes and higher levels of killing. Therefore, it is 

vital that the spatial orientation of nanofeatures at the interface is studied and optimized to 

induce maximum bactericidal efficacy. 

To this end, a large number of biomimetic analogues have been investigated. These have 

largely focused on nanopatterning biocompatible materials such as titanium31, 32, 33, 34, titania35, 

graphene36, diamond37, 38 and polymeric materials39, 40. Nanopatterning techniques employed 

have been diverse including plasma etching38, laser ablation41, nano-imprint lithography42, 

alkaline hydrothermal methods33, 35 and reactive-ion-etching41. One promising colloidal 

technique is mask-assited lithography or colloidal lithography43 in which polystyrene or silica 
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microspheres are deposited onto a polymeric surface. The surface is then subjected to a reactive 

ion etching procedure and exposed areas in between the mask are preferentially etched, leading 

to the formation of high-aspect-ratio nanopillars44. Liu et al have fabricated poly(ethylene 

terephthalate) (PET) nanocone arrays with inter-cone spacing of 500 nm45. Dickson et al 

fabricated poly(methyl methacrylate) (PMMA) nanopillars with varying degrees of inter-pillar 

spacing and slightly different pillar heights. They concluded that short, closely spaced nano-

pillars showed greater bactericidal efficacy towards Escherichia coli (E. coli) compared to 

nanopillars spaced more widely apart42. This study aims to expand upon the previously reported 

PET nanocone structures by modifying spatial orientation through colloidal lithography, using 

polystyrene microspheres as the mask with differing diameters (200 nm and 500 nm, process 

shown schematically in figure 1 as part of the materials and methods section). This results in 

final nanocone spaings of 200 nm and 500 nm, corresponding to a surface with nanofeatures 

with similar spacing to those found on the cicada wing surface along with an additional 

comparison for nanofeatures spaced more widely apart. The bactericidal activity of these 

surfaces is then tested against examples of opportunistic pathogens; E. coli K12 and Klebsiella 

pneumoniae, clinical isolate (kindly provided by Matt Avison) (K. pneumoniae) in an attempt 

to elucidate more information with regard to bactericidal efficacy and nanofeature spatial 

orientation. 
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Experimental 

Materials 

PET films with a thickness of 0.2 mm were purchased from Goodfellow, U.K and cut into 

2.0 x 2.0 cm substrates. Adsorbed surface impurities were removed by ultrasonic cleaning in 

acetone (Fisher, 98 %) and de-ionised water (purified to a resistivity of 18 M Ω cm-1). PET 

substrates were then rinsed with ethanol (Sigma-Aldrich, 96 %) several times and dried with a 

nitrogen (N2) stream. PET substrates were immersed overnight in a 3 wt % sodium dodecyl 

sulphate (SDS, Sigma-Aldrich, 98 %) solution to improve wettability and facilitate polystyrene 

(PS) microsphere spreading. 

PS microspheres with diameters of 500 nm or 200 nm were purchased from Sigma-Aldrich 

as an aqueous suspension with 10 wt % solids.  

Fabrication of PET nanocone arrays 

PET nanocone arrays were fabricated through colloidal lithography46. PS microspheres were 

self-assembled on the surface of the cleaned PET substrates by spin coating. 100 μL of a 0.5 

wt % PS microsphere (500 nm or 200 nm) dispersion in 1:1 (vol/vol) water:ethanol was 

deposited onto the PET surface. The dispersion was allowed to spread evenly over the surface 

for ca. 20 seconds. The PS spheres were then spin-coated at 3600 rpm for 1 minute using a 

photo-resist spin coater (Headway Research Inc., U.K, model PWM32). Subsequently surfaces 

were annealed in an oven at 55 ⁰C for 2 hours to further encourage the formation of hexagonally 

close packed PS sphere monolayers on the surface. 

PET nanocone arrays with different aspect ratios were achieved by subjecting the surfaces 

to inductively coupled plasma-reactive ion etching (ICP-RIE) using an ICP-RIE system 

(Oxford Instruments, U.K, model 100 ICP 180). Surfaces were etched in oxygen (O2) at 15 
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mTorr, a flow rate of 20 sccm, an RF power of 30 W, an ICP power of 30 W for time durations 

of 5 – 20 minutes. This procedure is shown schematically in figure 1. The figure also highlights 

the nanofeature dimensions that are measured after the etching process. PET nanocone surfaces 

were imaged using a Helios Nanolab 600 FIB-scanning electron microscope (SEM). Surfaces 

were mounted onto carbon stubs and sputtered twice with a mixture of gold/palladium for 1 

minute per coating. Surface morphology was then measured using imaging software by 

analysing 15 different regions on the sample surface. 

 

Figure 1- Schematic representation of the mask assisted colloidal lithographic process adopted 

in this study. 

Contact Angle Measurements 

The surface wettability of the PET substrates after each functionalisation step was measured. 

Contact angle measurements were conducted on a DSA100 drop shape analyzer (Kruss 

instruments, Hamburg). A small water droplet (2-3 µl) was advanced on the surface using a 
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motorized syringe. Kruss instrument software was used to measure the static tangent angle at 

the three-phase boundary. Contact angles were measured at three points on each surface. All 

tests were carried out in triplicate. 

Bacterial culture preparation 

E. coli K12 (ER2925, New England Biolabs) and K. pneumoniae (clinical isolate, kindly 

provided by M. Avisson),  were grown aerobically for 16 hours in 15 ml of Tryptic Soy Broth 

(TSB, E. coli) or Mueller-Hinton (MH, K. pneumoniae) in a 37 ⁰C shaker incubator set at 220 

rpm. The bacterial suspension was then diluted into the relevant media to OD600 0.1 and further 

incubated until mid-exponential phase was reached. Bacterial cells were then harvested by 

centrifugation (7 minutes, 5000 g), washed twice in 10 mM Tris-HCl buffer, and suspended in 

Tris-HCl to OD600 0.3 (approximately 107 cfu ml-1). 

Bacterial adhesion 

All test and control surfaces were rinsed with 70 % ethanol prior to bacterial adhesion studies. 

Surfaces were placed into a 12-well microtiter plate and submerged in 2 ml of bacterial 

suspension. Plates were incubated for 1 hour at 37 ⁰C under static conditions. After incubation, 

surfaces were rinsed to remove non-adherent bacteria by gently holding the surfaces with a pair 

of tweezers and passing back and forth five times in a uniform manner into a Universal 

container containing Tris-HCl buffer. 

Live/Dead staining and fluorescence microscopy 

After rinsing, 1 ml of Live/Dead® BacLightTM bacterial viability stain was applied to the 

surfaces according to manufacturers’ instructions. The surfaces were incubated in the dark for 

15 minutes at room temperature and rinsed in Tris-HCl in the same manner as described above. 

Bacterial cell viability was then visualized by fluorescence microscopy using a Leica DMLB 
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microscope and Leica acquisition software. ImageJ software was used to calculate the number 

of cells with intact membranes (SYTO 9, green) and the number of cells with damaged 

membranes (propidium iodide, red) based on a minimum of three images per surface. The 

average percentage of damaged cells was determined and all tests were carried out in triplicate. 

A one-way ANOVA was carried out to compare data sets. If the p value was less than 0.05, 

then results were considered statistically significant. 

The live/dead procedure is carried out with extreme caution and attempts to ensure accurate, 

repeatable methodology are of paramount importance. It is however, accepted that rinsing the 

surface using the previously described manner may introduce certain experimental error. This 

is discussed in previously published work by Busscher et al47. 

Results and Discussion 

Fabrication and tailorable aspect ratio of PET nanocone arrays via colloidal lithography 

and reactive ion etching 

PET nanocones were fabricated through colloidal lithography and reactive ion etching. Figure 

1 shows a schematic representation of this process. Initially a two-dimensional hexagonally 

close packed array of PS microspheres was formed on the surface of the cleaned PET substrates 

via spin coating. Figure 2 shows the hexagonally close packed structure of the PS colloidal 

mask for both 500 nm and 200 nm PS microspheres. It is clear that the area of the hexagonally 

close packed spheres can reach many hundreds of μm2. 
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Figure 2- SEM images showing deposition of colloidal mask using 500 nm (left) or 200 nm 

(right) PS microspheres via spin coating. 

Subsequently the 2D colloidal crystal mask was etched in oxygen using an ICP-RIE system. 

It has previously been reported that the final structure of etched nanocone arrays (formed 

through colloidal lithography) is heavily dependent on the duration of the etching process48. 

To assess the effects of the duration of the etching process on nanocone formation, the PS 

colloidal mask for both 200 nm and 500 nm PS spheres was subjected to 4 different etching 

times and characterised by SEM. Figure 3 shows SEM images of the PET structures obtained 

after 5, 10, 15 or 20 minutes etching. Table 1 shows structural parameters for nanocones with 

differing colloidal masks and etching times. 
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Figure 3- SEM images of PET nanocone structures obtained for a 500 nm (a-d) or 200 nm (e-

f) PS colloidal mask after 5, 10, 15 or 20 minutes etching time. Time duration increases for 

each colloidal mask sample from left to right. 

 Colloidal Mask Diameter (nm) 

Structural Parameter 500 200 

Etching Time (mins) Etching Time (mins) 

5 10 15 20 5 10 15 20 

Base Diameter (nm) 381 316 272 187 155 129 118 55 

Tip Width (nm) 304 280 193 99 54 33 22 20 

Nanocone height (nm) 419 456 529 441 352 388 498 400 

 

Table 1- Structural parameters of PET nanocones obtained from a 500 nm or 200 nm PS 

colloidal mask after 5, 10, 15 and 20 minutes of etching time. 

With increasing etching time the diameter of the PET nanocone structures decreases and the 

region in between the nanostructures becomes larger. When using the 500 nm PS colloidal 

mask and low etching times (5 or 10 minutes), the region between the nanostructures is very 

small due to only partial etching of the colloidal mask. Therefore, these structures have a dome-

like morphology. On increasing the etching time the colloidal mask is almost fully removed, 

exposing more PET to the oxygen plasma. Here, nanofeatures are isolated from their nearest 

neighbours and the features begin to show a cone-like morphology. For 5-15 minutes etching 

the trend is to increase in height. After 20 minutes etching time, the nanostructures still 

maintain an isolated cone-like morphology, but now the height begins to decrease. This is due 

to complete removal of the PS colloidal mask, meaning that the PET itself is now being heavily 

etched, yielding nanostructures that are lower in height. When using the 200 nm PS colloidal 

mask, cone formation occurs at lower etching times (after 10 minutes). This is due to the use 

of a colloidal mask with a lower diameter, which is etched at a faster rate than the larger 500 

nm diameter mask45. Colloidal mask removal and isolated conical structures are obtained after 
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10 minutes of oxygen plasma etching. For 15 or 20 minute etching times the colloidal mask is 

entirely removed from the surface. PET is heavily etched by this point and the diameter of the 

nanostructures is so small that they begin to fuse and form brush-like structures. 

Figure 4 shows the evolution of tip width and aspect ratio (feature height/base diameter) for 

the 500 nm or 200 nm colloidal mask surfaces with increasing etching time. In all cases 

increasing the duration of the ICP-RIE process leads to an increase in aspect ratio. The trend is 

to increase in height and decrease in base width. Although the height of the 20 minute etched 

samples decreases when compared to the 15 minute etched samples, the aspect ratio increases 

due to a similar base diameter. The etch rate between the 200 nm colloidal mask and the PET 

substrate is greater. This leads to structures that have a higher ratio of height to base diameter. 

When using the 200 nm mask it is possible to gain structures with far higher aspect ratios than 

when using the 500 nm PS spheres as the mask layer. Due to the higher etch rate of the smaller 

PS spheres, it is also possible to obtain features that exhibit a lower tip width. For example, the 

tip width of the 200 nm PS mask samples after 10 minutes etching is 33 nm. This is compared 

to the equivalent 500 nm sample which yields a tip width of 280 nm. This is an important 

structural aspect of these samples and is likely to elicit different cellular responses from 

bacteria. 
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Figure 4- Aspect ratio and tip width evolution of PET nanocones with increased etching times 

for a 500 nm (left) or 200 nm (right) PS colloidal mask. 

Surface Wettability 

The wetting of a surface and its associated contact angle is dependent on the chemical make-

up and the micro/nano-texture for a given chemical composition49. Increasing the roughness of 

a surface may render it more hydrophilic or hydrophobic depending upon the initial surface 

properties of the material. Figure 5 shows contact angle measurements taken for surfaces with 

a 200 and 500 nm colloidal mask, etched for 5, 10 and 15 minutes. 
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Figure 5- Surface wettability for samples with a 500 nm and 200 nm colloidal mask, etched 

for 5, 10 and 15 minutes. 

Flat PET has the highest contact angle of all the surfaces measured here at 85 ± 2 ⁰. All 

nanopatterned surfaces exhibit lower contact angles when compared to the flat PET surface. 

This demonstrates that the RIE process serves to render the interface more hydrophilic with a 

higher surface energy. There is little difference in surface wettability for individual samples 

with the same nanopillar spacing. However, samples where nanofeatures are spaced 200 nm 

apart have a lower contact angle than those of samples with nanofeatures spaced 500 nm apart. 

This shows that denser, more compact nanofeatures yield a lower contact angle and therefore 

a higher surface energy. It has been shown previously that surfaces with nanofeatures lower 

than 50 nm in height are able to trap air locally and render the surface hydrophobic. However, 

nanofeatures any taller than this nearly always render the surface hydrophilic4, 50, 51. In the case 
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of the surfaces fabricated for this study, their high aspect ratio (all above 300 nm in height) 

yields surface hydrophilicity. The results reveal that a difference in nanostructure can exert 

differences in the wetting properties of the surface. The wetting state of the surface was 

approximated based on two established models: the Wenzel52  and the Cassie-Baxter model53. 

The Wenzel model allows that the liquid fills the grooves of the nanostructures and then yields 

a wetting contact which is found by, 

𝑐𝑜𝑠𝜃𝑤 = 𝑟 𝑐𝑜𝑠𝜃0, 

where r is the roughness factor (a ratio of the actual surface area to the geometrically 

projected area), θw is the effective contact angle on a rough surface, and θ0 is the contact angle 

on a flat surface of the same material. The roughness factor (r) may be calculated by, 

𝑟 =
(𝑅+𝐿)2+4𝑅𝐻

(𝑅+𝐿)2 , 

where R, L and H are the diameter, spacing and height of the nanofeatures, respectively.  

 

The Cassie model allows that air is trapped in the concave areas of the sample and a contact 

angle of 180 ° is attributed to these air pockets. The effective contact angle of the 

nanostructured surface is calculated by,   

𝑐𝑜𝑠𝜃𝑐 =  𝜑(1 + 𝑐𝑜𝑠𝜃0) − 1, 

in which θc is the effective contact angle as described by the model and θ0 is the measured 

contact angle on an equivalent flat surface. φ is the solid fraction in contact with the liquid and 

is calculated by, 

𝜑 =
𝑅2

(𝑅+𝐿)2, 
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where R is the diameter of nanofeatures and L is the spacing of nanofeatures. 

As a consequence of these two models and starting from a material with a contact angle below 

90 °, the Wenzel model will predict a decrease in θ with increased roughness, while the Cassie 

model will always predict an increase in θ. 

In accordance with both of these models, the roughness factor, solid fraction in contact with 

the liquid and effective contact angles were calculated and are shown in table 2. Nanocones 

spaced 200 nm apart are slightly more hydrophilic than those spread 500 nm apart. The 

nanofeatures generated using the 200 nm colloidal mask are generally shorter than those 

generated with the 500 nm mask. These regions with shorter protuberance may facilitate the 

wetting process and fill with water first, partially or completely wetting the surface under the 

water droplet54. According to the experimental values obtained, and in comparison with the 

effective contact angles calculated for the Wenzel and Cassie models found in table 2, the 

Wenzel model best describes the behaviour of the water droplet on the surface. This is due to 

the fact that the contact angle, θ, decreases with increasing roughness. Although a combination 

of both Wenzel and Cassie states cannot be ruled out55.  

 Colloidal Mask Diameter (nm) 

 500 200 

Etching Time (mins) Etching Time (mins) 

5 10 15 5 10 15 

φ, solid fraction in 
contact with liquid 

0.19 0.15 0.12 0.19       0.15 0.14 

r, roughness factor 1.82 1.87 1.97 2.73 2.85 3.32 

Contact angle (deg) 75.6 75.7 74.8 70.2 70.6 69.7 

Effective contact angle 
(Wenzel) 

80.9 80.6 80.1 76.2 75.6 73.2 

Effective contact angle 
(Cassie-Baxter) 

142.5 146.8 150.4 142.5 146.8 148.0 

Table 2- Contact angles, effective contact angles (Cassie-Baxter and Wenezel), solid fraction 

in contact with the liquid and roughness factor values for PET nanocone structures obtained 

from a 500 nm or 200 nm PS colloidal mask after 5, 10, 15 and 20 minutes of etching time. 
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Topographical effects on bacterial viability 

Currently, there are no reports on the effects of biomimetic PET nanocones on bacterial 

viability. E. coli is a motile, rod-shaped, Gram negative bacterium, and is a commonly isolated 

microorganism from sites of nosocomial infections56. E. coli is a versatile bacterium ranging 

from harmless gut commensal to extra-intestinal pathogenic strains. It is a common coloniser 

of medical devices such as catheters where it is responsible for complicated catheter associated 

urinary tract infections57, 58, 59. It has also shown resistance to some antimicrobial therapies60. 

K. pneumoniae is a non-motile, rod-shaped bacterium. It is a major cause of nosocomial 

infections, primarily among immunocompromised patients61 and is also able to colonise the 

surface of polymeric devices62. Recently, the threat posed by K. pneumoniae has markedly 

increased due to the emergence of strains resistant to carbapenem antibiotics63 and the bacterial 

pathogen is responsible for around 15 % of Gram-negative infections in intensive care units64. 

Previous work has shown that some nanostructures exhibit a greater bactericidal effect on Gram 

negative bacterial cells when compared to Gram positive cells35. It is suggested that this is due 

to the thickness of the bacterial cell wall. A large majority of Gram positive bacterial cells have 

a thicker cell wall with a layer of peptidoglycan that is between 20 and 80 nm thick. In contrast 

the peptidoglycan layer of most Gram negative cell walls is much thinner at around 5 to 10 nm 

in thickness65. It is therefore posited that less stress is required to disrupt the cell wall of Gram 

negative bacteria, resulting in cell death from purely physical cues37. It has also been argued 

that bacterial motility may play a role in the observed bactericidal effect of a nano-undulating 

surface, with highly motile bacteria having a higher death rate on the surface35. For these 

reasons, E. coli and K. pneumoniae were used as the model bacterium to test the bactericidal 

efficacy of the PET nanocone surfaces. 
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Surfaces etched for 5, 10 or 15 minutes were exposed to high numbers (approximately 107 

cfu ml-1) of exponential phase E. coli and K. pneumoniae for 1 hour and the bactericidal 

efficacy of the surfaces was measured using Live/Dead staining. Representative  fluorescence 

micrographs are shown in Figure 6. Here, cells with intact membranes are stained green and 

cells with damaged membranes are stained in red. 

 

Figure 6- Representative fluorescence micrographs of E. coli and K. pneumoniae after 1 hour 

incubation on a, h) control flat PET, 500 nm colloidal mask after etching periods of 5, 10 or 15 

minutes (b, c d and i, j, k respectively), or 200 nm colloidal mask after etching periods of 5, 10 

or 15 minutes (e, f g and l, m, n respectively). Bacterial cells were stained with Live/Dead 

BacLight. Stained cells with intact membranes fluoresce green (SYTO 9) and cells with 

damaged membranes fluoresce red (propidium iodide). Pie charts represent the percentages of 

live and dead cells (green and red respectively). 
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From analysis of the fluorescence micrographs in Figure 6 it is clear that attachment of bacteria 

to the PET nanocone surfaces results in statistically significant killing of bacteria when 

compared to the flat control surface. The percentage of stained dead cells on all surfaces tested 

in this study (compared to a flat control surface) is shown in Figure 7. 

 

Figure 7- Percentage dead cells after 1 hour incubation of E. coli and K. pneumoniae on PET 

nanocones formed with a 500 nm (A) or 200 nm (B) colloidal mask along with flat control PET 

surfaces. Bacterial cell viability was determined by Live/Dead BacLight stain.  

From analysis of Figure 7 all nanopatterned surfaces result in statistically significant bacterial 

killing compared to the flat control surface (percentage dead cells on control surface ~3.%). 

Generally, the surfaces with a higher density of nanocones appear to kill the most bacteria. For 

example, at a constant etching time of 10 minutes, the percentage stained dead E. coli on 

surfaces formed with the 500 nm colloidal mask  is around 12% of the surface inoculum. This 

is compared to the 200 nm colloidal mask at the same etching duration which kills around 24% 

of adherent E. coli. The same is also shown for K. pneumoniae with 15 % of adherent cells 

dead on the equivalent 500 nm surface, compared to the 200 nm surface, which has 27 % dead 

cells. This is the case for all etching durations when comparing surfaces generated with the 500 

nm or 200 nm colloidal mask. Indeed this conclusion is supported by a study by Kelleher29 et 
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al where it was shown that the greater the number of nanostructures with which bacterial cells 

come into contact, the greater the bactericidal activity. It is also corroborated by the work of 

Dickson42 et al who conducted studies using E. coli on PMMA nanopatterned surfaces. Here, 

researchers reported that smaller more closely spaced polymer nanopillars had the best 

performance. 

Height, base diameter and tip width are displayed in table 1. The height of the PET nanocones 

varies dependent on the diameter of the colloidal mask and the etching time employed. There 

does not appear to be a direct correlation between feature height and bactericidal efficacy. The 

tallest nanocone is found for the 500 nm colloidal mask and 15 minute etching time (529 nm 

in height). This induces a percentage cell death of around 14 and 16 % for E. coli and K. 

pneumoniae, respectively. However, the second tallest nanofeature found for the 200 nm mask 

and 15 minute etch (498 nm in height) kills around 30 % of adherent cells. Whilst the shortest 

nanocones found for the 200 nm mask and 5 minute etching period (352 nm in height) kill 

around 20 % of adherent cells. Nanofeature height above a certain value may not play a 

significant role in the bactericidal efficacy of a surface. Ivanova et al22 have measured the rate 

at which bacteria cells sink between nanopillars using point force microscopy. They showed 

that bacteria cells move slowly downwards and sink onto the nanopillars. The bacteria cells 

were shown to sink by around 200 nm before a sudden, short, downward displacement 

indicating the point of membrane rupture. This may imply that there is a certain ‘critical’ height 

required to induce membrane rupture. This is also supported by the work of Dickson et al who 

also observed that height was not a critical factor in efficient bactericidal activity42. For 

individual sample sub-sets generated with the 500 nm and 200 nm colloidal mask, the base 

diameter and tip width decreases with an increase in etching time. The 500 nm mask samples 

show tip widths between 300 – 99 nm for 5, 10 and 15 minute etching periods. Whereas, the 

200 nm mask samples show tip widths between 54 – 20 nm. The same trend is also observed 
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for base diameter with the 500 and 200 nm showing base diameter ranges of 380 – 187 nm and 

155 – 55 nm, respectively. The general trend is for bactericidal efficacy to increase within 

individual sample sets as tip width and base diameter are reduced. This corroborates recent 

results reported by Nowlin66 et al whereby the fungicidal properties of surfaces with differing 

nano-morphologies were investigated. Their results suggest that the fate of a microbe on a 

surface is heavily dependent on such nano-morphology. It was shown that even weakly 

adhering strains of fungus Saccharomyces cerevisiae were rendered non-viable when exposed 

to nanopillars with the smallest diameters. This is also supported by a recent model from Xue30 

et al, in which smaller, sharper nanofeatures are shown to be a key factor in regulating bacterial 

cell fate on a surface. It was found that smaller, sharper nanofeatures result in a much greater 

stretching response from the bacteria resting on them and therefore a higher percentage of 

bacterial death. 

One clear conclusion that may be drawn is the surfaces with a higher density of nanocones 

appear to kill the most bacteria. In 1 µm2 there will be 4 and 25 nanocones for the 500 nm and 

200 nm colloidal mask, respectively. Therefore, bacteria in contact with the 200 nm mask 

samples will come into contact with ~6 times as many nanofeatures when compared to bacteria 

in contact with the 500 nm mask samples. At a constant etching time of 10 minutes, the 

percentage stained dead E. coli on surfaces formed with the 500 nm colloidal mask  is around 

12% of the surface inoculum. This is compared to the 200 nm colloidal mask at the same 

etching duration which kills around 24% of adherent E. coli. The same is also shown for K. 

pneumoniae with 15 % of adherent cells dead on the equivalent 500 nm surface, compared to 

the 200 nm surface, which has 27 % dead cells. This is the case for all etching durations when 

comparing surfaces generated with the 500 nm or 200 nm colloidal mask. Indeed this 

conclusion is supported by a study by Kelleher29 et al where it was shown that the greater the 

number of nanostructures with which bacterial cells come into contact, the greater the 
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bactericidal activity. This idea is again corroborated by Dickson42 et al where it was shown that 

feature spacing of 100 nm killed ~20 % more bacteria than surfaces with feature spacings of 

380 nm. 

These phenomena are also shown in figure 8 in a series of SEM images. Cells were fixed 

after 1 h incubation with bacterial suspensions. Images exhibited horizontal, turgid cells on the 

flat control surfaces, correlating with the fluorescence microscopy results. On the 

nanopatterned surfaces, many of the cells appeared to display undamaged morphology. 

However, a proportion appeared to display a damaged morphology as a result of the 

nanofeatures. It is clear that the nanotopography damages a higher percentage of the cells as 

shown by fluorescence microscopy. The cells collapse and spread over the surfaces which is a 

visible indicator of nonrecoverable cell death37  
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Figure 8- SEM images showing E. coli and K. pneumoniae on PET nanocone surfaces with 

a 500 nm colloidal mask etched for 5, 10 and 15 minutes (a, b and c) and a 200 nm colloidal 

mask etched for 5, 10 and 15 minutes (d, e and f). Also shown are the E. coli and K. pneumoniae 

on a flat control surface (g and h). 

All PET nanocone test surfaces were successfully shown to elicit bactericidal capabilities. 

Thus these surfaces have the potential to reduce bacterial colonisation of medical devices. One 

vital aspect for future work will be the tunability of nanofeatures on a surface67; a feature that 

this protocol allows for. It is clear from this study and others that nanofeature shape and size, 

as well as distribution and density, play a key role in the fate of microbes on a surface. Another 

important parameter that may affect the viability of the bacteria on these surfaces is the 
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concentration of the polystyrene mask that remains after etching. For samples etched for longer 

periods of time this is unlikely to be a key factor in determining bacterial cell fate as the mask 

is entirely removed. However, for surfaces with lower etching times it must be accepted that 

residual mask may play a role in governing bacterial adhesion and viability. This will be an 

important avenue of investigation in future studies. The highest levels of bacterial cell death 

observed here are ~ 30 %. In order for these materials to be clinically appropriate or for use in 

long-term biomedical implants, they would need to kill much higher percentages of bacteria. 

Other key questions within the research field are what happens to the dead bacteria that remain 

on the surface and is the bactericidal effect observed only transient? These are critical elements 

that must be considered when engineering surfaces for such applications. However, the results 

presented here chart a course for optimization and may be built upon in future studies that are 

likely to provide answers to these questions. It is clear that on closely spaced, sharp tipped 

nanocones, there is a higher level of bacterial cell death. Smaller tip radii generate higher stress 

fields on the bacterial membrane, which increases the chances of rupture30, 42. It may be 

hypothesised that increasing the nanocone density even further may result in higher bactericidal 

efficacies. There is also the possibility of functionalising PET nanocones with bactericidal 

molecules to promote synergistic killing of bacteria through both chemical and mechanical 

means68, 69. 

 

Conclusions 

Biomimetic analogues of the cicada wing were fabricated on the surface of PET using 

colloidal lithography. This study has expanded upon previously fabricated polymer nanocone 

structures37, 42, 45, 70 generating surfaces with differing/tailorable nanofeature spacing, height, 

base diameter and tip widths. It is also the first study to examine the bactericidal efficacy of 
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PET nanocones and to assess bactericidal performance against nanostructural parameters. All 

surfaces generated showed statistically significant higher levels of bactericidal activity against 

E. coli and K. pneumoniae when compared to a flat control surface.It was shown that surfaces 

with denser nanotopographical features, higher aspect ratios and sharper tips exhibit higher 

levels of bacterial killing. These results act to expand upon our understanding of the effect of 

differing nanotopography and bactericidal performance29, 30, 41. To allow this study to be 

extended to a clinical setting, future research will need to demonstrate that these surfaces can 

kill a broader range and higher percentage of microorganisms whilst also eliciting appropriate 

responses from mammalian cells32. However, this study shows that PET nanocones engineered 

through a cost-effective fabrication technique can serve to kill adherent bacterial cells and may 

pave the way for the generation of new types of biomaterials with the ability to reduce the risk 

of infections associated with medical devices. 
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