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Key Points:  

 Simulated satellite-era inter-annual variability in Greenland ice core sodium 

concentrations driven by meteorology not sea ice. 

 Sodium budget of coastal high Arctic ice cores is dominated by sea salt from sea ice 

surface not open ocean. 

 Inter-annual variability of sodium records from coastal Arctic cores driven by aerosol 

emission strength not transport or deposition. 

 

Abstract 

The sea ice surface is thought to be a major source of sea salt aerosol, suggesting that sodium 

records of polar ice cores may trace past sea ice extent. Here we test this possibility for the 

Arctic, using a chemical transport model to simulate aerosol emission, transport and 

deposition in the satellite era. Our simulations suggest that sodium records from inland 

Greenland ice cores are strongly influenced by the impact of meteorology on aerosol 

transport and deposition. In contrast, sodium in coastal Arctic cores is predominantly sourced 

from the sea ice surface and the strength of these aerosol emissions controls the ice core 

sodium variability. Such ice cores may therefore record decadal to centennial scale Holocene 

sea ice changes. However, any relationship between ice core sodium and sea ice change may 

depend on how sea ice seasonality impacts sea salt emissions. Field-based observations are 

urgently required to constrain this. 
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1 Introduction 

Predicting the future evolution of Arctic sea ice is a fundamental goal of climate 

science. To examine how Arctic sea ice reacted to rapid climate changes that have occurred 

in the past, we can consult paleoclimate archives that extend beyond the 35-year satellite 

record. Several different marine chemical species present in polar ice cores have been 

proposed as tracers of Holocene sea ice conditions, including sea salt sodium (Na) (Severi et 

al., 2017), methane sulfonic acid (MSA) (Criscitiello et al., 2013; Rhodes et al., 2009) and 

bromine (Br) (Maselli et al., 2017; Spolaor et al., 2016). Here we focus on sea salt Na.  

Evidence from field- and model-based studies indicates that sea salt aerosol can be 

sourced from salty blowing snow lofted from the surface of the sea ice (Huang & Jaeglé, 

2017; Jourdain et al., 2008; Rhodes et al., 2017; Wagenbach et al., 1998; Yang et al., 2008). 

This sea ice sea salt (SISS) contributes to the winter–late spring peaks in sea salt 

concentration observed in both Arctic aerosol measurements (e.g., Quinn et al., 2002) and 

Greenland ice core records (e.g., Banta et al., 2008). Simulations suggest that the sea ice 

surface produces an order of magnitude more aerosol than the same unit area of open ocean 

under the same conditions (Yang et al., 2008). However, two major problems currently 

preclude the use of Arctic ice core Na concentrations as tracers of past sea ice extent:  

1) It is difficult to differentiate between open ocean sea salt (OOSS) and SISS in the 

atmosphere or snowpack. A chemical fingerprint of SISS is fractionation of the sea salt 

sulfate (ssSO4
2-) to Na+ ratio relative to the seawater value, which results from the 

precipitation of mirabilite (Na2SO4•10H2O) within or on top of sea ice (Rankin et al., 2002; 

Wagenbach et al., 1998). In the present-day Arctic anthropogenic sulfate pollution masks 

other sulfate contributions (Goto-Azuma & Koerner, 2001) meaning that the relative 

proportions of SISS and OOSS in aerosol or snow cannot be estimated using either the 

ssSO4
2- to Na+ ratio (Jourdain et al., 2008) or the sulfur stable isotopic ratio (34S) of samples 

(Seguin et al., 2014).  

2) The dominant control on Na variability in Arctic ice cores is unclear. Which is more 

important—changing sea ice extent or storminess? Although the amount of SISS emitted to 

the atmosphere is high likely to vary with sea ice area, emitted SISS must then be transported 

inland and deposited. The amount of SISS that is finally deposited is influenced by factors 

that can be broadly termed meteorology, such as the strength of transport winds, as well as 

the amount and frequency of precipitation (Fischer, 2001; Hutterli et al., 2007; Levine et al., 

2014).  

Here we address these two problems using a global chemical transport model. We 

then consider whether or not the recent decrease in Arctic sea ice (Fig. 1) may be detectable 

in Arctic ice core Na records.  

2 Materials and Methods 

2.1 Chemical transport model 

We use the Cambridge p-TOMCAT chemical transport model to represent the 

emission, transport and deposition of OOSS and SISS (Legrand et al., 2016; Levine et al., 

2014; Rhodes et al., 2017). p-TOMCAT has been tuned to sea salt aerosol measurements at 

Arctic sites (Rhodes et al., 2017). Recent modifications enable p-TOMCAT to simulate 

monthly Na concentrations in deposited snow and BASE simulation of Rhodes et al. (2017) 

has been validated for its representation of Greenland ice core Na concentrations and inter-

annual variability for 1991–1999 CE. 
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We extend the BASE simulation time range to 1991–2015 CE (Text S1, TableS1). 

Briefly, p-TOMCAT is a global model with a spatial resolution of 2.8° x 2.8° across 31 

vertical sigma-pressure levels. It is driven by 6-hourly ERA-Interim wind, temperature and 

humidity fields (Dee et al., 2011). Sea ice fractions are derived from the HadISST data set 

(Rayner, 2003) and sea ice assumed to be multi-year if it was present the previous September. 

OOSS emissions occur via bubble bursting (Gong, 2003; Jaeglé et al., 2011) and SISS 

emissions occur via sublimation of snow particles (Yang et al., 2008) lofted from the surface 

of sea ice during blowing snow events (e.g., Nishimura & Nemoto, 2005; Savelyev et al., 

2006).  

The rate of SISS emission from multi-year sea ice is set to half the first-year sea ice 

rate in the BASE simulation. In previous work this scenario produced better correspondence 

between p-TOMCAT simulations and available Arctic sea salt aerosol observations than 

scenarios in which multi-year sea ice contributed either no aerosol at all or the same amount 

as first-year ice (Rhodes et al., 2017). We reasonably expect there to be a distinction in 

aerosol production between first-year and multi-year sea ice because aerosol emissions from 

blowing snow (as parameterised) increase with snow salinity (Yang et al., 2008). Limited 

measurements of snow on Arctic sea ice (Krnavek et al., 2012) suggest the salinity of snow 

on thick, multi-year sea ice is lower than that of snow of thin, first-year sea ice. These 

observations are further supported by the knowledge that brine rejection causes the salinity of 

the sea ice itself to decrease with time (Cox & Weeks, 1974) and that thicker sea ice is less 

likely to be submerged and/or flooded by highly saline seawater (Massom et al., 2001).  

2.2 Simulation of Arctic snow Na concentrations  

We use the BASE simulation results to investigate how ice core Na concentrations 

and SISS:OOSS values change in response to the recent decline in Arctic sea ice. Given that 

SISS emissions via blowing snow are suppressed over sea ice designated as multi-year 

(section 2.1), we perform two additional experiments for 2000-2015 CE to examine the 

impact of the changing ratio of first-year to multi-year sea ice on our simulated ice core Na 

records: 

ALLSI: SISS emissions strength is equal across all sea ice.  

FYSI: SISS emissions only occur above first-year ice. 

2.3 Sensitivity tests 

To constrain the relative influence of sea ice conditions and meteorology on Arctic ice 

core Na concentrations, we conduct sensitivity tests. p-TOMCAT is run repeatedly over the 

2000–2015 CE interval, holding either meteorology that influences transport and deposition 

of aerosol (ERA-Interim wind, temperature and humidity fields and the model-calculated 

precipitation) or sea salt (OOSS and SISS) emission rates constant. As p-TOMCAT is not a 

coupled model, sea ice does not evolve in response to meteorology and vice versa, so we 

ensure that OOSS and SISS emissions reflect sea ice conditions by prescribing them (Text 

S2).  

Three different experiments are performed for 2000–2015 CE: 

CONTROL: Meteorology and sea salt emissions both from current year (n.b. not the same as 

BASE simulation (section 2.1) because emissions are prescribed, Text S2). 

VARYEMIS: Meteorology from 2000 CE and sea salt emissions from current year. 

VARYMET: Sea salt emissions from 2000 CE and meteorology from current year. 

For both VARYEMIS and VARYMET we calculate the normalised root mean squared 

deviation (NRMSD) relative to CONTROL.  
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2.4 Air mass back-trajectories 

 To verify the likely source regions of sea salt aerosol deposited at Arctic ice core 

sites, we use the Hysplit4 software (Draxler & Hess, 1998) to perform air mass back-

trajectories (Text S4). Back-trajectories were initiated every 5 days in winter-spring 1991–

2015 CE and allowed to travel for 3 days. 

 

3 Results 

3.1 Origin of sea salt in Arctic snow: sea ice surface or open ocean? 

We first examine the proportion of SISS relative to OOSS that makes up the Na 

deposited at Arctic ice core sites in our BASE simulation 1991–2015 CE. As the proportion 

of SISS relative to OOSS currently deposited at Arctic ice core locations cannot be 

determined through laboratory measurements, we seek to select ice core locations where 

SISS dominates the Na budget. 

Our BASE simulation predicts that SISS comprises a small fraction (< 0.25) of the 

annual Na budget of high elevation (>2000 m), inland Greenland ice cores, such as NEEM, 

NGRIP and Summit (Fig. 1). Simulated SISS contributions are equally low at high elevation, 

southerly Greenland ice core locations, Renland (4%) and Dye-3 (5%), adjacent to limited 

winter sea ice cover. At some northerly Greenland ice core locations, within 100 km of 

coastlines bordered by sea ice, SISS becomes the dominant contributor to the Na budget. This 

is true for Flade Isblink, 2Barrel and Camp Century (Fig. 1). However, at Hans Tausen, just 

50 km from multi-year sea ice north of Greenland, SISS accounts for only 41% of Na.  

In the wider Arctic, our results suggest that the Na records of ice cores from low 

elevation (<2000 m), localised ice domes, situated close to sea ice cover, are dominated by 

SISS. The annual fraction of Na that is SISS ranges from 0.63 at Devon Ice Cap to 0.90 at 

Windy Dome (Fig. 1, Table S2). The only exception to this is Prince of Wales Icefield in the 

Canadian Arctic, which our simulations suggest receives only 18% SISS. Previous studies 

suggest that the strong contribution of OOSS at this location results from the proximity of the 

North Water polynya (Criscitiello et al., 2016; Wasiuta et al., 2006).  

3.2 What drives inter-annual variability in Na? 

Our sea ice versus storms sensitivity tests indicate that the influence of meteorology 

on aerosol transport and deposition is the dominant control on inter-annual variability in ice 

core Na at central Greenland sites (Tunu, Summit and NEEM, Fig. 2).  For each site, 

VARYMET results closely follow the CONTROL results (Fig. S1), with NRMSDs between 

the two of 21–30% (Fig. 2A). The VARYEMIS results typically diverge much more from the 

CONTROL results, with NRSMD values of 77–94% (Fig. 2B). If only SISS Na is 

considered, the result doesn’t materially change, the NRMSD between VARYMET and 

CONTROL is still lower than between VARYEMIS and CONTROL at each site (56–84% 

versus 82–111%), suggesting meteorology is the dominant factor determining SISS Na (Fig. 

S2).  

Closer to the Greenland coast, ice core sites such as Renland, Humboldt and 2Barrel 

still show lower NRMSDs for VARYMET than VARYEMIS, suggesting a dominance of 

meteorology on Na variability (Fig. 2, Table S2). However, the difference between the two 

NRMSD is less than for inland sites. Camp Century, which is located close to 2Barrel in NW 

Greenland, shows a lower NRMSD for VARYEMIS, suggesting emissions strength has a 

greater influence here, but both NRMSDs are high (> 90%).  
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To obtain VARYEMIS NRMSDs that are significantly lower than VARYMET 

values, we have to move closer to the coast, to relatively low elevation, localised ice domes 

located close to the sea ice. This is almost accomplished at Hans Tausen on the northern tip 

on Greenland which sees very similar NRMSDs for VARYMET and VARYEMIS. South-

east from there at Flade Isblink the difference between NRMSDs for VARYMET (184%) and 

VARYEMIS (72%) is marked, suggesting that emissions strength dominates over 

meteorology in the control of ice core Na variability. Moving around the Arctic basin into the 

Siberian Arctic, the same is true for ice cores on Svalbard, at Windy Dome and Akademii 

Nauk. The influence of emissions strength on Na concentrations is also greater than the 

influence of meteorology for Canadian Arctic ice cores such as Agassiz and Devon Ice Cap.  

These patterns are largely repeated if just SISS Na is considered (Fig. S3) or if only 

Na variability during months of peak sea ice (January–April) is examined (Fig. S4). Taken 

together, our results indicate that emissions strength is more important than meteorology in 

determining the Na content of ice cores from coastal ice domes in the Arctic, opposite to our 

findings for central Greenland cores.  

4 Discussion 

4.1 High Arctic ice core Na records 

Our simulations predict that the Na concentration records of seven coastal Arctic ice 

cores are 1) dominated by SISS rather than OOSS, and 2) more sensitive to changes in 

emissions strength than meteorology (Figs. 1 & 2, Table S2). The seven cores are: Penny Ice 

Cap, Devon Ice Cap, Svalbard, Akademii Nauk, Agassiz, Windy Dome and Flade Isblink.  

We propose that these ice cores have the best chance of preserving a Na signal of 

Holocene Arctic sea ice change and test this by searching for a signal of the recent decadal-

scale decline in Arctic sea ice cover in our simulations (Text S3 (Bertler et al., 2005)). We 

regress simulated ice core annual mean Na concentrations from the BASE simulation against 

annual mean sea ice area of each grid cell in the Arctic region (Fig. S5). Annual mean Na 

values are used because seasonal values are often difficult to resolve in these high Arctic 

cores (e.g., Criscitiello et al., 2016). Most of the ice cores show only limited areas of 

significant (p < 0.05) regression between Na and sea ice in distal locations where sea salt 

aerosol is unlikely to be sourced from. The lack of positive correlation between sea ice area 

and the simulated ice core Na records could be due to the nature of the recent Arctic sea ice 

change. A marked decrease in area has occurred in minimum [September] sea ice, whereas 

winter [February] sea ice area has remained fairly consistent (Fig. 1) until very recently. As 

most of the SISS is deposited during the winter months when sea ice is at its maximum extent 

(Rhodes et al., 2017), a modest winter sea ice change may be difficult to detect in ice core 

Na. There are very few regions of significant regression between maximum (winter) sea ice 

area and the simulated ice core Na time series (Fig. S6). 

Contrary to expectations, the simulated ice core Na records from Akademii Nauk, and 

to a lesser extent Penny Ice Cap, show negative correlation with local sea ice area. Akademii 

Nauk Na has significant inverse relationship (R2 = 0.54, p<0.002) with sea ice area (Fig. 3D) 

across a broad region encompassing areas of the Laptev, Kara and Barents Seas (Fig. 3A). 

Particularly from 2000 CE onwards, a gradual decrease in sea ice area is accompanied by a 

decadal-scale increase in ice core Na (Fig. 3B-C). The Na increase is not fuelled by 

additional OOSS input—the SISS:OOSS remains more or less stable (Fig. 3C). Instead, the 

Na increase can be linked to the changing proportion of sea ice that is first-year (annual) 

relative to multi-year (perennial). Over the 1991–2015 CE interval, the fraction of sea ice that 

is first-year rises from 0.43 in 1991–1995 CE to 0.70 in 2010–2015 CE (Fig. 3B). As first-

year sea ice produces twice as much SISS aerosol as multi-year sea ice in our SISS emission 
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parameterisation (section 2.1), SISS emissions increase causes elevated Na levels at 

Akademii Nauk despite the decrease in total sea ice area.  

This result can be compared to the ALLSI and FYSI experiments. When all sea ice 

emits SISS equally (ALLSI), there is no significant relationship between sea ice area and 

Akademii Nauk Na (Fig. 3E) once the outlier (2012-2013 CE, year of record low sea ice) is 

removed. It is the first-year sea ice variability that generates the inverse relationship between 

Akademii Nauk Na and sea ice area, as the FYSI results show (Fig. 3F).   

If we examine this relationship for the VARYEMIS and VARYMET runs, the results 

are as expected. No significant statistical relationship between sea ice and Na is identifiable 

for the VARYMET run (Fig. 3H), while the VARYEMIS run (Fig. 3G) produces a similar 

relationship to the BASE simulation. This reiterates our finding that emissions strength, and 

not transport and deposition processes driven by meteorology, controls Akademii Nauk Na 

concentrations. 

4.2 Link to SISS emissions 

Despite the lack of positive correlation between ice core Na and sea ice at the Arctic 

sites identified, if we regress the simulated ice core Na records against SISS emissions 

instead of sea ice area, all the cores show a region of significant positive (R > 0.5) regression 

located close to the ice core site (Fig. 4). Furthermore, each of these regions is encompassed 

by the area of air mass origin for that ice core site, as indicated by back-trajectory analysis. 

This illustrates that the Na variability of these ice cores is related to aerosol source strength, 

as our sensitivity tests suggest, but that recent local sea ice change (particularly in winter) has 

not been great enough to substantially impact annual SISS emissions. However, the 

significant positive relationships between local SISS emissions and ice core Na signals 

suggest that a larger-scale change in sea ice conditions would impact SISS emissions and the 

Na records of the proximal ice cores would register a shift. The critical question is: which 

direction would Na concentrations shift? A sea ice change involving total collapse of year-

round sea ice cover would result in decreased Na but the Akademii Nauk results suggest that 

a switch from a perennial to annual sea ice regime could instead cause an increase in Na.  

4 Conclusions 

Based on the chemical transport model results presented, we conclude that it is highly 

unlikely that inter-annual variability in Na concentrations from inland Greenland ice cores 

will reflect fluctuations in sea ice extent or that a decadal scale trend in Greenland ice core 

Na could be related to Arctic sea ice under present-day [late Holocene] conditions. The 

contribution of SISS to the Na budget is consistently low across Greenland interior (Fig. 1) 

and variations in transport and deposition related to meteorology determine Na variability, 

rather than emissions strength (Fig. 2). These results lend support to previous work on 

Holocene Greenland ice cores that demonstrates Na variability is closely linked to large-scale 

atmospheric circulation patterns and their influence on aerosol transport and deposition 

(Fischer & Mieding, 2005; Hutterli et al., 2007). 

Alternatively, our results suggest that low elevation ice domes located close to the sea 

ice in the high Arctic offer the best potential for preservation of inter-annual and/or decadal 

scale Na signals related to sea ice variability. These ice cores are dominated by Na sourced 

from the sea ice surface rather than the open ocean (Fig. 1) and our sensitivity tests suggest 

that storminess, and its impact on aerosol transport and deposition, is of secondary 

importance to the strength of sea salt emissions in controlling the ice core Na signal (Fig. 2). 

This is reflected by positive correlation between the strength of local SISS emissions and ice 

core Na concentration in all seven of the Arctic ice cores selected (Fig. 4). Despite this, none 
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show significant positive correlation between Na and sea ice area over 1991–2015 CE, 

suggesting that the recent decline in winter Arctic sea ice was too modest to impact annual 

SISS emissions significantly.  

 However, the Akademii Nauk ice core simulation shows negative correlation between 

local sea ice area and Na concentration, driven by the increasing area of first-year sea ice as 

the sea ice regime changes from predominantly perennial to annual (Fig. 3). The strength of 

this relationship is dictated by the parameterisation of sea salt aerosol emissions from the sea 

ice, specifically the influence of sea ice thickness and/or age seasonality on snow salinity, 

which we have very few constraints on. This example highlights the critical need for 

coordinated field measurements of snow on sea ice (salinity, depth, density) and its 

relationship to sea ice age/thickness and sea salt aerosol production.  

Under our current assumption that multi-year sea ice contributes half as much aerosol 

as first-year sea ice, our simulations here suggest that Arctic ice core Na may be sensitive to 

two modes of sea ice change in the Holocene: 1) retreat/expansion of winter sea ice, 2) switch 

between perennial and annual sea ice regimes. Combining sea salt Na with other ice core 

chemistry related to sea ice and associated marine productivity could prove valuable in 

disentangling such changes. 
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Figure 1. Simulated fraction of annual Na in snowfall that is SISS (not OOSS) at Arctic ice 

core locations for BASE simulation 1991–2015 CE. Symbol size is proportional to simulated 

median Na concentration. Ice core labels: PIC=Penny Ice Cap; DIC=Devon Ice Cap; 

2B=2Barrel; CC=Camp Century; POW=Prince of Wales; SMT=Summit; HB=Humboldt; 

RL=Renland; AG=Agassiz; HT=Hans Tausen; FI=Flade Isblink; SV=Svalbard; WD=Windy 

Dome; AN=Akademii Nauk. Please see Table S2 for references to individual ice core studies. 

Solid lines mark maximum sea ice extent and dashed lines mark minimum sea ice extent in 

1991 (black) and 2012 (red). 1000 m topographic contours are shown over land. 
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Figure 2. Relative influence of meteorology and sea salt aerosol emissions strength on Na 

concentrations in Arctic ice cores 2000–2015 CE. Colored circles display normalised root mean 

squared deviation (NRMSD) between monthly snow Na of a) CONTROL and VARYMET and 

b) CONTROL and VARYEMIS, both normalised to mean snow Na of CONTROL. Lower 

values (dark red colors) indicate that the varying factor (a: meteorology and b: OOSS & SISS 

emissions) has large influence on Na. Red and black lines show sea ice extent as Fig. 1. See 

Fig. S3 for equivalent maps for SISS and OOSS individually and Fig. S4 for equivalent maps 

for January to April only.  
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Figure 3. Relationship between sea ice and Na concentrations in the Akademii Nauk ice core, 

as simulated by p-TOMCAT. Sea ice and Na concentrations are annual means calculated for 

July to June. A) Map displays grid cells with significant (p < 0.05) negative regression (blue 

colours) between sea ice area and Na of ice core (located at red asterisk). Black contour 

denotes likely origin of sea salt aerosol arriving at location (see Fig. 4 caption). Sea ice area 

across this region (60–87 ºN, 60–150 ºE, 7.7 million km2 total area) is compared to simulated 

Akademii Nauk Na concentrations on panels B–G. See Fig. S5 for equivalent maps for other 

ice core sites.  B) Change in multi-year and first-year sea ice area over time. C) BASE 

simulation Na concentrations (SISS and OOSS) over time. Scatterplots display correlation 

between sea ice area and ice core Na 2000–2015 CE for experiments: D) BASE, E) ALLSI, 

F) FYSI, G) VARYEMIS and H) VARYMET. 2012–2013 CE result (red cross) is included 

in red linear fit and excluded from black linear fit. Coefficients of determination (R2) 

displayed are significant at p < 0.05. 
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Figure 4. Regression of simulated ice core Na against SISS emissions for seven selected Arctic 

ice cores. Each map shows regression of simulated ice core mean annual Na concentration 

against the mean annual SISS emissions rate (Tg Na yr-1) for each grid cell 1991–2015 CE. 

Annual mean values are calculated for 12 months from July to June. Only areas of significant 

regression (p < 0.05) are shown. Ice core locations are marked by red asterisks. Black contours 

denote the fraction of air mass back-trajectories from the ice core location in winter-spring that 

reside within 1000 m of the surface (0.1, 0.05 and 0.02 fractions decreasing away from ice core 

location).  


