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Abstract: Efficient hyperthermia therapy session requires knowledge of the exact amount of
heating needed at a particular tissue location and how it propagates around the area. Until now,
ultrasound heating treatments are being monitored by Magnetic Resonance Imaging (MRI)
which, besides raising the treatment instrumental cost, requires the presence of a team of
clinicians and limits the hyperthermia ultrasound treatment area due to the space restrictions of
an MRI examination procedure. This paper introduces a novel non-invasive modelling approach
of ultrasound-induced temperature in tissue. This comes as a cost effective alternative to MRI
techniques, capable of achieving a maximum temperature resolution of 0.26 °C, clearly inferior
to the MRI gold standard resolution of 0.5 °C/em3. Furthermore, we propose an innovative
modelling methodology, where various similar models are built and are further combined
through an optimization procedure, that we call neural ensemble optimization (NEO). This
combination mechanism is shown to be superior to more simple schemes such as simple averages
or evolutionary strategy based techniques.
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1. INTRODUCTION on the extraction of temporal-echo shifts (Teixeira et al.
[2008] and Teixeira et al. [2010]) and frequency shifts
Efficient hyperthermia biomedical practice demands knowl-  (Lei et al. [2013]), changes on the attenuation coefficient
edge about the exact amount of heating required at a par-  (Fukukita et al. [2002]).
ticular tissue location as well as information concerning the
spatial heating distribution. Both processes are required to
be accurately characterized. Until now ultrasound heating
treatments are being monitored by Magnetic Resonance
Imaging (MRI), recognized as being capable of achieving
a 0.5 °C//em? temperature resolution (Wyatt et al. [2009]),
the gold standard in this field. However, MRI-based tech-
niques, besides raising the treatment instrumental cost,
demand the presence of a team of clinicians and limits the
hyperthermia ultrasound treatment area due to the space
restrictions of an MRI examination procedure.

Instead of relying on the physical properties of tissue,
an intelligent computation model, based on measured
data, is proposed in this work to model the temperature
propagation inside tissues, when these are subject to
an ultrasound heating session. In order to derive the
model, as in-vivo studies are not ethical, a phantom
was utilized, whose composition reflects the ultrasound
reactions of human tissues. This way, although the data
used to construct the model was captured in an invasive
way, using the phantom, once the model is obtained, it can
be applied in a non-invasive way, in human tissues.

Different approaches have been proposed for non-invasive
temperature estimation. These techniques are based on
electrical impedance tomography (EIT) (Edd et al. [2005]),
microwave thermometry (Arunachalam et al. [2009]), mag-
netic resonance imaging (de Senneville et al. [2005]), and
backscattered ultrasound (BSU) (Straube et al. [2005]).
Focusing on wltrasound based techniques to estimate the
temperature, several methods have been reported, based

The biological complexity inherent to human tissue results
in a media with highly variable characteristics, giving
shape to different dynamics involved in the temperature
propagation process. One should expect slightly distinct
behaviours in a response to changes with respect to dif-
ferent body parts, gender and age group. The temper-
ature model to be designed should be robust enough
to contemplate this variability, and capable of modeling
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deliberately passing it through a Gaussian contamination
process. Besides contemplating possible patient-dependent
variabilities, this contaminated version can be seen as
a simulated non-invasive data set, as if it was acquired
by a non-invasive temperature monitoring method, whose
maximum error can be approximated by the standard
deviation that parametrizes the Gaussian distribution.

In this work, we propose additionally an innovative mod-
elling methodology, where various similar models are built
and further combined in a novel way, through an optimiza-

tion approach denoted as Neural Ensemble Optimization
(NEO).

The layout of the paper is: in Section 2, the material
used and the experimental setup are described; Section
3 describes the models and the modelling approaches
employed; Results are presented in Section 4, Conclusions
and future work are drawn in Section 5.

2. MATERIALS AND EXPERIMENTAL SETUP
2.1 Materials

In order to simulate human tissue, a phantom introduced
in (Vieira et al. [2010]) was used. These mimicking solu-
tions are named phantoms and they intend to exhibit simi-
lar characteristics to the ones found in human tissues. The
basic composition of the solution employed is presented in
Table 1.

Table 1. Composition of the homogeneous solution used to
mimify human tissue.

Material % Composition
water 86.5
glycerol 11.0
agar 02.5

For the localized heating of the phantoms, a therapeu-
tic ultrasound device (US), Sonopulse Generation 2000
Ibramed, was used. Temperature at the spatial points
(inside tissue) under study was measured using type-
K thermocouples, connected to a compensation module
(80TK Fluke Ewverett, WA, USA). This module is then
connected to a digital multimeter (2700/7700, Keithey),
which digitalises the temperature and makes it available
to a general purpose PC. These temperature values were
transferred to the PC via a GPIB bus (GPIB-USB-B,
National Instruments).

2.2 FExperimental Configurations

The experiments were conducted following the experimen-
tal setup illustrated in Fig. 1.

A parallelepiped phantom holds five thermocouples, con-
nected to a multimeter, invasively measuring the tem-
perature inside the media. The therapeutic ultrasound
device is placed at one exterior side of the phantom.
Four beam intensities were considered: 0.5, 1.0, 1.5 and
1.8 W/em?2. Each experiment trial has a 45 minute du-
ration, divided in three phases: temperature stabilisation,
heating and cooling. Temperature samples, measured by
the sensors, are taken each 10 seconds. Therefore, we
have available 4 beam intensities X 5 sensors x45 minutes
x6 (samples/min) = 5400 temperature data points. Each
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Fig. 1. Schematic diagram of the experimental configura-
tion. Five thermocouples are placed inside the homoge-
neous phantom. These register the temperature variations
induced by the ultrasound device (1).

operating point considers a single beam intensity, measured
at a single spatial point, which results in OP = 5 sensors
x 4 intensities = 20 operating points. Fig. 2.2 depicts the
whole data set acquired, to be used in the construction of
the models.
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Fig. 2. Data acquired by all sensors considering four US
beam intensities. Two distinct dynamics can be identified:
one concerning the heating phase, and a second observed
when the phantom naturally cools down.

Furthermore the data is interpolated using a cubic spline,
from MATLAB’s Curve Fitting Toolbox, resulting in curves
with a temporal resolution of 1 second, as opposed to the
10 second resolution obtained in the experiment.

3. MODELING METHODOLOGY

During the modeling process, the complexity of the models
is gradually increasing. We start by considering models
for single-point and single-intensity estimation. We then
gradually move the complexity of the models towards
multi-point and multi-intensity estimation.

Fig. 3 summarises the key points involved in the mod-
eling approach applied. B(asis)-splines functions (de Boor
[1992]) are used to structure the networks, which results in
structures known as b-spline neural networks (BSNN). B-
spline functions allow for a local control of the curve shape,
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since changing a control point has only a local effect, i.e.
the change is not propagated through the entire shape.
To model the unknown function of temperature propaga-
tion, a finite set of input-output observations is available.
However, expanding the spline representation to a high
dimensional space, by adding more input variables, implies
increasing the number of parameters to impractical levels.
Furthermore the identification of a proper model structure
is of crucial importance. The structure should be general
enough to capture the dynamics of the system, i.e. reduced
bias, while preventing the occurrence of overfitting, i.e.
high variance, which usually occurs when the number of
free parameters is large, with respect to the true system.
In order to overcome this issues, the ASMOD (Adaptive
Spline Modelling of Observation Data) algorithm (Kavli
[1993]) was employed. By making use of the observed
data, coupled and decoupled dependencies are identified
in the data set. Thus, the ASMOD output variable is
modelled as a sum of several low dimensional submodels,
having each submodel depend on a small subset of the
input variables. This decomposition of higher dimensional
input spaces results in more parsimonious models. The
algorithm starts with a base simple model and iteratively
refines it by adding more variables, coupling variables or
changing the internal structure of the basis functions. Fi-
nally parsimonious models are forced in the pruning step,
where variables are decoupled and the basis functions see
their degree reduced and internal structure simplified. The
refining /pruning steps continue until a stopping criterion
is met. An ASMOD model m is thus a linear combination
of B-spline basis functions:

L
m(z) =Y eibi(z) = b(x) (1)
i=1
where L is the number of basis functions, ¢ is a coefficient
vector and b(x) is a vector of B-splines. For each candidate
model m considered in the algorithm, the parameter
¢ must minimise the expected value of a chosen error
function f(.),
¢ = argmin E[f(y — ¢ b(x)] (2)
ceA
where A is a set which can be used to introduced a priori
knowledge about ¢ domain.

However, notice that we only have available a finite set of
observed data D. Additionally, the true underlying prob-
ability distribution is unknown, hence we cannot evaluate
E[f(y — c¢Tb(z)]. An alternative is to use the maximum
likelihood estimate, by making use of the available data.
We are therefore interested to minimise an empirical cost
function,

1 N
Comp = 37 D01 = "2 3)

whose solution can be analytically found.

Once we have available an algorithm that provides us as
output a accurate model with a suitable, parsimonious
structure, is possible to go one step further and use this
algorithm to obtain several of such models. By doing so,
the accuracy of the predictions is enhanced by combining
several individual predictions y; ¢y into a final output y,
with IV being the set of models considered.

ASMOD algorithm
Designs BSNN
while forcing simple
models

Optimization of the results
Ensembles of neural networks
were used to enhance the
accuracy of the predictions

Fig. 3. A summary of the modeling approach applied,
with the three main components identified: the model’s
structure, evolution process and optimization.

As explained, the contamination of the temperature sam-
ples registered by the sensors is central to assess our
approach, since it simulates the use of non-invasive data
to construct the models. We now characterize the Gaus-
sian contamination process, crucial to the assessment of
the results. By intentionally corrupting our original data
set, we can account for the variability characteristic of
the temperature propagation process. Here it is assumed
that such method would have its error governed by a
Gaussian distribution. The contamination is made on a
point-to-point basis. This means that each temperature
value in a curve is independently contaminated with a real
number drawn from a Gaussian distribution, e; ~A (0, o).
Furthermore we use an additive contamination process,
i.e. assuming vy, is the original temperature sample, the
corrupted version . is:

Ye = Yo + €4, € NN(Ov U) (4)

The distribution is parametrised with a zero mean p = 0
and a standard deviation o = 0.2,

1 ef(wfp,)2/202 _ 1.996_12'512

f(@,p,0) = o (5)

Therefore, the probability of the error being lower than
0.6 °C is P(error < 0.60) =~ 99.7%, i.e. a reliable
estimator. The contamination methodology is applied as
follows. Firstly, the original data set is contaminated
and the result is used to train and validate the models.
Afterwards the initial original set is used to test the model.
The use of such methodology ensures the model is valid
over the true process dynamics. Fig. 3 depicts the general
BSNN structure used.

The structure uses m past temperature values T'[k], with m
being the number of considered lags, which we constrained
to 5, since it was observed that additional lags were
only introducing more complexity in the system, without
significant improvements in terms of performance. Tk + 1]
represents the one step ahead temperature value estimated
by the network. I[k] denotes the US device intensity,
as measured in W/em?, providing information to the
model about the current beam intensity. P[k] provides
information about the current spatial location of the input
pattern. This input is numerically represented by the angle
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weight vector n

Fig. 4. B-spline neural network (BSNN) general struc-
ture considered in the most complex scenrario: multi-
point multi intensity. The decomposition in sub-models is
achived by the ASMOD algorithm, resulting in a simpler
structures that are additively combined. Simpler environ-
ments don’t make use of spatial information, P[k], and/or
intensity information I[k].

that the sensor makes with the US device central line beam
(Fig. 1). Each one of these inputs is mapped into a single
sub-model, which can deal with one or more variable. The
first layer in the structure performs a fixed non-linear
mapping from the input space X to the output of the
basis functions space A, X — A. The output space of
the b-splines A is then linealy mapped to the network’s
output space Y, A — Y. The linearity of the last layer,
with respect to the weights w, provides a mathematical
convenient way of adapting the parameters, since we can
analytically solve this minimization problem in one step,
a solution know as ordinary least squares (OLS).

w=(ATA) ATy (6)

th row is

where A is a matrix of size (m x n), whose m
th

composed of the transformed input vector for the m
pattern, assuming the network is built using n basis
functions in the second layer. y is the vector of desired
outputs of length m and W is the optimal weight vector.

We started by considering models for single-point and
single-intensity (SPSI) estimation. Then gradually, the
complexity of the models is increased towards multi-point
and multi-intensity (MPMI) estimation. Naturally, SPSI
models only use temperature information in their input
space (T[k] to T'[k—4] in Fig. 4). On the other hand, MPMI
models require additionally spatial and intensity informa-
tion, P[k] and I[k] respectively. These inputs provide the
model the ability to discriminate temperature variations
according to the region and the US beam intensity being
employed. Furthermore to improve the accuracy of the pre-
dictions, ensembles of neural networks are employed. Four
models, with temperature lags varying from 2 to 5, are
trained and combined into a final output. These techniques
exploit improvements that one can obtain when combining
a set of models that ideally are negatively correlated among

Optimization

Network — y(t+1)

1
1
1
1
1
1
First layer networks :

Second layer networks

1
Fig. 5. Two layered network optimization aquitecture. The
second layer combines all the individual outputs from the
first layer network, by performing a non linear mapping
R**™ — R. With n being the number of individuals in
the first layer, and m is the number of additional inputs.

them. Assuming that the performance of the set of models
S models is comparable, and if their outputs are negatively
correlated, simply averaging between them can result in
major performance improvements, as elegantly introduced
by [Krogh et al., 1995]. Instead of simply taking the aver-
age of the ensemble we propose an innovative approach to
combine the individual networks. We make use of a second
BSNN layer that acts as an optimizer agent, which we
call neural ensemble optimization (NEQO), combining the
information from all the different sources. This concept is
materialized in the archtecture illustrated in Fig. 5.

The final layer output is given by:

ylk+1] = flnlk+1],... ynlk + 1], ar[k], .. ., an[K]) (7)
where y;(t) represents the individual next-step prediction
of network ¢, and a;(t) consists of additional information
up to moment k, that may guide the network towards
an optimal combination of y;(t). f(...) is the underlying
function to the neural network, performing a non linear
mapping R*™™ — R. n is the length of the ensemble,
and m is the number of (optional) additional inputs. In
this application, the additional information is I[k] and
P[k]. The proposed ensemble combination approach is
compared with two others combination schemes: a) simply
averaging (SA) the individual outputs in the second layer;
b) a weighted sum of all the individual outputs in the
second layer, where each weight w; is obtained using an
evolutionary strategy (ES) with uncorrelated mutations
and n step sizes [Eiben et al., 2003].

During the modeling process, we make the distinction
between two phases observed during the evolution of the
temperature in the phantom: a heating phase and a cooling
phase. These two distinct phases are observed to have
different dynamics (recall Fig. 2). This is intuitively true
since the physical process that generates them is undoubt-
edly different and governed by different rules. Note that
the heating is forced by the US device, whereas on the
other hand, once the device is turned off, the phantom
cools down in a natural way, without an external source
doing work on the system. This observation suggests an
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implementation that incorporates this distinction, which
can be done by considering two models, one for each phase.
The data is divided into two subsets, one for each cycle of
the process. Each one of the subsets is used to construct
the corresponding model.

4. RESULTS

The data depicted in Fig. 2 is corrupted by a Gaussian
contamination process, resulting in the transformed data
set presented in Fig 6.

1.0 Wiem?

0.5 Wiem?

N
N

—Sensor 1
——Sensor 2
——Sensor 3
——Sensor 4
Sensor 5§

Temperature °C
NN
3 3

)
x

0 10 20 30 40 50 0 10 20 30 40 50
Time (min)

1.5 Wiem? 1.8 Wiem?

0 10 20 30 40 50 0 10 20 30 40 50

Fig. 6. Result of the Gaussian contamination process
applied to the data of Fig. 2.2. This data was further
divided and used to train and validate the models.

These temperature curves concern data collected by dif-
ferent sensors, placed at difference spatial locations (Fig.
1), using four different US beam intensities. Therefore,
this data was used to construct a multi-position multi
intensity (MPMI) model. Refering to the contaminated
set, the validation set included the following curves: sensor
2: 0.5W/em?, sensor 3: 1.0W/em?, sensor 4: 1.5W/cm? and
sensor 5: 1.0W/cm?. The remaining curves were used to
train the model. We considered one-step ahead predictions,
with a prediction horizon h = 60 seconds. The models,
once designed, were tested using the original uncorrupted
data, Fig. 2.

The criteria used for comparing the different models are
the M SE, MSE, and M SE; which represent the average
(over the data considered for each set) mean square error
(MSE) obtained in the training, validation and test set,
respectively. Additionally, since this is a biomedical appli-
cation, the average mean square error over the test set,
M e, is a critical indicator, necessary to assure the patient
safety. As a starting point, for comparison purposes, two
additional ensemble mechanism were compared against
the NEO approach: i) simple average (SA) and ii) an
evolutionary strategy (ES) with uncorrelated mutations
and n step sizes. The average MSE error obtained in the
test set, i.e. the generalization error, is compared with the
traditional keep-the-best model approach (KTB), consid-
ering 4 different BSSNs whose structures are depicted in
Fig. 4, with temperature delays varying from 1 to 4.

Table 2 shows the improvement (in percentage) of per-
formance of the three ensemble strategies, relatively
to the KTB approach. The comparison was done over
two model typologies: single-position single-intensity and
single-position multi-intensity. NEO clearly achieved the
best results in a consistent way, i.e. improving the perfor-
mance in every case considered. The SA method is clearly

a bad approach, followed by the ES option, whose action
allowed, in some cases, considerable performance gains.
NEO outperforms ES simply because the evolutionary
approach, in the optimization phase, assigns the largest
weight to the network that, on average, performs better,
i.e. the KTB model. NEO explores a wider search space
and has the flexibility of assigning dynamic weights as
a function of the current operating point, thus retaining
information about which model performs better at which
region. Note that this second level information is lost in
the ES approach.

Table 2. Generalisation (test) error comparison between the
various ensemble methods employed and the traditional
KTB approach. The best values are denoted in bold. A
negative value means a worst performance.

Improvement (%)

Typ. #S L (W/em?) SA ES NEO
0.5 -52.09 17.24  36.77

1 1.0 -51.40  -33.10 34.50

1.5 -10.85  -17.42  26.84

1.8 -02.11  -05.94  00.99

0.5 57.04 8524 95.33

9 1.0 -166.7 -22.60 33.23

1.5 -129.7  -52.12  17.00

1.8 -78.54 -175.9 17.87

0.5 -110.3° 73.08 70.13

1.0 -88.92  03.47 178.06

SPMI 3 1.5 -92.06  26.93  35.42
1.8 -170.2  19.87 28.36

0.5 -149.4 4517 83.53

4 1.0 -117.4  40.10  49.99

1.5 -100.0 38.88 21.15

1.8 -107.7 3742  64.08

0.5 -122.3 3218 53.48

5 1.0 -216.1  70.01  82.41

1.5 -245.1 60.14  57.28

1.8 -107.4 2499  34.04

1 all -00.35 16.26  73.69

2 all -66.12  41.23  53.20
SPMI 3 all -101.4  69.83  70.98
4 all -59.04  84.79  84.72

5 all -104.6  80.33  78.48

Fig. 7 presents the results obtained in the test set, obtained
by the NEO approach.
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Fig. 7. Comparison of the desired behaviour (black line)
and the values estimated by the network (grey line).

The proposed modelling approach was able to construct a
reliable approximation of temperature propagation expe-
rienced by the phantom, throughout the two dimensions
considered: space and US beam intensity. Table 3 reports
the performance criteria obtained.
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Table 3. Performance criteria obtained for the MPMI
model, trained with the data from Fig. 6 and tested with
the data set from Fig. 2.

Criterion Heating Cooling
MSE °C 0.0324 0.0220
MSE, °C 0.0332 0.0354
MSE; °C 0.0606 0.0256
Mge °C 0.2629 0.2151

From the analysis of these criteria, the success of the mod-
elling approach is clear. In particular, the M, obtained is
0.2629, clearly below the gold standard of 0.5 °C'/em3.

The maximum absolute error M,, is a crucial indicator
for a biomedical application. Table 4 exposes the vari-
ation of this criterion through all of the model typolo-
gies considered, confronting the results obtained using
the uncorrupted data set, with the ones observed with a
contaminated data set.

Table 4. Maximum absolute error obtained for different

modelling typologies, with different complexities.
Maximum Absolute Error °C

uncorrupted corrupted
Typology Average Max Average Max
SPSI 0.1212 0.3230 0.0831 0.3039
SPMI 0.1379 0.3252 0.0564 0.1666
MPMI 0.0475 0.0510 0.2345 0.2629

The results show the maximum absolute errors were con-
sistently kept under 0.24 °C, providing a comfortable
margin when confronted with the 0.5 °C' MRI reference.

Is also interesting to note that the maximum absolute
error did not scaled with the increasing model complexity,
with all typologies registering comparable values. This is
a very meritorious indicator that suggests the reliability
of the system can scale along side with the modelling
environment complexity.

5. CONCLUSIONS

In this paper a novel B-spline non-invasive approach
for modelling ultrasound-induced temperature in tissues
has been presented. Simulation results show that the
use of BSNN predictive models, not requiring additional
instrumentation, are able to supersede the MRI gold
standard, 0.5 °C//em? temperature resolution.

As the structure of the model is a combination of BSNN
models, which are piecewise polynomials, it means that
these models can be inverted and used in a feedback
control loop, therefore providing closed loop control of
therapeutic ultrasound instruments, in contrast with the
open loop use found nowadays. Work is being done to
achieve this goal.
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