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Abstract 

BMP2, BMP4 and BMP16 form a subfamily of bone morphogenetic proteins acting as 

pleiotropic growth factors during development and as a bone inducers during osteogenesis. 

BMP16 is the most recent member of this subfamily and basic data regarding protein structure 

and function, and spatio-temporal gene expression is still scarce. In this work, insights on 

BMP16 were provided through the comparative analysis of structural and functional data for 

zebrafish BMP2a, BMP2b, BMP4 and BMP16 genes and proteins, determined from three-

dimensional models, patterns of gene expression during development and in adult tissues, 

regulation by retinoic acid and capacity to activate BMP signaling pathway. Structures of 

Bmp2a, Bmp2b, Bmp4 and Bmp16 were found to be remarkably similar, with residues 

involved in receptor binding being highly conserved All proteins could activate the BMP 

signaling pathway, suggesting that they share a common function. On the contrary, stage- and 

tissue-specific expression of bmp2, bmp4 and bmp16 suggested the genes might be 

differentially regulated (e.g. different transcription factors, enhancers and/or regulatory 

modules) but also that they are involved in distinct physiological processes, although with the 

same function. Retinoic acid, a morphogen known to interact with BMP signaling during 

bone formation, was shown to down-regulate the expression of bmp2, bmp4 and bmp16, 

although to different extents. Taxonomic and phylogenetic analyses indicated that bmp16 

diverged before bmp2 and bmp4, is not restricted to teleost fish lineage as previously reported, 

and that it probably arose from a whole genomic duplication event that occurred early in 

vertebrate evolution and disappeared in various tetrapod lineages through independent events. 
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Names/acronyms of genes/proteins of species with different nomenclature conventions are 

used throughout this study. To reduce heterogeneity no convention will be used and acronyms 
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will be uppercased. However, convention will be maintained for zebrafish which is the main 

specie studied here. 

 

Introduction 

Whole genome duplications (WGDs) are key features in species evolution that allow 

organisms to develop new characteristics [1]. WGDs are often related to bursts in organism 

diversity and complexity [1, 2] and many families of genes are known to have evolved 

through genome duplication [1, 3]. Despite some controversy, it is commonly accepted that 

three whole genome duplication occurred during vertebrate evolution: the first and second 

duplication events occurred early in the vertebrate lineage, approximately 500 million years 

ago, while the third event only affected teleost fish genome [2, 4–7]. After duplication, the 

paralogous gene (copy of the original gene) can co-exist with the original copy and 

complement its function (subfunctionalization) or diverge and develop a new function 

(neofunctionalization) [8, 9]. However, WGDs are typically followed by massive gene loss, 

and in most cases only a single copy of the duplicated genes will be maintained [10]. 

Moreover, gene loss among distantly related lineages often results in hard-to-interpret 

molecular phylogenies as in the case of bone morphogenetic proteins (BMPs) 2, 4 and the 

recently identified BMP16 [11, 12].  

Products of the BMP2 and BMP4 genes belong to the transforming growth factor  (TGF 

superfamily of multifunctional growth factors, and are involved in several key mechanisms of 

vertebrate development [13, 14], such as bone formation [15]. The primary structures of 

BMP2 and BMP4 proteins have been remarkably conserved throughout evolution and human 

mature BMP2 and BMP4 share 90% identity and are 75% identical to their Drosophila 

homolog decapentaplegic (DPP). The conservation of protein function has also been 

demonstrated through the interchangeability of Drosophila and mammalian proteins: DPP can 

induce endochondral bone formation when introduced subcutaneously in mouse [16], while 

mammalian BMP4 protein is able to rescue the dorsal-ventral defects resulting from the lack 

of DPP in Drosophila [17]. BMP2 and BMP4 genes are expressed in a wide variety of tissues, 

and their expression in early stages of development was shown to be crucial for organism 

viability, as demonstrated by the early lethality of mice deficient for BMP2 or BMP4 gene 

[18]. 

Based on sequence similarities, Feiner et al. [12] identified in 2009 a new member of the 

BMP2/4 subfamily, which was later named BMP16. While it was initially presented as a 
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teleost fish specific protein, its presence has recently been reported in the genome of non-

teleost fish species suggesting that its origin is not related to the third, teleost-specific, WGD 

event [19]. Expression of bmp16 gene was analyzed by in situ hybridization during early 

zebrafish development and detected mainly in the developing heart, gut epithelium and swim 

bladder [12]. In adult Senegalese sole tissues, BMP16 transcript was detected through 

quantitative real-time PCR in branchial arches, brain, intestine and heart [19]. Not much more 

is known about BMP16, in particular its capacity to activate BMP signaling pathway as 

BMP2 and BMP4 [20–22] or its role during vertebrate development. 

The aim of this work is to provide new insights into the origin of BMP16 and characterize the 

evolutionary relationship of the members of BMP2/4/16 subfamily but also to collect data on 

protein function and gene regulation through the comparative analysis of protein structure 

homology models, capacity to activate BMP signaling pathway, spatiotemporal gene 

expression profiles and regulation by retinoic acid. 

 

Materials and methods 

Ethics Statement 

Animal handling and experiments are legally accredited by the Portuguese Direcção Geral de 

Veterinária (DGV) and all the experimental procedures involving animals were performed 

according the EU (Directive 86/609/CEE) and National (Portaria nº 1005/92 de 23 de 

Outubro; Portaria nº 466/95 de 17 de Maio; Portaria nº 1131/97 de 7 de Novembro) 

legislation for animal experimentation and welfare 

Gene sequence collection and reconstruction 

Annotated sequences for BMP2, BMP4 and BMP16 were retrieved from GenBank 

(ncbi.nlm.nih.gov) and Ensembl (ensembl.org) databases using on-site BLAST facilities. In 

some cases, sequences were reconstructed from expressed sequence tags (EST), genome 

survey sequences (GSS), whole genome shotgun (WGS) sequences, and transcriptome 

shotgun assembly (TSA) available through GenBank sequence databases. Species-specific 

sequences were clustered and assembled using the ContigExpress module of Vector NTI 

software (Invitrogen). Gene structures were predicted using the Spidey mRNA-to-genomic 

alignment tool (ncbi.nlm.nih.gov). Genomic organization of BMP16 gene flanking regions 

was determined using genomic data available in Ensembl database. 
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Multiple sequence alignment and phylogenetic reconstruction 

BMP2, BMP4 and BMP16 gene sequences were aligned using TranslatorX V1.1 [23]. The 

nucleotide alignment was manually adjusted using SeaView V3.2 [24] where parts of 

sequences were arbitrarily aligned (2 accessions, namely, sea squirt and fruit fly). 

Unambiguously aligned characters were defined using Gblocks V0.91b [25] and the following 

options in the SeaView interface: “allow gaps in final positions” (-b5=h), "do not allow many 

contiguous non conserved positions" (-b3=4), and "allow smaller final blocks" (-b4=5). A 

single block of positions was eliminated where the alignment with outgroup sequences 

(lancelet, fruit fly, sea squirt) was arbitrary. The final alignment consisted of 58 taxa and 612 

aligned nucleotides, which translated to 204 amino acids. Phylogenetic analyses, using 

maximum likelihood, were conducted using RAxML V7.8.4-MP [26] and Bayesian 

phylogenetic inferences were conducted using P4 V0.89.r234 [27]. Appropriate models were 

determined using ModelGenerator V0.85 [28]: for nucleotides this was a general time-

reversible substitution model (GTR) with a gamma-distribution of among-site rate variation 

(4 discrete categories) (+Γ) and a proportion of invariant sites (+I), and for amino acids the 

LG [29] empirical substitution matrix with +Γ and estimated stationary amino acid 

frequencies (+Fest). Non-stationary composition model analyses were performed in P4 with 

the addition of extra composition vectors (CV) to the best model (see Online resource 2 for 

details on individual analyses). 

3D model building of zebrafish Bmp2a, Bmp2b, Bmp4 and Bmp16 

Mature peptides of zebrafish BMP2, BMP4 and BMP16 and human BMP2 were aligned 

using the ClustalW Omega server (ebi.ac.uk/Tools/msa/clustalo). The pairwise identities 

ranged from 64.7% (BMP16) to 83.3% (BMP2b). At this level of identity, reliable homology 

models can be built from one structure determined experimentally [30]. Structure 1REW 

available in the Protein Data Bank (complex between human BMP2 and the ectodmain of its 

type IA receptor [31]) was selected to serve as template. Water molecules and receptor chains 

were removed from the structure file and the remaining BMP2 dimer used as template for 

homology building using the MODELLER v9.12 software package [32]. Since the first 11 

residues of human BMP2 mature peptide are missing in PDB structure, matching zebrafish 

segments were removed from the alignment. Structures were modelled as dimers with an 

intermolecular SS bond, the active form of BMPs. For each protein 50 models were generated 

and the one with the best DOPE score [33] was selected. The absolute quality of the four 
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selected models was evaluated using the Z-DOPE score, and also checked using the QMEAN 

and MOLPROBITY servers. The final models were displayed and analyzed using the PyMOL 

Molecular Graphics System version 1.5.0.4 Schrödinger, LLC. Images of the complex 

between BMPs and the BMPRIA/ACVR2 receptors were prepared using receptor coordinates 

from PDB structures 1REW (BMPRIA) and 2GOO (ACVR2) and preserving the relative 

position of receptors and binding partners seen in those structures  

Vector construction 

Coding sequences of zebrafish bmp2a, bmp2b, bmp4, and bmp16 (accession numbers 

NM_131359, NM_131360, NM_131342 and NM_001171776, respectively) were amplified 

by PCR using the proofreading Advantage cDNA polymerase (Clontech), reverse-transcribed 

mRNA extracted from ZFB1 cells [34] and gene-specific primers designed according to 

available sequences (Table 1) and directionally inserted into pcDNA3.1 expression vector 

(Invitrogen), under the control of pCMV promoter. DNA integrity was confirmed through 

sequencing (Note: cloned sequences contained single nucleotide polymorphisms that did not 

alter protein sequence; they have been deposited into GenBank database with the following 

accession numbers: bmp2a, KM820423; bmp2b, KM820424; bmp4, KM820425 and bmp16, 

KM820426). 

Luciferase assays 

ABSa15 cells (ECACC catalogue no. 13112201) [35] were seeded at 4 × 10
4
 cells/well in 24-

well plates and cultured in DMEM medium for 16 h at 33ºC under 10% CO2. Sub-confluent 

cultures were transfected using 1.5 μl of X-tremeGENE HP DNA transfection reagent 

(Roche) with vectors expressing (1) zebrafish bmp2a, bmp2b, bmp4 or bmp16 under the 

control of CMV promoter (pcDNA3 vector backbone; 200 ng), (2) firefly luciferase under the 

control of BMP-responsive elements (BRE-Luc vector; 250 ng [36]) and/or (3) renilla 

luciferase under the control of SV40 promoter (pRL-SV40 vector; 200 ng; Promega). After 

48 h, cells were lysed and luciferase activities were measured in a BioTek Synergy 4 plate 

reader using Dual-Luciferase Reporter Assay system (Promega). Relative luciferase activity 

was determined from the ratio F-Luc/R-Luc and is presented as the fold change over pGL3 

basic vector. 

Larval rearing and sampling 
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Zebrafish eggs were obtained from natural spawning of in-house broodstock maintained in a 

ZebTec housing system (Tecniplast). Water parameters were maintained as follows: pH 7.6 ± 

0.2; conductivity 700 mS; dissolved oxygen 7.8 mg L
-1

; photoperiod 14:10 hours light:dark. 

Fertilized eggs were maintained until hatching in 1-L water tanks at a density of 200 eggs L
-1

 

with 0.5 ppm of methylene blue to avoid fungi development. Hatched larvae were raised until 

30 days post-fertilization (dpf) in 1-L water tanks at a density of 100 larvae L
-1

, with 90% of 

the water renewed every two days. Larvae from 5 to 10 dpf were fed twice a day with Artemia 

nauplii (AF strain INVE, 5-10 nauplii mL
-1

) and from 8 to 30 dpf with Artemia metanauplii 

(EG strain INVE, 10 metanauplii mL
-1

). Juveniles, adults and broodstock were fed twice a 

day with commercial dry food and once a day with Artemia metanauplii. 

Zebrafish embryos and larvae were sampled at 1 (4 cells), 3 (1k cell), 16 (14 somites), 24, 32, 

48, 72 and 96 hours post fertilization (hpf), and 5, 7, 9, 12, 15, 20, 25 and 30 dpf. The amount 

of material sampled at each developmental stage was adapted to specimen size and ranged 

between 100 eggs and 5 early juveniles (30 dpf). Adult zebrafish tissues were collected and 

pooled from 3 males and 2 females. All specimens were anesthetized with a lethal dose of 

tricaine methanesulfonate (MS-222, Sigma-Aldrich) and washed with sterile distilled water 

before sampling. Specimens and tissues collected for gene expression analysis were placed in 

10 volumes of TRI-Reagent (Ambion) and stored at -80 ºC until processed.  

 

Cell exposure to retinoic acid 

Sub-confluent cultures of ZFB1 cells [34] were exposed for 24 h to 1 µM all-trans retinoic 

acid (atRA; Sigma-Aldrich) or 0.01% of dimethyl sulfoxide (DMSO; vehicle), washed 3 

times in ice-cold phosphate-buffered saline, scrapped out and stored in TRI-Reagent.  

 

RNA extraction and quantitative real-time PCR 

Total RNA was extracted from samples stored in TRI-Reagent following manufacturer 

instructions and purified using the High Pure RNA Isolation kit (Roche). RNA integrity was 

confirmed using Experion Automated Electrophoresis system (Bio-Rad) and quantity was 

determined using NanoDrop spectrophotometer (Thermo Scientific). Total RNA (500 ng) was 

reverse-transcribed for 1 h at 37ºC using M-MLV reverse transcriptase (Invitrogen), oligo-

d(T) primer and RNase OUT (Invitrogen). All quantitative real-time PCR (qPCR) reactions 
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were performed in triplicates using SsoFast EvaGreen Supermix (Bio-Rad), 0.25 μM of 

isoform-specific primers (Table 1) and 1:10 dilution of reverse-transcribed RNA, in a 

StepOnePlus Real-Time PCR system (Applied Biosystems). PCR amplification was as 

follows: an initial denaturation step of 1 min at 95ºC and 40 cycles of amplification (5 s at 

95ºC and 10 s at 65ºC). Efficiency of amplification was above 95% for all primer sets. Levels 

of gene expression were calculated using the ΔΔCt comparative method [37] and normalized 

using housekeeping genes, whose suitability was evaluated using Normfinder and BestKeeper 

algorithms [38, 39]. β-actin 2 and rps18 were selected to normalize gene expression in 

developmental stages and cells, and tissues, respectively. 

 

Results 

Taxonomic distribution of vertebrate BMP2, BMP4 and BMP16: BMP16 is not fish-specific 

Sequences with a high similarity to BMP2, BMP4 and BMP16 were retrieved from GenBank 

and Ensembl databases using on-site BLAST tools and multiple sequences as queries. An 

overview of the taxonomic distribution of BMP2, BMP4 and BMP16 is presented in Fig. 1. A 

single BMP2/4 isoform is present in several invertebrate genomes and three copies of the 

same gene are found in the jawless fish superclass Agnatha (e.g. lampreys). BMP2 and BMP4 

are present as two independent genes in all gnathostomes (clade G in Fig. 1). No BMP2 

sequence was found in Chondrostei (e.g. sturgeon and bichir) and although we cannot exclude 

the possibility of gene loss in the lineage, it is probable that its absence in sequence databases 

is a consequence of the scarce genomic data available for those species. In contrast, two 

BMP2 genes (BMP2a and BMP2b) are present in Ostariophysi genomes (e.g. zebrafish). The 

presence of BMP16 gene is restricted to the genome of few gnathostome taxa. BMP16 gene 

has been identified in a large number of Neopterygii species (clade N in Fig. 1) but not in 

Chondrichthyes and Chondrostei, which are both early-branching fish lineages of 

gnathostomes and again have limited genomic data available. The BMP16 gene was also 

found in Coelacanthidae (coelacanth) and in Lepidosauria (e.g. lizards and snakes) but not in 

other Sarcopterygii (clade Sa in Fig. 1), including Amphibia, Testudines, Archosauria, and 

Mammalia. In the latter organisms genomic data is abundant suggesting that the absence of 

BMP16 is not due to a lack of data. 

To better understand the mechanisms underlying the loss of the BMP16 gene, genomic 

regions flanking BMP16 locus were analyzed from a subset of species representing the major 
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vertebrate taxonomic groups (Fig. 2). As expected, gene composition and synteny 

surrounding the BMP16 locus are more conserved in closely related species (e.g. the Japanese 

medaka, the spotted green pufferfish, the three-spined stickleback and the southern platyfish) 

than in evolutionarily distant species (e.g. zebrafish, coelacanth and green anole). However in 

some cases, for instance in three-spined stickleback and southern platyfish, gene translocation 

was observed. In tetrapods, where the BMP16 gene is missing, two different scenarios were 

observed: (1) genes surrounding the BMP16 locus (i.e. GEMIN7 and PPP1R37 (core genes) 

but also RELB, CLPTM1, RTN2) are present, suggesting that the BMP16 gene was 

selectively removed from their genome (e.g. western clawed frog, painted turtle, mouse and 

human) and (2) genes surrounding the BMP16 locus were also absent, suggesting that the 

entire chromosome region was lost (e.g. chicken and zebra finch). An analysis of the regions 

that would typically have contained the BMP16 gene (scenario 1) did not reveal the presence 

of undetected genes, pseudogenes or remnants of the BMP16 gene, favoring the hypothesis of 

an active removal of BMP16 gene in these species. Our data demonstrate the presence of the 

BMP16 gene in ray-finned, lobe-finned fish and also in tetrapods, although it has been 

independently lost in several tetrapods during evolution. Moreover, our data show that the 

BMP16 gene is not specific to the teleost fish lineage as previously claimed [12]. 

Evolution of the BMP2, BMP4, and BMP16 genes: BMP16 diverged before BMP2 and 

BMP4 

The molecular phylogeny of BMP2, BMP4 and BMP16 genes was inferred from a subset of 

58 complete coding sequences (Online resource 1), representing the main vertebrate taxa (i.e. 

jawless fish, cartilaginous fish, ray-finned and lobe-finned fish, amphibians, sauropsids and 

mammals). The optimal maximum likelihood (ML) tree and the bootstrap proportions of the 

BMP nucleotide data under the GTR+Γ+Fest model are presented in Online resource 2a and 

2b. Bayesian Markov chain Monte Carlo (MCMC) analyses revealed that the data were non-

stationary and that 2 composition vectors using the node-discrete compositional heterogeneity 

(NDCH) model implemented in P4 were necessary to model the among lineage composition 

(Online resource 2c, 2d and 2e). ML bootstrap and Bayesian MCMC analyses of the 

translated amino acid sequences of the BMP genes resulted in trees which were neither 

analysis well-resolved or well-supported due to a lack of substitutional information at the 

protein level (data not shown). A 50% majority rule consensus tree of trees sampled from the 

posterior distribution of the non-stationary composition P4 MCMC (GTR+Γ+I+CV2; Online 
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resource 2e) analysis of the nucleotide sequence data (analytical details are provided in 

Online resource 2) is presented in Fig. 3, with posterior probabilities and ML bootstrap 

support values indicated at nodes. In this tree, BMP16 is seen to diverge first before the split 

of BMP2, BMP4 and BMP2/4 of the Agnatha. Branch lengths tend to be slightly longer in the 

BMP16 clade compared to BMP2 and BMP4 clades, indicating a higher substitution rate and 

molecular divergence of this isoform. The BMP2/4 isoforms (2/4a, 2/4b or 2/4c) from 

lamprey are more closely related to the BMP2 and BMP4 members than they are to BMP16, 

indicating that the three isoforms of BMP2/4 present in lamprey genomes are the result of 

lineage specific duplication and would have occurred after the split of BMP16 from BMP2 

and BMP4. In all the gnathostomes only one homolog for each of the three genes (BMP2, 

BMP4 and BMP16) was found, except for a particular group of teleost fish (Ostaryophisi), 

which includes zebrafish. It is probable that the two isoforms of BMP2 (BMP2a and BMP2b) 

present in Ostariophysi resulted from the third, teleost-specific, WGD that occurred 

approximately 350 million years ago [40], and suggesting that the second isoform was 

subsequently lost in the lineage leading to modern teleosts. 

Zebrafish BMP2a, BMP2b, BMP4 and BMP16 gene and protein structures are remarkably 

similar 

The structure of zebrafish bmp2a, bmp2b, bmp4 and bmp16 was determined from genomic 

information available in GenBank database (accession numbers: bmp2a, NC_007128; bmp2b, 

NC_007131; bmp4, NC_007128 and bmp16, CAAK05042509 and CAAK05042510) by 

direct comparison with mRNA sequences (Fig. 4). Protein-coding sequences were found to be 

remarkably conserved among the four genes, exhibiting the same number of coding exons (2), 

the same phase of intron insertion (1), a similar length (ranging from 1161 to 1251 nt), and 

sharing a high sequence identity (ranging from 52.2 to 65.7% identity over total CDS length). 

Non-coding sequences were however quite variable both in size and in structure. While absent 

in bmp2a, a 5´-non-coding exon was observed in bmp2b, bmp4 and bmp16. In bmp4, an 

alternative spliced transcript containing two 5’-non-coding exons was also identified 

(evidence supported by several ESTs). The size of 3’-untranslated regions and the number of 

consensus sites for polyadenylation signals (predicted with different confidence intervals) 

were also different among the four genes. Differences in untranslated regions could be 

indicative of different mechanisms of regulation at transcriptional and posttranscriptional 

levels. 
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Similarly, the primary structures of zebrafish Bmp2a, Bmp2b, Bmp4 and Bmp16 mature 

peptides were compared (Fig. 5a) and found to be remarkably conserved. Sequence identity 

ranged from 62.9 to 84.7% and sequence similarity ranged from 74.1 to 92.4%, with Bmp2a 

and Bmp2b being the most similar, and Bmp4 and Bmp16 being the most dissimilar. These 

observations suggest that Bmp2a, Bmp2b, Bmp4 and Bmp16 may share a similar 3D structure 

and a similar function. Three-dimensional models of the four zebrafish proteins were built 

based on the human BMP2 structure 1REW available in the Protein Data Bank (Fig. 5b). 

Given the high similarity between zebrafish proteins and human BMP2 (ranging from 64.7 to 

83.3% of sequence identity and from 78.4 to 90.4% of sequence similarity, Bmp4 being the 

most similar and Bmp16 the most dissimilar), homology models were expected to be very 

reliable and this was confirmed with various assessment scores: the four models have 

QMEAN and Z-DOPE scores within near nativeness (see material and methods and Online 

resource 3 for details). The four zebrafish protein models (Online resource 4) overlapped 

completely, evidencing their high structural conservation and further suggesting that the 

correspondent proteins may have the same function, e.g. signal transduction through binding 

to surface receptors. Model building of the four BMPs in complex with the BMPRIA and 

ACVR2A receptors further supports the case for strong structural and functional conservation. 

Indeed, seven of the ten residues of the human BMP2 localized at a 3Å distance from the 

BMPR1A (including the binding hotspots Leu51 and Asp53 [31]), as well as important 

residues (Ala-34, Pro-35, Ser-88, Met-89 and Leu-90 [41]) for the interaction with activin 

receptor type II (ACVR2A) were found to be fully conserved among zebrafish Bmp2a, 

Bmp2b, Bmp4 and Bmp16 (Fig. 5b), suggesting that members of the BMP2/4/16 subfamily 

may share the capacity to activate the same receptors. Regarding the important residues for 

receptor binding in the human BMP2, BMP16 is the most divergent protein, suggesting that it 

may not bind to BMP receptor(s) with the same affinity. 

Zebrafish Bmp2a, Bmp2b, Bmp4 and Bmp16 are activators of the BMP-signaling pathway 

The capacity of zebrafish proteins to activate the BMP-signaling pathway was assessed 

through the use of the BRE-Luc system, where BMP responsive elements (BRE) drive the 

expression of the firefly luciferase reporter gene. Assays were initially performed in the 

zebrafish ZFB1 cell line [34], but the low transfectability of these cells resulted in low levels 

of luciferase activity - close to background levels - precluding the use of zebrafish bone-

derived cells (results not shown). To maintain a certain homogeneity in our experimental 
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system, gilthead seabream mineralogenic cell line ABSa15 – previously used for this purpose 

[35] – was alternatively used to perform the assays. Relative luciferase activity remained low 

upon co-transfection of the BRE-Luc vector with the empty expression vector, but higher than 

background levels (determined by the promoter-less pGL3 basic), suggesting that endogenous 

BMPs produced by ABSa15 cells were capable of activating BMP signaling pathway. Each of 

the four zebrafish proteins strongly and significantly activated the BMP signaling pathway, 

although to different extent (Fig. 6). Bmp2a was the more effective (14.1 folds) followed by 

Bmp2b, Bmp4 and Bmp16 (8.1, 7.5 and 6.5 folds, respectively). Although values were not 

significantly different for those last three proteins, Bmp16 exhibited the lower activation 

capacity. Whether this is correlated with the higher divergence of Bmp16 for the residues 

involved in receptor binding remains to be determined. 

Expression of bmp2a, bmp2b, bmp4 and bmp16 during zebrafish larval development and in 

adult tissues 

To better understand spatial-temporal expression patterns of bmp2a, bmp2b, bmp4 and 

bmp16, transcript levels were determined by qPCR throughout larval development and in 

adult zebrafish tissues. Since housekeeping genes used to normalize the expression in qPCR 

showed some variation during early stages of zebrafish development (i.e. at 1 and 3 hpf), the 

raw Ct values will be considered as a measure of gene expression in those samples. 

Comparative analysis of Ct values (Fig. 7a) and relative gene expression (Fig. 7b) for the 4 

genes revealed limited variations of transcript levels in fish older than 16 hpf. During this 

developmental window, a slight increase of bmp2a and bmp2b expression was observed after 

hatching and at late larval development; patterns of bmp4 and bmp16 expression were 

inversely related, bmp4 being more expressed from 16 hpf to 7 dpf and bmp16 being more 

expressed from 5 dpf to 30 dpf. The most striking differences however occurred during early 

embryonic development (1-3 hpf), where expression of bmp genes appeared to be sequentially 

switched on (Fig. 7). While bmp16 transcript was detected since 1 hpf (4-cells stage) at levels 

similar to those observed in subsequent stages, suggesting that it may be maternally inherited, 

expression of bmp2a and bmp4 remained extremely low (high Ct values) at both stages, and 

significant levels were only detected at 16 hpf (bmp2a and bmp4) and 3 hpf (bmp2b). Pattern 

of bmp2b expression was intermediate, its transcript being absent or poorly expressed at 1 hpf 

but present at 3 hpf (blastula stage) at levels similar to those observed in subsequent stages. 
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Differences in the temporal expression of bmp2a, bmp2b, bmp4 and bmp16 strongly suggest 

that each isoform plays a different role in early embryonic development. 

Comparative analysis of the distribution of bmp2a, bmp2b, bmp4 and bmp16 expression in 

adult tissues (spatial expression) reveals that all isoforms were expressed in both soft and 

calcified tissues. The highest levels were found in calcified tissues, scale being particularly 

rich in bmp2b, bmp4 and bmp16 transcripts and gills (including branchial arches) rich in 

bmp2a transcripts (Fig. 8). High and intermediate levels of expression were also observed in 

specific soft tissues: intestines and brain for bmp2a and bmp2b, spleen for bmp4 and bmp16, 

and testis for bmp16. Eye tissue, which is a mix of soft and calcified (e.g. sclerotic cartilage) 

tissues, was also positive for all transcripts, although the contribution of each type of tissue 

remains to be determined. Spatial expression of bmp2a, bmp2b, bmp4 and bmp16 strongly 

suggests that each isoform plays a different role in organ and tissue homeostasis, with a 

central role in calcified tissues, and particularly in scales. 

Retinoic acid negatively regulates the expression of zebrafish bmp2a, bmp2b, bmp4 and 

bmp16 

Expression of all bmp genes was negatively regulated upon atRA treatment, although to 

different extents (Fig.9). The two bmp2 genes suffered the highest inhibition, bmp2a being 

most affected (5.8 folds), while expression of other bmp genes was down-regulated to a lesser 

extent. Bmp4 was only slightly down-regulated (1.6 folds), suggesting that although 

regulatory mechanisms driven by RA were conserved, they may have distinct gene 

specificities. 

 

Discussion 

Taxonomic and phylogenetic data revealed the complex evolution of BMP2/4/16 family, 

where members are derived from an ancestral BMP2/4/16 isoform through gene duplication 

events that occurred during vertebrate evolution and were subsequently independently lost in 

specific animal lineages. Fig. 10 illustrates this complex evolutionary relationship and 

according to the molecular phylogeny presented here, the origin of BMP16 would precede the 

appearance of BMP2 and BMP4 in Chondrichthyes and of BMP2/4 in lamprey. Given the 

phylogenetic relationships of taxa possessing BMP16, and taking into account the two WGD 

events that are known to have occurred early in vertebrate evolution (before and after the 

agnathans/gnathostomes split) [4, 5, 42], the most parsimonious explanation for the origin of 
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BMP16 is that the gene is the product of the first WGD event that occurred in a chordate 

ancestor prior to the branching of the jawless fish. Our proposal contradicts the recent report 

by Feiner et al. [12], but is congruent with the proposal that the three lamprey BMP2/4 genes 

are the result of lineage specific duplications after the divergence of agnathans and 

gnathostomes [43]. From an ancestral BMP2/4/16 isoform the first WGD event produced both 

the BMP16 and the BMP2/4 isoforms, the latter of which, after the second WGD event, gave 

rise to BMP2 and BMP4 isoforms (Fig. 10). 

The presence of BMP16 in two lepidosaurian species (the green anole and the Burmese 

python) and its absence in other tetrapods was unexpected. If not present in these two species, 

BMP16 could have been lost early in the tetrapod lineage after branching from the lobe-

finned fish, but its presence in lepidosaurians suggests multiple, independent and lineage-

specific losses of the gene (Fig. 10). Similarly to what happens for BMP16, parallel lineage-

specific gene losses have been reported for other genes that were present at the base of the 

vertebrate lineage and have been lost in selected taxa throughout evolution [44–47]. Gene 

retention is often associated with adaptive advantages [48, 49] and the maintenance of 

BMP16 in Lepidousaria genomes is most likely due to a selective advantage related to 

specific traits (e.g. locomotion, reproduction, feeding, adaptation to a particular environment) 

that the gene confers (see below for our hypothesis of the adaptive advantage promoted by 

BMP16). Although the absence of BMP16 in agnathans and cartilaginous fish could also be 

related to gene loss events, we believe that limited amount of genomic and transcriptomic 

information for these taxonomic groups are probably the cause for this absence. 

The presence of two BMP2 isoforms (BMP2a and BMP2b) in Ostariophysi could be related 

to a gene duplication event that occurred in an ancestor soon after branching from 

Neoteleostei or to the third, fish-specific, WGD that affected Teleostei [2, 50–53]. If teleost-

specific WGD is at the origin of the second BMP2 isoform in Ostariophysi, its absence in 

Neoteleostei probably occurred through gene loss and is possibly related to an eventual 

functional redundancy. Future studies should aim at understanding why a second isoform was 

maintained in this specific taxonomic group and whether it evolved a new function. 

The low conservation of the genomic region neighboring BMP16 locus in zebrafish was 

somehow a bit surprising given the high conservation observed among other teleost fish. 

Interestingly, a high number of transposable elements have been detected in zebrafish genome 

and we propose that divergent genomic structure around BMP16 genes could be related to a 

higher frequency of interchromosomal gene exchange [54, 55]. 
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BMPs form the largest group of growth factors in TGFβ superfamily and its division into 

subfamilies was based on sequence identity [56]. Conservation of gene structure between 

members of the BMP2/4/16 subfamily is particularly evident in the coding regions and high 

similarity of the mature peptide has been reported previously [19, 50]. However, non-coding 

regions, which are known to have important roles in gene transcriptional and post-

transcriptional regulation [57], were found to be substantially different in zebrafish bmp2a, 

bmp2b, bmp4 and bmp16, and may indicate differences in the regulation of gene expression. 

The lethal phenotypes of BMP2
-/-

 or BMP4
-/-

 mice demonstrated that both genes are essential 

and cannot compensate for the deficient function of each other [18, 58]. It suggests that 

spatial-temporal patterns of BMP2 and BMP4 gene expression are not overlapping and that 

both genes are probably submitted to distinct regulatory mechanisms and would be involved 

in separate physiological roles. This hypothesis was confirmed by expression data presented 

in this study but also by the high sequence divergence of BMP2 and BMP4 promoter and 

untranslated regions [59–61]. 

On the contrary, protein sequences were remarkably conserved and the models exhibited an 

almost identical 3D structure, where most residues involved in interface contact, including the 

BMP receptor binding hotspots, Leu51 and Asp53 [31], were conserved. Leu51 is maintained 

unvariable in several members of BMPs (i.e. BMP2, BMP4, BMP6, BMP7) and growth 

differentiation factors (i.e. GDF6 and GDF7), all of which interact with BMPR1A, indicating 

that the backbone hydrogen bond formed between this residue and the receptor is important 

for ligand-receptor interaction [31]. Similarly, Leu51 and Asp53 residues in BMP7 [62] were 

shown to have extensive contact with noggin, a known BMP antagonist, suggesting that these 

residues work as a general recognition motif in BMP ligands, although they are not always the 

main determinants [31, 62]. These data suggest that the BMP2/4/16 subfamily members may 

be involved in similar and/or complementary processes and act through the same signaling 

pathways, as proposed by Feiner and co-workers [12]. The main differences between 

BMP2/4/16 family members would probably not be associated to its structure and ability to 

trigger BMP signaling but most likely related to differential regulation and different patterns 

of expression. 

Important to mention is the complexity of the BMP-receptor assembly with four type I 

receptors - BMPR1A, BMPR1B, activin receptor-like kinase (ALK) 1 and 2 – and three type 

II receptors – BMPR2 and type IIA and IIB activin receptors (ActR2A and Actr2B) – 

described to bind BMPs with a very flexible oligomerization pattern [63, 64]. Additionally, in 

the zebrafish embryo a complex composed by homodimers of type II receptors and 
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heterodimers of type I receptors (activin-like kinases 3/6 and 2/8) was shown to be activated 

by heterodimers of BMP2/BMP7 but not by BMP2 and BMP7 homodimers [65], further 

demonstrating the complex regulation of BMP signaling in vertebrates. In our experimental 

system Bmp2a, Bmp2b, Bmp4 and Bmp16 were all capable of activating the BMP signaling 

pathway, although to different extents. Even though we cannot exclude the possibility that the 

differential activation of BMP signaling pathway may result from the transfection of variable 

amounts of DNA into the host cells or from uneven capacity of the cells to produce and/or 

process the different proteins, we suggest that it is a consequence of distinct receptor affinities 

as already proposed for other BMPs [21, 66]. Binding assays aiming at evaluating ligand-

receptor affinity will need to be performed in the future to address this question. 

Although they exhibited different levels of gene expression, zebrafish bmp2a and bmp2b 

showed comparable expression patterns in adult tissues, while different during early 

development. In zebrafish and Mexican tetra (both Ostariophysi) bmp2a expression is 

detected in a small subset of bmp2b expression domains, a fact that is consistent with a 

possible subfunctionalization that genes may have experienced after the duplication [67]. 

Developmental expression of BMP4 is reported to be an important signal for organ 

morphogenesis in several vertebrates [68–71]. Bmp4 is also expressed throughout zebrafish 

development and similarly to bmp2 it is described to act as a ventralizing agent, during 

mesoderm and neural plate formation [72], a role that is maintained by their invertebrate 

orthologs [73], suggesting a functional conservation of members of the subfamily throughout 

evolution. While bmp2a, bmp2b and bmp4 were all expressed at later stages, bmp16 

expression was detected as soon as 1 hpf (4-cells), in zebrafish, and 2 hpf, in Senegalese sole 

[19], suggesting a possible maternal inheritance of the transcript and an important role in the 

early stages of embryonic development. Analysis of sites of bmp16 expression revealed that 

until 5 dpf transcripts were mainly detected in the developing heart, gut epithelium and swim 

bladder [12]. In Senegalese sole, expression of BMP16 remained very low until 5 dpf, 

exhibiting an increase during the metamorphosis phase [19], which may indicate a particular 

role of BMP16 in this process. Tissue distribution of bmp2a, bmp2b, bmp4 and bmp16 

indicate high expression levels for all these isoforms in calcified tissues, supporting the well 

documented role of bmp2 and bmp4 in bone metabolism (see for example [15]), and 

suggesting a contribution from bmp16 in this process. For most of the isoforms (except 

bmp2a), highest expression levels were observed in scales, in agreement with the reported 

role of BMP signaling in the formation and regeneration of fish and Squamata scales [74, 75]. 

High expression in scales, together with the observation that BMP16 is only present in 
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organisms exhibiting scales on their body (i.e. ray-finned fish, lobe-finned fish, lizards and 

snakes) indicate that BMP16 may play an important role in scale formation and maintenance. 

Among other tissues with high bmp2, 4 and 16 expression are the branchial arches, known to 

be important for processes such as osmoregulation and respiration, where BMP signaling is 

reported to be involved [76]. Bmp16 expression in this tissue may also suggest a role in 

cartilage formation and mineralization as already described for BMP2 and BMP4 [77]. The 

relatively high levels of bmp2, bmp4 and bmp16 expression observed in the eye, which 

contain a mixture of soft and calcified tissues, may be related to the presence of sclerotic 

cartilage, in agreement with previous reports for other BMP family ligands [78]. In addition to 

bone metabolism and dorsoventral patterning, BMPs are described as being involved in 

several other processes [79]. Important roles of BMP2 in the central and, particularly, in the 

enteric nervous system formation are well documented [80–82]. The high levels of bmp2a and 

bmp2b in brain and intestine samples further support this interpretation. Moderate levels of 

expression are also found in spleen (bmp4 and bmp16) and in testis (bmp16), and BMP4 has 

been described as one of the signals required for the expansion of stress erythroid progenitors, 

in murine spleen [83]. BMP4 expression has also been reported in the gonads of several 

vertebrate species [84, 85], while BMP16 expression was detected in the ovary of coho 

salmon [86]. 

Exposure of ZFB1 cells to RA demonstrated a negative regulation of zebrafish bmp2a, 

bmp2b, bmp4 and bmp16 expression. RA is a morphogen involved in several developmental 

processes and in skeletal formation [87]. In addition to the regulation of expression of BMP 

ligands, RA has been reported to modulate BMP signaling, however opposing effects were 

observed. Expression of BMP2 was stimulated in HSG-S8 cells, a human adenocarcinoma 

cell line [88], and we have shown that RA up-regulates the expression of BMP2, BMP4 and 

BMP16 in Senegalese sole cells [19]. On the other hand, RA was described as down-

regulating the expression of BMP7 in rats with cleft palate [89], and expression of BMP2 and 

BMP4 was also observed to decrease in MG63 cells after RA treatment [90]. Contradictory 

results for the RA regulation of BMP genes suggest a context-dependent effect of the 

morphogen and is most likely related to the presence/absence of co-regulators [91–93].  

In conclusion, we have shown that BMP16 is not restricted to the teleost fish lineage but is 

largely absent from tetrapod genomes. Phylogenetically, BMP16 diverged in early vertebrates 

from an ancestral BMP2/4/16. All family members have a protein structure remarkably 

similar and are capable of activating the BMP signaling pathway and would therefore perform 

the same function. Differences among BMP2/4/16 family members are found in the spatial-
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temporal expression of the genes. They would therefore be submitted to different regulation 

and participate in distinct physiological processes during early embryonic development and in 

adult tissues, scales being the tissue expressing the highest levels of bmp2b, bmp4 and bmp16 

expression.  

Taken together, our results, suggest that, after duplication, members of the BMP2/4/16 

subfamily evolved towards a conservation of protein structure and function and the main 

differences observed in gene expression would be related to differential regulatory 

mechanisms. The presence of BMP16 in lepidosaurians, while it is absent in other tetrapods, 

remains to be elucidated although a role in scale formation and homeostasis is conceivable. 
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Table 1. PCR primers used in this study to assess gene expression and subclone coding 

sequences in expression vectors. Primers were designed according to zebrafish sequences 

BMP2a (accession no. NM_131359), BMP2b (accession no. NM_131360), BMP4 (accession 

no. NM_131342), BMP16 (accession no. NM_001171776) 

 

Name Sequence (5’-3’)* Application 

DreBMP2a_1Fw CTGAGCCCGTCTGATCTCCTTCGTC 

qPCR 

DreBMP2a_1Rv GCTGCTGGGAGTGGGTCTGTGCTGGAG 

DreBMP2b_1Fw GAGGAACTTAGGAGACGACGGGAACGC 

DreBMP2b_1Rv TCTCGGGAATGAGTCCAACGGCAC 

DreBMP4_1Fw CGCCGTCGTACCACAGTATCTGCTC 

DreBMP4_1Rv ATAGTCGAAGCTGACGTGCTGCGC 

DreBMP16_1Fw CGTCATCGACAACTCAAAGGGACCAA 

DreBMP16_1Rv GCGAAGAAGTGCCCTGCAATCAGTTA 

DrebACTIN2_Fw GCAGAAGGAGATCACATCCCTGGC 

DrebACTIN2_Rv CATTGCCGTCACCTTCACCGTTC 

DreRPS_Fw AACACGAACATTGATGGAAGACG 

DreRPS_Rv ATTAGCAAGGACCTGGCTGTATTT 

DreBMP2a_2Fw_HindIII CGAAGCTTATCATCATGGTCTCGTCCACCGCC 

Cloning 

DreBMP2a_2Rv_XhoI CCCTCGAGGTGGCGTCAGCGGCACCCGCATCC 

DreBMP2b_2Fw_KpnI CCGGAGGGTACCTGATCATGGTCGCCGTGGTCC 

DreBMP2b_2Rv_XhoI CCCTCGAGAGATTGTTCTCATCGGCACCC 

DreBMP4_2Fw_HindIII CGAAGCTTGACATCATGATTCCTGGTAATCGAATG 

DreBMP4_2Rv_XhoI CCCTCGAGCTCCGTTTAGCGGCAGCCACACC 

DreBMP16_2Fw_HindIII CGAAGCTTTCCAACATGTTCCCTGCTAGCCTA 

DreBMP16_2Rv_XhoI CCCTCGAGATCTGGCTATCGACAGCCACATCC 

*Underlined sequences indicate recognition site for endonucleases cited in primer name 
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Figures captions 

Fig. 1 Taxonomic distribution of bone morphogenetic proteins BMP2, BMP4 and BMP16 

(simplified from the Tree of Life at tolweb.org). Presence/absence of BMP2, BMP4 and 

BMP16 (circled 2, 4 and 16, respectively) were inferred from sequence data collected from 

NCBI and Ensembl sequence databases. Circled 2a and 2b, Ostariophysi-specific BMP2 

paralogs; Circled 2/4, cyclostome- and invertebrate-specific BMP2/4 homologs; Circled ?, 

missing information; V, Vertebrata; G, Gnathostomata; O, Osteichthyes; Ac, Actinopterygii; 

N, Neopterygii; Te, Teleostei; Sa, Sarcopterygii; T, Tetrapoda; A, Amniota; S, Sauropsida; D, 

Diapsida. 

 

Fig. 2 Schematic representation of the genomic region flanking vertebrate BMP16 gene using 

data from Ensembl project. Genes present in the vicinity of BMP16 locus are indicated in 

colored boxes irrespectively of their orientation. Gene names are indicated on the left side of 

each scheme. Unnamed white boxes indicate genes present in the vicinity of BMP16 locus in 

only one species. Chr, chromosome; LG, linkage group; Sca, scaffold; UNK, unknown. 

Vertebrate species are: zebrafish Danio rerio, Japanese medaka Oryzias latipes, spotted green 

pufferfish Tetraodon nigroviridis, three-spined stickleback Gasterosteus aculeatus, Southern 

platyfish Xiphophorus maculatus, African coelacanth Latimeria chalumnae, Western clawed 

frog Xenopus tropicalis, green anole Anolis carolinensis, painted turtle Chrysemys picta bellii, 

chicken Gallus gallus, zebra finch Taeniopygia guttata, mouse Mus musculus, human Homo 

sapiens. Gene names are: Gemin7, gem associated protein 7; BMP16, bone morphogenetic 

protein 16; PPP1R37, protein phosphatase 1 regulatory subunit 37; SLC30A1, solute carrier 

family 30 member 1; RAB4B, RAB4B member RAS oncogene family; RHOUB, Ras homolog 

gene family member Ub; RTN2, reticulon 2; PPM1NA, protein phosphatase Mg
2+

/Mn
2+

 

dependent 1Na; PTGIR, prostaglandin I2 receptor; CALM1, calmodulin 1; PHC2B, 

polyhomeotic homolog 2b; MRPL28, mitochondrial ribosomal protein L28; RELB, avian 

reticuloendotheliosis viral oncogene related B; CLPTM1, cleft lip and palate associated 

transmembrane protein 1; TBCB, tubulin folding cofactor B; SIX5, sine oculis homeobox 5; 

AP2S1, adaptor-related protein complex 2 sigma 1 subunit; BAHD1, bromo adjacent 

homology domain containing 1; BMP4, bone morphogenetic protein 4; BLOC1S3, biogenesis 

of lysosomal organelles complex 1 subunit 3; LGALS4, lectin galactoside-binding soluble 4; 

NKPD1, NTPase KAP family P-loop domain containing 1; CLASRP, CLK4-associating 
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serine/arginine rich protein; TRAPPC6A, trafficking protein particle complex 6A; ZNF296, 

zinc finger protein 296. 

 

Fig. 3 Phylogenetic relationship among vertebrate BMP2, BMP4 and BMP16 homologs. The 

tree is a 50% majority-rule consensus tree of trees obtained from the posterior distribution of 

a composition heterogeneous P4 Bayesian MCMC analysis (Fig. E Online resource 2): model 

GTR+Γ+I+CV2, marginal likelihood −lnLh = 17045.6169, posterior predictive simulations of 

χ2 statistic of composition homogeneity p-value = 0.4613. Numbers on the branches represent 

bootstrap values (Online resource 2b) and posterior probabilities of the maximum likelihood 

and Bayesian analysis, respectively. The tree is rooted in the outgroup taxa Invertebrata. 

 

Fig. 4 Structure of zebrafish bmp2a, bmp2b, bmp4 and bmp16 genes. Gene sequences were 

collected/reconstructed from GenBank using whole-genome shotgun (WGS), genome survey 

sequence (GSS) and/or high-throughput genome sequencing (HTGS). Exons (E) are displayed 

as gray boxes (non-coding exons) and black boxes (coding exons). Introns are displayed as 

solid black lines and respective size (kbp) is indicated below the phase of intron insertion 

(white circles). Dashed lines indicate alternative splicing Triangles indicate local of predicted 

polyadenylation signals in 3’ untranslated region: white, manual prediction; light gray, 

manual and bioinformatics predictions; dark gray, manual prediction and EST evidence; 

black, manual and bioinformatics predictions, and EST evidence. A schematic representation 

of chromosome 17 (Chr17) is presented on the right side, with the approximate location of 

bmp2a and bmp4 genes and the estimated distance between both genes. 

 

Fig. 5 Structures of zebrafish Bmp2a, Bmp2b, Bmp4 and Bmp16 and human Bmp2. (a) 

Alignment of the primary structure of zebrafish and human mature peptides. Positions marked 

with letters are residues of human BMP2 withing 3.0 Å of the BMP receptor IA (BMPRIA). 

v, fully conserved; o, conservative replacement; x, non-conservative replacement. Amino 

acids involved in solvent-mediated interactions are marked in bold; amino acids involved in 

receptor binding (hot spots) are underlined. *, : and . indicate positions in the alignment with 

total conservation, conserved substitution and non-conserved substitution, respectively. (b) 

Modeled heterodimeric complex of human BMP2 (red) with human BMPRIA (white) and 

mouse ACVR2A (blue) receptors. In the insets, the sequences of zebrafish mature Bmp2a 

(gold), Bmp2b (cyan), Bmp4 (green) and Bmp16 (violet) protein models are shown 

superimposed with human BMP2 (red). BMP residues important for receptor interface contact 
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are displayed as sticks, and the two hot spot residue for the BMPRIA (ASP53 and LEU51), as 

well as important residues for ACRV2A interaction (ALA34, PRO35, SER88, MET89 and 

LEU90) are labeled. 

 

Fig. 6 Activation of BMP-signaling pathway by zebrafish Bmp2a, Bmp2b, Bmp4 and Bmp16. 

ABSa15 cells were co-transfected with BRE-Luc reporter vector, containing BMP-responsive 

elements upstream the luciferase gene and vectors containing each of the zebrafish BMP 

genes. Numbers inside the bars indicate fold changes over BRE-Luc vector. The different 

letters indicate values significantly different from each other (one-way ANOVA followed by 

Tukey’s post-test; P<0.05). 

 

Fig. 7 Expression of bmp2a, bmp2b, bmp4 and bmp16 throughout zebrafish larval 

development. (a) Ct values for bmp2a, bmp2b, bmp4, bmp16 and act2b genes. Values are the 

mean from at least 3 technical replicates ± standard deviation. Asterisks indicate values that 

are significantly different from the values at 16 hpf (one-way ANOVA followed by Dunnett’s 

post-test; P<0.05). (b) Transcript levels were determined by qPCR from at least three 

technical replicates and normalized using housekeeping β-actin2 gene. Gray bars indicate 

initial stages of development, where the expression of housekeeping gene is not constant. 

Expression levels at 12 dpf (bmp2a), 32 hpf (bmp2b), 9 dpf (bmp4) and 30 dpf (bmp16) were 

used as references and set to 1. hpf, hours post-fertilization; dpf, days post-fertilization. 

Different relevant developmental processes are indicated on the top of the figure: C, cleavage; 

B, blastula; S, segmentation; P, pharyngula; H, hatching; J, juvenile. 

 

Fig. 8 Relative gene expression of zebrafish bone morphogenetic proteins 2a, 2b, 4 and 16 

genes in adult zebrafish tissues. Transcript levels were determined by qPCR from at least 

three technical replicates and normalized using housekeeping rps18 gene. Expression levels in 

skin (bmp2a), heart (bmp2b and bmp16), and vertebra (bmp4) were used as references and set 

to 1. The type of tissue is indicated on top of the figure. 

 

Fig. 9 Relative expression of bmp2a, bmp2b, bmp4 and bmp16 in zebrafish ZFB1 cells upon 

exposure to 1 μM of all-trans retinoic acid during 24 h. Transcript levels were determined by 

qPCR from at least three technical replicates, normalized using housekeeping β-actin2 gene 

and presented as fold change over control (cells treated with DMSO, vehicle for retinoic 

acid). Numbers inside the bars indicate fold changes over control. The different letters 
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indicate values significantly different from each other (one-way ANOVA followed by 

Tukey’s post-test; P<0.05). 

 

Fig. 10 Schematic representation of a possible evolutionary model for members of the 

BMP2/4/16 subfamily. Members of this subfamily are products of the same ancestor 

BMP2/4/16 gene that, after the two whole genome duplication events, that affected 

vertebrates, originated BMP2, BMP4 and BMP16 genes. Ostariophysi-specific BMP2a 

isoform resulted from the teleost fish specific whole genomic duplication event and would 

have been lost in the lineage leading to modern teleosts (Neoteleostei). Absence of BMP16 in 

some vertebrate taxa is explained by lineage-specific gene loss. 
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