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Abstract—We introduce and study the mixed-norm Bergman–Morrey space A q;p,λ(D), mixed-
norm Bergman–Morrey space of local type A q;p,λ

loc (D), and mixed-norm Bergman–Morrey space
of complementary type �A q;p,λ(D) on the unit disk D in the complex plane C. The mixed norm
Lebesgue–Morrey space L q;p,λ(D) is defined by the requirement that the sequence of Morrey
Lp,λ(I)-norms of the Fourier coefficients of a function f belongs to lq (I = (0, 1)). Then, A q;p,λ(D)

is defined as the subspace of analytic functions in L q;p,λ(D). Two other spaces A q;p,λ
loc (D) and

�A q;p,λ(D) are defined similarly by using the local Morrey Lp,λ
loc (I)-norm and the complementary

Morrey �Lp,λ(I)-norm respectively. The introduced spaces inherit features of both Bergman
and Morrey spaces and, therefore, we call them Bergman–Morrey-type spaces. We prove the
boundedness of the Bergman projection and reveal some facts on equivalent description of these
spaces.
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1. INTRODUCTION

Starting with the papers by Bergman [1] and Dzherbashyan [2], [3], the spaces of analytic functions
which are p-integrable with respect to a sigma-finite measure on a connected open set in the complex
plane C or in C

n have been intensively studied by a number of authors (see the books [4]–[10] and
the references therein). The study of Toeplitz operators as well as algebras of Toeplitz operators acting
in Bergman spaces served as an important objective for developing the entire theory of such spaces.
The knowledge of the structural properties of these spaces, in particular, is very useful in studying
Toeplitz-type operators on such spaces.

More recent advances in the theory of space of analytic functions are connected with the study of
Bergman-type spaces and other spaces such as analytic Besov spaces, Q-spaces, Lipschitz, Bloch,
BMOA, and their numerous analogues and generalizations. The variety of the definitions and ap-
proaches used to define and study such spaces allows to characterize them from different points of views,
and still these spaces have a significant interplay among themselves, since they draw much from the
classical theory of Bergman and even of Hardy spaces.

A major issue that passes through all the above is that the boundary behavior of a function from the
space under consideration or the boundary behavior of the corresponding symbol of a Toeplitz operator
is the most important point.

The introduction of a mixed norm is the natural generalization of the classical Bergman space, which,
in particular, allows to distinguish between variables and, hence, to specify the boundary behavior of
functions with more accuracy.
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Several particular results on the mixed-norm Bergman spaces with integral mixed norm are known.
These results are related to the boundedness of the Bergman projection and to some properties of
Bergman spaces, such as duality, etc. Without claiming completeness, we refer the reader to the
papers [11]–[15] (also see the references therein).

Here we consider another generalization of the classical Bergman space, which is cardinally different
from the above-mentioned approach. Instead of the angular integral norm, we use the lq-norm of the
sequence whose entries are Morrey-type norms of the Fourier coefficients of a function f on D. The
introduced spaces inherit features of both Bergman and Morrey spaces and, therefore, we call them
Bergman–Morrey-type spaces. General references on Morrey spaces are [16], [17]. We refer the reader
to [18] for recent advances on real variable Morrey-type space theory. There are also some essential
developments un the study of the classical operators of real analysis in general Morrey-type spaces;
see [19]–[22] (see the references therein).

Note that, for λ = 0, the Morrey-type spaces Lp,0(I), Lp,0
loc(I), and Lp,0(I) are Lp(I). The

mixed-norm Bergman-type spaces in this case were considered in an even more general situation: in
the paper [23], we used variable order Lebesgue space Lp( · )(I) to define the corresponding mixed-norm
variable-order Bergman space over D. So the paper [23] covers the results of the present paper for λ = 0.
The present paper may be considered as a natural continuation of the study of Bergman-type spaces
with mixed-norm structure as in [23]. One of the underlying ideas of this study is an application of such
results to the study of Toeplitz-type operators. We intent to consider such applications in another paper.

Note that the Morrey norm was already used for the analytic function space to measure boundary
values of the Hardy H2(D) functions. The analytic Morrey spaces on the unit disc and upper half plane
were introduced and studied in relation with Q-spaces in [24] (also see [25] for further development).

The article is organized as follows. In Sec. 2, we give the necessary definitions and notions on
classical Bergman spaces, Bergman projection and Morrey-type spaces. In Sec. 3, we introduce the
spaces

L q;p,λ(D), A q;p,λ(D), L q;p,λ
loc (D), A q;p,λ

loc (D), �L q;p,λ(D), �A q;p,λ(D).

In Sec. 4, we establish asymptotic estimates (asymptotic behavior) for the sequences of numbers

‖rn‖Lp,λ(I), ‖rn‖
Lp,λ
loc (I)

, ‖rn‖�Lp,λ(I), n ∈ Z+ (nonnegative integers).

These estimates and asymptotics allow us to prove the boundedness of the Bergman projection as
a projection from L q;p,λ(D) onto A q,p( · )(D), from L q;p,λ

loc (D) onto A q;p,λ
loc (D), and from �L q;p,λ(D)

onto �A q;p,λ(D) in Sec. 5. In Sec. 6, based on estimates from Sec. 4, we discuss equivalent norms
in A q;p,λ(D), �A q;p,λ(D), and reveal connection of these spaces with the Hardy space H2(D), exploring
the Hadamard’s fractional derivatives as well.

2. PRELIMINARIES AND DEFINITIONS

2.1. On Classical Hardy Hp(D) and Bergman A p(D) Spaces and Bergman Projection BD

The references for the results and definitions stated here are [6]–[9]. For a function ϕ on the unit
disk D and for 0 ≤ r < 1, we write

Mp(ϕ; r) =

{
1

2π

ˆ 2π

0
|ϕ(r, eiθ)|p dθ

}1/p

, 0 < p < ∞,

Mp(ϕ; r) = ess-supθ∈[0,2π) |ϕ(r, eiθ)|, p = ∞.

The class of analytic functions f in D for which

‖f‖Hp(D) ≡ lim
r→1

Mp(f ; r) < ∞, 0 < p ≤ ∞,

is the Hardy class Hp(D).
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Let dA(z) stands for the area measure on D normalized so that the area of D is 1. As usual, A p(D)
stands for the Bergman space of analytic functions f in D that belong to Lp(D) = Lp(D; dA(z)). The
corresponding Bergman projection BD, which is defined on f ∈ L1(D) as

BDf(z) =

ˆ
D

K(z, w)f(w) dA(w), z ∈ D,

is bounded from Lp(D) onto A p(D) for 1 < p < ∞.

2.2. Morrey Space Lp,λ(I), Local Morrey Space Lp,λ
loc (I), and Complementary Morrey Space �L

p,λ
(I)

on I = (0, 1)

There are numerous sources for Morrey space theory. We refer the reader to [18] for definitions and
properties. Let 1 ≤ p < ∞, λ ≥ 0. The Morrey space Lp,λ(I) over the interval I is defined as the set of
measurable on I functions ϕ such that

sup
r,r±h∈I, h>0

1

(2h)λ

ˆ r+h

r−h
|ϕ(t)|p2t dt < ∞.

The local Morrey space Lp,λ
loc (I) over the interval I is defined as the set of measurable (on I) functions ϕ

such that

sup
h∈I

1

hλ

ˆ 1

1−h
|ϕ(t)|p2t dt < ∞.

Such local spaces are sometimes called central Morrey spaces. The complementary Morrey space
�Lp,λ(I) over the interval I is defined as the set of measurable on I functions ϕ such that

sup
h∈I

hλ
ˆ 1−h

0
|ϕ(t)|p2t dt < ∞.

The pth root from each expression above provides the corresponding norm.
The space Lp,λ(I) is trivial for λ > 1 and

Lp,0(I) = Lp,0
loc(I) =

�Lp,0(I) = Lp(I)

and Lp,1(I) = L∞(I). The space �Lp,λ(I) contains nonintegrable functions for λ ≥ p− 1.
Therefore, in what follows, we shall assume that 0 ≤ λ < 1 for Lp,λ(I), Lp,λ

loc (I), and 0 ≤ λ < p− 1

for �Lp,λ(I). Note that these space are not separable for λ as specified above, unless λ = 0.

3. MIXED NORM BERGMAN–MORREY-TYPE SPACES
3.1. Spaces L q;p,λ(D), L q;p,λ

loc (D), and, �L q;p,λ(D)

Given a function f(z) = f(r, eiα) on D introduce the Fourier transform in angular variable defined by
the rule

I ⊗ Ff = {fn(r)}n∈Z, fn(r) =
1

2π

ˆ 2π

0
f(r, eiα)e−inα dα.

Let further for each n ∈ Z the function fn = fn(r) belong to the space Lp,λ(I), where 1 ≤ p < ∞.
Introduce the mixed-norm space L q;p,λ(D), 1 ≤ q < ∞, 1 ≤ p < ∞, 0 ≤ λ < 1, as the space of

measurable on D functions f such that the Fourier coefficients fn(r) exist for almost all r ∈ I and the
norm

‖f‖L q;p,λ(D) =

(∑
n∈Z

‖fn‖qLp,λ(I)

)1/q

(3.1)

is finite. The mixed-norm spaces L q;p,λ
loc (D), 1 ≤ q < ∞, 1 ≤ p < ∞, 0 ≤ λ < 1, and �L q;p,λ(D),

1 ≤ q < ∞, 1 < p < ∞, 0 ≤ λ < p− 1, are similarly defined with the Lp,λ(I)-norm in (3.1) replaced
by the local Morrey Lp,λ

loc (I)-norm and the complementary Morrey �Lp,λ(I)-norm, respectively.
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3.2. Bergman–Morrey-Type Spaces A q;p,λ(D), A q;p,λ
loc (D), �A q;p,λ(D)

We introduce the mixed-norm Bergman–Morrey space

A q;p,λ(D), 1 ≤ q < ∞, 1 ≤ p < ∞, 0 ≤ λ < 1,

as the space of functions L q;p,λ(D) which are analytic in D. Hence the norm of a function f ∈ A q;p,λ(D)
is given by

‖f‖A q;p,λ(D) =

( ∑
n∈Z+

‖fn‖qLp,λ(I)

)1/q

. (3.2)

Similarly, the mixed-norm Bergman–Morrey space of local type

A q;p,λ
loc (D), 1 ≤ q < ∞, 1 ≤ p < ∞, 0 ≤ λ < 1,

and the mixed-norm Bergman–Morrey space of complementary type

�A q;p,λ(D), 1 ≤ q < ∞, 1 < p < ∞, 0 ≤ λ < p− 1,

are defined accordingly as the subspaces of L q;p,λ
loc (D) and �L q;p,λ(D) consisting of analytic functions

in D.

It will be convenient to use the following notation. Everywhere in the sequel, Xp,λ(I) stands for one
of the three spaces

(1) Xp,λ(I) = Lp,λ(I), 1 ≤ p < ∞, 0 ≤ λ < 1,

(2) Xp,λ(I) = Lp,λ
loc (I), 1 ≤ p < ∞, 0 ≤ λ < 1,

(3) Xp,λ(I) = �Lp,λ(I), 1 < p < ∞, 0 ≤ λ < p− 1.

Remark 1. By the definition of the spaces under consideration, the Fourier coefficients fn = fn(r),
n ∈ Z, of a function f in any of Bergman–Morrey-type spaces A q;p,λ(D), A q;p,λ

loc (D), or �A q;p,λ(D)
have the form

fn(r) =

{
an‖rn‖−1

Xp,λ(I)
rn, n ∈ Z+,

0, n ∈ Z \ Z+,

and {an}n∈Z+ ∈ lq+, |an| = ‖fn‖Xp,λ(I), n ∈ Z+; moreover,

‖f‖A q;p,λ(D) = ‖f‖
A q;p,λ

loc (D)
= ‖f‖�A q;p,λ(D) = ‖{an}n∈Z+‖lq+

for the admissible range of the parameters q, p, λ in each case.

4. ESTIMATES OF THE NORMS ‖rn‖Lp,λ(I), ‖rn‖Lp,λ
loc (I)

, ‖rn‖�Lp,λ(I)

Due to Remark 1, the behavior of ‖rn‖Xp,λ(I) as n → ∞ plays an important role in our study.

Lemma 1. Let 1 ≤ p < ∞, 0 ≤ λ < 1. Then the following bilateral estimate:

C1n
(λ−1)/p ≤ ‖rn‖Lp,λ(I) ≤ C2n

(λ−1)/p, n → ∞, (4.1)

is valid, where C1, C2 are some positive constants which do not depend on n.
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Proof. Apply Hölder’s inequality to the integral (h > 0, r ± h ∈ I):

1

(2h)λ

ˆ r+h

r−h
tnp+12 dt ≤ 2

(ˆ r+h

r−h
t(np+1)(1/(1−λ)) dt

)1−λ

≤ 2

(ˆ
I
t(np+1)(1/(1−λ)) dt

)1−λ

= 2

(
(np+ 1)

1

1− λ
+ 1

)λ−1

.

Hence, by definition,

‖rn‖Lp,λ(I) = sup
r,r±h∈I, h>0

(
1

(2h)λ

ˆ r+h

r−h
tnp+12 dt

)1/p

≤ 21/p
(
(np+ 1)

1

1− λ
+ 1

)(λ−1)/p

.

Now we prove a similar estimate from below. Denote

En =

{
h ∈ I : 1−

(
1

2

)1/(np+1)

< 2h < 1−
(
1

4

)1/(np+1)}

=

{
h ∈ I :

1

4
< (1− 2h)np+1 <

1

2

}
.

We have

‖rn‖p
Lp,λ(I)

≥ sup
r+h=1, 0<h<1/2

1

(2h)λ

ˆ 1

1−2h
tnp+12 dt

= 2 sup
0<h<1/2

1

(2h)λ

(ˆ 1

1−2h
tnp+1 dt

)λ(ˆ 1

1−2h
tnp+1 dt

)1−λ

≥ 2 sup
h∈En

(1− 2h)(np+1)λ

(
1− (1− 2h)np+2

np+ 2

)1−λ

≥ 24−λ

(
1− 1

2

1

21/(np+1)

)1−λ

(np+ 2)λ−1 ≥ 2−λ(np+ 2)λ−1.

This concludes the proof.

Lemma 2. The following asymptotics are valid:

(1) ‖rn‖
Lp,λ
loc (I)

∼ n(λ−1)/p, n → ∞, 1 ≤ p < ∞, 0 ≤ λ < 1,

(2) ‖rn‖�Lp,λ(I) ∼ n(−λ−1)/p, n → ∞, 1 < p < ∞, 0 ≤ λ < p− 1.

Proof. The proof of this result is a matter of calculation and then taking supremum in h ∈ I. For
instance,

‖rn‖p�Lp,λ(I)
= sup

h∈I
2hλ

(1− h)np+2

np+ 2
=

2

np+ 2

(
λ

np+ 2 + λ

)λ

.

Remark 2. It follows from Lemmas 1, 2 that the spaces A q;p,λ(D) and A q;p,λ
loc (D) coincide up to the

norm equivalence, 1 ≤ q < ∞, 1 ≤ p < ∞, 0 ≤ λ < 1. However, the spaces L q;p,λ(D) and L q;p,λ
loc (D)

are different.
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5. BOUNDEDNESS OF THE BERGMAN PROJECTION

First, we provide the reader with some preliminary results.

Lemma 3 ([23]). Given a function f in L1(D) let fn = fn(r), n ∈ Z, denote the Fourier coefficients
of the function f . Then the Fourier coefficients of the function BDf are

(BDf)n(r) = rn(n+ 1)

ˆ
I
τnfn(τ)2τ dτ, n ∈ Z+,

(BDf)n(r) = 0, n ∈ Z \ Z+.

(5.1)

Proof. The proof is just a matter of direct calculations.

We will need estimates for ‖(BDf)n‖Xp,λ(I), n ∈ Z+. The key result here is the following lemma.

Lemma 4. Let g ∈ Xp,λ(I), where Xp,λ(I) is any of the three spaces Lp,λ(I), Lp,λ
loc (I), or �Lp,λ(I).

Then ∣∣∣∣
ˆ
I
τng(τ)2τ dτ

∣∣∣∣ ≤ C‖g‖Xp,λ(I)n
−λ∗/p−1/p′ , n → ∞. (5.2)

where we denote λ∗ = λ in the case of Morrey Lp,λ(I) and local Morrey Lp,λ
loc (I) spaces and λ∗ = −λ

in the case of complementary Morrey space �Lp,λ(I), and the constant C does not depend on
either f or n.

Proof. Passing to the dyadic decomposition over the intervals Ik = (1− 2−k, 1− 2−k−1), k ∈ Z+, we
have ˆ

I
τng(τ)2τ dτ = 2

∑
k∈Z+

ˆ
Ik

τn+1g(τ) dτ.

Let, as usual, 1/p+ 1/p′ = 1. Below we will proceed with the case p > 1. Using Hölder’s inequality we
obtain ∣∣∣∣

ˆ
Ik

τn+1g(τ) dτ

∣∣∣∣ ≤
(ˆ

Ik

τ (n+1)p′(1− τ)λ
∗p′/p dτ

)1/p′(ˆ
Ik

(1− τ)−λ∗ |g(τ)|p dτ
)1/p

.

For each k ∈ Z+ in the case of Morrey Lp,λ(I) space, we have
(ˆ

Ik

(1− τ)−λ|g(τ)|p dτ
)1/p

≤
(
2(k+1)λ

ˆ
Ik

|g(τ)|p dτ
)1/p

≤ ‖g‖Lp,λ(I).

An analogous estimate holds in the case of local Morrey space Lp,λ
loc (I), but with the additional constant

multiplier 2λ/p in the right-hand side. Simultaneously, in the case of complementary Morrey space
Xp,λ(I) = �Lp,λ(I), we have

(ˆ
Ik

(1− τ)λ|g(τ)|p dτ
)1/p

≤
(
2−kλ

ˆ
Ik

|g(τ)|p dτ
)1/p

≤ 2λ/p‖g‖�Lp,λ(I).

Further, if we denote

Jn,λ∗,p′(k) =

(ˆ
Ik

τ (n+1)p′(1− τ)λ
∗p′/p dτ

)1/p′

,

then direct estimates give

Jn,λ,p′(k) ≤ 2λ/p(1− 2−k−1)(n+1)(2−k−1)λ/p+1/p′ ,

Jn,−λ,p′(k) ≤ (1− 2−k−1)(n+1)(2−k−1)−λ/p+1/p′ .
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Hence if again Xp,λ(I) is any of the three spaces Lp,λ(I), Lp,λ
loc (I), or �Lp,λ(I), then∣∣∣∣

ˆ
I
τng(τ)2τ dτ

∣∣∣∣ ≤ 21+λ/pδp,λ‖g‖Xp,λ(I)

∑
k∈Z+

(1− 2−k−1)(n+1)(2−k−1)λ
∗/p+1/p′ ,

where δp,λ = 1, if either Xp,λ(I) = Lp,λ(I) or Xp,λ(I) = �Lp,λ(I) and δp,λ = 2λ/p in the case of local

Morrey space Lp,λ
loc (I). Note that 0 < λ∗/p + 1/p′ < 1. We have

∑
k∈Z+

(1− 2−k−1)(n+1)(2−k−1)λ
∗/p+1/p′ ≤ 2

∑
k∈Z+

ˆ
Ik+1

τn+1(1− τ)λ
∗/p+1/p′−1 dτ

= 2

ˆ 1

1/2
τn+1(1− τ)λ

∗/p+1/p′−1 dτ ≤ 2B

(
n+ 2,

λ∗

p
+

1

p′

)
,

where B(x, y) is the Euler’s beta function. According to the known asymptotic of the Euler’s beta
function:

B

(
n+ 2,

λ∗

p
+

1

p′

)
∼ (n + 2)−λ∗/p−1/p′ , n → ∞.

Gathering the above estimates, we end up with (5.2) for the case p > 1.

Let now p = 1. In that case we need to prove the statement for Morrey Lp,λ(I) and local Morrey
Lp,λ
loc (I) spaces. The proof is similar to the proof for considered above case p > 1: one needs to use the

L∞(Ik)-norm instead of the corresponding integral norm.

Lemma 5. For f ∈ L1(D) and n ∈ Z+, one has

(1) ‖(BDf)n‖Lp,λ(I) ≤ C‖fn‖Lp,λ(I), 1 ≤ p ≤ ∞, 0 ≤ λ < 1,

(2) ‖(BDf)n‖Lp,λ
loc (I)

≤ C‖fn‖Lp,λ
loc (I)

, 1 ≤ p ≤ ∞, 0 ≤ λ < 1,

(3) ‖(BDf)n‖�Lp,λ(I) ≤ C‖fn‖�Lp,λ(I), 1 < p ≤ ∞, 0 ≤ λ < p− 1,

where the constant C does not depend on either f or n.

Proof. Let us show the validity of the first statement. The proofs for the two remaining ones are similar.
Using (5.1), we get the following expression for the Lp,λ(I)-norm for (BDf)n, n ∈ Z+:

‖(BDf)n‖Lp,λ(I) = ‖rn‖Lp,λ(I)(n+ 1)

∣∣∣∣
ˆ
I
τnfn(τ)2τ dτ

∣∣∣∣. (5.3)

It remains to use Lemmas 1, 2, and 4.

Now we are in position to prove the boundedness of the Bergman projection. The Bergman
projection BD is understood as a continuous extension from a dense subset (see below).

Theorem 6. The operator BD is bounded as a projection

(1) from L q;p,λ(D) onto A q;p,λ(D), 1 ≤ q < ∞, 1 ≤ p < ∞, 0 ≤ λ < 1;

(2) from L q;p,λ
loc (D) onto A q;p,λ

loc (D), 1 ≤ q < ∞, 1 ≤ p < ∞, 0 ≤ λ < 1;

(3) from �L q;p,λ(D) onto �A q;p,λ(D), 1 ≤ q < ∞, 1 < p < ∞, 0 ≤ λ < p− 1.
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Proof. We will prove the first statement. The other cases can be treated similarly. Let L p,λ
0 (D) denote

the set of functions of the form

f(z) = f(r, eiα) =
N∑

n=−N

fn(r)e
inα, fn ∈ Lp,λ(I),

where N ∈ Z+ is arbitrary. It is evident that L p,λ
0 (D) is dense in L q;p,λ(D), 1 ≤ q < ∞, 1 ≤ p < ∞.

The Bergman projection BD is well defined on functions of such type since L p,λ
0 (D) ⊂ L1(D). Lemma 5

is applicable for f ∈ L p,λ
0 (D) and we obtain

‖BDf‖qL q;p,λ(D)
=

N∑
−N

‖(BDf)n‖qLp,λ(I)
≤ Cq

N∑
−N

‖fn‖qLp,λ(I)
= Cq‖f‖q

L q;p,λ(D)
,

where the constant C comes from Lemma 4 and does not depend on f . Making use of Banach–Stein-
haus theorem, we conclude the proof.

Corollary 7. Under the conditions on the parameters q, p, λ stated in Theorem 6, the spaces
A q;p,λ(D), A q;p,λ

loc (D), and �A q;p,λ(D) are closed subspaces of L q;p,λ(D), L q;p,λ
loc (D), and �L q;p,λ(D),

respectively.

6. FURTHER PROPERTIES OF A q;p,λ(D) AND �A q;p,λ(D)

In view of Remark 2, here we will proceed by exploring further properties of Bergman–Morrey
A q;p,λ(D) space and Bergman–Morrey �A q;p,λ(D) space of complementary type.

Let us introduce the weighted Lebesgue space Lp
(1−r)γ (I) as the space of measurable functions g on I

with the norm

‖g‖Lp
(1−r)γ

(I) =

(ˆ
I
|g(r)|p(1− r)γ2r dr

)1/p

, γ ∈ R, 1 ≤ p < ∞. (6.1)

Theorem 8. Let f(z) =
∑

n∈Z+
cnz

n, z ∈ D. Then

(1) the norm ‖f‖A q;p,λ(D) of a function f ∈ A q;p,λ(D), 1 ≤ q < ∞, 1 ≤ p < ∞, 0 ≤ λ < 1, is
equivalent to each one of the following two expressions:

( ∑
n∈Z+

(n+ 1)q(λ−1)/p|cn|q
)1/q

,

( ∑
n∈Z+

‖fn‖qLp

(1−r)−λ (I)

)1/q

;

(2) the norm ‖f‖�A q;p,λ(D) of a function f ∈ �A q;p,λ(D), 1 ≤ q < ∞, 1 < p < ∞, 0 ≤ λ < p− 1, is
equivalent to each one of the following two expressions:

( ∑
n∈Z+

(n+ 1)q(−λ−1)/p|cn|q
)1/q

,

( ∑
n∈Z+

‖fn‖qLp

(1−r)λ
(I)

)1/q

.

Proof. The proof follows from the definitions of the corresponding spaces in view of Remark 1,
Lemmas 1 and 2, and the observation that

‖rn‖p
Lp

(1−r)∓λ (I)
= 2B(np + 2, 1∓ λ) ∼ 2(np+ 2)−(1∓λ), n → ∞.

Corollary 9. Let 1 ≤ q < 2. The Hardy–Littlewood theorem (see [6, p. 76]) implies the continuous
embeddings:
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(1) Hq(D) ↪→ A q;p,λ(D) if q(1 + (1− λ)/p) ≥ 2, 1 ≤ p < ∞, 0 ≤ λ < 1;

(2) Hq(D) ↪→ �A q;p,λ(D) if q(1 + (1 + λ)/p) ≥ 2, 1 < p < ∞, 0 ≤ λ < p− 1.

Let us define the space A q;p
γ (D), γ ∈ R, 1 ≤ p < ∞, as in the definition of Bergman–Morrey-type

spaces, where, instead of the Morrey-type norms, we use the weighted Lebesgue norm (6.1), as
suggested by Theorem 8.

Theorem 10. The following relations:

(1) A q;p,λ(D) = A q;p
λ (D), 1 ≤ q < ∞, 1 ≤ p < ∞, 0 ≤ λ < 1;

(2) �A q;p,λ(D) = A q;p
−λ (D), 1 ≤ q < ∞, 1 < p < ∞, 0 ≤ λ < p− 1,

are valid up to norm equivalence.

Proof. The proof follows from Theorem 8.

As another corollary of Theorem 8 we see that for the case q = 2 the spaces under consideration are
represented as Hadamard-type fractional derivatives of functions in Hardy space H2(D). For fractional
integro-differentiation we refer the reader to [26]. The operation with multiplication of coefficients of

f(z) =
∑
n∈Z+

cnz
n

by (n+ 1)α, α > 0, is the fractional differentiation of Hadamard. We will denote this operator by Dα and
for the corresponding fractional integration operator we use Iα. They are well defined on the whole set of
all functions f analytic in the disc D, preserve this set, and DαIαf = IαDαf = f for all such f (see [26]
and [27]).

Theorem 11. Let q = 2. Then the following relations:

(1) A 2;p,λ(D) = D(1−λ)/p(H2(D)), 1 ≤ p < ∞, 0 ≤ λ < 1;

(2) �A 2;p,λ(D) = D(1+λ)/p(H2(D)), 1 < p < ∞, 0 ≤ λ < p− 1,

hold up to norm equivalence.

Proof. The proof follows from Theorem 8 due to the known fact that

f(z) =
∑
n∈Z+

cnz
n ∈ H2(D) ⇐⇒ ‖f‖2H2(D) =

∑
n∈Z+

|cn|2 < ∞.

Following [27], we introduce the mixed-norm space H(s, t, γ), s > 0, t > 0, γ > 0, of measurable
on D functions with the norm

‖f‖H(s,t,γ) =

{ˆ
I
(1− r)tγ−1M t

s (f ; r) dr

}1/t

, 0 < t < ∞,

‖f‖H(s,∞,γ) = sup
I
{(1 − r)γMs(f ; r)}, t = ∞.

Information about such spaces, including embedding theorems, may be found in [28].
The following result shows that at least for q ≤ 2 the functions in our spaces are regular in the sense

that they have finite Lebesgue-type mixed norm.

Theorem 12. Let 1 < p < ∞, 1 ≤ q ≤ 2. Then the following continuous embeddings hold:
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(1) A q;p,λ(D) ↪→ H(s, t, 1/2 − 1/s + (1− λ)/p) ↪→ L1(D), 0 ≤ λ < 1, if (1− λ)/p < 1/2 + 1/s,
2 < s ≤ ∞, 2 ≤ t ≤ ∞;

(2) �A q;p,λ(D) ↪→ H(s, t, 1/2− 1/s+(1+λ)/p) ↪→ L1(D), 0 ≤ λ < p− 1, if (1+λ)/p < 1/2+1/s,
2 < s ≤ ∞, 2 ≤ t ≤ ∞.

Proof. In view of A q;p,λ(D) ↪→ A 2;p,λ(D) and �A q;p,λ(D) ↪→ �A 2;p,λ(D) for 1 ≤ q ≤ 2, it suffices to
prove the theorem for q = 2.

According to Flett’s result (see [27, Theorem B and Theorem 6]), for the given function f ∈ H2(D),
one has the estimate ‖Dαf‖H(s,t,1/2−1/s+α) ≤ C‖f‖H2(D), provided 2 < s ≤ ∞, 2 ≤ t ≤ ∞, α > 0,
where C does not depend on f . This estimate, along with Theorem 11, implies the embeddings

A 2;p,λ(D) ↪→ H

(
s, t,

1

2
− 1

s
+

1− λ

p

)
, �A 2;p,λ(D) ↪→ H

(
s, t,

1

2
− 1

s
+

1 + λ

p

)
.

To prove H(s, t, 1/2− 1/s+ (1∓λ)/p) ↪→ L1(D), one must repeatedly use Hölder’s inequality under
the following condition on the parameter s:

1∓ λ

p
<

1

2
+

1

s
, 2 < s ≤ ∞.
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